This is code for comparison of automatic machine learning libraries:
- auto-sklearn
- autoML from h2o
- mljar
Dataset Id | Name | Rows | Columns |
---|---|---|---|
3 | kr-vs-kp | 3196 | 36 |
24 | mushroom | 8124 | 22 |
31 | credit-g | 1000 | 20 |
38 | sick | 3772 | 29 |
44 | spambase | 4601 | 57 |
179 | adult | 48842 | 14 |
715 | fri_c3_1000_25 | 1000 | 25 |
718 | fri_c4_1000_100 | 1000 | 100 |
720 | abalone | 4177 | 8 |
722 | pol | 15000 | 48 |
723 | fri_c4_1000_25 | 1000 | 25 |
727 | 2dplanes | 40768 | 10 |
728 | analcatdata_supreme | 4052 | 7 |
734 | ailerons | 13750 | 40 |
735 | cpu_small | 8192 | 12 |
737 | space_ga | 3107 | 6 |
740 | fri_c3_1000_10 | 1000 | 10 |
741 | rmftsa_sleepdata | 1024 | 2 |
819 | delta_elevators | 9517 | 6 |
821 | house_16H | 22784 | 16 |
822 | cal_housing | 20640 | 8 |
823 | houses | 20640 | 8 |
833 | bank32nh | 8192 | 32 |
837 | fri_c1_1000_50 | 1000 | 50 |
843 | house_8L | 22784 | 8 |
845 | fri_c0_1000_10 | 1000 | 10 |
846 | elevators | 16599 | 18 |
847 | wind | 6574 | 14 |
To download datasets you need to register on openML and set OPENML_KEY in your environment.
- Each dataset was divided into train and test set (70%/30%).
- The autoML package was trained on train set. There was 1 hour limit for training.
- Final autoML model was used to compute predictions on test set (samples not used for training).
- The logloss was used to asses model performance (the lower the better).
- The process was repeated 10 times (with different seeds), results are average over 10 repeats.
Dataset Id | Auto-sklearn | H2O | MLJAR |
---|---|---|---|
179 | 0.4977899919 | 0.3152976149 | 0.3049036708 |
24 | 0.0008299585 | 0.0064581712 | 0.000003843 |
3 | 0.1971600449 | 0.0259192684 | 0.0188968126 |
31 | 0.5083364979 | 0.5619242106 | 0.4939436971 |
38 | 0.1654747739 | 0.045179262 | 0.0389534345 |
44 | 0.3838450926 | 0.1360053817 | 0.125079404 |
715 | 0.2818374134 | 0.236469178 | 0.2068510073 |
718 | 0.2638171184 | 0.2789765963 | 0.2419061124 |
720 | 0.4998641475 | 0.4516830437 | 0.4309945916 |
722 | 0.3908241383 | 0.0322915583 | 0.0298104695 |
723 | 0.3293591298 | 0.2739778619 | 0.2500752244 |
727 | 0.3978124619 | 0.1595664723 | 0.1495902549 |
728 | 0.0927113633 | 0.0331800086 | 0.0198811926 |
734 | 0.5432702419 | 0.2738200987 | 0.2548240677 |
735 | 0.4268106101 | 0.1811306173 | 0.1639352045 |
737 | 0.4824914304 | 0.330549118 | 0.367133044 |
740 | 0.3142420934 | 0.2254379351 | 0.2149655921 |
741 | 0.5729526032 | 0.5671571325 | 0.5247308762 |
819 | 0.4847074932 | 0.2953733834 | 0.2865255395 |
821 | 0.5601634059 | 0.2545560683 | 0.241073802 |
822 | 0.5179014444 | 0.2326348019 | 0.2373530782 |
823 | 0.4203668177 | 0.0664409033 | 0.0403094539 |
833 | 0.442981634 | 0.3944518914 | 0.3769150535 |
837 | 0.3427939126 | 0.2430881733 | 0.2064752939 |
843 | 0.4363679407 | 0.2670714458 | 0.2531006498 |
845 | 0.4559840276 | 0.3148631409 | 0.2550298912 |
846 | 0.5457531577 | 0.2467550186 | 0.2401925153 |
847 | 0.3860761231 | 0.3245902333 | 0.3049773203 |