-
Notifications
You must be signed in to change notification settings - Fork 1
/
dl2_ereal.v
258 lines (237 loc) · 10.5 KB
/
dl2_ereal.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
From HB Require Import structures.
Require Import Coq.Program.Equality.
From mathcomp Require Import all_ssreflect all_algebra.
From mathcomp Require Import lra.
From mathcomp Require Import all_classical.
From mathcomp Require Import reals ereal signed.
From mathcomp Require Import topology derive normedtype sequences
exp measure lebesgue_measure lebesgue_integral hoelder.
Require Import mathcomp_extra analysis_extra ldl dl2.
(**md**************************************************************************)
(* # Properties of DL2 on extended reals *)
(* *)
(* ## Structural properties *)
(* - dl2_andC_nary == n-ary commutativity of conjunction *)
(* - dl2_andC == commutativity of conjunction *)
(* - dl2_andA == associativity of conjunction *)
(* - dl2_orC_nary == n-ary commutativity of disjunction *)
(* - dl2_orC == commutativity of disjunction *)
(* - dl2_orA == associativity of disjunction *)
(* *)
(* ## Soundness *)
(* - dl2_ereal_translation_le0 == invariant for the translation: all values *)
(* are in the range $[-\infty, 0]$ *)
(* - dl2_nary_inversion_andE1 == inversion lemma for conjunction/true *)
(* - dl2_nary_inversion_andE0 == inversion lemma for conjuntion/false *)
(* - dl2_nary_inversion_orE1 == inversion lemma for disjunction/true *)
(* - dl2_nary_inversion_orE0 == inversion lemma for disjunction/false *)
(* - dl2_translations_Vector_coincide == shows that the Boolean translation *)
(* and the DL2 translation coincide on expressions of type Vector_T *)
(* - dl2_translations_Index_coincide == shows that the Boolean translation *)
(* and the DL2 translation coincide on expressions of type Index_T *)
(* - dl2_translations_Real_coincide == shows that the Boolean translation and *)
(* the DL2 translation coincide on expressions of type Real_T *)
(* - dl2_soundness == final soundness result for DL2 *)
(******************************************************************************)
Import Num.Def Num.Theory GRing.Theory.
Import Order.TTheory.
Import numFieldTopology.Exports.
Section dl2_lemmas.
Local Open Scope ldl_scope.
Local Open Scope ring_scope.
Context {R : realType}.
Variable p : R.
Local Notation "[[ e ]]_dl2e" := (@dl2_ereal_translation R _ e).
Lemma dl2_andC_nary (s1 s2 : seq (expr Bool_T_def)) :
perm_eq s1 s2 -> [[ldl_and s1]]_dl2e = [[ldl_and s2]]_dl2e.
Proof.
by move=> pi; rewrite /=/sumE !big_map (perm_big _ pi)/=.
Qed.
Lemma dl2_andC (e1 e2 : expr Bool_T_def) : [[ e1 `/\ e2 ]]_dl2e = [[ e2 `/\ e1 ]]_dl2e.
Proof.
by rewrite /=/sumE ?big_cons ?big_nil /= adde0 adde0 addeC.
Qed.
Lemma dl2_andA (e1 e2 e3 : expr Bool_T_undef) :
[[ e1 `/\ (e2 `/\ e3) ]]_dl2e = [[ (e1 `/\ e2) `/\ e3 ]]_dl2e.
Proof.
by rewrite /=/sumE ?big_cons ?big_nil !adde0 addeA.
Qed.
Lemma dl2_orC_nary (s1 s2 : seq (expr Bool_T_def)) :
perm_eq s1 s2 -> [[ldl_or s1]]_dl2e = [[ldl_or s2]]_dl2e.
Proof.
by move=> pi; rewrite /=/prodE !big_map (perm_big _ pi)/= (perm_size pi).
Qed.
Lemma dl2_orC (e1 e2 : expr Bool_T_undef) :
[[ e1 `\/ e2 ]]_dl2e = [[ e2 `\/ e1 ]]_dl2e.
Proof.
rewrite /= /prodE !big_cons big_nil !mule1; congr *%E.
by rewrite muleC.
Qed.
Lemma dl2_orA (e1 e2 e3 : expr Bool_T_undef) :
[[ e1 `\/ (e2 `\/ e3) ]]_dl2e = [[ (e1 `\/ e2) `\/ e3 ]]_dl2e.
Proof.
rewrite /= /prodE !big_cons big_nil !mule1; congr (_ * _)%E.
by rewrite muleCA !muleA.
Qed.
Lemma dl2_ereal_translation_le0 e :
([[ e ]]_dl2e <= 0 :> ereal_type_translation Bool_T_undef)%E.
Proof.
dependent induction e using expr_ind' => /=.
- by case: b.
- rewrite /sumE big_map big_seq sume_le0// => t tl.
move/List.Forall_forall : H => /(_ t); apply => //.
exact/In_in.
- rewrite /prodE big_map big_seq; have [ol|ol] := boolP (odd (length l)).
rewrite exprS -signr_odd ol expr1 mulrN1 !EFinN oppeK mul1e.
have [l0|l0] := pselect (forall i, i \in l -> [[i]]_dl2e != 0)%E; last first.
move/existsNP : l0 => [/= x /not_implyP[xl /negP/negPn/eqP x0]].
rewrite le_eqVlt; apply/orP; left.
rewrite prode_seq_eq0; apply/hasP; exists x => //.
by rewrite xl x0 eqxx.
apply/ltW/sgeN1_lt0; rewrite -big_seq prodeN1.
by rewrite -signr_odd ol expr1.
move=> e el; rewrite lt_neqAle l0//=.
by move/List.Forall_forall : H => /(_ e); apply => //; exact/In_in.
rewrite exprS -signr_odd (negbTE ol) expr0 mulN1r.
rewrite EFinN mulN1e oppe_le0.
have [l0|l0] := pselect (forall i, i \in l -> [[i]]_dl2e != 0)%E; last first.
move/existsNP : l0 => [/= x /not_implyP[xl /negP/negPn/eqP x0]].
rewrite le_eqVlt; apply/orP; left.
rewrite eq_sym prode_seq_eq0; apply/hasP; exists x => //.
by rewrite xl x0 eqxx.
apply/ltW/sge1_gt0; rewrite -big_seq prodeN1.
by rewrite -signr_odd (negbTE ol) expr0.
move=> e el; rewrite lt_neqAle l0//=.
by move/List.Forall_forall : H => /(_ e); apply => //; exact/In_in.
- case: c => //=.
by rewrite lee_fin oppr_le0 le_maxr lexx orbT.
Qed.
Definition is_dl2 b (x : \bar R) := (if b then x == 0 else x < 0)%E.
Lemma dl2_nary_inversion_andE1 (s : seq (expr (Bool_T_undef))) :
is_dl2 true ([[ ldl_and s ]]_dl2e) ->
(forall i, (i < size s)%N -> is_dl2 true ([[ nth (ldl_bool _ false) s i ]]_dl2e)).
Proof.
rewrite/is_dl2.
elim: s => //= h t ih H [_|]/=.
move: H; rewrite /sumE big_cons.
rewrite nadde_eq0//.
- by move=> /andP[->].
- exact: dl2_ereal_translation_le0.
- rewrite big_seq_cond; apply: sume_le0 => /= x.
by rewrite andbT => /mapP[/= e et] ->; exact: dl2_ereal_translation_le0.
move=> n; rewrite ltnS => nt /=; apply: ih => //.
move: H; rewrite /sumE big_cons.
rewrite nadde_eq0.
- by move=> /andP[_ ->].
- exact: dl2_ereal_translation_le0.
- rewrite big_seq_cond; apply: sume_le0 => /= x.
by rewrite andbT => /mapP[/= e et] ->; exact: dl2_ereal_translation_le0.
Qed.
Lemma dl2_nary_inversion_andE0 (s : seq (expr (Bool_T_undef))) :
is_dl2 false ([[ ldl_and s ]]_dl2e) ->
(exists i, (is_dl2 false ([[ nth (ldl_bool _ false) s i ]]_dl2e)) && (i < size s)%nat).
Proof.
rewrite/is_dl2.
elim: s => [|h t ih] //=; first by rewrite /sumE big_nil ltxx.
rewrite /sumE big_cons => /nadde_lt0 => /(_ (dl2_ereal_translation_le0 _)).
have : (\sum_(j <- [seq [[i]]_dl2e | i <- t]) j <= 0)%E.
rewrite big_seq_cond; apply: sume_le0 => /= z.
by rewrite andbT => /mapP[/= e et ->]; exact: dl2_ereal_translation_le0.
move=> /[swap] /[apply] /orP[H|/ih[j /andP[j0 jt]]].
by exists 0%N; rewrite /= H.
by exists j.+1; rewrite /= j0.
Qed.
Lemma dl2_nary_inversion_orE1 (s : seq (expr (Bool_T_undef))) : [[ ldl_or s ]]_dl2e = 0%E ->
exists i, ([[ nth (ldl_bool _ false) s i ]]_dl2e == 0%E) && (i < size s)%nat.
Proof.
elim: s => [|h t ih] /=.
rewrite /prodE big_nil mule1 expr1 EFinN => /eqe_oppLRP.
by rewrite oppe0 => /eqP; rewrite onee_eq0.
move=> /eqP; rewrite mule_eq0 eqe signr_eq0/=.
rewrite /prodE big_cons mule_eq0 => /orP[H|/eqP H].
by exists 0%N; rewrite /= H.
have /ih[j /andP[Hj jt]] : [[ldl_or t]]_dl2e = 0 by rewrite /= /prodE H mule0.
by exists j.+1; rewrite /= Hj.
Qed.
Lemma dl2_nary_inversion_orE0 (Es : seq (expr (Bool_T_undef)) ) :
([[ ldl_or Es ]]_dl2e < 0)%E -> (forall i, (i < size Es)%nat -> ([[ nth (ldl_bool _ false) Es i ]]_dl2e < 0)%E).
Proof.
elim: Es => //= a l IH.
rewrite /prodE big_cons muleCA mule_lt0 => /andP[aneq0]/andP[]/[swap] _.
rewrite exprS EFinM -muleA EFinN mulN1e oppe_eq0 => lneq0.
have ale0 := dl2_ereal_translation_le0 a.
have alt0 : ([[a]]_dl2e < 0)%E by rewrite lt_neqAle aneq0 ale0.
elim => [_//=|i _].
rewrite ltnS => isize.
apply IH => //.
rewrite /prodE lt_neqAle lneq0/= big_map.
apply: prode_le0 => j.
exact: dl2_ereal_translation_le0.
Qed.
Lemma dl2_ereal_translations_Vector_coincide: forall n (e : @expr R (Vector_T n)),
[[ e ]]_dl2e = [[ e ]]_B.
Proof.
dependent induction e => //=.
dependent destruction e1.
by rewrite (IHe2 _ _ e2 erefl JMeq_refl).
Qed.
Lemma dl2_ereal_translations_Index_coincide: forall n (e : expr (Index_T n)),
[[ e ]]_dl2e = [[ e ]]_B.
Proof.
dependent induction e => //=.
Qed.
Lemma dl2_ereal_translations_Real_coincide (e : expr Real_T):
[[ e ]]_dl2e = [[ e ]]_B.
Proof.
dependent induction e => //=;
rewrite ?(IHe1 e1 erefl JMeq_refl) ?(IHe2 e2 erefl JMeq_refl) ?(IHe e erefl JMeq_refl) //=.
by rewrite dl2_ereal_translations_Vector_coincide dl2_ereal_translations_Index_coincide.
Qed.
Lemma dl2_soundness (e : expr Bool_T_undef) b :
is_dl2 b ([[ e ]]_dl2e) -> [[ e ]]_B = b.
Proof.
dependent induction e using expr_ind'.
- by move: b b0 => [] [] //=; rewrite ltxx.
- rewrite List.Forall_forall in H.
move: b => [].
+ move/dl2_nary_inversion_andE1.
rewrite /= big_map big_seq big_all_cond => h.
apply: allT => x/=.
apply/implyP => /nthP xnth.
have [i il0 <-] := xnth (ldl_bool _ false).
by apply: H => //=; rewrite ?h// -In_in mem_nth.
+ move/dl2_nary_inversion_andE0.
rewrite /= big_map big_all.
elim=>// i /andP[/eqP i0 isize].
apply/allPn; exists (nth (ldl_bool _ false) l i); first by rewrite mem_nth.
apply/negPf; apply: H => //.
* by rewrite -In_in mem_nth.
* rewrite /is_dl2/=. move: i0.
by rewrite eqb_id.
- rewrite List.Forall_forall in H.
move: b => [].
+ rewrite/is_dl2=>/eqP; move/dl2_nary_inversion_orE1.
rewrite /= big_map big_has.
elim=>// i /andP[/eqP i0 isize].
apply/hasP; exists (nth (ldl_bool _ false) l i); first by rewrite mem_nth.
apply: H => //.
by rewrite -In_in mem_nth.
rewrite /is_dl2/=. by rewrite i0.
+ move/dl2_nary_inversion_orE0.
rewrite /= big_map big_has => h.
apply/hasPn => x.
move/nthP => xnth.
have [i il0 <-] := xnth (ldl_bool _ false).
apply/negPf; apply: H => //.
* by rewrite ?h// -In_in mem_nth.
* by rewrite /is_dl2/= h.
- case: c; rewrite //=; rewrite -!dl2_ereal_translations_Real_coincide;
set t1 := _ e1; set t2 := _ e2; case: b => //.
+ by rewrite /is_dl2 => /eqP[] /maxr0_le; rewrite subr_le0.
+ rewrite/is_dl2 lte_fin oppr_lt0 /maxr; case: ifPn; first by rewrite ltxx.
by rewrite subr_gt0 => _; move/lt_geF.
+ by rewrite/is_dl2=>/eqP; case=>/eqP; rewrite oppr_eq0 normr_eq0 subr_eq0.
+ rewrite/is_dl2; rewrite lte_fin oppr_lt0 normr_gt0.
by rewrite subr_eq0; move/eqP => h; apply/eqP.
Qed.
End dl2_lemmas.