forked from ocaml/ocaml
-
Notifications
You must be signed in to change notification settings - Fork 0
/
lexgen.ml
1185 lines (1013 loc) · 31.4 KB
/
lexgen.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* Luc Maranget, projet Moscova, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
(* Compiling a lexer definition *)
open Syntax
(*open Printf*)
exception Memory_overflow
(* Deep abstract syntax for regular expressions *)
type ident = string * Syntax.location
type tag_info = {id : string ; start : bool ; action : int}
type regexp =
Empty
| Chars of int * bool
| Action of int
| Tag of tag_info
| Seq of regexp * regexp
| Alt of regexp * regexp
| Star of regexp
type tag_base = Start | End | Mem of int
type tag_addr = Sum of (tag_base * int)
type ident_info =
| Ident_string of bool * tag_addr * tag_addr
| Ident_char of bool * tag_addr
type t_env = (ident * ident_info) list
type ('args,'action) lexer_entry =
{ lex_name: string;
lex_regexp: regexp;
lex_mem_tags: int ;
lex_actions: (int * t_env * 'action) list }
type automata =
Perform of int * tag_action list
| Shift of automata_trans * (automata_move * memory_action list) array
and automata_trans =
No_remember
| Remember of int * tag_action list
and automata_move =
Backtrack
| Goto of int
and memory_action =
| Copy of int * int
| Set of int
and tag_action = SetTag of int * int | EraseTag of int
(* Representation of entry points *)
type ('args,'action) automata_entry =
{ auto_name: string;
auto_args: 'args ;
auto_mem_size : int ;
auto_initial_state: int * memory_action list;
auto_actions: (int * t_env * 'action) list }
(* A lot of sets and map structures *)
module Ints =
Set.Make(struct type t = int let compare (x:t) y = compare x y end)
let id_compare (id1,_) (id2,_) = String.compare id1 id2
let tag_compare t1 t2 = Stdlib.compare t1 t2
module Tags = Set.Make(struct type t = tag_info let compare = tag_compare end)
module TagMap =
Map.Make (struct type t = tag_info let compare = tag_compare end)
module IdSet =
Set.Make (struct type t = ident let compare = id_compare end)
(*********************)
(* Variable cleaning *)
(*********************)
(* Silently eliminate nested variables *)
let rec do_remove_nested to_remove = function
| Bind (e,x) ->
if IdSet.mem x to_remove then
do_remove_nested to_remove e
else
Bind (do_remove_nested (IdSet.add x to_remove) e, x)
| Epsilon|Eof|Characters _ as e -> e
| Sequence (e1, e2) ->
Sequence
(do_remove_nested to_remove e1, do_remove_nested to_remove e2)
| Alternative (e1, e2) ->
Alternative
(do_remove_nested to_remove e1, do_remove_nested to_remove e2)
| Repetition e ->
Repetition (do_remove_nested to_remove e)
let remove_nested_as e = do_remove_nested IdSet.empty e
(*********************)
(* Variable analysis *)
(*********************)
(*
Optional variables.
A variable is optional when matching of regexp does not
implies it binds.
The typical case is:
("" | 'a' as x) -> optional
("" as x | 'a' as x) -> non-optional
*)
let stringset_delta s1 s2 =
IdSet.union
(IdSet.diff s1 s2)
(IdSet.diff s2 s1)
let rec find_all_vars = function
| Characters _|Epsilon|Eof ->
IdSet.empty
| Bind (e,x) ->
IdSet.add x (find_all_vars e)
| Sequence (e1,e2)|Alternative (e1,e2) ->
IdSet.union (find_all_vars e1) (find_all_vars e2)
| Repetition e -> find_all_vars e
let rec do_find_opt = function
| Characters _|Epsilon|Eof -> IdSet.empty, IdSet.empty
| Bind (e,x) ->
let opt,all = do_find_opt e in
opt, IdSet.add x all
| Sequence (e1,e2) ->
let opt1,all1 = do_find_opt e1
and opt2,all2 = do_find_opt e2 in
IdSet.union opt1 opt2, IdSet.union all1 all2
| Alternative (e1,e2) ->
let opt1,all1 = do_find_opt e1
and opt2,all2 = do_find_opt e2 in
IdSet.union
(IdSet.union opt1 opt2)
(stringset_delta all1 all2),
IdSet.union all1 all2
| Repetition e ->
let r = find_all_vars e in
r,r
let find_optional e =
let r,_ = do_find_opt e in r
(*
Double variables
A variable is double when it can be bound more than once
in a single matching
The typical case is:
(e1 as x) (e2 as x)
*)
let rec do_find_double = function
| Characters _|Epsilon|Eof -> IdSet.empty, IdSet.empty
| Bind (e,x) ->
let dbl,all = do_find_double e in
(if IdSet.mem x all then
IdSet.add x dbl
else
dbl),
IdSet.add x all
| Sequence (e1,e2) ->
let dbl1, all1 = do_find_double e1
and dbl2, all2 = do_find_double e2 in
IdSet.union
(IdSet.inter all1 all2)
(IdSet.union dbl1 dbl2),
IdSet.union all1 all2
| Alternative (e1,e2) ->
let dbl1, all1 = do_find_double e1
and dbl2, all2 = do_find_double e2 in
IdSet.union dbl1 dbl2,
IdSet.union all1 all2
| Repetition e ->
let r = find_all_vars e in
r,r
let find_double e = do_find_double e
(*
Type of variables:
A variable is bound to a char when all its occurrences
bind a pattern of length 1.
The typical case is:
(_ as x) -> char
*)
let add_some x = function
| Some i -> Some (x+i)
| None -> None
let add_some_some x y = match x,y with
| Some i, Some j -> Some (i+j)
| _,_ -> None
let rec do_find_chars sz = function
| Epsilon|Eof -> IdSet.empty, IdSet.empty, sz
| Characters _ -> IdSet.empty, IdSet.empty, add_some 1 sz
| Bind (e,x) ->
let c,s,e_sz = do_find_chars (Some 0) e in
begin match e_sz with
| Some 1 ->
IdSet.add x c,s,add_some 1 sz
| _ ->
c, IdSet.add x s, add_some_some sz e_sz
end
| Sequence (e1,e2) ->
let c1,s1,sz1 = do_find_chars sz e1 in
let c2,s2,sz2 = do_find_chars sz1 e2 in
IdSet.union c1 c2,
IdSet.union s1 s2,
sz2
| Alternative (e1,e2) ->
let c1,s1,sz1 = do_find_chars sz e1
and c2,s2,sz2 = do_find_chars sz e2 in
IdSet.union c1 c2,
IdSet.union s1 s2,
(if sz1 = sz2 then sz1 else None)
| Repetition e -> do_find_chars None e
let find_chars e =
let c,s,_ = do_find_chars (Some 0) e in
IdSet.diff c s
(*******************************)
(* From shallow to deep syntax *)
(*******************************)
let chars = ref ([] : Cset.t list)
let chars_count = ref 0
let rec encode_regexp char_vars act = function
Epsilon -> Empty
| Characters cl ->
let n = !chars_count in
chars := cl :: !chars;
incr chars_count;
Chars(n,false)
| Eof ->
let n = !chars_count in
chars := Cset.eof :: !chars;
incr chars_count;
Chars(n,true)
| Sequence(r1,r2) ->
let r1 = encode_regexp char_vars act r1 in
let r2 = encode_regexp char_vars act r2 in
Seq (r1, r2)
| Alternative(r1,r2) ->
let r1 = encode_regexp char_vars act r1 in
let r2 = encode_regexp char_vars act r2 in
Alt(r1, r2)
| Repetition r ->
let r = encode_regexp char_vars act r in
Star r
| Bind (r,((name,_) as x)) ->
let r = encode_regexp char_vars act r in
if IdSet.mem x char_vars then
Seq (Tag {id=name ; start=true ; action=act},r)
else
Seq (Tag {id=name ; start=true ; action=act},
Seq (r, Tag {id=name ; start=false ; action=act}))
(* Optimisation,
Static optimization :
Replace tags by offsets relative to the beginning
or end of matched string.
Dynamic optimization:
Replace some non-optional, non-double tags by offsets w.r.t
a previous similar tag.
*)
let opt = true
let mk_seq r1 r2 = match r1,r2 with
| Empty,_ -> r2
| _,Empty -> r1
| _,_ -> Seq (r1,r2)
let add_pos p i = match p with
| Some (Sum (a,n)) -> Some (Sum (a,n+i))
| None -> None
let mem_name name id_set =
IdSet.exists (fun (id_name,_) -> name = id_name) id_set
let opt_regexp all_vars char_vars optional_vars double_vars r =
(* From removed tags to their addresses *)
let env = Hashtbl.create 17 in
(* First static optimizations, from start position *)
let rec size_forward pos = function
| Empty|Chars (_,true)|Tag _ -> Some pos
| Chars (_,false) -> Some (pos+1)
| Seq (r1,r2) ->
begin match size_forward pos r1 with
| None -> None
| Some pos -> size_forward pos r2
end
| Alt (r1,r2) ->
let pos1 = size_forward pos r1
and pos2 = size_forward pos r2 in
if pos1=pos2 then pos1 else None
| Star _ -> None
| Action _ -> assert false in
let rec simple_forward pos r = match r with
| Tag n ->
if mem_name n.id double_vars then
r,Some pos
else begin
Hashtbl.add env (n.id,n.start) (Sum (Start, pos)) ;
Empty,Some pos
end
| Empty -> r, Some pos
| Chars (_,is_eof) ->
r,Some (if is_eof then pos else pos+1)
| Seq (r1,r2) ->
let r1,pos = simple_forward pos r1 in
begin match pos with
| None -> mk_seq r1 r2,None
| Some pos ->
let r2,pos = simple_forward pos r2 in
mk_seq r1 r2,pos
end
| Alt (r1,r2) ->
let pos1 = size_forward pos r1
and pos2 = size_forward pos r2 in
r,(if pos1=pos2 then pos1 else None)
| Star _ -> r,None
| Action _ -> assert false in
(* Then static optimizations, from end position *)
let rec size_backward pos = function
| Empty|Chars (_,true)|Tag _ -> Some pos
| Chars (_,false) -> Some (pos-1)
| Seq (r1,r2) ->
begin match size_backward pos r2 with
| None -> None
| Some pos -> size_backward pos r1
end
| Alt (r1,r2) ->
let pos1 = size_backward pos r1
and pos2 = size_backward pos r2 in
if pos1=pos2 then pos1 else None
| Star _ -> None
| Action _ -> assert false in
let rec simple_backward pos r = match r with
| Tag n ->
if mem_name n.id double_vars then
r,Some pos
else begin
Hashtbl.add env (n.id,n.start) (Sum (End, pos)) ;
Empty,Some pos
end
| Empty -> r,Some pos
| Chars (_,is_eof) ->
r,Some (if is_eof then pos else pos-1)
| Seq (r1,r2) ->
let r2,pos = simple_backward pos r2 in
begin match pos with
| None -> mk_seq r1 r2,None
| Some pos ->
let r1,pos = simple_backward pos r1 in
mk_seq r1 r2,pos
end
| Alt (r1,r2) ->
let pos1 = size_backward pos r1
and pos2 = size_backward pos r2 in
r,(if pos1=pos2 then pos1 else None)
| Star _ -> r,None
| Action _ -> assert false in
let r =
if opt then
let r,_ = simple_forward 0 r in
let r,_ = simple_backward 0 r in
r
else
r in
let loc_count = ref 0 in
let get_tag_addr t =
try
Hashtbl.find env t
with
| Not_found ->
let n = !loc_count in
incr loc_count ;
Hashtbl.add env t (Sum (Mem n,0)) ;
Sum (Mem n,0) in
let rec alloc_exp pos r = match r with
| Tag n ->
if mem_name n.id double_vars then
r,pos
else begin match pos with
| Some a ->
Hashtbl.add env (n.id,n.start) a ;
Empty,pos
| None ->
let a = get_tag_addr (n.id,n.start) in
r,Some a
end
| Empty -> r,pos
| Chars (_,is_eof) -> r,(if is_eof then pos else add_pos pos 1)
| Seq (r1,r2) ->
let r1,pos = alloc_exp pos r1 in
let r2,pos = alloc_exp pos r2 in
mk_seq r1 r2,pos
| Alt (_,_) ->
let off = size_forward 0 r in
begin match off with
| Some i -> r,add_pos pos i
| None -> r,None
end
| Star _ -> r,None
| Action _ -> assert false in
let r,_ = alloc_exp None r in
let m =
IdSet.fold
(fun ((name,_) as x) r ->
let v =
if IdSet.mem x char_vars then
Ident_char
(IdSet.mem x optional_vars, get_tag_addr (name,true))
else
Ident_string
(IdSet.mem x optional_vars,
get_tag_addr (name,true),
get_tag_addr (name,false)) in
(x,v)::r)
all_vars [] in
m,r, !loc_count
let encode_casedef casedef =
let r =
List.fold_left
(fun (reg,actions,count,ntags) (expr, act) ->
let expr = remove_nested_as expr in
let char_vars = find_chars expr in
let r = encode_regexp char_vars count expr
and opt_vars = find_optional expr
and double_vars,all_vars = find_double expr in
let m,r,loc_ntags =
opt_regexp all_vars char_vars opt_vars double_vars r in
Alt(reg, Seq(r, Action count)),
(count, m ,act) :: actions,
(succ count),
max loc_ntags ntags)
(Empty, [], 0, 0)
casedef in
r
let encode_lexdef def =
chars := [];
chars_count := 0;
let entry_list =
List.map
(fun {name=entry_name; args=args; shortest=shortest; clauses=casedef} ->
let (re,actions,_,ntags) = encode_casedef casedef in
{ lex_name = entry_name;
lex_regexp = re;
lex_mem_tags = ntags ;
lex_actions = List.rev actions },args,shortest)
def in
let chr = Array.of_list (List.rev !chars) in
chars := [];
(chr, entry_list)
(* To generate directly a NFA from a regular expression.
Confer Aho-Sethi-Ullman, dragon book, chap. 3
Extension to tagged automata.
Confer
Ville Larikari
'NFAs with Tagged Transitions, their Conversion to Deterministic
Automata and Application to Regular Expressions'.
Symposium on String Processing and Information Retrieval (SPIRE 2000),
http://kouli.iki.fi/~vlaurika/spire2000-tnfa.ps
(See also)
http://kouli.iki.fi/~vlaurika/regex-submatch.ps.gz
*)
type t_transition =
OnChars of int
| ToAction of int
type transition = t_transition * Tags.t
let trans_compare (t1,tags1) (t2,tags2) =
match Stdlib.compare t1 t2 with
| 0 -> Tags.compare tags1 tags2
| r -> r
module TransSet =
Set.Make(struct type t = transition let compare = trans_compare end)
let rec nullable = function
| Empty|Tag _ -> true
| Chars (_,_)|Action _ -> false
| Seq(r1,r2) -> nullable r1 && nullable r2
| Alt(r1,r2) -> nullable r1 || nullable r2
| Star _ -> true
let rec emptymatch = function
| Empty | Chars (_,_) | Action _ -> Tags.empty
| Tag t -> Tags.add t Tags.empty
| Seq (r1,r2) -> Tags.union (emptymatch r1) (emptymatch r2)
| Alt(r1,r2) ->
if nullable r1 then
emptymatch r1
else
emptymatch r2
| Star r ->
if nullable r then
emptymatch r
else
Tags.empty
let addtags transs tags =
TransSet.fold
(fun (t,tags_t) r -> TransSet.add (t, Tags.union tags tags_t) r)
transs TransSet.empty
let rec firstpos = function
Empty|Tag _ -> TransSet.empty
| Chars (pos,_) -> TransSet.add (OnChars pos,Tags.empty) TransSet.empty
| Action act -> TransSet.add (ToAction act,Tags.empty) TransSet.empty
| Seq(r1,r2) ->
if nullable r1 then
TransSet.union (firstpos r1) (addtags (firstpos r2) (emptymatch r1))
else
firstpos r1
| Alt(r1,r2) -> TransSet.union (firstpos r1) (firstpos r2)
| Star r -> firstpos r
(* Berry-Sethi followpos *)
let followpos size entry_list =
let v = Array.make size TransSet.empty in
let rec fill s = function
| Empty|Action _|Tag _ -> ()
| Chars (n,_) -> v.(n) <- s
| Alt (r1,r2) ->
fill s r1 ; fill s r2
| Seq (r1,r2) ->
fill
(if nullable r2 then
TransSet.union (firstpos r2) (addtags s (emptymatch r2))
else
(firstpos r2))
r1 ;
fill s r2
| Star r ->
fill (TransSet.union (firstpos r) s) r in
List.iter (fun (entry,_,_) -> fill TransSet.empty entry.lex_regexp)
entry_list;
v
(************************)
(* The algorithm itself *)
(************************)
let no_action = max_int
module StateSet =
Set.Make (struct type t = t_transition let compare = Stdlib.compare end)
module MemMap =
Map.Make (struct type t = int
let compare (x:t) y = Stdlib.compare x y end)
type 'a dfa_state =
{final : int * ('a * int TagMap.t) ;
others : ('a * int TagMap.t) MemMap.t}
(*
let dtag oc t =
fprintf oc "%s<%s>" t.id (if t.start then "s" else "e")
let dmem_map dp ds m =
MemMap.iter
(fun k x ->
eprintf "%d -> " k ; dp x ; ds ())
m
and dtag_map dp ds m =
TagMap.iter
(fun t x ->
dtag stderr t ; eprintf " -> " ; dp x ; ds ())
m
let dstate {final=(act,(_,m)) ; others=o} =
if act <> no_action then begin
eprintf "final=%d " act ;
dtag_map (fun x -> eprintf "%d" x) (fun () -> prerr_string " ,") m ;
prerr_endline ""
end ;
dmem_map
(fun (_,m) ->
dtag_map (fun x -> eprintf "%d" x) (fun () -> prerr_string " ,") m)
(fun () -> prerr_endline "")
o
*)
let dfa_state_empty =
{final=(no_action, (max_int,TagMap.empty)) ;
others=MemMap.empty}
and dfa_state_is_empty {final=(act,_) ; others=o} =
act = no_action &&
o = MemMap.empty
(* A key is an abstraction on a dfa state,
two states with the same key can be made the same by
copying some memory cells into others *)
module StateSetSet =
Set.Make (struct type t = StateSet.t let compare = StateSet.compare end)
type t_equiv = {tag:tag_info ; equiv:StateSetSet.t}
module MemKey =
Set.Make
(struct
type t = t_equiv
let compare e1 e2 = match Stdlib.compare e1.tag e2.tag with
| 0 -> StateSetSet.compare e1.equiv e2.equiv
| r -> r
end)
type dfa_key = {kstate : StateSet.t ; kmem : MemKey.t}
(* Map a state to its key *)
let env_to_class m =
let env1 =
MemMap.fold
(fun _ (tag,s) r ->
TagMap.update tag (function
| None -> Some (StateSetSet.singleton s)
| Some ss -> Some (StateSetSet.add s ss)
) r)
m TagMap.empty in
TagMap.fold
(fun tag ss r -> MemKey.add {tag=tag ; equiv=ss} r)
env1 MemKey.empty
(* trans is nfa_state, m is associated memory map *)
let inverse_mem_map trans m r =
TagMap.fold
(fun tag addr r ->
MemMap.update addr (function
| None -> Some (tag, StateSet.singleton trans)
| Some (otag, s) ->
assert (tag = otag);
Some (tag, StateSet.add trans s)
) r)
m r
let inverse_mem_map_other n (_,m) r = inverse_mem_map (OnChars n) m r
let get_key {final=(act,(_,m_act)) ; others=o} =
let env =
MemMap.fold inverse_mem_map_other
o
(if act = no_action then MemMap.empty
else inverse_mem_map (ToAction act) m_act MemMap.empty) in
let state_key =
MemMap.fold (fun n _ r -> StateSet.add (OnChars n) r) o
(if act=no_action then StateSet.empty
else StateSet.add (ToAction act) StateSet.empty) in
let mem_key = env_to_class env in
{kstate = state_key ; kmem = mem_key}
let key_compare k1 k2 = match StateSet.compare k1.kstate k2.kstate with
| 0 -> MemKey.compare k1.kmem k2.kmem
| r -> r
(* Association dfa_state -> state_num *)
module StateMap =
Map.Make(struct type t = dfa_key let compare = key_compare end)
let state_map = ref (StateMap.empty : int StateMap.t)
let todo = Stack.create()
let next_state_num = ref 0
let next_mem_cell = ref 0
let temp_pending = ref false
let tag_cells = Hashtbl.create 17
let state_table = Table.create dfa_state_empty
(* Initial reset of state *)
let reset_state () =
Stack.clear todo;
next_state_num := 0 ;
let _ = Table.trim state_table in
()
(* Reset state before processing a given automata.
We clear both the memory mapping and
the state mapping, as state sharing between different
automata may lead to incorrect estimation of the cell memory size
BUG ID 0004517 *)
let reset_state_partial ntags =
next_mem_cell := ntags ;
Hashtbl.clear tag_cells ;
temp_pending := false ;
state_map := StateMap.empty
let do_alloc_temp () =
temp_pending := true ;
let n = !next_mem_cell in
n
let do_alloc_cell used t =
let available =
try Hashtbl.find tag_cells t with Not_found -> Ints.empty in
try
Ints.choose (Ints.diff available used)
with
| Not_found ->
temp_pending := false ;
let n = !next_mem_cell in
if n >= 255 then raise Memory_overflow ;
Hashtbl.replace tag_cells t (Ints.add n available) ;
incr next_mem_cell ;
n
let is_old_addr a = a >= 0
and is_new_addr a = a < 0
let old_in_map m r =
TagMap.fold
(fun _ addr r ->
if is_old_addr addr then
Ints.add addr r
else
r)
m r
let alloc_map used m mvs =
TagMap.fold
(fun tag a (r,mvs) ->
let a,mvs =
if is_new_addr a then
let a = do_alloc_cell used tag in
a,Ints.add a mvs
else a,mvs in
TagMap.add tag a r,mvs)
m (TagMap.empty,mvs)
let create_new_state {final=(act,(_,m_act)) ; others=o} =
let used =
MemMap.fold (fun _ (_,m) r -> old_in_map m r)
o (old_in_map m_act Ints.empty) in
let new_m_act,mvs = alloc_map used m_act Ints.empty in
let new_o,mvs =
MemMap.fold (fun k (x,m) (r,mvs) ->
let m,mvs = alloc_map used m mvs in
MemMap.add k (x,m) r,mvs)
o (MemMap.empty,mvs) in
{final=(act,(0,new_m_act)) ; others=new_o},
Ints.fold (fun x r -> Set x::r) mvs []
type new_addr_gen = {mutable count : int ; mutable env : int TagMap.t}
let create_new_addr_gen () = {count = -1 ; env = TagMap.empty}
let alloc_new_addr tag r =
try
TagMap.find tag r.env
with
| Not_found ->
let a = r.count in
r.count <- a-1 ;
r.env <- TagMap.add tag a r.env ;
a
let create_mem_map tags gen =
Tags.fold
(fun tag r -> TagMap.add tag (alloc_new_addr tag gen) r)
tags TagMap.empty
let create_init_state pos =
let gen = create_new_addr_gen () in
let st =
TransSet.fold
(fun (t,tags) st ->
match t with
| ToAction n ->
let on,_otags = st.final in
if n < on then
{st with final = (n, (0,create_mem_map tags gen))}
else
st
| OnChars n ->
try
let _ = MemMap.find n st.others in assert false
with
| Not_found ->
{st with others =
MemMap.add n (0,create_mem_map tags gen) st.others})
pos dfa_state_empty in
st
let get_map t st = match t with
| ToAction _ -> let _,(_,m) = st.final in m
| OnChars n ->
let (_,m) = MemMap.find n st.others in
m
let dest = function | Copy (d,_) | Set d -> d
and orig = function | Copy (_,o) -> o | Set _ -> -1
(*
let pmv oc mv = fprintf oc "%d <- %d" (dest mv) (orig mv)
let pmvs oc mvs =
List.iter (fun mv -> fprintf oc "%a " pmv mv) mvs ;
output_char oc '\n' ; flush oc
*)
(* Topological sort << a la louche >> *)
let sort_mvs mvs =
let rec do_rec r mvs = match mvs with
| [] -> r
| _ ->
let dests =
List.fold_left
(fun r mv -> Ints.add (dest mv) r)
Ints.empty mvs in
let rem,here =
List.partition
(fun mv -> Ints.mem (orig mv) dests)
mvs in
match here with
| [] ->
begin match rem with
| Copy (d,_)::_ ->
let d' = do_alloc_temp () in
Copy (d',d)::
do_rec r
(List.map
(fun mv ->
if orig mv = d then
Copy (dest mv,d')
else
mv)
rem)
| _ -> assert false
end
| _ -> do_rec (here@r) rem in
do_rec [] mvs
let move_to mem_key src tgt =
let mvs =
MemKey.fold
(fun {tag=tag ; equiv=m} r ->
StateSetSet.fold
(fun s r ->
try
let t = StateSet.choose s in
let src = TagMap.find tag (get_map t src)
and tgt = TagMap.find tag (get_map t tgt) in
if src <> tgt then begin
if is_new_addr src then
Set tgt::r
else
Copy (tgt, src)::r
end else
r
with
| Not_found -> assert false)
m r)
mem_key [] in
(* Moves are topologically sorted *)
sort_mvs mvs
let get_state st =
let key = get_key st in
try
let num = StateMap.find key !state_map in
num,move_to key.kmem st (Table.get state_table num)
with Not_found ->
let num = !next_state_num in
incr next_state_num;
let st,mvs = create_new_state st in
Table.emit state_table st ;
state_map := StateMap.add key num !state_map;
Stack.push (st, num) todo;
num,mvs
let map_on_all_states f old_res =
let res = ref old_res in
begin try
while true do
let (st, i) = Stack.pop todo in
let r = f st in
res := (r, i) :: !res
done
with Stack.Empty -> ()
end;
!res
let goto_state st =
if
dfa_state_is_empty st
then
Backtrack,[]
else
let n,moves = get_state st in
Goto n,moves
(****************************)
(* compute reachable states *)
(****************************)
let add_tags_to_map gen tags m =
Tags.fold
(fun tag m ->
let m = TagMap.remove tag m in
TagMap.add tag (alloc_new_addr tag gen) m)
tags m
let apply_transition gen r pri m = function
| ToAction n,tags ->
let on,(opri,_) = r.final in
if n < on || (on=n && pri < opri) then
let m = add_tags_to_map gen tags m in
{r with final=n,(pri,m)}
else r
| OnChars n,tags ->
try
let (opri,_) = MemMap.find n r.others in
if pri < opri then
let m = add_tags_to_map gen tags m in
{r with others=MemMap.add n (pri,m) (MemMap.remove n r.others)}
else
r
with
| Not_found ->
let m = add_tags_to_map gen tags m in
{r with others=MemMap.add n (pri,m) r.others}