diff --git a/theories/probability.v b/theories/probability.v index 645ffa2ee..f8304822e 100644 --- a/theories/probability.v +++ b/theories/probability.v @@ -1391,8 +1391,7 @@ apply: cvgeM. - apply: mule_def_fin => //. apply: integral_fune_fin_num => //. exact: integrableS _ _ _ f_int. -- suff: semi_sigma_additive nu; first exact. - exact: nu_sigma_additive. +- exact: nu_sigma_additive. - exact: cvg_cst. Qed. @@ -1416,3 +1415,29 @@ HB.instance Definition _ := @Measure_isProbability.Build _ _ R wgt wgt_setT. End weighted. + +From mathcomp Require Import matrix. + +Section vector_expectation. +Context d (T : measurableType d) (R : realType). + +Local Open Scope ereal_scope. + +Definition matrix_expectation m n (P : probability T R) (X : 'M[{RV P >-> R}]_(m, n)) := + \matrix_(i < m, j < n) 'E_P[X i j]. + +Notation "'mE_ P [ X ]" := (@matrix_expectation _ _ P X). + + +Definition mulmxfun {m n p} (A : 'M[{mfun T >-> R}]_(m, n)) (B : 'M[{mfun T >-> R}]_(n, p)) F G z : 'M[{mfun T >-> R}]_(m, p) := + \matrix_(i, k) \big[F/z]_j (G (A i j) (B j k))%R. + + +Context m n (P : probability T R) (X : 'M[{RV P >-> R}]_(m, n)) (Y : 'M[{RV P >-> R}]_(m, n)). +(* Definition x : {RV P >-> R} := [the {RV P >-> R} of (X 0%O 0%O \-cst (fine 'E_P[X 0%O 0%O]))%R]. *) +Definition A : 'M[{RV P >-> R}]_(m,n) := (\matrix_(i, j) [the {RV P >-> R} of (X i j \-cst (fine 'E_P[X i j]))])%R. +Definition B : 'M[{RV P >-> R}]_(m,n) := (\matrix_(i, j) [the {RV P >-> R} of (Y i j \-cst (fine 'E_P[Y i j]))])%R. +Definition matrix_covariance := + 'mE_P[ mulmxfun A B^T (GRing.add_fun) (GRing.mul_fun) (cst 0) ]%R. + +End vector_expectation.