diff --git a/CHANGELOG_UNRELEASED.md b/CHANGELOG_UNRELEASED.md index c52d4873e7..096254f1dd 100644 --- a/CHANGELOG_UNRELEASED.md +++ b/CHANGELOG_UNRELEASED.md @@ -54,6 +54,12 @@ ### Generalized +- in `lebesgue_integral.v`: + + generalized from `realType` to `sigmaRingType` + * mixin `isMeasurableFun` + * structure `MeasurableFun` + * definition `mfun` + ### Deprecated ### Removed diff --git a/theories/lebesgue_integral.v b/theories/lebesgue_integral.v index a012dab54b..7807da6f3b 100644 --- a/theories/lebesgue_integral.v +++ b/theories/lebesgue_integral.v @@ -251,16 +251,17 @@ HB.builders Context T R f of @FiniteDecomp T R f. HB.end. Section mfun_pred. -Context {d} {aT : sigmaRingType d} {rT : realType}. +Context {d d'} {aT : sigmaRingType d} {rT : sigmaRingType d'}. Definition mfun : {pred aT -> rT} := mem [set f | measurable_fun setT f]. Definition mfun_key : pred_key mfun. Proof. exact. Qed. Canonical mfun_keyed := KeyedPred mfun_key. End mfun_pred. -Section mfun. -Context {d} {aT : measurableType d} {rT : realType}. +Section mfun_realType. +Context {d} {aT : sigmaRingType d} {rT : realType}. Notation T := {mfun aT >-> rT}. -Notation mfun := (@mfun _ aT rT). +Notation mfun := (@mfun _ _ aT rT). + Section Sub. Context (f : aT -> rT) (fP : f \in mfun). Definition mfun_Sub_subproof := @isMeasurableFun.Build d _ aT rT f (set_mem fP). @@ -292,6 +293,11 @@ Definition cst_mfun x := [the {mfun aT >-> rT} of cst x]. Lemma mfun_cst x : @cst_mfun x =1 cst x. Proof. by []. Qed. +End mfun_realType. + +Section mfun. +Context {d} {aT : measurableType d} {rT : realType}. + HB.instance Definition _ := @isMeasurableFun.Build _ _ _ rT (@normr rT rT) (@measurable_normr rT setT). @@ -310,14 +316,14 @@ End mfun. Section ring. Context d (aT : measurableType d) (rT : realType). -Lemma mfun_subring_closed : subring_closed (@mfun _ aT rT). +Lemma mfun_subring_closed : subring_closed (@mfun _ _ aT rT). Proof. split=> [|f g|f g]; rewrite !inE/=. - exact: measurable_cst. - exact: measurable_funB. - exact: measurable_funM. Qed. -HB.instance Definition _ := GRing.isSubringClosed.Build _ mfun +HB.instance Definition _ := GRing.isSubringClosed.Build _ (@mfun d default_measure_display aT rT) mfun_subring_closed. HB.instance Definition _ := [SubChoice_isSubComRing of {mfun aT >-> rT} by <:]. @@ -388,7 +394,7 @@ Notation measurable_fun_indic := measurable_indic (only parsing). Section sfun_pred. Context {d} {aT : sigmaRingType d} {rT : realType}. -Definition sfun : {pred _ -> _} := [predI @mfun _ aT rT & fimfun]. +Definition sfun : {pred _ -> _} := [predI @mfun _ _ aT rT & fimfun]. Definition sfun_key : pred_key sfun. Proof. exact. Qed. Canonical sfun_keyed := KeyedPred sfun_key. Lemma sub_sfun_mfun : {subset sfun <= mfun}. Proof. by move=> x /andP[]. Qed.