diff --git a/CHANGELOG_UNRELEASED.md b/CHANGELOG_UNRELEASED.md index 15dd9a1e68..aaa3ae34ca 100644 --- a/CHANGELOG_UNRELEASED.md +++ b/CHANGELOG_UNRELEASED.md @@ -13,8 +13,45 @@ - in `lebesgue_integral.v`: + `sigma_finite_measure` instance on product measure `\x` +- in `topology.v`: + + lemma `filter_bigI_within` + + lemma `near_powerset_map` + + lemma `near_powerset_map_monoE` + + lemma `fst_open` + + lemma `snd_open` + + definition `near_covering_within` + + lemma `near_covering_withinP` + + lemma `compact_setM` + + definition `regular` + + lemma `compact_regular` + + lemma `fam_compact_nbhs` + + definition `compact_open`, notation `{compact-open, U -> V}` + + notation `{compact-open, F --> f}` + + definition `compact_openK` + + definition `compact_openK_nbhs` + + instance `compact_openK_nbhs_filter` + + definition `compact_openK_topological_mixin` + + canonicals `compact_openK_filter`, `compact_openK_topological`, + `compact_open_pointedType` + + definition `compact_open_topologicalType` + + canonicals `compact_open_filtered`, `compact_open_topological` + + lemma `compact_open_cvgP` + + lemma `compact_open_open` + + lemma `compact_closedI` + + lemma `compact_open_fam_compactP` + + lemma `compact_equicontinuous` + + lemma `uniform_regular` + + lemma `continuous_curry` + + lemma `continuous_uncurry_regular` + + lemma `continuous_uncurry` + + lemma `curry_continuous` + + lemma `uncurry_continuous` + ### Changed - + +- in `topology.v`: + + lemma `pointwise_compact_cvg` + ### Renamed ### Generalized diff --git a/theories/topology.v b/theories/topology.v index 24bf434984..4b8ea508a1 100644 --- a/theories/topology.v +++ b/theories/topology.v @@ -1226,7 +1226,7 @@ Qed. Lemma filter_bigI T (I : choiceType) (D : {fset I}) (f : I -> set T) (F : set (set T)) : Filter F -> (forall i, i \in D -> F (f i)) -> - F (\bigcap_(i in [set i | i \in D]) f i). + F (\bigcap_(i in [set` D]) f i). Proof. move=> FF FfD. suff: F [set p | forall i, i \in enum_fset D -> f i p] by []. @@ -1630,8 +1630,8 @@ Canonical within_filter_on T D (F : filter_on T) := Lemma filter_bigI_within T (I : choiceType) (D : {fset I}) (f : I -> set T) (F : set (set T)) (P : set T) : - Filter F -> (forall i, i \in D -> F ([set j | P j -> f i j])) -> - F ([set j | P j -> (\bigcap_(i in [set i | i \in D]) f i) j]). + Filter F -> (forall i, i \in D -> F [set j | P j -> f i j]) -> + F ([set j | P j -> (\bigcap_(i in [set` D]) f i) j]). Proof. move=> FF FfD; exact: (@filter_bigI T I D f _ (within_filter P FF)). Qed. Definition subset_filter {T} (F : set (set T)) (D : set T) := @@ -1720,7 +1720,7 @@ Qed. End NearSet. Lemma near_powerset_map {T U : Type} (f : T -> U) (F : set (set T)) - (P : (set U) -> Prop) : + (P : set U -> Prop) : ProperFilter F -> (\forall y \near powerset_filter_from (f x @[x --> F]), P y) -> (\forall y \near powerset_filter_from F, P (f @` y)). @@ -1728,7 +1728,7 @@ Proof. move=> FF [] G /= [Gf Gs [D GD GP]]. have PpF : ProperFilter (powerset_filter_from F). exact: powerset_filter_from_filter. -have /= := Gf _ GD; rewrite nbhs_simpl => FfD. +have /= := Gf _ GD; rewrite nbhs_simpl => FfD. near=> M; apply: GP; apply: (Gs D) => //. apply: filterS; first exact: preimage_image. exact: (near (near_small_set _) M). @@ -1737,7 +1737,7 @@ by move/image_subset/subset_trans; apply; exact: image_preimage_subset. Unshelve. all: by end_near. Qed. Lemma near_powerset_map_monoE {T U : Type} (f : T -> U) (F : set (set T)) - (P : (set U) -> Prop) : + (P : set U -> Prop) : (forall X Y, X `<=` Y -> P Y -> P X) -> ProperFilter F -> (\forall y \near powerset_filter_from F, P (f @` y)) = @@ -1749,8 +1749,8 @@ have PpF : ProperFilter (powerset_filter_from (f x @[x-->F])). exact: powerset_filter_from_filter. have /= := Gf _ GD; rewrite nbhs_simpl => FfD; have ffiD : fmap f F (f@` D). by rewrite /fmap /=; apply: filterS; first exact: preimage_image. -near=> M; have FfM : (fmap f F M) by exact: (near (near_small_set _) M). -apply: (@Pmono _ (f@`D)); first exact: (near (small_set_sub ffiD) M). +near=> M; have FfM : fmap f F M by exact: (near (near_small_set _) M). +apply: (@Pmono _ (f @` D)); first exact: (near (small_set_sub ffiD) M). exact: GP. Unshelve. all: by end_near. Qed. @@ -2540,18 +2540,17 @@ End Prod_Topology. Lemma fst_open {U V : topologicalType} (A : set (U * V)) : open A -> open (fst @` A). Proof. -rewrite ?openE=> oA z [[a b/=] Aab <-]; rewrite /interior. -have [[P Q] [Pa ?] pqA] := oA _ Aab; apply: (@filterS _ _ _ P) => //. -by move=> p ?; exists (p, b); [apply: pqA; split|]; [|exact: nbhs_singleton|]. +rewrite !openE => oA z [[a b/=] Aab <-]; rewrite /interior. +have [[P Q] [Pa Qb] pqA] := oA _ Aab; apply: (@filterS _ _ _ P) => // p Pp. +by exists (p, b) => //=; apply: pqA; split=> //=; exact: nbhs_singleton. Qed. Lemma snd_open {U V : topologicalType} (A : set (U * V)) : open A -> open (snd @` A). Proof. -rewrite ?openE=> oA z [[a b/=] Aab <-]; rewrite /interior. -have [[P Q] [? Qb] pqA] := oA _ Aab; apply: (@filterS _ _ _ Q) => //. -move=> q Qq; exists (a, q) => //; apply: pqA; split => //. -exact: nbhs_singleton. +rewrite !openE => oA z [[a b/=] Aab <-]; rewrite /interior. +have [[P Q] [Pa Qb] pqA] := oA _ Aab; apply: (@filterS _ _ _ Q) => // q Qq. +by exists (a, q) => //=; apply: pqA; split => //; exact: nbhs_singleton. Qed. Section matrix_Topology. @@ -3149,15 +3148,14 @@ Definition near_covering_within (K : set X) := (forall x, K x -> \forall x' \near x & i \near F, K x' -> P i x') -> \near F, K `<=` P F. -Lemma near_covering_withinP (K : set X): +Lemma near_covering_withinP (K : set X) : near_covering_within K <-> near_covering K. Proof. -split; move=> cvrW I F P FF cvr; near=> i; - (suff : K `<=` fun q : X => K q -> P i q by move=> + k Kk; apply); near: i. - by apply: cvrW=> x Kx; move: (cvr x Kx); apply: filter_app; near=> j. -have := (cvrW _ _ (fun i q => K q -> P i q) FF). -apply => x Kx; have := cvr x Kx; apply: filter_app. -by near=> j => + ?; apply. +split => cvrW I F P FF cvr; near=> i; + (suff: K `<=` fun q : X => K q -> P i q by move=> + k Kk; exact); near: i. + by apply: cvrW => x /cvr; apply: filter_app; near=> j. +have := cvrW _ _ (fun i q => K q -> P i q) FF. +by apply => x /cvr; apply: filter_app; near=> j => + ?; apply. Unshelve. all: by end_near. Qed. End near_covering. @@ -3165,15 +3163,15 @@ End near_covering. Lemma compact_setM {U V : topologicalType} (P : set U) (Q : set V) : compact P -> compact Q -> compact (P `*` Q). Proof. -rewrite ?compact_near_coveringP => cptP cptQ I F Pr Ff cvfPQ. -have := cptP I F (fun i u => forall q, Q q -> Pr i (u,q)) Ff. +rewrite !compact_near_coveringP => cptP cptQ I F Pr Ff cvfPQ. +have := cptP I F (fun i u => forall q, Q q -> Pr i (u, q)) Ff. set R := (R in (R -> _) -> _); suff R' : R. by move/(_ R'); apply:filter_app; near=> i => + [a b] [Pa Qb]; apply. rewrite /R => x Px; apply: (@cptQ _ (filter_prod _ _)) => v Qv. -case: (cvfPQ (x,v)) => // [[N G]] /= [[[N1 N2 /= [N1x N2v]]]] N1N2N FG ngPr. -exists (N2,(N1`*`G)); first by split => //; exists (N1, G) => //. -case=> a [b i] /= [? [?]] ?. -by apply: (ngPr (b,a, i)); split => //; exact: N1N2N. +case: (cvfPQ (x, v)) => // [[N G]] /= [[[N1 N2 /= [N1x N2v]]]] N1N2N FG ngPr. +exists (N2, N1`*`G); first by split => //; exists (N1, G). +case=> a [b i] /= [N2a [N1b]] Gi. +by apply: (ngPr (b, a, i)); split => //; exact: N1N2N. Unshelve. all: by end_near. Qed. Section Tychonoff. @@ -3648,11 +3646,11 @@ move=> /DsubC /= [y /= yfs hyz]; exists (h' y) => //. by rewrite set_imfset /=; exists y. Qed. -Definition regular {T : topologicalType} := forall (x:T), - (filter_from (nbhs x) closure) --> x. +Definition regular {T : topologicalType} := forall x : T, + filter_from (nbhs x) closure --> x. Section separated_topologicalType. -Variable (T : topologicalType). +Variable T : topologicalType. Implicit Types x y : T. Local Open Scope classical_set_scope. @@ -3819,13 +3817,13 @@ move=> cptv Vx; apply: (@compact_cluster_set1 T x _ V) => //. move=> P Q Px Qx; exists (P `&` Q); [exact: filterI | exact: closureI]. - by exists V => //; have /closure_id <- : closed V by exact: compact_closed. rewrite eqEsubset; split; first last. - move=> ? -> A B [C Cx CA /nbhs_singleton Bx]; exists x; split => //. + move=> _ -> A B [C Cx CA /nbhs_singleton Bx]; exists x; split => //. by apply/CA/subset_closure; exact: nbhs_singleton. move=> y /=; apply: contraPeq; move: sep; rewrite open_hausdorff => /[apply]. -case; case=> B A /=; rewrite ?inE; case=> By Ax [oB oA BA0]. +move=> [[B A]]/=; rewrite ?inE; case=> By Ax [oB oA BA0]. apply/existsNP; exists (closure A); apply/existsNP; exists B; apply/not_implyP. -split; first by exists A => //; apply: open_nbhs_nbhs. -apply/not_implyP; split; first by exact: open_nbhs_nbhs. +split; first by exists A => //; exact: open_nbhs_nbhs. +apply/not_implyP; split; first exact: open_nbhs_nbhs. apply/set0P/negP; rewrite negbK; apply/eqP/disjoints_subset. have /closure_id -> : closed (~` B); first by exact: open_closedC. by apply/closure_subset/disjoints_subset; rewrite setIC. @@ -6696,29 +6694,28 @@ Qed. Lemma fam_compact_nbhs {U : topologicalType} {V : uniformType} (A : set U) (O : set V) (f : {family compact, U -> V}) : - open O -> (f @` A `<=` O) -> compact A -> continuous f -> + open O -> f @` A `<=` O -> compact A -> continuous f -> nbhs (f : {family compact, U -> V}) [set g | forall y, A y -> O (g y)]. Proof. -move=> oO fAO /[dup] ? /compact_near_coveringP/near_covering_withinP cfA ctsf. -near=> z => /=; (suff : A `<=` [set y | O (z y)] by exact); near: z. -apply: cfA => x Ax; have : O (f x) by apply: fAO. +move=> oO fAO /[dup] cA /compact_near_coveringP/near_covering_withinP cfA ctsf. +near=> z => /=; (suff: A `<=` [set y | O (z y)] by exact); near: z. +apply: cfA => x Ax; have : O (f x) by exact: fAO. move: (oO); rewrite openE /= => /[apply] /[dup] /ctsf Ofx /=. -rewrite /interior -nbhs_entourageE; case => E entE EfO. -exists (f @^-1` (to_set (split_ent E) (f x)), +rewrite /interior -nbhs_entourageE => -[E entE EfO]. +exists (f @^-1` to_set (split_ent E) (f x), [set g | forall w, A w -> split_ent E (f w, g w)]). split => //=; last exact: fam_nbhs. by apply: ctsf; rewrite /= -nbhs_entourageE; exists (split_ent E). case=> y g [/= Efxy] AEg Ay; apply: EfO; apply: subset_split_ent => //. -by exists (f y) => //=; last exact: AEg. +by exists (f y) => //=; exact: AEg. Unshelve. all: by end_near. Qed. (* It turns out {family compact, U -> V} can be generalized to only assume *) (* `topologicalType` on V. This topology is called the compact-open topology. *) -(* This topology is special becaise it is the _only_ topology that will allow *) +(* This topology is special because it is the _only_ topology that will allow *) (* curry/uncurry to be continuous. *) Section compact_open. - Context {T U : topologicalType}. Definition compact_open : Type := T->U. @@ -6731,7 +6728,7 @@ Definition compact_openK := let _ := K in compact_open. Definition compact_openK_nbhs (f : compact_openK) := filter_from [set O | f @` K `<=` O /\ open O] - (fun O => [set g | g @` K `<=` O]). + (fun O => [set g | g @` K `<=` O]). Global Instance compact_openK_nbhs_filter (f : compact_openK) : ProperFilter (compact_openK_nbhs f). @@ -6741,7 +6738,7 @@ apply: filter_from_filter; first by exists setT; split => //; exact: openT. move=> P Q [fKP oP] [fKQ oQ]; exists (P `&` Q); first split. - by move=> ? [z Kz M-]; split; [apply: fKP | apply: fKQ]; exists z. - exact: openI. -by move=> g /= gPQ; split; exact: (subset_trans gPQ) => ? []. +by move=> g /= gPQ; split; exact: (subset_trans gPQ). Qed. Program Definition compact_openK_topological_mixin : @@ -6754,7 +6751,7 @@ move=> f; rewrite eqEsubset; split => A /=. by move=> h /= hKB; exists B. by case=> B [oB Bf /filterS]; apply; exact: oB. Qed. -Next Obligation. done. Qed. +Next Obligation. by []. Qed. Canonical compact_openK_filter := FilteredType compact_openK compact_openK compact_openK_nbhs. @@ -6778,22 +6775,22 @@ Canonical compact_open_topological := Lemma compact_open_cvgP (F : set (set (compact_open_topological))) (f : compact_open_topological) : Filter F -> - (F --> f) <-> (forall K O, @compact T K -> @open U O -> f @` K `<=` O -> - F [set g | g @` K `<=` O] ). + F --> f <-> forall K O, @compact T K -> @open U O -> f @` K `<=` O -> + F [set g | g @` K `<=` O]. Proof. move=> FF; split. by move/cvg_sup => + K O cptK ? ? => /(_ (existT _ _ cptK)); apply; exists O. -move=> fko; apply/cvg_sup; case=> A cptK O /= [C /= [fAC oC]]. -by move/filterS; apply; apply: fko. +move=> fko; apply/cvg_sup => -[A cptK] O /= [C /= [fAC oC]]. +by move/filterS; apply; exact: fko. Qed. Lemma compact_open_open (K : set T) (O : set U) : compact K -> open O -> open ([set g | g @` K `<=` O] : set compact_open). Proof. -pose C := [set g | g @` K `<=` O]; move=> cptK oO. +pose C := [set g | g @` K `<=` O]; move=> cptK oO. exists [set C]; last by rewrite bigcup_set1. -move=> ? ->; exists (fset1 C) => //; last by rewrite set_fset1 bigcap_set1. -by move=> ?; rewrite ?inE => ->; exists (existT _ _ cptK) => // z Cz; exists O. +move=> _ ->; exists (fset1 C) => //; last by rewrite set_fset1 bigcap_set1. +by move=> _ /[!inE] ->; exists (existT _ _ cptK) => // z Cz; exists O. Qed. End compact_open. @@ -6801,10 +6798,10 @@ End compact_open. Lemma compact_closedI {T : topologicalType} (A B : set T) : compact A -> closed B -> compact (A `&` B). Proof. -move=> cptA clB F PF FAB; have FA : F A by move: FAB; apply: filterS. +move=> cptA clB F PF FAB; have FA : F A by move: FAB; exact: filterS. (have FB : F B by move: FAB; apply: filterS); have [x [Ax]] := cptA F PF FA. move=> /[dup] clx; rewrite {1}clusterE => /(_ (closure B)); move: clB. -by rewrite closure_id => /[dup] + <- => <- /(_ FB) Bx; exists x; split. +by rewrite closure_id => /[dup] + <- => <- /(_ FB) Bx; exists x. Qed. Notation "{ 'compact-open' , U -> V }" := (@compact_open U V). @@ -6817,44 +6814,44 @@ Context {U : topologicalType} {V : uniformType}. Let small_ent_sub := @small_set_sub _ (@entourage V). Lemma compact_open_fam_compactP (f : U -> V) (F : set (set (U -> V))) : - continuous f -> (Filter F) -> + continuous f -> Filter F -> {compact-open, F --> f} <-> {family compact, F --> f}. Proof. move=> ctsf FF; split; first last. move=> cptF; apply/compact_open_cvgP => K O cptK oO fKO. apply: cptF; have := fam_compact_nbhs oO fKO cptK ctsf; apply: filter_app. - by near=> g => /= gKO ? [z Kx <-]; apply: gKO. -move/compact_open_cvgP=> cptOF; apply/cvg_sup; case=> K cptK R. + by near=> g => /= gKO ? [z Kx <-]; exact: gKO. +move/compact_open_cvgP=> cptOF; apply/cvg_sup => -[K cptK R]. case=> D [[E oE <-] Ekf] /filterS; apply. -move: oE; rewrite openE => /(_ _ Ekf); case => ? [J entJ] EKR KfE. -near=> z; apply/KfE/EKR; case => u Kp; rewrite /= /set_val /= /eqincl /incl. +move: oE; rewrite openE => /(_ _ Ekf); case => A [J entJ] EKR KfE. +near=> z; apply/KfE/EKR => -[u Kp]; rewrite /= /set_val /= /eqincl /incl. (have Ku : K u by rewrite inE in Kp); move: u Ku {D Kp}; near: z. -move/compact_near_coveringP/near_covering_withinP:(cptK); apply. +move/compact_near_coveringP/near_covering_withinP : (cptK); apply. move=> u Ku; near (powerset_filter_from (@entourage V)) => E'. have entE' : entourage E' by exact: (near (near_small_set _)). -pose C := f@^-1`(to_set E' (f u)). +pose C := f @^-1` to_set E' (f u). pose B := \bigcup_(z in K `&` closure C) interior (to_set E' (f z)). have oB : open B by apply: bigcup_open => ? ?; exact: open_interior. have fKB : f @` (K `&` closure C) `<=` B. - move=> ? [z ? <-]; exists z => //; rewrite /interior. + move=> _ [z KCz <-]; exists z => //; rewrite /interior. by rewrite -nbhs_entourageE; exists E'. have cptKC : compact (K `&` closure C). by apply: compact_closedI => //; exact: closed_closure. have := cptOF (K `&` closure C) B cptKC oB fKB. -exists (C, [set g | [set g x | x in K `&` closure C] `<=` B]). +exists (C, [set g | [set g x | x in K `&` closure C] `<=` B]). split; last exact: cptOF. by apply: (ctsf) => //; rewrite /filter_of -nbhs_entourageE; exists E'. case=> z h /= [Cz KB Kz]. -case: (KB (h z)); first by (exists z; split => //; apply: subset_closure). -move=> w [Kw Cw /interior_subset Jfwhz]; apply:subset_split_ent => //. -exists (f w); last apply:(near (small_ent_sub _) E') => //. +case: (KB (h z)); first by exists z; split => //; exact: subset_closure. +move=> w [Kw Cw /interior_subset Jfwhz]; apply: subset_split_ent => //. +exists (f w); last apply: (near (small_ent_sub _) E') => //. apply: subset_split_ent => //; exists (f u). - apply entourage_sym; apply:(near (small_ent_sub _) E') => //. + by apply/entourage_sym; apply: (near (small_ent_sub _) E'). have [] := Cw (f@^-1` (to_set E' (f w))). by apply: ctsf; rewrite /= -nbhs_entourageE; exists E'. move=> r [Cr /= Ewr]; apply: subset_split_ent => //; exists (f r). - by apply:(near (small_ent_sub _) E') => //. -by apply entourage_sym; apply:(near (small_ent_sub _) E') => //. + exact: (near (small_ent_sub _) E'). +by apply/entourage_sym; apply: (near (small_ent_sub _) E'). Unshelve. all: by end_near. Qed. End compact_open_uniform. @@ -8261,7 +8258,7 @@ Implicit Types (I : Type). Definition equicontinuous {I} (W : set I) (d : I -> (X -> Y)) := forall x (E : set (Y * Y)), entourage E -> - \forall y \near x, forall i, W i -> E(d i x, d i y). + \forall y \near x, forall i, W i -> E (d i x, d i y). Lemma equicontinuous_subset {I J} (W : set I) (V : set J) {fW : I -> X -> Y} {fV : J -> X -> Y} : @@ -8425,10 +8422,11 @@ Lemma pointwise_precompact_equicontinuous (W : set (X -> Y)) : Proof. move=> /pointwise_precompact_precompact + ectsW. rewrite ?precompactE compact_ultra compact_ultra pointwise_compact_closure //. -move=> /= + F UF FcW => /(_ F UF); rewrite image_id; case => // p [cWp Fp]. -exists p; split => //; apply/(pointwise_compact_cvg) => //. +move=> /= + F UF FcW => /(_ F UF); rewrite image_id => /(_ FcW)[p [cWp Fp]]. +exists p; split => //; apply/pointwise_compact_cvg => //. apply/near_powerset_filter_fromP; first exact: equicontinuous_subset_id. -exists (closure (W : set {ptws X -> Y })) => //; exact: equicontinuous_closure. +exists (closure (W : set {ptws X -> Y })) => //. +exact: equicontinuous_closure. Qed. Section precompact_equicontinuous. @@ -8492,8 +8490,8 @@ End ArzelaAscoli. Lemma uniform_regular {T : uniformType} : @regular T. Proof. -move=> x R; rewrite /= -{1}nbhs_entourageE; case=> E entE ER. -pose E' := (split_ent E); have ? : entourage E' by exact: entourage_split_ent. +move=> x R /=; rewrite -{1}nbhs_entourageE => -[E entE ER]. +pose E' := split_ent E; have eE' : entourage E' by exact: entourage_split_ent. exists (to_set (E' `&` E'^-1%classic) x). rewrite -nbhs_entourageE; exists (E' `&` E'^-1%classic) => //. exact: filterI. @@ -8514,117 +8512,118 @@ Local Notation "U '~>' V" := Section cartesian_closed. Context {U V W : topologicalType}. -(* In this section, we consider under what conditions - [f in U ~> V ~> W | continuous f /\ forall u, continuous (f u)] - and - [f in U * V ~> W | continuous f] - are homeomorphic - - Always: - curry sends cts functions to cts functions - - V locally_compact + regular or hausdorff - uncurry sends cts functions to cts functions - - U regular or hausdorff - curry itself is a continuous map - - U regular or hausdorff AND V locally_compact + regular or hausdorff - uncurry itself is a continuous map - Therefore curry/uncurry are homeomorphisms - So the category of locally compact regular spaces is cartesian closed +(**md In this section, we consider under what conditions \ + `[f in U ~> V ~> W | continuous f /\ forall u, continuous (f u)]` \ + and \ + `[f in U * V ~> W | continuous f]` \ + are homeomorphic. + - Always: \ + `curry` sends continuous functions to continuous functions. + - `V` locally_compact + regular or Hausdorff: \ + `uncurry` sends continuous functions to continuous functions. + - `U` regular or Hausdorff: \ + `curry` itself is a continuous map. + - `U` regular or Hausdorff AND `V` locally_compact + regular or Hausdorff \ + `uncurry` itself is a continuous map. \ + Therefore `curry`/`uncurry` are homeomorphisms. + + So the category of locally compact regular spaces is cartesian closed. *) Lemma continuous_curry (f : U * V ~> W) : continuous f -> - continuous (curry f : (U ~> V ~> W)) /\ forall u, continuous (curry f u). + continuous (curry f : U ~> V ~> W) /\ forall u, continuous (curry f u). Proof. -move=> ctsf; split; first last. +move=> ctsf; split; first last. move=> u z; apply: continuous_comp; last exact: ctsf. by apply: cvg_pair => //=; exact: cvg_cst. move=> x; apply/compact_open_cvgP => K O /= cptK oO fKO. near=> z => w /= [+ + <-]; near: z. -move/compact_near_coveringP/near_covering_withinP: cptK; apply. -move=> v Kv; have [[P Q] [Px Qv] PQfO]: nbhs (x,v) (f@^-1` O). +move/compact_near_coveringP/near_covering_withinP : cptK; apply. +move=> v Kv; have [[P Q] [Px Qv] PQfO] : nbhs (x, v) (f @^-1` O). by apply: ctsf; move: oO; rewrite openE; apply; apply: fKO; exists v. -by exists (Q,P); [split => // |]; case=> b a /= [Qb Pa] Kb; exact: PQfO. +by exists (Q, P) => // -[b a] /= [Qb Pa] Kb; exact: PQfO. Unshelve. all: by end_near. Qed. -Lemma continuous_uncurry_regular (f : U ~> V ~> W): +Lemma continuous_uncurry_regular (f : U ~> V ~> W) : locally_compact [set: V] -> @regular V -> continuous f -> - (forall u, continuous (f u)) -> continuous (uncurry f : ((U * V) ~> W)). + (forall u, continuous (f u)) -> continuous (uncurry f : U * V ~> W). Proof. -move=> lcV reg cf cfp /= [u v] D; rewrite /= nbhsE; case=> O [oO Ofuv] /filterS. -apply; have [B] := @lcV v I; rewrite withinET; move=> Bv [cptB clB]. +move=> lcV reg cf cfp /= [u v] D; rewrite /= nbhsE => -[O [oO Ofuv]] /filterS. +apply; have [B] := @lcV v I; rewrite withinET => Bv [cptB clB]. have [R Rv RO] : exists2 R, nbhs v R & forall z, closure R z -> O (f u z). - have [] := reg v ((f u)@^-1` O); first by apply: cfp; exact: open_nbhs_nbhs. + have [] := reg v (f u @^-1` O); first by apply: cfp; exact: open_nbhs_nbhs. by move=> R ? ?; exists R. -exists (f @^-1` ([set g | g @` (B `&` closure R) `<=` O]), (B `&` closure R)). +exists (f @^-1` [set g | g @` (B `&` closure R) `<=` O], B `&` closure R). split; [apply/cf/open_nbhs_nbhs; split | apply: filterI] => //. - apply: compact_open_open => //; apply: compact_closedI => //. exact: closed_closure. - by move=> ? [x [? + <-]]; apply: RO. - - by apply: filterS; [exact: subset_closure|]. + - by apply: filterS; first exact: subset_closure. by case=> a r /= [fBMO [Br] cmR]; apply: fBMO; exists r. Qed. -Lemma continuous_uncurry (f : U ~> V ~> W): +Lemma continuous_uncurry (f : U ~> V ~> W) : locally_compact [set: V] -> hausdorff_space V -> continuous f -> (forall u, continuous (f u)) -> - continuous ((uncurry : (U ~> V ~> W) -> ((U * V) ~> W)) f). + continuous ((uncurry : (U ~> V ~> W) -> (U * V ~> W)) f). Proof. -move=> lcV hsdf ? ?; apply: continuous_uncurry_regular => //. -move=> v; have [B] := @lcV v I; rewrite withinET; move=> Bv [cptB clB]. -by move=> z; apply: (@compact_regular V hsdf v B). +move=> lcV hsdf ctsf cf; apply: continuous_uncurry_regular => //. +move=> v; have [B] := @lcV v I; rewrite withinET => Bv [cptB clB]. +by move=> z; exact: (@compact_regular V hsdf v B). Qed. Lemma curry_continuous (f : U * V ~> W) : continuous f -> @regular U -> - {for f, continuous ((curry : ((U * V) ~> W) -> (U ~> V ~> W)))}. + {for f, continuous (curry : (U * V ~> W) -> (U ~> V ~> W))}. Proof. move=> ctsf regU; apply/compact_open_cvgP. - by apply: fmap_filter; exact:nbhs_filter. + by apply: fmap_filter; exact: nbhs_filter. move=> K ? cptK [D OfinIo <-] fKD /=; near=> z => w [+ + <-]; near: z. move/compact_near_coveringP/near_covering_withinP : (cptK); apply => u Ku. have [] := fKD (curry f u); first by exists u. -move=> E /[dup]/[swap]/OfinIo [N Asub <- DIN INf]. +move=> E /[dup] /[swap] /OfinIo [N Asub <- DIN INf]. suff : \forall x' \near u & i \near nbhs f, K x' -> (\bigcap_(i in [set` N]) i) (curry i x'). apply: filter_app; near=> a b => /[apply] ?. by exists (\bigcap_(i in [set` N]) i). -apply: filter_bigI_within=> R RN; have /set_mem [[M cptM _]] := Asub _ RN. +apply: filter_bigI_within => R RN; have /set_mem [[M cptM _]] := Asub _ RN. have Rfu : R (curry f u) by exact: INf. -case/(_ _ Rfu) => O [fMO oO] MOR; near=> p => /= Ki; apply: MOR => + [+ + <-]. +move/(_ _ Rfu) => [O [fMO oO] MOR]; near=> p => /= Ki; apply: MOR => + [+ + <-]. move=> _ v Mv; move: v Mv Ki; near: p. -have umb : \forall y \near u, (forall b, M b -> nbhs (y, b) (f@^-1` O) ). +have umb : \forall y \near u, (forall b, M b -> nbhs (y, b) (f @^-1` O)). move/compact_near_coveringP/near_covering_withinP : (cptM); apply => v Mv. - have [[P Q] [Pu Qv] PQO] : nbhs (u,v) (f@^-1` O). + have [[P Q] [Pu Qv] PQO] : nbhs (u, v) (f @^-1` O). by apply: ctsf; apply: open_nbhs_nbhs; split => //; apply: fMO; exists v. - exists (Q, P); [by split| case => b a [Qb Pa Mb]]. - by apply: ctsf; apply: open_nbhs_nbhs; split => //; apply: PQO. + exists (Q, P); [by []| move=> [b a [/= Qb Pa Mb]]]. + by apply: ctsf; apply: open_nbhs_nbhs; split => //; exact: PQO. move/compact_near_coveringP/near_covering_withinP : (cptM); apply => v Mv. have [P' P'u cPO] := regU u _ umb. -pose L := [set h | h @`((K `&` (closure P'))`*`M) `<=` O]. -exists (setT, (P' `*` L)). +pose L := [set h | h @` ((K `&` closure P') `*` M) `<=` O]. +exists (setT, P' `*` L). split => //; [exact: filterT|]; exists (P', L) => //; split => //. apply: open_nbhs_nbhs; split; first apply: compact_open_open => //. apply: compact_setM => //; apply: compact_closedI => //. exact: closed_closure. by move=> ? [[a b] [[Ka /cPO +] Mb <-]] => /(_ _ Mb)/nbhs_singleton. -case => b [a h] [? [Pa] +] Ma Ka; apply. -exists (a,b); split => //; split => //; apply/subset_closure => //. +move=> [b [a h]] [/= _ [Pa] +] Ma Ka; apply. +by exists (a, b); split => //; split => //; exact/subset_closure. Unshelve. all: by end_near. Qed. Lemma uncurry_continuous (f : U ~> V ~> W) : locally_compact [set: V] -> @regular V -> @regular U -> continuous f -> (forall u, continuous (f u)) -> - {for f, continuous ((uncurry : (U ~> V ~> W) -> (U * V ~> W)))}. + {for f, continuous (uncurry : (U ~> V ~> W) -> (U * V ~> W))}. Proof. move=> lcV regV regU ctsf ctsfp; apply/compact_open_cvgP. by apply: fmap_filter; exact:nbhs_filter. move=> /= K O cptK oO fKO; near=> h => ? [+ + <-]; near: h. move/compact_near_coveringP/near_covering_withinP: (cptK); apply. case=> u v Kuv. -have : exists P Q, [/\ closed P, compact Q, nbhs u P, +have : exists P Q, [/\ closed P, compact Q, nbhs u P, nbhs v Q & P `*` Q `<=` uncurry f @^-1` O]. - have : continuous (uncurry f) by apply: continuous_uncurry_regular. - move/continuousP/(_ _ oO); rewrite openE => /(_ (u,v)) []. - by apply: fKO; exists (u,v). + have : continuous (uncurry f) by exact: continuous_uncurry_regular. + move/continuousP/(_ _ oO); rewrite openE => /(_ (u, v))[]. + by apply: fKO; exists (u, v). case=> /= P' Q' [P'u Q'v] PQO. have [B] := @lcV v I; rewrite withinET; move=> Bv [cptB clB]. have [P Pu cPP'] := regU u P' P'u; have [Q Qv cQQ'] := regV v Q' Q'v. @@ -8635,21 +8634,23 @@ have : exists P Q, [/\ closed P, compact Q, nbhs u P, - by apply: filterI=> //; apply: filterS; first exact: subset_closure. - by case => a b [/cPP' ?] [_ /cQQ' ?]; exact: PQO. case=> P [Q [clP cptQ Pu Qv PQfO]]; pose R := [set g : V ~> W | g @` Q `<=` O]. -(have oR : open R by exact: compact_open_open); pose P' := f@^-1` R. +(have oR : open R by exact: compact_open_open); pose P' := f @^-1` R. pose L := [set h : U ~> V ~> W | h @` (fst @` K `&` P) `<=` R]. -exists (((P`&` P') `*` Q), L); first split => /=. +exists ((P `&` P') `*` Q, L); first split => /=. - exists (P `&` P', Q) => //; split => //=; apply: filterI => //. - apply: ctsf; apply: open_nbhs_nbhs; split => // ? [b ? <-]. - by apply: (PQfO (u,b)); split => //; exact: nbhs_singleton. + apply: ctsf; apply: open_nbhs_nbhs; split => // _ [b Qb <-]. + by apply: (PQfO (u, b)); split => //; exact: nbhs_singleton. - rewrite nbhs_simpl /=; apply: open_nbhs_nbhs; split. apply: compact_open_open => //; apply: compact_closedI => //. - apply: continuous_compact => //; apply: continuous_subspaceT => ?. + apply: continuous_compact => //; apply: continuous_subspaceT => x. exact: cvg_fst. - move=> /= ? [a [Pa ?] <-] ? [b Qb <-]. - by apply: (PQfO (a,b)); split => //; apply: nbhs_singleton. -case; case => a b h [/= [[? ?] ? Lh] ?]. -apply: (Lh (h a)); first by exists a => //; split => //; exists (a,b). + move=> /= _ [a [Kxa Pa] <-] _ [b Qb <-]. + by apply: (PQfO (a, b)); split => //; exact: nbhs_singleton. +move=> [[a b h]] [/= [[Pa P'a] Qb Lh] Kab]. +apply: (Lh (h a)); first by exists a => //; split => //; exists (a, b). by exists b. Unshelve. all: by end_near. Qed. + End cartesian_closed. -End currying. \ No newline at end of file + +End currying.