diff --git a/CHANGELOG_UNRELEASED.md b/CHANGELOG_UNRELEASED.md index 2f9f22edf..3aacf7fb5 100644 --- a/CHANGELOG_UNRELEASED.md +++ b/CHANGELOG_UNRELEASED.md @@ -69,10 +69,24 @@ - in `measure.v`: + definition `ess_sup`, lemma `ess_sup_ge0` +- in `convex.v`: + + definition `convex_function` + +- in `exp.v`: + + lemmas `ln_le0`, `ger_powR`, `ler1_powR`, `le1r_powR`, `ger1_powR`, + `ge1r_powR`, `ge1r_powRZ`, `le1r_powRZ` + +- in `hoelder.v`: + + lemmas `Lnorm_counting`, `hoelder2`, `convex_powR` + +- in `lebesgue_integral.v`: + + lemma `ge0_integral_count` - in `exp.v`: + lemma `gt0_ltr_powR` + lemma `powR_injective` +- in `mathcomp_extra.v`: + + lemma `gerBl` ### Changed diff --git a/classical/mathcomp_extra.v b/classical/mathcomp_extra.v index 607722b63..c2ead7e4a 100644 --- a/classical/mathcomp_extra.v +++ b/classical/mathcomp_extra.v @@ -1438,3 +1438,7 @@ Proof. by move=> i0r Pi0 ?; apply: le_trans (le_bigmax_seq _ _ _). Qed. End bigmax_seq. Arguments le_bigmax_seq {d T} x {I r} i0 P. + +(* NB: PR 1079 to MathComp in progress *) +Lemma gerBl {R : numDomainType} (x y : R) : 0 <= y -> x - y <= x. +Proof. by move=> y0; rewrite ler_subl_addl ler_addr. Qed. diff --git a/theories/convex.v b/theories/convex.v index 5eff17447..7b4047c6c 100644 --- a/theories/convex.v +++ b/theories/convex.v @@ -149,6 +149,10 @@ Proof. by []. Qed. End conv_realDomainType. +Definition convex_function (R : realType) (D : set R) (f : R -> R^o) := + forall (t : {i01 R}), {in D &, forall (x y : R^o), (f (x <| t |> y) <= f x <| t |> f y)%R}. +(* TODO: generalize to convTypes once we have ordered convTypes (mathcomp 2) *) + (* ref: http://www.math.wisc.edu/~nagel/convexity.pdf *) Section twice_derivable_convex. Context {R : realType}. diff --git a/theories/exp.v b/theories/exp.v index e5ac2a6c4..29d0656bf 100644 --- a/theories/exp.v +++ b/theories/exp.v @@ -586,6 +586,12 @@ Proof. by move=> x_gt1; rewrite -ltr_expR expR0 lnK // qualifE (lt_trans _ x_gt1). Qed. +Lemma ln_le0 (x : R) : x <= 1 -> ln x <= 0. +Proof. +have [x0|x0 x1] := leP x 0; first by rewrite ln0. +by rewrite -ler_expR expR0 lnK. +Qed. + Lemma continuous_ln x : 0 < x -> {for x, continuous ln}. Proof. move=> x_gt0; rewrite -[x]lnK//. @@ -658,6 +664,12 @@ Qed. Lemma powR_eq0_eq0 x p : x `^ p = 0 -> x = 0. Proof. by move=> /eqP; rewrite powR_eq0 => /andP[/eqP]. Qed. +Lemma ger_powR a : 0 < a <= 1 -> {homo powR a : x y /~ y <= x}. +Proof. +move=> /andP[a0 a1] x y xy. +by rewrite /powR gt_eqF// ler_expR ler_wnmul2r// ln_le0. +Qed. + Lemma ler_powR a : 1 <= a -> {homo powR a : x y / x <= y}. Proof. move=> a1 x y xy. @@ -673,6 +685,28 @@ by move/expR_inj/mulfI => /(_ (negbT (gt_eqF r0))); apply: ln_inj; rewrite posrE lt_neqAle eq_sym (xneq0,yneq0). Qed. +Lemma ler1_powR a r : 1 <= a -> r <= 1 -> a >= a `^ r. +Proof. +by move=> a1 r1; rewrite (le_trans (ler_powR _ r1)) ?powRr1// (le_trans _ a1). +Qed. + +Lemma le1r_powR a r : 1 <= a -> 1 <= r -> a <= a `^ r. +Proof. +by move=> a1 r1; rewrite (le_trans _ (ler_powR _ r1)) ?powRr1// (le_trans _ a1). +Qed. + +Lemma ger1_powR a r : 0 < a <= 1 -> r <= 1 -> a <= a `^ r. +Proof. +move=> /andP[a0 _a1] r1. +by rewrite (le_trans _ (ger_powR _ r1)) ?powRr1 ?a0// ltW. +Qed. + +Lemma ge1r_powR a r : 0 < a <= 1 -> 1 <= r -> a >= a `^ r. +Proof. +move=> /andP[a0 a1] r1. +by rewrite (le_trans (ger_powR _ r1)) ?powRr1 ?a0// ltW. +Qed. + Lemma ge0_ler_powR (r : R) : 0 <= r -> {in Num.nneg &, {homo powR ^~ r : x y / x <= y >-> x <= y}}. Proof. @@ -701,6 +735,20 @@ case: (ltgtP x 0) => // x0 _; case: (ltgtP y 0) => //= y0 _; do ? by rewrite lnM// mulrDr expRD. Qed. +Lemma ge1r_powRZ x y r : 0 < x <= 1 -> 0 <= y -> 1 <= r -> + (x * y) `^ r <= x * (y `^ r). +Proof. +move=> /andP[x0 x1] y0 r1. +by rewrite (powRM _ (ltW _))// ler_wpmul2r ?powR_ge0// ge1r_powR// x0. +Qed. + +Lemma le1r_powRZ x y r : x >= 1 -> 0 <= y -> 1 <= r -> + (x * y) `^ r >= x * (y `^ r). +Proof. +move=> x1 y0 r1. +by rewrite (powRM _ (le_trans _ x1))// ler_wpmul2r ?powR_ge0// le1r_powR// x0. +Qed. + Lemma powRrM (x y z : R) : x `^ (y * z) = (x `^ y) `^ z. Proof. rewrite /powR mulf_eq0; have [_|xN0] := eqVneq x 0. diff --git a/theories/hoelder.v b/theories/hoelder.v index 2d262c10f..bf5c85465 100644 --- a/theories/hoelder.v +++ b/theories/hoelder.v @@ -5,6 +5,7 @@ From mathcomp Require Import mathcomp_extra boolp classical_sets functions. From mathcomp Require Import cardinality fsbigop . Require Import signed reals ereal topology normedtype sequences real_interval. Require Import esum measure lebesgue_measure lebesgue_integral numfun exp. +Require Import convex itv. (******************************************************************************) (* Hoelder's Inequality *) @@ -71,8 +72,8 @@ Qed. Lemma eq_Lnorm p f g : f =1 g -> 'N_p[f] = 'N_p[g]. Proof. by move=> fg; congr Lnorm; exact/funext. Qed. -Lemma Lnorm_eq0_eq0 r f : (0 < r)%R -> measurable_fun setT f -> 'N_r%:E[f] = 0 -> - ae_eq mu [set: T] (fun t => (`|f t| `^ r)%:E) (cst 0). +Lemma Lnorm_eq0_eq0 r f : (0 < r)%R -> measurable_fun setT f -> + 'N_r%:E[f] = 0 -> ae_eq mu [set: T] (fun t => (`|f t| `^ r)%:E) (cst 0). Proof. move=> r0 mf/=; rewrite (gt_eqF r0) => /poweR_eq0_eq0 fp. apply/ae_eq_integral_abs => //=. @@ -89,6 +90,21 @@ Hint Extern 0 (0 <= Lnorm _ _ _) => solve [apply: Lnorm_ge0] : core. Notation "'N[ mu ]_ p [ f ]" := (Lnorm mu p f). +Section lnorm. +(* lnorm is just Lnorm applied to counting *) +Context d {T : measurableType d} {R : realType}. + +Local Notation "'N_ p [ f ]" := (Lnorm [the measure _ _ of counting] p f). + +Lemma Lnorm_counting p (f : R^nat) : (0 < p)%R -> + 'N_p%:E [f] = (\sum_(k p0 /=; rewrite gt_eqF// ge0_integral_count// => k. +by rewrite lee_fin powR_ge0. +Qed. + +End lnorm. + Section hoelder. Context d {T : measurableType d} {R : realType}. Variable mu : {measure set T -> \bar R}. @@ -230,3 +246,87 @@ by rewrite 2!mule1 -EFinD pq. Qed. End hoelder. + +Section hoelder2. +Context {R : realType}. +Local Open Scope ring_scope. + +Lemma hoelder2 (a1 a2 b1 b2 : R) (p q : R) : + 0 <= a1 -> 0 <= a2 -> 0 <= b1 -> 0 <= b2 -> + 0 < p -> 0 < q -> p^-1 + q^-1 = 1 -> + a1 * b1 + a2 * b2 <= (a1 `^ p + a2 `^ p) `^ p^-1 * + (b1 `^ q + b2 `^ q) `^ q^-1. +Proof. +move=> a10 a20 b10 b20 p0 q0 pq. +pose f a b n : R := match n with 0%nat => a | 1%nat => b | _ => 0 end. +have mf a b : measurable_fun setT (f a b) by []. +have := hoelder [the measure _ _ of counting] (mf a1 a2) (mf b1 b2) p0 q0 pq. +rewrite !Lnorm_counting//. +rewrite (nneseries_split 2); last by move=> k; rewrite lee_fin powR_ge0. +rewrite ereal_series_cond eseries0 ?adde0; last first. + by move=> [//|] [//|n _]; rewrite /f /= mulr0 normr0 powR0. +rewrite 2!big_ord_recr /= big_ord0 add0e powRr1 ?normr_ge0 ?powRr1 ?normr_ge0//. +rewrite (nneseries_split 2); last by move=> k; rewrite lee_fin powR_ge0. +rewrite ereal_series_cond eseries0 ?adde0; last first. + by move=> [//|] [//|n _]; rewrite /f /= normr0 powR0// gt_eqF. +rewrite 2!big_ord_recr /= big_ord0 add0e -EFinD poweR_EFin. +rewrite (nneseries_split 2); last by move=> k; rewrite lee_fin powR_ge0. +rewrite ereal_series_cond eseries0 ?adde0; last first. + by move=> [//|] [//|n _]; rewrite /f /= normr0 powR0// gt_eqF. +rewrite 2!big_ord_recr /= big_ord0 add0e -EFinD poweR_EFin. +rewrite -EFinM invr1 powRr1; last by rewrite addr_ge0. +do 2 (rewrite ger0_norm; last by rewrite mulr_ge0). +by do 4 (rewrite ger0_norm; last by []). +Qed. + +End hoelder2. + +Section convex_powR. +Context {R : realType}. +Local Open Scope ring_scope. + +Lemma convex_powR p : 1 <= p -> + convex_function `[0, +oo[%classic (@powR R ^~ p). +Proof. +move=> p1 t x y /[!inE] /= /[!in_itv] /= /[!andbT] x_ge0 y_ge0. +have p0 : 0 < p by rewrite (lt_le_trans _ p1). +rewrite !convRE; set w1 := `1-(t%:inum); set w2 := t%:inum. +have [->|w10] := eqVneq w1 0. + rewrite !mul0r !add0r; have [->|w20] := eqVneq w2 0. + by rewrite !mul0r powR0// gt_eqF. + by rewrite ge1r_powRZ// /w2 lt_neqAle eq_sym w20/=; apply/andP. +have [->|w20] := eqVneq w2 0. + rewrite !mul0r !addr0 ge1r_powRZ// onem_le1// andbT. + by rewrite lt_neqAle eq_sym onem_ge0// andbT. +have [->|p_neq1] := eqVneq p 1. + by rewrite !powRr1// addr_ge0// mulr_ge0// /w2 ?onem_ge0. +have {p_neq1} {}p1 : 1 < p by rewrite lt_neqAle eq_sym p_neq1. +pose q := p / (p - 1). +have q1 : 1 <= q by rewrite /q ler_pdivl_mulr// ?mul1r ?gerBl// subr_gt0. +have q0 : 0 < q by rewrite (lt_le_trans _ q1). +have pq1 : p^-1 + q^-1 = 1. + rewrite /q invf_div -{1}(div1r p) -mulrDl addrCA subrr addr0. + by rewrite mulfV// gt_eqF. +rewrite -(@powRr1 _ (w1 * x `^ p + w2 * y `^ p)); last first. + by rewrite addr_ge0// mulr_ge0// ?powR_ge0// /w2 ?onem_ge0// itv_ge0. +have -> : 1 = p^-1 * p by rewrite mulVf ?gt_eqF. +rewrite powRrM (ge0_ler_powR (le_trans _ (ltW p1)))//. +- by rewrite nnegrE addr_ge0// mulr_ge0 /w2 ?onem_ge0. +- by rewrite nnegrE powR_ge0. +have -> : w1 * x + w2 * y = w1 `^ (p^-1) * w1 `^ (q^-1) * x + + w2 `^ (p^-1) * w2 `^ (q^-1) * y. + rewrite -!powRD pq1; [|exact/implyP..]. + by rewrite !powRr1// /w2 ?onem_ge0. +apply: (@le_trans _ _ ((w1 * x `^ p + w2 * y `^ p) `^ (p^-1) * + (w1 + w2) `^ q^-1)). + pose a1 := w1 `^ p^-1 * x. pose a2 := w2 `^ p^-1 * y. + pose b1 := w1 `^ q^-1. pose b2 := w2 `^ q^-1. + have : a1 * b1 + a2 * b2 <= (a1 `^ p + a2 `^ p) `^ p^-1 * + (b1 `^ q + b2 `^ q) `^ q^-1. + by apply: hoelder2 => //; rewrite ?mulr_ge0 ?powR_ge0. + rewrite ?powRM ?powR_ge0 -?powRrM ?mulVf ?powRr1 ?gt_eqF ?onem_ge0/w2//. + by rewrite mulrAC (mulrAC _ y) => /le_trans; exact. +by rewrite {2}/w1 {2}/w2 subrK powR1 mulr1. +Qed. + +End convex_powR. diff --git a/theories/lebesgue_integral.v b/theories/lebesgue_integral.v index ff4ab41cf..8eaa1ba7c 100644 --- a/theories/lebesgue_integral.v +++ b/theories/lebesgue_integral.v @@ -3945,11 +3945,22 @@ transitivity (\int[mseries (fun n => [the measure _ _ of \d_ n]) O]_t a t). rewrite (@integral_measure_series _ _ R (fun n => [the measure _ _ of \d_ n]) setT)//=. - by apply: eq_eseriesr=> i _; rewrite integral_dirac//= indicE mem_set// mul1e. - move=> n; apply/integrableP; split=> [//|]. - by rewrite integral_dirac//= indicE mem_set// mul1e; exact: (summable_pinfty sa). + by rewrite integral_dirac//= indicE mem_set// mul1e (summable_pinfty sa). - by apply: summable_integral_dirac => //; exact: summable_funeneg. - by apply: summable_integral_dirac => //; exact: summable_funepos. Qed. +Lemma ge0_integral_count (a : nat -> \bar R) : (forall k, 0 <= a k) -> + \int[counting]_t (a t) = \sum_(k sa. +transitivity (\int[mseries (fun n => [the measure _ _ of \d_ n]) O]_t a t). + congr (integral _ _ _); apply/funext => A. + by rewrite /= counting_dirac. +rewrite (@ge0_integral_measure_series _ _ R (fun n => [the measure _ _ of \d_ n]) setT)//=. +by apply: eq_eseriesr=> i _; rewrite integral_dirac//= indicE mem_set// mul1e. +Qed. + End integral_counting. Section subadditive_countable.