-
Notifications
You must be signed in to change notification settings - Fork 0
/
eval_ood_clustering.py
439 lines (329 loc) · 17.5 KB
/
eval_ood_clustering.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
'''
Adapted from https://github.com/naver/oasis/blob/master/main_adapt.py
'''
import sys
import os
import glob
import matplotlib.pyplot as plt
import random
import json
import copy
import argparse
import copy
import pickle
from scipy.io import loadmat
import torch
import torch.nn as nn
from torch.utils import data
from torch.autograd import Variable
import torch.optim as optim
import torch.backends.cudnn as cudnn
import torch.nn.functional as F
import numpy as np
import numpy.random as npr
from PIL import Image
# ours
from dataset.cityscapes_dataset import Cityscapes
from dataset.acdc_dataset import ACDC
from dataset.idd_dataset import IDD
from uncertainty_helpers import UncertaintyOps
from clustering_helpers import ClusteringOPS
from path_dicts import * # Import all paths to dsets, model checkpoints and configs
class SolverOps:
def __init__(self, args):
self.args = args
self.args.num_classes = 19
def eval_auroc(self):
"""
Evaluate Area under the Receiving Operator Curve (AUROC) performance.
All parameters setup by the user (args).
"""
# Logits and indices paths
(logits_list, labels_list,
indices_list, features_list, dset_list) = self.retrieve_feature_logits_labels_paths()
# Check number of logit samples is correct
assert len(torch.load(indices_list[0])) == self.args.num_samples
all_features = self.create_feature_stack(features_list)
all_logits, _ = self.create_labels_and_logits_stacks(logits_list, labels_list, indices_list, dset_list)
# Compute clustering
clustering = ClusteringOPS()
clustering.load_model(self.args.cluster_model_path)
print(f'Loaded clustering from {self.args.cluster_model_path}.')
best_temperatures = np.load(self.args.temperatures_path)
print(f'Loaded temperatures from {self.args.temperatures_path}.')
if '_gmm_clusters' in self.args.cluster_model_path:
assert len(best_temperatures) == clustering.cluster.means_.shape[0]
else: # kmeans
assert len(best_temperatures) == clustering.cluster.cluster_centers_.shape[0]
print(f'Assigning clusters to images.')
# Cluster elements
if self.args.cluster_assignment == 'soft':
cluster_probs = clustering.predict_proba(all_features)
else:
cluster_labels = clustering.predict_cluster(all_features)
print(f'Scaling logits according to cluster temperatures.')
# Compute temperature scaled logits
if self.args.cluster_assignment == 'soft':
all_logits = self.scaled_logits_soft_assignment(all_logits, cluster_probs, best_temperatures)
else:
all_logits = self.scaled_logits(all_logits, cluster_labels, best_temperatures)
assert len(dset_list) == all_logits.shape[0]
# Compute OOD
confidence = torch.zeros((len(logits_list),))
all_labels = torch.zeros((len(logits_list),))
for i_iter, dset in enumerate(dset_list):
# Load logits and labels
logits = all_logits[i_iter]
if self.args.confidence_metric == 'prob':
# Compute probs from logits and average probs over all image
probs = F.softmax(logits, dim=-1).double()
probs, _ = torch.max(probs, dim=-1)
confidence[i_iter] = probs.mean()
elif self.args.confidence_metric == 'entropy':
probs = F.softmax(logits, dim=-1).double() + 1e-16
entropy = torch.sum(-(torch.log(probs) * probs), axis=-1)
confidence[i_iter] = -entropy.mean() # We use negative entropy as we want a confidence metric
# Define in and out of domain labels for OOD detection
if dset == 'Cityscapes':
all_labels[i_iter] = 1 # In domain is the positive class since we use confidence as a metric.
# Otherwise should use -confidence.
else:
all_labels[i_iter] = 0 # Out of domain
# Compute AUROC
print('Computing AUROC metric')
uncertainty_ops = UncertaintyOps()
auroc = uncertainty_ops.auroc(all_labels, confidence)
# Save results
results_filename = f'auroc.npy'
print('Saving results')
np.save(os.path.join(self.args.results_dir, results_filename), auroc)
print('End of evaluation.')
with open(os.path.join(self.args.results_dir, self.args.DONE_name),'wb') as f:
print('Saving end of training file')
def create_feature_stack(self, features_list):
# Check feature dimensions
self.args.feature_dim = torch.load(features_list[0]).shape[0]
print(f'Found {len(features_list)} features of {self.args.feature_dim} dimensions')
all_features = torch.zeros((len(features_list), self.args.feature_dim))
for i_iter, feature_path in enumerate(features_list):
# Load features
features = torch.load(feature_path)
# Stack logits and labels
all_features[i_iter] = features.to(torch.double) # For numerical precision
return all_features
@staticmethod
def _label_mapping(input, mapping):
output = np.copy(input)
for ind in range(len(mapping)):
output[input == mapping[ind][0]] = mapping[ind][1]
return np.array(output, dtype=np.int64)
def create_labels_and_logits_stacks(self, logits_list, labels_list, indices_list, dset_list):
'''
Retrieve all the labels and logits from the list and store them in a tensor.
Also process the labels so they all match with the same classes.
'''
IDD_TO_CITYSCAPES_MAPPING = {0:0, 2:1, 22:2, 14:3, 15:4, 20:5, 19:6, 18:7, 24:8, None:9, 25:10, 4:11,
5:12, 9:13, 10:14, 11:15, None:16, 6:17, 7:18}
# Varied info about cityscapes dataset
with open('./dataset/cityscapes_list/info.json', 'r') as f:
info = json.load(f)
# Particularly, we need the label mapping info
mapping = np.array(info['label2train'], dtype=np.int)
# Check number of logit samples is correct
assert len(torch.load(indices_list[0])) == self.args.num_samples
all_logits = torch.zeros((len(logits_list), self.args.num_samples, self.args.num_classes))
all_labels = torch.zeros((len(logits_list), self.args.num_samples))
for i_iter, (logits, labels, indices, dset) in enumerate(zip(logits_list, labels_list, indices_list, dset_list)):
# Load logits and labels
logits = torch.load(logits)
indices = torch.load(indices)
label_image = Image.open(labels)
labels = np.array(label_image)
if ('Cityscapes' in dset) or ('ACDC' in dset):
# Labels in cityscapes dset need to be mapped to the 19 classes since they contain more information
aux_labels = self._label_mapping(labels, mapping)
elif 'IDD' in dset:
aux_labels = 255 * np.ones(labels.shape, dtype=np.float32)
for k, v in IDD_TO_CITYSCAPES_MAPPING.items():
aux_labels[labels == k] = v
labels = torch.tensor(aux_labels)
# Filter labels
labels = labels.view(-1)
labels = labels[indices]
# Stack logits and labels
all_logits[i_iter] = torch.tensor(logits.astype('float64')) # For numerical precision
all_labels[i_iter] = labels
return all_logits, all_labels
@staticmethod
def scaled_logits(all_logits, cluster_labels, best_temperatures):
'''
Scale logits according to best temperature per cluster.
'''
scaled_logits = torch.zeros_like(all_logits).double()
if best_temperatures.shape == 2:
predicted_class = torch.argmax(all_logits, dim=-1)
for ii, T in enumerate(best_temperatures):
cluster_index = cluster_labels == ii
for jj, t in enumerate(T):
index_class = predicted_class[cluster_index] == jj
scaled_logits[cluster_index][index_class] = all_logits[cluster_index][index_class] / t
else:
for ii, T in enumerate(best_temperatures):
index = cluster_labels == ii
scaled_logits[index] = (all_logits[index] / T).double()
return scaled_logits
@staticmethod
def scaled_logits_soft_assignment(all_logits, cluster_probs, best_temperatures):
'''
Scale logits according to best temperature per cluster.
'''
scaled_logits = torch.zeros_like(all_logits).double()
if best_temperatures.shape == 2:
predicted_class = torch.argmax(all_logits, dim=-1)
for jj in range(best_temperatures.shape[2]):
T = best_temperatures[:, jj]
soft_temperatures = (cluster_probs * T).sum(axis=1)
index = predicted_class == jj
soft_temperatures = soft_temperatures[index[0]]
scaled_logits[index] = all_logits[index] / soft_temperatures[:, np.newaxis]
else:
soft_temperatures = (cluster_probs * best_temperatures).sum(axis=1)
scaled_logits = all_logits / soft_temperatures[:, np.newaxis, np.newaxis]
return scaled_logits
def retrieve_feature_logits_labels_paths(self):
"""
Method to retrieve the paths to extracted features, logits and labels
based on the condition and scene list.
"""
scene_list = self.args.scene.split(',')
cond_list = self.args.cond.split(',')
dset_list = self.args.trg_dataset_list.split(',')
features_sub_folder = f'extracted_features'
logits_sub_folder = f'extracted_logits'
model_arch_sub_folder = self.args.model_arch
# Sorted (paired) preds and labels lists
logits_list = []
indices_list = []
labels_list = []
features_list = []
all_dsets_list = []
for scene, cond, dset in zip(scene_list, cond_list, dset_list):
trg_sub_folder = f'{dset}_{scene}_{cond}'
experiment_sub_folder = os.path.join(self.args.root_exp_dir, self.args.src_dataset,
model_arch_sub_folder, trg_sub_folder)
self.logits_dir = os.path.join(experiment_sub_folder, logits_sub_folder,
f'num_samples_{self.args.num_samples}')
self.features_dir = os.path.join(experiment_sub_folder, features_sub_folder)
# Unsorted all labels list
all_labels = self.trg_parent_sets_dict[dset].annotation_path_list
if cond == 'clean':
cond = ''
scene = f'/{scene}/'
labels_list += sorted([x for x in all_labels if (scene in x and cond in x)])
logits_list += sorted(glob.glob(os.path.join(self.logits_dir, '*logits.pt')))
indices_list += sorted(glob.glob(os.path.join(self.logits_dir, '*indices.pt')))
features_list += sorted(glob.glob(os.path.join(self.features_dir, '*_feat.pt')))
# Copy dset for all logits in scene/cond
all_dsets_list += [dset]*len(glob.glob(os.path.join(self.features_dir, '*_feat.pt')))
return logits_list, labels_list, indices_list, features_list, all_dsets_list
def setup_target_data_loader(self):
"""
Method to create pytorch dataloaders for the
target domain selected by the user
"""
# (can also be a single environment)
scene_list = self.args.scene.split(',')
cond_list = self.args.cond.split(',')
dset_list = self.args.trg_dataset_list.split(',')
unique_dsets = list(set(dset_list))
self.trg_parent_sets_dict = {}
for dset in unique_dsets:
indx = [i for i, value in enumerate(dset_list) if dset == value]
dset_conds = [cond_list[i] for i in indx]
dset_scenes = [scene_list[i] for i in indx]
if dset=='Cityscapes':
trg_parent_set = Cityscapes(
CITYSCAPES_ROOT,
dset_scenes, dset_conds)
elif dset=='ACDC':
trg_parent_set = ACDC(
ACDC_ROOT, dset_scenes, dset_conds,
batch_size=self.args.batch_size)
elif dset=='IDD':
trg_parent_set = IDD(
IDD_ROOT, dset_scenes, batch_size=self.args.batch_size)
else:
raise ValueError(f'Unknown dataset {self.args.dataset}')
self.trg_parent_sets_dict[dset] = trg_parent_set
if __name__ == '__main__':
# Parse all the arguments provided from the CLI.
parser = argparse.ArgumentParser()
# main experiment parameters
parser.add_argument("--model_arch", type=str, default='SegFormer-B0',
help="""Architecture name, see path_dicts.py
""")
parser.add_argument("--temp", type=float, default=1.0,
help="Parameter for logits temperature scaling.")
parser.add_argument("--src_dataset", type=str, default='Cityscapes',
help="Which source dataset to start from {Cityscapes}")
parser.add_argument("--batch_size", type=int, default=1,
help="Number of images sent to the network in one step.")
parser.add_argument("--num_workers", type=int, default=4,
help="number of workers for multithread dataloading.")
parser.add_argument("--seed", type=int, default=111,
help="Random seed to have reproducible results.")
parser.add_argument("--root_exp_dir", type=str, default='results/debug/',
help="Where to save predictions.")
parser.add_argument("--gpu", type=int, default=0,
help="choose gpu device.")
parser.add_argument("--force_redo", type=int, default=0,
help="Whether to re-run even if there is a DONE file in folder")
parser.add_argument("--num_samples", type=int, default=20000,
help="""Number of pixels per image to be chosen at random to evaluate avg conf of image for AUROC.
Note that using all pixels would lead to 2048*1024 = 21M pixels per image.
""")
parser.add_argument("--results_dir", type=str, default='results/debug/debug_ood_lts/',
help="Where to save predictions.")
# For OOD detection
parser.add_argument("--confidence_metric", type=str, default='prob',
help="""Which confidence score to use for OOD detection:
-prob: Probability of the predicted class.
-entropy: Logits entropy.
""")
# for target
parser.add_argument("--trg_dataset", type=str, default='Cityscapes',
help="Which target dataset to transfer to {Cityscapes, IDD, ACDC}")
parser.add_argument("--trg_dataset_list", type=str, default='Cityscapes',
help="List of datasets per cond and scene.")
parser.add_argument("--scene", type=str, default='aachen',
help="Scene, depends on specific datasets")
parser.add_argument("--cond", type=str, default='clean',
help="Condition, depends on specific datasets")
# Clustering
parser.add_argument("--cluster_model_path", type=str,
default='results/debug/debug_clusters/cluster_model.joblib',
help="Path to retrieve the pre-trained clustering model")
# Temp scaling optimization
parser.add_argument("--temperatures_path", type=str,
default='results/debug/debug_clusters/best_temperatures.npy',
help="Path to retrieve the pre-trained clustering model")
parser.add_argument("--cluster_assignment", type=str,
default='hard',
help="""Cluster assignment: 'hard' performs exclusive cluster assignment
'soft' performs probabilistic cluster assignment and temperatures are averaged.""")
args = parser.parse_args()
args.force_redo = bool(args.force_redo)
npr.seed(args.seed)
if not os.path.exists(args.results_dir):
os.makedirs(args.results_dir)
args.DONE_name = f'experiment.DONE'
# check if experiment/testing was done already
if os.path.isfile(os.path.join(args.results_dir, args.DONE_name)) and not args.force_redo:
print('DONE file present -- evaluation has already been carried out')
print(os.path.join(args.results_dir, args.DONE_name))
exit(0)
solver_ops = SolverOps(args)
print('Setting up data target loader')
solver_ops.setup_target_data_loader()
print('Start evaluating')
solver_ops.eval_auroc()