Skip to content

Commit

Permalink
naming conventions
Browse files Browse the repository at this point in the history
  • Loading branch information
affeldt-aist committed Feb 7, 2024
1 parent 0299511 commit e971940
Show file tree
Hide file tree
Showing 12 changed files with 231 additions and 186 deletions.
17 changes: 17 additions & 0 deletions CHANGELOG_UNRELEASED.md
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,23 @@

### Renamed

- in `constructive_ereal.v`:
+ `lee_addl` -> `leeDl`
+ `lee_addr` -> `leeDr`
+ `lee_add2l` -> `leeD2l`
+ `lee_add2r` -> `leeD2r`
+ `lee_add` -> `leeD`
+ `lee_sub` -> `leeB`
+ `lee_add2lE` -> `leeD2lE`
+ `lte_add2lE` -> `lteD2lE`
+ `lee_oppl` -> `leeNl`
+ `lee_oppr` -> `leeNr`
+ `lte_oppr` -> `lteNr`
+ `lte_oppl` -> `lteNl`
+ `lte_add` -> `lteD`
+ `lte_addl` -> `lteDl`
+ `lte_addr` -> `lteDr`

### Generalized

### Deprecated
Expand Down
178 changes: 103 additions & 75 deletions theories/constructive_ereal.v

Large diffs are not rendered by default.

22 changes: 11 additions & 11 deletions theories/ereal.v
Original file line number Diff line number Diff line change
Expand Up @@ -422,16 +422,16 @@ Qed.

Lemma lb_ereal_inf S M : lbound S M -> M <= ereal_inf S.
Proof.
move=> SM; rewrite /ereal_inf lee_oppr; apply ub_ereal_sup => x [y Sy <-{x}].
by rewrite lee_oppl oppeK; apply SM.
move=> SM; rewrite /ereal_inf leeNr; apply ub_ereal_sup => x [y Sy <-{x}].
by rewrite leeNl oppeK; apply SM.
Qed.

Lemma ub_ereal_sup_adherent S (e : R) : (0 < e)%R ->
ereal_sup S \is a fin_num -> exists2 x, S x & (ereal_sup S - e%:E < x).
Proof.
move=> e0 Sr; have : ~ ubound S (ereal_sup S - e%:E).
move/ub_ereal_sup; apply/negP.
by rewrite -ltNge lte_subl_addr // lte_addl // lte_fin.
by rewrite -ltNge lte_subl_addr // lteDl // lte_fin.
move/asboolP; rewrite asbool_neg; case/existsp_asboolPn => /= x.
by rewrite not_implyE => -[? ?]; exists x => //; rewrite ltNge; apply/negP.
Qed.
Expand All @@ -440,7 +440,7 @@ Lemma lb_ereal_inf_adherent S (e : R) : (0 < e)%R ->
ereal_inf S \is a fin_num -> exists2 x, S x & (x < ereal_inf S + e%:E).
Proof.
move=> e0; rewrite fin_numN => /(ub_ereal_sup_adherent e0)[x []].
move=> y Sy <-; rewrite -lte_oppr => /lt_le_trans ex; exists y => //.
move=> y Sy <-; rewrite -lteNr => /lt_le_trans ex; exists y => //.
by apply: ex; rewrite fin_num_oppeD// oppeK.
Qed.

Expand All @@ -452,8 +452,8 @@ Qed.

Lemma ereal_inf_lt S x : ereal_inf S < x -> exists2 y, S y & y < x.
Proof.
rewrite lte_oppl => /ereal_sup_gt[_ [y Sy <-]].
by rewrite lte_oppl oppeK => xlty; exists y.
rewrite lteNl => /ereal_sup_gt[_ [y Sy <-]].
by rewrite lteNl oppeK => xlty; exists y.
Qed.

End ereal_supremum.
Expand Down Expand Up @@ -528,7 +528,7 @@ Qed.

Lemma ereal_inf_lb S : lbound S (ereal_inf S).
Proof.
by move=> x Sx; rewrite /ereal_inf lee_oppl; apply ereal_sup_ub; exists x.
by move=> x Sx; rewrite /ereal_inf leeNl; apply ereal_sup_ub; exists x.
Qed.

Lemma ereal_inf_le S x : (exists2 y, S y & y <= x) -> ereal_inf S <= x.
Expand Down Expand Up @@ -838,19 +838,19 @@ case: x => [r /=| |].
- rewrite predeqE => S; split=> [[M [Mreal MS]]|[x [M [Mreal Mx]] <-]].
exists (-%E @` S).
exists (- M)%R; rewrite realN Mreal; split => // x Mx.
by exists (- x); [apply MS; rewrite lte_oppl | rewrite oppeK].
by exists (- x); [apply MS; rewrite lteNl | rewrite oppeK].
rewrite predeqE => x; split=> [[y [z Sz <- <-]]|Sx]; first by rewrite oppeK.
by exists (- x); [exists x | rewrite oppeK].
exists (- M)%R; rewrite realN; split => // y yM.
exists (- y); by [apply Mx; rewrite lte_oppr|rewrite oppeK].
exists (- y); by [apply Mx; rewrite lteNr|rewrite oppeK].
- rewrite predeqE => S; split=> [[M [Mreal MS]]|[x [M [Mreal Mx]] <-]].
exists (-%E @` S).
exists (- M)%R; rewrite realN Mreal; split => // x Mx.
by exists (- x); [apply MS; rewrite lte_oppr | rewrite oppeK].
by exists (- x); [apply MS; rewrite lteNr | rewrite oppeK].
rewrite predeqE => x; split=> [[y [z Sz <- <-]]|Sx]; first by rewrite oppeK.
by exists (- x); [exists x | rewrite oppeK].
exists (- M)%R; rewrite realN; split => // y yM.
exists (- y); by [apply Mx; rewrite lte_oppl|rewrite oppeK].
exists (- y); by [apply Mx; rewrite lteNl|rewrite oppeK].
Qed.

Lemma nbhsNKe (R : realFieldType) (z : \bar R) (A : set (\bar R)) :
Expand Down
20 changes: 10 additions & 10 deletions theories/esum.v
Original file line number Diff line number Diff line change
Expand Up @@ -134,14 +134,14 @@ Lemma esumD [R : realType] [T : choiceType] (I : set T) (a b : T -> \bar R) :
Proof.
move=> ag0 bg0; apply/eqP; rewrite eq_le; apply/andP; split.
rewrite ub_ereal_sup//= => x [X [finX XI]] <-; rewrite fsbig_split//=.
by rewrite lee_add// ereal_sup_ub//=; exists X.
by rewrite leeD// ereal_sup_ub//=; exists X.
wlog : a b ag0 bg0 / \esum_(i in I) a i \isn't a fin_num => [saoo|]; last first.
move=> /fin_numPn[->|/[dup] aoo ->]; first by rewrite leNye.
rewrite (@le_trans _ _ +oo)//; first by rewrite /adde/=; case: esum.
rewrite leye_eq; apply/eqP/eq_infty => y; rewrite esum_ge//.
have : y%:E < \esum_(i in I) a i by rewrite aoo// ltry.
move=> /ereal_sup_gt[_ [X [finX XI]] <-] /ltW yle; exists X => //=.
rewrite (le_trans yle)// fsbig_split// lee_addl// fsume_ge0// => // i.
rewrite (le_trans yle)// fsbig_split// leeDl// fsume_ge0// => // i.
by move=> /XI; exact: bg0.
case: (boolP (\esum_(i in I) a i \is a fin_num)) => sa; last exact: saoo.
case: (boolP (\esum_(i in I) b i \is a fin_num)) => sb; last first.
Expand All @@ -156,7 +156,7 @@ have saX : \sum_(i \in X) a i \is a fin_num.
rewrite lee_subr_addr// addeC -lee_subr_addr// ub_ereal_sup//= => _ [Y [finY YI]] <-.
rewrite lee_subr_addr// addeC esum_ge//; exists (X `|` Y).
by split; [rewrite finite_setU|rewrite subUset].
rewrite fsbig_split ?finite_setU//= lee_add// lee_fsum_nneg_subset//= ?finite_setU//.
rewrite fsbig_split ?finite_setU//= leeD// lee_fsum_nneg_subset//= ?finite_setU//.
- exact/subsetP/subsetUl.
- by move=> x; rewrite !inE in_setU andb_orr andNb/= => /andP[_] /[!inE] /YI/ag0.
- exact/subsetP/subsetUr.
Expand Down Expand Up @@ -250,7 +250,7 @@ apply: (@le_trans _ _
rewrite (_ : [fset x | x in Y & x \in X] = Y `&` fset_set X)%fset; last first.
by apply/fsetP => x; rewrite 2!inE/= in_fset_set.
rewrite (fsetIidPr _).
rewrite fsbig_finite// lee_addl// big_seq sume_ge0//=.
rewrite fsbig_finite// leeDl// big_seq sume_ge0//=.
move=> [x y] /imfsetP[[x1 y1]] /[!inE] /andP[] /imfset2P[x2]/= /[!inE].
rewrite andbT in_fset_set//; last exact: finite_set_fst.
move=> /[!inE] x2X [y2] /[!inE] /andP[] /[!in_fset_set]; last first.
Expand Down Expand Up @@ -281,7 +281,7 @@ Lemma lee_sum_fset_nat (R : realDomainType)
Proof.
move=> f0 Fn; rewrite [leRHS](bigID (mem F))/=.
suff -> : \sum_(0 <= i < n | P i && (i \in F)) f i = \sum_(i <- F | P i) f i.
by rewrite lee_addl ?sume_ge0// => i /andP[/f0].
by rewrite leeDl ?sume_ge0// => i /andP[/f0].
rewrite -big_filter -[RHS]big_filter; apply: perm_big.
rewrite uniq_perm ?filter_uniq ?index_iota ?iota_uniq ?fset_uniq//.
move=> i; rewrite ?mem_filter.
Expand Down Expand Up @@ -462,7 +462,7 @@ Implicit Types (D : set T) (f : T -> \bar R).
Lemma summable_pinfty D f : summable D f -> forall x, D x -> `| f x | < +oo.
Proof.
move=> Dfoo x Dx; apply: le_lt_trans Dfoo.
rewrite (esumID [set x])// setI1 mem_set// esum_set1// lee_addl//.
rewrite (esumID [set x])// setI1 mem_set// esum_set1// leeDl//.
exact: esum_ge0.
Qed.

Expand All @@ -489,13 +489,13 @@ Proof. by move=> Df; rewrite summableN; exact: summableD. Qed.
Lemma summable_funepos D f : summable D f -> summable D f^\+.
Proof.
apply: le_lt_trans; apply le_esum => t Dt.
by rewrite -/((abse \o f) t) fune_abse gee0_abs// lee_addl.
by rewrite -/((abse \o f) t) fune_abse gee0_abs// leeDl.
Qed.

Lemma summable_funeneg D f : summable D f -> summable D f^\-.
Proof.
apply: le_lt_trans; apply le_esum => t Dt.
by rewrite -/((abse \o f) t) fune_abse gee0_abs// lee_addr.
by rewrite -/((abse \o f) t) fune_abse gee0_abs// leeDr.
Qed.

End summable_lemmas.
Expand Down Expand Up @@ -620,9 +620,9 @@ have /eqP : esum D (f \- g)^\+ + esum_posneg D g = esum D (f \- g)^\- + esum_pos
by move=> t Dt; rewrite le_maxr lexx orbT.
by move=> t Dt; rewrite le_maxr lexx orbT.
apply eq_esum => i Di; have [fg|fg] := leP 0 (f i - g i).
rewrite max_r 1?lee_oppl ?oppe0// add0e subeK//.
rewrite max_r 1?leeNl ?oppe0// add0e subeK//.
by rewrite fin_num_abs (summable_pinfty Dg).
rewrite add0e max_l; last by rewrite lee_oppr oppe0 ltW.
rewrite add0e max_l; last by rewrite leeNr oppe0 ltW.
rewrite fin_num_oppeB//; last by rewrite fin_num_abs (summable_pinfty Dg).
by rewrite -addeA addeCA addeA subeK// fin_num_abs (summable_pinfty Df).
rewrite [X in _ == X -> _]addeC -sube_eq; last 2 first.
Expand Down
2 changes: 1 addition & 1 deletion theories/hoelder.v
Original file line number Diff line number Diff line change
Expand Up @@ -467,7 +467,7 @@ rewrite [leRHS](_ : _ = ('N_p%:E[f] + 'N_p%:E[g]) *
- rewrite fin_num_poweR// -powR_Lnorm ?gt_eqF// fin_num_poweR//.
by rewrite ge0_fin_numE ?Lnorm_ge0.
- by rewrite ge0_adde_def// inE Lnorm_ge0.
apply: lee_add.
apply: leeD.
- pose h := (@powR R ^~ (p - 1) \o normr \o (f \+ g))%R; pose i := (f \* h)%R.
rewrite [leLHS](_ : _ = 'N_1[i]%R); last first.
rewrite Lnorm1; apply: eq_integral => x _.
Expand Down
52 changes: 26 additions & 26 deletions theories/lebesgue_integral.v
Original file line number Diff line number Diff line change
Expand Up @@ -840,7 +840,7 @@ Proof. by split=> x; rewrite subr_ge0 fg. Qed.
Lemma le_sintegral : (sintegral m f <= sintegral m g)%E.
Proof.
have gfgf : g =1 f \+ (g \- f) by move=> x /=; rewrite addrC subrK.
by rewrite (eq_sintegral _ _ gfgf) sintegralD// lee_addl // sintegral_ge0.
by rewrite (eq_sintegral _ _ gfgf) sintegralD// leeDl // sintegral_ge0.
Qed.

End le_sintegral.
Expand Down Expand Up @@ -1215,7 +1215,7 @@ rewrite le_eqVlt => /predU1P[|] mufoo; last first.
have : forall x, cvgn (g^~ x) -> (G x <= limn (g ^~ x))%R.
move=> x cg; rewrite -lee_fin -(EFin_lim cg).
by have /cvg_lim gxfx := @gf x; rewrite (le_trans (Gf _))// gxfx.
move=> /(nd_sintegral_lim_lemma mu nd_g)/(lee_add2r e%:num%:E).
move=> /(nd_sintegral_lim_lemma mu nd_g)/(leeD2r e%:num%:E).
by apply: le_trans; exact: ltW.
suff : limn (sintegral mu \o g) = +oo.
by move=> ->; rewrite -ge0_integralTE// mufoo.
Expand Down Expand Up @@ -1873,7 +1873,7 @@ have -> : A `\` D = (A `\` K) `|` (K `\` D).
apply: le_lt_trans.
apply: measureU2; apply: measurableD => //; apply: closed_measurable.
by apply: compact_closed; first exact: Rhausdorff.
by rewrite [_ eps]splitr EFinD lte_add.
by rewrite [_ eps]splitr EFinD lteD.
Qed.

End lusin.
Expand Down Expand Up @@ -2853,7 +2853,7 @@ apply/eqP; rewrite eq_le; apply/andP; split; last first.
by rewrite measure_addE; exact: nneseries_split.
rewrite integral_measure_add//; congr (_ + _).
by rewrite -ge0_integral_measure_sum.
by apply: lee_addl; exact: integral_ge0.
by apply: leeDl; exact: integral_ge0.
rewrite ge0_integralE//=; apply: ub_ereal_sup => /= _ [g /= gf] <-.
rewrite -integralT_nnsfun (integral_measure_series_nnsfun _ mD).
apply: lee_nneseries => n _.
Expand Down Expand Up @@ -2906,7 +2906,7 @@ move=> mf f0 AB; rewrite -(setDUK AB) integral_setU//; last 4 first.
- by rewrite setDUK.
- by move=> x; rewrite setDUK//; exact: f0.
- by rewrite disj_set2E setDIK.
by apply: lee_addl; apply: integral_ge0 => x [Bx _]; exact: f0.
by apply: leeDl; apply: integral_ge0 => x [Bx _]; exact: f0.
Qed.

Lemma integral_set0 (f : T -> \bar R) : \int[mu]_(x in set0) f x = 0.
Expand Down Expand Up @@ -3071,8 +3071,8 @@ rewrite ge0_integralD // in foo; last 2 first.
- exact: measurable_funepos.
- exact: measurable_funeneg.
apply: ltpinfty_adde_def.
- by apply: le_lt_trans foo; rewrite lee_addl// integral_ge0.
- by rewrite inE (@le_lt_trans _ _ 0)// lee_oppl oppe0 integral_ge0.
- by apply: le_lt_trans foo; rewrite leeDl// integral_ge0.
- by rewrite inE (@le_lt_trans _ _ 0)// leeNl oppe0 integral_ge0.
Qed.

Lemma integrable_funepos f : mu_int f -> mu_int f^\+.
Expand All @@ -3082,7 +3082,7 @@ move=> /integrableP[Df foo]; apply/integrableP; split.
apply: le_lt_trans foo; apply: ge0_le_integral => //.
- by apply/measurableT_comp => //; exact: measurable_funepos.
- exact/measurableT_comp.
- by move=> t Dt; rewrite -/((abse \o f) t) fune_abse gee0_abs// lee_addl.
- by move=> t Dt; rewrite -/((abse \o f) t) fune_abse gee0_abs// leeDl.
Qed.

Lemma integrable_funeneg f : mu_int f -> mu_int f^\-.
Expand All @@ -3092,7 +3092,7 @@ move=> /integrableP[Df foo]; apply/integrableP; split.
apply: le_lt_trans foo; apply: ge0_le_integral => //.
- by apply/measurableT_comp => //; exact: measurable_funeneg.
- exact/measurableT_comp.
- by move=> t Dt; rewrite -/((abse \o f) t) fune_abse gee0_abs// lee_addr.
- by move=> t Dt; rewrite -/((abse \o f) t) fune_abse gee0_abs// leeDr.
Qed.

Lemma integral_funeneg_lt_pinfty f : mu_int f ->
Expand All @@ -3103,9 +3103,9 @@ move=> /integrableP[mf]; apply: le_lt_trans; apply: ge0_le_integral => //.
- exact: measurableT_comp.
- move=> x Dx; have [fx0|/ltW fx0] := leP (f x) 0.
rewrite lee0_abs// /funeneg.
by move: fx0; rewrite -{1}oppe0 -lee_oppr => /max_idPl ->.
by move: fx0; rewrite -{1}oppe0 -leeNr => /max_idPl ->.
rewrite gee0_abs// /funeneg.
by move: (fx0); rewrite -{1}oppe0 -lee_oppl => /max_idPr ->.
by move: (fx0); rewrite -{1}oppe0 -leeNl => /max_idPr ->.
Qed.

Lemma integral_funepos_lt_pinfty f : mu_int f ->
Expand All @@ -3116,7 +3116,7 @@ move=> /integrableP[mf]; apply: le_lt_trans; apply: ge0_le_integral => //.
- exact: measurableT_comp.
- move=> x Dx; have [fx0|/ltW fx0] := leP (f x) 0.
rewrite lee0_abs// /funepos.
by move: (fx0) => /max_idPr ->; rewrite -lee_oppr oppe0.
by move: (fx0) => /max_idPr ->; rewrite -leeNr oppe0.
by rewrite gee0_abs// /funepos; move: (fx0) => /max_idPl ->.
Qed.

Expand All @@ -3129,7 +3129,7 @@ rewrite fin_numElt; apply/andP; split.
case: fi => mf; apply: le_lt_trans; apply: ge0_le_integral => //.
- exact/measurable_funeneg.
- exact/measurableT_comp.
- by move=> x Dx; rewrite -/((abse \o f) x) (fune_abse f) lee_addr.
- by move=> x Dx; rewrite -/((abse \o f) x) (fune_abse f) leeDr.
Qed.

Lemma integrable_pos_fin_num f :
Expand All @@ -3141,7 +3141,7 @@ rewrite fin_numElt; apply/andP; split.
case: fi => mf; apply: le_lt_trans; apply: ge0_le_integral => //.
- exact/measurable_funepos.
- exact/measurableT_comp.
- by move=> x Dx; rewrite -/((abse \o f) x) (fune_abse f) lee_addl.
- by move=> x Dx; rewrite -/((abse \o f) x) (fune_abse f) leeDl.
Qed.

End integrable_theory.
Expand Down Expand Up @@ -3981,15 +3981,15 @@ Lemma integral_fune_lt_pinfty (f : T -> \bar R) :
Proof.
move=> intf; rewrite (funeposneg f) integralB//;
[|exact: integrable_funepos|exact: integrable_funeneg].
rewrite lte_add_pinfty ?integral_funepos_lt_pinfty// lte_oppl ltNye_eq.
rewrite lte_add_pinfty ?integral_funepos_lt_pinfty// lteNl ltNye_eq.
by rewrite integrable_neg_fin_num.
Qed.

Lemma integral_fune_fin_num (f : T -> \bar R) :
mu.-integrable D f -> \int[mu]_(x in D) f x \is a fin_num.
Proof.
move=> h; apply/fin_numPlt; rewrite integral_fune_lt_pinfty// andbC/= -/(- +oo).
rewrite lte_oppl -integralN; first exact/integral_fune_lt_pinfty/integrableN.
rewrite lteNl -integralN; first exact/integral_fune_lt_pinfty/integrableN.
by rewrite fin_num_adde_defl// fin_numN integrable_neg_fin_num.
Qed.

Expand Down Expand Up @@ -4169,19 +4169,19 @@ move: (f_f Dx); case: (f x) => [r|/=|/=].
- move/cvgeyPge/(_ (fine (g x) + 1)%R) => [n _]/(_ _ (leqnn n))/= h.
have : (fine (g x) + 1)%:E <= g x.
by rewrite (le_trans h)// (le_trans _ (absfg n Dx))// lee_abs.
by case: (g x) (fing Dx) => [r _| |]//; rewrite leNgt EFinD lte_addl ?lte01.
by case: (g x) (fing Dx) => [r _| |]//; rewrite leNgt EFinD lteDl ?lte01.
- move/cvgeNyPle/(_ (- (fine (g x) + 1))%R) => [n _]/(_ _ (leqnn n)) h.
have : (fine (g x) + 1)%:E <= g x.
move: h; rewrite EFinN lee_oppr => /le_trans ->//.
move: h; rewrite EFinN leeNr => /le_trans ->//.
by rewrite (le_trans _ (absfg n Dx))// -abseN lee_abs.
by case: (g x) (fing Dx) => [r _| |]//; rewrite leNgt EFinD lte_addl ?lte01.
by case: (g x) (fing Dx) => [r _| |]//; rewrite leNgt EFinD lteDl ?lte01.
Qed.

Let gg_ n x : D x -> 0 <= 2%:E * g x - g_ n x.
Proof.
move=> Dx; rewrite subre_ge0; last by rewrite fin_numM// fing.
rewrite -(fineK (fing Dx)) -EFinM mulr_natl mulr2n /g_.
rewrite (le_trans (lee_abs_sub _ _))// [in leRHS]EFinD lee_add//.
rewrite (le_trans (lee_abs_sub _ _))// [in leRHS]EFinD leeD//.
by rewrite fineK// ?fing// absfg.
have f_fx : `|(f_ n x)| @[n --> \oo] --> `|f x| by apply: cvg_abse; exact: f_f.
move/cvg_lim : (f_fx) => <-//.
Expand Down Expand Up @@ -4235,7 +4235,7 @@ rewrite [X in _ <= X -> _](_ : _ = \int[mu]_(x in D) (2%:E * g x) + -
- by move=> x Dx; rewrite /= abse_id.
rewrite limn_einf_shift // -limn_einfN; congr (_ + limn_einf _).
by rewrite funeqE => n /=; rewrite -integral_ge0N// => x Dx; rewrite /g_.
rewrite addeC -lee_subl_addr// subee// lee_oppr oppe0 => lim_ge0.
rewrite addeC -lee_subl_addr// subee// leeNr oppe0 => lim_ge0.
by apply/limn_esup_le_cvg => // n; rewrite integral_ge0// => x _; rewrite /g_.
Qed.

Expand Down Expand Up @@ -5066,7 +5066,7 @@ exists h; split => //; rewrite [eps%:num]splitr; apply: le_lt_trans.
rewrite integralD//; first last.
- by apply: integrable_abse; under eq_fun do rewrite EFinB; apply: integrableB.
- by apply: integrable_abse; under eq_fun do rewrite EFinB; apply: integrableB.
rewrite EFinD lte_add// -(setDKU AE) integral_setU => //; first last.
rewrite EFinD lteD// -(setDKU AE) integral_setU => //; first last.
- by rewrite /disj_set setDKI.
- rewrite setDKU //; do 2 apply: measurableT_comp => //.
exact: measurable_funB.
Expand Down Expand Up @@ -5507,7 +5507,7 @@ apply: le_lt_trans (fubini1a.1 imf); apply: ge0_le_integral => //.
- apply: measurableT_comp => //.
by apply: measurable_funepos => //; exact: measurableT_comp.
- by apply: measurableT_comp => //; exact/measurableT_comp.
- by move=> y _; rewrite gee0_abs// -/((abse \o f) (x, y)) fune_abse lee_addl.
- by move=> y _; rewrite gee0_abs// -/((abse \o f) (x, y)) fune_abse leeDl.
Qed.

Let integrable_Fminus : m1.-integrable setT Fminus.
Expand All @@ -5523,7 +5523,7 @@ apply: le_lt_trans (fubini1a.1 imf); apply: ge0_le_integral => //.
+ apply: measurableT_comp => //; apply: measurable_funeneg => //.
exact: measurableT_comp.
+ by apply: measurableT_comp => //; exact: measurableT_comp.
+ by move=> y _; rewrite gee0_abs// -/((abse \o f) (x, y)) fune_abse lee_addr.
+ by move=> y _; rewrite gee0_abs// -/((abse \o f) (x, y)) fune_abse leeDr.
Qed.

Lemma integrable_fubini_F : m1.-integrable setT F.
Expand Down Expand Up @@ -5562,7 +5562,7 @@ apply: le_lt_trans (fubini1b.1 imf); apply: ge0_le_integral => //.
- apply: measurableT_comp => //.
by apply: measurable_funepos => //; exact: measurableT_comp.
- by apply: measurableT_comp => //; exact: measurableT_comp.
- by move=> x _; rewrite gee0_abs// -/((abse \o f) (x, y)) fune_abse lee_addl.
- by move=> x _; rewrite gee0_abs// -/((abse \o f) (x, y)) fune_abse leeDl.
Qed.

Let integrable_Gminus : m2.-integrable setT Gminus.
Expand All @@ -5578,7 +5578,7 @@ apply: le_lt_trans (fubini1b.1 imf); apply: ge0_le_integral => //.
+ apply: measurableT_comp => //.
by apply: measurable_funeneg => //; exact: measurableT_comp.
+ by apply: measurableT_comp => //; exact: measurableT_comp.
+ by move=> x _; rewrite gee0_abs// -/((abse \o f) (x, y)) fune_abse lee_addr.
+ by move=> x _; rewrite gee0_abs// -/((abse \o f) (x, y)) fune_abse leeDr.
Qed.

Lemma fubini1 : \int[m1]_x F x = \int[m1 \x m2]_z f z.
Expand Down
Loading

0 comments on commit e971940

Please sign in to comment.