diff --git a/theories/function_spaces.v b/theories/function_spaces.v index 239114b4f..a53f552e9 100644 --- a/theories/function_spaces.v +++ b/theories/function_spaces.v @@ -159,7 +159,6 @@ rewrite eqEsubset; split => y //; exists (dfwith (fun=> point) i y) => //. by rewrite dfwithin. Qed. - Lemma dfwith_continuous g (i : I) : continuous (@dfwith I K g i). Proof. move=> z U [] P [] [] Q QfinP <- [] V JV Vpz. @@ -404,7 +403,7 @@ End product_spaces. (**md the uniform topologies type *) Section fct_Uniform. -Variable (T : choiceType) (U : uniformType). +Variables (T : choiceType) (U : uniformType). Definition fct_ent := filter_from (@entourage U) (fun P => [set fg | forall t : T, P (fg.1 t, fg.2 t)]). @@ -444,7 +443,6 @@ Definition arrow_uniform_type : Type := T -> U. #[export] HB.instance Definition _ := isUniform.Build arrow_uniform_type fct_ent_filter fct_ent_refl fct_ent_inv fct_ent_split. -#[export] HB.instance Definition _ := Uniform.on arrow_uniform_type. End fct_Uniform. Lemma cvg_fct_entourageP (T : choiceType) (U : uniformType) @@ -580,7 +578,7 @@ Notation "{ 'uniform' , F --> f }" := (cvg_to F (nbhs (f : {uniform _ -> _}))) : classical_set_scope. Definition sigL_arrow {U : choiceType} (A : set U) (V : uniformType) : - (U -> V) -> arrow_uniform_type A V := (@sigL _ V A). + (U -> V) -> arrow_uniform_type A V := @sigL _ V A. HB.instance Definition _ (U : choiceType) (A : set U) (V : uniformType) := Uniform.copy {uniform` A -> V} (weak_topology (@sigL_arrow _ A V)).