Skip to content

Commit

Permalink
Fix the definition of mmorphism following math-comp/math-comp#1296
Browse files Browse the repository at this point in the history
  • Loading branch information
pi8027 committed Nov 26, 2024
1 parent 31e1cb6 commit 5a3902c
Showing 1 changed file with 4 additions and 4 deletions.
8 changes: 4 additions & 4 deletions src/monalg.v
Original file line number Diff line number Diff line change
Expand Up @@ -127,8 +127,8 @@ Module Exports. HB.reexport. End Exports.
Export Exports.

(* -------------------------------------------------------------------- *)
Definition mmorphism (M : monomType) (S : ringType) (f : M -> S) :=
{morph f : x y / (x * y)%M >-> (x * y)%R} * (f 1%M = 1) : Prop.
Definition mmorphism (M : monomType) (S : ringType) (f : M -> S) : Prop :=
(f 1%M = 1) * {morph f : x y / (x * y)%M >-> (x * y)%R}.

HB.mixin Record isMultiplicative
(M : monomType) (S : ringType) (apply : M -> S) := {
Expand All @@ -155,10 +155,10 @@ Section MMorphismTheory.
Variables (M : monomType) (S : ringType) (f : {mmorphism M -> S}).

Lemma mmorph1 : f 1%M = 1.
Proof. exact: mmorphism_subproof.2. Qed.
Proof. exact: mmorphism_subproof.1. Qed.

Lemma mmorphM : {morph f : x y / (x * y)%M >-> (x * y)%R}.
Proof. exact: mmorphism_subproof.1. Qed.
Proof. exact: mmorphism_subproof.2. Qed.
End MMorphismTheory.

(* -------------------------------------------------------------------- *)
Expand Down

0 comments on commit 5a3902c

Please sign in to comment.