-
Notifications
You must be signed in to change notification settings - Fork 805
/
execute.py
executable file
·328 lines (275 loc) · 14.1 KB
/
execute.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import os
import random
import sys
import time
import numpy as np
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf
import data_utils
import seq2seq_model
# python2 and python3 support
try:
reload
except NameError:
# py3k has unicode by default
pass
else:
reload(sys).setdefaultencoding('utf-8')
try:
from ConfigParser import SafeConfigParser
except:
from configparser import SafeConfigParser # In Python 3, ConfigParser has been renamed to configparser for PEP 8 compliance.
gConfig = {}
def get_config(config_file='seq2seq.ini'):
parser = SafeConfigParser()
parser.read(config_file)
# get the ints, floats and strings
_conf_ints = [ (key, int(value)) for key,value in parser.items('ints') ]
_conf_floats = [ (key, float(value)) for key,value in parser.items('floats') ]
_conf_strings = [ (key, str(value)) for key,value in parser.items('strings') ]
return dict(_conf_ints + _conf_floats + _conf_strings)
# We use a number of buckets and pad to the closest one for efficiency.
# See seq2seq_model.Seq2SeqModel for details of how they work.
_buckets = [(5, 10), (10, 15), (20, 25), (40, 50)]
def read_data(source_path, target_path, max_size=None):
"""Read data from source and target files and put into buckets.
Args:
source_path: path to the files with token-ids for the source language.
target_path: path to the file with token-ids for the target language;
it must be aligned with the source file: n-th line contains the desired
output for n-th line from the source_path.
max_size: maximum number of lines to read, all other will be ignored;
if 0 or None, data files will be read completely (no limit).
Returns:
data_set: a list of length len(_buckets); data_set[n] contains a list of
(source, target) pairs read from the provided data files that fit
into the n-th bucket, i.e., such that len(source) < _buckets[n][0] and
len(target) < _buckets[n][1]; source and target are lists of token-ids.
"""
data_set = [[] for _ in _buckets]
with tf.gfile.GFile(source_path, mode="r") as source_file:
with tf.gfile.GFile(target_path, mode="r") as target_file:
source, target = source_file.readline(), target_file.readline()
counter = 0
while source and target and (not max_size or counter < max_size):
counter += 1
if counter % 100000 == 0:
print(" reading data line %d" % counter)
sys.stdout.flush()
source_ids = [int(x) for x in source.split()]
target_ids = [int(x) for x in target.split()]
target_ids.append(data_utils.EOS_ID)
for bucket_id, (source_size, target_size) in enumerate(_buckets):
if len(source_ids) < source_size and len(target_ids) < target_size:
data_set[bucket_id].append([source_ids, target_ids])
break
source, target = source_file.readline(), target_file.readline()
return data_set
def create_model(session, forward_only):
"""Create model and initialize or load parameters"""
model = seq2seq_model.Seq2SeqModel( gConfig['enc_vocab_size'], gConfig['dec_vocab_size'], _buckets, gConfig['layer_size'], gConfig['num_layers'], gConfig['max_gradient_norm'], gConfig['batch_size'], gConfig['learning_rate'], gConfig['learning_rate_decay_factor'], forward_only=forward_only)
if 'pretrained_model' in gConfig:
model.saver.restore(session,gConfig['pretrained_model'])
return model
ckpt = tf.train.get_checkpoint_state(gConfig['working_directory'])
# the checkpoint filename has changed in recent versions of tensorflow
checkpoint_suffix = ""
if tf.__version__ > "0.12":
checkpoint_suffix = ".index"
if ckpt and tf.gfile.Exists(ckpt.model_checkpoint_path + checkpoint_suffix):
print("Reading model parameters from %s" % ckpt.model_checkpoint_path)
model.saver.restore(session, ckpt.model_checkpoint_path)
else:
print("Created model with fresh parameters.")
session.run(tf.initialize_all_variables())
return model
def train():
# prepare dataset
print("Preparing data in %s" % gConfig['working_directory'])
enc_train, dec_train, enc_dev, dec_dev, _, _ = data_utils.prepare_custom_data(gConfig['working_directory'],gConfig['train_enc'],gConfig['train_dec'],gConfig['test_enc'],gConfig['test_dec'],gConfig['enc_vocab_size'],gConfig['dec_vocab_size'])
# Only allocate 2/3 of the gpu memory to allow for running gpu-based predictions while training:
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.666)
config = tf.ConfigProto(gpu_options=gpu_options)
config.gpu_options.allocator_type = 'BFC'
with tf.Session(config=config) as sess:
# Create model.
print("Creating %d layers of %d units." % (gConfig['num_layers'], gConfig['layer_size']))
model = create_model(sess, False)
# Read data into buckets and compute their sizes.
print ("Reading development and training data (limit: %d)."
% gConfig['max_train_data_size'])
dev_set = read_data(enc_dev, dec_dev)
train_set = read_data(enc_train, dec_train, gConfig['max_train_data_size'])
train_bucket_sizes = [len(train_set[b]) for b in xrange(len(_buckets))]
train_total_size = float(sum(train_bucket_sizes))
# A bucket scale is a list of increasing numbers from 0 to 1 that we'll use
# to select a bucket. Length of [scale[i], scale[i+1]] is proportional to
# the size if i-th training bucket, as used later.
train_buckets_scale = [sum(train_bucket_sizes[:i + 1]) / train_total_size
for i in xrange(len(train_bucket_sizes))]
# This is the training loop.
step_time, loss = 0.0, 0.0
current_step = 0
previous_losses = []
while True:
# Choose a bucket according to data distribution. We pick a random number
# in [0, 1] and use the corresponding interval in train_buckets_scale.
random_number_01 = np.random.random_sample()
bucket_id = min([i for i in xrange(len(train_buckets_scale))
if train_buckets_scale[i] > random_number_01])
# Get a batch and make a step.
start_time = time.time()
encoder_inputs, decoder_inputs, target_weights = model.get_batch(
train_set, bucket_id)
_, step_loss, _ = model.step(sess, encoder_inputs, decoder_inputs,
target_weights, bucket_id, False)
step_time += (time.time() - start_time) / gConfig['steps_per_checkpoint']
loss += step_loss / gConfig['steps_per_checkpoint']
current_step += 1
# Once in a while, we save checkpoint, print statistics, and run evals.
if current_step % gConfig['steps_per_checkpoint'] == 0:
# Print statistics for the previous epoch.
perplexity = math.exp(loss) if loss < 300 else float('inf')
print ("global step %d learning rate %.4f step-time %.2f perplexity "
"%.2f" % (model.global_step.eval(), model.learning_rate.eval(),
step_time, perplexity))
# Decrease learning rate if no improvement was seen over last 3 times.
if len(previous_losses) > 2 and loss > max(previous_losses[-3:]):
sess.run(model.learning_rate_decay_op)
previous_losses.append(loss)
# Save checkpoint and zero timer and loss.
checkpoint_path = os.path.join(gConfig['working_directory'], "seq2seq.ckpt")
model.saver.save(sess, checkpoint_path, global_step=model.global_step)
step_time, loss = 0.0, 0.0
# Run evals on development set and print their perplexity.
for bucket_id in xrange(len(_buckets)):
if len(dev_set[bucket_id]) == 0:
print(" eval: empty bucket %d" % (bucket_id))
continue
encoder_inputs, decoder_inputs, target_weights = model.get_batch(
dev_set, bucket_id)
_, eval_loss, _ = model.step(sess, encoder_inputs, decoder_inputs,
target_weights, bucket_id, True)
eval_ppx = math.exp(eval_loss) if eval_loss < 300 else float('inf')
print(" eval: bucket %d perplexity %.2f" % (bucket_id, eval_ppx))
sys.stdout.flush()
def decode():
# Only allocate part of the gpu memory when predicting.
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.2)
config = tf.ConfigProto(gpu_options=gpu_options)
with tf.Session(config=config) as sess:
# Create model and load parameters.
model = create_model(sess, True)
model.batch_size = 1 # We decode one sentence at a time.
# Load vocabularies.
enc_vocab_path = os.path.join(gConfig['working_directory'],"vocab%d.enc" % gConfig['enc_vocab_size'])
dec_vocab_path = os.path.join(gConfig['working_directory'],"vocab%d.dec" % gConfig['dec_vocab_size'])
enc_vocab, _ = data_utils.initialize_vocabulary(enc_vocab_path)
_, rev_dec_vocab = data_utils.initialize_vocabulary(dec_vocab_path)
# Decode from standard input.
sys.stdout.write("> ")
sys.stdout.flush()
sentence = sys.stdin.readline()
while sentence:
# Get token-ids for the input sentence.
token_ids = data_utils.sentence_to_token_ids(tf.compat.as_bytes(sentence), enc_vocab)
# Which bucket does it belong to?
bucket_id = min([b for b in xrange(len(_buckets))
if _buckets[b][0] > len(token_ids)])
# Get a 1-element batch to feed the sentence to the model.
encoder_inputs, decoder_inputs, target_weights = model.get_batch(
{bucket_id: [(token_ids, [])]}, bucket_id)
# Get output logits for the sentence.
_, _, output_logits = model.step(sess, encoder_inputs, decoder_inputs,
target_weights, bucket_id, True)
# This is a greedy decoder - outputs are just argmaxes of output_logits.
outputs = [int(np.argmax(logit, axis=1)) for logit in output_logits]
# If there is an EOS symbol in outputs, cut them at that point.
if data_utils.EOS_ID in outputs:
outputs = outputs[:outputs.index(data_utils.EOS_ID)]
# Print out French sentence corresponding to outputs.
print(" ".join([tf.compat.as_str(rev_dec_vocab[output]) for output in outputs]))
print("> ", end="")
sys.stdout.flush()
sentence = sys.stdin.readline()
def self_test():
"""Test the translation model."""
with tf.Session() as sess:
print("Self-test for neural translation model.")
# Create model with vocabularies of 10, 2 small buckets, 2 layers of 32.
model = seq2seq_model.Seq2SeqModel(10, 10, [(3, 3), (6, 6)], 32, 2,
5.0, 32, 0.3, 0.99, num_samples=8)
sess.run(tf.initialize_all_variables())
# Fake data set for both the (3, 3) and (6, 6) bucket.
data_set = ([([1, 1], [2, 2]), ([3, 3], [4]), ([5], [6])],
[([1, 1, 1, 1, 1], [2, 2, 2, 2, 2]), ([3, 3, 3], [5, 6])])
for _ in xrange(5): # Train the fake model for 5 steps.
bucket_id = random.choice([0, 1])
encoder_inputs, decoder_inputs, target_weights = model.get_batch(
data_set, bucket_id)
model.step(sess, encoder_inputs, decoder_inputs, target_weights,
bucket_id, False)
def init_session(sess, conf='seq2seq.ini'):
global gConfig
gConfig = get_config(conf)
# Create model and load parameters.
model = create_model(sess, True)
model.batch_size = 1 # We decode one sentence at a time.
# Load vocabularies.
enc_vocab_path = os.path.join(gConfig['working_directory'],"vocab%d.enc" % gConfig['enc_vocab_size'])
dec_vocab_path = os.path.join(gConfig['working_directory'],"vocab%d.dec" % gConfig['dec_vocab_size'])
enc_vocab, _ = data_utils.initialize_vocabulary(enc_vocab_path)
_, rev_dec_vocab = data_utils.initialize_vocabulary(dec_vocab_path)
return sess, model, enc_vocab, rev_dec_vocab
def decode_line(sess, model, enc_vocab, rev_dec_vocab, sentence):
# Get token-ids for the input sentence.
token_ids = data_utils.sentence_to_token_ids(tf.compat.as_bytes(sentence), enc_vocab)
# Which bucket does it belong to?
bucket_id = min([b for b in xrange(len(_buckets)) if _buckets[b][0] > len(token_ids)])
# Get a 1-element batch to feed the sentence to the model.
encoder_inputs, decoder_inputs, target_weights = model.get_batch({bucket_id: [(token_ids, [])]}, bucket_id)
# Get output logits for the sentence.
_, _, output_logits = model.step(sess, encoder_inputs, decoder_inputs, target_weights, bucket_id, True)
# This is a greedy decoder - outputs are just argmaxes of output_logits.
outputs = [int(np.argmax(logit, axis=1)) for logit in output_logits]
# If there is an EOS symbol in outputs, cut them at that point.
if data_utils.EOS_ID in outputs:
outputs = outputs[:outputs.index(data_utils.EOS_ID)]
return " ".join([tf.compat.as_str(rev_dec_vocab[output]) for output in outputs])
if __name__ == '__main__':
if len(sys.argv) - 1:
gConfig = get_config(sys.argv[1])
else:
# get configuration from seq2seq.ini
gConfig = get_config()
print('\n>> Mode : %s\n' %(gConfig['mode']))
if gConfig['mode'] == 'train':
# start training
train()
elif gConfig['mode'] == 'test':
# interactive decode
decode()
else:
# wrong way to execute "serve"
# Use : >> python ui/app.py
# uses seq2seq_serve.ini as conf file
print('Serve Usage : >> python ui/app.py')
print('# uses seq2seq_serve.ini as conf file')