diff --git a/theories/cantor.v b/theories/cantor.v index fdcbaba775..d9c35f5815 100644 --- a/theories/cantor.v +++ b/theories/cantor.v @@ -46,96 +46,28 @@ Proof. apply: hausdorff_product => ?; exact: discrete_hausdorff. Qed. Section perfect_sets. Implicit Types (T : topologicalType). - -Definition perfect_set {T} (A : set T) := closed A /\ limit_point A = A. - -Lemma perfectTP {T} : perfect_set [set: T] <-> forall x : T, ~ open [set x]. -Proof. -split. - case=> _; rewrite eqEsubset; case=> _ + x Ox => /(_ x I [set x]). - by case; [by apply: open_nbhs_nbhs; split |] => y [+ _] => /[swap] -> /eqP. -move=> NOx; split; [exact: closedT |]; rewrite eqEsubset; split => x // _. -move=> U; rewrite nbhsE; case=> V [][] oV Vx VU. -have Vnx: V != [set x] by apply/eqP => M; apply: (NOx x); rewrite -M. -have /existsNP [y /existsNP [Vy Ynx]] : ~ forall y, V y -> y = x. - move/negP: Vnx; apply: contra_not => Vxy; apply/eqP; rewrite eqEsubset. - by split => // ? ->. -by exists y; split => //; [exact/eqP | exact: VU]. -Qed. - -Lemma perfectTP2 {T} : perfect_set [set: T] <-> - forall (U : set T), open U -> U!=set0 -> - exists x y, U x /\ U y /\ x != y. +Lemma perfect_set2 {T} : perfect_set [set: T] <-> + forall (U : set T), open U -> U !=set0 -> + exists x y, [/\ U x, U y & x != y] . Proof. + apply: iff_trans; first exact: perfectTP; split. move=> nx1 U oU [] x Ux; exists x. have : U <> [set x] by move=> Ux1; apply: (nx1 x); rewrite -Ux1. apply: contra_notP; move/not_existsP/contrapT=> Uyx; rewrite eqEsubset. - (split => //; last by move=> ? ->); move=> y Uy; have /not_andP := Uyx y. - by case => // /not_andP; case => // /negP; rewrite negbK => /eqP ->. + (split => //; last by move=> ? ->); move=> y Uy; have /not_and3P := Uyx y. + by case => // /negP; rewrite negbK => /eqP ->. move=> Unxy x Ox; have [] := Unxy _ Ox; first by exists x. -by move=> y [] ? [->] [->] /eqP. -Qed. - - -Lemma perfect_prod {I : Type} (i : I) (K : I -> topologicalType) : - perfect_set [set: K i] -> perfect_set [set: product_topologicalType K]. -Proof. -move=> /perfectTP KPo; apply/perfectTP => f oF; apply: (KPo (f i)). -rewrite (_ : [set f i] = proj i @` [set f]). - by apply: (@proj_open (classicType_choiceType I) _ i); exact: oF. -by rewrite eqEsubset; split => ? //; [move=> -> /=; exists f | case=> g ->]. -Qed. - -Lemma perfect_diagonal (K : nat_topologicalType -> topologicalType) : - (forall i, exists (xy: K i * K i), xy.1 != xy.2) -> - perfect_set [set: product_topologicalType K]. -Proof. -move=> npts; split; [exact: closedT|]; rewrite eqEsubset; split => f // _. -pose distincts := fun (i : nat) => projT1 (sigW (npts i)). -pose derange := fun (i : nat) (z : K i) => - if z == (distincts i).1 then (distincts i).2 else (distincts i).1. -pose g := fun N i => if (i < N)%nat then f i else derange _ (f i). -have gcvg : g @ \oo --> (f : product_topologicalType K). - apply/(@cvg_sup (product_topologicalType K)) => N U [V] [[W] oW <-] [] WfN WU. - by apply: (filterS WU); rewrite nbhs_simpl /g; exists N.+1 => // i /= ->. -move=> A /gcvg; rewrite nbhs_simpl; case=> N _ An. -exists (g N); split => //; last by apply: An; rewrite /= ?leqnn //. -apply/eqP => M; suff: g N N != f N by rewrite M; move/eqP. -rewrite /g ltnn /derange eq_sym; case: (eqVneq (f N) (distincts N).1) => //. -by move=> ->; have := projT2 (sigW (npts N)). +by move=> y [] ? [->] -> /eqP. Qed. End perfect_sets. Section clopen. -Context {T : topologicalType}. -Definition clopen (U : set T) := open U /\ closed U. - -Lemma clopenI (U V : set T) : clopen U -> clopen V -> clopen (U `&` V). -Proof. by case=> ? ? [? ?]; split; [exact: openI | exact: closedI]. Qed. - -Lemma clopenU (U V : set T) : clopen U -> clopen V -> clopen (U `|` V). -Proof. by case=> ? ? [? ?]; split; [exact: openU | exact: closedU]. Qed. - -Lemma clopenC (U : set T) : clopen U -> clopen (~` U). -Proof. by case=> ??; split; [exact: closed_openC | exact: open_closedC]. Qed. - -Lemma clopen0 : clopen set0. -Proof. by split; [exact: open0 | exact: closed0]. Qed. - -Lemma clopenT : clopen setT. -Proof. by split; [exact: openT | exact: closedT]. Qed. -End clopen. - Definition totally_disconnected (T : topologicalType) := forall (x y : T), x != y -> exists A, A x /\ ~ A y /\ clopen A. -Lemma clopen_comp {T U : topologicalType} (f : T -> U) (A : set U) : - clopen A -> continuous f -> clopen (f @^-1` A). -Proof. by case=> ? ?; split; [ exact: open_comp | exact: closed_comp]. Qed. - Lemma totally_disconnected_prod (I : choiceType) (T : I -> topologicalType) : (forall i, @totally_disconnected (T i)) -> totally_disconnected (product_topologicalType T). @@ -213,9 +145,9 @@ have PF : ProperFilter F. by split => //; split; [exact: openI | exact: closedI]. - by move=> ? [? _]; exists x. move=> disct cmpT U Ux; rewrite nbhs_simpl -/F; wlog oU : U Ux / open U. - move: Ux; rewrite /= {1}nbhsE => [][] O [] Ox OsubU P; apply: (filterS OsubU). + move: Ux; rewrite /= {1}nbhsE => [][] O Ox OsubU P; apply: (filterS OsubU). by apply: P => //; [exact: open_nbhs_nbhs | case: Ox]. -have /compact_near_coveringP.1 : compact (~`U). +have /(iffLR (compact_near_coveringP _)): compact (~`U). by apply: (subclosed_compact _ cmpT) => //; exact: open_closedC. move=> /( _ _ _ (fun C y => ~ C y) (powerset_filter_from_filter PF)); case. move=> y nUy; have /disct [C [Cx [] ? [] ? ?]] : x != y. @@ -259,7 +191,7 @@ Lemma compact_countable_base {R : realType} {T : pseudoMetricType R} : Proof. have npos : forall n, ((0:R) < (n.+1%:R^-1))%R by []. pose f : nat -> T -> (set T) := fun n z => (ball z (PosNum (npos n))%:num)^°. -move=> cmpt; have h : forall n, finSubCover [set: T] (f n) [set: T]. +move=> cmpt; have h : forall n, finite_subset_cover [set: T] (f n) [set: T]. move=> n; rewrite compact_cover in cmpt; apply: cmpt. by move=> z _; rewrite /f; exact: open_interior. move=> z _; exists z => //; rewrite /f/interior; exact: nbhsx_ballx. @@ -310,7 +242,7 @@ Let U_ := unsquash clopen_surj. Local Lemma split_clopen (U : set T) : open U -> U !=set0 -> exists V, clopen V /\ V `&` U !=set0 /\ ~`V `&` U !=set0. Proof. -move=> oU Un0; have [x [y] [Ux] [Uy] xny] := (iffLR perfectTP2) pftT U oU Un0. +move=> oU Un0; have [x [y] [Ux] Uy xny] := (iffLR perfect_set2) pftT U oU Un0. have [V [?] [?] [? ?]] := dsctT xny; exists V. by repeat split => //; [exists x | exists y]. Qed. @@ -464,8 +396,7 @@ Let tree_map (x : T) : cantor_space := fun n => x \in level n true. Local Lemma continuous_tree_map : continuous tree_map. move=> x; apply/cvg_sup => /= n U /=; rewrite {1}/nbhs /=; case=> ? [][M oM <-]. -case => /= Mtxn /filterS; apply; rewrite /nbhs /=. -rewrite /preimage /=; apply: separator_continuous. +move=> Mtxn /filterS; apply; apply: separator_continuous. - by case: (lvl_clopen n true). - by case: (lvl_clopen n true). - by rewrite /=/nbhs /=; apply/principal_filterP. @@ -558,7 +489,7 @@ have PG : ProperFilter G. - move=> i _; apply: node_n0. exists G; split => //; apply/cvg_sup => i U. rewrite /= {1}/nbhs /=; case=> ? [][M oM <-]. -case => /= Mtxn /filterS; apply; rewrite /nbhs /= nbhs_simpl. +move => /= Mtxn /filterS; apply; rewrite /nbhs /= nbhs_simpl. exists i.+1 => // z fiz /=; suff -> : tree_map z i = f i by done. rewrite /tree_map; move: fiz; rewrite [branch_prefix _ _]/=; case E: (f i). move=> nfz. apply: asboolT; exists (branch_prefix f i) => //. @@ -1072,9 +1003,8 @@ elim: n; first by near=> z => ?; rewrite ltn0. move=> n IH. near=> z => i; rewrite leq_eqVlt => /orP []; first last. move=> iSn; have -> := near IH z => //. - move=> /eqP/(succn_inj) ->. -near: z. - exists ((proj n)@^-1` [set (y n)]); split; last by split. +move=> /eqP/(succn_inj) ->; near: z. + exists ((proj n)@^-1` [set (y n)]); split => //. suff : @open Ttree ((proj n)@^-1` [set (y n)]) by []. apply: open_comp; last apply: discrete_open => //. by move=> + _; apply: proj_continuous. diff --git a/theories/topology.v b/theories/topology.v index 1b2b310cea..509a44cae2 100644 --- a/theories/topology.v +++ b/theories/topology.v @@ -2861,12 +2861,6 @@ Proof. by split; [exact: compact_near_covering| exact: near_covering_compact]. Qed. -Lemma compact_near_coveringE : compact = near_covering. -Proof. -apply/predeqP => E; have [P Q] := compact_near_coveringP. -by split; [exact: P | exact: Q]. -Qed. - End near_covering. Section Tychonoff.