-
Notifications
You must be signed in to change notification settings - Fork 0
/
extract_features.py
299 lines (225 loc) · 11.2 KB
/
extract_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
'''
Adapted from https://github.com/naver/oasis/blob/master/main_adapt.py
'''
import sys
import os
import glob
import matplotlib.pyplot as plt
import random
import json
import copy
import argparse
import copy
import pickle
from scipy.io import loadmat
import torch
import torch.nn as nn
from torch.utils import data
from torch.autograd import Variable
import torch.optim as optim
import torch.backends.cudnn as cudnn
import torch.nn.functional as F
import numpy as np
import numpy.random as npr
from PIL import Image
# ours
from dataset.cityscapes_dataset import Cityscapes
from dataset.acdc_dataset import ACDC
from dataset.idd_dataset import IDD
from image_helpers import ImageOps
from path_dicts import *
class SolverOps:
def __init__(self, args):
self.args = args
# this is taken from the AdaptSegnet repo
with open('./dataset/cityscapes_list/info.json', 'r') as f:
cityscapes_info = json.load(f)
self.args.num_classes = 19
self.args.name_classes = cityscapes_info['label']
print(f'Number of classes: {self.args.num_classes}')
assert len(self.args.cond.split('-')) == len(self.args.scene.split('-'))
self.image_ops = ImageOps()
w_trg, h_trg = map(int, self.args.input_size.split(','))
self.input_size = (w_trg, h_trg)
def extract_features(self):
"""
Method to extract features from a model sample by sample on a given
sequence and save them.
All parameters setup by the user (args).
"""
cudnn.enabled = True
gpu = self.args.gpu
#torch.use_deterministic_algorithms(True) # TODO fix weird error
cudnn.benchmark = True
self.args.num_steps = len(self.trg_eval_loader)
if self.args.batch_size != 1:
raise NotImplementedError("Code only supported for BS = 1 for the moment")
for i_iter, trg_batch in enumerate(self.trg_eval_loader):
# Collect one batch (single image if bs=1)
_, _, _, trg_image_name = trg_batch
trg_image_name = trg_image_name[0]
if 'Mask' in self.args.model_arch: # Use Detectron2 library
from detectron2.data.detection_utils import read_image
image = read_image(trg_image_name, format="BGR")
features = self.model.get_backbone_features(image) # Outputs a dict with features at different depths
features = features[list(features.keys())[-1]] # We pick the deeper features; shape [1, C, H, W]
else: # Use mmsegmentation model
from mmsegmentation.mmseg.apis import extract_backbone_features
# Process batch and make predictions
features = extract_backbone_features(self.model, trg_image_name)
features = features[-1] # Using only last (deeper) features extracted; shape [1, C, H, W]
features = features[0].sum(dim=-1).sum(dim=-1) # Averaging across spatial dimensions
features = features / features.max()
# process the features for saving
features_cpu = features.cpu().data #1 torch.Size([C])
########### SAVING FEATURES ########################
image_name = trg_image_name.split('/')[-1].split('.')[0]
torch.save(features_cpu, os.path.join(self.output_dir, f'{image_name}_feat.pt'))
##################################################
print('End of evaluation.')
with open(os.path.join(self.output_dir, self.DONE_name),'wb') as f:
print('Saving end of training file')
def build_model(self):
# Create network
config = mmseg_models_configs[self.args.model_arch]
checkpoint = mmseg_models_checkpoints[self.args.model_arch]
if 'Mask' in self.args.model_arch: # Use Detectron2 library
from detectron2.engine.defaults import DefaultPredictor
from detectron2.config import get_cfg
from detectron2.projects.deeplab import add_deeplab_config
cfg = get_cfg()
add_deeplab_config(cfg)
if 'Mask2' in self.args.model_arch:
from Mask2Former.mask2former import add_maskformer2_config
add_maskformer2_config(cfg)
else:
from MaskFormer.mask_former import add_mask_former_config
add_mask_former_config(cfg)
cfg.merge_from_file(config)
# cfg.merge_from_list(args.opts)
cfg.freeze()
self.model = DefaultPredictor(cfg) # To be used on a single GPU
else: # Use MMSegmentation library
from mmsegmentation.mmseg.apis import init_segmentor
# Create network
config = mmseg_models_configs[self.args.model_arch]
checkpoint = mmseg_models_checkpoints[self.args.model_arch]
self.model = init_segmentor(config, checkpoint,
device=f'cuda:{self.args.gpu}')
# Set model decoder to provide features
self.model.decode_head.provide_features = True
# Set up config of the model to process the dataset
self.model.cfg.test_pipeline = [
{'type': 'LoadImageFromFile'},
{'type': 'MultiScaleFlipAug',
'img_scale': (self.input_size[0], self.input_size[1]),
'flip': False,
'transforms': [
{'type': 'Resize', 'keep_ratio': True},
{'type': 'RandomFlip'},
{'type': 'Normalize',
'mean': [123.675, 116.28, 103.53], # TODO: Should we adapt it to target dsets?
'std': [58.395, 57.12, 57.375],
'to_rgb': True},
{'type': 'ImageToTensor', 'keys': ['img']},
{'type': 'Collect', 'keys': ['img']}
]
}
]
print('Done')
def setup_experiment_folder(self):
"""
Method to define model folder's name and create it, and to
define the name of the output files created at end of training.
"""
trg_sub_folder = f'{self.args.trg_dataset}_{self.args.scene}_{self.args.cond}'
method_sub_folder = f'extracted_features'
model_arch_sub_folder = self.args.model_arch
self.DONE_name = f'experiment.DONE'
self.output_dir = os.path.join(
self.args.root_exp_dir, self.args.src_dataset,
model_arch_sub_folder, trg_sub_folder, method_sub_folder)
# check if experiment/testing was done already -------------------------------
if os.path.isfile(
os.path.join(self.output_dir, self.DONE_name)) \
and not self.args.force_redo:
print('DONE file present -- evaluation has already been carried out')
print(os.path.join(self.output_dir, self.DONE_name))
exit(0)
# ----------------------------------------------------------------------------
print(f'EXP ---> {self.output_dir}')
if not os.path.exists(self.output_dir):
os.makedirs(self.output_dir)
def setup_target_data_loader(self):
"""
Method to create pytorch dataloaders for the
target domain selected by the user
"""
# (can also be a single environment)
scene_list = [self.args.scene]
cond_list = [self.args.cond]
if self.args.trg_dataset=='Cityscapes':
self.trg_parent_set = Cityscapes(
CITYSCAPES_ROOT,
scene_list, cond_list)
elif self.args.trg_dataset=='ACDC':
self.trg_parent_set = ACDC(
ACDC_ROOT, scene_list, cond_list,
batch_size=self.args.batch_size)
elif self.args.trg_dataset=='IDD':
self.trg_parent_set = IDD(
IDD_ROOT, scene_list, batch_size=self.args.batch_size)
else:
raise ValueError(f'Unknown dataset {self.args.dataset}')
self.trg_eval_loader = data.DataLoader(
self.trg_parent_set, batch_size=self.args.batch_size,
shuffle=False, pin_memory=True)
if __name__ == '__main__':
# Parse all the arguments provided from the CLI.
parser = argparse.ArgumentParser()
# main experiment parameters
parser.add_argument("--model_arch", type=str, default='SegFormer-B0',
help="""Architecture name, see path_dicts.py
""")
parser.add_argument("--src_dataset", type=str, default='Cityscapes',
help="Which source dataset to start from {Cityscapes}")
parser.add_argument("--batch_size", type=int, default=1,
help="Number of images sent to the network in one step.")
parser.add_argument("--num_workers", type=int, default=4,
help="number of workers for multithread dataloading.")
parser.add_argument("--seed", type=int, default=111,
help="Random seed to have reproducible results.")
parser.add_argument("--root_exp_dir", type=str, default='results/debug/',
help="Where to save predictions.")
parser.add_argument("--gpu", type=int, default=0,
help="choose gpu device.")
parser.add_argument("--force_redo", type=int, default=0,
help="Whether to re-run even if there is a DONE file in folder")
# for target
parser.add_argument("--trg_dataset", type=str, default='Cityscapes',
help="Which target dataset to transfer to")
parser.add_argument("--scene", type=str, default='aachen',
help="Scene, depends on specific datasets")
parser.add_argument("--cond", type=str, default='clean',
help="Condition, depends on specific datasets")
args = parser.parse_args()
args.force_redo = bool(args.force_redo)
# Full original image sizes
if 'Cityscapes' in args.trg_dataset:
args.input_size = '2048,1024'
elif 'ACDC' in args.trg_dataset:
args.input_size = '1920,1080'
elif 'IDD' in args.trg_dataset:
args.input_size = '1280,720'
else:
raise NotImplementedError("Input size unknown")
npr.seed(args.seed)
solver_ops = SolverOps(args)
print('Setting up experiment folder')
solver_ops.setup_experiment_folder()
print('Setting up data target loader')
solver_ops.setup_target_data_loader()
print(f'Building {args.model_arch} model')
solver_ops.build_model()
print('Start evaluating')
solver_ops.extract_features()