diff --git a/classical/mathcomp_extra.v b/classical/mathcomp_extra.v index f7c05dd23..61b10a1ac 100644 --- a/classical/mathcomp_extra.v +++ b/classical/mathcomp_extra.v @@ -433,9 +433,30 @@ Section floor_ceil. Context {R : archiDomainType}. Implicit Type x : R. +Lemma ge_trunc x : ((Num.trunc x)%:R <= x) = (0 <= x). +Proof. +by have [/Num.Theory.trunc_itv/andP[]//|] := leP 0 x; exact/contra_ltF/le_trans. +Qed. + +Lemma lt_succ_trunc x : x < (Num.trunc x).+1%:R. +Proof. by have [/Num.Theory.trunc_itv/andP[]|/lt_le_trans->] := leP 0 x. Qed. + +Lemma trunc_ge_nat x (n : nat) : 0 <= x -> (n%:R <= x) = (n <= Num.trunc x)%N. +Proof. +move=> /Num.Theory.trunc_itv /andP[letx ltxt1]; apply/idP/idP => lenx. + by rewrite -ltnS -(ltr_nat R); apply: le_lt_trans ltxt1. +by apply: le_trans letx; rewrite ler_nat. +Qed. + +Lemma trunc_lt_nat x (n : nat) : 0 <= x -> (x < n%:R) = (Num.trunc x < n)%N. +Proof. by rewrite ltNge ltnNge => /trunc_ge_nat ->. Qed. + Lemma ge_floor x : (Num.floor x)%:~R <= x. Proof. exact: Num.Theory.ge_floor. Qed. +Lemma lt_succ_floor x : x < (Num.floor x + 1)%:~R. +Proof. exact: Num.Theory.lt_succ_floor. Qed. + Lemma floor_ge_int x (z : int) : (z%:~R <= x) = (z <= Num.floor x). Proof. exact: Num.Theory.floor_ge_int. Qed. @@ -451,9 +472,6 @@ Proof. by rewrite -ltzD1 add0r -floor_lt_int. Qed. Lemma floor_lt0 x : (x < 0) = (Num.floor x < 0). Proof. by rewrite -floor_lt_int. Qed. -Lemma lt_succ_floor x : x < (Num.floor x + 1)%:~R. -Proof. exact: Num.Theory.lt_succ_floor. Qed. - Lemma floor_eq x m : (Num.floor x == m) = (m%:~R <= x < (m + 1)%:~R). Proof. apply/eqP/idP; [move=> <-|by move=> /Num.Theory.floor_def ->]. @@ -461,7 +479,7 @@ by rewrite Num.Theory.ge_floor//= Num.Theory.lt_succ_floor. Qed. Lemma floor_neq0 x : (Num.floor x != 0) = (x < 0) || (x >= 1). -Proof. by rewrite neq_lt -floor_lt_int gtz0_ge1 -floor_ge_int. Qed. +Proof. by rewrite floor_eq negb_and -ltNge -leNgt. Qed. #[deprecated(since="mathcomp-analysis 1.3.0", note="use `Num.Theory.le_ceil` instead")] Lemma ceil_ge x : x <= (Num.ceil x)%:~R. diff --git a/reals/real_interval.v b/reals/real_interval.v index a9ca280f6..b9534c309 100644 --- a/reals/real_interval.v +++ b/reals/real_interval.v @@ -150,10 +150,8 @@ Lemma itv_bnd_inftyEbigcup b x : [set` Interval (BSide b x) +oo%O] = Proof. rewrite predeqE => y; split=> /=; last first. by move=> [n _]/=; rewrite in_itv => /andP[xy yn]; rewrite in_itv /= xy. -rewrite in_itv /= andbT => xy; exists `|floor y|%N.+1 => //=. -rewrite in_itv /= xy /=. -have [y0|y0] := ltP 0 y; last by rewrite (le_lt_trans y0)// ltr_pwDr. -by rewrite -natr1 natr_absz ger0_norm ?floor_ge0 1?ltW// intrD1 lt_succ_floor. +rewrite in_itv /= andbT => xy; exists (trunc y).+1 => //=. +by rewrite in_itv /= xy /= lt_succ_trunc. Qed. Lemma itv_o_inftyEbigcup x : @@ -240,12 +238,8 @@ move gxE : (g x) => gx; case: gx gxE => [gx| |gxoo fxoo]; last 2 first. - by exists 0%N => //; rewrite /E/= gxoo addey// ?leey// -ltNye. move fxE : (f x) => fx; case: fx fxE => [fx fxE gxE|fxoo gxE _|//]; last first. by exists 0%N => //; rewrite /E/= fxoo gxE// addye// leey. -rewrite lte_fin -subr_gt0 => fgx; exists `|floor (fx - gx)^-1|%N => //. -rewrite /E/= -natr1 natr_absz ger0_norm ?floor_ge0 ?invr_ge0; last exact/ltW. -rewrite fxE gxE lee_fin -[leRHS]invrK lef_pV2//. -- by rewrite intrD1 ltW// lt_succ_floor. -- by rewrite posrE// ltr_pwDr// ler0z floor_ge0 invr_ge0 ltW. -- by rewrite posrE invr_gt0. +rewrite lte_fin -subr_gt0 => fgx; exists (trunc (fx - gx)^-1) => //. +by rewrite /E/= fxE gxE lee_fin invf_ple ?posrE//; apply/ltW/lt_succ_trunc. Qed. End set_ereal. @@ -257,10 +251,8 @@ apply/seteqP; split=> [x ->|]. by move=> i _/=; rewrite in_itv/= lexx ltrBlDr ltrDl invr_gt0 ltr0n. move=> x rx; apply/esym/eqP; rewrite eq_le (itvP (rx 0%N _))// andbT. apply/ler_addgt0Pl => e e_gt0; rewrite -lerBlDl ltW//. -have := rx `|floor e^-1|%N I; rewrite /= in_itv => /andP[/le_lt_trans->]//. -rewrite lerD2l lerN2 -lef_pV2 ?invrK//; last by rewrite posrE. -rewrite -natr1 natr_absz ger0_norm ?floor_ge0 ?invr_ge0 1?ltW//. -by rewrite intrD1 lt_succ_floor. +have := rx (trunc e^-1) I; rewrite /= in_itv => /andP[/le_lt_trans->]//. +by rewrite lerB// invf_ple ?posrE//; apply/ltW/lt_succ_trunc. Qed. Lemma itv_bnd_open_bigcup (R : realType) b (r s : R) : diff --git a/reals/reals.v b/reals/reals.v index 2b1fd3ad1..c6a76c5d1 100644 --- a/reals/reals.v +++ b/reals/reals.v @@ -529,12 +529,8 @@ Proof. exact: Num.Theory.floor_le. Qed. Lemma ltr_add_invr (y x : R) : y < x -> exists k, y + k.+1%:R^-1 < x. Proof. -move=> yx; exists `|floor (x - y)^-1|%N. -rewrite -ltrBrDl -{2}(invrK (x - y)%R) ltf_pV2 ?qualifE/= ?ltr0n//. - by rewrite invr_gt0 subr_gt0. -rewrite -natr1 natr_absz ger0_norm. - by rewrite -floor_ge_int// invr_ge0 subr_ge0 ltW. -by rewrite intrD1 lt_succ_floor. +move=> yx; exists (trunc (x - y)^-1). +by rewrite -ltrBrDl invf_plt 1?posrE 1?subr_gt0// lt_succ_trunc. Qed. End FloorTheory. diff --git a/theories/lebesgue_integral.v b/theories/lebesgue_integral.v index 3ac62afdf..82a034a01 100644 --- a/theories/lebesgue_integral.v +++ b/theories/lebesgue_integral.v @@ -1247,33 +1247,26 @@ Local Notation I := dyadic_itv. Lemma dyadic_itv_subU n k : [set` I n k] `<=` [set` I n.+1 k.*2] `|` [set` I n.+1 k.*2.+1]. Proof. -move=> r /=; rewrite in_itv /= => /andP[Ir rI]. -have [rk|rk] := ltP r (k.*2.+1%:R * (2%:R ^- n.+1)); [left|right]. -- rewrite in_itv /= rk andbT (le_trans _ Ir)// -muln2. - rewrite natrM exprS invrM ?unitfE// ?expf_neq0// -mulrA (mulrCA 2). - by rewrite divrr ?unitfE// mulr1. -- rewrite in_itv /= rk /= (lt_le_trans rI)// -doubleS. - rewrite -muln2 natrM exprS invrM ?unitfE// ?expf_neq0// -mulrA (mulrCA 2). - by rewrite divrr ?unitfE// mulr1. +move=> r Hr; apply/orP; rewrite -itv_splitU ?bnd_simp/=; last first. + by rewrite !ler_pM2r// !ler_nat leqW//=. +move: Hr; apply/subitvP; rewrite {r}!subitvE !bnd_simp exprSr -muln2. +rewrite ler_pdivrMr// mulrA divfK// -natrM lexx/=. +by rewrite ler_pdivlMr// mulrA divfK// -natrM ler_nat. Qed. Lemma bigsetU_dyadic_itv n : `[n%:R, n.+1%:R[%classic = \big[setU/set0]_(n * 2 ^ n.+1 <= k < n.+1 * 2 ^ n.+1) [set` I n.+1 k]. Proof. rewrite predeqE => r; split => [/= /[!in_itv]/= /andP[nr rn1]|]; last first. - rewrite -bigcup_seq => -[/= k] /[!mem_index_iota] /andP[nk kn]. - rewrite !in_itv /= => /andP[knr rkn]; apply/andP; split. - by rewrite (le_trans _ knr)// ler_pdivlMr// -natrX -natrM ler_nat. - by rewrite (lt_le_trans rkn)// ler_pdivrMr// -natrX -natrM ler_nat. -rewrite -bigcup_seq /=; exists `|floor (r * 2 ^+ n.+1)|%N. - rewrite /= mem_index_iota -ltz_nat -lez_nat gez0_abs; last first. - by rewrite floor_ge0 mulr_ge0// (le_trans _ nr). - rewrite -floor_ge_int -floor_lt_int. - by rewrite !PoszM -!natrXE !rmorphM !rmorphXn /= ler_wpM2r ?ltr_pM2r. -rewrite /= in_itv /= ler_pdivrMr// ltr_pdivlMr//. -rewrite pmulrn [(`|_|.+1%:R)]pmulrn intS addrC gez0_abs; last first. - by rewrite floor_ge0 mulr_ge0 ?exprn_ge0 // (le_trans _ nr). -by rewrite ge_floor lt_succ_floor. + rewrite -bigcup_seq => -[/= k] /[!mem_index_iota] nkn; apply: subitvP. + rewrite subitvE !bnd_simp ler_pdivlMr// ler_pdivrMr//. + by rewrite -natrX -2!natrM 2!ler_nat. +have ?: 0 <= r * 2 ^+ n.+1 by rewrite mulr_ge0// (le_trans _ nr). +rewrite -bigcup_seq /=; exists (trunc (r * 2 ^+ n.+1)). + rewrite /= mem_index_iota -trunc_ge_nat// -trunc_lt_nat//. + by rewrite !natrM natrX ler_pM2r// ltr_pM2r// nr. +rewrite /= in_itv/= ler_pdivrMr// ltr_pdivlMr//. +by rewrite trunc_ge_nat// trunc_lt_nat// !leqnn. Qed. Lemma dyadic_itv_image n T (f : T -> \bar R) x : @@ -1320,26 +1313,23 @@ Qed. Let trivIsetA n : trivIset setT (A n). Proof. -apply/trivIsetP => i j _ _. -wlog : i j / (i < j)%N. - move=> h; rewrite neq_lt => /orP[ij|ji]. - by apply: h => //; rewrite lt_eqF. - by rewrite setIC; apply: h => //; rewrite lt_eqF. -move=> ij _. -rewrite /A; case: ifPn => /= ni; last by rewrite set0I. -case: ifPn => /= nj; last by rewrite setI0. -rewrite predeqE => t; split => // -[/=] [_]. -rewrite inE => -[r /=]; rewrite in_itv /= => /andP[r1 r2] rft [_]. -rewrite inE => -[s /=]; rewrite in_itv /= => /andP[s1 s2]. -rewrite -rft => -[sr]; rewrite {}sr {s} in s1 s2. -by have := le_lt_trans s1 r2; rewrite ltr_pM2r// ltr_nat ltnS leqNgt ij. +apply/trivIsetP => i j _ _ ineqj. +rewrite /A; case: ltnP => ni; last by rewrite set0I. +case: ltnP => nj; last by rewrite setI0. +rewrite predeqE/= => t; rewrite !inE; split=> // -[[Dt [r rI rE]] [_ [s + sE]]]. +have {s sE}[->/(conj rI)/andP]: s%:E = r%:E by rewrite rE sE. +rewrite -{rI}in_itvI /Order.meet /= /Order.join /= /Order.meet /= !orbT !andbT. +rewrite le_total joinEtotal meetEtotal -maxr_pMl// -minr_pMl// in_itv/=. +case/andP => [/le_lt_trans/[apply]]; rewrite ltr_pM2r//. +rewrite /maxr /minr !ltr_nat ltnS -!fun_if ltr_nat ltnS. +by case: ltngtP ineqj => //=; case: ltngtP. Qed. Let f0_A0 n (i : 'I_(n * 2 ^ n)) x : f x = 0%:E -> i != O :> nat -> \1_(A n i) x = 0 :> R. Proof. move=> fx0 i0; rewrite indicE memNset// /A ltn_ord => -[Dx/=] /[1!inE]/= -[r]. -rewrite in_itv/= fx0 => + r0; move/eqP : r0 => /[1!eqe] /eqP -> /andP[+ _]. +rewrite in_itv/= fx0 => /[swap] -[->]. by rewrite ler_pdivrMr// mul0r lern0 (negbTE i0). Qed. @@ -1348,8 +1338,7 @@ Let fgen_A0 n x (i : 'I_(n * 2 ^ n)) : (n%:R%:E <= f x)%E -> Proof. move=> fxn; rewrite indicE /A ltn_ord memNset// => -[Dx/=] /[1!inE]/= -[r]. rewrite in_itv/= => /andP[_ h] rfx; move: fxn; rewrite -rfx lee_fin; apply/negP. -rewrite -ltNge (lt_le_trans h)// -natrX ler_pdivrMr// -natrM ler_nat. -by rewrite (leq_trans (ltn_ord i)). +by rewrite -ltNge (lt_le_trans h)// ler_pdivrMr// -natrX -natrM ler_nat ltn_ord. Qed. Let disj_A0 x n (i k : 'I_(n * 2 ^ n)) : i != k -> x \in A n k -> @@ -1395,26 +1384,17 @@ rewrite /approx paddr_eq0//; last 2 first. rewrite psumr_eq0//; last by move=> i _; rewrite mulr_ge0. apply/negP => /andP[/allP An0]; rewrite mulf_eq0 => /orP[|]. by apply/negP; near: n; exists 1%N => //= m /=; rewrite lt0n pnatr_eq0. -rewrite pnatr_eq0 => /eqP. -have [//|] := boolP (x \in B n). -rewrite notin_setE /B /setI /= => /not_andP[] // /negP. -rewrite -ltNge => fxn _. -have K : (`|floor (fine (f x) * 2 ^+ n)| < n * 2 ^ n)%N. - rewrite -ltz_nat gez0_abs; last by rewrite floor_ge0 mulr_ge0// ltW. - rewrite -(@ltr_int R); rewrite (le_lt_trans (ge_floor _))// PoszM intrM. - by rewrite -natrX ltr_pM2r// -lte_fin (fineK fxfin). +rewrite pnatr_eq0 eqb0 notin_setE /B => /not_andP[] // /negP. +rewrite -ltNge => fxn. +have K : (trunc (fine (f x) * 2 ^+ n) < n * 2 ^ n)%N. + rewrite -trunc_lt_nat; last by rewrite mulr_ge0// ltW. + by rewrite natrM natrX ltr_pM2r// -lte_fin (fineK fxfin). have /[!mem_index_enum]/(_ isT) := An0 (Ordinal K). rewrite implyTb indicE mem_set ?mulr1; last first. rewrite /A K /= inE; split=> //=; exists (fine (f x)); last by rewrite fineK. - rewrite in_itv /=; apply/andP; split. - rewrite ler_pdivrMr// (le_trans _ (ge_floor _))//. - by rewrite -(@gez0_abs (floor _))// floor_ge0 mulr_ge0// ltW. - rewrite ltr_pdivlMr// (lt_le_trans (lt_succ_floor _))//. - rewrite -[in leRHS]natr1 -intrD1 lerD2r// -{1}(@gez0_abs (floor _))//. - by rewrite floor_ge0// mulr_ge0// ltW. -rewrite mulf_eq0// -exprVn; apply/negP; rewrite negb_or expf_neq0//= andbT. -rewrite pnatr_eq0 -lt0n absz_gt0 floor_neq0// -ler_pdivrMr//. -apply/orP; right; apply/ltW; near: n. + by rewrite in_itv/= ler_pdivrMr// ltr_pdivlMr// trunc_itv// mulr_ge0// ltW. +apply/negP; rewrite mulf_eq0 -exprVn negb_or expf_neq0//= andbT. +rewrite pnatr_eq0 -lt0n trunc_gt0 -ler_pdivrMr// ltW//; near: n. exact: near_infty_natSinv_expn_lt (PosNum fx_gt0). Unshelve. all: by end_near. Qed. @@ -1462,8 +1442,7 @@ have [fxn|fxn] := ltP (f x) n%:R%:E. by rewrite inE /A k2n; split => //=; rewrite inE; exists r. rewrite xAn1k mulr1 big1 ?addr0; last first. by move=> i ik2n; rewrite (disj_A0 (Ordinal k2n)) ?mulr0. - rewrite exprS invrM ?unitfE// -muln2 natrM -mulrA (mulrCA 2). - by rewrite divrr ?mulr1 ?unitfE. + by rewrite exprS invfM mulrA -muln2 natrM mulfK. - have k2n : (k.*2.+1 < n.+1 * 2 ^ n.+1)%N. move: kn; rewrite -ltn_double -(ltn_add2r 1) 2!addn1 => /leq_trans; apply. by rewrite -muln2 -mulnA -expnSr ltn_mul2r expn_gt0 /= ltnS. @@ -1472,8 +1451,7 @@ have [fxn|fxn] := ltP (f x) n%:R%:E. by rewrite /A /= k2n inE; split => //=; rewrite inE/=; exists r. rewrite xAn1k mulr1 big1 ?addr0; last first. by move=> i ik2n; rewrite (disj_A0 (Ordinal k2n)) // mulr0. - rewrite -(@natr1 _ k.*2) mulrDl exprS -mul2n natrM -mulf_div divrr ?unitfE//. - by rewrite !mul1r lerDl. + by rewrite ler_pdivlMr// exprSr mulrA divfK// -natrM muln2 ler_nat. have /orP[{}fxn|{}fxn] : ((n%:R%:E <= f x < n.+1%:R%:E) || (n.+1%:R%:E <= f x))%E. - by move: fxn; case: leP => /= [_ _|_ ->//]; rewrite orbT. @@ -3764,11 +3742,10 @@ move=> mf; split=> [iDf0|Df0]. pose m := `|ceil (fine `|f t|)^-1|%N. have ftfin : `|f t|%E \is a fin_num by rewrite ge0_fin_numE// ltey. exists m => //; split => //=. - rewrite -(@fineK _ `|f t|) // lee_fin -ler_pV2; last 2 first. - - rewrite inE unitfE fine_eq0// abse_eq0 ft0/= fine_gt0//. - by rewrite lt0e abse_ge0 abse_eq0 ft0 ltey. - - by rewrite inE unitfE invr_eq0 pnatr_eq0 /= invr_gt0. - rewrite invrK /m -natr1 natr_absz ger0_norm; last first. + rewrite -(@fineK _ `|f t|) // lee_fin invf_ple; last 2 first. + - exact: ltr0n. + - by apply/fine_gt0; rewrite lt0e abse_ge0 abse_eq0 ft0 ltey. + rewrite /m -natr1 natr_absz ger0_norm; last first. by rewrite -(ceil0 R) ceil_le. by rewrite intrD1 ceil_ge_int lerDl. by split => //; apply: contraTN nft => /eqP ->; rewrite abse0 -ltNge. @@ -3786,7 +3763,7 @@ have -> : (fun x => `|f x|) = (fun x => limn (f_^~ x)). rewrite funeqE => x; apply/esym/cvg_lim => //; apply/cvg_ballP => _/posnumP[e]. near=> n; rewrite /ball /= /ereal_ball /= /f_. have [->|fxoo] := eqVneq `|f x|%E +oo. - rewrite -[contract +oo](@divrr _ (1 + n%:R)%R) ?unitfE ?nat1r//=. + rewrite -[contract +oo](@divff _ (1 + n%:R)%R) ?nat1r//=. rewrite (@ger0_norm _ n%:R)// nat1r -mulrBl -natrB// subSnn ger0_norm//. by rewrite div1r; near: n; exact: near_infty_natSinv_lt. have fxn : `|f x| <= n%:R%:E. @@ -4717,7 +4694,7 @@ have muE j : mu (E j) = 0. suff : mu (E j) <= j.+1%:R%:E * \int[mu]_(x in E j) (f \- g) x. by rewrite fg0 mule0. apply: (@le_trans _ _ (j.+1%:R%:E * \int[mu]_(x in E j) j.+1%:R^-1%:E)). - by rewrite integral_cst// muleA -EFinM divrr ?unitfE// mul1e. + by rewrite integral_cst// muleA -EFinM divff// mul1e. rewrite lee_pmul//; first exact: integral_ge0. apply: ge0_le_integral => //; [| |by move=> x []]. - by move=> x [_/=]; exact: le_trans. @@ -6263,8 +6240,7 @@ move: a0; rewrite le_eqVlt => /predU1P[a0|a0]. have ? : k <= \int[mu]_(y in ball y (r + d)) `|(f y)%:E|. apply: ge0_subset_integral =>//; [exact:measurable_ball| exact:measurable_ball|]. - apply: measurable_funTS; apply: measurableT_comp => //=. - by apply/measurableT_comp => //=; case: locf. + exact/measurable_funTS/measurableT_comp/measurableT_comp. have : iavg f (ball y (r + d)) <= HL f y. apply: ereal_sup_ubound => /=; exists (r + d)%R => //. by rewrite in_itv/= andbT addr_gt0. @@ -6301,7 +6277,7 @@ have ? : ball x r `<=` ball y (r + d). have ? : k <= \int[mu]_(z in ball y (r + d)) `|(f z)%:E|. apply: ge0_subset_integral => //; [exact: measurable_ball| exact: measurable_ball|]. - by apply: measurable_funTS; do 2 apply: measurableT_comp => //. + exact/measurable_funTS/measurableT_comp/measurableT_comp. have afxrdi : a%:E < (fine (mu (ball x (r + d))))^-1%:E * \int[mu]_(z in ball y (r + d)) `|(f z)%:E|. by rewrite (lt_le_trans axrdk)// lee_wpmul2l// lee_fin invr_ge0// fine_ge0. @@ -6343,7 +6319,7 @@ have cMfx_int x : c%:E < HL f x -> \int[mu]_(y in ball x (r_ x)) `|(f y)|%:E > c%:E * mu (ball x (r_ x)). move=> cMfx; rewrite /r_; case: pselect => //= => {}cMfx. case: (r_proof _ cMfx) => /= r r0. - have ? : 0%R < (fine (mu (ball x r)))%:E. + have ? : 0 < (fine (mu (ball x r)))%:E. rewrite lte_fin fine_gt0// (lebesgue_measure_ball _ (ltW r0))// ltry. by rewrite lte_fin mulrn_wgt0. rewrite /iavg -(@lte_pmul2r _ (fine (mu (ball x r)))%:E)//. @@ -6373,16 +6349,15 @@ rewrite (@le_trans _ _ (3%:E * \sum_(i <- E) mu (B i)))//. rewrite scale_ballE// !lebesgue_measure_ball ?mulr_ge0 ?(ltW (r_pos _))//. by rewrite -mulrnAr EFinM. rewrite !EFinM -muleA lee_wpmul2l//=. -apply: (@le_trans _ _ - (\sum_(i <- E) c^-1%:E * \int[mu]_(y in B i) `|(f y)|%:E)). +apply: (@le_trans _ _ (\sum_(i <- E) c^-1%:E * \int[mu]_(y in B i) `|f y|%:E)). rewrite [in leLHS]big_seq [in leRHS]big_seq; apply: lee_sum => r /ED /Dsub /[!inE] rD. by rewrite -lee_pdivrMl ?invr_gt0// invrK /B/=; exact/ltW/cMfx_int. rewrite -ge0_sume_distrr//; last by move=> x _; rewrite integral_ge0. rewrite lee_wpmul2l//; first by rewrite lee_fin invr_ge0 ltW. rewrite -ge0_integral_bigsetU//=. -- apply: ge0_subset_integral => //. - + by apply: bigsetU_measurable => ? ?; exact: measurable_ball. - + by apply: measurableT_comp => //; apply: measurableT_comp => //; case: locf. +- apply/ge0_subset_integral => //. + + by apply/bigsetU_measurable => ? ?; exact: measurable_ball. + + by apply/measurableT_comp/measurableT_comp; last case: locf. - by move=> n; exact: measurable_ball. - apply: measurableT_comp => //; apply: measurable_funTS. by apply: measurableT_comp => //; case: locf. @@ -6595,7 +6570,7 @@ apply: ub_ereal_sup => _ [b [eb] /= b0] <-. suff : forall r, davg f x r <= HL_maximal f x + `|f x|%:E by exact. move=> r. apply: (@le_trans _ _ ((fine (mu (ball x r)))^-1%:E * - \int[mu]_(y in ball x r) (`| (f y)%:E | + `|(f x)%:E|))). + \int[mu]_(y in ball x r) (`|(f y)%:E| + `|(f x)%:E|))). - rewrite /davg lee_wpmul2l//. by rewrite lee_fin invr_ge0 fine_ge0. apply: ge0_le_integral => //. @@ -6623,7 +6598,7 @@ rewrite integral_cst//; last exact: measurable_ball. rewrite mul1e muleCA !(lebesgue_measure_ball _ (ltW r0)). rewrite [X in _ * (_ * X)](_ : _ = mu (ball x r))//. rewrite (lebesgue_measure_ball _ (ltW r0))//. -by rewrite /= -EFinM mulVr ?mulr1// unitfE mulrn_eq0/= gt_eqF. +by rewrite /= -EFinM mulVf ?mulr1// mulrn_eq0/= gt_eqF. Unshelve. all: by end_near. Qed. End lim_sup_davg. @@ -6976,12 +6951,11 @@ rewrite (@le_trans _ _ ((4 / (e / 2))%:E * n.+1%:R^-1%:E))//. by apply: measurableU => //; [exact: mEHL|exact: mfge]. rewrite (le_trans (measureU2 _ _ _))//=; [exact: mEHL|exact: mfge|]. apply: le_trans; first by apply: leeD; [exact: HL_null|exact: fgn_null]. - rewrite -muleDl// lee_pmul2r// -EFinD lee_fin -{2}(mul1r (_^-1)) -div1r. + rewrite -muleDl// lee_pmul2r// -EFinD lee_fin -{2}(mul1r (_^-1)). by rewrite -mulrDl natr1. rewrite -lee_pdivlMl ?divr_gt0// -EFinM lee_fin -(@invrK _ r). -rewrite -invrM ?unitfE ?gt_eqF ?invr_gt0 ?divr_gt0//. -rewrite lef_pV2 ?posrE ?mulr_gt0 ?invr_gt0 ?divr_gt0//. -by rewrite -(@natr1 _ n) -lerBlDr; near: n; exact: nbhs_infty_ger. +rewrite -invfM lef_pV2 ?posrE ?divr_gt0// -(@natr1 _ n) -lerBlDr. +by near: n; exact: nbhs_infty_ger. Unshelve. all: by end_near. Qed. Lemma lebesgue_differentiation f : locally_integrable setT f -> @@ -7016,18 +6990,17 @@ have fE y k r : (ball 0%R k.+1%:R) y -> (r < 1)%R -> rewrite /ball/= sub0r normrN => yk1 r1 t. rewrite ltr_distlC => /andP[xrt txr]. rewrite /fk patchE mem_set// /B /ball/= sub0r normrN. - have [t0|t0] := leP 0%R t. - rewrite ger0_norm// (lt_le_trans txr)// -lerBrDr. - rewrite (le_trans (ler_norm _))// (le_trans (ltW yk1))// -lerBlDr. - by rewrite opprK -lerBrDl -addnn natrD addrK (le_trans (ltW r1))// ler1n. + have [t0|t0] := ger0P. + rewrite (lt_le_trans txr)// -lerBrDr. + rewrite (le_trans (ler_norm _))// (le_trans (ltW yk1))//. + by rewrite lerBrDr -addnn natrD lerD2 (le_trans (ltW r1))// ler1n. rewrite -opprB ltrNl in xrt. - rewrite ltr0_norm// (lt_le_trans xrt)// lerBlDl (le_trans (ltW r1))//. - rewrite -lerBlDl addrC -lerBrDr (le_trans (ler_norm _))//. - rewrite -normrN in yk1. + rewrite (lt_le_trans xrt)// lerBlDl (le_trans (ltW r1))//. + rewrite -lerBlDl addrC -lerBrDr (le_trans (ler_norm _))// normrN. by rewrite (le_trans (ltW yk1))// lerBrDr natr1 ler_nat -muln2 ltn_Pmulr. have := h `|ceil x|.+1%N Logic.I. have Bxx : B `|ceil x|.+1 x. - rewrite /B /ball/= sub0r normrN (le_lt_trans (abs_ceil_ge _))// ltr_nat. + rewrite /B /ball/= sub0r normrN (le_lt_trans (abs_ceil_ge _))// ltr_nat. by rewrite -addnn addSnnS ltn_addl. move=> /(_ Bxx)/fine_cvgP[davg_fk_fin_num davg_fk0]. have f_fk_ceil : \forall t \near 0^'+,