diff --git a/project_11_path_planning/src/spline.h b/project_11_path_planning/src/spline.h new file mode 100644 index 0000000..28e3dea --- /dev/null +++ b/project_11_path_planning/src/spline.h @@ -0,0 +1,404 @@ +/* + * spline.h + * + * simple cubic spline interpolation library without external + * dependencies + * + * --------------------------------------------------------------------- + * Copyright (C) 2011, 2014 Tino Kluge (ttk448 at gmail.com) + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; either version 2 + * of the License, or (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see . + * --------------------------------------------------------------------- + * + */ + + +#ifndef TK_SPLINE_H +#define TK_SPLINE_H + +#include +#include +#include +#include + + +// unnamed namespace only because the implementation is in this +// header file and we don't want to export symbols to the obj files +namespace +{ + +namespace tk +{ + +// band matrix solver +class band_matrix +{ +private: + std::vector< std::vector > m_upper; // upper band + std::vector< std::vector > m_lower; // lower band +public: + band_matrix() {}; // constructor + band_matrix(int dim, int n_u, int n_l); // constructor + ~band_matrix() {}; // destructor + void resize(int dim, int n_u, int n_l); // init with dim,n_u,n_l + int dim() const; // matrix dimension + int num_upper() const + { + return m_upper.size()-1; + } + int num_lower() const + { + return m_lower.size()-1; + } + // access operator + double & operator () (int i, int j); // write + double operator () (int i, int j) const; // read + // we can store an additional diogonal (in m_lower) + double& saved_diag(int i); + double saved_diag(int i) const; + void lu_decompose(); + std::vector r_solve(const std::vector& b) const; + std::vector l_solve(const std::vector& b) const; + std::vector lu_solve(const std::vector& b, + bool is_lu_decomposed=false); + +}; + + +// spline interpolation +class spline +{ +public: + enum bd_type { + first_deriv = 1, + second_deriv = 2 + }; + +private: + std::vector m_x,m_y; // x,y coordinates of points + // interpolation parameters + // f(x) = a*(x-x_i)^3 + b*(x-x_i)^2 + c*(x-x_i) + y_i + std::vector m_a,m_b,m_c; // spline coefficients + double m_b0, m_c0; // for left extrapol + bd_type m_left, m_right; + double m_left_value, m_right_value; + bool m_force_linear_extrapolation; + +public: + // set default boundary condition to be zero curvature at both ends + spline(): m_left(second_deriv), m_right(second_deriv), + m_left_value(0.0), m_right_value(0.0), + m_force_linear_extrapolation(false) + { + ; + } + + // optional, but if called it has to come be before set_points() + void set_boundary(bd_type left, double left_value, + bd_type right, double right_value, + bool force_linear_extrapolation=false); + void set_points(const std::vector& x, + const std::vector& y, bool cubic_spline=true); + double operator() (double x) const; +}; + + + +// --------------------------------------------------------------------- +// implementation part, which could be separated into a cpp file +// --------------------------------------------------------------------- + + +// band_matrix implementation +// ------------------------- + +band_matrix::band_matrix(int dim, int n_u, int n_l) +{ + resize(dim, n_u, n_l); +} +void band_matrix::resize(int dim, int n_u, int n_l) +{ + assert(dim>0); + assert(n_u>=0); + assert(n_l>=0); + m_upper.resize(n_u+1); + m_lower.resize(n_l+1); + for(size_t i=0; i0) { + return m_upper[0].size(); + } else { + return 0; + } +} + + +// defines the new operator (), so that we can access the elements +// by A(i,j), index going from i=0,...,dim()-1 +double & band_matrix::operator () (int i, int j) +{ + int k=j-i; // what band is the entry + assert( (i>=0) && (i=0) && (j diogonal, k<0 lower left part, k>0 upper right part + if(k>=0) return m_upper[k][i]; + else return m_lower[-k][i]; +} +double band_matrix::operator () (int i, int j) const +{ + int k=j-i; // what band is the entry + assert( (i>=0) && (i=0) && (j diogonal, k<0 lower left part, k>0 upper right part + if(k>=0) return m_upper[k][i]; + else return m_lower[-k][i]; +} +// second diag (used in LU decomposition), saved in m_lower +double band_matrix::saved_diag(int i) const +{ + assert( (i>=0) && (i=0) && (idim(); i++) { + assert(this->operator()(i,i)!=0.0); + this->saved_diag(i)=1.0/this->operator()(i,i); + j_min=std::max(0,i-this->num_lower()); + j_max=std::min(this->dim()-1,i+this->num_upper()); + for(int j=j_min; j<=j_max; j++) { + this->operator()(i,j) *= this->saved_diag(i); + } + this->operator()(i,i)=1.0; // prevents rounding errors + } + + // Gauss LR-Decomposition + for(int k=0; kdim(); k++) { + i_max=std::min(this->dim()-1,k+this->num_lower()); // num_lower not a mistake! + for(int i=k+1; i<=i_max; i++) { + assert(this->operator()(k,k)!=0.0); + x=-this->operator()(i,k)/this->operator()(k,k); + this->operator()(i,k)=-x; // assembly part of L + j_max=std::min(this->dim()-1,k+this->num_upper()); + for(int j=k+1; j<=j_max; j++) { + // assembly part of R + this->operator()(i,j)=this->operator()(i,j)+x*this->operator()(k,j); + } + } + } +} +// solves Ly=b +std::vector band_matrix::l_solve(const std::vector& b) const +{ + assert( this->dim()==(int)b.size() ); + std::vector x(this->dim()); + int j_start; + double sum; + for(int i=0; idim(); i++) { + sum=0; + j_start=std::max(0,i-this->num_lower()); + for(int j=j_start; joperator()(i,j)*x[j]; + x[i]=(b[i]*this->saved_diag(i)) - sum; + } + return x; +} +// solves Rx=y +std::vector band_matrix::r_solve(const std::vector& b) const +{ + assert( this->dim()==(int)b.size() ); + std::vector x(this->dim()); + int j_stop; + double sum; + for(int i=this->dim()-1; i>=0; i--) { + sum=0; + j_stop=std::min(this->dim()-1,i+this->num_upper()); + for(int j=i+1; j<=j_stop; j++) sum += this->operator()(i,j)*x[j]; + x[i]=( b[i] - sum ) / this->operator()(i,i); + } + return x; +} + +std::vector band_matrix::lu_solve(const std::vector& b, + bool is_lu_decomposed) +{ + assert( this->dim()==(int)b.size() ); + std::vector x,y; + if(is_lu_decomposed==false) { + this->lu_decompose(); + } + y=this->l_solve(b); + x=this->r_solve(y); + return x; +} + + + + +// spline implementation +// ----------------------- + +void spline::set_boundary(spline::bd_type left, double left_value, + spline::bd_type right, double right_value, + bool force_linear_extrapolation) +{ + assert(m_x.size()==0); // set_points() must not have happened yet + m_left=left; + m_right=right; + m_left_value=left_value; + m_right_value=right_value; + m_force_linear_extrapolation=force_linear_extrapolation; +} + + +void spline::set_points(const std::vector& x, + const std::vector& y, bool cubic_spline) +{ + assert(x.size()==y.size()); + assert(x.size()>2); + m_x=x; + m_y=y; + int n=x.size(); + // TODO: maybe sort x and y, rather than returning an error + for(int i=0; i rhs(n); + for(int i=1; i::const_iterator it; + it=std::lower_bound(m_x.begin(),m_x.end(),x); + int idx=std::max( int(it-m_x.begin())-1, 0); + + double h=x-m_x[idx]; + double interpol; + if(xm_x[n-1]) { + // extrapolation to the right + interpol=(m_b[n-1]*h + m_c[n-1])*h + m_y[n-1]; + } else { + // interpolation + interpol=((m_a[idx]*h + m_b[idx])*h + m_c[idx])*h + m_y[idx]; + } + return interpol; +} + + +} // namespace tk + + +} // namespace + +#endif /* TK_SPLINE_H */