diff --git a/CHANGELOG_UNRELEASED.md b/CHANGELOG_UNRELEASED.md index 782b9aac7..97cc6ad6b 100644 --- a/CHANGELOG_UNRELEASED.md +++ b/CHANGELOG_UNRELEASED.md @@ -29,9 +29,37 @@ `nondecreasing_cvge`, `nondecreasing_is_cvge`, `nondecreasing_at_right_cvge`, `nondecreasing_at_right_is_cvge`, `nonincreasing_at_right_cvge`, `nonincreasing_at_right_is_cvge` +- in `charge.v` + + `charge_add` instance of `charge` + + `cpushforward` instance of `charge` + + `charge_of_finite_measure` instance of `charge` + + lemma `cscaleE` + + lemma `dominates_cscale` + + lemma `caddE` + + lemma `dominates_caddl` + + lemma `dominates_pushforward` + + lemma `cjordan_posE` + + lemma `jordan_posE` + + lemma `cjordan_negE` + + lemma `jordan_negE` + + lemma `Radon_Nikodym_sigma_finite_fin_num` + + lemma `Radon_NikodymE` + + lemma `Radon_Nikodym_fin_num` + + lemma `ae_eq_Radon_Nikodym_SigmaFinite` + + lemma `Radon_Nikodym_change_of_variables` + + lemma `Radon_Nikodym_cscale` + + lemma `Radon_Nikodym_cadd` + + lemma `Radon_Nikodym_chain_rule` ### Changed - + +- in `charge.v` + + definition `jordan_decomp` now uses `cadd` and `cscale` + + Definition `Radon_Nikodym_SigmaFinite` now be a module `Radon_Nikodym_SigmaFinite` with + * lemma `change_of_variables` + * lemma `integralM` + * lemma `chain_rule` + ### Renamed - in `exp.v`: @@ -39,6 +67,9 @@ ### Generalized +- in `lebesgue_measure.v` + + an hypothesis of lemma `integral_ae_eq` is weakened + ### Deprecated ### Removed diff --git a/theories/charge.v b/theories/charge.v index c9d061df0..958c3a7c6 100644 --- a/theories/charge.v +++ b/theories/charge.v @@ -35,6 +35,12 @@ Require Import esum measure realfun lebesgue_measure lebesgue_integral. (* non-measurable sets *) (* czero == zero charge *) (* cscale r nu == charge nu scaled by a factor r : R *) +(* charge_add n1 n2 == the charge corresponding to the sum of *) +(* charges n1 and n2 *) +(* cpushforward nu mf == pushforward charge of nu along *) +(* measurable function f, mf is a proof that *) +(* f is measurable function *) +(* charge_of_finite_measure mu == charge corresponding to a finite measure mu *) (* *) (* * Theory *) (* nu.-positive_set P == P is a positive set with nu a charge *) @@ -400,14 +406,14 @@ Lemma dominates_cscale d (T : measurableType d) (R : realType) (mu : {sigma_finite_measure set T -> \bar R}) (nu : {charge set T -> \bar R}) (c : R) : nu `<< mu -> cscale c nu `<< mu. -Proof. by move=> numu E mE /numu; rewrite /cscale => ->//; rewrite mule0. Qed. +Proof. by move=> numu E mE /numu; rewrite cscaleE => ->//; rewrite mule0. Qed. Section charge_add. Local Open Scope ereal_scope. Context d (T : measurableType d) (R : realType). -Variables (m1 m2 : {charge set T -> \bar R}). +Variables (n1 n2 : {charge set T -> \bar R}). -Definition cadd := m1 \+ m2. +Definition cadd := n1 \+ n2. Let cadd0 : cadd set0 = 0. Proof. by rewrite /cadd 2!charge0 adde0. Qed. @@ -420,9 +426,9 @@ Proof. move=> F mF tF mUF; rewrite /cadd. under eq_fun do rewrite big_split; apply: cvg_trans. (* TODO: IIRC explicit arguments were added to please Coq 8.14, rm if not needed anymore *) - apply: (@cvgeD _ _ _ R (fun x => \sum_(0 <= i < x) (m1 (F i))) - (fun x => \sum_(0 <= i < x) (m2 (F i))) - (m1 (\bigcup_n F n)) (m2 (\bigcup_n F n))). + apply: (@cvgeD _ _ _ R (fun x => \sum_(0 <= i < x) (n1 (F i))) + (fun x => \sum_(0 <= i < x) (n2 (F i))) + (n1 (\bigcup_n F n)) (n2 (\bigcup_n F n))). - by rewrite fin_num_adde_defr// fin_num_measure. - exact: charge_semi_sigma_additive. - exact: charge_semi_sigma_additive. @@ -432,7 +438,7 @@ Qed. HB.instance Definition _ := isCharge.Build _ _ _ cadd cadd0 cadd_finite cadd_sigma_additive. -Lemma caddE E : cadd E = m1 E + m2 E. Proof. by []. Qed. +Lemma caddE E : cadd E = n1 E + n2 E. Proof. by []. Qed. End charge_add. @@ -442,7 +448,7 @@ Lemma dominates_caddl d (T : measurableType d) nu0 `<< mu -> nu1 `<< mu -> cadd nu0 nu1 `<< mu. Proof. -by move=> nu0mu nu1mu A mA A0; rewrite /cadd nu0mu// nu1mu// adde0. +by move=> nu0mu nu1mu A mA A0; rewrite caddE nu0mu// nu1mu// adde0. Qed. Section pushforward_charge. @@ -577,6 +583,74 @@ Qed. End positive_negative_set_realFieldType. + +Section min_cvg_0_cvg_0. +Context (R : realFieldType). + +Lemma minr_cvg_0_cvg_0 (x : R^nat) (p : R) : + (0 < p)%R -> (forall k, 0 <= x k)%R -> + (fun n => minr (x n) p)%R --> (0:R)%R -> x --> (0:R)%R. +Proof. +move=> p0 x_ge0 minr_cvg. +apply/(@cvgrPdist_lt _ [normedModType R of R^o]) => _ /posnumP[e]. +have : (0 < minr (e%:num) p)%R by rewrite lt_minr// p0 andbT. +move/(@cvgrPdist_lt _ [normedModType R of R^o]) : minr_cvg => /[apply] -[M _ hM]. +near=> n; rewrite sub0r normrN. +have /hM : (M <= n)%N by near: n; exists M. +rewrite sub0r normrN !ger0_norm// ?le_minr ?divr_ge0//=. + by move/lt_min_lt. +by rewrite x_ge0 ltW. +Unshelve. all: by end_near. Qed. + +Lemma mine_cvg_0_cvg_fin_num (x : (\bar R)^nat) (p : \bar R) : + (0 < p) -> (forall k, 0 <= x k) -> + (fun n => mine (x n) p) --> 0 -> + \forall n \near \oo, x n \is a fin_num. +Proof. +case : p => //; last first. +- move=> _ x_ge0. + under eq_cvg do rewrite miney. + by move/fine_cvgP => []. +- move=> p p0 x_ge0 /fine_cvgP[_]. + move=> /(@cvgrPdist_lt _ [normedModType R of R^o])/(_ _ p0)[N _ hN]. + near=> n; have /hN : (N <= n)%N by near: n; exists N. + rewrite sub0r normrN /= ger0_norm ?fine_ge0//; last first. + by rewrite le_minr x_ge0 ltW. + have := x_ge0 n; case: (x n) => //=; rewrite ltxx //=. +Unshelve. all: by end_near. Qed. + +Lemma mine_cvg_minr_cvg (x : (\bar R)^nat) (p : R) : + (0 < p)%R -> (forall k, 0 <= x k) -> + (fun n => mine (x n) p%:E) --> 0 -> + (fun n => minr ((fine \o x) n) p) --> (0:R)%R. +Proof. +move=> p0 x_ge0 mine_cvg. +apply: (cvg_trans _ (fine_cvg mine_cvg)). +move/fine_cvgP : mine_cvg => [_ /=] /(@cvgrPdist_lt _ [normedModType R of R^o]). +move=> /(_ _ p0)[N _ hN]; apply: near_eq_cvg; near=> n. +have xnoo : x n < +oo. + rewrite ltNge leye_eq; apply/eqP => xnoo. + have /hN : (N <= n)%N by near: n; exists N. + by rewrite /= sub0r normrN xnoo //= gtr0_norm // ltxx. +by rewrite /= -(@fineK _ (x n)) ?ge0_fin_numE//= -fine_min. +Unshelve. all: by end_near. Qed. + +Lemma mine_cvg_0_cvg_0 (x : (\bar R)^nat) (p : \bar R) : + (0 < p) -> (forall k, 0 <= x k) -> + (fun n => mine (x n) p) --> 0 -> x --> 0. +Proof. +move=> p0 x_ge0 h; apply/fine_cvgP; split; first exact: (mine_cvg_0_cvg_fin_num p0). +case: p p0 h => //; last first. +- move=> _. + under eq_cvg do rewrite miney. + exact: fine_cvg. +- move=> p p0 h. + apply: (@minr_cvg_0_cvg_0 (fine \o x) p) => //; last exact: mine_cvg_minr_cvg. + by move=> k /=; rewrite fine_ge0. +Qed. + +End min_cvg_0_cvg_0. + Section hahn_decomposition_lemma. Context d (T : measurableType d) (R : realType). Variables (nu : {charge set T -> \bar R}) (D : set T). @@ -624,55 +698,19 @@ have /ereal_sup_gt/cid2[_ [B/= [mB BDA <- mnuB]]] : m < d_ A. by exists B; split => //; rewrite (le_trans _ (ltW mnuB)). Qed. -(* TODO: generalize? *) -Let minr_cvg_0_cvg_0 (x : R^nat) : (forall k, 0 <= x k)%R -> - (fun n => minr (x n * 2^-1) 1)%R --> (0:R)%R -> x --> (0:R)%R. -Proof. -move=> x_ge0 minr_cvg. -apply/(@cvgrPdist_lt _ [normedModType R of R^o]) => _ /posnumP[e]. -have : (0 < minr (e%:num / 2) 1)%R by rewrite lt_minr// ltr01 andbT divr_gt0. -move/(@cvgrPdist_lt _ [normedModType R of R^o]) : minr_cvg => /[apply] -[M _ hM]. -near=> n; rewrite sub0r normrN. -have /hM : (M <= n)%N by near: n; exists M. -rewrite sub0r normrN !ger0_norm// ?le_minr ?divr_ge0//=. -rewrite -[X in minr _ X](@divrr _ 2) ?unitfE -?minr_pmull//. -rewrite -[X in (_ < minr _ X)%R](@divrr _ 2) ?unitfE -?minr_pmull//. -by rewrite ltr_pmul2r//; exact: lt_min_lt. -Unshelve. all: by end_near. Qed. - -Let mine_cvg_0_cvg_fin_num (x : (\bar R)^nat) : (forall k, 0 <= x k) -> - (fun n => mine (x n * (2^-1)%:E) 1) --> 0 -> - \forall n \near \oo, x n \is a fin_num. -Proof. -move=> x_ge0 /fine_cvgP[_]. -move=> /(@cvgrPdist_lt _ [normedModType R of R^o])/(_ _ ltr01)[N _ hN]. -near=> n; have /hN : (N <= n)%N by near: n; exists N. -rewrite sub0r normrN /= ger0_norm ?fine_ge0//; last first. - by rewrite le_minr mule_ge0//=. -by have := x_ge0 n; case: (x n) => //=; rewrite gt0_mulye//= ltxx. -Unshelve. all: by end_near. Qed. - -Let mine_cvg_minr_cvg (x : (\bar R)^nat) : (forall k, 0 <= x k) -> - (fun n => mine (x n * (2^-1)%:E) 1) --> 0 -> - (fun n => minr ((fine \o x) n / 2) 1%R) --> (0:R)%R. -Proof. -move=> x_ge0 mine_cvg. -apply: (cvg_trans _ (fine_cvg mine_cvg)). -move/fine_cvgP : mine_cvg => [_ /=] /(@cvgrPdist_lt _ [normedModType R of R^o]). -move=> /(_ _ ltr01)[N _ hN]; apply: near_eq_cvg; near=> n. -have xnoo : x n < +oo. - rewrite ltNge leye_eq; apply/eqP => xnoo. - have /hN : (N <= n)%N by near: n; exists N. - by rewrite /= sub0r normrN xnoo gt0_mulye//= normr1 ltxx. -by rewrite /= -(@fineK _ (x n)) ?ge0_fin_numE//= -fine_min. -Unshelve. all: by end_near. Qed. - -Let mine_cvg_0_cvg_0 (x : (\bar R)^nat) : (forall k, 0 <= x k) -> - (fun n => mine (x n * (2^-1)%:E) 1) --> 0 -> x --> 0. +Let mine2_cvg_0_cvg_0 (x : (\bar R)^nat) : + (forall k, 0 <= x k) -> + (fun n => mine (x n * 2^-1%:E) 1) --> 0 -> x --> 0. Proof. -move=> x_ge0 h; apply/fine_cvgP; split; first exact: mine_cvg_0_cvg_fin_num. -apply: (@minr_cvg_0_cvg_0 (fine \o x)) => //; last exact: mine_cvg_minr_cvg. -by move=> k /=; rewrite fine_ge0. +move=> x_ge0 h. +have x2x2 : x =1 (fun n => 2%:E * (x n * 2^-1%:E)). + move=> n. + by rewrite muleCA -EFinM divff ?mule1. +under eq_cvg do rewrite x2x2. +rewrite -(mule0 2%:E). +apply: cvgeMl => //. +apply: (mine_cvg_0_cvg_0 lte01) => //. +by move=> n; rewrite mule_ge0. Qed. Lemma hahn_decomposition_lemma : measurable D -> @@ -717,7 +755,7 @@ have mine_cvg_0 : (fun n => mine (g_ (v n) * 2^-1%:E) 1) --> 0. apply: (@squeeze_cvge _ _ _ _ _ _ (fun n => nu (A_ (v n)))); [|exact: cvg_cst|by []]. by apply: nearW => n /=; rewrite nuA_g_ andbT le_minr lee01 andbT mule_ge0. -have d_cvg_0 : g_ \o v --> 0 by apply: mine_cvg_0_cvg_0 => //=. +have d_cvg_0 : g_ \o v --> 0 by apply: mine2_cvg_0_cvg_0 => //=. have nuDAoo : nu D >= nu (D `\` Aoo). rewrite -[in leRHS](@setDUK _ Aoo D); last first. by apply: bigcup_sub => i _; exact: A_D. @@ -1543,21 +1581,18 @@ Qed. End radon_nikodym_finite. -(* TODO: move? *) +(* PR:#1110 *) Lemma measure_dominates_ae_eq d (T : measurableType d) (R : realType) (mu : {measure set T -> \bar R}) (nu : {measure set T -> \bar R}) (f g : T -> \bar R) E : measurable E -> nu `<< mu -> ae_eq mu E f g -> ae_eq nu E f g. -Proof. by move=> mE munu [A [mA A0 EA]]; exists A; split => //; exact: munu. Qed. +Proof. Admitted. -(* TODO: move *) +(* PR:#1110 *) Lemma ae_eqS d (T : measurableType d) (R : realType) (mu : {measure set T -> \bar R}) A B f g : B `<=` A -> ae_eq mu A f g -> ae_eq mu B f g. Proof. -move=> BA. -case => N [mN N0 fg]; exists N; split => //. -by apply: subset_trans fg; apply: subsetC => z /= /[swap] /BA ? ->//. -Qed. +Admitted. Section radon_nikodym_sigma_finite. Context d (T : measurableType d) (R : realType).