From 08cc252593c228b4520cd35ccdc1356eac5b7ca8 Mon Sep 17 00:00:00 2001 From: Reynald Affeldt Date: Fri, 5 Jul 2024 21:34:15 +0900 Subject: [PATCH] upd doc --- theories/lebesgue_integral.v | 16 ++++++---------- 1 file changed, 6 insertions(+), 10 deletions(-) diff --git a/theories/lebesgue_integral.v b/theories/lebesgue_integral.v index 5667b439ae..40ce80d7f6 100644 --- a/theories/lebesgue_integral.v +++ b/theories/lebesgue_integral.v @@ -39,7 +39,8 @@ Require Import esum measure lebesgue_measure numfun realfun function_spaces. (* *) (* Detailed contents: *) (* ```` *) -(* {mfun T >-> R} == type of real-valued measurable functions *) +(* {mfun aT >-> rT} == type of measurable functions *) +(* aT and rT are sigmaRingType's. *) (* {sfun T >-> R} == type of simple functions *) (* {nnsfun T >-> R} == type of non-negative simple functions *) (* cst_nnsfun r == constant simple function *) @@ -107,12 +108,8 @@ HB.mixin Record isMeasurableFun d d' (aT : sigmaRingType d) (rT : sigmaRingType HB.structure Definition MeasurableFun d d' aT rT := {f of @isMeasurableFun d d' aT rT f}. -(* HB.mixin Record isMeasurableFun d (aT : measurableType d) (rT : realType) (f : aT -> rT) := { *) -(* measurable_funP : measurable_fun setT f *) -(* }. *) (* #[global] Hint Resolve fimfun_inP : core. *) -(* HB.structure Definition MeasurableFun d aT rT := {f of @isMeasurableFun d aT rT f}. *) Reserved Notation "{ 'mfun' aT >-> T }" (at level 0, format "{ 'mfun' aT >-> T }"). Reserved Notation "[ 'mfun' 'of' f ]" @@ -147,8 +144,6 @@ Notation "{ 'nnfun' aT >-> T }" := (@NonNegFun.type aT T) : form_scope. Notation "[ 'nnfun' 'of' f ]" := [the {nnfun _ >-> _} of f] : form_scope. #[global] Hint Extern 0 (is_true (0 <= _)) => solve [apply: fun_ge0] : core. -(* HB.structure Definition NonNegSimpleFun d (aT : measurableType d) (rT : realType) := *) - HB.structure Definition NonNegSimpleFun d (aT : sigmaRingType d) (rT : realType) := {f of @SimpleFun d _ _ f & @NonNegFun aT rT f}. @@ -291,10 +286,11 @@ End mfun. Section mfun_realType. Context {d} {aT : sigmaRingType d} {rT : realType}. -Let cst_mfun_subproof x : @isMeasurableFun d _ aT rT (cst x). -Proof. by split. Qed. +Let cst_mfun_subproof x : @measurable_fun d _ aT rT [set: aT] (cst x). +Proof. by []. Qed. -HB.instance Definition _ x := @cst_mfun_subproof x. +HB.instance Definition _ x := isMeasurableFun.Build d _ aT rT (cst x) + (@cst_mfun_subproof x). HB.instance Definition _ := @isMeasurableFun.Build _ _ _ rT (@normr rT rT) (@measurable_normr rT setT).