diff --git a/_CoqProject b/_CoqProject index 54e246e2d..b7a78865c 100644 --- a/_CoqProject +++ b/_CoqProject @@ -28,6 +28,7 @@ theories/topology.v theories/function_spaces.v theories/cantor.v theories/prodnormedzmodule.v +theories/evt.v theories/normedtype.v theories/realfun.v theories/sequences.v diff --git a/theories/Make b/theories/Make index f4e9346fc..a0f868e85 100644 --- a/theories/Make +++ b/theories/Make @@ -16,6 +16,7 @@ topology.v function_spaces.v cantor.v prodnormedzmodule.v +evt.v normedtype.v realfun.v sequences.v diff --git a/theories/derive.v b/theories/derive.v index 9f97fe633..8dfbc9054 100644 --- a/theories/derive.v +++ b/theories/derive.v @@ -233,13 +233,13 @@ Qed. End diff_locally_converse_tentative. Definition derive (f : V -> W) a v := - lim ((fun h => h^-1 *: ((f \o shift a) (h *: v) - f a)) @ 0^'). + lim ((fun h => h^-1 *: ((f \o shift a) (h *: v) - f a)) @ (0:R)^'). Local Notation "''D_' v f" := (derive f ^~ v). Local Notation "''D_' v f c" := (derive f c v). (* printing *) Definition derivable (f : V -> W) a v := - cvg ((fun h => h^-1 *: ((f \o shift a) (h *: v) - f a)) @ 0^'). + cvg ((fun h => h^-1 *: ((f \o shift a) (h *: v) - f a)) @ (0:R)^'). Class is_derive (a v : V) (f : V -> W) (df : W) := DeriveDef { ex_derive : derivable f a v; @@ -356,7 +356,7 @@ Lemma derivemxE m n (f : 'rV[R]_m.+1 -> 'rV[R]_n.+1) (a v : 'rV[R]_m.+1) : Proof. by move=> /deriveE->; rewrite /jacobian mul_rV_lin1. Qed. Definition derive1 V (f : R -> V) (a : R) := - lim ((fun h => h^-1 *: (f (h + a) - f a)) @ 0^'). + lim ((fun h => h^-1 *: (f (h + a) - f a)) @ (0:R)^'). Local Notation "f ^` ()" := (derive1 f). @@ -1125,7 +1125,7 @@ Implicit Types f g : V -> W. Fact der_add f g (x v : V) : derivable f x v -> derivable g x v -> (fun h => h^-1 *: (((f + g) \o shift x) (h *: v) - (f + g) x)) @ - 0^' --> 'D_v f x + 'D_v g x. + (0:R)^' --> 'D_v f x + 'D_v g x. Proof. move=> df dg. evar (fg : R -> W); rewrite [X in X @ _](_ : _ = fg) /=; last first. @@ -1177,7 +1177,7 @@ Qed. Fact der_opp f (x v : V) : derivable f x v -> (fun h => h^-1 *: (((- f) \o shift x) (h *: v) - (- f) x)) @ - 0^' --> - 'D_v f x. + (0:R)^' --> - 'D_v f x. Proof. move=> df; evar (g : R -> W); rewrite [X in X @ _](_ : _ = g) /=; last first. by rewrite funeqE => h; rewrite !scalerDr !scalerN -opprD -scalerBr /g. diff --git a/theories/evt.v b/theories/evt.v index 694a629e7..98c421438 100644 --- a/theories/evt.v +++ b/theories/evt.v @@ -18,12 +18,24 @@ Local Open Scope ring_scope. HB.structure Definition PointedNmodule := {M of Pointed M & GRing.Nmodule M}. HB.structure Definition PointedZmodule := {M of Pointed M & GRing.Zmodule M}. +HB.structure Definition PointedLmodule (K : numDomainType) := + {M of Pointed M & GRing.Lmodule K M}. HB.structure Definition FilteredNmodule := {M of Filtered M M & GRing.Nmodule M}. HB.structure Definition FilteredZmodule := {M of Filtered M M & GRing.Zmodule M}. +HB.structure Definition FilteredLmodule (K : numDomainType) := + {M of Filtered M M & GRing.Lmodule K M}. HB.structure Definition NbhsNmodule := {M of Nbhs M & GRing.Nmodule M}. HB.structure Definition NbhsZmodule := {M of Nbhs M & GRing.Zmodule M}. +HB.structure Definition NbhsLmodule (K : numDomainType) := + {M of Nbhs M & GRing.Lmodule K M}. HB.structure Definition TopologicalNmodule := {M of Topological M & GRing.Nmodule M}. -HB.structure Definition TopologicalZmodule := {M of Uniform M & GRing.Zmodule M}. +HB.structure Definition TopologicalZmodule := + {M of Topological M & GRing.Zmodule M}. +HB.structure Definition TopologicalLmodule (K : numDomainType) := + {M of Topological M & GRing.Lmodule K M}. +HB.structure Definition UniformZmodule := {M of Uniform M & GRing.Zmodule M}. +HB.structure Definition UniformLmodule (K : numDomainType) := + {M of Uniform M & GRing.Lmodule K M}. Definition convex (R : ringType) (M : lmodType R) (A : set M) := forall x y lambda, lambda *: x + (1 - lambda) *: y \in A. diff --git a/theories/exp.v b/theories/exp.v index de5bbfc1c..47e09ee1a 100644 --- a/theories/exp.v +++ b/theories/exp.v @@ -198,10 +198,10 @@ Lemma pseries_snd_diffs (c : R^nat) K x : Proof. move=> Ck CdK CddK xLK; rewrite /pseries. set s := (fun n : nat => _); set (f := fun x0 => _). -suff hfxs : h^-1 *: (f (h + x) - f x) @[h --> 0^'] --> limn (series s). +suff hfxs : h^-1 *: (f (h + x) - f x) @[h --> (0:R)^'] --> limn (series s). have F : f^`() x = limn (series s) by apply: cvg_lim hfxs. have Df : derivable f x 1. - move: hfxs; rewrite /derivable [X in X @ 0^'](_ : _ = + move: hfxs; rewrite /derivable [X in X @ (0:R)^'](_ : _ = (fun h => h^-1 *: (f (h%:A + x) - f x))) /=; last first. by apply/funext => i //=; rewrite [i%:A]mulr1. by move=> /(cvg_lim _) -> //. @@ -209,7 +209,7 @@ suff hfxs : h^-1 *: (f (h + x) - f x) @[h --> 0^'] --> limn (series s). pose sx := fun n : nat => c n * x ^+ n. have Csx : cvgn (pseries c x) by apply: is_cvg_pseries_inside Ck _. pose shx := fun h (n : nat) => c n * (h + x) ^+ n. -suff Cc : limn (h^-1 *: (series (shx h - sx))) @[h --> 0^'] --> limn (series s). +suff Cc : limn (h^-1 *: (series (shx h - sx))) @[h --> (0:R)^'] --> limn (series s). apply: cvg_sub0 Cc. apply/cvgrPdist_lt => eps eps_gt0 /=. near=> h; rewrite sub0r normrN /=. @@ -229,7 +229,7 @@ suff Cc : limn (h^-1 *: (series (shx h - sx))) @[h --> 0^'] --> limn (series s). apply: cvg_zero => /=. suff Cc : limn (series (fun n => c n * (((h + x) ^+ n - x ^+ n) / h - n%:R * x ^+ n.-1))) - @[h --> 0^'] --> (0 : R). + @[h --> (0:R)^'] --> (0 : R). apply: cvg_sub0 Cc. apply/cvgrPdist_lt => eps eps_gt0 /=. near=> h; rewrite sub0r normrN /=. diff --git a/theories/ftc.v b/theories/ftc.v index 5d0138223..0f0854f4a 100644 --- a/theories/ftc.v +++ b/theories/ftc.v @@ -38,7 +38,7 @@ Implicit Types (f : R -> R) (a : itv_bound R). Let FTC0 f a : mu.-integrable setT (EFin \o f) -> let F x := (\int[mu]_(t in [set` Interval a (BRight x)]) f t)%R in forall x, a < BRight x -> lebesgue_pt f x -> - h^-1 *: (F (h + x) - F x) @[h --> 0%R^'] --> f x. + h^-1 *: (F (h + x) - F x) @[h --> (0:R)%R^'] --> f x. Proof. move=> intf F x ax fx. have locf : locally_integrable setT f. @@ -294,7 +294,7 @@ Unshelve. all: by end_near. Qed. Lemma parameterized_integral_cvg_left a b (f : R -> R) : a < b -> mu.-integrable `[a, b] (EFin \o f) -> - int a x f @[x --> a] --> 0. + int a x f @[x --> a] --> (0:R). Proof. move=> ab intf; pose fab := f \_ `[a, b]. have intfab : mu.-integrable `[a, b] (EFin \o fab). diff --git a/theories/lebesgue_integral.v b/theories/lebesgue_integral.v index 74e0de193..87c5c3c70 100644 --- a/theories/lebesgue_integral.v +++ b/theories/lebesgue_integral.v @@ -6148,7 +6148,7 @@ Hypotheses (xU : open_nbhs x U) (mU : measurable U) (mUf : measurable_fun U f) (fx : {for x, continuous f}). Let continuous_integralB_fin_num : - \forall t \near 0%R, + \forall t \near (0:R)%R, \int[mu]_(y in ball x t) `|(f y)%:E - (f x)%:E| \is a fin_num. Proof. move: fx => /cvgrPdist_le /= fx'. @@ -6171,7 +6171,7 @@ apply: ge0_le_integral => //=; first exact: measurable_ball. Unshelve. all: by end_near. Qed. Let continuous_davg_fin_num : - \forall A \near 0%R, davg f x A \is a fin_num. + \forall A \near (0:R)%R, davg f x A \is a fin_num. Proof. have [e /= e0 exf] := continuous_integralB_fin_num. move: fx => /cvgrPdist_le fx'. @@ -6182,7 +6182,7 @@ near=> t; have [t0|t0] := leP t 0%R; first by rewrite davg0. by rewrite fin_numM// exf/=. Unshelve. all: by end_near. Qed. -Lemma continuous_cvg_davg : davg f x r @[r --> 0%R] --> 0. +Lemma continuous_cvg_davg : davg f x r @[r --> (0:R)%R] --> 0. Proof. apply/fine_cvgP; split; first exact: continuous_davg_fin_num. apply/cvgrPdist_le => e e0. @@ -6794,7 +6794,7 @@ Local Notation mu := lebesgue_measure. Definition nicely_shrinking x E := (forall n, measurable (E n)) /\ exists Cr : R * {posnum R}^nat, [/\ Cr.1 > 0, - (Cr.2 n)%:num @[n --> \oo] --> 0, + (Cr.2 n)%:num @[n --> \oo] --> (0:R), (forall n, E n `<=` ball x (Cr.2 n)%:num) & (forall n, mu (ball x (Cr.2 n)%:num) <= Cr.1%:E * mu (E n))%E]. diff --git a/theories/lebesgue_measure.v b/theories/lebesgue_measure.v index 182f4f37a..c24a901a8 100644 --- a/theories/lebesgue_measure.v +++ b/theories/lebesgue_measure.v @@ -1816,7 +1816,7 @@ rewrite (_ : [set~ 0] = `]-oo, 0[ `|` `]0, +oo[); last first. rewrite in_itv/= -eq_le eq_sym; [move/eqP/negbTE => ->|move/negP/eqP]. apply/measurable_funU => //; split. - apply/measurable_restrictT => //=. - rewrite (_ : _ \_ _ = cst 0)//; apply/funext => y; rewrite patchE. + rewrite (_ : _ \_ _ = cst (0:R))//; apply/funext => y; rewrite patchE. by case: ifPn => //; rewrite inE/= in_itv/= => y0; rewrite ln0// ltW. - have : {in `]0, +oo[%classic, continuous (@ln R)}. by move=> x; rewrite inE/= in_itv/= andbT => x0; exact: continuous_ln. diff --git a/theories/normedtype.v b/theories/normedtype.v index c078ab301..1bebfc9ac 100644 --- a/theories/normedtype.v +++ b/theories/normedtype.v @@ -6,6 +6,7 @@ From mathcomp Require Import boolp classical_sets functions. From mathcomp Require Import archimedean. From mathcomp Require Import cardinality set_interval Rstruct. Require Import ereal reals signed topology prodnormedzmodule function_spaces. +Require Import evt. (**md**************************************************************************) (* # Norm-related Notions *) diff --git a/theories/realfun.v b/theories/realfun.v index d88ffe174..55f576959 100644 --- a/theories/realfun.v +++ b/theories/realfun.v @@ -1511,7 +1511,7 @@ Proof. exact: (@exprn_continuous 2%N). Qed. Lemma sqrt_continuous : continuous (@Num.sqrt R). Proof. move=> x; case: (ltrgtP x 0) => [xlt0 | xgt0 | ->]. -- apply: (near_cst_continuous 0). +- apply: (near_cst_continuous (0:R)). by near do rewrite ltr0_sqrtr//; apply: (cvgr_lt x). pose I b : set R := [set` `]0 ^+ 2, b ^+ 2[]. suff main b : 0 <= b -> {in I b, continuous (@Num.sqrt R)}. @@ -1545,18 +1545,18 @@ split => [Hd|[g [fxE Cg gxE]]]. by rewrite -subr_eq0 => /divfK->. - apply/continuous_withinNshiftx; rewrite eqxx /=. pose g1 h := (h^-1 *: ((f \o shift x) h%:A - f x)). - have F1 : g1 @ 0^' --> a by case: Hd => H1 <-. + have F1 : g1 @ (0:R)^' --> a by case: Hd => H1 <-. apply: cvg_trans F1; apply: near_eq_cvg; rewrite /g1 !fctE. near=> i. rewrite ifN; first by rewrite addrK mulrC /= [_%:A]mulr1. rewrite -subr_eq0 addrK. by near: i; rewrite near_withinE /= near_simpl; near=> x1. by rewrite eqxx. -suff Hf : h^-1 *: ((f \o shift x) h%:A - f x) @[h --> 0^'] --> a. +suff Hf : h^-1 *: ((f \o shift x) h%:A - f x) @[h --> (0:R)^'] --> a. have F1 : 'D_1 f x = a by apply: cvg_lim. rewrite -F1 in Hf. by constructor. - have F1 : (g \o shift x) y @[y --> 0^'] --> a. + have F1 : (g \o shift x) y @[y --> (0:R)^'] --> a. by rewrite -gxE; apply/continuous_withinNshiftx. apply: cvg_trans F1; apply: near_eq_cvg. near=> y. diff --git a/theories/sequences.v b/theories/sequences.v index ce2a498bd..95b4d7929 100644 --- a/theories/sequences.v +++ b/theories/sequences.v @@ -580,14 +580,14 @@ Notation nonincreasing_cvg_ge := nonincreasing_cvgn_ge (only parsing). Notation nondecreasing_cvg_le := nondecreasing_cvgn_le (only parsing). Lemma __deprecated__invr_cvg0 (R : realFieldType) (u : R^nat) : - (forall i, 0 < u i) -> ((u i)^-1 @[i --> \oo] --> 0) <-> (u @ \oo --> +oo). + (forall i, 0 < u i) -> ((u i)^-1 @[i --> \oo] --> (0:R)) <-> (u @ \oo --> +oo). Proof. by move=> ?; rewrite gtr0_cvgV0//; apply: nearW. Qed. #[deprecated(since="mathcomp-analysis 0.6.0", note="renamed to `gtr0_cvgV0` and generalized")] Notation invr_cvg0 := __deprecated__invr_cvg0 (only parsing). Lemma __deprecated__invr_cvg_pinfty (R : realFieldType) (u : R^nat) : - (forall i, 0 < u i) -> ((u i)^-1 @[i --> \oo] --> +oo) <-> (u @ \oo--> 0). + (forall i, 0 < u i) -> ((u i)^-1 @[i --> \oo] --> +oo) <-> (u @ \oo--> (0:R)). Proof. by move=> ?; rewrite cvgrVy//; apply: nearW. Qed. #[deprecated(since="mathcomp-analysis 0.6.0", note="renamed to `cvgrVy` and generalized")] @@ -831,7 +831,7 @@ Proof. by rewrite /=. Qed. Lemma harmonic_ge0 {R : numFieldType} i : 0 <= harmonic i :> R. Proof. exact/ltW/harmonic_gt0. Qed. -Lemma cvg_harmonic {R : archiFieldType} : @harmonic R @ \oo --> 0. +Lemma cvg_harmonic {R : archiFieldType} : @harmonic R @ \oo --> (0:R). Proof. apply/cvgrPdist_le => _/posnumP[e]; near=> i. rewrite distrC subr0 ger0_norm//= -lef_pV2 ?qualifE//= invrK. @@ -1170,7 +1170,7 @@ Qed. Lemma cvg_to_0_linear (R : realFieldType) (f : R -> R) K (k : R) : 0 < k -> (forall r, 0 < `| r | < k -> `|f r| <= K * `| r |) -> - f x @[x --> 0^'] --> 0. + f x @[x --> (0:R)^'] --> (0:R). Proof. move=> k0 kfK; have [K0|K0] := lerP K 0. - apply/cvgrPdist_lt => _/posnumP[e]; near=> x. @@ -1179,7 +1179,7 @@ move=> k0 kfK; have [K0|K0] := lerP K 0. near: x; exists (k / 2); first by rewrite /mkset divr_gt0. move=> t /=; rewrite distrC subr0 => tk2 t0. by rewrite normr_gt0 t0 (lt_trans tk2) // -[in ltLHS](add0r k) midf_lt. -- apply/(@eqolim0 _ _ R (0^'))/eqoP => _/posnumP[e]; near=> x. +- apply/(@eqolim0 _ _ R (0:R)^')/eqoP => _/posnumP[e]; near=> x. rewrite (le_trans (kfK _ _)) //=. + near: x; exists (k / 2); first by rewrite /mkset divr_gt0. move=> t /=; rewrite distrC subr0 => tk2 t0. @@ -1192,7 +1192,7 @@ Unshelve. all: by end_near. Qed. Lemma lim_cvg_to_0_linear (R : realType) (f : nat -> R) (g : R -> nat -> R) k : 0 < k -> cvgn (series f) -> (forall r, 0 < `|r| < k -> forall n, `|g r n| <= f n * `| r |) -> - limn (series (g x)) @[x --> 0^'] --> 0. + limn (series (g x)) @[x --> (0:R)^'] --> (0:R). Proof. move=> k_gt0 Cf Hg. apply: (@cvg_to_0_linear _ _ (limn (series f)) k) => // h hLk; rewrite mulrC. @@ -2145,7 +2145,7 @@ Context {R : realFieldType}. Implicit Types (u : R^nat) (r : R). Lemma minr_cvg_0_cvg_0 u r : 0 < r -> (forall k, 0 <= u k) -> - minr (u n) r @[n --> \oo] --> 0 -> u n @[n --> \oo] --> 0. + minr (u n) r @[n --> \oo] --> (0:R) -> u n @[n --> \oo] --> (0:R). Proof. move=> r0 u0 minr_cvg; apply/cvgrPdist_lt => _ /posnumP[e]. have : 0 < minr e%:num r by rewrite lt_min// r0 andbT. @@ -2157,7 +2157,7 @@ by rewrite le_min u0 ltW. Unshelve. all: by end_near. Qed. Lemma maxr_cvg_0_cvg_0 u r : r < 0 -> (forall k, u k <= 0) -> - maxr (u n) r @[n --> \oo] --> 0 -> u n @[n --> \oo] --> 0. + maxr (u n) r @[n --> \oo] --> (0:R) -> u n @[n --> \oo] --> (0:R). Proof. rewrite -[in r < _]oppr0 ltrNr => r0 u0. under eq_fun do rewrite -(opprK (u _)) -[in maxr _ _](opprK r) -oppr_min. @@ -2189,7 +2189,7 @@ Unshelve. all: by end_near. Qed. Lemma mine_cvg_minr_cvg u r : (0 < r)%R -> (forall k, 0 <= u k) -> mine (u n) r%:E @[n --> \oo] --> 0 -> - minr (fine (u n)) r @[n --> \oo] --> 0%R. + minr (fine (u n)) r @[n --> \oo] --> (0:R)%R. Proof. move=> r0 u0 mine_cvg; apply: (cvg_trans _ (fine_cvg mine_cvg)). move/fine_cvgP : mine_cvg => [_ /=] /cvgrPdist_lt. @@ -2227,7 +2227,7 @@ Qed. Lemma maxe_cvg_maxr_cvg u r : (r < 0)%R -> (forall k, u k <= 0) -> maxe (u n) r%:E @[n --> \oo] --> 0 -> - maxr (fine (u n)) r @[n --> \oo] --> 0%R. + maxr (fine (u n)) r @[n --> \oo] --> (0:R)%R. Proof. rewrite -[in (r < _)%R]oppr0 ltrNr => r0 u0. under eq_fun do rewrite -(oppeK (u _)) -[in maxe _ _](oppeK r%:E) -oppe_min.