diff --git a/CHANGELOG_UNRELEASED.md b/CHANGELOG_UNRELEASED.md index 568d57437..af62a5f2d 100644 --- a/CHANGELOG_UNRELEASED.md +++ b/CHANGELOG_UNRELEASED.md @@ -6,6 +6,19 @@ - in `topology.v`: + lemma `ball_subspace_ball` +- in `classical_sets.v`: + + lemma `setCD` + +- in `measure.v`: + + factory `isAlgebraOfSets_setD` + +- in `classical_sets.v`: + + definition `setX`, notation ``` `^` ``` + + lemmas `setX0`, `set0X`, `setXK`, `setXC`, `setXA`, `setIXl`, `mulrXr`, + `setX_def`, `setXE`, `setXU`, `setXI`, `setXD`, `setXCT`, `setCXT`, `setXTC`, `setTXC` + +- in `measure.v`: + + factory `isRingOfSets_setX` - in `classical_sets.v`: + lemma `setDU` diff --git a/classical/classical_sets.v b/classical/classical_sets.v index 333692786..2afe27710 100644 --- a/classical/classical_sets.v +++ b/classical/classical_sets.v @@ -42,6 +42,7 @@ From mathcomp Require Import mathcomp_extra boolp. (* | `` `\|` `` |==| $\cup$ *) (* | `` `&` `` |==| $\cap$ *) (* | `` `\` `` |==| set difference *) +(* | `` `^` `` |==| symmetric difference *) (* | `` ~` `` |==| set complement *) (* | `` `<=` `` |==| $\subseteq$ *) (* | `` f @` A `` |==| image by f of A *) @@ -244,6 +245,7 @@ Reserved Notation "~` A" (at level 35, right associativity). Reserved Notation "[ 'set' ~ a ]" (at level 0, format "[ 'set' ~ a ]"). Reserved Notation "A `\` B" (at level 50, left associativity). Reserved Notation "A `\ b" (at level 50, left associativity). +Reserved Notation "A `^` B" (at level 52, left associativity). (* Reserved Notation "A `+` B" (at level 54, left associativity). Reserved Notation "A +` B" (at level 54, left associativity). @@ -400,6 +402,10 @@ Notation "A `\` B" := (setD A B) : classical_set_scope. Notation "A `\ a" := (A `\` [set a]) : classical_set_scope. Notation "[ 'disjoint' A & B ]" := (disj_set A B) : classical_set_scope. +Definition setX {T : Type} (A B : set T) := (A `\` B) `|` (B `\` A). +Arguments setX _ _ _ _ /. +Notation "A `^` B" := (setX A B) : classical_set_scope. + Notation "'`I_' n" := [set k | is_true (k < n)%N]. Notation "\bigcup_ ( i 'in' P ) F" := @@ -995,6 +1001,9 @@ Qed. Lemma setCI A B : ~` (A `&` B) = ~` A `|` ~` B. Proof. by rewrite -[in LHS](setCK A) -[in LHS](setCK B) -setCU setCK. Qed. +Lemma setCD A B : ~` (A `\` B) = ~` A `|` B. +Proof. by rewrite setDE setCI setCK. Qed. + Lemma setDUr A B C : A `\` (B `|` C) = (A `\` B) `&` (A `\` C). Proof. by rewrite !setDE setCU setIIr. Qed. @@ -1114,6 +1123,71 @@ Lemma bigcupM1r T1 T2 (A1 : T2 -> set T1) (A2 : set T2) : \bigcup_(i in A2) (A1 i `*` [set i]) = A1 ``*` A2. Proof. by apply/predeqP => -[i j]; split=> [[? ? [? /= -> //]]|[]]; exists j. Qed. +Lemma setX0 : right_id set0 (@setX T). +Proof. by move=> A; rewrite /setX setD0 set0D setU0. Qed. + +Lemma set0X : left_id set0 (@setX T). +Proof. by move=> A; rewrite /setX set0D setD0 set0U. Qed. + +Lemma setXK A : A `^` A = set0. +Proof. by rewrite /setX setDv setU0. Qed. + +Lemma setXC : commutative (@setX T). +Proof. by move=> A B; rewrite /setX setUC. Qed. + +Lemma setXTC A : A `^` [set: T] = ~` A. +Proof. by rewrite /setX setDT set0U setTD. Qed. + +Lemma setTXC A : [set: T] `^` A = ~` A. +Proof. by rewrite setXC setXTC. Qed. + +Lemma setXA : associative (@setX T). +Proof. +move=> A B C; rewrite /setX; apply/seteqP; split => x/=; +by have [|] := pselect (A x); have [|] := pselect (B x); + have [|] := pselect (C x); tauto. +Qed. + +Lemma setIXl : left_distributive (@setI T) (@setX T). +Proof. +move=> A B C; rewrite /setX; apply/seteqP; split => x/=; +by have [|] := pselect (A x); have [|] := pselect (B x); + have [|] := pselect (C x); tauto. +Qed. + +Lemma setIXr : right_distributive (@setI T) (@setX T). +Proof. by move=> A B C; rewrite setIC setIXl -2!(setIC A). Qed. + +Lemma setX_def A B : A `^` B = (A `\` B) `|` (B `\` A). +Proof. by []. Qed. + +Lemma setXE A B : A `^` B = (A `|` B) `\` (A `&` B). +Proof. +rewrite /setX; apply/seteqP; split => x/=; +by have [|] := pselect (A x); have [|] := pselect (B x); tauto. +Qed. + +Lemma setXU A B : (A `^` B) `^` (A `&` B) = A `|` B. +Proof. +rewrite /setX; apply/seteqP; split => x/=; +by have [|] := pselect (A x); have [|] := pselect (B x); tauto. +Qed. + +Lemma setXI A B : (A `|` B) `\` (A `^` B) = A `&` B. +Proof. +rewrite /setX; apply/seteqP; split => x/=; +by have [|] := pselect (A x); have [|] := pselect (B x); tauto. +Qed. + +Lemma setXD A B : A `^` (A `&` B) = A `\` B. +Proof. by rewrite /setX; apply/seteqP; split => x/=; tauto. Qed. + +Lemma setXCT A : A `^` ~` A = [set: T]. +Proof. by rewrite /setX setDE setCK setIid setDE setIid setUv. Qed. + +Lemma setCXT A : ~` A `^` A = [set: T]. +Proof. by rewrite setXC setXCT. Qed. + End basic_lemmas. #[global] Hint Resolve subsetUl subsetUr subIsetl subIsetr subDsetl subDsetr : core. @@ -1314,6 +1388,9 @@ HB.instance Definition _ := isMulLaw.Build (set T) set0 setI set0I setI0. HB.instance Definition _ := isAddLaw.Build (set T) setU setI setUIl setUIr. HB.instance Definition _ := isAddLaw.Build (set T) setI setU setIUl setIUr. +HB.instance Definition _ := isComLaw.Build (set T) set0 setX setXA setXC set0X. +HB.instance Definition _ := isAddLaw.Build (set T) setI setX setIXl setIXr. + End SetMonoids. Section base_image_lemmas. diff --git a/theories/measure.v b/theories/measure.v index 75180d098..f1e4c9a49 100644 --- a/theories/measure.v +++ b/theories/measure.v @@ -191,6 +191,8 @@ From HB Require Import structures. (* setSD_closed G == the set of sets G is closed under proper *) (* difference *) (* setDI_closed G == the set of sets G is closed under difference *) +(* setX_closed G == the set of sets G is closed under symmetric *) +(* difference *) (* ndseq_closed G == the set of sets G is closed under non-decreasing *) (* countable union *) (* niseq_closed G == the set of sets G is closed under non-increasing *) @@ -356,6 +358,7 @@ Definition setI_closed := forall A B, G A -> G B -> G (A `&` B). Definition setU_closed := forall A B, G A -> G B -> G (A `|` B). Definition setSD_closed := forall A B, B `<=` A -> G A -> G B -> G (A `\` B). Definition setDI_closed := forall A B, G A -> G B -> G (A `\` B). +Definition setX_closed := forall A B, G A -> G B -> G (A `^` B). Definition fin_bigcap_closed := forall I (D : set I) A_, finite_set D -> (forall i, D i -> G (A_ i)) -> @@ -1166,6 +1169,38 @@ HB.instance Definition _ := SemiRingOfSets_isRingOfSets.Build d T measurableU. HB.end. +HB.factory Record isRingOfSets_setX (d : measure_display) T + of Pointed T := { + measurable : set (set T) ; + measurable_nonempty : measurable !=set0 ; + measurable_setX : setX_closed measurable ; + measurable_setI : setI_closed measurable }. + +HB.builders Context d T of isRingOfSets_setX d T. + +Let m0 : measurable set0. +Proof. +have [A mA] := measurable_nonempty. +have := measurable_setX mA mA. +by rewrite setXK. +Qed. + +Let mU : setU_closed measurable. +Proof. +move=> A B mA mB; rewrite -setXU. +by apply: measurable_setX; [exact: measurable_setX|exact: measurable_setI]. +Qed. + +Let mD : setDI_closed measurable. +Proof. +move=> A B mA mB; rewrite -setXD. +by apply: measurable_setX => //; exact: measurable_setI. +Qed. + +HB.instance Definition _ := isRingOfSets.Build d T m0 mU mD. + +HB.end. + HB.factory Record isAlgebraOfSets (d : measure_display) T of Pointed T := { measurable : set (set T) ; measurable0 : measurable set0 ; @@ -1191,6 +1226,30 @@ HB.instance Definition _ := RingOfSets_isAlgebraOfSets.Build d T measurableT. HB.end. +HB.factory Record isAlgebraOfSets_setD (d : measure_display) T of Pointed T := { + measurable : set (set T) ; + measurableT : measurable [set: T] ; + measurableD : setDI_closed measurable +}. + +HB.builders Context d T of isAlgebraOfSets_setD d T. + +Let m0 : measurable set0. +Proof. by rewrite -(setDT setT); apply: measurableD; exact: measurableT. Qed. + +Let mU : setU_closed measurable. +Proof. +move=> A B mA mB. +rewrite -(setCK A) -setCD -!setTD; apply: measurableD; first exact: measurableT. +by do 2 apply: measurableD => //; exact: measurableT. +Qed. + +HB.instance Definition _ := isRingOfSets.Build d T m0 mU measurableD. + +HB.instance Definition _ := RingOfSets_isAlgebraOfSets.Build d T measurableT. + +HB.end. + HB.factory Record isMeasurable (d : measure_display) T of Pointed T := { measurable : set (set T) ; measurable0 : measurable set0 ; diff --git a/theories/topology.v b/theories/topology.v index eb7c846cb..fafdc65ba 100644 --- a/theories/topology.v +++ b/theories/topology.v @@ -4772,7 +4772,8 @@ HB.instance Definition _ := Uniform_isPseudoMetric.Build R M HB.end. -Lemma entourage_ballE {R : numDomainType} {M : pseudoMetricType R} : entourage_ (@ball R M) = entourage. +Lemma entourage_ballE {R : numDomainType} {M : pseudoMetricType R} : + entourage_ (@ball R M) = entourage. Proof. by rewrite entourageE_subproof. Qed. Lemma entourage_from_ballE {R : numDomainType} {M : pseudoMetricType R} : @@ -4791,7 +4792,8 @@ Definition nbhs_ball_ {R : numDomainType} {T T'} (ball : T -> R -> set T') Definition nbhs_ball {R : numDomainType} {M : pseudoMetricType R} := nbhs_ball_ (@ball R M). -Lemma nbhs_ballE {R : numDomainType} {M : pseudoMetricType R} : (@nbhs_ball R M) = nbhs. +Lemma nbhs_ballE {R : numDomainType} {M : pseudoMetricType R} : + @nbhs_ball R M = nbhs. Proof. rewrite predeq2E => x P; rewrite -nbhs_entourageE; split. by move=> [_/posnumP[e] sbxeP]; exists [set xy | ball xy.1 e%:num xy.2]. @@ -5360,11 +5362,14 @@ Qed. Section pseudoMetric_of_normedDomain. Context {K : numDomainType} {R : normedZmodType K}. + Lemma ball_norm_center (x : R) (e : K) : 0 < e -> ball_ Num.norm x e x. Proof. by move=> ? /=; rewrite subrr normr0. Qed. + Lemma ball_norm_symmetric (x y : R) (e : K) : ball_ Num.norm x e y -> ball_ Num.norm y e x. Proof. by rewrite /= distrC. Qed. + Lemma ball_norm_triangle (x y z : R) (e1 e2 : K) : ball_ Num.norm x e1 y -> ball_ Num.norm y e2 z -> ball_ Num.norm x (e1 + e2) z. Proof. @@ -5380,6 +5385,7 @@ rewrite /nbhs_ entourage_E predeq2E => x A; split. by exists [set xy | ball_ Num.norm xy.1 e xy.2] => //; exists e. by move=> [E [e egt0 sbeE] sEA]; exists e => // ??; apply/sEA/sbeE. Qed. + End pseudoMetric_of_normedDomain. HB.instance Definition _ (R : zmodType) := Pointed.on R^o.