diff --git a/theories/lebesgue_integral.v b/theories/lebesgue_integral.v index 8eaa1ba7c..e6adb8d98 100644 --- a/theories/lebesgue_integral.v +++ b/theories/lebesgue_integral.v @@ -155,6 +155,15 @@ Lemma mfun_cst x : @cst_mfun x =1 cst x. Proof. by []. Qed. HB.instance Definition _ := @isMeasurableFun.Build _ _ rT (@normr rT rT) (@measurable_normr rT setT). +HB.instance Definition _ := isMeasurableFun.Build _ _ rT + (@expR rT) (@measurable_expR rT). + +Let measurableT_comp_subproof {rT' : realType} (f : {mfun rT >-> rT'}) (g : {mfun aT >-> rT}) : + measurable_fun setT (f \o g). +Proof. by apply: measurableT_comp; last apply: @measurable_funP _ _ _ g. Qed. + +HB.instance Definition _ {rT' : realType} (f : {mfun rT >-> rT'}) (g : {mfun aT >-> rT}) := isMeasurableFun.Build _ _ _ (f \o g) (@measurableT_comp_subproof _ _ _). + End mfun. Section ring.