From d30caf9f3c3df6de7e26c6c99d2c541fc6cc96b9 Mon Sep 17 00:00:00 2001 From: Reynald Affeldt Date: Wed, 14 Jul 2021 21:26:07 +0900 Subject: [PATCH] definition of measurable function - from the integral_sketch branch --- CHANGELOG_UNRELEASED.md | 2 ++ theories/measure.v | 5 +++++ 2 files changed, 7 insertions(+) diff --git a/CHANGELOG_UNRELEASED.md b/CHANGELOG_UNRELEASED.md index 28e2b8126..f5c58612c 100644 --- a/CHANGELOG_UNRELEASED.md +++ b/CHANGELOG_UNRELEASED.md @@ -19,6 +19,8 @@ + lemma `bigcup_set_cond` - in `classical_sets.v`: + lemmas `bigcupD1`, `bigcapD1` +- in `measure.v`: + + definition `measurable_fun` ### Changed diff --git a/theories/measure.v b/theories/measure.v index d7402a4ad..001838ce0 100644 --- a/theories/measure.v +++ b/theories/measure.v @@ -41,6 +41,8 @@ From HB Require Import structures. (* forall Y, mu X = mu (X `&` Y) + mu (X `&` ~` Y) *) (* measure_is_complete mu == the measure mu is complete *) (* *) +(* measurable_fun D f == the function f with domain D is measurable *) +(* *) (* Caratheodory theorem: *) (* caratheodory_type mu := T, where mu : {outer_measure set T -> {ereal R}} *) (* it is a canonical mesurableType copy of T. *) @@ -1035,6 +1037,9 @@ Definition measure_is_complete (R : realType) (T : measurableType) (mu : set T -> \bar R) := forall X, mu.-negligible X -> measurable X. +Definition measurable_fun (T U : measurableType) (D : set T) (f : T -> U) := + forall Y, measurable Y -> measurable ((f @^-1` Y) `&` D). + Section caratheodory_measure. Variables (R : realType) (T : Type) (mu : {outer_measure set T -> \bar R}). Local Notation U := (caratheodory_type mu).