forked from TUDB-Labs/MoE-PEFT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
inference.py
188 lines (156 loc) · 5.25 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import traceback
from queue import Queue
from threading import Thread
import fire
import gradio as gr
import torch
import moe_peft
class Iteratorize:
"""
Transforms a function that takes a callback
into a lazy iterator (generator).
"""
def __init__(self, func, kwargs={}, callback=None):
self.mfunc = func
self.c_callback = callback
self.q = Queue()
self.sentinel = object()
self.kwargs = kwargs
self.stop_now = False
def _callback(seq_pos, output):
if self.stop_now:
raise ValueError
self.q.put(output["default"][0])
def gentask():
try:
ret = self.mfunc(callback=_callback, **self.kwargs)
except ValueError:
pass
except:
traceback.print_exc()
pass
self.q.put(self.sentinel)
if self.c_callback:
self.c_callback(ret)
self.thread = Thread(target=gentask)
self.thread.start()
def __iter__(self):
return self
def __next__(self):
obj = self.q.get(True, None)
if obj is self.sentinel:
raise StopIteration
else:
return obj
def __enter__(self):
return self
def __exit__(self, exc_type, exc_val, exc_tb):
self.stop_now = True
placeholder_text = "Could you provide an introduction to MoE-PEFT?"
def main(
base_model: str,
template: str = None,
lora_weights: str = "",
load_16bit: bool = True,
load_8bit: bool = False,
load_4bit: bool = False,
flash_attn: bool = False,
device: str = moe_peft.backend.default_device_name(),
server_name: str = "0.0.0.0",
share_gradio: bool = False,
):
model = moe_peft.LLMModel.from_pretrained(
base_model,
device=device,
attn_impl="flash_attn" if flash_attn else "eager",
bits=(8 if load_8bit else (4 if load_4bit else None)),
load_dtype=torch.bfloat16 if load_16bit else torch.float32,
)
tokenizer = moe_peft.Tokenizer(base_model)
if lora_weights:
model.load_adapter(lora_weights, "default")
else:
model.init_adapter(moe_peft.AdapterConfig(adapter_name="default"))
generation_config = moe_peft.GenerateConfig(
adapter_name="default",
prompt_template=template,
)
def evaluate(
instruction,
input="",
temperature=0.1,
top_p=0.75,
top_k=40,
repetition_penalty=1.1,
max_new_tokens=128,
stream_output=False,
):
instruction = instruction.strip()
if len(instruction) == 0:
instruction = placeholder_text
input = input.strip()
if len(input) == 0:
input = None
generation_config.prompts = [(instruction, input)]
generation_config.temperature = temperature
generation_config.top_p = top_p
generation_config.top_k = top_k
generation_config.repetition_penalty = repetition_penalty
generate_params = {
"model": model,
"tokenizer": tokenizer,
"configs": [generation_config],
"max_gen_len": max_new_tokens,
}
if stream_output:
# Stream the reply 1 token at a time.
def generate_with_callback(callback=None, **kwargs):
moe_peft.generate(stream_callback=callback, **kwargs)
def generate_with_streaming(**kwargs):
return Iteratorize(generate_with_callback, kwargs, callback=None)
with generate_with_streaming(**generate_params) as generator:
for output in generator:
yield output
return # early return for stream_output
# Without streaming
output = moe_peft.generate(**generate_params)
yield output["default"][0]
gr.Interface(
fn=evaluate,
inputs=[
gr.components.Textbox(
lines=2,
label="Instruction",
placeholder=placeholder_text,
),
gr.components.Textbox(lines=2, label="Input", placeholder="none"),
gr.components.Slider(minimum=0, maximum=1, value=1, label="Temperature"),
gr.components.Slider(
minimum=0, maximum=1, value=0.9, label="Sampling Top-P"
),
gr.components.Slider(
minimum=0, maximum=100, step=1, value=40, label="Sampling Top-K"
),
gr.components.Slider(
minimum=0, maximum=2, value=1.1, label="Repetition Penalty"
),
gr.components.Slider(
minimum=1,
maximum=model.config_.max_seq_len_,
step=1,
value=1024,
label="Max Tokens",
),
gr.components.Checkbox(label="Stream Output", value=True),
],
outputs=[
gr.components.Textbox(
lines=5,
label="Output",
)
],
title="MoE-PEFT LLM Evaluator",
description="Evaluate language models and LoRA weights", # noqa: E501
).queue().launch(server_name=server_name, share=share_gradio)
if __name__ == "__main__":
fire.Fire(main)