diff --git a/theories/lebesgue_measure.v b/theories/lebesgue_measure.v index 40ae266c4..45622b50e 100644 --- a/theories/lebesgue_measure.v +++ b/theories/lebesgue_measure.v @@ -492,24 +492,24 @@ Qed. Lemma measurable_itv (i : interval R) : measurable [set` i]. Proof. -have moc (a b : R) : measurable `]a, b]%classic. +have moc (a b : R) : measurable `]a, b]. by apply: sub_sigma_algebra; apply: is_ocitv. -have mopoo (x : R) : measurable `]x, +oo[%classic. +have mopoo (x : R) : measurable `]x, +oo[. by rewrite itv_bnd_infty_bigcup; exact: bigcup_measurable. -have mnooc (x : R) : measurable `]-oo, x]%classic. +have mnooc (x : R) : measurable `]-oo, x]. by rewrite -setCitvr; exact/measurableC. -have ooE (a b : R) : `]a, b[%classic = `]a, b]%classic `\ b. +have ooE (a b : R) : `]a, b[%classic = `]a, b] `\ b. case: (boolP (a < b)) => ab; last by rewrite !set_itv_ge ?set0D. by rewrite -setUitv1// setUDK// => x [->]; rewrite /= in_itv/= ltxx andbF. -have moo (a b : R) : measurable `]a, b[%classic. +have moo (a b : R) : measurable `]a, b[. by rewrite ooE; exact: measurableD. -have mcc (a b : R) : measurable `[a, b]%classic. +have mcc (a b : R) : measurable `[a, b]. case: (boolP (a <= b)) => ab; last by rewrite set_itv_ge. by rewrite -setU1itv//; apply/measurableU. -have mco (a b : R) : measurable `[a, b[%classic. +have mco (a b : R) : measurable `[a, b[. case: (boolP (a < b)) => ab; last by rewrite set_itv_ge. by rewrite -setU1itv//; apply/measurableU. -have oooE (b : R) : `]-oo, b[%classic = `]-oo, b]%classic `\ b. +have oooE (b : R) : `]-oo, b[%classic = `]-oo, b] `\ b. by rewrite -setUitv1// setUDK// => x [->]; rewrite /= in_itv/= ltxx. case: i => [[[] a|[]] [[] b|[]]] => //; do ?by rewrite set_itv_ge. - by rewrite -setU1itv//; exact/measurableU. diff --git a/theories/measure.v b/theories/measure.v index 9cd8b0d46..6ad7e9b9e 100644 --- a/theories/measure.v +++ b/theories/measure.v @@ -723,6 +723,8 @@ HB.mixin Record isSemiRingOfSets (d : measure_display) T := { #[short(type=semiRingOfSetsType)] HB.structure Definition SemiRingOfSets d := {T of isSemiRingOfSets d T}. +Arguments measurable {d}%measure_display_scope {s} _%classical_set_scope. + Canonical semiRingOfSets_eqType d (T : semiRingOfSetsType d) := EqType T ptclass. Canonical semiRingOfSets_choiceType d (T : semiRingOfSetsType d) := ChoiceType T ptclass.