Skip to content

Latest commit

 

History

History
27 lines (15 loc) · 1.81 KB

readme.md

File metadata and controls

27 lines (15 loc) · 1.81 KB

ODE-toolbox

Automatic selection and generation of integration schemes for systems of ordinary differential equations

Choosing the optimal solver for systems of ordinary differential equations (ODEs) is a critical step in dynamical systems simulation. ODE-toolbox is a Python package that assists in solver benchmarking, and recommends solvers on the basis of a set of user-configurable heuristics. For all dynamical equations that admit an analytic solution, ODE-toolbox generates propagator matrices that allow the solution to be calculated at machine precision. For all others, first-order update expressions are returned based on the Jacobian matrix.

In addition to continuous dynamics, discrete events can be used to model instantaneous changes in system state, such as a neuronal action potential. These can be generated by the system under test as well as applied as external stimuli, making ODE-toolbox particularly well-suited for applications in computational neuroscience.

Documentation

Full documentation can be found at:

https://ode-toolbox.readthedocs.io/

License

Copyright (C) 2017 The NEST Initiative

ODE-toolbox is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version.

ODE-toolbox is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with ODE-toolbox. If not, see http://www.gnu.org/licenses/.