generated from neuroinformatics-unit/quarto-presentation-template
-
Notifications
You must be signed in to change notification settings - Fork 1
/
index.qmd
184 lines (147 loc) · 6.03 KB
/
index.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
---
title: Video-based analysis of animal behaviour
subtitle: SWC/GCNU Neuroinformatics Unit
author: Niko Sirmpilatze, Chang Huan Lo, Sofía Miñano
execute:
enabled: true
link-external-icon: true
format:
revealjs:
theme: [default, niu-light.scss]
logo: img/logo_niu_light.png
footer: "Sainsbury Wellcome Centre | 2024-10-03"
slide-number: c
menu:
numbers: true
chalkboard: true
scrollable: false
preview-links: false
view-distance: 10
mobile-view-distance: 10
auto-animate: true
auto-play-media: true
code-overflow: wrap
highlight-style: atom-one
mermaid:
theme: neutral
fontFamily: Arial
curve: linear
title-slide-attributes:
data-background-color: "#000000"
data-background-image: "img/swc-building.jpg"
data-background-size: "cover"
data-background-position: "center"
data-background-opacity: "0.6"
aside-align: center
html:
theme: [default, niu-light.scss]
logo: img/logo_niu_light.png
date: "2024-10-03"
toc: true
code-overflow: scroll
highlight-style: atom-one
mermaid:
theme: neutral
fontFamily: Arial
curve: linear
margin-left: 0
embed-resources: true
page-layout: full
links:
course-webpage: "https://software-skills.neuroinformatics.dev/courses/video-analysis.html"
gh-repo: "https://github.com/neuroinformatics-unit/course-behavioural-analysis"
these-slides: "https://neuroinformatics.dev/course-behavioural-analysis/#/title-slide"
dropbox: "https://tinyurl.com/behav-analysis-course-data"
menti: "https://www.menti.com/"
menti-link: "https://www.menti.com/aldg47maopsr"
menti-code: "`5524 7145`"
papers:
neuro-needs-behav-title: "Neuroscience Needs Behavior: Correcting a Reductionist Bias"
neuro-needs-behav-doi: "https://www.sciencedirect.com/science/article/pii/S0896627316310406"
quant-behav-title: "Quantifying behavior to understand the brain"
quant-behav-doi: "https://www.nature.com/articles/s41593-020-00734-z"
open-source-title: "Open-source tools for behavioral video analysis: Setup, methods, and best practices"
open-source-doi: "https://elifesciences.org/articles/79305"
moseq-title: "Mapping Sub-Second Structure in Mouse Behavior"
moseq-doi: "https://doi.org/10.1016/j.neuron.2015.11.031"
keypoint-moseq-title: "Keypoint-MoSeq: parsing behavior by linking point tracking to pose dynamics"
keypoint-moseq-doi: "https://doi.org/10.1038/s41592-024-02318-2"
---
# Introductions
[Neuroinformatics Unit (NIU)](https://neuroinformatics.dev/){style="text-align: center"}
:::: {.columns}
::: {.column width="33%"}
![](img/niko_sirmpilatze.png)
Niko Sirmpilatze
:::
::: {.column width="33%"}
![](img/chang_huan_lo.png)
Chang Huan Lo
:::
:::{.column width="33%"}
![](img/sofia_minano.png)
Sofía Miñano
:::
::::
## Course materials
| **Slides** | [neuroinformatics.dev/course-behavioural-analysis]({{< meta links.these-slides >}}) |
|----|------|
| Webpage | [software-skills.neurinformatics.dev/course-behavioural-analysis]({{< meta links.course-webpage >}}) |
| GitHub | [github.com/neuroinformatics-unit/course-behavioural-analysis]({{< meta links.gh-repo >}}) |
| Data* | [tinyurl.com/behav-analysis-course-data]({{< meta links.dropbox >}}) |
::: aside
*Data produced and shared by [*Loukia Katsouri, O'Keefe Lab*](https://www.sainsburywellcome.org/web/people/loukia-katsouri)
:::
## Schedule: morning {.smaller}
| Time | Topic | Goals |
|----|-------|--------|
| 10:00 - 10:20 | Welcome | Introductions, troubleshooting |
| 10:20 - 11:00 | Theory: Quantifying Behaviour | What is behaviour, detection & tracking, pose estimation |
| 11:00 - 12:00 | Practice: SLEAP I | Label data, train models |
| 12:00 - 12:15 | Coffee Break | |
| 12:15 - 13:00 | Practice: SLEAP II | Evaluate models, run inference |
| 13:00 - 14:00 | Lunch break | |
: {.striped}
## Schedule: afternoon {.smaller}
| Time | Topic | Goals |
|----|-------|--------|
| 14:00 - 15:45 | Practice: movement | Load pose tracks into Python, clean and visualise data, compute kinematics |
| 15:45 - 16:00 | Coffee break | |
| 16:00 - 16:30 | Theory: From behaviour to actions | Approaches to action segmentation |
| 16:15 - 17:30 | Demo: Keypoint-MoSeq | Extract behavioural syllables |
: {.striped}
## Install software requirements {.smaller}
You were asked to pre-install two `conda` environments for the practical exercises. Check that you have them installed:
```{.bash code-line-numbers="false"}
$ conda env list
sleap
keypoint_moseq
```
::: {.fragment}
If you don't have them, you can create them as follows:
1. [**SLEAP**](https://sleap.ai/): Use the [conda package method](https://sleap.ai/installation.html#conda-package) from the SLEAP installation guide.
2. [**Keypoint-MoSeq**](https://keypoint-moseq.readthedocs.io): Use the recommended [conda installation method](https://keypoint-moseq.readthedocs.io/en/latest/install.html#install-using-conda).
:::
{{< include slides/quantifying_behaviour.qmd >}}
{{< include slides/SLEAP.qmd >}}
# Lunch break 🍽 {background-color="#1E1E1E"}
{{< include slides/movement.qmd >}}
# Coffee break ☕ {background-color="#1E1E1E"}
{{< include slides/from_behaviour_to_actions.qmd >}}
{{< include slides/keypoint_moseq.qmd >}}
# Feedback
Tell us what you think about this course!
Write on [IdeaBoardz](https://ideaboardz.com/for/course-behav-analysis-2024/5391792)
or talk to us anytime.
## Join the movement! {.smaller}
:::: {.columns}
::: {.column width="50%"}
![](img/movement_poses_schematic.png){fig-align="center" height="400px"}
:::
::: {.column width="50%"}
- Contributions to `movement` are absolutely encouraged, whether to fix a bug,
develop a new feature, improve the documentation, or just spark a discussion.
- [Chat with us on Zulip]((https://neuroinformatics.zulipchat.com/#narrow/stream/406001-Movement))
- Or [open an issue on GitHub](https://github.com/neuroinformatics-unit/movement/issues)
:::
::::