-
Notifications
You must be signed in to change notification settings - Fork 3
/
HSubst.dfy
295 lines (271 loc) · 7.91 KB
/
HSubst.dfy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
// Based on
// Hereditary Substitutions for Simple Types, Formalized
// http://hal.inria.fr/docs/00/52/06/06/PDF/msfp10.pdf
datatype option<T> = None | Some(get: T);
datatype Ty = Base | Arrow(a: Ty, b: Ty);
datatype Con = C(get: seq<Ty>);
datatype Var = V(con: Con, ty: Ty, n: nat);
datatype Nf = NfLam(con_lam: Con, tya: Ty, tyb: Ty, body: Nf) |
NfNe(con_ne: Con, ne: Ne);
datatype Ne = NeSp(con: Con, ty_var: Ty, ty: Ty, v: Var, s: Sp);
datatype Sp = SpEpsilon(con_epsilon: Con, ty_epsilon: Ty) |
SpCons(con: Con, ty1: Ty, ty2: Ty, ty3: Ty, t1: Nf, t23: Sp);
function con_nf(f: Nf): Con
{
match f
case NfLam(con, tya, tyb, body) => con
case NfNe(con, ne) => con
}
function con_sp(s: Sp): Con
{
match s
case SpEpsilon(con, ty) => con
case SpCons(con, ty1, ty2, ty3, t1, t23) => con
}
function ty_nf(f: Nf): Ty
{
match f
case NfLam(con, tya, tyb, body) => Arrow(tya, tyb)
case NfNe(con, ne) => Base
}
function tya_sp(s: Sp): Ty
{
match s
case SpEpsilon(con, ty) => ty
case SpCons(con, ty1, ty2, ty3, t1, t23) => Arrow(ty1, ty2)
}
function tyb_sp(s: Sp): Ty
{
match s
case SpEpsilon(con, ty) => ty
case SpCons(con, ty1, ty2, ty3, t1, t23) => ty3
}
predicate valid_var(v: Var)
{
v.n<|v.con.get| && v.con.get[v.n]==v.ty
}
predicate valid_nf(f: Nf)
{
match f
case NfLam(con, tya, tyb, body) =>
con_nf(body).get==[tya]+con.get && ty_nf(body)==tyb && valid_nf(body)
case NfNe(con, e) =>
e.ty==Base && e.con==con && valid_ne(e)
}
predicate valid_ne(e: Ne)
{
match e
case NeSp(con, ty_var, ty, v, s) =>
v.con==con && con_sp(s)==con && v.ty==tya_sp(s) && ty==tyb_sp(s) && valid_var(v) && valid_sp(s)
}
predicate valid_sp(s: Sp)
{
match s
case SpEpsilon(con, ty) => true
case SpCons(con, ty1, ty2, ty3, t1, t23) =>
con==con_nf(t1) && con==con_sp(t23) && ty1==ty_nf(t1) && ty2==tya_sp(t23) && ty3==tyb_sp(t23) && valid_nf(t1) && valid_sp(t23)
}
function con_del(con: Con, v: Var): Con
requires valid_var(v) && v.con==con;
decreases con.get;
ensures |con_del(con, v).get|+1==|con.get|;
ensures forall i:nat :: i<v.n ==> con.get[i]==con_del(con, v).get[i];
ensures forall i:nat :: v.n<i && i<|con.get|-1 ==> con.get[i+1]==con_del(con, v).get[i];
{
if (v.n==0) then C(con.get[1..])
else C([con.get[0]]+con_del(C(con.get[1..]), V(C(con.get[1..]), v.ty, v.n-1)).get)
}
predicate fn_nf(x: Var, f: Nf)
decreases f;
{
match f
case NfLam(con, tya, tyb, body) => fn_nf(V(C([tya]+x.con.get), x.ty, x.n+1), body)
case NfNe(con, e) => fn_ne(x, e)
}
predicate fn_ne(x: Var, e: Ne)
decreases e;
{
x.n==e.v.n || fn_sp(x, e.s)
}
predicate fn_sp(x: Var, s: Sp)
decreases s;
{
match s
case SpEpsilon(con, ty) => false
case SpCons(con, ty1, ty2, ty3, t1, t23) => fn_nf(x, t1) || fn_sp(x, t23)
}
function wkn(xn: nat, yn: nat): nat
{
if (yn-xn>=0) then yn+1 else yn
}
function wkv(x: Var, y: Var): Var
{
V(x.con, y.ty, wkn(x.n, y.n))
}
function wk_nf(x: Var, f: Nf): Nf
decreases f;
{
match f
case NfLam(con, tya, tyb, body) => NfLam(x.con, tya, tyb, wk_nf(V(C([tya]+x.con.get), x.ty, x.n+1), body))
case NfNe(con, e) => NfNe(x.con, wk_ne(x, e))
}
function wk_ne(x: Var, e: Ne): Ne
decreases e;
{
NeSp(x.con, e.ty_var, e.ty, wkv(x, e.v), wk_sp(x, e.s))
}
function wk_sp(x: Var, s: Sp): Sp
decreases s;
{
match s
case SpEpsilon(con, ty) => SpEpsilon(x.con, ty)
case SpCons(con, ty1, ty2, ty3, t1, t23) => SpCons(x.con, ty1, ty2, ty3, wk_nf(x, t1), wk_sp(x, t23))
}
ghost method lemma_wkv_valid(x: Var, y: Var, out: Var)
requires wkv(x, y)==out;
requires valid_var(x) && valid_var(y) && y.con==con_del(x.con, x) && y.n!=x.n;
ensures out.con==x.con && out.ty==y.ty && valid_var(out);
{
}
ghost method lemma_wk_nf_valid(x: Var, f: Nf, out: Nf)
requires wk_nf(x, f)==out;
requires valid_var(x) && valid_nf(f) && con_nf(f)==con_del(x.con, x) && !fn_nf(x, f);
ensures con_nf(out)==x.con && ty_nf(out)==ty_nf(f) && valid_nf(out);
decreases f;
{
match f {
case NfLam(con, tya, tyb, body) =>
var x' := V(C([tya]+x.con.get), x.ty, x.n+1);
calc == {
con_nf(body).get;
[tya]+con_nf(f).get;
[tya]+con_del(x.con, x).get;
con_del(C([tya]+x.con.get), V(C([tya]+x.con.get), x.ty, x.n+1)).get;
con_del(x'.con, x').get;
}
assert con_nf(body).get==con_del(x'.con, x').get;
lemma_wk_nf_valid(x', body, out.body);
case NfNe(con, e) =>
lemma_wk_ne_valid(x, e, out.ne);
}
}
ghost method lemma_wk_ne_valid(x: Var, e: Ne, out: Ne)
requires wk_ne(x, e)==out;
requires valid_var(x) && valid_ne(e) && e.con==con_del(x.con, x) && !fn_ne(x, e);
ensures wk_ne(x, e).con==x.con && wk_ne(x, e).ty==e.ty && valid_ne(wk_ne(x, e));
decreases e;
{
lemma_wkv_valid(x, e.v, out.v);
lemma_wk_sp_valid(x, e.s, out.s);
}
ghost method lemma_wk_sp_valid(x: Var, s: Sp, out: Sp)
requires wk_sp(x, s)==out;
requires valid_var(x) && valid_sp(s) && con_sp(s)==con_del(x.con, x) && !fn_sp(x, s);
ensures con_sp(out)==x.con && tya_sp(out)==tya_sp(s) && tyb_sp(out)==tyb_sp(s) && valid_sp(out);
decreases s;
{
match s {
case SpEpsilon(con, ty) =>
case SpCons(con, ty1, ty2, ty3, t1, t23) =>
lemma_wk_nf_valid(x, t1, out.t1);
lemma_wk_sp_valid(x, t23, out.t23);
}
}
function app_sp(s: Sp, f: Nf): option<Sp>
{
match s
case SpEpsilon(con, ty) =>
if (tyb_sp(s).Arrow?) then
Some(SpCons(con, ty.a, ty.b, ty.b, f, SpEpsilon(con, ty)))
else None
case SpCons(con, ty1, ty2, ty3, t1, t23) =>
var r := app_sp(t23, f);
if (r.Some? && tyb_sp(s).Arrow?)
then Some(SpCons(con, ty1, ty2, ty3.b, t1, r.get))
else None
}
ghost method lemma_app_sp_valid(s: Sp, f: Nf, out: option<Sp>)
requires valid_sp(s) && valid_nf(f);
requires con_sp(s)==con_nf(f);
requires tyb_sp(s).Arrow? && tyb_sp(s).a==ty_nf(f);
requires app_sp(s, f)==out;
ensures out.Some?;
ensures con_sp(s)==con_sp(out.get) && tya_sp(s)==tya_sp(out.get) && tyb_sp(s).b==tyb_sp(out.get);
{
if (s.SpCons?) {
if (out.None?) {
lemma_app_sp_valid(s.t23, f, None);
assert false;
} else {
lemma_app_sp_valid(s.t23, f, Some(out.get.t23));
}
}
}
function nvar(v: Var): option<Nf>
decreases v.ty, 1;
{
ne2nf(NeSp(v.con, v.ty, v.ty, v, SpEpsilon(v.con, v.ty)))
}
function ne2nf(e: Ne): option<Nf>
decreases e.ty, 0;
{
if (e.ty.Base?) then Some(NfNe(e.con, e))
else
var con' := C([e.ty.a]+e.con.get);
var x' := V(con', e.v.ty, e.v.n+1);
var vz := V(con', e.ty.a, 0);
var r := nvar(vz);
if (r.Some?) then
var a := app_sp(wk_sp(vz, e.s), r.get);
if (a.Some?) then
var r' := ne2nf(NeSp(con', e.ty_var, e.ty.b, x', a.get));
if (r'.Some?) then
Some(NfLam(e.con, e.ty.a, e.ty.b, r'.get))
else None
else None
else None
}
function subst_nf(t: Nf, x: Var, u: Nf): option<Nf>
decreases x.ty, t;
{
match t
case NfLam(con, tya, tyb, body) =>
var con' := C([tya]+con.get);
var x' := V(con', x.ty, x.n+1);
var vz := V(con', tya, 0);
var r := subst_nf(body, x', wk_nf(vz, u));
if (r.Some?) then Some(NfLam(con, tya, tyb, r.get)) else None
case NfNe(con, e) =>
match e
case NeSp(con_, ty_var, ty, y, ts) =>
var r := subst_sp(ts, x, u);
if (r.None?) then None
else if (x==y) then if (ty_nf(t)==ty_nf(u) && ty_nf(u).Arrow?) then app_nf_sp(u, r.get) else None
else Some(NfNe(con, NeSp(con, ty_var, ty, y, r.get)))
}
function subst_sp(s: Sp, x: Var, u: Nf): option<Sp>
decreases x.ty, s;
{
match s
case SpEpsilon(con, ty) => Some(SpEpsilon(con, ty))
case SpCons(con, ty1, ty2, ty3, t, ts) =>
var rt := subst_nf(t, x, u);
var rts := subst_sp(ts, x, u);
if (rt.None? || rts.None?) then None else Some(SpCons(con, ty1, ty2, ty3, rt.get, rts.get))
}
function app_nf_sp(f: Nf, s: Sp): option<Nf>
decreases ty_nf(f), s;
{
match s
case SpEpsilon(con, ty) => Some(f)
case SpCons(con, ty1, ty2, ty3, u, us) =>
var r := napp(f, u);
if (r.Some? && f.NfLam? && ty_nf(r.get)==ty_nf(f)) then app_nf_sp(r.get, us) else None
}
function napp(f: Nf, u: Nf): option<Nf>
decreases ty_nf(f), u;
{
if (f.NfLam?) then
subst_nf(f.body, V(con_nf(f.body), f.tya, 0), u)
else None
}