diff --git a/theories/kernel.v b/theories/kernel.v index 9047eb019..c6975d0e4 100644 --- a/theories/kernel.v +++ b/theories/kernel.v @@ -74,7 +74,7 @@ HB.mixin Record isKernel d d' (X : measurableType d) (Y : measurableType d') HB.structure Definition Kernel d d' (X : measurableType d) (Y : measurableType d') (R : realType) := { k & isKernel _ _ X Y R k }. -Notation "R .-ker X ~> Y" := (kernel X Y R). +Notation "R .-ker X ~> Y" := (kernel X%type Y R). Arguments measurable_kernel {_ _ _ _ _} _. @@ -177,7 +177,7 @@ HB.structure Definition SFiniteKernel d d' (X : measurableType d) (Y : measurableType d') (R : realType) := { k of @Kernel _ _ _ _ R k & Kernel_isSFinite_subdef _ _ X Y R k }. -Notation "R .-sfker X ~> Y" := (SFiniteKernel.type X Y R). +Notation "R .-sfker X ~> Y" := (SFiniteKernel.type X%type Y R). Arguments sfinite_kernel_subdef {_ _ _ _ _} _. Lemma eq_sfkernel d d' (T : measurableType d) (T' : measurableType d') @@ -200,7 +200,7 @@ HB.structure Definition FiniteKernel d d' (X : measurableType d) (Y : measurableType d') (R : realType) := { k of @SFiniteKernel _ _ _ _ _ k & SFiniteKernel_isFinite _ _ X Y R k }. -Notation "R .-fker X ~> Y" := (finite_kernel X Y R). +Notation "R .-fker X ~> Y" := (finite_kernel X%type Y R). Arguments measure_uub {_ _ _ _ _} _. HB.factory Record Kernel_isFinite d d' @@ -356,7 +356,7 @@ HB.structure Definition SubProbabilityKernel d d' (X : measurableType d) (Y : measurableType d') (R : realType) := { k of @FiniteKernel _ _ _ _ _ k & FiniteKernel_isSubProbability _ _ X Y R k }. -Notation "R .-spker X ~> Y" := (sprobability_kernel X Y R). +Notation "R .-spker X ~> Y" := (sprobability_kernel X%type Y R). HB.factory Record Kernel_isSubProbability d d' (X : measurableType d) (Y : measurableType d') (R : realType) @@ -389,7 +389,7 @@ HB.structure Definition ProbabilityKernel d d' (X : measurableType d) (Y : measurableType d') (R : realType) := { k of @SubProbabilityKernel _ _ _ _ _ k & SubProbability_isProbability _ _ X Y R k }. -Notation "R .-pker X ~> Y" := (probability_kernel X Y R). +Notation "R .-pker X ~> Y" := (probability_kernel X%type Y R). HB.factory Record Kernel_isProbability d d' (X : measurableType d) (Y : measurableType d') (R : realType) @@ -507,7 +507,7 @@ Variable k : X * Y -> \bar R. Lemma measurable_fun_xsection_integral (l : X -> {measure set Y -> \bar R}) - (k_ : ({nnsfun [the measurableType _ of (X * Y)%type] >-> R})^nat) + (k_ : ({nnsfun [the measurableType _ of X * Y] >-> R})^nat) (ndk_ : nondecreasing_seq (k_ : (X * Y -> R)^nat)) (k_k : forall z, EFin \o (k_ ^~ z) --> k z) : (forall n r, @@ -847,7 +847,7 @@ Section kcomp_is_measure. Context d1 d2 d3 (X : measurableType d1) (Y : measurableType d2) (Z : measurableType d3) (R : realType). Variable l : R.-ker X ~> Y. -Variable k : R.-ker [the measurableType _ of (X * Y)%type] ~> Z. +Variable k : R.-ker [the measurableType _ of X * Y] ~> Z. Local Notation "l \; k" := (kcomp l k). @@ -885,7 +885,7 @@ Module KCOMP_FINITE_KERNEL. Section kcomp_finite_kernel_kernel. Context d d' d3 (X : measurableType d) (Y : measurableType d') (Z : measurableType d3) (R : realType) (l : R.-fker X ~> Y) - (k : R.-ker [the measurableType _ of (X * Y)%type] ~> Z). + (k : R.-ker [the measurableType _ of X * Y] ~> Z). Lemma measurable_fun_kcomp_finite U : measurable U -> measurable_fun [set: X] ((l \; k) ^~ U). @@ -903,7 +903,7 @@ Section kcomp_finite_kernel_finite. Context d d' d3 (X : measurableType d) (Y : measurableType d') (Z : measurableType d3) (R : realType). Variable l : R.-fker X ~> Y. -Variable k : R.-fker [the measurableType _ of (X * Y)%type] ~> Z. +Variable k : R.-fker [the measurableType _ of X * Y] ~> Z. Let mkcomp_finite : measure_fam_uub (l \; k). Proof. @@ -927,7 +927,7 @@ Section kcomp_sfinite_kernel. Context d d' d3 (X : measurableType d) (Y : measurableType d') (Z : measurableType d3) (R : realType). Variable l : R.-sfker X ~> Y. -Variable k : R.-sfker [the measurableType _ of (X * Y)%type] ~> Z. +Variable k : R.-sfker [the measurableType _ of X * Y] ~> Z. Import KCOMP_FINITE_KERNEL. @@ -973,7 +973,7 @@ Section kcomp_sfinite_kernel. Context d d' d3 (X : measurableType d) (Y : measurableType d') (Z : measurableType d3) (R : realType). Variable l : R.-sfker X ~> Y. -Variable k : R.-sfker [the measurableType _ of (X * Y)%type] ~> Z. +Variable k : R.-sfker [the measurableType _ of X * Y] ~> Z. HB.instance Definition _ := isKernel.Build _ _ X Z R (l \; k) (measurable_fun_mkcomp_sfinite l k). @@ -1047,7 +1047,7 @@ Section integral_kcomp. Context d d2 d3 (X : measurableType d) (Y : measurableType d2) (Z : measurableType d3) (R : realType). Variables (l : R.-sfker X ~> Y) - (k : R.-sfker [the measurableType _ of (X * Y)%type] ~> Z). + (k : R.-sfker [the measurableType _ of X * Y] ~> Z). Let integral_kcomp_indic x E (mE : measurable E) : \int[(l \; k) x]_z (\1_E z)%:E = \int[l x]_y (\int[k (x, y)]_z (\1_E z)%:E). diff --git a/theories/lebesgue_integral.v b/theories/lebesgue_integral.v index 85e19b823..e20b6fa3c 100644 --- a/theories/lebesgue_integral.v +++ b/theories/lebesgue_integral.v @@ -104,7 +104,7 @@ Reserved Notation "{ 'nnsfun' aT >-> T }" (at level 0, format "{ 'nnsfun' aT >-> T }"). Reserved Notation "[ 'nnsfun' 'of' f ]" (at level 0, format "[ 'nnsfun' 'of' f ]"). -Notation "{ 'nnsfun' aT >-> T }" := (@NonNegSimpleFun.type _ aT T) : form_scope. +Notation "{ 'nnsfun' aT >-> T }" := (@NonNegSimpleFun.type _ aT%type T) : form_scope. Notation "[ 'nnsfun' 'of' f ]" := [the {nnsfun _ >-> _} of f] : form_scope. Section mfun_pred. @@ -4658,7 +4658,7 @@ Variable m1 : {sigma_finite_measure set T1 -> \bar R}. Variable m2 : {sigma_finite_measure set T2 -> \bar R}. Lemma product_measure_unique - (m' : {measure set [the semiRingOfSetsType _ of (T1 * T2)%type] -> \bar R}) : + (m' : {measure set [the semiRingOfSetsType _ of T1 * T2] -> \bar R}) : (forall A1 A2, measurable A1 -> measurable A2 -> m' (A1 `*` A2) = m1 A1 * m2 A2) -> forall X : set (T1 * T2), measurable X -> (m1 \x m2) X = m' X. diff --git a/theories/measure.v b/theories/measure.v index 4ba0cdb98..0434fa366 100644 --- a/theories/measure.v +++ b/theories/measure.v @@ -1135,13 +1135,13 @@ Lemma measurable_fun_if (g h : T1 -> T2) D (mD : measurable D) measurable_fun D (fun t => if f t then g t else h t). Proof. move=> mx my /= _ B mB; rewrite (_ : _ @^-1` B = - ((f @^-1` [set true]) `&` (g @^-1` B) `&` (f @^-1` [set true])) `|` - ((f @^-1` [set false]) `&` (h @^-1` B) `&` (f @^-1` [set false]))). + ((f @^-1` [set true]) `&` (g @^-1` B)) `|` + ((f @^-1` [set false]) `&` (h @^-1` B))). rewrite setIUr; apply: measurableU. - - by rewrite setIAC setIid setIA; apply: mx => //; exact: mf. - - by rewrite setIAC setIid setIA; apply: my => //; exact: mf. -apply/seteqP; split=> [t /=| t]; first by case: ifPn => ft; [left|right]. -by move=> /= [|]; case: ifPn => ft; case=> -[]. + - by rewrite setIA; apply: mx => //; exact: mf. + - by rewrite setIA; apply: my => //; exact: mf. +apply/seteqP; split=> [t /=| t /= [] [] ->//]. +by case: ifPn => ft; [left|right]. Qed. Lemma measurable_fun_ifT (g h : T1 -> T2) (f : T1 -> bool) @@ -1560,7 +1560,7 @@ HB.structure Definition Measure d (T : semiRingOfSetsType d) (R : numFieldType) := {mu of Content_isMeasure d T R mu & Content d mu}. -Notation "{ 'measure' 'set' T '->' '\bar' R }" := (measure T R) +Notation "{ 'measure' 'set' T '->' '\bar' R }" := (measure T%type R) (at level 36, T, R at next level, format "{ 'measure' 'set' T '->' '\bar' R }") : ring_scope.