forked from runninging/TASNET
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
241 lines (214 loc) · 7.73 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import librosa
import numpy as np
import fnmatch
import os
import random
import time
import sklearn.utils as sku
import scipy.signal
import numpy.random
from scipy.io import wavfile
import argparse
import yaml
import torch
from sklearn import preprocessing
def find_files(directory, pattern=['*.wav', '*.WAV']):
'''find files in the directory'''
files = []
for root, dirnames, filenames in os.walk(directory):
for filename in fnmatch.filter(filenames, pattern[0]):
files.append(os.path.join(root, filename))
for filename in fnmatch.filter(filenames, pattern[1]):
files.append(os.path.join(root, filename))
return files
def find_dir(directory, pattern):
dir = []
for root, dirnames, filenames in os.walk(directory):
if root.split('/')[-2] == pattern:
dir.append(root)
return dir
#print(dir)
def parse_yaml(yaml_conf):
if not os.path.exists(yaml_conf):
raise FileNotFoundError(
"Could not find config file...{}".format(yaml_conf))
with open(yaml_conf, 'r') as f:
config_dict = yaml.load(f)
return config_dict
def norm_audio(audiofiles, noisefiles):
'''Normalize the audio files
used before training using a independent script'''
for file in audiofiles:
audio, sr = librosa.load(file, sr=16000)
div_fac = 1 / np.max(np.abs(audio)) / 3.0
audio = audio * div_fac
librosa.output.write_wav(file, audio, sr)
for file in noisefiles:
audio, sr = librosa.load(file, sr=16000)
div_fac = 1 / np.max(np.abs(audio)) / 3.0
audio = audio * div_fac
librosa.output.write_wav(file, audio, sr)
def mix(speech1,speech2,SNR):
len1 = len(speech1)
len2 = len(speech2)
tot_len = max(len1, len2)
if len1 < len2:
rep = int(np.floor(len2 / len1))
left = len2 - len1 * rep
temp_audio = np.tile(speech1, [1, rep])
temp_audio.shape = (temp_audio.shape[1],)
speech1 = np.hstack((temp_audio, speech1[:left]))
speech2 = np.array(speech2)
else:
rep = int(np.floor(len1 / len2))
left = len1 - len2 * rep
temp_noise = np.tile(speech2, [1, rep])
temp_noise.shape = (temp_noise.shape[1],)
speech2 = np.hstack((temp_noise, speech2[:left]))
speech1 = np.array(speech1)
fac = np.linalg.norm(speech1)/np.linalg.norm(speech2)/(10**(SNR*0.05))
speech2 *= fac
mix_speech = speech1 + speech2
return mix_speech, speech1, speech2
def normalize_mean(x):
return (x-x.mean())/x.std()
def unnormalize(x1,x2):
return x1*x2.std()+x2.mean()
def zero_mean(x):
return x - x.mean()
def l2_norm(x):
return preprocessing.scale(x,axis=1,with_mean=False,with_std=True)
def make_same_length(speech,len_ref):
len_ref = int(len_ref)
len_s = len(speech)
if len_s < len_ref:
rep = int(np.floor(len_ref / len_s))
left = len_ref - len_s * rep
temp_speech = np.tile(speech, [1, rep])
temp_speech.shape = (temp_speech.shape[1],)
speech = np.hstack((temp_speech, speech[:left]))
else:
rep = int(np.floor(len_s / len_ref))
add = len_ref * (rep+1) - len_s
speech = np.hstack((speech, speech[:add]))
return speech
def padlast(x, len_ref):
len_x = len(x)
fac = int(np.floor(len_x/len_ref))
x_padlast = np.zeros((fac+1)*len_ref)
x_padlast[:fac*len_ref] = x[:fac*len_ref]
x_padlast[fac*len_ref:] = x[(len_x-len_ref):]
return np.float32(x_padlast)
def padding(x, length):
len_x = len(x)
fac = int(np.floor(len_x/length))
x_padded = np.zeros((fac+1)*length)
x_padded[:len_x] = x
return np.float32(x_padded)
class speech_preprocess(object):
def __init__(self,
speech_dir,
train_save_path,
dev_save_path,
test_save_path,
num_data,
sr=8000,
N_L=40,
len_time=0.5,
is_norm=True):
self.speech_dir = speech_dir
self.train_save_path = train_save_path
self.dev_save_path = dev_save_path
self.test_save_path = test_save_path
self.num_data = num_data
self.sr = sr
self.N_L = N_L
self.len_time = len_time
self.is_norm = is_norm
def speech_segment(self,mix_dir,speech1_dir,speech2_dir):
mix, _ = librosa.load(mix_dir, self.sr)
speech1, _ = librosa.load(speech1_dir, self.sr)
speech2, _ = librosa.load(speech2_dir, self.sr)
len_mix = len(mix)
len_ref = int(self.len_time*self.sr)
if len_mix < len_ref:
mix = make_same_length(mix, len_ref)
speech1 = make_same_length(speech1,len_ref)
speech2 = make_same_length(speech2,len_ref)
else:
mix = padlast(mix, len_ref)
speech1 = padlast(speech1,len_ref)
speech2 = padlast(speech2,len_ref)
len_tot = len(mix)
mix = np.reshape(mix, [int(len_tot/len_ref),int(len_ref/self.N_L),self.N_L])
speech1 = np.reshape(speech1, [int(len_tot/len_ref),int(len_ref/self.N_L),self.N_L])
speech2 = np.reshape(speech2, [int(len_tot/len_ref),int(len_ref/self.N_L),self.N_L])
return mix, speech1, speech2
def save_speech(self,mix_speech,speech1,speech2,save_path):
num_speech = mix_speech.shape[0]
for ind in range(num_speech):
np.savez(save_path+'_'+str(ind)+".npz",
mix_speech=mix_speech[ind,:,:],
speech1=speech1[ind,:,:],
speech2=speech2[ind,:,:])
def data_generator(self):
train_data_dir = os.path.join(self.speech_dir, "tr/mix/")
train_mix_dirs = find_files(train_data_dir)
print(train_data_dir)
dev_data_dir = os.path.join(self.speech_dir, "cv/mix/")
dev_mix_dirs = find_files(dev_data_dir)
test_data_dir = os.path.join(self.speech_dir, "tt/mix/")
test_mix_dirs = find_files(test_data_dir)
print('#####generate train_data######')
print(len(train_mix_dirs))
ind = 0
for mix_dir in train_mix_dirs:
if ind%1000 == 0:
print("{}/{} have done".format(ind,20000))
wavname = mix_dir.split('/')[-1]
speech1_dir = os.path.join(self.speech_dir, "tr/s1/" + wavname)
speech2_dir = os.path.join(self.speech_dir, "tr/s2/" + wavname)
mix, speech1, speech2 = self.speech_segment(mix_dir, speech1_dir, speech2_dir)
input_path = os.path.join(self.train_save_path, wavname)
self.save_speech(mix,speech1,speech2,input_path)
ind += 1
print('#####generate dev_data######')
print(len(dev_mix_dirs))
ind = 0
for mix_dir in dev_mix_dirs:
if ind%1000 == 0:
print("{}/{} have done".format(ind,5000))
wavname = mix_dir.split('/')[-1]
speech1_dir = os.path.join(self.speech_dir, "cv/s1/" + wavname)
speech2_dir = os.path.join(self.speech_dir, "cv/s2/" + wavname)
mix, speech1, speech2 = self.speech_segment(mix_dir, speech1_dir, speech2_dir)
input_path = os.path.join(self.dev_save_path, wavname)
self.save_speech(mix,speech1,speech2,input_path)
ind += 1
print('#####generate test_data######')
print(len(test_mix_dirs))
ind = 0
for mix_dir in test_mix_dirs:
if ind%1000 == 0:
print("{}/{} have done".format(ind,3000))
wavname = mix_dir.split('/')[-1]
speech1_dir = os.path.join(self.speech_dir, "tt/s1/" + wavname)
speech2_dir = os.path.join(self.speech_dir, "tt/s2/" + wavname)
mix, speech1, speech2 = self.speech_segment(mix_dir, speech1_dir, speech2_dir)
input_path = os.path.join(self.test_save_path, wavname)
self.save_speech(mix,speech1,speech2,input_path)
ind += 1
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description="TasNet by PyTorch ")
parser.add_argument(
"--config",
type=str,
default="train.yaml",
dest="config",
help="Location of .yaml configure files for training")
args = parser.parse_args()
config_dict = parse_yaml(args.config)
data_config = config_dict["data_generator"]
processor = speech_preprocess(**data_config)
processor.data_generator()