Skip to content

Latest commit

 

History

History
58 lines (50 loc) · 1.88 KB

README.md

File metadata and controls

58 lines (50 loc) · 1.88 KB

Neuron class

Neuron class provides LNU (Linear Neural Unit), QNU (Quadratic Neural Unit), RBF (Radial Basis Function), MLP (Multi Layer Perceptron), MLP-ELM (Multi Layer Perceptron - Extreme Learning Machine) neurons learned with Gradient descent or LeLevenberg–Marquardt algorithm. This class is suitable for prediction on time series.

Dependencies

Neuron class needs pandas and numpy to work propertly.

Example of usage

Consider Y are targets and X are inputs.

## LNUGD

neuron = LNUGD()
prediction = 1
yn, w, e, Wall, MSE = neuron.train(Y_train, X_train, epochs=2, prediction=prediction)
yn, w, Wall, MSE, e = neuron.countSerie(Y, X, logging=False, prediction=prediction)

QNULM

neuron = QNULM()
prediction = 1
yn, w, e, Wall, MSE = neuron.train(Y_train, X_train, epochs=10, prediction=prediction)
yn, w, MSE, e = neuron.countSerie(Y, X, logging=False, prediction=prediction)

RBF

neuron = RBF()
prediction = 1
neuron.train(Y_train, X_train, prediction=prediction)
yn = neuron.count(Y,X, logging=True, beta=0.01, prediction=prediction)

MLPGD

neuron = MLPGD()
prediction = 1
yn = neuron.count(Y_train, X_train, prediction=prediction, epochs=5)
yn = neuron.count(Y, X, prediction=prediction, epochs=1)

MLPELM

neuron = MLPELM()
prediction = 1
yn = neuron.count(Y_train, X_train, prediction = prediction, epochs = 10)
yn = neuron.count(Y, X, prediction = prediction)

MLPLMWL

neuron = MLPLMWL()
prediction = 1
yn = neuron.count(Y, X, learningWindow = 50, overLearn = 10,  prediction = prediction)

Support me

If you find this useful, consider supporting independent open-source development and buy me a coffee.

buy me a coffee