-
Notifications
You must be signed in to change notification settings - Fork 33
/
mkdocs.yml
233 lines (225 loc) Β· 10.2 KB
/
mkdocs.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
# Project information
site_name: Ludwig
site_description: "Declarative machine learning: End-to-end machine learning pipelines using data-driven configurations."
site_author: Piero Molino
site_url: https://ludwig.ai/
# Repository
repo_name: ludwig-ai/ludwig
repo_url: https://github.com/ludwig-ai/ludwig
edit_uri: https://github.com/ludwig-ai/ludwig-docs/edit/master/docs/
# Copyright
copyright: Copyright © 2018 - 2020 Uber Technologies Inc., 2021 - 2022 Linux Foundation Data & AI
# Navigation
nav:
- Ludwig: index.md
- π Getting Started:
- Getting Started: getting_started/index.md
- Installation: getting_started/installation.md
- Dataset preparation: getting_started/prepare_data.md
- Training: getting_started/train.md
- Prediction and Evaluation: getting_started/evaluate.md
- Hyperopt: getting_started/hyperopt.md
- Serving: getting_started/serve.md
- Distributed training on Ray: getting_started/ray.md
- LLM Fine-tuning: getting_started/llm_finetuning.md
- Ludwig with Docker: getting_started/docker.md
- π User Guide:
- User Guide: user_guide/index.md
- What is Ludwig?: user_guide/what_is_ludwig.md
- How Ludwig Works: user_guide/how_ludwig_works.md
- Command Line Interface: user_guide/command_line_interface.md
- Python API:
- LudwigModel: user_guide/api/LudwigModel.md
- Visualization: user_guide/api/visualization.md
- Datasets:
- Supported Formats: user_guide/datasets/supported_formats.md
- Data Preprocessing: user_guide/datasets/data_preprocessing.md
- Data Postprocessing: user_guide/datasets/data_postprocessing.md
- Dataset Zoo: user_guide/datasets/dataset_zoo.md
- Large Language Models:
- Large Language Models: user_guide/llms/index.md
- Fine-Tuning: user_guide/llms/finetuning.md
- In-Context Learning: user_guide/llms/in_context_learning.md
- Text Classification: user_guide/llms/text_classification.md
- GPUs: user_guide/gpus.md
- Distributed Training:
- Distributed Training: user_guide/distributed_training/index.md
- Fine-Tuning Pretrained Models: user_guide/distributed_training/finetuning.md
- Hyperparameter Optimization: user_guide/hyperopt.md
- Cloud Storage: user_guide/cloud_storage.md
- AutoML: user_guide/automl.md
- Visualizations: user_guide/visualizations.md
- Model Export: user_guide/model_export.md
- Serving: user_guide/serving.md
- Third-Party Integrations: user_guide/integrations.md
- π Configuration:
- Configuration: configuration/index.md
- Model Types: configuration/model_type.md
- Large Language Models: configuration/large_language_model.md
- Preprocessing: configuration/preprocessing.md
- Features:
- Supported Data Types: configuration/features/supported_data_types.md
- Input Features (β): configuration/features/input_features.md
- Output Features (β): configuration/features/output_features.md
- β
Binary Features: configuration/features/binary_features.md
- β
Number Features: configuration/features/number_features.md
- β
Category Features: configuration/features/category_features.md
- β
Bag Features: configuration/features/bag_features.md
- β
Set Features: configuration/features/set_features.md
- β
Sequence Features: configuration/features/sequence_features.md
- β
Text Features: configuration/features/text_features.md
- β
Vector Features: configuration/features/vector_features.md
- β Audio Features: configuration/features/audio_features.md
- β Date Features: configuration/features/date_features.md
- β H3 Features: configuration/features/h3_features.md
- β
Image Features: configuration/features/image_features.md
- β Time Series Features: configuration/features/time_series_features.md
- Defaults: configuration/defaults.md
- Combiner: configuration/combiner.md
- Trainer: configuration/trainer.md
- Hyperopt: configuration/hyperparameter_optimization.md
- Backend: configuration/backend.md
- π‘ Examples:
- Examples: examples/index.md
- LLMs:
- Fine-tuning for classification: examples/llms/llm_classification.md
- Instruction-tuning llama-2-7b: examples/llms/llm_finetuning.md
- Adapter-based encoder fine-tuning for text classification with deepspeed: examples/llms/llm_finetuning_deepspeed.md
- Adapter-based fine-tuning for text generation: examples/llms/llm_text_generation.md
- Zero-shot batch inference for text generation: examples/llms/llm_zero_shot_text_generation.md
- Zero-shot batch inference for text classification: examples/llms/llm_zero_shot_batch_inference.md
- Few-shot batch inference for text classification (RAG): examples/llms/llm_few_shot_batch_inference.md
- Zero-shot batch inference for tabular classification (TabLLM): examples/llms/llm_tabular_zero_shot_batch_inference.md
- Fine-tuning for tabular classification (TabLLM): examples/llms/llm_tabular_classification.md
- Supervised ML:
- Text Classification: examples/text_classification.md
- Tabular Data Classification: examples/adult_census_income.md
- Image Classification: examples/mnist.md
- Multimodal Classification: examples/multimodal_classification.md
- Hyperparameter Optimization: examples/hyperopt.md
- Fraud with GBMs: examples/gbm_fraud.md
- Sentiment Analysis: examples/sentiment_analysis.md
- Use Cases:
- Named Entity Recognition Tagging: examples/ner_tagging.md
- Natural Language Understanding: examples/nlu.md
- Machine Translation: examples/machine_translation.md
- Chit-Chat Dialogue Modeling through Sequence2Sequence: examples/seq2seq.md
- Sentiment Analysis: examples/sentiment_analysis.md
- One-shot Learning with Siamese Networks: examples/oneshot.md
- Visual Question Answering: examples/visual_qa.md
- Spoken Digit Speech Recognition: examples/speech_recognition.md
- Speaker Verification: examples/speaker_verification.md
- Binary Classification (Titanic): examples/titanic.md
- Timeseries forecasting: examples/forecasting.md
- Timeseries forecasting (Weather): examples/weather.md
- Movie rating prediction: examples/movie_ratings.md
- Multi-label classification: examples/multi_label.md
- Multi-Task Learning: examples/multi_task.md
- Simple Regression - Fuel Efficiency Prediction: examples/fuel_efficiency.md
- Fraud Detection: examples/fraud.md
- π οΈ Developer Guide:
- Developer Guide: developer_guide/index.md
- How to Contribute: developer_guide/contributing.md
- Codebase Structure: developer_guide/codebase_structure.md
- Ludwig API Guarantees: developer_guide/api_annotations.md
- Add an Encoder: developer_guide/add_an_encoder.md
- Add a Combiner: developer_guide/add_a_combiner.md
- Add a Decoder: developer_guide/add_a_decoder.md
- Add a Feature Type: developer_guide/add_a_feature_type.md
- Add a Metric: developer_guide/add_a_metric.md
- Add a Loss Function: developer_guide/add_a_loss_function.md
- Add a Tokenizer: developer_guide/add_a_tokenizer.md
- Add a Hyperopt Algorithm: developer_guide/add_a_hyperopt.md
- Add a Pretrained Model: developer_guide/add_a_pretrained_model.md
- Add an Integration: developer_guide/add_an_integration.md
- Add a Dataset: developer_guide/add_a_dataset.md
- Style Guidelines and Tests: developer_guide/style_guidelines_and_tests.md
- Unit Test Design Guidelines: developer_guide/unit_test_design_guidelines.md
- Run Tests on GPU Using Ray: developer_guide/run_tests_on_gpu_using_ray.md
- Release Process: developer_guide/release_process.md
- π Community: community.md
- β FAQ: faq.md
# Configuration
site_dir: ../docs/
theme:
name: material
language: en
logo: images/ludwig_logo.svg
favicon: favicon.ico
custom_dir: custom/
palette:
- media: "(prefers-color-scheme: light)" # (1)!
scheme: default
accent: deep orange
primary: grey
toggle:
icon: material/toggle-switch-off-outline
name: Switch to dark mode
- media: "(prefers-color-scheme: dark)" # (2)!
scheme: slate
accent: deep orange
primary: grey
toggle:
icon: material/toggle-switch
name: Switch to light mode
features:
- navigation.indexes
- navigation.tabs.sticky
# Customization
extra_css:
- "stylesheets/extra.css"
- "stylesheets/monokai.css"
- "stylesheets/colorful.css"
# Extensions
markdown_extensions:
- admonition
- toc:
permalink: true
baselevel: 2
- abbr
- attr_list
- pymdownx.snippets
- md_in_html
- pymdownx.details
- pymdownx.emoji
- pymdownx.superfences
- pymdownx.highlight:
extend_pygments_lang:
- name: pycon3
lang: pycon
options:
python3: true
linenums_style: pymdownx-inline
- pymdownx.tabbed:
alternate_style: true
- footnotes
- meta
- tables
- def_list
- attr_list
- pymdownx.emoji:
emoji_index: !!python/name:materialx.emoji.twemoji
emoji_generator: !!python/name:materialx.emoji.to_svg
- pymdownx.superfences:
custom_fences:
- name: mermaid
class: mermaid
format: !!python/name:pymdownx.superfences.fence_code_format
extra:
version:
provider: mike
default: latest
analytics:
provider: google
property: G-H8VVJF9L6G
plugins:
- search
- macros
- mike:
# these fields are all optional; the defaults are as below...
version_selector: true # set to false to leave out the version selector
css_dir: css # the directory to put the version selector's CSS
javascript_dir: js # the directory to put the version selector's JS
canonical_version:
latest # the version for <link rel="canonical">; `null`
# uses the version specified via `mike deploy`