From f5bad79b4be145411baee52665262fd1fc3c5f00 Mon Sep 17 00:00:00 2001 From: Reynald Affeldt Date: Tue, 9 Jan 2024 10:58:17 +0900 Subject: [PATCH] upd misc/uniform_bigO.v --- theories/misc/uniform_bigO.v | 11 +++++------ 1 file changed, 5 insertions(+), 6 deletions(-) diff --git a/theories/misc/uniform_bigO.v b/theories/misc/uniform_bigO.v index eee8016e1..d8624a9fd 100644 --- a/theories/misc/uniform_bigO.v +++ b/theories/misc/uniform_bigO.v @@ -2,8 +2,8 @@ Require Import Reals. From Coq Require Import ssreflect ssrfun ssrbool. From mathcomp Require Import ssrnat eqtype choice fintype bigop order ssralg ssrnum. -Require Import boolp reals Rstruct Rbar. -Require Import classical_sets posnum topology normedtype landau. +From mathcomp Require Import boolp reals Rstruct ereal. +From mathcomp Require Import classical_sets signed topology normedtype landau. Set Implicit Arguments. Unset Strict Implicit. @@ -55,6 +55,7 @@ rewrite !Rsqr_pow2 !RpowE; apply/andP; split. wlog lex12 : x / (`|x.1| <= `|x.2|). move=> ler_norm; case: (lerP `|x.1| `|x.2|) => [/ler_norm|] //. rewrite lt_leAnge => /andP [lex21 _]. + rewrite RplusE. by rewrite addrC [`|_|]maxC (ler_norm (x.2, x.1)). rewrite [`|_|]max_r // -[X in X * _]ger0_norm // -normrM. rewrite -sqrtr_sqr ler_wsqrtr // exprMn sqr_sqrtr // mulr_natl mulr2n ler_add2r. @@ -90,14 +91,12 @@ Proof. move=> /OuP_to_ex [_/posnumP[a] [_/posnumP[C] fOg]]. apply/eqOP; near=> k; near=> x; apply: le_trans (fOg _ _ _ _) _; last 2 first. - by near: x; exists (setT, P); [split=> //=; apply: withinT|move=> ? []]. -- rewrite ler_pmul => //; near: k; exists C%:num; split. - exact: posnum_real. - by move=> ?; rewrite lt_leAnge => /andP[]. +- by rewrite ler_pmul. - near: x; exists (setT, ball (0 : R^o * R^o) a%:num). by split=> //=; rewrite /within; near=> x =>_; near: x; apply: nbhsx_ballx. move=> x [_ [/=]]; rewrite -ball_normE /= distrC subr0 distrC subr0. by move=> ??; rewrite lt_maxl; apply/andP. -Grab Existential Variables. all: end_near. Qed. +Unshelve. all: by end_near. Qed. Lemma OuO_to_P f g : OuO f g -> OuP f g. Proof.