diff --git a/classical/boolp.v b/classical/boolp.v index fc25b4115e..369d0e87ec 100644 --- a/classical/boolp.v +++ b/classical/boolp.v @@ -212,9 +212,6 @@ Qed. Lemma gen_choiceMixin {T : Type} : Choice.mixin_of T. Proof. by case: classic. Qed. -Lemma pdegen (P : Prop): P = True \/ P = False. -Proof. by have [p|Np] := pselect P; [left|right]; rewrite propeqE. Qed. - Lemma lem (P : Prop): P \/ ~P. Proof. by case: (pselect P); tauto. Qed. @@ -283,8 +280,7 @@ Proof. by rewrite propeqE; split => -[x [y]]; exists y, x. Qed. Lemma reflect_eq (P : Prop) (b : bool) : reflect P b -> P = b. Proof. by rewrite propeqE; exact: rwP. Qed. -Definition asbool (P : Prop) := - if pselect P then true else false. +Definition asbool (P : Prop) := if pselect P then true else false. Notation "`[< P >]" := (asbool P) : bool_scope. @@ -359,7 +355,8 @@ Definition canonical_of T U (sort : U -> T) := forall (G : T -> Type), Notation canonical_ sort := (@canonical_of _ _ sort). Notation canonical T E := (@canonical_of T E id). -Lemma canon T U (sort : U -> T) : (forall x, exists y, sort y = x) -> canonical_ sort. +Lemma canon T U (sort : U -> T) : + (forall x, exists y, sort y = x) -> canonical_ sort. Proof. by move=> + G Gs x => /(_ x)/cid[x' <-]. Qed. Arguments canon {T U sort} x. @@ -480,36 +477,25 @@ Proof. by case/PropB: P; [left | rewrite orB; right]. Qed. (* -------------------------------------------------------------------- *) -Lemma notT (P : Prop) : P = False -> ~ P. Proof. by move->. Qed. +Lemma notT (P : Prop) : P = False -> ~ P. +Proof. by move->. Qed. Lemma contrapT P : ~ ~ P -> P. -Proof. -by move/asboolPn=> nnb; apply/asboolP; apply: contraR nnb => /asboolPn /asboolP. -Qed. +Proof. by case: (PropB P) => //; rewrite not_False. Qed. -Lemma notTE (P : Prop) : (~ P) -> P = False. -Proof. by case: (pdegen P)=> ->. Qed. +Lemma notTE (P : Prop) : (~ P) -> P = False. Proof. by case: (PropB P). Qed. Lemma notFE (P : Prop) : (~ P) = False -> P. -Proof. move/notT; exact: contrapT. Qed. +Proof. by move/notT; exact: contrapT. Qed. Lemma notK : involutive not. -Proof. -move=> P; case: (pdegen P)=> ->; last by apply: notTE; intuition. -by rewrite [~ True]notTE //; case: (pdegen (~ False)) => // /notFE. -Qed. +Proof. by case/PropB; rewrite !(not_False,not_True). Qed. Lemma contra_notP (Q P : Prop) : (~ Q -> P) -> ~ P -> Q. -Proof. -move=> cb /asboolPn nb; apply/asboolP. -by apply: contraR nb => /asboolP /cb /asboolP. -Qed. +Proof. by move: Q P => /PropB[] /PropB[]. Qed. Lemma contraPP (Q P : Prop) : (~ Q -> ~ P) -> P -> Q. -Proof. -move=> cb /asboolP hb; apply/asboolP. -by apply: contraLR hb => /asboolP /cb /asboolPn. -Qed. +Proof. by move: Q P => /PropB[] /PropB[]//; rewrite not_False not_True. Qed. Lemma contra_notT b (P : Prop) : (~~ b -> P) -> ~ P -> b. Proof. by move=> bP; apply: contra_notP => /negP. Qed. @@ -526,7 +512,7 @@ Proof. by move=> /contra_notP + /negP => /[apply]. Qed. Lemma contra_neqP (T : eqType) (x y : T) P : (~ P -> x = y) -> x != y -> P. Proof. by move=> Pxy; apply: contraNP => /Pxy/eqP. Qed. -Lemma contra_eqP (T : eqType) (x y : T) (Q : Prop) : (~ Q -> x != y) -> x = y -> Q. +Lemma contra_eqP (T : eqType) (x y : T) Q : (~ Q -> x != y) -> x = y -> Q. Proof. by move=> Qxy /eqP; apply: contraTP. Qed. Lemma contra_leP {disp1 : unit} {T1 : porderType disp1} [P : Prop] [x y : T1] : @@ -544,9 +530,10 @@ by apply: Order.POrderTheory.contra_ltT yx => /asboolPn. Qed. Lemma wlog_neg P : (~ P -> P) -> P. -Proof. by move=> ?; case: (pselect P). Qed. +Proof. by case: (PropB P); exact. Qed. Lemma not_inj : injective not. Proof. exact: can_inj notK. Qed. + Lemma notLR P Q : (P = ~ Q) -> (~ P) = Q. Proof. exact: canLR notK. Qed. Lemma notRL P Q : (~ P) = Q -> P = ~ Q. Proof. exact: canRL notK. Qed. @@ -653,7 +640,7 @@ Lemma implyE (P Q : Prop) : (P -> Q) = (~ P \/ Q). Proof. by rewrite -[LHS]notE not_implyE propeqE not_andP notE. Qed. Lemma orC : commutative or. -Proof. by move=> P Q; rewrite propeqE; split; (case=> ?; [right|left]). Qed. +Proof. by move=> /PropB[] /PropB[] => //; rewrite !orB. Qed. Lemma orA : associative or. Proof. by move=> P Q R; rewrite propeqE; split=> [|]; tauto. Qed. @@ -673,15 +660,19 @@ Proof. by case/PropB: P; rewrite notB orB implyB. Qed. Lemma orpN P Q : (P \/ ~ Q) = (Q -> P). Proof. by rewrite orC orNp. Qed. Lemma or3E P Q R : [\/ P, Q | R] = (P \/ Q \/ R). -Proof. by rewrite -(asboolE P) -(asboolE Q) -(asboolE R) (reflect_eq or3P) -2!(reflect_eq orP). Qed. +Proof. +rewrite -(asboolE P) -(asboolE Q) -(asboolE R) (reflect_eq or3P). +by rewrite -2!(reflect_eq orP). +Qed. Lemma or4E P Q R S : [\/ P, Q, R | S] = (P \/ Q \/ R \/ S). Proof. -by rewrite -(asboolE P) -(asboolE Q) -(asboolE R) -(asboolE S) (reflect_eq or4P) -3!(reflect_eq orP). +rewrite -(asboolE P) -(asboolE Q) -(asboolE R) -(asboolE S) (reflect_eq or4P). +by rewrite -3!(reflect_eq orP). Qed. Lemma andC : commutative and. -Proof. by move=> P Q; rewrite propeqE; split=> [[]|[]]. Qed. +Proof. by move=> /PropB[] /PropB[]; rewrite !andB. Qed. Lemma andA : associative and. Proof. by move=> P Q R; rewrite propeqE; split=> [|]; tauto. Qed.