From 509148b20420111e28b2cc6b62642728a7226e68 Mon Sep 17 00:00:00 2001 From: Reynald Affeldt Date: Mon, 17 Jun 2024 14:49:57 +0900 Subject: [PATCH] rename setD_closed to setSD_closed --- theories/measure.v | 18 +++++++++++------- 1 file changed, 11 insertions(+), 7 deletions(-) diff --git a/theories/measure.v b/theories/measure.v index 25ff40621a..61f01cac00 100644 --- a/theories/measure.v +++ b/theories/measure.v @@ -186,7 +186,9 @@ From HB Require Import structures. (* intersection *) (* setU_closed G == the set of sets G is closed under finite union *) (* setC_closed G == the set of sets G is closed under complement *) -(* setD_closed G == the set of sets G is closed under difference *) +(* setSD_closed G == the set of sets G is closed under relative *) +(* difference *) +(* setDI_closed G == the set of sets G is closed under difference *) (* ndseq_closed G == the set of sets G is closed under non-decreasing *) (* countable union *) (* niseq_closed G == the set of sets G is closed under non-increasing *) @@ -348,7 +350,7 @@ Context {T} (C : set (set T) -> Prop) (D : set T) (G : set (set T)). Definition setC_closed := forall A, G A -> G (~` A). Definition setI_closed := forall A B, G A -> G B -> G (A `&` B). Definition setU_closed := forall A B, G A -> G B -> G (A `|` B). -Definition setD_closed := forall A B, B `<=` A -> G A -> G B -> G (A `\` B). +Definition setSD_closed := forall A B, B `<=` A -> G A -> G B -> G (A `\` B). Definition setDI_closed := forall A B, G A -> G B -> G (A `\` B). Definition fin_bigcap_closed := @@ -403,13 +405,15 @@ Definition dynkin := [/\ G setT, setC_closed & trivIset_closed]. because this definition corresponds to "classe monotone" in several French references, e.g., the definition of "classe monotone" on the French wikipedia. *) Definition lambda_system := - [/\ forall A, G A -> A `<=` D, G D, setD_closed & ndseq_closed]. + [/\ forall A, G A -> A `<=` D, G D, setSD_closed & ndseq_closed]. Definition monotone := ndseq_closed /\ niseq_closed. End classes. #[deprecated(since="mathcomp-analysis 1.2.0", note="renamed `lambda_system`")] Notation monotone_class := lambda_system (only parsing). +#[deprecated(since="mathcomp-analysis 1.3.0", note="renamed `setSD_closed`")] +Notation setD_closed := setSD_closed (only parsing). Lemma powerset_sigma_ring (T : Type) (D : set T) : sigma_ring [set X | X `<=` D]. @@ -478,7 +482,7 @@ by rewrite setICA; apply: GI => //; apply: GA. Qed. Lemma sedDI_closedP T (G : set (set T)) : - setDI_closed G <-> (setI_closed G /\ setD_closed G). + setDI_closed G <-> (setI_closed G /\ setSD_closed G). Proof. split=> [GDI|[GI GD]]. by split=> A B => [|AB] => GA GB; rewrite -?setDD//; do ?apply: (GDI). @@ -500,7 +504,7 @@ Qed. Lemma sigma_algebraP T U (C : set (set T)) : (forall X, C X -> X `<=` U) -> sigma_algebra U C <-> - [/\ C U, setD_closed C, ndseq_closed C & setI_closed C]. + [/\ C U, setSD_closed C, ndseq_closed C & setI_closed C]. Proof. move=> C_subU; split => [[C0 CD CU]|[DT DC DU DI]]; split. - by rewrite -(setD0 U); apply: CD. @@ -735,7 +739,7 @@ suff: setI_closed <>. by apply/sigma_algebraP; case: lambdaDG. pose H := <>. pose H_ A := [set X | H X /\ H (X `&` A)]. -have setDH_ A : setD_closed (H_ A). +have setDH_ A : setSD_closed (H_ A). move=> X Y XY [HX HXA] [HY HYA]; case: lambdaDG => h _ setDH _; split. exact: setDH. rewrite (_ : _ `&` _ = (X `&` A) `\` (Y `&` A)); last first. @@ -3700,7 +3704,7 @@ Proof. move=> sDHD; set E := [set A | [/\ measurable A, m1 A = m2 A & A `<=` D] ]. have HE : H `<=` E. by move=> X HX; rewrite /E /=; split; [exact: Hm|exact: m1m2|case: HX]. -have setDE : setD_closed E. +have setDE : setSD_closed E. move=> A B BA [mA m1m2A AD] [mB m1m2B BD]; split; first exact: measurableD. - rewrite measureD//; last first. by rewrite (le_lt_trans _ m1oo)//; apply: le_measure => // /[!inE].