From a3de8e54fa2f255bdf579eb9c78eb9533f6ebcee Mon Sep 17 00:00:00 2001 From: mkerjean Date: Fri, 13 Sep 2024 22:31:18 +0200 Subject: [PATCH] convex --- theories/normedtype.v | 37 +++++++++++++++---------------------- theories/tvs.v | 2 +- 2 files changed, 16 insertions(+), 23 deletions(-) diff --git a/theories/normedtype.v b/theories/normedtype.v index d8852505fe..d1d7059b27 100644 --- a/theories/normedtype.v +++ b/theories/normedtype.v @@ -852,30 +852,22 @@ Qed. Lemma locally_convex : exists2 B : set (set V), (forall b, b \in B -> convex b) & basis B. Proof. exists [set B | exists x, exists r, B = ball x r]. - move=> b; rewrite inE /= => [[x]] [r] -> z y l. - rewrite !inE -!ball_normE /= => zx yx l1. - (* have xz : `|z| < r + `|x|. *) - (* have -> : `|z| = `|(z - x) + x| by rewrite -addrA [X in (_+X)]addrC subrr addr0. *) - (* rewrite (@lt_le_trans _ _ (r + normr x )) //. *) - (* rewrite (@le_lt_trans _ _ (normr ((x - z)%R) + normr x)) //. *) - (* rewrite -[in X in (_ <= X)]opprB normrN ler_normD // addrC. *) - (* by rewrite (@ltr_leD _ _ _ (normr x) _ zx) //. *) - (* have xy : `|y| < r + `|x|. *) - (* have -> : `|y| = `|(y - x) + x| by rewrite -addrA [X in (_+X)]addrC subrr addr0. *) - (* rewrite (@lt_le_trans _ _ (r + normr x )) //. *) - (* rewrite (@le_lt_trans _ _ (normr ((y - x)%R) + normr x)) //. *) - (* by rewrite ler_normD // addrC. *) - (* by rewrite (@ltr_leD _ _ _ (normr x) _ yx) //=. *) - have ->: x = l *: x + (1-l) *: x. admit. - have -> : + move=> b; rewrite inE /= => [[x]] [r] -> z y l. + rewrite !inE -!ball_normE /= => zx yx l0; rewrite -subr_gt0 => l1. + have ->: x = l *: x + (1-l) *: x by rewrite scalerBl addrCA subrr addr0 scale1r. + have -> : (l *: x + (1 - l) *: x) - (l *: z + (1 - l) *: y) = (l *: (x-z) + (1 - l) *: (x - y)). - rewrite opprD. rewrite addrCA. admit. + by rewrite opprD addrCA addrA addrA -!scalerN -scalerDr [X in l*:X]addrC -addrA -scalerDr. rewrite (@le_lt_trans _ _ ( `|l| * `|x - z| + `|1 - l| * `|x - y|)) //. by rewrite -!normrZ ?ler_normD //. - rewrite (@lt_trans _ _ ( `|l| * r + `|1 - l| * r )) //. - rewrite ltrD //. rewrite le_lt_pM //. normrN. - have -> : normr (1 -l) = 1 - normr l. admit. - rewrite -mulrDl addrCA subrr addr0. + rewrite (@lt_le_trans _ _ ( `|l| * r + `|1 - l| * r )) //. + rewrite ltr_leD //. + rewrite -ltr_pdivlMl ?mulrA ?mulVf ?mul1r // ?normrE ?lt0r_neq0 //. + rewrite -ler_pdivlMl ?mulrA ?mulVf ?mul1r ?ltW // ?normrE; + by apply/eqP => H; move: l1; rewrite H // lt_def => /andP [] /eqP //=. + have -> : normr (1 -l) = 1 - normr l. + by move/ltW/normr_idP: l0 => ->; move/ltW/normr_idP: l1 => ->. + by rewrite -mulrDl addrCA subrr addr0 mul1r. split => /=. move => B [x] [r] ->. rewrite openE -!ball_normE /interior=> y /= bxy. @@ -888,7 +880,7 @@ rewrite -nbhs_ballE /nbhs_ball /nbhs_ball_ /filter_from //=. move=> [r] r0 Bxr /=. rewrite nbhs_simpl /=; exists (ball x r) => //; split; last by apply: ballxx. by exists x; exists r. -Admitted. +Qed. HB.instance Definition _ := Uniform_isTvs.Build K V add_continuous @@ -6128,3 +6120,4 @@ by have [j [Dj BiBj ij]] := maxD i Vi; move/(_ _ cBix) => ?; exists j. Qed. End vitali_lemma_infinite. + diff --git a/theories/tvs.v b/theories/tvs.v index 305e0b2980..e09b1ba9f0 100644 --- a/theories/tvs.v +++ b/theories/tvs.v @@ -41,7 +41,7 @@ HB.structure Definition UniformLmodule (K : numDomainType) := Definition convex (R : numDomainType) (M : lmodType R) (A : set M) := forall x y (lambda : R), x \in A -> y \in A -> - (`|lambda| < 1) -> lambda *: x + (1 - lambda) *: y \in A. + (0< lambda) -> (lambda < 1) -> lambda *: x + (1 - lambda) *: y \in A. HB.mixin Record Uniform_isTvs (R : numDomainType) E of Uniform E & GRing.Lmodule R E := { add_continuous : continuous (fun x : E * E => x.1 + x.2) ;