From 4495fbd9cbf1969bb759c4d8d7eba7552683f0c0 Mon Sep 17 00:00:00 2001 From: Reynald Affeldt Date: Fri, 5 Jul 2024 23:54:53 +0900 Subject: [PATCH] continuity of the parameterized integral on the interval --- CHANGELOG_UNRELEASED.md | 18 ++- classical/set_interval.v | 45 +++++++ theories/ftc.v | 226 ++++++++++++++++++++--------------- theories/lebesgue_integral.v | 126 ++++++++++++++++++- theories/normedtype.v | 20 ++++ 5 files changed, 332 insertions(+), 103 deletions(-) diff --git a/CHANGELOG_UNRELEASED.md b/CHANGELOG_UNRELEASED.md index 2af24fb8b7..0c2e24b2a1 100644 --- a/CHANGELOG_UNRELEASED.md +++ b/CHANGELOG_UNRELEASED.md @@ -24,6 +24,17 @@ + lemmas `g_sigma_completed_algebra_genE`, `negligible_sub_caratheodory`, `completed_caratheodory_measurable` +- in `set_interval.v`: + + lemmas `subset_itvl`, `subset_itvr`, `subset_itvS` + +- in `normedtype.v`: + + lemmas `nbhs_lt`, `nbhs_le` + +- in `lebesgue_integral.v`: + + lemmas `eq_Rintegral`, `Rintegral_mkcond`, `Rintegral_mkcondr`, `Rintegral_mkcondl`, + `le_normr_integral`, `Rintegral_setU_EFin`, `Rintegral_set0`, `Rintegral_itv_bndo_bndc`, + `Rintegral_itv_obnd_cbnd`, `Rintegral_set1`, `Rintegral_itvB` + ### Changed - in `topology.v`: @@ -66,9 +77,10 @@ + lemmas `semi_sigma_additive_nng_induced`, `dominates_induced`, `integral_normr_continuous` - in `ftc.v`: - + definition `indefinite_integral` - + lemmas `indefinite_integral_near_left`, - `indefinite_integral_cvg_left`, `indefinite_integral_cvg_at_left` + + definition `parameterized_integral` + + lemmas `parameterized_integral_near_left`, + `parameterized_integral_left`, `parameterized_integral_cvg_at_left`, + `parameterized_integral_continuous` + corollary `continuous_FTC2` ### Changed diff --git a/classical/set_interval.v b/classical/set_interval.v index 549604f8aa..098ec28f65 100644 --- a/classical/set_interval.v +++ b/classical/set_interval.v @@ -70,6 +70,51 @@ by move: b0 b1 => [] [] /=; [exact: subset_itv_oo_co|exact: subset_itv_oo_cc| exact: subset_refl|exact: subset_itv_oo_oc]. Qed. +Lemma subset_itvl (a b c : itv_bound T) : (b <= c)%O -> + [set` Interval a b] `<=` [set` Interval a c]. +Proof. +case: c => [[|] c bc x/=|[//|_] x/=]. +- rewrite !in_itv/= => /andP[->/=]. + case: b bc => [[|]/=|[|]//] b bc. + by move=> /lt_le_trans; exact. + by move=> /le_lt_trans; exact. +- rewrite !in_itv/= => /andP[->/=]. + case: b bc => [[|]/=|[|]//] b bc. + by move=> /ltW /le_trans; apply. + by move=> /le_trans; apply. +- by move: x; rewrite le_ninfty => /eqP ->. +- by rewrite !in_itv/=; case: a => [[|]/=|[|]//] a /andP[->]. +Qed. + +Lemma subset_itvr (a b c : itv_bound T) : (c <= a)%O -> + [set` Interval a b] `<=` [set` Interval c b]. +Proof. +move=> ac x/=; rewrite !in_itv/= => /andP[ax ->]; rewrite andbT. +move: c a ax ac => [[|] c [[|]/= a ax|[|]//=]|[//|]]; rewrite ?bnd_simp. +- by move=> /le_trans; exact. +- by move=> /le_trans; apply; exact/ltW. +- by move=> /lt_le_trans; exact. +- by move=> /le_lt_trans; exact. +- by move=> [[|]|[|]//]. +Qed. + +Lemma subset_itvS (a b : itv_bound T) (c e : T) : + (BLeft c <= a)%O -> (b <= BRight e)%O -> + [set` Interval a b] `<=` [set` `[c, e]]. +Proof. +move=> ca be z/=; rewrite !in_itv/= => /andP[az zb]. +case: a ca az => [[|]/=|[|]//] a; rewrite bnd_simp => ca az. + rewrite (le_trans ca az)/=. + move: b be zb => [[|]/= b|[|]//]; rewrite bnd_simp => be. + by move=> /ltW/le_trans; exact. + by move=> /le_trans; exact. +move/ltW in az. +rewrite (le_trans ca az)/=. +move: b be zb => [[|]/= b|[|]//]; rewrite bnd_simp => be. + by move=> /ltW/le_trans; exact. +by move=> /le_trans; exact. +Qed. + Lemma interval_set1 x : `[x, x]%classic = [set x] :> set T. Proof. apply/seteqP; split => [y/=|y <-]; last by rewrite /= in_itv/= lexx. diff --git a/theories/ftc.v b/theories/ftc.v index 3b6d1f4f30..2a6bab9eb4 100644 --- a/theories/ftc.v +++ b/theories/ftc.v @@ -10,7 +10,7 @@ Require Import derive charge. (**md**************************************************************************) (* # Fundamental Theorem of Calculus for the Lebesgue Integral *) (* *) -(* indefinite_integral mu a x f := \int[mu]_(t \in `[a, x] f t) *) +(* parameterized_integral mu a x f := \int[mu]_(t \in `[a, x] f t) *) (* *) (******************************************************************************) @@ -165,7 +165,7 @@ apply: cvg_at_right_left_dnbhs. suff: ((d n)^-1 * - fine (\int[mu]_(y in E x n) (f y)%:E))%R @[n --> \oo] --> f x. apply: cvg_trans; apply: near_eq_cvg; near=> n; congr (_ *: _). - rewrite /F/= /Rintegral -fineN -fineB; last 2 first. + rewrite /F -fineN -fineB; last 2 first. by apply: integral_fune_fin_num => //; exact: integrableS intf. by apply: integral_fune_fin_num => //; exact: integrableS intf. by congr fine => /=; apply/esym; rewrite (addrC _ x); near: n. @@ -218,40 +218,34 @@ Unshelve. all: by end_near. Qed. End FTC. -Definition indefinite_integral {R : realType} +Definition parameterized_integral {R : realType} (mu : {measure set (g_sigma_algebraType (R.-ocitv.-measurable)) -> \bar R}) a x (f : R -> R) : R := (\int[mu]_(t in `[a, x]) f t)%R. -Section indefinite_integral_continuous. +Section parameterized_integral_continuous. Context {R : realType}. Notation mu := (@lebesgue_measure R). -Let int := (indefinite_integral mu). +Let int := (parameterized_integral mu). -Lemma indefinite_integral_near_left (a b : R) (e : R) (f : R -> R) : +Lemma parameterized_integral_near_left (a b : R) (e : R) (f : R -> R) : a < b -> 0 < e -> mu.-integrable `[a, b] (EFin \o f) -> - \forall c \near a, `| int a c f | < e. + \forall c \near a, a <= c -> `| int a c f | < e. Proof. move=> ab e0 intf. -have : mu.-integrable setT (EFin \o f \_`[a, b]). +have : mu.-integrable setT (EFin \o f \_ `[a, b]). by rewrite -restrict_EFin; apply/integrable_restrict => //=; rewrite setTI. move=> /integral_normr_continuous /(_ _ e0)[d [d0 /=]] ifab. -near=> c. -have [ca|ca] := leP c a. - rewrite /int /indefinite_integral/= /Rintegral. - rewrite (integral_Sset1 a) ?fine0 ?normr0//. - move: ca; rewrite le_eqVlt => /predU1P[->|ca]; first by rewrite interval_set1. - by rewrite set_itv_ge//= bnd_simp -ltNge. +near=> c => ac. have /ifab : (mu `[a, c] < d%:E)%E. - rewrite lebesgue_measure_itv/= lte_fin ca -EFinD lte_fin. - by move: ca; near: c; exact: nbhs_right_ltDr. + rewrite lebesgue_measure_itv/= lte_fin. + case: ifPn => // {}ac; rewrite -EFinD lte_fin. + by move: ac; near: c; exact: nbhs_right_ltDr. move=> /(_ (measurable_itv _)) {ifab}. apply: le_lt_trans. have acbc : `[a, c] `<=` `[a, b]. - rewrite (@itv_bndbnd_setU _ _ (BLeft a) (BRight c) (BRight b))// bnd_simp. - exact: ltW. - by move: ca; near: c; exact: nbhs_right_le. + by apply: subset_itvl; rewrite bnd_simp; move: ac; near: c; exact: nbhs_le. rewrite -lee_fin fineK; last first. apply: integral_fune_fin_num => //=. rewrite (_ : (fun _ => _) = abse \o ((EFin \o f) \_ `[a, b])); last first. @@ -267,45 +261,36 @@ under [in leRHS]eq_integral. rewrite /= [leRHS](_ : _ = \int[mu]_(x in `[a, c]) `| f x |%:E)%E; last first. rewrite [RHS]integralEpatch//=; apply: eq_integral => x xac/=. by rewrite restrict_EFin/= restrict_normr. +rewrite /int /parameterized_integral /=. +apply: (@le_trans _ _ ((\int[mu]_(t in `[a, c]) `|f t|))%:E). + by apply: le_normr_integral => //; exact: integrableS intf. set rhs : \bar R := leRHS. have [->|rhsoo] := eqVneq rhs +oo%E; first by rewrite leey. -rewrite /int /indefinite_integral /= /Rintegral. -set lhs := (\int[mu]_(_ in _) _)%E. -have [->|lhsNoo] := eqVneq lhs -oo%E; first by rewrite /= normr0 integral_ge0. -have lhsoo : lhs != +oo%E. - apply: contra rhsoo => /eqP lhsoo. - rewrite -leye_eq -lhsoo; apply: le_integral => //=. - - exact: integrableS intf. - - rewrite [X in integrable _ _ X](_ : _ = abse \o EFin \o f)//. - by apply: integrable_abse => /=; exact: integrableS intf. - - by move=> x _; rewrite lee_fin ler_norm. -rewrite [leLHS](_ : _ = `| lhs |)%E//; last first. - by move: lhsNoo lhsoo; rewrite /lhs /rhs; case: integral. -apply: (le_trans (le_abse_integral _ _ _)) => //=. -by apply: (measurable_funS _ acbc) => //; exact: measurable_int intf. +rewrite /rhs /Rintegral -/rhs. +rewrite fineK// fin_numE rhsoo andbT -ltNye (@lt_le_trans _ _ 0%E)//. +exact: integral_ge0. Unshelve. all: by end_near. Qed. -Lemma indefinite_integral_cvg_left a b (f : R -> R) : a < b -> +Lemma parameterized_integral_cvg_left a b (f : R -> R) : a < b -> mu.-integrable `[a, b] (EFin \o f) -> - int a x f @[x --> a] --> int a a f. + int a x f @[x --> a] --> 0. Proof. -move=> ab intf. -pose fab := f \_ `[a, b]. +move=> ab intf; pose fab := f \_ `[a, b]. have intfab : mu.-integrable `[a, b] (EFin \o fab). by rewrite -restrict_EFin; apply/integrable_restrict => //=; rewrite setIidr. apply/cvgrPdist_le => /= e e0; rewrite near_simpl; near=> x. -rewrite {1}/int /indefinite_integral /Rintegral /=. -rewrite (integral_Sset1 a) ?interval_set1// fine0 sub0r normrN. -apply/ltW. -by near: x; exact: (@indefinite_integral_near_left _ b). +rewrite {1}/int /parameterized_integral sub0r normrN. +have [|xa] := leP a x. + move=> ax; apply/ltW; move: ax. + by near: x; exact: (@parameterized_integral_near_left _ b). +by rewrite set_itv_ge ?Rintegral_set0 ?normr0 ?(ltW e0)// -leNgt bnd_simp. Unshelve. all: by end_near. Qed. -Lemma indefinite_integral_cvg_at_left a b (f : R -> R) : a < b -> +Lemma parameterized_integral_cvg_at_left a b (f : R -> R) : a < b -> mu.-integrable `[a, b] (EFin \o f) -> int a x f @[x --> b^'-] --> int a b f. Proof. -move=> ab intf. -pose fab := f \_ `[a, b]. +move=> ab intf; pose fab := f \_ `[a, b]. have /= int_normr_cont : forall e : R, 0 < e -> exists d : R, 0 < d /\ forall A, measurable A -> (mu A < d%:E)%E -> \int[mu]_(x in A) `|fab x| < e. @@ -313,63 +298,105 @@ have /= int_normr_cont : forall e : R, 0 < e -> by rewrite -restrict_EFin; apply/integrable_restrict => //=; rewrite setTI. have intfab : mu.-integrable `[a, b] (EFin \o fab). by rewrite -restrict_EFin; apply/integrable_restrict => //=; rewrite setIidr. -rewrite /int /indefinite_integral; apply/cvgrPdist_le => /= e e0. +rewrite /int /parameterized_integral; apply/cvgrPdist_le => /= e e0. have [d [d0 /= {}int_normr_cont]] := int_normr_cont _ e0. near=> x. rewrite [in X in X - _](@itv_bndbnd_setU _ _ _ (BRight x))//; [|by rewrite bnd_simp ltW..]. -rewrite {1}/Rintegral integral_setU_EFin//=; last 2 first. +rewrite Rintegral_setU_EFin//=; last 2 first. rewrite -itv_bndbnd_setU// ?bnd_simp; last 2 first. by near: x; exact: nbhs_left_ge. exact/ltW. - by apply/EFin_measurable_fun; apply: measurable_int intf. apply/disj_set2P; rewrite -subset0 => z/=; rewrite !in_itv/= => -[/andP[_]]. by rewrite leNgt => /negbTE ->. have xbab : `]x, b] `<=` `[a, b]. - move=> z/=; rewrite !in_itv/= => /andP[xz ->/=]. - rewrite andbT (le_trans _ (ltW xz))//. + by apply: subset_itvr; rewrite bnd_simp; near: x; exact: nbhs_left_ge. +rewrite -addrAC subrr add0r (le_trans (le_normr_integral _ _))//. + exact: integrableS intf. +rewrite [leLHS](_ : _ = (\int[mu]_(t in `]x, b]) normr (fab t)))//; last first. + apply: eq_Rintegral => //= z; rewrite inE/= in_itv/= => /andP[xz zb]. + rewrite /fab patchE ifT// inE/= in_itv/= zb andbT (le_trans _ (ltW xz))//. by near: x; exact: nbhs_left_ge. -rewrite /Rintegral fineD; last 2 first. - - rewrite fin_num_abs (le_lt_trans (le_abse_integral _ _ _)) //=. - + case/integrableP : intf => + _. - apply: measurable_funS => // z/=; rewrite !in_itv/= => /andP[->/=]. - by move=> /le_trans; apply. - + apply: integral_fune_lt_pinfty => //=. - rewrite [X in _.-integrable _ X](_ : _ = abse \o (EFin \o f))//. - apply/integrable_abse/(integrableS _ _ _ intf) => //. - move=> z/=; rewrite !in_itv/= => /andP[->/=]. - by move=> /le_trans; apply. - - rewrite fin_num_abs (le_lt_trans (le_abse_integral _ _ _)) //=. - + by case/integrableP : intf => + _; exact: measurable_funS. - + apply: integral_fune_lt_pinfty => //=. - rewrite [X in _.-integrable _ X](_ : _ = abse \o (EFin \o f))//. - exact/integrable_abse/(integrableS _ _ _ intf). -rewrite -addrAC subrr add0r. -rewrite [X in fine X](_ : _ = - (\int[mu]_(x0 in `]x, b]) (fab x0)%:E))%E//; last first. - apply: eq_integral => //= z. - rewrite inE/= in_itv/= => /andP[xz zb]. - rewrite /fab patchE ifT// inE/= in_itv/=. - rewrite zb andbT (le_trans _ (ltW xz))//. - by near: x; exact: nbhs_left_ge. -apply: ltW. -rewrite -lte_fin EFin_normr_Rintegral//=; last exact: integrableS intfab. -rewrite (le_lt_trans (le_abse_integral _ _ _))//=. - case/integrableP : intf => /EFin_measurable_fun mf _. - apply/measurableT_comp => //; apply/measurable_restrict => //=. - by rewrite setIidl//; exact: measurable_funS mf. -rewrite -[ltLHS]fineK//. -- rewrite lte_fin int_normr_cont// lebesgue_measure_itv/= lte_fin. - rewrite ifT// -EFinD lte_fin. - near: x; exists d => // z; rewrite /ball_/= => + zb. - by rewrite gtr0_norm// ?subr_gt0. -- rewrite ge0_fin_numE//; last exact: integral_ge0. - apply: integral_fune_lt_pinfty => //=. - rewrite [X in _.-integrable _ X](_ : _ = abse \o (EFin \o fab))//. - by apply: integrable_abse; exact: integrableS intfab. +apply/ltW/int_normr_cont => //. +rewrite lebesgue_measure_itv/= lte_fin. +rewrite ifT// -EFinD lte_fin. +near: x; exists d => // z; rewrite /ball_/= => + zb. +by rewrite gtr0_norm// ?subr_gt0. Unshelve. all: by end_near. Qed. -End indefinite_integral_continuous. +Lemma parameterized_integral_continuous a b (f : R -> R) : a < b -> + mu.-integrable `[a, b] (EFin \o f) -> + {within `[a,b], continuous (fun x => int a x f)}. +Proof. +move=> ab intf; apply/(continuous_within_itvP _ ab); split; last first. + split; last exact: parameterized_integral_cvg_at_left. + apply/cvg_at_right_filter. + rewrite {2}/int /parameterized_integral interval_set1 Rintegral_set1. + exact: (parameterized_integral_cvg_left ab). +pose fab := f \_ `[a, b]. +have /= int_normr_cont : forall e : R, 0 < e -> + exists d : R, 0 < d /\ + forall A, measurable A -> (mu A < d%:E)%E -> \int[mu]_(x in A) `|fab x| < e. + rewrite /= => e e0; apply: integral_normr_continuous => //=. + by rewrite -restrict_EFin; apply/integrable_restrict => //=; rewrite setTI. +have intfab : mu.-integrable `[a, b] (EFin \o fab). + by rewrite -restrict_EFin; apply/integrable_restrict => //=; rewrite setIidr. +rewrite /int /parameterized_integral => z; rewrite in_itv/= => /andP[az zb]. +apply/cvgrPdist_le => /= e e0. +rewrite near_simpl. +have [d [d0 /= {}int_normr_cont]] := int_normr_cont _ e0. +near=> x. +have [xz|xz|->] := ltgtP x z; last by rewrite subrr normr0 ltW. +- have ax : a < x. + move: xz; near: x. + exists `|z - a| => /=; first by rewrite gtr0_norm ?subr_gt0. + move=> y /= + yz. + do 2 rewrite gtr0_norm ?subr_gt0//. + rewrite ltrBlDr -ltrBlDl; apply: le_lt_trans. + by rewrite opprB addrCA subrr addr0. + rewrite Rintegral_itvB//; last 3 first. + by apply: integrableS intf => //; apply: subset_itvl; exact: ltW. + by rewrite bnd_simp ltW. + exact: ltW. + have xzab : `]x, z] `<=` `[a, b]. + by apply: subset_itvS; rewrite bnd_simp; exact/ltW. + apply: (le_trans (le_normr_integral _ _)) => //; first exact: integrableS intf. + rewrite -(setIidl xzab) Rintegral_mkcondr/=. + under eq_Rintegral do rewrite restrict_normr. + apply/ltW/int_normr_cont => //. + rewrite lebesgue_measure_itv/= lte_fin xz -EFinD lte_fin ltrBlDl. + move: xz; near: x. + exists (d / 2); first by rewrite /= divr_gt0. + move=> x/= /[swap] xz. + rewrite gtr0_norm ?subr_gt0// ltrBlDl => /lt_le_trans; apply. + by rewrite lerD2l ler_pdivrMr// ler_pMr// ler1n. ++ have ax : a < x by rewrite (lt_trans az). + have xb : x < b. + move: xz; near: x. + exists `|b - z|; first by rewrite /= gtr0_norm ?subr_gt0. + move=> y /= + yz. + by rewrite ltr0_norm ?subr_lt0// gtr0_norm ?subr_gt0// opprB ltrBlDr subrK. + rewrite -opprB normrN Rintegral_itvB ?bnd_simp; last 3 first. + by apply: integrableS intf => //; apply: subset_itvl; exact: ltW. + exact/ltW. + exact/ltW. + rewrite Rintegral_itv_obnd_cbnd//; last first. + by apply: integrableS intf => //; apply: subset_itvS => //; exact/ltW. + have zxab : `[z, x] `<=` `[a, b]. + by apply: subset_itvS; rewrite bnd_simp; exact/ltW. + apply: (le_trans (le_normr_integral _ _)) => //; first exact: integrableS intf. + rewrite -(setIidl zxab) Rintegral_mkcondr/=. + under eq_Rintegral do rewrite restrict_normr. + apply/ltW/int_normr_cont => //. + rewrite lebesgue_measure_itv/= lte_fin xz -EFinD lte_fin ltrBlDl. + move: xz; near: x. + exists (d / 2); first by rewrite /= divr_gt0. + move=> x/= /[swap] xz. + rewrite ltr0_norm ?subr_lt0// opprB ltrBlDl => /lt_le_trans; apply. + by rewrite lerD2l ler_pdivrMr// ler_pMr// ler1n. +Unshelve. all: by end_near. Qed. + +End parameterized_integral_continuous. Section corollary_FTC1. Context {R : realType}. @@ -416,10 +443,9 @@ have [k FGk] : exists k : R, {in `]a, b[, (F - G =1 cst k)%R}. move: xLy; rewrite le_eqVlt => /predU1P[->//|xy]. have [| |] := @MVT _ (F \- G)%R (F^`() - G^`())%R x y xy. - move=> z zxy; have zab : z \in `]a, b[. - rewrite !in_itv/=; move: zxy; rewrite in_itv/= => /andP[xz zy]. - rewrite (le_lt_trans _ xz)//= ?(lt_le_trans zy)//=. - + by move: yab; rewrite in_itv/= => /andP[_ /ltW]. + move: z zxy; apply: subset_itvW => //. + by move: xab; rewrite in_itv/= => /andP[/ltW]. + + by move: yab; rewrite in_itv/= => /andP[_ /ltW]. have Fz1 : derivable F z 1. by case: dF => /= + _ _; apply; rewrite inE in zab. have Gz1 : derivable G z 1 by have [|] := G'f z. @@ -449,7 +475,7 @@ have [k FGk] : exists k : R, {in `]a, b[, (F - G =1 cst k)%R}. by rewrite in_itv/= midf_lt//= midf_lt. have [c GFc] : exists c : R, forall x, x \in `]a, b[ -> (F x - G x)%R = c. by exists k => x xab; rewrite -[k]/(cst k x) -(FGk x xab). -have Ga0 : G a = 0%R by rewrite /G/= interval_set1// /Rintegral integral_set1. +have Ga0 : G a = 0%R by rewrite /G interval_set1// Rintegral_set1. case: (dF) => _ Fa Fb. have GacFa : G x @[x --> a^'+] --> (- c + F a)%R. have Fap : Filter a^'+ by exact: at_right_proper_filter. @@ -470,21 +496,25 @@ have GbcFb : G x @[x --> b^'-] --> (- c + F b)%R. rewrite (_ : (G \- F)%R + F = G)//. by apply/funext => x/=; rewrite subrK. have contF : {within `[a, b], continuous F}. - apply/continuous_within_itvP => //; split => // z zab. + apply/(continuous_within_itvP _ ab); split; last exact: (conj Fa Fb). + move=> z zab. apply/differentiable_continuous/derivable1_diffP. - by case: dF => /= + _ _; exact. + by case: dF => /= dF _ _; apply: dF. have iabfab : mu.-integrable `[a, b] (EFin \o fab). by rewrite -restrict_EFin; apply/integrable_restrict => //; rewrite setIidr. have Ga : G x @[x --> a^'+] --> G a. - by have /left_right_continuousP[] := indefinite_integral_cvg_left ab iabfab. + have := parameterized_integral_cvg_left ab iabfab. + rewrite (_ : 0 = G a)%R. + by move=> /left_right_continuousP[]. + by rewrite /G interval_set1 Rintegral_set1. have Gb : G x @[x --> b^'-] --> G b. - exact: (indefinite_integral_cvg_at_left ab iabfab). + exact: (parameterized_integral_cvg_at_left ab iabfab). have cE : c = F a. - apply/eqP;rewrite -(opprK c) eq_sym -addr_eq0 addrC. + apply/eqP; rewrite -(opprK c) eq_sym -addr_eq0 addrC. by have := cvg_unique _ GacFa Ga; rewrite Ga0 => ->. have GbFbc : G b = (F b - c)%R. by have := cvg_unique _ GbcFb Gb; rewrite addrC => ->. -rewrite -EFinB -cE -GbFbc /G/= /Rintegral/= fineK//. +rewrite -EFinB -cE -GbFbc /G /Rintegral/= fineK//. rewrite integralEpatch//=. by under eq_integral do rewrite restrict_EFin. exact: integral_fune_fin_num. diff --git a/theories/lebesgue_integral.v b/theories/lebesgue_integral.v index fddcdda07b..f15bf63664 100644 --- a/theories/lebesgue_integral.v +++ b/theories/lebesgue_integral.v @@ -3029,9 +3029,9 @@ Definition Rintegral (D : set T) (f : T -> R) := End Rintegral. Notation "\int [ mu ]_ ( x 'in' D ) f" := - (Rintegral [the measure _ _ of mu] D (fun x => f)) : ring_scope. + (Rintegral mu D (fun x => f)) : ring_scope. Notation "\int [ mu ]_ x f" := - (Rintegral [the measure _ _ of mu] setT (fun x => f)) : ring_scope. + (Rintegral mu setT (fun x => f)) : ring_scope. HB.lock Definition integrable {d} {T : measurableType d} {R : realType} (mu : set T -> \bar R) D f := @@ -4458,6 +4458,74 @@ Qed. End dominated_convergence_theorem. +Section Rintegral. +Context d {T : measurableType d} {R : realType}. +Variable mu : {measure set T -> \bar R}. + +Lemma eq_Rintegral D g f : {in D, f =1 g} -> + \int[mu]_(x in D) f x = \int[mu]_(x in D) g x. +Proof. +move=> fg; rewrite /Rintegral; congr fine. +by apply: eq_integral => /= x xD; rewrite fg. +Qed. + +Lemma Rintegral_mkcond D f : \int[mu]_(x in D) f x = \int[mu]_x (f \_ D) x. +Proof. +rewrite {1}/Rintegral integral_mkcond/=. +by under eq_integral do rewrite restrict_EFin. +Qed. + +Lemma Rintegral_mkcondr D P f : + \int[mu]_(x in D `&` P) f x = \int[mu]_(x in D) (f \_ P) x. +Proof. +rewrite {1}/Rintegral integral_mkcondr. +by under eq_integral do rewrite restrict_EFin. +Qed. + +Lemma Rintegral_mkcondl D P f : + \int[mu]_(x in P `&` D) f x = \int[mu]_(x in D) (f \_ P) x. +Proof. by rewrite setIC Rintegral_mkcondr. Qed. + +Lemma le_normr_integral A f : measurable A -> mu.-integrable A (EFin \o f) -> + (`|\int[mu]_(t in A) f t| <= \int[mu]_(t in A) `|f t|)%R. +Proof. +move=> mA /integrableP[mf ifoo]. +rewrite -lee_fin; apply: le_trans. + apply: (le_trans _ (le_abse_integral mu mA mf)). + rewrite /abse. + have [/fineK <-//|] := boolP (\int[mu]_(x in A) (EFin \o f) x \is a fin_num)%E. + by rewrite fin_numEn => /orP[|] /eqP ->; rewrite leey. +rewrite /Rintegral. +move: ifoo. +rewrite -ge0_fin_numE; last exact: integral_ge0. +move/fineK ->. +by apply: ge0_le_integral => //=; do 2 apply: measurableT_comp => //; + exact/EFin_measurable_fun. +Qed. + +Lemma Rintegral_setU_EFin (A B : set T) (f : T -> R) : + d.-measurable A -> d.-measurable B -> + mu.-integrable (A `|` B) (EFin \o f) -> [disjoint A & B] -> + \int[mu]_(x in (A `|` B)) f x = \int[mu]_(x in A) f x + \int[mu]_(x in B) f x. +Proof. +move=> mA mB mf AB; rewrite /Rintegral integral_setU_EFin//; last first. + exact/EFin_measurable_fun/(measurable_int mu). +have mAf : mu.-integrable A (EFin \o f). + by apply: integrableS mf => //; exact: measurableU. +have mBf : mu.-integrable B (EFin \o f). + by apply: integrableS mf => //; exact: measurableU. +move/integrableP : mAf => [mAf itAfoo]. +move/integrableP : mBf => [mBf itBfoo]. +rewrite fineD//. +- by rewrite fin_num_abs (le_lt_trans _ itAfoo)//; exact: le_abse_integral. +- by rewrite fin_num_abs (le_lt_trans _ itBfoo)//; exact: le_abse_integral. +Qed. + +Lemma Rintegral_set0 (f : T -> R) : (\int[mu]_(x in set0) f x = 0)%R. +Proof. by rewrite /Rintegral integral_set0. Qed. + +End Rintegral. + Section ae_ge0_le_integral. Local Open Scope ereal_scope. Context d (T : measurableType d) (R : realType). @@ -6456,6 +6524,60 @@ Qed. End lebesgue_measure_integral. Arguments integral_Sset1 {R f A} r. +Section Rintegral_lebesgue_measure. +Context {R : realType}. +Notation mu := (@lebesgue_measure R). +Implicit Type f : R -> R. + +Lemma Rintegral_itv_bndo_bndc (a : itv_bound R) (r : R) f : + mu.-integrable [set` Interval a (BRight r)] (EFin \o f) -> + \int[mu]_(x in [set` Interval a (BLeft r)]) (f x) = + \int[mu]_(x in [set` Interval a (BRight r)]) (f x). +Proof. +move=> mf; rewrite /Rintegral integral_itv_bndo_bndc//. +by apply/EFin_measurable_fun; exact: (measurable_int mu). +Qed. + +Lemma Rintegral_itv_obnd_cbnd (r : R) (b : itv_bound R) f : + mu.-integrable [set` Interval (BLeft r) b] (EFin \o f) -> + \int[mu]_(x in [set` Interval (BRight r) b]) (f x) = + \int[mu]_(x in [set` Interval (BLeft r) b]) (f x). +Proof. +move=> mf; rewrite /Rintegral integral_itv_obnd_cbnd//. +by apply/EFin_measurable_fun; exact: (measurable_int mu). +Qed. + +Lemma Rintegral_set1 f (r : R) : \int[mu]_(x in [set r]) f x = 0. +Proof. by rewrite /Rintegral integral_set1. Qed. + +Lemma Rintegral_itvB f (a b : itv_bound R) x : + mu.-integrable [set` (Interval a b)] (EFin \o f) -> + (a <= BRight x)%O -> (BRight x <= b)%O -> + \int[mu]_(t in [set` Interval a b]) f t - + \int[mu]_(t in [set` Interval a (BRight x)]) f t = + \int[mu]_(x in [set` Interval (BRight x) b]) f x. +Proof. +move=> itf; rewrite le_eqVlt => /predU1P[ax|ax xb]. + rewrite ax => _; rewrite [in X in _ - X]set_itv_ge ?bnd_simp//. + by rewrite Rintegral_set0 subr0. +rewrite (@itv_bndbnd_setU _ _ _ (BLeft x)); last 2 first. + by case: a ax {itf} => -[]//. + by rewrite (le_trans _ xb)// bnd_simp. +rewrite Rintegral_setU_EFin//=. +- rewrite addrAC Rintegral_itv_bndo_bndc//; last first. + by apply: integrableS itf => //; exact: subset_itvl. + rewrite subrr add0r Rintegral_itv_obnd_cbnd//. + apply: integrableS itf => //; apply: subset_itvr. + by case: a ax => -[]. +- rewrite -itv_bndbnd_setU//. + by case: a ax {itf} => -[]//. + by rewrite (le_trans _ xb)// bnd_simp. +- apply/disj_setPS => y; rewrite /= !in_itv/= => -[/andP[_ yx] /andP[]]. + by rewrite leNgt yx. +Qed. + +End Rintegral_lebesgue_measure. + Section lebesgue_differentiation. Context {R : realType}. Local Notation mu := (@lebesgue_measure R). diff --git a/theories/normedtype.v b/theories/normedtype.v index cbdb9aea8e..6f8b07bbce 100644 --- a/theories/normedtype.v +++ b/theories/normedtype.v @@ -1138,6 +1138,26 @@ Proof. by move=> Lf /continuity_pt_cvg; apply. Qed. End analysis_struct. +Section nbhs_lt_le. +Context {R : realType}. +Implicit Types x z : R. + +Lemma nbhs_lt x z : x < z -> \forall y \near x, x <= y -> y < z. +Proof. +move=> xz; near=> y. +rewrite le_eqVlt => /predU1P[<-//|]. +near: y; exists (z - x) => /=; first by rewrite subr_gt0. +move=> y/= /[swap] xy; rewrite ltr0_norm ?subr_lt0//. +by rewrite opprD addrC ltrBlDr subrK opprK. +Unshelve. all: by end_near. Qed. + +Lemma nbhs_le x z : x < z -> \forall y \near x, x <= y -> y <= z. +Proof. +by move=> xz; apply: filterS (nbhs_lt xz) => y /[apply] /ltW. +Qed. + +End nbhs_lt_le. + Section open_closed_sets. (* TODO: duplicate theory within the subspace topology of Num.real in a numDomainType *)