From 0fb9f23824d252f9820248b3f67612d1e74a0b6a Mon Sep 17 00:00:00 2001 From: zstone Date: Thu, 31 Oct 2024 11:19:09 -0400 Subject: [PATCH] starting to do van kampen stuff --- theories/function_spaces.v | 87 +++++++++++++++++++++++++++++++++++++- 1 file changed, 85 insertions(+), 2 deletions(-) diff --git a/theories/function_spaces.v b/theories/function_spaces.v index eb058eea0..931a743c7 100644 --- a/theories/function_spaces.v +++ b/theories/function_spaces.v @@ -2636,6 +2636,10 @@ Definition path_between := EquivRel _ path_between_refl path_between_sym path_between_trans. Definition path_components := {eq_quot path_between}. + +Definition path_component_of (x : T) : path_components := pi _ x. + +HB.instance Definition _ (x y : T) := EqQuotient.on path_components. End path_component. Arguments path_components : clear implicits. @@ -2963,20 +2967,20 @@ Qed. End fundamental_groupoid. - Section fundamental_groupoid_functor. Implicit Types T U V: topologicalType. Notation "l '<.>' r" := (fdg_op l r) (at level 70). + Local Notation fdg := (fundamental_groupoid). Definition fdg_lift {T U} (f : continuousType T U) (x y : T) (a : fdg x y) : fdg (f x) (f y) := \pi_(fdg (f x) (f y)) (comp_cts f (repr a) : {path i from f x to f y}). -Lemma fundamental_groupoid_functor {T U} (f : continuousType T U) (x y z : T) +Lemma fdg_lift_opE {T U} (f : continuousType T U) (x y z : T) (a : fdg x y) (b : fdg y z) : fdg_lift f a <.> fdg_lift f b = fdg_lift f (a <.> b). Proof. @@ -3048,4 +3052,83 @@ by apply/path_eqP; apply/funext. Qed. End fundamental_groupoid_functor. + End path_connected. + +HB.instance Definition _ {X : topologicalType} (A : set X) := + Topological.copy (set_type A) (weak_topology set_val). + +HB.instance Definition _ {X : topologicalType} (A : set X) := + isContinuous.Build A X set_val (@weak_continuous A X set_val). + +Section subspacesI. +Context {X : topologicalType} (A B : set X). +Lemma setIR_mem x : (x \in A `&` B) -> x \in B. +Proof. by case/set_mem => _ /mem_set. Qed. + +Lemma setIL_mem x : (x \in A `&` B) -> x \in A. +Proof. by case/set_mem => /mem_set. Qed. + +Definition set_valIR (x : A `&` B) : B := + exist _ (projT1 x) (setIR_mem (projT2 x)). + +Definition set_valIL (x : A `&` B) : A := + exist _ (projT1 x) (setIL_mem (projT2 x)). + +Lemma set_valIR_continuous : continuous set_valIR. +Proof. +apply: continuous_comp_weak; rewrite /comp /= /set_valIR /= set_valE /=. +exact: weak_continuous. +Qed. + +HB.instance Definition _ := isContinuous.Build _ _ set_valIR set_valIR_continuous. + +Lemma set_valIL_continuous : continuous set_valIL. +Proof. +apply: continuous_comp_weak; rewrite /comp /= /set_valIR /= set_valE /=. +exact: weak_continuous. +Qed. + +HB.instance Definition _ := isContinuous.Build _ _ set_valIL set_valIL_continuous. +End subspacesI. + + +Section van_kampen. +Context {d} {i : pathDomainType d}. +Local Open Scope quotient_scope. + +Local Notation fdg := (@fundamental_groupoid d i). +Local Notation fdg_lift := (@fdg_lift _ i). + +Context {T : topologicalType} (L R : set T). +Hypothesis oL : open L. +Hypothesis oR : open R. + +Let lT := fdg_lift (set_val : L -> T). +Let rT := fdg_lift (set_val : R -> T). + +Set Printing All. +Check horner_comp. + +Lemma split_path (x y : L) (p : {path i from x to y}) : + + +Lemma van_kampen_simpleI : + interior L `|` interior R = [set: T] -> + (forall (cmp : @path_components _ i L), + exists (a : L), A (projT1 a) /\ path_component_of a = cmp) -> + (forall (cmp : @path_components _ i R), + exists (a : R), A (projT1 a) /\ path_component_of a = cmp) -> + (forall (cmp : @path_components _ i (L `&` R)), + exists (a : (L `&` R)), A (projT1 a) /\ path_component_of a = cmp) -> + ( + let l1 := fdg_lift (@set_valIL _ L R) in + let r1 := fdg_lift (@set_valIR _ L R) in + forall U : topologicalType, + forall (kobj : L -> U) k (hobj : R -> U) h, + fdg_functor kobj k -> + fdg_functor hobj h + + True + ) +.