forked from scylladb/scylladb
-
Notifications
You must be signed in to change notification settings - Fork 0
/
bytes_ostream.hh
489 lines (438 loc) · 14.7 KB
/
bytes_ostream.hh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
/*
* Copyright (C) 2015-present ScyllaDB
*/
/*
* SPDX-License-Identifier: AGPL-3.0-or-later
*/
#pragma once
#include <boost/range/iterator_range.hpp>
#include "bytes.hh"
#include "utils/managed_bytes.hh"
#include <seastar/core/simple-stream.hh>
#include <seastar/core/loop.hh>
#include <bit>
#include <concepts>
/**
* Utility for writing data into a buffer when its final size is not known up front.
*
* Internally the data is written into a chain of chunks allocated on-demand.
* No resizing of previously written data happens.
*
*/
class bytes_ostream {
public:
using size_type = bytes::size_type;
using value_type = bytes::value_type;
using fragment_type = bytes_view;
static constexpr size_type max_chunk_size() { return max_alloc_size() - sizeof(chunk); }
private:
static_assert(sizeof(value_type) == 1, "value_type is assumed to be one byte long");
// Note: while appending data, chunk::size refers to the allocated space in the chunk,
// and chunk::frag_size refers to the currently occupied space in the chunk.
// After building, the first chunk::size is the whole object size, and chunk::frag_size
// doesn't change. This fits with managed_bytes interpretation.
using chunk = multi_chunk_blob_storage;
static constexpr size_type default_chunk_size{512};
static constexpr size_type max_alloc_size() { return 128 * 1024; }
private:
chunk::ref_type _begin;
chunk* _current;
size_type _size;
size_type _initial_chunk_size = default_chunk_size;
public:
class fragment_iterator {
public:
using iterator_category = std::input_iterator_tag;
using value_type = bytes_view;
using difference_type = std::ptrdiff_t;
using pointer = bytes_view*;
using reference = bytes_view&;
struct implementation {
chunk* current_chunk;
};
private:
chunk* _current = nullptr;
public:
fragment_iterator() = default;
fragment_iterator(chunk* current) : _current(current) {}
fragment_iterator(const fragment_iterator&) = default;
fragment_iterator& operator=(const fragment_iterator&) = default;
bytes_view operator*() const {
return { _current->data, _current->frag_size };
}
bytes_view operator->() const {
return *(*this);
}
fragment_iterator& operator++() {
_current = _current->next;
return *this;
}
fragment_iterator operator++(int) {
fragment_iterator tmp(*this);
++(*this);
return tmp;
}
bool operator==(const fragment_iterator&) const = default;
implementation extract_implementation() const {
return implementation {
.current_chunk = _current,
};
}
};
using const_iterator = fragment_iterator;
class output_iterator {
public:
using iterator_category = std::output_iterator_tag;
using difference_type = std::ptrdiff_t;
using value_type = bytes_ostream::value_type;
using pointer = bytes_ostream::value_type*;
using reference = bytes_ostream::value_type&;
friend class bytes_ostream;
private:
bytes_ostream* _ostream = nullptr;
private:
explicit output_iterator(bytes_ostream& os) : _ostream(&os) { }
public:
reference operator*() const { return *_ostream->write_place_holder(1); }
output_iterator& operator++() { return *this; }
output_iterator operator++(int) { return *this; }
};
private:
inline size_type current_space_left() const {
if (!_current) {
return 0;
}
return _current->size - _current->frag_size;
}
// Figure out next chunk size.
// - must be enough for data_size + sizeof(chunk)
// - must be at least _initial_chunk_size
// - try to double each time to prevent too many allocations
// - should not exceed max_alloc_size, unless data_size requires so
// - will be power-of-two so the allocated memory can be fully utilized.
size_type next_alloc_size(size_t data_size) const {
auto next_size = _current
? _current->size * 2
: _initial_chunk_size;
next_size = std::min(next_size, max_alloc_size());
auto r = std::max<size_type>(next_size, data_size + sizeof(chunk));
return std::bit_ceil(r);
}
// Makes room for a contiguous region of given size.
// The region is accounted for as already written.
// size must not be zero.
[[gnu::always_inline]]
value_type* alloc(size_type size) {
if (__builtin_expect(size <= current_space_left(), true)) {
auto ret = _current->data + _current->frag_size;
_current->frag_size += size;
_size += size;
return ret;
} else {
return alloc_new(size);
}
}
[[gnu::noinline]]
value_type* alloc_new(size_type size) {
auto alloc_size = next_alloc_size(size);
auto space = malloc(alloc_size);
if (!space) {
throw std::bad_alloc();
}
auto backref = _current ? &_current->next : &_begin;
auto new_chunk = new (space) chunk(backref, alloc_size - sizeof(chunk), size);
_current = new_chunk;
_size += size;
return _current->data;
}
[[gnu::noinline]]
void free_chain(chunk* c) noexcept {
while (c) {
auto n = c->next;
c->~chunk();
::free(c);
c = n;
}
}
public:
explicit bytes_ostream(size_t initial_chunk_size) noexcept
: _begin()
, _current(nullptr)
, _size(0)
, _initial_chunk_size(initial_chunk_size)
{ }
bytes_ostream() noexcept : bytes_ostream(default_chunk_size) {}
bytes_ostream(bytes_ostream&& o) noexcept
: _begin(std::exchange(o._begin, {}))
, _current(o._current)
, _size(o._size)
, _initial_chunk_size(o._initial_chunk_size)
{
o._current = nullptr;
o._size = 0;
}
bytes_ostream(const bytes_ostream& o)
: _begin()
, _current(nullptr)
, _size(0)
, _initial_chunk_size(o._initial_chunk_size)
{
append(o);
}
~bytes_ostream() {
free_chain(_begin.ptr);
}
bytes_ostream& operator=(const bytes_ostream& o) {
if (this != &o) {
auto x = bytes_ostream(o);
*this = std::move(x);
}
return *this;
}
bytes_ostream& operator=(bytes_ostream&& o) noexcept {
if (this != &o) {
this->~bytes_ostream();
new (this) bytes_ostream(std::move(o));
}
return *this;
}
template <typename T>
struct place_holder {
value_type* ptr;
// makes the place_holder looks like a stream
seastar::simple_output_stream get_stream() {
return seastar::simple_output_stream(reinterpret_cast<char*>(ptr), sizeof(T));
}
};
// Returns a place holder for a value to be written later.
template <std::integral T>
inline
place_holder<T>
write_place_holder() {
return place_holder<T>{alloc(sizeof(T))};
}
[[gnu::always_inline]]
value_type* write_place_holder(size_type size) {
return alloc(size);
}
// Writes given sequence of bytes
[[gnu::always_inline]]
inline void write(bytes_view v) {
if (v.empty()) {
return;
}
auto this_size = std::min(v.size(), size_t(current_space_left()));
if (__builtin_expect(this_size, true)) {
memcpy(_current->data + _current->frag_size, v.begin(), this_size);
_current->frag_size += this_size;
_size += this_size;
v.remove_prefix(this_size);
}
while (!v.empty()) {
auto this_size = std::min(v.size(), size_t(max_chunk_size()));
std::copy_n(v.begin(), this_size, alloc_new(this_size));
v.remove_prefix(this_size);
}
}
[[gnu::always_inline]]
void write(const char* ptr, size_t size) {
write(bytes_view(reinterpret_cast<const signed char*>(ptr), size));
}
bool is_linearized() const {
return !_begin || !_begin->next;
}
// Call only when is_linearized()
bytes_view view() const {
assert(is_linearized());
if (!_current) {
return bytes_view();
}
return bytes_view(_current->data, _size);
}
// Makes the underlying storage contiguous and returns a view to it.
// Invalidates all previously created placeholders.
bytes_view linearize() {
if (is_linearized()) {
return view();
}
auto space = malloc(_size + sizeof(chunk));
if (!space) {
throw std::bad_alloc();
}
auto old_begin = _begin;
auto new_chunk = new (space) chunk(&_begin, _size, _size);
auto dst = new_chunk->data;
auto r = old_begin.ptr;
while (r) {
auto next = r->next;
dst = std::copy_n(r->data, r->frag_size, dst);
r->~chunk();
::free(r);
r = next;
}
_current = new_chunk;
_begin = std::move(new_chunk);
return bytes_view(_current->data, _size);
}
// Returns the amount of bytes written so far
size_type size() const {
return _size;
}
// For the FragmentRange concept
size_type size_bytes() const {
return _size;
}
bool empty() const {
return _size == 0;
}
void reserve(size_t size) {
// FIXME: implement
}
void append(const bytes_ostream& o) {
for (auto&& bv : o.fragments()) {
write(bv);
}
}
// Removes n bytes from the end of the bytes_ostream.
// Beware of O(n) algorithm.
void remove_suffix(size_t n) {
_size -= n;
auto left = _size;
auto current = _begin.ptr;
while (current) {
if (current->frag_size >= left) {
current->frag_size = left;
_current = current;
free_chain(current->next);
current->next = nullptr;
return;
}
left -= current->frag_size;
current = current->next;
}
}
// begin() and end() form an input range to bytes_view representing fragments.
// Any modification of this instance invalidates iterators.
fragment_iterator begin() const { return { _begin.ptr }; }
fragment_iterator end() const { return { nullptr }; }
output_iterator write_begin() { return output_iterator(*this); }
boost::iterator_range<fragment_iterator> fragments() const {
return { begin(), end() };
}
struct position {
chunk* _chunk;
size_type _offset;
};
position pos() const {
return { _current, _current ? _current->frag_size : 0 };
}
// Returns the amount of bytes written since given position.
// "pos" must be valid.
size_type written_since(position pos) {
chunk* c = pos._chunk;
if (!c) {
return _size;
}
size_type total = c->frag_size - pos._offset;
c = c->next;
while (c) {
total += c->frag_size;
c = c->next;
}
return total;
}
// Rollbacks all data written after "pos".
// Invalidates all placeholders and positions created after "pos".
void retract(position pos) {
if (!pos._chunk) {
*this = {};
return;
}
_size -= written_since(pos);
_current = pos._chunk;
free_chain(_current->next);
_current->next = nullptr;
_current->frag_size = pos._offset;
}
void reduce_chunk_count() {
// FIXME: This is a simplified version. It linearizes the whole buffer
// if its size is below max_chunk_size. We probably could also gain
// some read performance by doing "real" reduction, i.e. merging
// all chunks until all but the last one is max_chunk_size.
if (size() < max_chunk_size()) {
linearize();
}
}
bool operator==(const bytes_ostream& other) const {
auto as = fragments().begin();
auto as_end = fragments().end();
auto bs = other.fragments().begin();
auto bs_end = other.fragments().end();
auto a = *as++;
auto b = *bs++;
while (!a.empty() || !b.empty()) {
auto now = std::min(a.size(), b.size());
if (!std::equal(a.begin(), a.begin() + now, b.begin(), b.begin() + now)) {
return false;
}
a.remove_prefix(now);
if (a.empty() && as != as_end) {
a = *as++;
}
b.remove_prefix(now);
if (b.empty() && bs != bs_end) {
b = *bs++;
}
}
return true;
}
// Makes this instance empty.
//
// The first buffer is not deallocated, so callers may rely on the
// fact that if they write less than the initial chunk size between
// the clear() calls then writes will not involve any memory allocations,
// except for the first write made on this instance.
void clear() {
if (_begin.ptr) {
_begin.ptr->frag_size = 0;
_size = 0;
free_chain(_begin.ptr->next);
_begin.ptr->next = nullptr;
_current = _begin.ptr;
}
}
managed_bytes to_managed_bytes() && {
if (_size) {
_begin.ptr->size = _size;
_current = nullptr;
_size = 0;
auto begin_ptr = _begin.ptr;
_begin.ptr = nullptr;
return managed_bytes(begin_ptr);
} else {
return managed_bytes();
}
}
// Makes this instance empty using async continuations, while allowing yielding.
//
// The first buffer is not deallocated, so callers may rely on the
// fact that if they write less than the initial chunk size between
// the clear() calls then writes will not involve any memory allocations,
// except for the first write made on this instance.
future<> clear_gently() noexcept {
if (!_begin.ptr) {
return make_ready_future<>();
}
_begin->frag_size = 0;
_current = _begin.ptr;
_size = 0;
return do_until([this] { return !_begin.ptr->next; }, [this] {
auto second_chunk = _begin.ptr->next;
auto next = second_chunk->next;
second_chunk->~chunk();
::free(second_chunk);
_begin->next = std::move(next);
return make_ready_future<>();
});
}
};