diff --git a/.github/actions/check-notebooks/action.yaml b/.github/actions/check-notebooks/action.yaml index 218a95038..c3645eb41 100644 --- a/.github/actions/check-notebooks/action.yaml +++ b/.github/actions/check-notebooks/action.yaml @@ -14,6 +14,12 @@ inputs: required: false default: false type: string + cdsapi_uid: + description: 'CDSAPI UID' + required: true + cdsapi_key: + description: 'CDSAPI Key' + required: true runs: using: composite @@ -47,6 +53,8 @@ runs: if: "!contains(env.COMMIT_MESSAGE, 'skip ci')" id: changed-files uses: tj-actions/changed-files@v35 + with: + files_ignore: projects/archive/* - name: List all changed files run: | @@ -79,6 +87,10 @@ runs: id: process_notebooks if: ${{ env.NBS != '' }} run: | + # process notebooks + # add cdsapi credentials for projects + echo "url: https://cds.climate.copernicus.eu/api/v2" >> /home/runner/.cdsapirc + echo "key: ${{ inputs.cdsapi_uid }}:${{ inputs.cdsapi_key }}" >> /home/runner/.cdsapirc python ci/process_notebooks.py ${{ env.NBS }} ${{ inputs.exec_flag}} shell: bash -l {0} diff --git a/.github/actions/setup/action.yaml b/.github/actions/setup/action.yaml index 718d02f87..8da5b3919 100644 --- a/.github/actions/setup/action.yaml +++ b/.github/actions/setup/action.yaml @@ -133,12 +133,16 @@ runs: - name: Update environment if: ${{steps.cache-python.outputs.cache-hit != 'true' || inputs.force_env_update == 'true'}} run: | + # Install python dependencies # mamba env update -n climatematch -f environment.yml pip install -r ci/requirements.txt pip install -r requirements.txt + pip install ecmwflibs + pip install eccodes==1.3.1 + pip install cfgrib + python -m cfgrib selfcheck pip install requests aiohttp pip install jupyter-book==0.14.0 ghp-import cftime pyleoclim importlib-metadata==4.13.0 - # pip install climlab==0.8.2 shell: bash -l {0} - name: Build climlab from source diff --git a/.github/workflows/notebook-pr.yaml b/.github/workflows/notebook-pr.yaml index 0ad105738..824cdc8f7 100644 --- a/.github/workflows/notebook-pr.yaml +++ b/.github/workflows/notebook-pr.yaml @@ -59,6 +59,8 @@ jobs: # exec_flag: '--check-only' exec_flag: '--execute' # exercise-continue-on-error: true + cdsapi_uid: ${{ secrets.CDSAPI_UID }} + cdsapi_key: ${{ secrets.CDSAPI_KEY }} # - name: Add PR comment # if: ${{ env.NBS != '' }} diff --git a/.gitignore b/.gitignore index cbab5a5ed..404faae0a 100644 --- a/.gitignore +++ b/.gitignore @@ -1,4 +1,6 @@ book/_build/ +*.grib +*.idx *.nc *.csv .ipynb_checkpoints/ diff --git a/projects/project-notebooks/ENSO_impact_on_precipitation_and_temperature.ipynb b/projects/archive/ENSO_impact_on_precipitation_and_temperature.ipynb similarity index 100% rename from projects/project-notebooks/ENSO_impact_on_precipitation_and_temperature.ipynb rename to projects/archive/ENSO_impact_on_precipitation_and_temperature.ipynb diff --git a/projects/project-notebooks/Heatwaves.ipynb b/projects/archive/Heatwaves.ipynb similarity index 100% rename from projects/project-notebooks/Heatwaves.ipynb rename to projects/archive/Heatwaves.ipynb diff --git a/projects/project-notebooks/Ocean_acidification.ipynb b/projects/archive/Ocean_acidification.ipynb similarity index 100% rename from projects/project-notebooks/Ocean_acidification.ipynb rename to projects/archive/Ocean_acidification.ipynb diff --git a/projects/project-notebooks/Regional_precipitation_variability.ipynb b/projects/archive/Regional_precipitation_variability.ipynb similarity index 99% rename from projects/project-notebooks/Regional_precipitation_variability.ipynb rename to projects/archive/Regional_precipitation_variability.ipynb index 41fddfdf0..958635b62 100644 --- a/projects/project-notebooks/Regional_precipitation_variability.ipynb +++ b/projects/archive/Regional_precipitation_variability.ipynb @@ -1,6 +1,6 @@ { "cells": [ - { + { "cell_type": "markdown", "metadata": { "execution": {} @@ -554,7 +554,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.11" + "version": "3.9.16" } }, "nbformat": 4, diff --git a/projects/project-notebooks/Sea_level_rise.ipynb b/projects/archive/Sea_level_rise.ipynb similarity index 100% rename from projects/project-notebooks/Sea_level_rise.ipynb rename to projects/archive/Sea_level_rise.ipynb diff --git a/projects/project-notebooks/Surface_albedo_and_land_cover.ipynb b/projects/archive/Surface_albedo_and_land_cover.ipynb similarity index 100% rename from projects/project-notebooks/Surface_albedo_and_land_cover.ipynb rename to projects/archive/Surface_albedo_and_land_cover.ipynb diff --git a/projects/project-notebooks/Wildfires_and_burnt_areas.ipynb b/projects/archive/Wildfires_and_burnt_areas.ipynb similarity index 100% rename from projects/project-notebooks/Wildfires_and_burnt_areas.ipynb rename to projects/archive/Wildfires_and_burnt_areas.ipynb diff --git a/projects/keynote.ipynb b/projects/keynote.ipynb index fc91edc44..a62f36a75 100644 --- a/projects/keynote.ipynb +++ b/projects/keynote.ipynb @@ -3,7 +3,9 @@ { "cell_type": "markdown", "id": "347f0ae5", - "metadata": {}, + "metadata": { + "execution": {} + }, "source": [ "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/neuromatch/climate-course-content/blob/main/tutorials/W2D2_ProjectsDay/W2D2_Intro.ipynb)   \"Open" ] @@ -35,9 +37,9 @@ "execution": {} }, "source": [ - "Today marks the transition point from our study of the physical aspect of the climate system and climate change to the socio-economic effects of climate change as well as mitigation and adaptation strategies. You will start the day learning about individual and collective action.\n", + "Today marks the last day of an intense week, where we covered the study of the physical aspect of the climate system and climate change and its socio-economic effects as well as mitigation and adaptation strategies. You will start the day learning about individual and collective action.\n", "\n", - "What is it that we can expect from climate change in the future? How do do energy and food systems specifically contribute to climate change and what can we do to minimize this contribution? In his lecture, Dr Paul Behrens is talks about what choices we can make as individuals and as societies to improve the chances for a better future.\n", + "What is it that we can expect from climate change in the future? How do energy and food systems specifically contribute to climate change and what can we do to minimize this contribution? In his lecture, Dr. Paul Behrens talks about what choices we can make as individuals and as societies to improve the chances for a better future. \n", "You will then focus the rest of your day on advancing your research projects. There will be no tutorials." ] }, @@ -59,7 +61,22 @@ "cellView": "form", "execution": {} }, - "outputs": [], + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "fc4d62174a794907b031880e6fb2795c", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Tab(children=(Output(), Output()), selected_index=0, titles=('Youtube', 'Bilibili'))" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "# @markdown\n", "\n", @@ -127,38 +144,52 @@ "cellView": "form", "execution": {} }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "If you want to download the slides: https://osf.io/download/3tc2h/\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "# @markdown\n", - "from ipywidgets import widgets\n", + "# @title Slides\n", + "# @markdown These are the slides for the videos in all tutorials today\n", "from IPython.display import IFrame\n", - "\n", "link_id = \"3tc2h\"\n", - "\n", - "download_link = f\"https://osf.io/download/{link_id}/\"\n", - "render_link = f\"https://mfr.ca-1.osf.io/render?url=https://osf.io/{link_id}/?direct%26mode=render%26action=download%26mode=render\"\n", - "# @markdown\n", - "out = widgets.Output()\n", - "with out:\n", - " print(f\"If you want to download the slides: {download_link}\")\n", - " display(IFrame(src=f\"{render_link}\", width=730, height=410))\n", - "display(out)" + "print(f\"If you want to download the slides: https://osf.io/download/{link_id}/\")\n", + "IFrame(src=f\"https://mfr.ca-1.osf.io/render?url=https://osf.io/{link_id}/?direct%26mode=render%26action=download%26mode=render\", width=854, height=480)" ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "9f88fae3", - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { "colab": { "collapsed_sections": [], "include_colab_link": true, - "name": "W2D1_Intro", + "name": "keynote", "toc_visible": true }, "kernel": { @@ -181,7 +212,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.8" + "version": "3.9.19" } }, "nbformat": 4, diff --git a/projects/project-notebooks/Arctic_sea_ice_change_2024.ipynb b/projects/project-notebooks/Arctic_sea_ice_change_2024.ipynb new file mode 100644 index 000000000..0267e1e4d --- /dev/null +++ b/projects/project-notebooks/Arctic_sea_ice_change_2024.ipynb @@ -0,0 +1,4024 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "ada5523b", + "metadata": { + "execution": {} + }, + "source": [ + "\"Open   \"Open" + ] + }, + { + "cell_type": "markdown", + "id": "045624d0", + "metadata": { + "execution": {} + }, + "source": [ + "# Arctic Sea Ice Change\n", + "\n", + "**Content creators:** Alistair Duffey, Will Gregory, Michel Tsamados\n", + "\n", + "**Content reviewers:** Paul Heubel, Laura Paccini, Jenna Pearson\n", + "\n", + "**Content editors:** Paul Heubel\n", + "\n", + "**Production editors:** Paul Heubel, Konstantine Tsafatinos\n", + "\n", + "**Our 2024 Sponsors:** CMIP, NFDI4Earth\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "64da422f", + "metadata": { + "cellView": "form", + "execution": {} + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "428dba8079dd4726934d8fabe46e6179", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Tab(children=(Output(), Output(), Output()), selected_index=0, titles=('Youtube', 'Bilibili', 'Osf'))" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# @title Project Background\n", + "\n", + "from ipywidgets import widgets\n", + "from IPython.display import YouTubeVideo\n", + "from IPython.display import IFrame\n", + "from IPython.display import display\n", + "\n", + "\n", + "class PlayVideo(IFrame):\n", + " def __init__(self, id, source, page=1, width=400, height=300, **kwargs):\n", + " self.id = id\n", + " if source == 'Bilibili':\n", + " src = f'https://player.bilibili.com/player.html?bvid={id}&page={page}'\n", + " elif source == 'Osf':\n", + " src = f'https://mfr.ca-1.osf.io/render?url=https://osf.io/download/{id}/?direct%26mode=render'\n", + " super(PlayVideo, self).__init__(src, width, height, **kwargs)\n", + "\n", + "\n", + "def display_videos(video_ids, W=400, H=300, fs=1):\n", + " tab_contents = []\n", + " for i, video_id in enumerate(video_ids):\n", + " out = widgets.Output()\n", + " with out:\n", + " if video_ids[i][0] == 'Youtube':\n", + " video = YouTubeVideo(id=video_ids[i][1], width=W,\n", + " height=H, fs=fs, rel=0)\n", + " print(f'Video available at https://youtube.com/watch?v={video.id}')\n", + " else:\n", + " video = PlayVideo(id=video_ids[i][1], source=video_ids[i][0], width=W,\n", + " height=H, fs=fs, autoplay=False)\n", + " if video_ids[i][0] == 'Bilibili':\n", + " print(f'Video available at https://www.bilibili.com/video/{video.id}')\n", + " elif video_ids[i][0] == 'Osf':\n", + " print(f'Video available at https://osf.io/{video.id}')\n", + " display(video)\n", + " tab_contents.append(out)\n", + " return tab_contents\n", + "\n", + "\n", + "video_ids = [('Youtube', 'gt6o3lqu5zA'), ('Bilibili', ''), ('Osf', '')]\n", + "tab_contents = display_videos(video_ids, W=854, H=480)\n", + "tabs = widgets.Tab()\n", + "tabs.children = tab_contents\n", + "for i in range(len(tab_contents)):\n", + " tabs.set_title(i, video_ids[i][0])\n", + "display(tabs)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "0f7b933c-9888-4051-8a62-c7f44246feda", + "metadata": { + "cellView": "form", + "execution": {} + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "If you want to download the slides: https://osf.io/download/y6em2/\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# @title Slides\n", + "# @markdown These are the slides for the video introduction to the project\n", + "from IPython.display import IFrame\n", + "link_id = \"y6em2\"\n", + "print(f\"If you want to download the slides: https://osf.io/download/{link_id}/\")\n", + "IFrame(src=f\"https://mfr.ca-1.osf.io/render?url=https://osf.io/{link_id}/?direct%26mode=render%26action=download%26mode=render\", width=854, height=480)" + ] + }, + { + "cell_type": "markdown", + "id": "63b697d5", + "metadata": { + "execution": {} + }, + "source": [ + "In this project, you will be given the opportunity to explore data from climate models to examine the modeled change in sea ice coverage over time.\n", + "\n", + "The project aims to:\n", + "* Download, process, and plot data showing modeled sea ice coverage over the historical period within a CMIP6 model climate.\n", + "* Calculate the total sea ice extent and assess its rate of decline over the recent historical period, and project it into the future under a middle-of-the-road emissions scenario.\n", + "* Assess the dependence of future projections on emissions scenario, e.g. to assess whether any emissions scenario is sufficient to keep late-summer sea ice in the Arctic.\n", + "* Examine the spatial and seasonal variation of sea ice and how this changes during its decline with warming.\n", + "\n", + "We also include a dataset of satellite observations, in case you would like to check the realism of the model's representation of sea ice in the recent historical period. \n" + ] + }, + { + "cell_type": "markdown", + "id": "ff7ae1c9", + "metadata": { + "execution": {} + }, + "source": [ + "# Project Template\n", + "\n", + "" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "a4cc9acb-3363-4a13-879d-73378ddb6a74", + "metadata": { + "execution": {} + }, + "source": [ + "# Data Exploration Notebook\n", + "\n", + "## Project Setup" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b68292ec", + "metadata": { + "execution": {} + }, + "outputs": [], + "source": [ + "# google colab installs\n", + "\n", + "# !pip install --quiet" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "1e541a40", + "metadata": { + "execution": {} + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/esmpy/interface/loadESMF.py:92: VersionWarning: ESMF installation version 8.7.0 beta snapshot, ESMPy version 8.7.0b7\n", + " warnings.warn(\"ESMF installation version {}, ESMPy version {}\".format(\n" + ] + } + ], + "source": [ + "# Imports\n", + "\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import xarray as xr\n", + "import dask\n", + "import cartopy.crs as ccrs\n", + "import cartopy.feature as cfeature\n", + "from xmip.preprocessing import combined_preprocessing\n", + "from xmip.utils import google_cmip_col\n", + "from xmip.postprocessing import match_metrics" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "07545499", + "metadata": { + "cellView": "form", + "execution": {} + }, + "outputs": [], + "source": [ + "# @title Figure settings\n", + "\n", + "#import ipywidgets as widgets # interactive display\n", + "%config InlineBackend.figure_format = 'retina'\n", + "plt.style.use(\"https://raw.githubusercontent.com/neuromatch/climate-course-content/main/cma.mplstyle\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c6569502-58dc-43a7-a95f-5fa5f8828179", + "metadata": { + "execution": {} + }, + "outputs": [], + "source": [ + "# Helper functions\n", + "import os\n", + "import pooch\n", + "import tempfile\n", + "\n", + "def pooch_load(filelocation=None, filename=None, processor=None):\n", + " shared_location = \"/home/jovyan/shared/Data/projects/SeaIce\" # this is different for each day\n", + " user_temp_cache = tempfile.gettempdir()\n", + "\n", + " if os.path.exists(os.path.join(shared_location, filename)):\n", + " file = os.path.join(shared_location, filename)\n", + " else:\n", + " file = pooch.retrieve(\n", + " filelocation,\n", + " known_hash=None,\n", + " fname=os.path.join(user_temp_cache, filename),\n", + " processor=processor,\n", + " )\n", + "\n", + " return file" + ] + }, + { + "cell_type": "markdown", + "id": "ee7c9ef5", + "metadata": { + "execution": {} + }, + "source": [ + "## CESM2-WACCM: Climate model simulations of sea ice concentration\n", + "\n", + "Here we use the output from [CESM2-WACCM, the Community Earth System Model (version 2, CESM2)](https://doi.org/10.1029/2019ms001916), with the [Whole Atmosphere Community Climate Model (WACCM)](https://doi.org/10.1029/2019JD030943) as its atmosphere component. \n", + "\n", + "We use the historical scenario, which runs with historical forcings from 1850 to 2014. Note that this scenario is just one instance of internal variability in a world forced by historical GHGs. \n", + "\n", + "A note on the sea ice output for CMIP6 models: \n", + "\n", + "The Sea Ice component of models is generally output on the ocean grid, which is normally not a simple lat/lon grid, unlike many atmosphere model components. Here we use the variable ***siconca*** which stands for *sea ice concentration atmosphere* - this is the sea ice concentration re-gridded onto the model's atmosphere grid and is somewhat easier to work with.\n" + ] + }, + { + "cell_type": "markdown", + "id": "867ff5a5-6b39-459d-b89f-d224126147b6", + "metadata": { + "execution": {} + }, + "source": [ + "Let's search the CMIP6 catalog for some sea ice concentration (`siconca`) data from the CESM Earth System Model. We pick a certain ensemble member (`r1i1p1f1`) to reduce the amount of data to download. At first, our scenarios of interest are the `historical` and the middle-of-the-road `ssp245` ones. As we get the data on the native grid (`gn`), we must also download the grid cell area in the next step.\n", + "\n", + "*Hint: for a detailed explanation of the following `xmip` functionalities and other CMIP6 related terms, please refer to:*\n", + "* *W1D5 [Tutorial 7](https://github.com/neuromatch/climate-course-content/blob/main/tutorials/W1D5_ClimateModeling/W1D5_Tutorial7.ipynb),*\n", + "* *W2D1 [Tutorial 1](https://github.com/neuromatch/climate-course-content/blob/main/tutorials/W2D1_FutureClimate-IPCCIPhysicalBasis/W2D1_Tutorial1.ipynb),*\n", + "* *our [CMIP Resource bank](https://github.com/neuromatch/climate-course-content/blob/main/tutorials/CMIP/CMIP_resource_bank.md),* \n", + "* *xmip's [tutorials](https://cmip6-preprocessing.readthedocs.io/en/latest/tutorial.html)*\n", + "* *[this lecture](https://earth-env-data-science.github.io/lectures/models/cmip.html) by Ryan Abernathy, Professor of Earth and Environmental Sciences at Columbia University*" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "62ca691c-6efe-4598-932f-32f5e9aac31b", + "metadata": { + "execution": {} + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "--> The keys in the returned dictionary of datasets are constructed as follows:\n", + "\t'activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.zstore.dcpp_init_year.version'\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + " \n", + " 100.00% [2/2 00:02<00:00]\n", + "
\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "['ScenarioMIP.NCAR.CESM2-WACCM.ssp245.r1i1p1f1.SImon.siconca.gn.gs://cmip6/CMIP6/ScenarioMIP/NCAR/CESM2-WACCM/ssp245/r1i1p1f1/SImon/siconca/gn/v20190815/.20190815',\n", + " 'CMIP.NCAR.CESM2-WACCM.historical.r1i1p1f1.SImon.siconca.gn.gs://cmip6/CMIP6/CMIP/NCAR/CESM2-WACCM/historical/r1i1p1f1/SImon/siconca/gn/v20190507/.20190507']" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# create a collection object from the Google Cloud Storage\n", + "col = google_cmip_col()\n", + "\n", + "# search via keys\n", + "cat = col.search(\n", + " source_id=[\"CESM2-WACCM\"],\n", + " variable_id=[\"siconca\"],\n", + " member_id=\"r1i1p1f1\",\n", + " #table_id=\"SImon\",\n", + " grid_label=\"gn\",\n", + " experiment_id=[\"historical\", \"ssp245\"],\n", + " #, \"ssp126\", \"ssp585\"],\n", + " require_all_on=[\"experiment_id\", \"variable_id\"]\n", + ")\n", + "# key word arguments that allow efficient and useful preprocessing\n", + "kwargs = {'zarr_kwargs':{\n", + " 'consolidated':True,\n", + " 'use_cftime':True\n", + "},\n", + " 'aggregate':False,\n", + " 'preprocess':combined_preprocessing\n", + "}\n", + "\n", + "# create a dictionary of the datasets from the catalog entries\n", + "ds_dict = cat.to_dataset_dict(**kwargs)\n", + "list(ds_dict.keys())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5a348976-8faa-4a0f-aedd-c427b212120c", + "metadata": { + "execution": {} + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "--> The keys in the returned dictionary of datasets are constructed as follows:\n", + "\t'activity_id.institution_id.source_id.experiment_id.member_id.table_id.variable_id.grid_label.zstore.dcpp_init_year.version'\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "
\n", + " \n", + " 100.00% [2/2 00:00<00:00]\n", + "
\n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "['ScenarioMIP.NCAR.CESM2-WACCM.ssp245.r1i1p1f1.fx.areacella.gn.gs://cmip6/CMIP6/ScenarioMIP/NCAR/CESM2-WACCM/ssp245/r1i1p1f1/fx/areacella/gn/v20190815/.20190815',\n", + " 'CMIP.NCAR.CESM2-WACCM.historical.r1i1p1f1.fx.areacella.gn.gs://cmip6/CMIP6/CMIP/NCAR/CESM2-WACCM/historical/r1i1p1f1/fx/areacella/gn/v20190227/.20190227']" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# repeat the procedure with the grid cell area\n", + "cat_metric = col.search(\n", + " source_id=['CESM2-WACCM'],\n", + " variable_id='areacella',\n", + " member_id=\"r1i1p1f1\",\n", + " experiment_id=[\"historical\", \"ssp245\"]\n", + ")\n", + "ddict_metrics = cat_metric.to_dataset_dict(**kwargs)\n", + "\n", + "list(ddict_metrics.keys())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "08a37581-9a3f-4650-8811-5cd1aea35f27", + "metadata": { + "execution": {} + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.Dataset> Size: 3MB\n",
+       "Dimensions:         (member_id: 1, dcpp_init_year: 1, y: 192, x: 288, nbnd: 2)\n",
+       "Coordinates:\n",
+       "  * y               (y) float64 2kB -90.0 -89.06 -88.12 ... 88.12 89.06 90.0\n",
+       "  * x               (x) float64 2kB 0.0 1.25 2.5 3.75 ... 356.2 357.5 358.8\n",
+       "    lon_bounds      (x, nbnd, y) float64 885kB dask.array<chunksize=(288, 2, 192), meta=np.ndarray>\n",
+       "    lat_bounds      (y, nbnd, x) float64 885kB dask.array<chunksize=(192, 2, 288), meta=np.ndarray>\n",
+       "  * nbnd            (nbnd) int64 16B 0 1\n",
+       "    lon             (x, y) float64 442kB 360.0 360.0 360.0 ... 358.8 358.8 358.8\n",
+       "    lat             (x, y) float64 442kB -90.0 -89.06 -88.12 ... 89.06 90.0\n",
+       "  * member_id       (member_id) object 8B 'r1i1p1f1'\n",
+       "  * dcpp_init_year  (dcpp_init_year) float64 8B nan\n",
+       "Data variables:\n",
+       "    areacella       (member_id, dcpp_init_year, y, x) float32 221kB dask.array<chunksize=(1, 1, 192, 288), meta=np.ndarray>\n",
+       "Attributes: (12/60)\n",
+       "    Conventions:                      CF-1.7 CMIP-6.2\n",
+       "    activity_id:                      ScenarioMIP\n",
+       "    branch_method:                    standard\n",
+       "    branch_time_in_child:             735110.0\n",
+       "    branch_time_in_parent:            735110.0\n",
+       "    case_id:                          966\n",
+       "    ...                               ...\n",
+       "    intake_esm_attrs:variable_id:     areacella\n",
+       "    intake_esm_attrs:grid_label:      gn\n",
+       "    intake_esm_attrs:zstore:          gs://cmip6/CMIP6/ScenarioMIP/NCAR/CESM2...\n",
+       "    intake_esm_attrs:version:         20190815\n",
+       "    intake_esm_attrs:_data_format_:   zarr\n",
+       "    intake_esm_dataset_key:           ScenarioMIP.NCAR.CESM2-WACCM.ssp245.r1i...
" + ], + "text/plain": [ + " Size: 3MB\n", + "Dimensions: (member_id: 1, dcpp_init_year: 1, y: 192, x: 288, nbnd: 2)\n", + "Coordinates:\n", + " * y (y) float64 2kB -90.0 -89.06 -88.12 ... 88.12 89.06 90.0\n", + " * x (x) float64 2kB 0.0 1.25 2.5 3.75 ... 356.2 357.5 358.8\n", + " lon_bounds (x, nbnd, y) float64 885kB dask.array\n", + " lat_bounds (y, nbnd, x) float64 885kB dask.array\n", + " * nbnd (nbnd) int64 16B 0 1\n", + " lon (x, y) float64 442kB 360.0 360.0 360.0 ... 358.8 358.8 358.8\n", + " lat (x, y) float64 442kB -90.0 -89.06 -88.12 ... 89.06 90.0\n", + " * member_id (member_id) object 8B 'r1i1p1f1'\n", + " * dcpp_init_year (dcpp_init_year) float64 8B nan\n", + "Data variables:\n", + " areacella (member_id, dcpp_init_year, y, x) float32 221kB dask.array\n", + "Attributes: (12/60)\n", + " Conventions: CF-1.7 CMIP-6.2\n", + " activity_id: ScenarioMIP\n", + " branch_method: standard\n", + " branch_time_in_child: 735110.0\n", + " branch_time_in_parent: 735110.0\n", + " case_id: 966\n", + " ... ...\n", + " intake_esm_attrs:variable_id: areacella\n", + " intake_esm_attrs:grid_label: gn\n", + " intake_esm_attrs:zstore: gs://cmip6/CMIP6/ScenarioMIP/NCAR/CESM2...\n", + " intake_esm_attrs:version: 20190815\n", + " intake_esm_attrs:_data_format_: zarr\n", + " intake_esm_dataset_key: ScenarioMIP.NCAR.CESM2-WACCM.ssp245.r1i..." + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#ddict_metrics[CMIP.NCAR.CESM2-WACCM.historical.r1i1p1f1.fx.areacella.gn.gs://cmip6/CMIP6/CMIP/NCAR/CESM2-WACCM/historical/r1i1p1f1/fx/areacella/gn/v20190227/.20190227']\n", + "ddict_metrics[list(ddict_metrics.keys())[0]]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "5d2ffd64-8c4c-4934-b2de-00da88cc5703", + "metadata": { + "execution": {} + }, + "outputs": [ + { + "data": { + "text/plain": [ + "['ScenarioMIP.NCAR.CESM2-WACCM.ssp245.r1i1p1f1.SImon.siconca.gn.gs://cmip6/CMIP6/ScenarioMIP/NCAR/CESM2-WACCM/ssp245/r1i1p1f1/SImon/siconca/gn/v20190815/.20190815',\n", + " 'CMIP.NCAR.CESM2-WACCM.historical.r1i1p1f1.SImon.siconca.gn.gs://cmip6/CMIP6/CMIP/NCAR/CESM2-WACCM/historical/r1i1p1f1/SImon/siconca/gn/v20190507/.20190507']" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# add the grid cell area metric to both scenario data sets\n", + "ddict_matched = match_metrics(ds_dict, ddict_metrics, ['areacella'])\n", + "list(ddict_matched.keys())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "db90f606-c419-416b-99cb-aecfb810ba2a", + "metadata": { + "execution": {} + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.Dataset> Size: 441MB\n",
+       "Dimensions:         (member_id: 1, dcpp_init_year: 1, time: 1980, y: 192,\n",
+       "                     x: 288, nbnd: 2)\n",
+       "Coordinates:\n",
+       "  * y               (y) float64 2kB -90.0 -89.06 -88.12 ... 88.12 89.06 90.0\n",
+       "  * x               (x) float64 2kB 0.0 1.25 2.5 3.75 ... 356.2 357.5 358.8\n",
+       "  * time            (time) object 16kB 1850-01-15 12:00:00 ... 2014-12-15 12:...\n",
+       "    lon_bounds      (x, nbnd, y) float64 885kB dask.array<chunksize=(288, 2, 192), meta=np.ndarray>\n",
+       "    time_bounds     (time, nbnd) object 32kB dask.array<chunksize=(1980, 2), meta=np.ndarray>\n",
+       "    lat_bounds      (y, nbnd, x) float64 885kB dask.array<chunksize=(192, 2, 288), meta=np.ndarray>\n",
+       "  * nbnd            (nbnd) int64 16B 0 1\n",
+       "    lon             (x, y) float64 442kB 360.0 360.0 360.0 ... 358.8 358.8 358.8\n",
+       "    lat             (x, y) float64 442kB -90.0 -89.06 -88.12 ... 89.06 90.0\n",
+       "  * member_id       (member_id) object 8B 'r1i1p1f1'\n",
+       "  * dcpp_init_year  (dcpp_init_year) float64 8B nan\n",
+       "    areacella       (member_id, dcpp_init_year, y, x) float32 221kB dask.array<chunksize=(1, 1, 192, 288), meta=np.ndarray>\n",
+       "Data variables:\n",
+       "    siconca         (member_id, dcpp_init_year, time, y, x) float32 438MB dask.array<chunksize=(1, 1, 600, 192, 288), meta=np.ndarray>\n",
+       "Attributes: (12/61)\n",
+       "    Conventions:                      CF-1.7 CMIP-6.2\n",
+       "    activity_id:                      CMIP\n",
+       "    branch_method:                    standard\n",
+       "    branch_time_in_child:             674885.0\n",
+       "    branch_time_in_parent:            20075.0\n",
+       "    case_id:                          4\n",
+       "    ...                               ...\n",
+       "    intake_esm_attrs:variable_id:     siconca\n",
+       "    intake_esm_attrs:grid_label:      gn\n",
+       "    intake_esm_attrs:zstore:          gs://cmip6/CMIP6/CMIP/NCAR/CESM2-WACCM/...\n",
+       "    intake_esm_attrs:version:         20190507\n",
+       "    intake_esm_attrs:_data_format_:   zarr\n",
+       "    intake_esm_dataset_key:           CMIP.NCAR.CESM2-WACCM.historical.r1i1p1...
" + ], + "text/plain": [ + " Size: 441MB\n", + "Dimensions: (member_id: 1, dcpp_init_year: 1, time: 1980, y: 192,\n", + " x: 288, nbnd: 2)\n", + "Coordinates:\n", + " * y (y) float64 2kB -90.0 -89.06 -88.12 ... 88.12 89.06 90.0\n", + " * x (x) float64 2kB 0.0 1.25 2.5 3.75 ... 356.2 357.5 358.8\n", + " * time (time) object 16kB 1850-01-15 12:00:00 ... 2014-12-15 12:...\n", + " lon_bounds (x, nbnd, y) float64 885kB dask.array\n", + " time_bounds (time, nbnd) object 32kB dask.array\n", + " lat_bounds (y, nbnd, x) float64 885kB dask.array\n", + " * nbnd (nbnd) int64 16B 0 1\n", + " lon (x, y) float64 442kB 360.0 360.0 360.0 ... 358.8 358.8 358.8\n", + " lat (x, y) float64 442kB -90.0 -89.06 -88.12 ... 89.06 90.0\n", + " * member_id (member_id) object 8B 'r1i1p1f1'\n", + " * dcpp_init_year (dcpp_init_year) float64 8B nan\n", + " areacella (member_id, dcpp_init_year, y, x) float32 221kB dask.array\n", + "Data variables:\n", + " siconca (member_id, dcpp_init_year, time, y, x) float32 438MB dask.array\n", + "Attributes: (12/61)\n", + " Conventions: CF-1.7 CMIP-6.2\n", + " activity_id: CMIP\n", + " branch_method: standard\n", + " branch_time_in_child: 674885.0\n", + " branch_time_in_parent: 20075.0\n", + " case_id: 4\n", + " ... ...\n", + " intake_esm_attrs:variable_id: siconca\n", + " intake_esm_attrs:grid_label: gn\n", + " intake_esm_attrs:zstore: gs://cmip6/CMIP6/CMIP/NCAR/CESM2-WACCM/...\n", + " intake_esm_attrs:version: 20190507\n", + " intake_esm_attrs:_data_format_: zarr\n", + " intake_esm_dataset_key: CMIP.NCAR.CESM2-WACCM.historical.r1i1p1..." + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# select the historical scenario and print its summary\n", + "SI_ds = ddict_matched['CMIP.NCAR.CESM2-WACCM.historical.r1i1p1f1.SImon.siconca.gn.gs://cmip6/CMIP6/CMIP/NCAR/CESM2-WACCM/historical/r1i1p1f1/SImon/siconca/gn/v20190507/.20190507']\n", + "SI_ds" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "bb72400d-8b18-48aa-aedb-8ef0bc28795b", + "metadata": { + "execution": {} + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.Dataset> Size: 231MB\n",
+       "Dimensions:         (member_id: 1, dcpp_init_year: 1, time: 1032, y: 192,\n",
+       "                     x: 288, nbnd: 2)\n",
+       "Coordinates:\n",
+       "  * y               (y) float64 2kB -90.0 -89.06 -88.12 ... 88.12 89.06 90.0\n",
+       "  * x               (x) float64 2kB 0.0 1.25 2.5 3.75 ... 356.2 357.5 358.8\n",
+       "  * time            (time) object 8kB 2015-01-15 12:00:00 ... 2100-12-15 12:0...\n",
+       "    lon_bounds      (x, nbnd, y) float64 885kB dask.array<chunksize=(288, 2, 192), meta=np.ndarray>\n",
+       "    time_bounds     (time, nbnd) object 17kB dask.array<chunksize=(1032, 2), meta=np.ndarray>\n",
+       "    lat_bounds      (y, nbnd, x) float64 885kB dask.array<chunksize=(192, 2, 288), meta=np.ndarray>\n",
+       "  * nbnd            (nbnd) int64 16B 0 1\n",
+       "    lon             (x, y) float64 442kB 360.0 360.0 360.0 ... 358.8 358.8 358.8\n",
+       "    lat             (x, y) float64 442kB -90.0 -89.06 -88.12 ... 89.06 90.0\n",
+       "  * member_id       (member_id) object 8B 'r1i1p1f1'\n",
+       "  * dcpp_init_year  (dcpp_init_year) float64 8B nan\n",
+       "    areacella       (member_id, dcpp_init_year, y, x) float32 221kB dask.array<chunksize=(1, 1, 192, 288), meta=np.ndarray>\n",
+       "Data variables:\n",
+       "    siconca         (member_id, dcpp_init_year, time, y, x) float32 228MB dask.array<chunksize=(1, 1, 516, 192, 288), meta=np.ndarray>\n",
+       "Attributes: (12/61)\n",
+       "    Conventions:                      CF-1.7 CMIP-6.2\n",
+       "    activity_id:                      ScenarioMIP\n",
+       "    branch_method:                    standard\n",
+       "    branch_time_in_child:             735110.0\n",
+       "    branch_time_in_parent:            735110.0\n",
+       "    case_id:                          966\n",
+       "    ...                               ...\n",
+       "    intake_esm_attrs:variable_id:     siconca\n",
+       "    intake_esm_attrs:grid_label:      gn\n",
+       "    intake_esm_attrs:zstore:          gs://cmip6/CMIP6/ScenarioMIP/NCAR/CESM2...\n",
+       "    intake_esm_attrs:version:         20190815\n",
+       "    intake_esm_attrs:_data_format_:   zarr\n",
+       "    intake_esm_dataset_key:           ScenarioMIP.NCAR.CESM2-WACCM.ssp245.r1i...
" + ], + "text/plain": [ + " Size: 231MB\n", + "Dimensions: (member_id: 1, dcpp_init_year: 1, time: 1032, y: 192,\n", + " x: 288, nbnd: 2)\n", + "Coordinates:\n", + " * y (y) float64 2kB -90.0 -89.06 -88.12 ... 88.12 89.06 90.0\n", + " * x (x) float64 2kB 0.0 1.25 2.5 3.75 ... 356.2 357.5 358.8\n", + " * time (time) object 8kB 2015-01-15 12:00:00 ... 2100-12-15 12:0...\n", + " lon_bounds (x, nbnd, y) float64 885kB dask.array\n", + " time_bounds (time, nbnd) object 17kB dask.array\n", + " lat_bounds (y, nbnd, x) float64 885kB dask.array\n", + " * nbnd (nbnd) int64 16B 0 1\n", + " lon (x, y) float64 442kB 360.0 360.0 360.0 ... 358.8 358.8 358.8\n", + " lat (x, y) float64 442kB -90.0 -89.06 -88.12 ... 89.06 90.0\n", + " * member_id (member_id) object 8B 'r1i1p1f1'\n", + " * dcpp_init_year (dcpp_init_year) float64 8B nan\n", + " areacella (member_id, dcpp_init_year, y, x) float32 221kB dask.array\n", + "Data variables:\n", + " siconca (member_id, dcpp_init_year, time, y, x) float32 228MB dask.array\n", + "Attributes: (12/61)\n", + " Conventions: CF-1.7 CMIP-6.2\n", + " activity_id: ScenarioMIP\n", + " branch_method: standard\n", + " branch_time_in_child: 735110.0\n", + " branch_time_in_parent: 735110.0\n", + " case_id: 966\n", + " ... ...\n", + " intake_esm_attrs:variable_id: siconca\n", + " intake_esm_attrs:grid_label: gn\n", + " intake_esm_attrs:zstore: gs://cmip6/CMIP6/ScenarioMIP/NCAR/CESM2...\n", + " intake_esm_attrs:version: 20190815\n", + " intake_esm_attrs:_data_format_: zarr\n", + " intake_esm_dataset_key: ScenarioMIP.NCAR.CESM2-WACCM.ssp245.r1i..." + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# select the ssp245 scenario and print its summary\n", + "SI_ds_245 = ddict_matched['ScenarioMIP.NCAR.CESM2-WACCM.ssp245.r1i1p1f1.SImon.siconca.gn.gs://cmip6/CMIP6/ScenarioMIP/NCAR/CESM2-WACCM/ssp245/r1i1p1f1/SImon/siconca/gn/v20190815/.20190815']\n", + "SI_ds_245" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "58e3e557-9eee-4116-89e1-cb3ba4d75c53", + "metadata": { + "execution": {} + }, + "outputs": [ + { + "data": { + "text/plain": [ + "{'cell_methods': 'area: sum',\n", + " 'comment': 'Cell areas for any grid used to report atmospheric variables and any other variable using that grid (e.g., soil moisture content). These cell areas should be defined to enable exact calculation of global integrals (e.g., of vertical fluxes of energy at the surface and top of the atmosphere).',\n", + " 'description': 'Cell areas for any grid used to report atmospheric variables and any other variable using that grid (e.g., soil moisture content). These cell areas should be defined to enable exact calculation of global integrals (e.g., of vertical fluxes of energy at the surface and top of the atmosphere).',\n", + " 'frequency': 'fx',\n", + " 'id': 'areacella',\n", + " 'long_name': 'Grid-Cell Area for Atmospheric Grid Variables',\n", + " 'mipTable': 'fx',\n", + " 'out_name': 'areacella',\n", + " 'prov': 'fx ((isd.003))',\n", + " 'realm': 'atmos land',\n", + " 'standard_name': 'cell_area',\n", + " 'time_label': 'None',\n", + " 'time_title': 'No temporal dimensions ... fixed field',\n", + " 'title': 'Grid-Cell Area for Atmospheric Grid Variables',\n", + " 'type': 'real',\n", + " 'variable_id': 'areacella',\n", + " 'units': 'm²',\n", + " 'original_key': 'CMIP.NCAR.CESM2-WACCM.historical.r1i1p1f1.fx.areacella.gn.gs://cmip6/CMIP6/CMIP/NCAR/CESM2-WACCM/historical/r1i1p1f1/fx/areacella/gn/v20190227/.20190227',\n", + " 'parsed_with': 'xmip/postprocessing/_parse_metric'}" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# let s print the meta data of the areacella that we added as a coordinate before\n", + "SI_ds.areacella.attrs" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "59497066-568b-434e-9557-8fb8d9d5ad9f", + "metadata": { + "execution": {} + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "99.999916\n" + ] + } + ], + "source": [ + "# we also see that it contains the data variable siconca\n", + "\n", + "# let's print the minimum and maximum of this variable to check its format:\n", + "print(SI_ds.siconca.min().values)\n", + "print(SI_ds.siconca.max().values)\n", + "# note that it is formattwd as a percentage not a fraction, ranging from 0 to 100." + ] + }, + { + "cell_type": "markdown", + "id": "ae442fb9-ddb5-42c3-92ad-fb6f906f2d8c", + "metadata": { + "execution": {} + }, + "source": [ + "Great, now you are all set to use these model sea ice data to address the questions you are interested in!" + ] + }, + { + "cell_type": "markdown", + "id": "0823d446-6b6a-4684-814a-9892caee2a46", + "metadata": { + "execution": {} + }, + "source": [ + "# Q1: \n", + "Plot the annual mean of Arctic sea ice concentration (SIC) for three example years (e.g., 1996, 2007, 2012) using one CMIP6 model ensemble member." + ] + }, + { + "cell_type": "markdown", + "id": "b12170fa-fc2c-45ba-9021-c3ebd03f9143", + "metadata": { + "execution": {} + }, + "source": [ + "*Hint: Select latitudes of the arctic, years of interest and use `cartopy` for pretty projections, e.g. [ccrs.NorthPolarStereo()](https://scitools.org.uk/cartopy/docs/latest/reference/projections.html#northpolarstereo).*" + ] + }, + { + "cell_type": "markdown", + "id": "7be2c8be-21a8-4989-be07-81ab873feb51", + "metadata": { + "execution": {} + }, + "source": [ + "# Q2:\n", + "\n", + "Plot the Arctic total sea ice extent (SIE) as a function of time for the last 40 years. Compute seasonal means of SIE for June-August (JJA) and December-February (DJF)." + ] + }, + { + "cell_type": "markdown", + "id": "e47283b0-eeb9-47e9-8e39-69fbc7cb278c", + "metadata": { + "execution": {} + }, + "source": [ + "*Hint: We define sea ice extent (SIE) following the convention that a grid cell is 'sea ice' with a sea ice concentration higher than 15%.*\n", + "\n", + "*Extent is hence the sum of the grid cell areas with a concentration above 15%. Use e.g. xr.where() and an appropriate condition to mask the data, then apply the grid cell areas. Have a look at W1D1 Tutorials 8 and 9 to help apply it. Finally, combine results from both data sets into one time series.*" + ] + }, + { + "cell_type": "markdown", + "id": "f40e7c26-7588-46bd-ae26-6cb28b470b4e", + "metadata": { + "execution": {} + }, + "source": [ + "Compute seasonal means of SIE for June-August (JJA) and December-February (DJF).\n", + "\n", + "*Hint: Apply e.g. `groupby(\"time.season\")` to calculate seasonal means, note that months have a varying amount of days. Check xarray's [documentation](https://docs.xarray.dev/en/stable/user-guide/groupby.html)*" + ] + }, + { + "cell_type": "markdown", + "id": "fd1cf207-201b-4c38-8589-e1085b151124", + "metadata": { + "execution": {} + }, + "source": [ + "# Q3:\n", + "Repeat the analysis in Q2 for the Antarctic. How does this compare with the respective SIE in the Arctic?\n" + ] + }, + { + "cell_type": "markdown", + "id": "3690109a-32cc-4f25-a415-2bdd1aa1f239", + "metadata": { + "execution": {} + }, + "source": [ + "# Q4: \n", + "Are there long-term changes (trends) in SIE between 1979-2014 in this model? How do these changes differ across seasons and also between the Arctic and Antarctic?\n", + "\n", + "*Hint:* `from scipy import stats` *might offer the linear regression techniques that you are looking for. Check its [documentation](https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.linregress.html).*" + ] + }, + { + "cell_type": "markdown", + "id": "c62a0f3e", + "metadata": { + "execution": {} + }, + "source": [ + "# Further Reading" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "id": "d63d99be-fc26-405e-8b17-3c574eca874e", + "metadata": { + "execution": {} + }, + "source": [ + "* On the CMIP6 projections for arctic sea ice, see [Notz et al. (2020), doi.org/10.1029/2019gl086749](https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019gl086749). \n", + "* This paper by Steove & Notz, is a nice summary of the observational trends across all seasons, and how they compare to models' predictions: [Steove & Notz (2018), doi.org/10.1088/1748-9326/aade56](https://iopscience.iop.org/article/10.1088/1748-9326/aade56).\n", + "\n", + "* [CMIP6 Preprocessing with XMIP](https://cmip6-preprocessing.readthedocs.io/en/latest/postprocessing.html)" + ] + }, + { + "cell_type": "markdown", + "id": "b1fa5d34-263b-4182-ad58-a57122716944", + "metadata": { + "execution": {} + }, + "source": [ + "# Optional Additional Data Source: Satellite Observations\n", + "\n", + "**National Snow & Ice Data (NSIDC) \n", + "[Gridded Monthly Sea Ice Extent and Concentration, 1850 Onward, Version 2](https://doi.org/10.7265/jj4s-tq79)**\n", + "\n", + "From 1978, this is satellite passive microwave data. Prior to this, a range of sources are used (e.g. ship logs), but we will subset to only the satellite era here. \n", + "\n", + "The passive microwave observations are the NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration, Version 4. This data product uses a combination of two algorithms to generate the sea ice concentration; the NASA Team (NT) algorithm [(Cavalieri et al. (1984), doi.org/10.1029/JD089iD04p05355)](https://doi.org/10.1029/JD089iD04p05355), and the NASA Bootstrap (BT) algorithm [(Comiso 1986)](https://doi.org/10.1029/JC091iC01p00975). \n", + "\n", + "This version has been gridded onto a 1/4 degree latitude-longitude grid, and has been averaged to monthly resolution. It includes only latitudes North of 30°N (so is ***arctic-only***)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ee26e97b-14d9-4577-b3bc-b75fae4c471f", + "metadata": { + "execution": {} + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'https://osf.io/download/fpr3j/' to file '/tmp/G10010_sibt1850_v2.0.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: 090338cc3baa13c91625e6772beb66b5992ba44a864af7ec62c7ec5c22d417d0\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.Dataset> Size: 1GB\n",
+       "Dimensions:          (latitude: 240, longitude: 1440, time: 2016)\n",
+       "Coordinates:\n",
+       "  * latitude         (latitude) float32 960B 89.88 89.62 89.38 ... 30.38 30.12\n",
+       "  * longitude        (longitude) float32 6kB 0.125 0.375 0.625 ... 359.6 359.9\n",
+       "  * time             (time) object 16kB 1850-01-15 00:00:00 ... 2017-12-15 00...\n",
+       "Data variables:\n",
+       "    seaice_conc      (time, latitude, longitude) uint8 697MB ...\n",
+       "    seaice_source    (time, latitude, longitude) uint8 697MB ...\n",
+       "    LandRegion_mask  (latitude, longitude) uint8 346kB ...\n",
+       "    Gridcell_Area    (latitude) float32 960B ...\n",
+       "Attributes:\n",
+       "    version:       2.0\n",
+       "    release_date:  February 28, 2019\n",
+       "    Conventions:   CF-1.4\n",
+       "    citation:      https://doi.org/10.1111/j.1931-0846.2016.12195.x\n",
+       "    dataset_doi:   https://nsidc.org/data/g10010
" + ], + "text/plain": [ + " Size: 1GB\n", + "Dimensions: (latitude: 240, longitude: 1440, time: 2016)\n", + "Coordinates:\n", + " * latitude (latitude) float32 960B 89.88 89.62 89.38 ... 30.38 30.12\n", + " * longitude (longitude) float32 6kB 0.125 0.375 0.625 ... 359.6 359.9\n", + " * time (time) object 16kB 1850-01-15 00:00:00 ... 2017-12-15 00...\n", + "Data variables:\n", + " seaice_conc (time, latitude, longitude) uint8 697MB ...\n", + " seaice_source (time, latitude, longitude) uint8 697MB ...\n", + " LandRegion_mask (latitude, longitude) uint8 346kB ...\n", + " Gridcell_Area (latitude) float32 960B ...\n", + "Attributes:\n", + " version: 2.0\n", + " release_date: February 28, 2019\n", + " Conventions: CF-1.4\n", + " citation: https://doi.org/10.1111/j.1931-0846.2016.12195.x\n", + " dataset_doi: https://nsidc.org/data/g10010" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Code to retrieve and load the data\n", + "\n", + "link_id = 'fpr3j'\n", + "Sea_ice_conc_obs_url = f\"https://osf.io/download/{link_id}/\"\n", + "Sea_ice_conc_obs_fname = 'G10010_sibt1850_v2.0.nc'\n", + "\n", + "SI_obs_ds = xr.open_dataset(pooch_load(Sea_ice_conc_obs_url, Sea_ice_conc_obs_fname))\n", + "\n", + "# note the use of the chunks keyword. These data come on a high resolution grid,\n", + "# so are potentially too large to load into memory. Chunking (using dask)\n", + "# avoids this problem. We arbitrarily pick a chunk length of 100 along each dimension.\n", + "\n", + "# we can print a useful summary of the data by calling it:\n", + "SI_obs_ds" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "88016832-949b-47c9-9729-478e22716279", + "metadata": { + "execution": {} + }, + "outputs": [], + "source": [ + "# Code to preprocess data\n", + "# we will select only the satellite era observations:\n", + "SI_obs_ds = SI_obs_ds.where(SI_obs_ds.time.dt.year > 1978, drop=True)" + ] + }, + { + "cell_type": "markdown", + "id": "bf33e0f1-657a-40de-ba63-3df6fc4fd1d0", + "metadata": { + "execution": {} + }, + "source": [ + "We can now visualize the content of the dataset:\n", + "\n", + "Note that the sea ice concentration is (confusingly!) set to 120% over land. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "778eabdf-3594-476e-ae69-fda6d6d67001", + "metadata": { + "execution": {} + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABfwAAAR+CAYAAACFy/TlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd5wTZeI/8M/MJNnKwgJSF5SiiKIoCCpS7Yqod3h2BdvpT0VPz7vzUCyoX/Xr14J4nvXwPMvZux6eSrFLEwugICC9Lyy72d0kM/P7Y5nZZ1oyySabTfbz9uWLZDLzPM9MJjOzTyafR9J1XQcREREREREREREREeU0OdsNICIiIiIiIiIiIiKipmOHPxERERERERERERFRHmCHPxERERERERERERFRHmCHPxERERERERERERFRHmCHPxERERERERERERFRHmCHPxERERERERERERFRHmCHPxERERERERERERFRHmCHPxERERERERERERFRHmCHPxERERERERERERFRHmCHPxERERERERERERFRHmCHPxERERERERERERFRHmCHPxERERERERERERFRHmCHPxERERERERERERFRHmCHPxERERERERERERFRHmCHPxERERERERERERFRHmCHPxERERERERERERFRHmCHPxERERERERERERFRHmCHPxERERERERERERFRHmCHPxERERERERERERFRHmCHPxFRC3fbbbdBkiTL/0RERERERERERHaBbDeAiIiIKN3Wrl2LBQsWYOvWrdi2bRsURUGHDh3Qr18/HHbYYSgsLMx2EzNGVVUsXLgQv/zyC7Zu3YqqqioUFRWhoqICBx98MPbff/9sN9G3rVu3Yt68efjll19QVVWFYDCIDh064IADDsBhhx2GYDCY7SZSnsv2PrhixQp8++23WLt2LWpqalBUVIRu3brh4IMPxoEHHpjRutMhGo1i3rx5WLp0KbZv345oNIqysjL06dMHQ4YMwV577ZXR+nft2oVvvvkGy5cvx86dOyHLMsrLy9GvXz8cfvjhKCoqymj96ZDNfUDTNCxatAg//PADtmzZgvr6epSWlqJXr14YPHgwKioqMlo/ERERpUgnIqIW7dZbb9UBWP4naqlWr16tv/rqq/qNN96oH3vssXp5eblj/x01alRG6t6xY4d+yy236Pvtt5+jTvH/oqIi/cwzz9S/+uqrlOuaMGFC3Dqa8v/ee++dUpsWLFign3nmmXq7du3ilt+jRw99ypQp+rZt21Je/0x75ZVX9OHDh+uSJHmuR5s2bfRLLrlE/+mnn9Jadzb34XTRNE3/6aef9BdeeEG//vrr9ZEjR+pt2rRxrMeECRPSUt+sWbPS+hnYuHFjWtrVFNncB8PhsH7//ffr++67b9ztVFFRod966616ZWVlWutPh2XLlukXX3yx635n/C9Jkj5ixAj91VdfTXv9//3vf/UTTzxRDwQCnvUXFhbqZ555pj5v3ry0199U2d4H1q1bp//hD3/QO3ToELf+Qw89VH/qqaf0WCyW1vqJiIioadhrRESUZjNmzHD8QbRq1aqUy2OHP7VkH374oX7zzTfrJ554ot6xY0dfnXmZ6CydPn263rZt26Q7FidOnKhXV1cnXV8mO/z32WefpNqyY8cOffz48UnXU15erj/33HNJr3smrVu3Th81alRS6xEKhfSpU6fqmqalVGdL2Yeb6rXXXtP/9Kc/6WPGjPH9WWCHv1M29kHRZ599pu+9995J1b/XXnvpb731VhrWvulUVdVvu+02PRgMJrUOo0eP1jds2NDk+nfu3Jn08VCSJP3qq6/W6+vr07AFmi7b+8Bjjz2ml5aWJlX/wIED9WXLlqWlfiIiImo69hoREaUZO/ypNRk4cGDSnXnp7Cytr6/XJ06c2KTOxYEDB+pbt25Nqt5Mdvifc845vtvx448/6n369GlSfTfddFOymz0jfvrpJ71r165N2m6p3GWa7X04XVL5wosd/lbZ2gcNr732WtId5cb/kiTpf/vb39K4NZIXi8X0M888M+Xt1717d3358uUp179p0ya9f//+Kdc/evRovaamJo1bJHnZ3geuv/76lLdfWVlZk345R0REROnDDH8iIiLKWVdffTWeeeYZx/Ti4mKcdNJJGDlyJDp37oxwOIyVK1fi3XffxbfffmuZd/HixTj55JPx6aefoqCgwFe9PXv2xMCBA5vU9mg0iiVLljimX3rppb6W37JlC0444QSsW7fO8do+++yD008/HQcccADatm2L7du3Y/78+Xj77bexbds2y7x33XUXysvL8cc//jG1FUmD7du347jjjsPGjRsdrw0ePBinnXYaevXqhdraWvz888944YUXsGHDBst8L774Ijp16oSHHnqomVpN8fTp0welpaUpLZuNsRmyvQ9+8cUXOPvssxGNRi3TZVnGKaecguHDh6NHjx7YunUrFi9ejBdffBHhcNicT9d1XH311ejatSt+85vfJF1/OlxzzTV4+eWXHdPbt2+P888/H/3790dZWRlWr16NDz/8EHPmzLHMt379ehx//PFYsGABysvLk6q7vr4eY8eOxdKlSx2v7bfffjjzzDPRp08f6LqOX375BS+99BJWrFhhmW/27Nk477zz8MYbbyRVd7pkex+477778MADDziml5SU4JxzzsHBBx+Mjh07Yu3atfj000/x3nvvQdd1c76qqiqcdNJJWLBgAXr16pV0/URERJRG2f2+gYgo/6T7Dn+ilszr7uiysjJ91KhR+sUXX+x4LV13Rz/99NOudZ922mn6+vXrPZd78803XaNbJk2alJZ2+fXiiy862tC7d29fsSCapukjR450LB8KhfSHH37Y8y7j3bt369ddd51jOUVR9G+++Sbdq+jbb3/7W0eb2rRp4xlREYlE9Ntuu831/X///feTqjub+3A6ed3h36FDB/3444/XzzrrLMdrmbzDf9asWWkpu7lkcx+srq7We/bs6SinX79++pIlS1yX2b59u37qqac6lmnbtm1WfiHx1ltvuW6LK664wvOu+c8++0zv3LmzY5kzzzwz6frd7kwPBoP6E0884XpMVVVVf/zxx10z/h999NGk62+qbO8DCxYscN0Wp512mr5jxw7XZX788UfXMXOOOOKItMRbERERUerY4U9ElGbs8KfWZODAgXpJSYl+1FFH6ddee63+r3/9S1+6dKn5x/6qVasy0lkaDoddO4rOP/98XVXVhMsvWbJEb9++vWVZWZb1RYsWNbltfh1zzDGO9t95552+ln3ttddcO+39djTee++9juUHDx6clU6aDz/80PWLCz8DaT700EOOZfv27atHo1Hf9WdrH063tm3b6m3bttXHjBmj/+lPf9JffvllfeXKlebrbp3y7PBvkO19cPLkya5lbN++Pe5ysVjMNa8+Xe+rX5FIRN9nn30c7bjuuusSLrty5UrHsTjZ/WfJkiWundV+Mu3ffPNNx3Ll5eWendyZku19YNiwYY4yzjjjjITn023btul9+/Z1LDtjxoyk6iciIqL0Yoc/EVGascOfWpPVq1fHzazOVGepWydbnz59kspf/ve//+0o4/TTT29y2/xYuXKlLkmSo8M+3i8TRIcccoij7TfeeGNSbTjppJMcZbz55puprE6TjBgxwtGOu+66y/fyxx13nGP5f/7zn76Xz9Y+nG4rV66M+4UNO/y9ZXMfrKys1MvKyizLyrKsf/rpp76W37Ztm+PLT0VR9F9++cV3+5vK7ddWAwYM8D0I7nPPPedYfsyYMb7rv+CCCxzLX3bZZb6Xv/TSSx3L33777b6Xb6ps7wMff/yxY/27dOmS8MsGw9y5c3VZlh1fVvj58p2IiIgyQwYRERFRivbee28oitLs9b722muOaX/+859RXFzsu4yzzjoLBx54oGXa22+/7ZqJn24zZsywZB8DwEknnYRu3bolXHblypWOcQiKi4vxl7/8Jak23H777Y5pf/vb35Iqo6l+/PFHfPrpp5ZpHTt2xA033OC7jLvvvtsx7e9//7vv5bO1D6dbr169IElStpuRc7K9Dz7//POoqqqyTBs7diyGDx/ua/kOHTrgT3/6k2Waqqp48sknfS2fDm7revvttyMUCvla/rzzzsOAAQMs02bNmoWffvop4bKVlZV46aWXLNOCwSDuuOMOX3UDwB133IFAwDq03RNPPAFN03yX0RTZ3gfc3r8//elPaN++va/lR4wYgZNPPtkybcWKFfjvf//ra3kiIiJKP3b4ExG1cmvWrMHrr7+OBx98EHfeeSemTZuG9957D5WVlUmVs3TpUrzwwgu4//77cffdd+Ppp5/G7NmzEYvFMtJuXdfx3Xff4Y033sATTzyBu+++Gw8//DBefPFFfPnllxmrl7KvpqYGX331lWWaoig455xzki7r/PPPtzzXNA0vvPBCk9qXiKZpmDFjhmP6JZdc4mv5jz/+2DFt7NixaNeuXVLtGDJkCPr16+co223Q0kz597//7Zh20UUX+e4oBBoGVB08eLBl2ldffYVVq1Y1uX2U/7K9D7rVf8UVV/iuGwAmTJjgGHD8xRdfTKqMVK1YsQLz58+3TOvatStOPfXUpMq5/PLLHdP8rMPrr7+OSCRimXb66aejc+fOvuvu0qULTjvtNMu09evXY+7cub7LaIps7gM1NTV45513LNMKCwsxceLEpOpP9f0jIiKizGCHPxFRGkycOBGSJEGSJFx00UWO1407L+P9f9ttt7mWfdtttznm9WP06NGWZUaPHm15/eWXX8aQIUOw9957Y/z48bj++usxZcoU/OEPf8App5yCrl274sILL4x7t3N9fT0efvhh7LvvvjjggANw3nnn4YYbbsDkyZNx6aWXYsyYMdhrr70wefJkhMNhX+1OZP78+bjwwgvRtWtXDBw4EL/97W9x+eWXY/Lkybj22mtx7rnnYtiwYWjfvj3Gjx+Pb775Ji31UsuxbNkyRKNRy7QDDzwQbdq0SbqsYcOGOaa99957KbfNj5kzZzo+V126dMEpp5zia/nvvvvOMe3II49MqS329dc0Df/5z39SKisVbnWdccYZSZfjtkxzrgflrmzug7t27cKXX35pmdamTRuccMIJSdXdsWNHxzn+119/xdKlS5MqJxUzZ850TDv99NMdd8wn4rb9Pvjgg4TLZfL981N/U2V7H5g9ezbq6+st08aMGeP77n7DiSeeiNLSUsu0mTNnOn7JRkRERM2DHf5ERK1MVVUVTjnlFJx11lmOu/JE9fX1+Ne//oUBAwbgk08+cby+dOlSHHbYYbj22muxYsUKz3J27tyJu+++GwMHDsTatWtTbvevv/6K8ePHY8iQIfjXv/6FzZs3x51/9+7deP3113H44Ydj/Pjx2LlzZ8p1U8uydetWx7S99947pbJ69uzpmPbll186OkDS6emnn3ZMmzBhgu8Oskyv/+zZs1MqK1k1NTVYuHChZVpxcTEGDRqUdFkjRoxwTLPHtBDZZXsf/PLLL6GqqmXaEUcckVLEVFM+A+JNC4luQvBTh98oGlGXLl3Qt29fy7QFCxYkvFkgXfU3ZfvNnj3bsf322WcfX8tmex9I1/YLBAI44ogjLNM2bdqE5cuXJ10WERERNR07/ImIWpHdu3djzJgxSd3BvGvXLowbN86SGf7tt99ixIgR+OGHH3yXs2LFCowePRq7du1KpskAGqIRhg4ditdffz3pZYGGn/wfccQRcb+YoNyxY8cOx7SysrKUynKLwYlGo/j+++9TKi+RrVu34u2333ZM9xvnA2R+/RcsWJBSWcn69ttvHRnZhx12WNJ3BgMN8UTBYNAyrbnWg3JXtvdBt9fT9WsdP/WnQybXQVVVLF682HP+9evXO77879mzp6+xUOy6d+/u+AJ08eLFjs74dMv2PpDt+omIiCgzkr+aJSIih549e2LgwIEAGjrj7Hey9+/fP2EecJcuXTLWPsOFF15ouZtx8ODBOOmkk9CrVy+UlpZi06ZN+OSTT/DOO+9YOkHC4TAmTJiAhQsXYtu2bTjllFOwfft2AA2D440ZMwZHH300unXrhkAggNWrV+Ott97C119/bal/5cqV+Otf/4pHH33Ud5tnz56Nk046CXV1dZbpsixjxIgRGDZsGHr16oV27dqhtrYW69atw5w5c/Dxxx9b/lD/6aefcPLJJ2P+/Pkpd45Sy1BUVOSYVltbm1JZXnePGr9gSbdnn33WEUc0cuRI7Lvvvr7LyPT6//zzz1BVNeMD2S5btswxzX6Hr1+hUAgVFRWWzPRffvkFsVgspc5barq33noLzz77LObPn49NmzZh586dKC0tRYcOHdC1a1cMGzYMI0aMwDHHHIPCwsKstDHb+2A66+/Tp49jmp9Bb5siGo1i5cqVlmnBYDDlXxx5rYNXB3Q6t59R/5o1a8zn4XAYa9eu9X23fiqyvQ9ku34iIiLKDP4FRESUBlOnTsXUqVMBAM8884wjx//999/P6B+Mfnz11VdmTEmvXr3wxBNP4Nhjj3XMd80112DBggUYO3as5c657777Di+//DJefPFFrF+/HgBw7LHH4tFHH3XtrPzrX/+KGTNm4LLLLrN0vD/++OOYPHkyKioqErZ506ZNOPvssx2d/RdddBFuu+021zgSAJg8eTJ++eUXXHXVVZZ84eXLl+OSSy7BK6+8krDuppo4cSL++c9/ZrweNxMmTMAzzzyTlbqbQ4cOHRzT3GJu/NiyZYvr9F9++SWl8hJxi/NJ5u5+IPPrH41GM97JBQCrV692TEu1oxBo+OJV7GxVVRVr1qxB7969Uy6TUvfQQw85plVWVqKyshIrVqzAp59+invvvRedO3fGpEmTcPXVV6Nt27bN2sZs74PprL979+5QFMVyvrV3xqfbmjVrHL+QqKiogCyn9iNyt3N6vHXIxPvnVn8mj4XZ3AcikQg2bNhgmRYIBFL6hQSQ/PtHREREmcNIHyKiVsLo7O/fvz+++OIL185+w+DBg/H66687Bgj+wx/+gHfeeQcAcM455+CDDz6Ie2fyRRddhNtvv90yTdM0PPvss77afPHFF1u+dFAUBc8//zz+8Y9/eHb2G/r06YMPPvjA8eXLq6++yoF8c1yPHj0c0xYtWpRS9ILXOBaJxohIxZdffukYQLFt27b43e9+l1Q5busfbzyOeJpz/e02bdrkmOa2bn65Ldsc60FNs3nzZtx88804+OCD8dVXXzVr3dneB9NZv6Io6Nq1q++60yGftl8q9adDNveBrVu3Or6w6datW8q/7uIxmIiIqOVghz8RUStSUFCAl156yVd80LBhw3DSSSdZphl3A/fr1w9PPfWUr6iMP/7xj46c8A8++CDhcvPmzXPMd/fdd+Pcc89NuKxBkiQ8/vjj6N+/v2X6Pffc47sManl69eqF7t27W6ZVV1djzpw5SZf17rvvuk7ftm1bSm2L56mnnnJMO/fcc10jeuJxG1Dxgw8+cHTcJLJlyxbMmzfP9bVMrL+d21gEpaWlKZfntqwRPUbZUVRUhB49euDAAw/EPvvsgzZt2njOu2bNGowcORL//ve/m6192d4HM11/JBJBdXV1yuUlku/bL1H96ZDNfSAfth8RERG5Y6QPEVErcsEFF+Cggw7yPf/48ePx/vvvO6bfcsstKC4u9lVGYWEhTjnlFDz33HPmtMWLF0PXdccvCET33nuv5Xnfvn1x/fXX+2x5o2AwiMmTJ+OCCy4wp33wwQeor69HQUFB0uX5JY7r0NwS/fohHxx99NH417/+ZZn24IMP4uijj/Zdxs8//2z+YsWupqamSe2zq66uxssvv+yYnmycDwAcddRRKCgoMH+1AzTEQrzxxhsYP36873KmT5+OSCTi+lq6199vHcl++ZFoWa8xGigzOnTogJNPPhknn3wyDjvsMPTu3dsR77J8+XJ89NFHmD59uuMXL9FoFBMnTkT37t0xYsSIjLc32/tgc9WfqBP3mWeeSSkGrrVsv0RGjx4NXddTqjOb+0BL2X5ERESUfuzwJyJqRZLtXDz00EMd09q0aZN0BMmhhx5q6fDfvXs31q9f75njX1dX57jzeuLEiSn/zPzkk092lP/VV19h1KhRKZXnhziuA6XflVde6ejwf/fdd/Hcc8/h/PPPT7i80bHodVe8V0d4ql566SXHXZaHHHIIBg8enHRZxcXFmDhxIh5//HHL9EmTJmHkyJHYa6+9EpaxcOFC/O///q/n6+lefzf2wYsBNGnwVrfOpuZYD2qIAXnuuedwxhlnJPwidd9998W+++6LK664An/7299www03WL68qq+vx5lnnokVK1agpKQko+3O9j6Y7fqbKtvtz3b96ZDNdciH7UdERETuGOlDRNRKFBcX47DDDktqGbeB44444ggEg8GkynEb8G7nzp2e83/99deWDiCg4a7mVLVv394xGOSiRYtSLo+y74gjjnC9m//iiy92fBFgt3PnTowbNw5ffvml5zzxfn2SCrc4n0svvTTl8v785z87PocbN27EqFGjLIOGuvn8889x/PHHx+2ISff6+9WUet2WTfWuW0rOfvvth/POOy+pX01JkoSrr74a7777rmNf3rRpEx588MF0N9N3u9K5bLL7YLbrb6pstz/b9adDNtchH7YfERER8Q5/IqJWY++99/aVuS9yy1vu27dv0nW7lbNr1y7P+T///HPHtCuvvBKhUCjpug32n5U3R0Y5ZdZTTz2FwYMHo7Ky0pwWjUZx4YUX4plnnsGll16K4cOHo1OnTqirq8PKlSvx7rvv4uGHH7a8/126dHEMnNiUuxztlixZ4hiMtLCwEOedd17KZfbu3Rv33Xcf/vCHP1imL126FAcccAAuv/xyjB8/Hv3790fbtm2xfft2LFiwAC+88AJefPFFsxMmEAiYr9vbl2luXxzW1tamXJ7bsk05ZlDzOPbYY3Hvvfc6ItsefPBB/PWvf035l11+ZHsfDAaDji+3a2trU85Rb+7PQEvYftmsPx2yuQ/kw/YjIiIid+zwJyJqJcrLy5Nexu2PwXSV4/ZTcsO6desc0+xZz03FgeRyX69evfDiiy/iN7/5jaOj4ZNPPsEnn3ySsIxRo0bhlFNOwZ/+9CfLdPtA003x9NNPO6aNHz++yXVce+21+O677/CPf/zDMr2urg7Tpk3DtGnTEpbxyCOP4PHHH3d8Hrzadsstt+Dtt99Oqp1XXHEFrrjiCsd0t3FA0t3ZlOlImFQdcsghSS/z/vvvo1u3bulvTAtw9dVX4+GHH8bq1avNaTt27MA333yDI488MmP1ZnsfLC4uznhnbyY/Ay1h+2Wz/nTI5j6QD9uPiIiI3LHDn4iolUg2hifT5cTTHJ3xTfmjllqOE044AXPmzMHpp5+ODRs2JLXscccdh5deegmPPvqo47WuXbumpX3RaNQ1YqgpcT6ip59+Gr1798aUKVOSik4IhUK4++67cfnll+P//u//HK97rf+aNWuwePHipNpo//WEoUOHDo5p9nEOkuG2rFsdLUGy2xDI7yzsYDCI3/3ud7jvvvss0z/++OOMdvhnex/s0KGD5RdKRhl+xuHwU38oFEq549iPlrD9sll/OmRzH8iH7UdERETumOFPREQtjv2PX6J4hgwZgiVLluCWW25xjNXgpry8HA8//DBmzpyJ8vJy13ip3r17p6Vtb731FrZu3WqZ1rdv37QOGH3TTTdh4cKFOPXUU33Nf9hhh+Hrr782I1Ts6y/Lsuu4G+nWuXNnxzS3X/f4tXbtWl91UMs0evRox7Q1a9ZktM5s74PprF9VVWzcuNF33emQT9svlfrTIZv7wF577QVZtnYHbNy40XMw+0R4DCYiImo5eIc/ERG1OEVFRY5pS5cuxf7775+F1qQmleiTdDn11FMxderUrNSdLW3btsXtt9+OG2+8EZ9++ik++eQT/PLLL9i6dSuqq6tRVlaGfv36YfTo0Rg3bpwlysAtLuqggw5KS7vc4nwuvvjitA+Ke8ghh+Ctt97C+vXr8dFHH+Hzzz/Hxo0bsX37dqiqis6dO2PgwIEYO3YsjjjiCHO57du3O76Q6N27t2vUQ7r16tXLMe3XX39NuTx757CiKOjZs2fK5VHzcvtViX3fTLds74O9evVyjFnz66+/YsSIEUnXvWHDBsRiMUf5mdSzZ0/IsmzpIF67di00TXN0JPvh9gVPvHXI9PuXqP50yOY+EAqF0K1bN8sXDNFoFBs2bEBFRUXS9Wdj+xEREZE7dvgTEVGL07FjR8e0HTt2ZKElqUsl+iRdUskHzxdFRUU4/vjjcfzxx/te5rvvvrM8LygowODBg5vclrVr1+LDDz+0TFMUBRMnTmxy2V66d++OCRMmYMKECb7mt687AAwbNsxz/meeeQbPPPNMqs2z6Nevn2PaihUrUiorEok47i7t06dP0gOVN5dk4pdaC7es70xHr2V7H0xn/b/88otjWqa/JA+FQujVq5el7mg0ijVr1qT0K6Fk1yGd28+t/qKioox/aZjtfaBfv36OXxSsWLEipQ7/bOyDRERE5I6RPkRE1OK4/QS8KXftEXnZsGGD467EYcOGobCwsMllz5gxwxGNcPLJJ6dtfIB0+OqrrxzTjjnmmGap+9BDD3XcBTx//nzHHap+zJ8/3zEQ+KBBg5rUPmpebnfzu335m07Z3gfdvlj88ssvk64bAL744gvHtOb4DGRyHRRFwcCBAz3nr6ioQKdOnSzTfv31V0esjR8bNmxwXGcMHDgQiqIkXVYysr0PZLt+IiIiygx2+BMRUYtz+OGHO6bNnTs3Cy2hfPfiiy86pp155plNLlfXdcyYMcMxPV2D9abLCy+8YHleUFCA0047rVnqLikpwaGHHmqZVlNTg0WLFiVd1meffeaYNnLkyJTbRs3PLVor1YFL/cr2PnjkkUc6OpS//PJLqKraLPWng1v0jFtbEtm8eTOWL19umTZ48OCE8WLpqj9b2y/b+0C6tp+qqo4vCjp37oz99tsv6bKIiIio6djhT0SUZm4/30/lD7fWbMyYMY7t+O677zrunmzJnnnmGei6npX/0xW5ku90Xcc///lPy7SSkhKcddZZTS77448/xurVqy3TunbtirFjxza57HSZP38+fvjhB8u08ePH+xr4OF1OPPFEx7RXX3016XLclnErm1qu999/3zEt3t3d6ZLNfbBdu3aWMTUAYPfu3Y4osER27NiBWbNmWab17NkT/fv3T6qcVJxwwgmOaW+99VbSv5J47bXXHNP8fIZz/RiS7X1g9OjRKCgosEz75JNPUFlZmVT9M2fORHV1tWXaCSeckPbxaoiIiMgfdvgTEaVZmzZtHNPsfwRRfGVlZRg9erRl2rp16/Cvf/0rOw2ivPTEE0/g+++/t0y77LLLUF5e3uSy3QbrnTBhQsbjIfzSdR3XXnutZZokSfjTn/7UrO04++yzHdNmzJiBSCTiu4xFixZh3rx5lmmHH344B4vMIUuXLnUMci5JUrN0uGZ7H3Sr//HHH/ddNwD885//RF1dnWXaOeeck1QZqdp3330dsTDr16/Hu+++m1Q5buvsZx1++9vfIhQKWaa98cYb2LJli++6N2/ejDfffNMyrVu3bhg1apTvMpoim/tAaWkpTjnlFMu0uro6x5fhiaT6/hEREVFmsMOfiCjN3DoLV65cmYWW5Labb77ZMe2GG27gtqS0+Pnnn/HXv/7VMq28vNx1v0vWjh078MYbb1imSZKESy65pMllp8v//d//OfKWzz///GYf8HnAgAEYPny4ZdrWrVvx4IMP+i7D/j4CwP/7f/+vyW2j5lFfX4/LLrvM8Uu4o446Cl26dMl4/dneB88//3zHjQLvvPOOax66mx07duC+++6zTFMUBZdddpmv5dPBbV1vvfVW37/K+/e//+0YQHz06NG+Bnxt3769I4YtGo3i1ltv9VW3V1t///vfO8Z3yJRs7wNu79///u//+r7L//PPP3d8wdOnTx8cd9xxvpYnIiKi9GOHPxFRmg0YMMAxzS2qgOIbNWqU44/FyspKnHjiia5Zz37U1dXh8ccfxwMPPJCOJlILkEpc1tKlSzF69GhHZ8aDDz6IDh06NLlNzz33HOrr6y3TRo0ahb59+za5bFGqUWEPPfQQ/vznP1umde7c2dFh1FzcvmS59dZbsXDhwoTLPvLII5g5c6ZlWu/evXHuueemrX0U37Rp01IeVH337t0466yz8Pnnnzteu+uuu5raNN+yuQ+2a9cOV111lWWapmm46KKLEna4apqGK664wjFI7bnnnos+ffr4qh8AJk6cCEmSLP/fdtttvpe/4IILsPfee1umfffdd5g8eXLCZVevXo2rr77aMX3KlCm+67/xxhsdv556/PHHff3K4J133nHcnd6uXTtMmjTJd/2zZ892bL999tnH9/LZ3geOOeYYR6zQxo0b8f/+3/9zDDxvt2PHDlx00UWO+SZPntxiftFGRETUGrHDn4gozdq3b++4K23GjBl48MEHsWvXriy1Kjc988wz6Natm2Xa8uXLMXToUNx9992+tqeu6/jiiy9w3XXXYZ999sEVV1zBXwnkiVgshl69euHOO+/EihUrEs6/e/du3HrrrRg0aJCjc2TixImYMGFCWtrlFueTibv7n3nmGRxzzDH497//jaqqqoTz//jjjzjhhBNw3XXXWaYHAgE899xz6Ny5c9rb6McJJ5zgGCi4vr4eY8aMwTvvvOO6TDQaxR133OHaKffwww8jGAxmpK3kNGPGDPTt2xfnnnsu3n77bUesiBtVVfHKK69g0KBBeOuttxyvn3322c066HK298GbbroJFRUVlmk///wzhg0bhmXLlrkuU1lZid/+9rd45ZVXLNPLyspwzz33+K47HUKhEB566CHH9P/7v//DVVddhdraWtflvvjiCxx55JHYvn27ZfoZZ5yBo48+2nf9Bx54oONLA13X8dvf/hZPP/00dF13LKPrOp588kmMHz/e8dqdd96J9u3b+64/HbK9DzzyyCOODvqXXnoJZ5xxBnbu3Om6zNKlSzFs2DDHYMtDhw7FxIkTk6qfiIiI0kvS3a6AiIioSe677z7HHbRAQ6xHRUUF2rZt6/jD6oorrsAVV1zhWOa2227D7bffbpnm59A9evRozJkzx3w+atQozJ492+caWNssuvXWW5O68w9ouPttzJgxlmmzZs1y5PS7mT9/PkaPHo2amhrHayUlJRg+fDiGDRuGrl27ory8HLW1tdi5cyc2bNiAhQsXYsGCBY7OhKuuugqPPPJIUutA7jZs2ICTTz7Z8/VIJOL4RUZJSUncu927devm61cxsVjM0qnWr18/DB06FAMGDEDnzp1RUlKCyspKbN68GZ9//jlmzZrluPMeAMaOHYs33ngjLZ3E8+bNw9ChQy3T2rVrh40bN6KwsLDJ5YueeuopM7IhGAziyCOPxCGHHIJ+/fqhvLwckiRhy5YtWLNmDf7zn//gxx9/dJShKAqeeeYZnH/++WltW7K2bt2KQYMGYd26dY7XDjvsMJx22mno1asXamtrsXz5cjz//PNYv369Y96rr74a06dPT6rubO7D6TR//nxceumlnq9XV1fjl19+sUwrLy9Hz549PZc57LDD8NRTT8Wt95BDDsHixYvN5yUlJTj00EMxcOBA9OnTB+3atUObNm0QDoexfft2LFy4ELNmzXJ9/wBg+PDh+O9//5v2z0si2dwHAeDTTz/F0Ucf7RjsVpZljBs3DiNGjED37t2xbds2LF68GC+++KLrefGVV17BGWeckVTdEydOdGS2p3Kuv+KKK1yz3Dt06IDzzz8f/fv3R5s2bbBmzRrMnDnT9Zpk7733xsKFC5PucK+rq8ORRx6Jb7/91vFav379cNZZZ6F3797QdR0rV67Ev//9b0dHNQCMGzcOb731VlKDzbpd4+y9996OgdsTyeY+AAD33HOPazxVaWkpzj33XBx88MHo0KED1q1bh7lz5+K9995z3Nnftm1bLFiwIKlfmBAREVEG6ERElHY1NTX6gQceqAPw/f+tt97qWtatt97qmNePUaNGWZYZNWpUSuvit53xzJo1y1HOrFmzfC///fff6/vtt19S2zPe/1dddVXS60DuVq1albb3xfh/77339lV3NBptcl2XXHKJHo1G07Y9Lr/88mbb35588skmrXubNm30t956KyNtS8WSJUv0Ll26pLw+Z555ph6LxZKuN5v7cDq5HWeb+r+f88bAgQPTVt+pp56qV1ZWZnxbecnWPmh4+eWX9UAgkFLdkiTp06ZNS6neCRMmOMpL5VwfjUb18ePHp7z9unbtqv/0008prYOu6/rGjRv1fv36pVz/yJEj9erq6qTrdfvspXoMyNY+YLj22mtT3n5t2rTRP//88ybVT0REROnBSB8iogwoLi7GzJkzOWBZmgwYMADz5s3D1Vdf3eS7PocMGYKxY8emqWWUq3r06IGXX34ZTz31FAKBQFrKDIfDePHFFx3TW9JgvYYTTzwR3333HU499dRsN8XUv39/fPPNN44BVBMJBoO49dZb8eKLLzIzOkd17twZTzzxBN566y20a9cua+3I9j74u9/9Dh9//DF69OiR1HIdOnTAa6+9hmuuuSblutMhEAjg5ZdfxpQpU5I+ro4cORLz5s3Dfvvtl3L9Xbp0wZdffonTTz89qeUkScIVV1yBDz/8ECUlJSnXnw7Z3gceeughPPLIIyguLk5quYMOOghfffUVhg0b1qT6iYiIKD3Y4U9ElCHdu3fHhx9+iAULFuDGG2/ECSecgH322Qft2rVLWwdja1JWVobp06dj9erVuPnmm3HooYdClhOfxoqKinDMMcfg7rvvxpIlS/DNN9/gpJNOaoYWU6YFAgG8+eabuOyyy3zFByiKgmHDhuHJJ5/E8uXL8bvf/S6t7Xn11VcdWfqDBg3CoYcemtZ6DKeddhoeeeQRjB071lcnadu2bXH++efjs88+wwcffJDUoJLNpUePHpg7dy5eeuklDBs2LG6sRmlpKS666CJ89913uO2223wdDyj9Xn/9dTzxxBM477zz0K9fP9/vQ5s2bXDcccfhueeew5o1a8x4qmzL9j44cuRILFu2DPfdd1/Cgb67d++OKVOmYPny5fjNb37T5LrTQZZlTJ06Fd9//z0mTpyI0tJSz3klScJRRx2Fl19+GXPmzEH37t2bXH95eTneeOMNzJw5EyeccELcL2AKCgpwxhln4Ouvv8bf//53FBQUNLn+dMj2PnDVVVfhp59+wjXXXJMwWmngwIF44oknsHDhQhxwwAFpqZ+IiIiajhn+RESUsyorKzF//nxs2bIF27dvR1VVFYqLi9GmTRt07doV/fr1Q+/evXnXbyuxbds2/Pjjj1i9ejW2bduGcDiMUCiE9u3bo2/fvhg0aBDatm2b7WZmhK7rWL58OZYvX441a9agqqoK0WgUJSUl6NKlC/bff38cfPDBOfdZ2LJlC7755husXLkSVVVVCAQC6NixI/r3748hQ4YgFAplu4lkEw6H8fPPP2Pt2rXYsGEDdu/ejbq6OhQUFKC8vBzl5eXYb7/9cOCBB+bElzTZ3gd//vlnfPvtt1i7di3C4TAKCwvRrVs3HHzwwTjooIMyWnc6RCIRzJs3D0uXLsW2bdsQi8VQVlaG3r17Y+jQoejUqVNG69+5cye+/vprrFixArt27QIAtG/fHv369cPhhx+e9J3s2ZDNfUBVVSxatAg//PADNm/ebJ5X9tlnHxx22GFJ/xKBiIiImgc7/ImIiIiIiIiIiIiI8kDLv62GiIiIiIiIiIiIiIgSYoc/EREREREREREREVEeYIc/EREREREREREREVEeYId/E61atQo33XQTjjjiCHTu3BkFBQXo3r07jjrqKNx3333YtGlT0mXquo733nsPZ511Fvbdd18UFxejY8eOOPTQQ/HXv/4VP//8cwbWhIiIiIiIiIiIiHLF+vXr8eabb+Lmm2/GCSecgA4dOkCSJPP/2bNnJ1Xezp078dprr+Hqq6/G8OHD0blzZ4RCIbRp0wb77LMPfvOb3+Dvf/87qqurU27z3LlzcfHFF2P//fdHmzZt0K5dOwwYMACTJk3CokWLUi6XGnHQ3hSpqorJkyfjwQcfRDQa9Zyvbdu2mD59Oi644AJf5W7evBkTJkzAzJkzPecJBoO46667cMMNN0CSpKTbTkRERERERERERLlp0aJFOPnkkxPeaDxr1iyMHj06YXnLli3DDTfcgA8//DBuP6ehbdu2eOihhzBx4kSfLQZ2796NK6+8Es8995znPJIk4frrr8fdd9+NYDDou2yyCmS7AblI0zScccYZePPNN81pkiThwAMPxF577YVt27bhhx9+gK7r2LVrFy688ELU1NTgiiuuiFtuVVUVjj76aCxZssSc1rFjR+y///7YvXs3lixZgmg0img0ij//+c/YvXs3pk6dmqnVJCIiIiIiIiIiohZm165dKaWKePnhhx/w3nvvWaYpioK+ffuic+fOUFUVS5cuxY4dO8z6L7roIvzyyy+44447EpYfi8Vw2mmnYdasWea0srIyHHjggYhEIliyZAlqa2uh6zruv/9+bN26Ff/85z/Ttn6tDSN9UnDXXXdZOvtPP/10rF69Gt9//z0++eQTfPfdd1izZg3Gjx9vzjNp0iR8+eWXccu97LLLzM7+YDCIRx55BBs2bMCnn36Kb7/9FitXrsS4cePM+e+44w68//776V05IiIiIiIiIiIiygndunXDaaedhjvuuAP/+Mc/mlRWIBDA6aefjjfffBM7duzAsmXLMGfOHHz22WfYtm0b3nzzTXTv3t2c/84778Q777yTsNybbrrJ0tk/ZcoUbNy4EV988QXmz5+PtWvX4tJLLzVff/bZZ/H3v/+9SevSmjHSJ0nbtm3DPvvsg5qaGgANnf2vvfYaZNn53Ymu6/jd736H1157DQBw1FFH4bPPPnMtd968eRg6dKj5/Omnn8bFF1/smE9VVRxzzDGYM2cOAOCggw7C4sWLGe1DRERERERERETUCqxfvx4LFy7EkCFD0KVLF3P66tWr0atXL/O530ift956C++++y6mTJmCnj17xp137dq1GDp0qPkLgwEDBuD777+PO/++++6L+vp6AA2d/V6JJRdccIEZ+dO5c2esXLkSxcXFCdtPVuzwT9IjjzyCSZMmAWj41mv16tWWb7bsNm3ahL333huRSASA9wftjDPOML8YOOKII+L+GmDp0qU44IADzOfvvvsuxo4dm8rqEBERERERERERUR5ItcM/WU888QQuv/xy8/mKFSvQp08f13lvuOEG3H///QCAnj17Yvny5QiFQq7z7tixAz169EA4HAbQ0A971VVXpbn1+Y+RPkkSf34yfPjwuJ39ANClSxeMGTPGfP7qq6865qmrq8MHH3xgPk+U9d+/f3+MHDnSfP7GG28kbDcRERERERERERFRU4mR40DDoL9exH7Liy++2LOzHwDat2+PM844w3VZ8o8d/kn69ddfzccHH3ywr2XE+d5++23H67Nnzza/uQKAE088MWGZJ510kvnYPqgGERERERERERERUSa0b9/e8ryqqsp1vmXLlmHlypXm82T7POfMmYPq6uoUW9l6scM/Sbt27TIft2nTxtcyZWVl5uO1a9eaI1obFi9ebD7u1asXOnfunLDMI4880ny8adMmbNmyxVdbiIiIiIiIiIiIiFIl3hANAHvttZfrfGKfZ0FBAQYNGpSwbLHPMxaLYcmSJSm2svVih3+SxE7+3bt3+1rG/i2XfUddunSp+dgr78rOPl+8n84QERERERERERERpcPrr79uPg4EAhg8eLDrfGKfZ48ePRAMBhOW3aNHD0vsD/s8kxfIdgNyTUVFBRYtWgQAcUegFtnnW7VqFYYPH24+F78VSzQStqFbt24IBAKIxWIAGgblEHP9/Vq3bl1S88diMWzduhVdu3ZFly5dEAhwFyIiIiIiIiIiotTFYjFs2rQp281oko0bN2KvvfZKuq+soqIiQy3KjJqaGjzyyCPm8xNOOAHl5eWu86bS5ynLMrp3745Vq1YBaOjzpOSwtzZJw4cPxzvvvAMA+Oyzz7BhwwZ069bNc/4tW7ZYBvoFnL8MEJ+3bdvWVztkWUZJSYkZMeT31wZ2PXr0SGk5oCGeKNcOSkRERERERERE1LJs2rSpSX1UuUzX9Ww3ISk33HAD1q9fDwCQJAlTp071nDeVPk/AGo+eap9na8YO/ySdeeaZmDx5MlRVRTQaxTXXXINXXnkFkiQ55tV1Hddccw3q6+st0+2DTdTU1JiPCwsLfbelqKjI7PAXy2guT684G+2q/bc331TGSgAAUU1BVFeSXr57QaXrdLeygpKadPl+yk12mXqt8adXBXLUfGy0Lyip5jJRXUG9FrRsH7E8t3Uyy5FVSx32eRNtD7d19VqXqOZsW6pc10lunGZfH7f5jXak4z33S1z3qK6gOub+uRbXpTyQ3mOO3+1frTa0zXjfvARl1bK9vbanvd5E+6hfqexPRn2p7ov2fdpt3xPrydZxpanitbsp7WnOzxzg/Nw1tS3N3f5E7Md9r+NKaaAurfukWxsSaWnbLpPczsfplKn3ktzFO464XbMVy5HmaZgLo31bImUJ5txz3paT34fcrhv97othLZR4JmR3GxIlOnbnwrE3Hdc89nKMvw8SLpPg7wc39mNRqVKXuJ49fwf7cduAt5JuE1G2Pf/883jsscfM59dff33cXP6m9Hm6lUH+sMM/Sfvssw8uvvhiPPnkkwCA1157DWeccQYeeughyzeR69evx3XXXYdXXnnFUUY0GvV8nszPfsR5I5HULj7Xrl2b1PwbN27E0KFDU6qLiIiIiIiIiIgonq8+6IGunZr/5qJUbdyi4oiTGvrXvvnmG3Tt2jXLLcqMTz/9FJdccon5fPDgwfif//mfuMtks8+zNWOHfwoeeughzJs3D99++y2AhoEq3njjDQwYMAB77bUXtm3bhh9++AGapgEArr32WkybNs1c3v4TluLiYvNxXV3ib4zd5i0pKUllVRjJQ0RERERERERELUbXTgoquvn7pURL07Vr17zsa1u8eDHGjRtnppj07t0b77zzjmVwXTfZ7PNszeRsNyAXFRcXY86cOTj99NPNabqu4/vvv8cnn3yC7777DpqmQZZl/OUvf8FNN91kWb5du3aW56Wlpebj2tpa3+0Ih8OuZRAREREREREREeUiDTq0nPovtzL4k/XTTz/h+OOPN2PFu3Xrhv/+97++fsnAPs/s4B3+KSorK8Mbb7yBzz//HM8++yzmzp2LDRs2IBKJoHv37hgzZgyuuOIKDB48GMuWLbMsax+VukOHDubjjRs3+qp/9+7dlp1fLIOIiIiIiIiIiIioKVatWoVjjz0WW7ZsAQB07NgR//3vf9G7d29fy6fS5wk0DOLsVgb5ww7/JjrqqKNw1FFHxZ1nyZIl5mNZlh2DWfTr1w/vvvsuAGDNmjW+6rVn7/fr18/XckRERERERERERETxrFu3DscccwzWrVsHoOHm5//85z844IADfJch9lf67fOsqanBjh07XMsgfxjp0wzmzZtnPj7wwAMdP0Xp37+/+fjHH39ELBZLWOaiRYvMx4qiYN99901DS4mIiIiIiIiIiKg127x5M4499lisWrUKQEO8+XvvvYfBgwcnVY7Y57l161Zfd/kbY6a6lUH+sMO/Gbz66qvm47PPPtvx+ogRI8zH4XAYCxcuTFjmp59+aj4+4ogjEg6SQURERERERERE1NKpupZz/+eTHTt24LjjjsNPP/0EACgoKMCbb76J4cOHJ13W0KFDLX2WYn+mF3GeiooK3/FB1Igd/hn2xhtvYMWKFQCAQCCAiy66yDHPfvvtZ/l5yvPPPx+3zEgkYvkS4dRTT01Ta4mIiIiIiIiIiKg1qqqqwgknnIDvv/8eQENf5ssvv4zjjjsupfLatGmDMWPGmM8T9XkCwAsvvGA+HjduXEr1tnbs8M+gzZs347rrrjOfX3311Z4jWE+cONF8PGPGDKxfv96z3Mceewzbt28HAIRCIZxzzjnpaTARERERERERERG1OuFwGGPHjsX8+fMBNIxD+q9//avJNxqLfZ7vvfeeJabc7u233za/bACACRMmNKnu1ood/in4+eefMXfu3Ljz/Pjjjzj22GPx66+/AgB69uyJO++803P+SZMmoVOnTgCA3bt349xzz8Xu3bsd83322WeYPHmy+fyyyy5Djx49UlkNIiIiIiIiIiIiauXq6+tx2mmn4bPPPgMASJKEp556yjWaPFlnnnkmBgwYAABQVRXnnXeea5b/0qVLcfnll5vPx44di8MPP7zJ9bdGgWw3IBetXLkSJ510Evbdd1+MGzcOhx12GLp27YpYLIa1a9figw8+wJtvvoloNAoA6NixI95//32UlJR4lllSUoLHHnsM48ePh67rmDt3Lg455BBMmjQJBx10EKqrqzFz5kz84x//QH19PQCgT58+uP3225tlnYmIiIiIiIiIiDJNgw4Nerab4Vu22nr88cc7bkjWdd0xjyxb7/ceOXIkPvzwQ8u0adOm4aOPPjKft2vXDi+99BJeeuklX205//zzcf7557u+JssynnzySYwePRr19fVYunQpDj30UEyaNAlDhgxBNBrF3Llz8dhjj6GqqgoA0KFDB0ybNs1X3eTEDv8mWL58OR544IG48+y333545ZVXcOCBByYs7ze/+Q3uv/9+3HDDDdA0DStXrrREAom6deuGd955Bx06dEip7URERERERERERJSbIpGIeVOwF+NmZPtyduFw2PK8srISM2fO9N2WI444IuHrzz77LC688ELU19dj8+bNuPnmm13nbdu2LV5//XX06dPHd/1kxUifFPTs2RNDhw6FJEme8/To0QNTp07Fd999h4MPPth32ddddx1mzZqFQYMGub5eUFCACy+8EN999x369++fdNuJiIiIiIiIiIiImtOZZ56JefPmYfTo0a59qoqiYNy4cVi8eDFGjhyZhRbmD97hn4IDDjgAX3/9NXbu3IlFixZh/fr12Lx5MzRNQ9euXdGvXz8cdthhcb8QiGfkyJFYsGABlixZgoULF2LDhg0oKipCRUUFxowZg3bt2qV3hYiIiIiIiIiIiFoAHRo0aNluhm96lto6e/bstJV122234bbbbktbeV4OOuggzJo1C6tWrcJXX32F9evXQ1EUVFRUYMSIEejSpUvG29AasMO/Cdq1a4cxY8ZkrPwDDjgABxxwQMbKJyIiIiIiIiIiImpOvXr1Qq9evbLdjLzFSB8iIiIiIiIiIiIiojzADn8iIiIiIiIiIiIiojzASB8iIiIiIiIiIiJqEVRdh6rr2W6Gb7nUVmodeIc/EREREREREREREVEeYIc/EREREREREREREVEeYIc/EREREREREREREVEeYIY/ERERERERERERtQgadGjInVz8XGortQ68w5+IiIiIiIiIiIiIKA+ww5+IiIiIiIiIiIiIKA8w0oeIiIiIiIiIiIhaBA2AmkMxOVq2G0Bkwzv8iYiIiIiIiIiIiIjyADv8iYiIiIiIiIiIiIjyADv8iYiIiIiIiIiIiIjyADP8iYiIiIiIiIiIqEXQoEPLqQz/3GkrtQ68w5+IiIiIiIiIiIiIKA+ww5+IiIiIiIiIiIiIKA+ww5+IiIiIiIiIiIiIKA8ww5+IiIiIiIiIiIhaBFXXoeq5k4ufS22l1oF3+BMRERERERERERER5QF2+BMRERERERERERER5QF2+BMRERERERERERER5QFm+BMREREREREREVGLoO35P1fkUlupdeAd/kREREREREREREREeYAd/kREREREREREREREeYCRPkRERERERERERNQiaNChQs92M3zTcqit1DrwDn8iIiIiIiIiIiIiojzADn8iIiIiIiIiIiIiojzADn8iIiIiIiIiIiIiojzADH8iIiIiIiIiIiJqEVQAag7F4qvZbgCRDe/wJyIiIiIiIiIiIiLKA+zwJyIiIiIiIiIiIiLKA+zwJyIiIiIiIiIiIiLKA8zwJyIiIiIiIiIiohZB2/N/rsiltlLrwDv8iYiIiIiIiIiIiIjyADv8iYiIiIiIiIiIiIjyACN9iIiIiIiIiIiIqEXQIEGFlO1m+KblUFupdeAd/kREREREREREREREeYAd/kREREREREREREREeYAd/kREREREREREREREeYAZ/kRERERERERERNQiaHrD/7kil9pKrQPv8CciIiIiIiIiIiIiygPs8CciIiIiIiIiIiIiygPs8CciIiIiIiIiIiIiygPM8CciIiIiIiIiIqIWQYUEFVK2m+FbLrWVWgfe4U9ERERERERERERElAfY4U9ERERERERERERElAcY6UNEREREREREREQtAiN9iJqGd/gTEREREREREREREeUBdvgTEREREREREREREeUBdvgTEREREREREREREeUBZvgTERERERERERFRi6DrgKbnTi6+rme7BURWvMOfiIiIiIiIiIiIiCgPsMOfiIiIiIiIiIiIiCgPsMOfiIiIiIiIiIiIiCgPMMOfiIiIiIiIiIiIWgQVElTkToZ/LrWVWgfe4U9ERERERERERERElAfY4U9ERERERERERERElAcY6UNEREREREREREQtggoZag7do5xLbaXWgXskEREREREREREREVEeYIc/EREREREREREREVEeYIc/EREREREREREREVEeYIY/ERERERERERERtQi6LkHTpWw3wzc9h9pKrQPv8CciIiIiIiIiIiIiygPs8CciIiIiIiIiIiIiygPs8CciIiIiIiIiIiIiygPM8CciIiIiIiIiIqIWQYUEFbmTi59LbaXWgXf4ExERERERERERERHlAXb4ExERERERERERERHlAUb6EBERERERERERUYug6jJUPXfuUc6ltlLrwD2SiIiIiIiIiIiIiCgP8A5/SllUV7LdhGZjrKvXOgcl1XPZoNz4WoEcjTtvovr91EfUVKWBOtRrQQBAVHPf58NaCIB1X0zHvu13nqCsurZN/LzZy0i2fUa9qaxXc35GjfcqWalsE2o5cu29Ez+bUU1x/ayme580ykrl3J2vgpLqup3TfU3H40vmpfKeictk6/3pFKpCVFfinrsK5Kj52Nhn/Up1vfwsx32aKDWZ7jcQjxnxji1efyckI97f5eJrbm0SpxERZRrv8CciIiIiIiIiIiIiygO8w5+IiIiIiIiIiIhaBA0StBy6R1mDlO0mEFnkzqeHiIiIiIiIiIiIiIg88Q5/SllDXl1q2dG5xsjmE/OAg8qex7J3JqF9OTdemYbxModTzT33y559aOQN2nMHjfnq0Zj3bh+zoFSpM5+LbRfbJ9Znr8O+7dy2ZaIyvRgZ8OJybtstZsuKD8jO99XRTtt28Gq7Z9sSZE7He38T7SN+tqmxf0OJX1eibed3nX1vmzhfU8fbd5LZb+zZwfbl/X62EmVk+ynHT7329XbLB/XznvttUzzJ5IL7yVVPNi85nfnKqbxfdvVa0DHWhHFsEMd0KZYjeZczb//sFMuRbDaHBG7HFft5w+s6wKsct+eUWYm2t3keT2KZdIt33DT2KfE4aZ6X9zwPymrSt6ela/wIt3F8ki07347rlH2Z2ncyva/Gu55Ndcwsy9/l4rWjy7HPrW4/fysmytwXr3XEdnhtT6+/M4iIMoF3+BMRERERERERERER5QHe4U9EREREREREREQtggYJag7l4jPDn1oa3uFPRERERERERERERJQHeIc/UQqakjEdjz3vL17uuN+6/eQTAtaMQjFb2qhPLMeSrSq2V1ZRIEcbs/21IKq1Qs/2i8+N+sJqqDEPUVbN8QGM9vnJ0W5Kfr/re5vCV6Nibrc9wxuw5ng76kNms9TdHhvbLKopjvfE3la/Y1LUa0HUw5lh7lam33URHzc1E9yetwkAkBPnUiczRkK8MQ787Kf18B7fIl4Z9vcq0bEkHVzHgoizryQ6fkV1Je1tTLYNTS2zONCwjxrrIn7OxGNdaaDOsiwzXTOP2zh1QUn1PQ4It3Pzaa5tnWjsKfE4B7iPaQQIxztFtYwX5Pe6VZSO8SQyMSYF9/+ma8r4UORfc27TVOqKN8ZAqm0Xs/69rtETjcVk/B2R6HrVPqYdEVFz4B3+RERERERERERERER5gHf4ExERERERERERUYug6jJUPXfuUc6ltlLrwD2SiIiIiIiIiIiIiCgP8A5/oizxyqS0Z367ZQea8+/JzBeXF9lz2cVMdmO5Yjli1ilmTFdrhY5lDEbetNE2cXmgyHW9/Ky/OK9YX1RTXOqx5jaK6ySOI2As78WeD59MXr2bZDLH440F0ZR8y1Ryz431FTMmE7GP82DPKDemub1fUU1xjAHhxZGz75PbdvAqK53Z6W7r6/a6WyZ/ovFBHPnYind7E62Lnwz9ZKT6PnlJV1le4yiIx1s/dXl9RuNtJ3t9QaWhTnGcFLfy/W575sD6w+3kj+X443JsSeVzQvnBzzHJOKaax7ckTiGW67k4edjJjqHF/Pfcx/cr/fyOQ9WSpKtdXtdalr9RdMW8XgOc1+tufzNw/BoiaonY4U9EREREREREREQtggYJGqRsN8O3XGortQ6M9CEiIiIiIiIiIiIiygPs8CciIiIiIiIiIiIiygOM9KGU2bO5KbFE+X5GBrYxn5GHbs+V91O+mGEflFWUytZsdrcc1KCkoliOJGy3SW5sk1if2FZ7Jqu4bvHGJhAZYwbY2+22PmIdQPz8fntdxlgBbss5ch6F98S+Lb3eB7dtkk6plJdqG8TtLK5vouxe+7Zx2w/cxlEQjzV+s4TdsjXj5f+mOv6CfTlxLAPAO/szXpl+6k1WspmtibZfsvVk6zyRbOZzvHm9xgNIpTz7cT7eeCyZ4LYuqW6r5pKLucMtHbdb6+L3/Olnmt9l3a4VxOOe25hLxvWw2/Wvn/FTjPn8XjOkMvaRvT1EzWVSuzWW59N39nRMaw7Td/Zs9jrTKdH1eLLXvH6OScZ8TTnmEBH5xQ5/IiIiIiIiIiIiahE0yFBzKJREy6G2UuvAPZKIiIiIiIiIiIiIKA+ww5+IiIiIiIiIiIiIKA8w0oeaxE/GsT2fOFP55bkoUdZ1UIm/jezLi3noYiazkYFqz9MX53Nri98ccnu9QUk1nwdlFQVy1LIvRDXFkV9oaZumOHL8vXhmzcru7Y5HnNdrjAEzf3FPG+u1IOoRdMwnzuO173vlPvrN0fZaJtVcyKbkm6eS71ssRxraqsCxf4j/itvQb/6wW64+AEcdluWEetzEG4/B3jZxbAc/743xebC3z77/NOW46ZV7nEyZXvtcquVlW7zxF8T3wOCVs5/KZ8f41xg3JdG+7fa6cbz1qsNPOxLV15Lez5bUFqKm8DpHAfH386Z+BuKdH+3nCL91ideRbmOSGLyuKcsDNY6y/NQXb36v9bRPT5TxH2+8AHG9W/r4J7nMbdvn0jae1G6Nr4x9tzx8Y1nxuVcd2SK20d7eXJKOa2Pxb8dE4+/l0j5MRLmLHf5ERERERERERETUIqi6DFXPnVCSXGortQ7cI4mIiIiIiIiIiIiI8gA7/ImIiIiIiIiIiIiI8gAjfShlYbUAWyKl5nMja1rMJw5KqplPTKnl9fnJFjWfK6qZh56oXq8MdsuycmPmar0WtOQQOuowcq41W/s1xczst2ecFisRcx7LMrqCqNqYIeuWt26pcw9x/0u038Ubu8BeflRTzLYmIm4jsT1A/G3utW/YxzoArO+FWxmp5vnHa0c86ciVN44VRqa/W9u8iLnAABxjKriNCWHP6483Hom9fLd8/mTfQy9m2Yp3u+JJ5v1uypgNqUjmWNZc3D6T9kx9cT+ojhU2zCerqEcwrdms8fYf8fVE+dupsB8zmC2be5LNH871XOxc53bsSXT8Ttf742cMnqiuIKyFPMeVcbu2SXTN7+fvAT/raD+n2q9PAaBaLbS0262MePW5XV/a5091LKOmsGe1G9nw9gx1P5nu4jLpku789njjHgEt75hl3/7Td/b0/X7Ey+dvqbn4RpuzOYZAusQbr8POMk6eML6W3zGZkqmrtdMgQcuhe5Q1SNluApFF7nx6iIiIiIiIiIiIiIjIEzv8iYiIiIiIiIiIiIjyADv8iYiIiIiIiIiIiIjygKTrup7tRlDuWLduHXr06AEAuG3WUSjpXGK+lqkcxUxlUvupp6n52cnksfrN84uXz+6WvWzPhY2X82tvQzLb3p5zbuSmilmrlvEd5PTvL27Z6m7CWshss5jvarTJLavVnMflfRIfx6s3nZ+RZPOavZZLZtlM89rfxH04mSx/AJ4Z627zivOnOg6CvXz7/pVo3IB405uqJb/3ucZtWyazfVPJV/ezHLVOyex74jlZPA4mGnOGvPk9R+TyNvV7ndMcZXiNr2MokKOO6zs/bbKPhSSes7M1Hlk+ZKO7aamZ9E3hlrWfr+9fOty7o6/rdD9/x2WS298bxrHGz1ge9nKMx/GWuXb/j5rY6vwi9jc98ekB6NA1lOUW+bd9YwS/H7EEALB27VpUVFRkuUXU2vEOfyIiIiIiIiIiIiKiPMAOfyIiIiIiIiIiIiKiPMAOfyIiIiIiIiIiIiKiPBDIdgMotzVHvp49g95PvfGy9L0y9NzKjJfLas8QNbJC7dn0XpndXtn6bjn8Xtzy+t3KEzP03bIRvfLR/eaYu+WoGtuhVK7znC+qKY7cfK91cxNvW9nHDRAVy5GGZRUVsK1Wou3iVm42co+TzezPdiZmU4j7sO9ljDEkhH3Maz631+1ZvsY0oHHsBz/HJbf9O97YEMlKNJZEvH0zlbEJWpNkPvfGc/syXtnqiY7zufg5pfRp6mfT67NuLzcXc/uzPb5FvDGRkllW5HVtaL/OjHce8ZMj7fWan3NSvO2b6Fzoda1rn9/Pe2jZVkrjudl+7SZuK7csf+PcHITqyOXO1L4k5rnHy7BvDbnv8daxufP93fbPv7Rf4ZjvgcpeCcuyr5eYU+9WZmvlld+fTfGO7aVK49+yqfyNngvn1pZKhQw1h+5RzqW2UuvAPZKIiIiIiIiIiIiIKA+ww5+IiIiIiIiIiIiIKA8w0oeIiIiIiIiIiIhaBE2Xoem5c49yLrWVWgd2+FPaJMo1TWc2pj13NF7d9VrQmuVpm1fMlbfnfBoZn17TC+SoWbY9A9StLWK7vTKc/Y5PYG+7Vxu8ynSr315motxxU5xzm2U52TnmgX3bGnW6rV+iulPNgXUTL2fWbx3pkuwYFqnOm23xPjte294yn7B/lQYa8zbF5eyZyIBzH/T6vHu1N94YAQaxvnoEPT+rlnZ45G5b6haOgeJj43kyGc3kzW+edbxxWvwsn0hTjgWUXYny3v3mwYvnUPHYYx8Hx+A1dk+ush//k8mWdyvDa/5UryMSlZFoGddse8V7bCG362DLsnHy9L2WNab53W/s5cQbOygd+6Dfa9wCOeq4jrSPqyN+PuJJ5Vg+qd0aM4/enu1ufz59Z89Wkd0fTyrZ/alsM/E9mbqtP27puBQAMHVbf3Oee3f0dWTuX1++ylGWmEVvz6U3lm9N2f3Td/b0dS5zGxvLUA/neG9Aw2dXHHcm3eczv9dvXsc5t3KIiLKNX0EREREREREREREREeUBdvgTEREREREREREREeUBRvpQyozYCDfxfsacSiSB18+FK6Ml1vlcft7u9jN3r6gYcfmopiCshhqfi+3WGtpkvB6U1MZl5cY22yNE4kWFeP0c3yhLfGz5+bfW+D6I5dtjRtzieYyfbIsRQ0HFPQYklZ+Fu8WO2H9iLf682rEvJPmVZDrjLlpSBEJLaENLEe+ns0FJRbEcSbh8VFcaIxLcDmF7prkd34x910+MTzLiRY3ZFchRR2SPvZx6LWiJDjJwX/IvE9ETqfKK/PAbQcL3Pfv8xqIkYhzjEsUmtLT3PJnzc6b3a/FaMpky3D57ycQ5+IkCE6+txUjKRNckftclk/FuiaJ9Ms3tM1EgR1GqOCP+7MslilrymuYW8yLyGznTGuN8HqjsZT6O95k3trERe5TO+CMjzsd4LLZJfOz1PrvF9RjRPuK/rSXWx378ErevaMqWAa7T7+j0A27cPNBSnkkDglLIEqd5S8el5nYWt7Hx3qXj70A7+zraYzqTPa9QfCpkqDl0j3IutZVaB+6RRERERERERERERER5gB3+RERERERERERERER5gB3+RERERERERERERER5gBn+lLJ4+e5+l0uGPd8xqitmjraRXR9WQ47y7RnWXtnYRhle2a7FcsQ1b95vLm9QUlGNQjNzv1YNISA3vhYvf9/4as5ou1GGuE1imoKosFxQV826SwN1Zj1+MmQzmV1troORQS6OayCMf5CovX4Z20ncdmYbZRWlSl3cnEa3x4a/tF+Be3f0TZgbT8lzGxfCaxwJt/cm3nsSL6tXLMvYZ9zG14j7eU2R5TOoWMf/cGtHtVroWk6BHHWMicE80dwiHt+rY4XmNK/PQFBSURqo831eopYllcxzP+PqZIrfPP5488Ubg8B+7vVz3ZLu1+O1z2/eeyJeefrGdK/xGhLl8McbY0tk37bpzvJvbulcF2P7GdntRk444J7bTk7Td/b0NZ9xjS5eV93R6QfHfEZufzry+73KsGf1P1DZK+E4DXatbf8QxzoAUlt/I49/6rb+KFYar9/tf5vf03mxY1m3+tzes2T2R0vb4o0dpjhf8zr+8rosNRoAVZey3QzftGw3gMiGd/gTEREREREREREREeUBdvgTEREREREREREREeUBRvoQERERERERERFRi6BBhpZD9yjnUlupdZB0Xdez3QjKHevWrUOPHj0AALfNOgrturhnSAPu+ed+8zX9Zrvac9lTyVC1lxsTMiQDsmrmqRr5yMlm8IW1kNnWsBpyvB4v09bMY5ZVS363V3avOD6BPe873rb3kxvsN7PXbf5k3//mMKndmrh5jmIGY70WNLcnM7IzJ17mpZhxbWS9xvu8GxmgRpZ9Kscbr0xke9asPcPfLfM/GfZxRuz7XqK2JuL3OMl9PHvEsUfczm9uY1xEdcUca8bPfk+Zke7sXj/Hp0zxGscmmfO/X277tNvrfspoLvHGkUkkk9cS9vOVIZnxp1oTc7yUPePiGNcX4nWEyDi2piNLvrXwut6Od65zy2un3PfHTYMsz+/vsjCj9YnjbwDJjY0ST7LH/XjlX7v/R0mVle/E/qYH5g5C+y4FWW6Rfzs21eP6kQ379Nq1a1FRUZHlFlFrx6+giIiIiIiIiIiIiIjyADv8iYiIiIiIiIiIiIjyADP8iYiIiIiIiIiIqEVQdRmqnjv3KOdSW6l1YIc/pYXfzH236UFJTWp5MY/UnveYKGPWntMf1WUUKQ2ZpsVyxMzpt+eEG8/rEXSUmSgT1cgKDEoqSpW6uG0zc0RjhQlzbN3y8I263LaJ1/YWc57tdbqNl2Css71ur3bGmydVXrm5yWTTGnmi4hgLjnqEnPZ4mfHdCyp9tNq/ZLKSm1J2purwS9zn/9J+BaZsGZBwfi9i1uuULQN8Z5jbM6p95eTL/j4DXscucb8yy9gzDkCBHPUcA8CrfV5jcni9Hu+Ym859IZP7cT5IlP8alFTzd5hRTXF934KSatl3zGnc3lkTb1weL/HmS3S94DVPOridx73G/HHL4raUtWc/tb9mjDmRaCyheNd04nM/x3yv8XkSjfXitly8NseTyc+o5X1T/J2fMt2mlsxY71s6LrVM98qdTzQGVLwy0pn7f9bKY8zHL/X+OG3lpkOi7RPWQvhL+xWWadduGGI+ntZtXkbaRdkjZvdnKrf/3h19EZRUXF++Cg9U9nK8Xq8FPcfJApI7BiY6J9nPF+L5qbUea4mo+fErKCIiIiIiIiIiIiKiPMAOfyIiIiIiIiIiIiKiPMBIHyIiIiIiIiIiImoRNEjQIGW7Gb7lUlupdWCHP6UslfxYr+z4RDl4Yp5+rRpCQHbPsY+XnWu8HpRVaza73pjTH41apxfLERQrEd954PEkWtayPYLe26NaLTSneWV9JyOshTyzxY3MXftrbnn2Zttla9vdshHdxgxwy5MVxyRwq8uLmJE6dVt/M5d16rb+ABpyWsXH9+7o69iW9VoQd3T6ATduHmiZbrSzVg3i0e5fu9bvN9vVS6azfcWs5Vs6LsWNmwfins6Lm9zuVNpieKCyF8qDNebzarUQUU1BWAuhVg0itme7P1HxRcJy7+j0AwB/74PfsSa85os37gXgPuZIPPZsaHsZbuOI2InjinhJdh9LNC5AOupoTdzywN2Oj2KOPwCUynXm40yOk0JN4ze73+A2to6fcjP9vnsd3+KNeROUreNKuF1fuI07IfK6RvCaz2+74xE/k16fLeN9MtptrJt4XPabB53pDP1Ursube/9qLuJ6XV++yvdyk9qtMccWEvdZIyf8gcpeiOqKI4veIF6DpDO7H2jI73+p98eWHP9sundHX9RrQYTVEKK6Yo6VFpAbxkjrFKpKuA2Y25/fMpXbb7h3R1/zsZjf7zb+kdvftOKYSID339jJ5PBXxwoRlFXXa3sg+WsFIqJkMdKHiIiIiIiIiIiIiCgP8A5/IiIiIiIiIiIiahE0XYaq5849yloOtZVaB+6RRERERERERERERER5QNJ1Xc92I3Ldli1b8M9//hMff/wxfvjhB+zYsQOapqG8vBz7778/RowYgYsuugi9evVKXJhg7ty5eOaZZ/DFF19g/fr1UBQFFRUVGDNmDC6++GIceuihGVojb+vWrUOPHj0AADd9MhLtuhSmLePTT1askbnnlX1aGqgzs/DFbHp7TqxbBrdXfq5XO8Q8T6NOe1liZl+yYwCIebLVsULLNDEbM1G5QVmNmwku5vHbt2vMI3M8IDvzbY1ld8cKURMLOZYxynqp98cA4MgdHdTuV1RGSwAA93Re7FjeyGa0Zwfbx2MQ//Vqf8M87t93euXyA8DYn08yHwckDQFZQ0DSUByIICirCEgqygJ1aRv3oanc8o/FfVPMXAaAUqUua+0V21oZLbFk9++KFCGmy3itz3+TLre5xyUwiPuiW961ZV5btrU9z93teOd2XHLL7vccayPBeCfxyvCaj5KTyjg4bsuK0v2eNKWN+aal5JunM/vdaz9yy7IXp3udh8WcfbdrD3uZmdpf7cfdeGMJJSonUVvt2yrZ3H43zbVveY2RkA+fdfu+YOyjxhg/yRLzwd3+LgnKquMayk9uvzhO1D2dF5tjKk3d1h9RTcH2aAliuoKaWMj1mta4pm5ubtdWlbESbKovw65oEaqjBaiOhvDxAe9koXWUT7yu45uSf59oWXHsQDPff0/Gf7r+vhPbcEP/mU0qK9+I/U13zz4c5V0Kstwi/yo31eOvoxv6EtauXYuKiopmq3v9+vWYN28e5s+fb/67Y8cO8/VZs2Zh9OjRKZWdiX5JXdfx/vvv49lnn8XChQuxfv16FBcXo0ePHjjxxBNx0UUXYb/99kupvdSIkT5N9NBDD2Hy5Mmora11vLZp0yZs2rQJs2fPxv/8z//g+uuvx1133YVgMH7nz+7du3HllVfiueeec7y2a9cu/Pjjj/jb3/6G66+/HnfffXfC8oiIiIiIiIiIiCg/LFq0CCeffDI2bdqU9rIz1S+5efNmTJgwATNnWr/sqq2txfbt2/Htt9/i/vvvx1133YUbbrgBkiSlZX1aI3b4N8GNN96Ie++91zKtW7du6Nu3LyRJwqpVq7BmTcPdHaqq4r777sOqVavw8ssve+60sVgMp512GmbNmmVOKysrw4EHHohIJIIlS5agtrYWuq7j/vvvx9atW/HPf/4zcytJRERERERERETUTFRIUHMohVxF83dM79q1KyOd/Znql6yqqsLRRx+NJUuWmNM6duyI/fffH7t378aSJUsQjUYRjUbx5z//Gbt378bUqVPTvn6tRe58elqYzz77zNLZv99++2H27NlYv3495syZg9mzZ+PXX3/FvHnzMGjQIHO+V199Ne4H4aabbrJ8qKZMmYKNGzfiiy++wPz587F27Vpceuml5uvPPvss/v73v6d57YiIiIiIiIiIiKil69atG0477TTccccd+Mc//tGksjLVL3nZZZeZnf3BYBCPPPIINmzYgE8//RTffvstVq5ciXHjxpnz33HHHXj//febtC6tGTP8U3T22WfjpZdeAgC0bdsWS5YsQbdu3Vzn3bVrFwYOHIhff/0VAHDYYYdh3rx5jvnWrl2LfffdF/X19QAaPlRe32ZdcMEF5k9rOnfujJUrV6K4uLjJ65WImKl226yj0K5LYdz57fmgIiMDU8y/LJCjjunJ5LK7EXPuxdx9r3YYgrJqye+7v8tCAMC1G4aYZZrz2soW80LFfFd77r+4vBu3PNqwGrK8VixHXNfLq+xEmYNuYwe4CWsNeaJRXUZMV8z1jWiNYwzEdBl1agB1sQACsoZCJWbm3ouMDNIr1x8utFMzxwrwavM9nRfj9+uGOd47oDGXHgCeqPgCV64/HME99U7r1vj5E9/PoKRi4c4ejrKMvH5RWbAORUoEZYE6dC+o9NhK5Je4r1dGS8yxKmq1IJ6o+CLlcjOR4d/ULG/jM2bPwbaPNSLO75VHLR5rAMQ9FnhJNlNbzHqm/NPax2xIlGsPODPsDfbPnds2c5vmNY6Off50ZAbbc/jdzp/JMK6VjMciv9n5XmMGJMvrmjPZbPpE165u6+Wn/Jb42WpN43T4ydRPxpQtAwBYxwUQx5sSx8gCrH8HAO5jUAUlFZ1CVRlrcyqm7+xptiPRNVVLaC+1DtkaoysTrt3/o2w3oUUR+5vunH0EyhP0N7UklZvqcPPorwA0X4b/+vXrsXDhQgwZMgRdunQxp69evdoyhmgyGf6Z6pecN28ehg4daj5/+umncfHFFzvmU1UVxxxzDObMmQMAOOigg7B48WJG+6SAd/in6NNPPzUfX3DBBZ6d/UDDFwJXX321+XzBggWIRCKO+aZNm2Z+qHr27Imbb77Zs8xp06aZH6TNmzdjxowZSa8DERERERERERER5Zbu3btj3Lhxls7+pspUv6SYkHLEEUe4dvYDgKIoll8LfP/997zLP0Xs8E/R1q1bzccDBgxIOL84j67r2LZtm2OeN954w3x88cUXIxQKeZbXvn17nHHGGa7LEhERERERERER5SJNl3Lu/3yQiX7Juro6fPDBB+bzK664Im4b+vfvj5EjRyYsl+Jjh3+KSktLzcdud+vbGd+QAYAkSWjbtq3l9WXLlmHlypXm8xNPPDFhmSeddJL5eM6cOaiurk64DBEREREREREREZEhU/2Ss2fPRjgcTrnc9957L+H85BTIdgNy1dChQzFz5kwAwNy5czFp0qS48xv5UwBw6KGHoqSkxPL64sWLzccFBQWWgX69HHnkkebjWCyGJUuWWDKxssWeESvm4G+qK0OdGjRz3aOaAlVr+N6pNFRv5rsbeekBSUNxIIIiJWJmuhcpEbMeg1tGvz1HP6orwJ4YdjFX0yuP+46OP+DGzQMBwMzvB6z57wDMeW7puBRAY36nmOkpeqCyMUvt+vJVludu28+uWImY67UjWoJaKWhum6AUMttfGqgzt0siUV1BtVqIsBpC7Z4xAgKyahkfwG1MAshAACqAqJnnD4QQklWEY43fBBvvZ50aANTGaeJ7fdGaEWZdAUnFtG7z8Pt1wyztDEiqsK4qrt0wBEVyFAFJRUxXUBNrGFfAGDtAHCvg0e5fm48vWjMCM3p+it+vG4aiPeMpBCUVpYE6DGq3FlFdQa0aQq0WNOssC9S6jsHQkjJvcy2L156TbOzvxcZnXFNQpEfwx00Nx0Pxc+iXkSc7dVt/83NvHCsK5CiK5cRf2Kabebzy+dn0ygsPSiqCigoojfOKr4n/emVH28vzIxf2rXyR6ngR8Y4F4jkmXrn5/j67jZFjZ89qtxyzXLLvo5piHlvctrvxr9drYl3iv+liPx6Ix0Sg8boBAKrVQkcGuVtZxnIiY3v6zbd3tEu4Bop3vo2XtR9vrAA/xDotnyfFfT38vFeZ+Ex5rbffY0cufM7dPqsFwrWbfT4v9uvt68tXNaldd3T6AVO2DMC9O/riL+1XWF4rkKPm3wWJGGMBGGW2RIny0pP5bBGlYuq2/o6xrnLh+EWUazLVLymW26tXL3Tu3Dmpcjdt2oQtW7agU6dOCZejRrzDP0VXXnml+fj111/HJ5984jnvt99+i8cff9x8fsMNNzjmWbq08aKwR48eCAbd//gU9ejRw/LzmmXLliVchoiIiIiIiIiIqKXSIEPNof+1POhezVS/pFhunz59fLXFPh/7O5PHO/xTdOqpp2LSpEmYPn06NE3DySefjOuvvx7nnHMO9t13X0iShFWrVuG1117DPffcY/585c9//jPOOeccR3m//vqr+bhnT3+jzsuyjO7du2PVqoY7VFavXp30eqxbty6p+Tdu3Jh0HURERERERERERPkulX6zioqKDLQkOZnql0yl3G7duiEQCCAWi5nlirn+lBg7/Jvg4YcfRt++fXHnnXdi69atuPvuu3H33Xe7zrv//vtj8uTJuOCCC1xf3717t/nYnu8fT1lZmWsZfvXo0SPpZYiIiIiIiIiIiMgqlahtXdcz0JLkZKpfMpVyZVlGSUkJdu3a5VkuxccO/ya65pprcMghh+D3v/89fvrpJ9d5OnfujEmTJmH8+PGe5dTU1JiPCwsLfddfVFTkWkZzqNWC0GMlCKshS3ajkeW+K1qEOjWI6mgItbEgIrEAaupDiEQCUGMytFjjT54kWUewMIZgQEUwoKK8KIyArKFQiaE4ELFkqNvz+wBr3qv4r5G5HoQ1429XrMjMA79y/eFmvvu1G4ZYgq7u6bwYidjnsed42tkzQ9fXl1uy8s110qzZtFFdEXLyGxTJUTPPHoBlHIN6LQjI3rne9qzcAjmKAjmK8mDjfiTmGovb0sgpjkccu8Fod0xXzPWKCOt33urRCMlq4zrLDTn7hohLVjIA1KlBxDQZsT3bRMzsL1Ri5rTzVo92LGvUGZBUBHQF5cEaBCUVnUJVjevQgjPxjW1rz54WM6cNLa3tBmM/FPdBI5PXyN63s4/r8ETFF77quqXjUty4eaDj85ool9ar3emQqBxzvAEltRzsZOqi9PM6fqSSI54st/os5wnbOcBtnnha8rHRL0u+vC2X3ZHXv2ecG8CZ3e8YD0iDOZ5OvPO62znUft4X2xOUVZQqdZbXjeO/OHaA6/rZ3m/xGkm8PqrXgqhH4/hH4utu5xZxOaMdpYE61zEM4vEaU8mo0y3b36jPi337xms/4D0+gJ8xDIz5vMYiMMTLnxfnT2bbxavT/tjv2DEtjf3YZRCvp43xtMz5hPffb5Z+KuyZ+8bfAPfu6Oua7e+njJbCz/WRfUyYqdv6N0x3Gf/Dz99URF5KlTpzn6pWC137A3IRx7+gliZT/ZJNKdfo8G/u/s58wA7/JlizZg0uueQSfPTRR+a0iooK9O7dG7quY+XKlVi/fj02b96Mq666CnfddRdefPFF15+hRKONf4gEAv7fFnHeSCT5wSfXrl2b1PwbN25sEQMDExERERERERFR/tF0GZqeO7n4Ylu/+eYbdO3aNYutSU2m+iWz1d/Z2rHDP0WrV6/G8OHDsX79egDAUUcdhWnTpmHw4MGW+ebNm4drrrkGX331FTZs2IATTzwRs2bNwuGHH26Zr7i42HxcV1cHv8R5S0pKkl6PlpATRkRERERERERElOu6du2ak31tmeqXzFZ/Z2uXO1+XtTAXXnih2dk/fPhwzJo1y9HZDwBDhgzBnDlzMGxYQwxFbW0tLrroImiaZpmvtLTUfFxbW+u7HcZgwPYyiIiIiIiIiIiIiBLJVL8k+zuzg3f4p+CLL77Ap59+aj6fPn06gsGg5/yhUAjTp083vxBYunQpPvroIxx//PHmPB06dDAfJzOi96ZNm1zLaA7r6sqhhMsR0RRsqytBbSyI2mgQu8OFUGMydE1q+F+VoUclSBEZSliGHJEQ0AA5BugyoAUa/o0VaYgU6NADGnYVFkOSGwYtUQIaytuE0b3NLnQurELf4i1mXp9XzjcATNkywHxs5GMa04z8fgBmfr/dHzcNcuQgxzQFtVoQNbEQnt9ndmobbk/ZorAWAqzfASHmkk0bkFUUSRGzXaWBOkcuvz0L0Cuz1U9Wc7Hc9J9NeeXJ2jN4xbbHNMUcn8AuZs7f8H1lHYKA1pDZ3zZUay5nH+8AAIJ7Mv6LlMie56plG9olyt3OVm6kvS3iNgyrIcf84nq2pKxLt21q5HLeu6Ovpa3Laqw/ifSb3S9qSn5sKjnnbmWI/yYqx2/5Xp8x8bk41oNXfjSlV1PeV7d8fXHZeGX4yYN1O0/4bVsy8zUXt6xyL/Z8fvvybvMDAGQ4xkwRX3er02ssnoCsIhZzr9M47xmfUWN8GbGdRg6/PcNebF89gpYMfLe22xnz+x0LxmiPObaAYn1NzKyP974kGo9AfM1r3zWfy41jDiRzDPW6PvEaC8BtfvF1t2OsfayIVM8piT7j9vdb3BapjBOQTeJ7Y9+Hp2wZ4H583POeGZ+PP24ahJimYFq3eRlv7707+ro+N9qeyfEEUvFAZS/zcbL7n9t+Zj+G5Mp+Ri3LjZsHWs4Z9s82AFTHGjPAjXNGqtfnyUh0Doq3nHjuZnY/tVSZ6pdMpdzdu3dbOvybu78zH/AO/xSImf09evTAIYccknCZQYMGWX7S89lnn1le79evn/l4zRrvTmxRTU0NduzY4VoGERERERERERFRrlEh5dz/uS5T/ZKplGsfb5T9ncljh38KjCgfoKHD3y9xXvEbMADo37+/+Xjr1q2+vvX69ttvPcsgIiIiIiIiIiIiSiRT/ZLitB9//BGxWCxhuYsWLTIfK4qCfffdN+EyZMUO/xSEQo2RGanmT4mDVgDA0KFDLeWKkUFexHkqKirQu3dv320hIiIiIiIiIiIiylS/5IgRI8zH4XAYCxcudMwTr9wjjjjC0i7yhxn+KejWrZv5eMmSJQiHw44OfLtwOIxly5a5lgEAbdq0wZgxYzBz5kwAwPPPP48zzzwzbpkvvPCC+XjcuHG+258uv+zuCATaozYaRE24AGpMhhaToUdkSJoEaBKgAYEqBUoEkCNAsBpQIoAUg+PrplihDLUQiBUrqG+vQCtUIYU0dCyvRvc2u1BRtBPdCisB+MsovqPTD5Ycf2Ma0JD7aTwW2fM9b9w80LP805afAAB4a9+ZOGvlMQjIasJcf6M8e4awPes1qitxs169sgpbelam2L6gklyGeDIZ+olyEt22obic2/a0v2f2TPfm3PZi+4rliNmW6lihZR3E9fQajyHVLMp0cNvObu2M6goqCisRVkOo2pPZee2GIWnL4xXzaCujJebzYjliHkfsn7/yQE3S9STzOfU6xvnNbnfLjrbvv9Vqw7YUs7Lt+7zf8im94r0PfpZ1y6j3+qynY6yWbPHKkq6He169ffwKez54ogxgt2x7R5uEXH0xT96ow5wnzi034nptiZRZjuUicZqY6W+cA+wZ/2Kb7G0Oymr8nP897XXbN+358MY0t+OOWIfYXsvyGhCUQpaygIZxi9zqTcR+TeA1j70uP5nQUV0xx3cwyjbGLACc4xW5XXt4tcWtXrfPspvmyrNOxL7tjf2vVKlz3W/clgec+zfg/9rL2Bdv3DzQMpbP9J09MandGkzf2dMyf7zxwRL5S/sVnq9N3dYfU7c13OGYqSx/+7oA/ravKKmxXISxTez7usjtby4iN+Lfysa/4nEz3rWpuFymuF1jubXFPA/vmWb8jWa8Zow1F2OWP7UwmeqX3G+//dCvXz/89NNPZrlDhw71LDMSieDVV181n5966qm+14Ea8Q7/FIjfTtXX1+Pxxx9PuMyjjz6K+vp68/moUaMc80ycONF8/N5771l+wmL39ttv4/vvvzefT5gwIWEbiIiIiIiIiIiIWjJNl3Pu/3yQqX5JsdwZM2ZYotLtHnvsMWzfvh1AQ8LKOeec46PlZJcfe2QzO/LIIy0DRvz1r3/Fe++95zn/W2+9hZtuusl8PmDAAAwZMsQx35lnnokBAxruSFdVFeedd55rZtbSpUtx+eWXm8/Hjh2Lww8/PKV1ISIiIiIiIiIiotYtU/2SkyZNQqdOnQAAu3fvxrnnnovdu3c75vvss88wefJk8/lll12W1Nip1IiRPilQFAUPPvggTjnlFGiahvr6eowbNw6nnHIKTj/9dPTu3Ru6rmPlypV4/fXX8f7775vLBgIBTJs2DbLs/K5FlmU8+eSTGD16NOrr67F06VIceuihmDRpEoYMGYJoNIq5c+fiscceQ1VVFQCgQ4cOmDZtWrOtOxEREREREREREWXX8ccfj7lz51qm6brumMfeBzly5Eh8+OGHjvIy1S9ZUlKCxx57DOPHj4eu65g7dy4OOeQQTJo0CQcddBCqq6sxc+ZM/OMf/zDTUfr06YPbb7896W1CDSTdvieQb08//TSuvPJKRCL+8m+Liorw5JNP4rzzzos738svv4wLL7zQEgHkpm3btnj77bcxcuRI321uqnXr1pnfrvV54jpopR2hhgNQqgKQYwA0yczoN3P7wwA0QNIAJapD2vNY0nQYMXtaUEK0SIIeAGKFQF1HINZGg9ZGRa+9N6Nf2y3oEGzIzLZn4hri5WbaGdn+iTIlxQx/MZcvtiefMiA3ZAnWqo1Zs8Y0e+aumDsY1kKWLD87Y1kj4zSshSz5pX5y2cWsXHtebHPkubrltnrlL3otLz52yxYukKOuecDitrOX5bftBjFDUlynsBpqfM3jfW5O8TK6vZ7bl2sJeb/JakrW7vSdPR37aVgL4f4uzkGEpm7rn9T+29KIuaHVe8ZBSJQlnYvrmUnZHO+CGvjNorafL8RMaSMHHnA/Xic6X9iz2cVjv9t8XtO9zl0ie9nx2uZ1jvTK2ffKmI/XjrgZ/7Z57YxzaLyxdYy6jXO7fT7xcbEcQWmgztcx2a2MRMuk4/NtvxYTZSJjv6Ufo8Jaw7Vyout1I4fea+wF8RrYuD4GrNvUvpz4t0Oi6+GmXFd4MbL7Dbd0XIqp2/pnJMtfzPFfXdfRcU1jv56xHxPi7ZeJjmvGY2PbM7ufkuU2fl688euaSypja4nLiefcXbEi1KpBxHQFNbEQXjziifQ2NseJ/U1/+Xg02nYpynKL/Nu1qRb3HjMbALB27VpUVFQ0S72jR4/GnDlzkl5u1KhRmD17tufrmeqXfPDBB3HDDTdA07S483Xr1g0fffQR+vfvH3c+8sZInya45JJLMH/+fJxxxhkIBLx/LBEMBnH22WdjwYIFCTv7gYaf0MybNw+jR4+GJEmO1xVFwbhx47B48eJm7ewnIiIiIiIiIiKi/JWpfsnrrrsOs2bNwqBBg1xfLygowIUXXojvvvuOnf1NxEifJjrooIPwyiuvoKqqCvPmzcPy5cuxc+dOAEB5eTn23XdfDB06FKWlpUmXO2vWLKxatQpfffUV1q9fD0VRUFFRgREjRqBLly4ZWBsiIiIiIiIiIiJq6eLdpd9UmeqXHDlyJBYsWIAlS5Zg4cKF2LBhA4qKilBRUYExY8agXbt26V2RVood/mlSVlaGY445Bsccc0xay+3Vqxd69eqV1jKJiIiIiIiIiIiI4slUv+QBBxyAAw44IO3lUgNm+FNSxEy1vSdPQai4HHIEUOpgZvMrEUCO7cnxj+pQIjqMSNeG3H7nLqcrErSABF0BIiVyQ4Z/MRAt1aF3qkdhcQTtSmrRsagGB7dd78jijOpKUhn+6XDl+oYRyIOShoCsmnn6YvatPWvQK4vW4Cc3U8zP9MoNFHPZ67VgWrPH47XbLUfeS7zs5Gq10MzuNabFNGe5gT3b2u01N0VKBEFJRXmwJmGevb2tYg6vWyas1zqJ6yU+bo4MylTzJluqRPnE8V73yuR9oLKXOW9YCyV1HBFzcnOFPVO6VGnIM8/VfYJahnjnhZbELRPcLQfe69jplr9vzwSPN35OovLFsuPl97udP/zmt9uvJfws41WGPZvePq6OZRnbedo+TkCiecU8/6iuICipKFYilvF6Wjojw964LgO8t7mf98++n7X07eC2j0Z1BZXREkvW+/SdPR3n7ClbBsT9XIpjZxnntXifM2NbXV++KqV1sXugspevsuxZ/oZMZPkbjEx0+zgZ9r9LDIn+vgDSt92IgMZ99J7OizF1W3/zuG4/Z1v+BnYZlyPTx0A/f+OK50fjXBbVFeyIljSMFRYLoToWwu5IAWqjQYTrQlj6m1sz2u5cI/Y3/emjo3Muw/++Yz8B0LwZ/kRemOFPRERERERERERERJQH2OFPRERERERERERERJQH2OFPRERERERERERERJQHOGgvpaxwq4SiYENuf6BWhxwD5KgOpV5ryPKv1xCoiSHw6xYg0pBvj5KShn+1PRl7wSC0siJoRSHUdQxBC8oI1OsIVUmQI4AUk1BXGoBaGENpqB77lOxAWAshqDdkt5q5+Qky++xZ20Y2qFtOaDy/XzcMbQIN2aCPdv8aN24eiKCkojTgnYNtz6UHnNm1BXLUXBe3ZUVu89kZ+ZtRXUFQSW+uYbxy4r0mZjAGZRWQG3NXo7qC6lihmdVYLEcacljlOtRrQYTVECA3ZPUbOfzGNoxqCqKSM5PYLc81UTvF6XGzkW1lJtq2XuV68ZvFnIiYz5pMnr/bMi0tH9itLfHaJx4DwlrI3BerYg25kNO6zUu6DeJxJFcY76Of4wiRX25Z0Mbx3T7N/loqx5VUyzHnVVRAsU6zzxd3nB1FteT01sOayW6cd+3li8cewJqlbayPkYNv5Lzbx+MR19+tbfG4jVPj9R75OdcHFed5wTi22MeuMdruVrb9fBuVnetnbBcxEzmshhquD9CY6WxcT4W1kHldAQDFSsSSW14dKzQz9Y3xAMoDNZ7rnA5G3Yny+/2W5bb9M8l+vZzMuc++74mZ3LVqCNduGAKg4Vzsdl0uZvwDDZn+BmMb2OcR53WMn7RnX7l3R1+zPUDTsvSNMYEA74z7TGb1e7mn82Lz8QnLxqI02PAZjWkyArIGAAhIGjoUVKNIiTrGx0jm7ySiVBifyxs3D0RUV7A9UmqOj2f8vWf8XWjMn42/Sdz+rhLHeQurIUR1xRxbripWiKpoIaqjIeyqK0JEVRCNKQhXF0CrUyBFZMh1vP82HlWXoeq5s41yqa3UOnCPJCIiIiIiIiIiIiLKA+zwJyIiIiIiIiIiIiLKA4z0ISIiIiIiIiIiohZBhwQNUrab4ZueQ22l1oEd/pSyom06ioIa5JiOUFUMgd0RyOEIpJgGPRSAruw54Gka9No6aLW10Lducy1LKS1FadfO0MqKEG1XAKU+CLVAglYJKJEAIttKsaK0GMsLuyHYrh5lpbXoVFKN/cs2o22gFqVKHabv7GlmhP6l/Yq4bfebO/r7dcPMxwFJRUBSUasG8Wj3rwE05mJeu2GImS1vMDIHjQzMoKSaubRGVqjIyJIFgOpYIYDGfGIja1TklV1oz11PBzF71Wi7PTcXgCVb194Go4yYpiAgqwhKIcu6lQcbs3ON8Q6MvH/xNUfesMc2teQpJ7EdvPKcjdzzTGxft/rEbZ5K3rVbxqRYfrzlkl2muaSrDcVy4/gf5cEaz6xdP3Ipv58ok8Tjljhei5Gbns7MXbfjYbxxSpo6ZoDbcmJ5xjoDMPP8xXOSeP62n8vrtaDj97bGGDHi+VMcN8CQzHgvXtunWi1snMcYYwewtEkcF8hYxv7+2tsgzp/sOAue76ts3X7i2D9RXUExIpZxD4zla9UgqmKFCEqao76A3HznNq91a8q4PZm+JhHz2+3jXiUax8a+fsa1rcEtc9/v2Fp3dPrBkuMPNGT1u5UpTrtx88CGNqkNY0CI26w0UId7d/RN+DeEndgOr3EEsm3/zy+AImuQZR2aJkHVZPO58e9Lgz/OdjOpFTL+hgaEY+Se849xPhLPM9n+e8R+DK+MljiOdQFZRUxTEI6FsLO+EFX1hajcWQItJgMxGQgrCNRJUOokBMJZWQ0iaiUY6UNERERERERERERElAfY4U9ERERERERERERElAckXdf1bDeCcse6devQo0cPAMBhJ96EomBbyFEdgXAMgV11kHbuhrZ1O/RIBLqa2k/u5FAIUBTokQgkRUFs2ABUVxQgvJeEuo5AtKIeRaX1aFNUjw7FjVEvAUlD+4Kw+fO/NoE6M+4HaPgJnp+fCYvG/3IcApKG4kBkT2SPZv78+/4uC12XuXHzwMafHcqq46f5Iq+f2HtJ5efxfuoUpxkxBFFNiftT8WCcn8GLcQZGzI9YV6JtIa5nUGqI9Em0rlFdMWMGjPbZowa81sWrvGz/bLSp3LapV/SRoaX8ZDbTjO1hj/MxognE/cnYF0oDdY5IhnhlA/m/HVsjt8grahTvvNYc28yt/njnHK/30/459ipDjPPxIkbMGf/Gi3Hx0yavZd3mt8f2iEoDdY5y3NZJPFfY10M8v9jXNVEbU2F/7+q1oBkzKEYHFsuRhljAQI1nWZngtl94XY8k2l+zeZxxi3MEYIlzArz3U7frQD8RHeL5typWBADm+2mPzLl2wxAAMGM1jfO0V1Tf1G39Xad7RVMZJrVbg6nb+luuMY3l3Pyl/Qo8UNkL15evMv9tbkMW/Q7zDn0FB355HlRNhhqToWsSJFmHLOuQZB3BgGpG/Cw76l/N3kZq3Yw4LPvnSTwXAY3nlpbyN4p4bg2rIfO8U6sFURMLoU4NojoawtaaUtRHAojFFESrQ0BMAiIyQjtlKHWAUgcE6oBvp1+X1fVpacT+pms+PAFlXYqy3CL/qjbV4uHjZwIA1q5di4qKiiy3iFo73uFPRERERERERERERJQH2OFPRERERERERERERJQH2OFPRERERERERERERJQHAtluAOWu0K4YiqJhyFW10Ldsg7prV1rK1SIRAICkKJA7tIeuSAjU6iisBOSYhJpACLVlAdSVhrC7tgAFoRhKC+rRtXg3ipQIatUQIpqCXZEi3N/bmbM//pfj8Fqf/yZsx1krj0GhEkVIVhGUVUt+f1BSMWXLAEeWKADc03mxJSO0Wi30zDkFGrNyjfxZQ1BSHVmnmcgudMvvB2DJKw9rIVRGS6yZxro10zgoq2a2qbEu4joY6yG2357RGC/72S1v2b682JZSpa5J2ynb+ZDpIG4fI2vZeA+M97o6VmhdxiWXN17WdLqJmcGGYjmS9joMD1T28hznIdXc53zYd8gb39/4vPK8jVxuwPtckCp73r6f8XHi5anb8+vrEbSchxOds8RxbOz1uWX1e5UlHrsTlRWPMZYQAFSj0PG63+x+4zVjexjts59fmvq+xhtrSCzTODcUyxGUB2os2fnG+CtRVcGuWJFlTCD7emdCUFItt1XZ33ev7exnnJh0Ese2MsawsU+3E+cDgLAWcl0fr3x7oPHaw+16LSg1TIvKStzxmACgQ6jasn8b803f2ROT2q1xZISL7RPntz+2m76zp3lN4HadYixvZPY/UNkLACz/ZirH3xjHoKFtMnZFi7C2uh1Cioohi34HAFBkDUpIAwDIcsPwfZomoa6u8X074tsz0KG4Bt2Ld+GJii8y0lYioPFzYRyPjc+N12cwqLSM7H67Ajlq/u0bg4KaWAjV0QJUR0OoiRQgGlOgajI0TQLqZChhGcFqCaGdgBIBpBgQqOdwmvFokKDpUrab4ZuG3GkrtQ68w5+IiIiIiIiIiIiIKA+ww5+IiIiIiIiIiIiIKA8w0oeIiIiIiIiIiIhaBBUS1By6R1llpA+1MOzwp5QFv1sJLaxDy0DZclER5NISoLgIkqojEFYBKJBjACAhVqwgWqqgtoeMYHkNigJRxHQZv9a0x+5IAVRNRmmoHmN/PgkBSUNATq6Vv183DG1DtQhIDdn9AFCkWHPE3fL7Dbd0XAoAuHHzwMa8wT3nKjEr18gALZCjlgxTMR+4Xgtask7FTFSvrORE4i1nZBEa/9qXMf41Mv4t5cgN7Q3COvaAV71eZcdbD7c8d7NNSh0gLGrkC+eaRJn59rzqRNzylO3b0dgfq2OF5hgM9nqMMRkK5Gjac/Xt9bjlNaezDr/csrr/0n6F+dieZUxETmKuelBWLVnwgPVckejz6Xb8sy8Tb3wYMaffLZ9ebI84b70WNLPr7XnlgPWcaZ5HxXOQ3Di+gNdYAW5llQbqPNfV7zlfnN++zsZ6GfV6HeOjuoLigPdxP53HardznrHtjHGRvN7joKQ25D0r1v3OmOfX2o4IyA3nmWIlktS+15T2e42XJE4zxkWI974mul5Kdh1SOYcZ2fiun0XZes0nntPrtaB5fWyMdRXVFHNcCa+s/upYoVnXjZsHmmWXBuoasv6FMRHE/duoI971ushrW3jl9dtfNzL67Vn9Rl55pkzrNg9/3DSooS2qjJCsorygFnVqALWxIEJKnH2ipCHfPyirKAzEUKjEsCtShPNWj0ZMc673S70/9izK7xgQREZmv/hZET9Tk9qtwfSdPVvs33Di9UFYCyGmKQjIKnoUVSJY3PC30vZIKb7YvA8ikQDU+gDkOhmBsASlDgjUAUq9DiXS8C8RUabkztdlRERERERERERERETkiR3+RERERERERERERER5gJE+RERERERERERE1CLougRNz51cfD2H2kqtg6TrOoPDyLd169ahR48eAIBR7c5BqFqDrmY2Xy/QvRvQpgSxdsWItg0h3DmAaImESClQ01OD1C6Ctu3C2KukGn3abMOuaBGqowWorC8yy5g74E1fdf1+3TBHbr+RWw40ZI0amX21Zs55ww9lHu3+tVnOlC0DADRkmZYq1vxdgz3H156rK9YlZqcnypp1yyw2sk3FHFtL2XuyUO3zeTHWy55HbG+XPVc12Yxme/6u8T4Y28qesSxOd7S5heZAukk2oz/ddbttd3GMiXxm3/bJ5NDeu6OvuZz4L1FrZ2SvO6bvOc+VB2sAeB+77ecEg3jeBODI8TbOb2I7xH/tvDL143GMdyOcp+zncstycY7zYh66cQ0hTndbDzEr3T5GQFgNOc75BrfxeLzalcyYAYlyz93qdBt3J971hTh/ovdZ3BZu7bKPkWSvM5Xjuf18at83RF759fbyxLL8jpPkdh7zk91vLGdk4YttBeB6fWff98RtaoxHZWTqG+dMt8+J+BmId01qv551W14kfp7s88YjbkNj2yUa40dkzytPpxs3D0StGkJUlxHTFdTEQqhTg4hpMmK6jJjW8HeKMZ6ZMbZZw78qQrZtJP7NAwCRPf/GNAUx3RkOMLrDT45pzPCnZE3f2dPM7s8VUV1BZbTEPAbsiJZge30JdtYXoqq+EDt2lEKrUyCHFRTskBGobsjvL9ilQ6nXIcd0BMIaZn/w5yyvScsi9jddMfNktOlcnOUW+bd7cxiPnfA+AGDt2rWoqKjIcouotWOkDxERERERERERERFRHmCHPxERERERERERERFRHmCGPxEREREREREREbUIGmRoOXSPci61lVoHZvhTUsRMteE4GYVS82SqSYoCuW0ZpE4dUb1fOSJlCiJtJNR0A2JtNGhFGlCoQgmp0LWGwVKUgAZJ1qHIGlRNhq5J+GnEs3HruXbDEEtuv5j1KWYHi1mjUV1BrRpEcE8WZttArWuWvFuWrFhW1Z5sU6McY3lxDAEv8fL/DWJGrTFPWAv5rsctX9U+v1v+rVvGq51XZq89C1asR8yLtWfaepWf7Uz1VLP53d5LP/MlW09rZM+7NvajWzou9V2GkUMMeGdxE7V29vFeRF455H7md6vDK+ffGOslUTa923m0WIm4lmcpZ88yxUoEBXIUxXLDMmEthHotiF2xIrgRc/XtmeWJzsuWclzGDwhrIcSE+QK28ow2iudPP8eteFnt4jnX7/krUT3JLOvnGsKL+N57jXXgd2yDarXQLMsoz21MpnjrJ65LdazQvG4DGt474z33e85KJh87mTEbEi1j36726zWv98h+vWzwWt5tHq/3q14Luo6z5fdaymtMEK8c/3QyxgoT2xDTFHNcsZiuODL4Q7L1uj2qKaiKFlqy/MXXA5JqGZ+MKFtacq6/cX4PqyFUxQqxua4MW2tLUFVbiKptpUBYgVInoWCHhEC4IcO/3Yp6BHfUQq6sgV65E/+pfCrbq9GiiP1Nv595Ss5l+D9xwrsAmOFPLQO/giIiIiIiIiIiIiIiygOM9CEiIiIiIiIiIqIWQdUlqLqU7Wb4lkttbU3mzp2b7Sa4GjhwINq2bZvROtjhT0RERERERERERER5Y/To0ZCklvdlzH//+18cffTRGa2DHf6UMqWsDHK9DF1VoauZy6mWFAVyaSmk0hLoARlKvY5gjQZJkwFIiBXKiJbKiBUHEGsfAwo0AIAWVQCpcYgKSdbR5+OLIMk6Vox5xlLHeatHAwC6FFahWImgVKmLm9EalFUEYc0cNl4PqyGE1ZD5PKYpCMiqIyffyDKtVRvyWIuUxuxcez6+Wya/pW1a4pzVqK4gqipmhnCxHEGnUJVrLqmYjy/WWyo3jmlQHSs019OYP6yGHNmsYg5rtVZorpc4PoJb/WK99lxhsX1BSQVka66/ffnmzlEXM1XFXNk7Ov3gmDdRLmUy6+GWQdvU/GSxjFzKo/dab3tmv5F1bXB7jxLxyut9oLIXtkTKHBncbjnGLWWcCSI/xM+R23FZ5LZP23PfxWXEc0oqn4egpCKouC9XHIg4ponHg/Ce87H9uOt1XWDk3ydSLEdQLEfM401YDZnn/oCsolYNIWqM3aOr5ngBgDVvvjpW6DkWQlBSAa0xx788UNOwLVUVu2JFZo6/8a+Y5W8sY7wv9XAfm8CopzRQZ5k/qimWcXS8zj/GNK8xG8R5jPOncXxsSvZ/MmMTGGGnQVjHUqiOFVrGSBDLqlYbxmAS8/oBoG2gFuXBGgQlFWEtZL5/0Kx12bldfxrLiuMx3NEl+fNVMhKNlQE4s/cBWN4z832Qne+D8R4b146AM5vfi/je2Oe3v0/Xl69yLeOByl64vnwVHqjsZeZwx6tP/AwY7WyOvH43d3T6AVO2DMA9nRcDaBxLyNiO4vgRBrf9qixQZ+b+u40hRtQc3P4WmtRuTRZakjzjOmB7pBQ/7eqEqvpChOtCiEQCQESGHJGg1DXk9wergVCNhuDOekhRFSgMQerUMctrQNR6tKTha5vrCwhm+BMRERERERERERFR3mkJd/k3dxt4hz8RERERERERERG1CJouQcuhXPxcamtrdcEFF6B3795Zq//2229v1vrY4U9EREREREREREREeWnChAkZz82P5/bbb2/Wu/zZ4U8p0yMRaJHMp0Lpqgp11y5g1y4AQNHmjkAgAMRiQLu2iO3VBrWdC1DbXkFd+wC0EKCFADUEQNahBQCtWIMe0iCFVEiyjv0/vwAAoMgafjzyeWwKt0FhIAYAqA0GUaQUoViOoDxY48gptWe0GtyyfUsDdZaMXzH/M6orqFYLzWxXt6xMI380Kluz4A2lgTpLTqqR2WlnHxPAKKc6Vtg4j5B5Kq6zWJ742BjHwC1r1WiPmIlslqE25PdWo7Bx/WyZvm7PgcacXPv2cct7zmb2qNieRPmuk9qtwQOVvXyXLWYjx8u5TjXv2K3clprjas+JjtdOt3EVCuQoiuWIZ/Z4U1y7YcieMhuOkY92/9r3sonGdSDKNrd8ZzF33SCeT0RGlr1XZnY9go5lxaxvIz/bOL/a6/A6h4nnQTFPPCipKA5YM/bNcTZcxoaJlztfGS1pLFdWLTnaRjZ/UFIRDNSa5/DKaIllHcSxBIplxTXX3BhbwCvj3sgkD6shS26//dxqjO8jrpfRbnFbGvnxtWg8T7hdV4jc2izWbR9vR5xujMXgta3t5dlfE4/z4vaJOx7SntfEMYjcrkXs58ZSpQ5RXfFcX/O92HOtJ+b42+uwbwezLFlFVFVQpETM3HYvxjkkExnY4rWm8f7f0nGp+fqNmwear4njXniNi3VLx6WYuq1/4/62ZzwIAI4xr9zKAazvdTJj4hjZ/sa/9hx8Y/ofNw0C0HBdf0enH8zs/3SZuq2/ZRv6JY45tCVS1nA9YztWiNfYbmOTlAdrPMuv14LmexPWQuZyhkT7IZEbv9e4uXAtHNZC+LW2A3ZFi7AzUoTtNSWoiwQRiyjQogqkiAQ5IkGOAEoEkFUduiyhtmsx5KgOOaZBqW2Zf2MRUX5ghj8RERERERERERERUR7gHf5ERERERERERETUIui6DE3PnXuU9Rxqa2uj63qLGLQXaN62sMOfiIiIiIiIiIiIiPLGjBkzzMcHHnhgFlvS/G2RdF3XM14L5Y1169ahR48eAICRodMRiraM74zkoiLIe3VArKIjom2C0IISImUK1BAQK5JQ1x6IFQNqoQ49oEMv1IACDXJQRWlpHQqDMYQCMexVVIOyYB2CsooiOYqA3JgDauRfGhmYYiaukZspcstl9cpdFzPqjaxSI5vXPm+8TFIjJ9aeoxvWGjJ8o7qMoKShSIlYcpBFbsvbc1SjuoK2gVpLPquXpuaie42hAADlwRrX7OLmYM9CNSSTmXvCsrEIyBoCkobSYD3aBmsRlDTHflcaqLM898quT8d28Fqvlshr33Kb7jbWhZh/21LlQoYptT72Y5DXeaNUqXNdTlzGPiaOmd++5/xkPw7Fy883yhWJY8V4LW9MF7OuxTFxxHMgYB0/x96G6lih2fbqWKHrmD/i9YO9DUFJNccPqteC2BUrcixXFqhFUFZRHvDO3zbaJK6z21gmYha7uZxLfr9Yjtv1g/GaeB0jrrcxLpJXW+zb2ou9TrE8+xgS8ZZ3uwar14Ku4xLZ5/dzbnTLure8Lkw3PidubQKQVF68eM4wrkem7+xp2d5eYwslOt/Yr1XdzqF/3DTIzIe3r5fbWEGAdf3+uGmQ5ZrayLa/cfNAAP5y46dsGeB63RrTFEzrNs8x/707+iIoqQm38/SdPV3HXfJ7rTSp3RrLNha3R2W0BLVqCFFdRmzP9ICkIihprm2+cv3h5nwA0MblmGSwj/fldrx1I84rHsvu77LQ1/oSxZPL17fi+WZVuCO21JViZ10Rtu0qhRqToUUVoF6GXCtDikqQNCAQlqDUAUodUFipI1CrQ6nXEKjVMGvmX7K9Si2K2N808f3TUdq5OMst8q96cxjPnPwmAGDt2rWoqKjIboOo1WsZvbVERERERERERETU6qmQoKJlxLD4kUttpdaBIVNERERERERERERERHmAHf5ERERERERERERERHmAGf6UFDFTbfigG1ASLYBUXQdoKhBsyE3VK3dC21UFXW3+/G+ltBRS2zLo5W1Q37VNQ3tkCdFSBdESCdESCZFSIFyhQStWIYU0lJTVoTAURVEwiq7Fu1EcaMgODUgqipSomSVaqtRZ8mHFbGF7Hq5XtriRyx+UVFSrhQirIdSqIQRkaw7t7lghamIhlAQiKJKj2Ltom5kNHNZCZj5qeaDGNbfWnq1fGStBVFPMZcuDNSiWI45ljexaI0/XmF9krFvbQC0K5Ibt48YouzJaYq67PW/YKyfZMo/m3JZe4yU0NXPeaK99jIBk8nMTOeq730LVZKi6BEXSocgaCgNRdCnejbbBWnQI1qA86J3LbM/CFaeliz232V5/c2f7x1tX4zXxPZq6rb91nj37kJg3PGXLAMe0liyXs06zScywBpxZ5JQa8dwhHqPFY7NxfvDKgTeWN86DACznQmNeI39aXFZsh/iv13nYyJw32iWWY5yDjLFuygK1KA3Umec2Y139HvvEfPKwFrK8ZpzDY5pijv9jjNEitl9cB/t4Bn7GzbFfk6RKXBexnXZu29Pts+a2rva8f/t7HZRVy5gC4nsZt+2a8zwmbktxDAm39bCf/7z2IT/5517zxVvW4Hb9YWTJ25/HO09EdSXpaxkjq178rNvHs4jqiiVX3zi32j838caccBv7yFgX+2t+s/yNXH4Alus6IP576TUOU1PPwYnOPevry80M/4b5NMc84vFRPDa6Xcd7XZv7aaPB7e8IAI7xFUTG+2+4o9MP5rYLayFzLAB7+VFdQa0aQlWsEFXRQtSpAby33wdJrwPlvly53hX/zl1bW45N4TZYX9kO0boAdM0W66JLQK0CKSJBqZMQ2ikhEAYCdUCgVsc3z1yfnZVoocT+pgve/03OZfj/6+Q3ADDDn1oGZvgTERERERERERFRi6DpgKbnTi6+xlupqYVhpA8RERERERERERERUR7gHf5ERERERERERERERE2wcOFC3HDDDQAASZLw8ccfZ6UdzPCnpIiZagdceAsKitsBGmBETcqqDiUChKpUBGpVKLUN+YxSTIVSVQd93Uao1dXN1l45FIIUCkHvtw+i7QoQKQsg0kbGrj4Som01aEUa5NIoCgqjKC6MoFNJNQqVGMqCdShSIihSopb8UZFbPqz43J61a5+vVg2hVguiJhZCnRpETJMRkDUEJA3b6opREylATX0IiqyhrKgORYEoArKGdqFaM9vfyBq2jytgZHoa4wQAjeMH2HM9xVxOe24xYM03FhnZw8VyBJWxEjOHuUOo2hxDIKyFzAz/qK4gpikoUiKuef5G+WKGsZGzK25v8X0oVRrzgFPN5LZn5U7ZMiAtue59Z01EQWEUstyQ0x8MqGhfFEahEkOhEkNxIIIiJbKn7RrKArUJc5ozmdvvVk9ltMQ1Kzne2A3prN94LGa+JsrtzXe5km3a3MTxQOJ9fo1MaoM905rbN7F4GfHGeDdey4nHNvE9s2fVG8TzAeDM3xez+41zHeDv+ChmjIvtE8+VYS1kGWegSIkgKKnoFKpKWL5bXVsiZWb7xDF9xDaIY8kYYwgZ7OPzuNXjNS6O21gLRia7uM0BuI7NIM5jfw+qY4WNbdyT0+823oz9/TTqMMY1iOqymV0e2NNGcRvY9w23bH/7NhK3idfr9vOMUZa4DcT18hpvoLltiZS5ZtEbx7V7d/S1bHO3zHU/pu/s6diORp0A8Jf2KxzL3Lh5oDk2x7Ru81zLM4jbTxx3RRyXwCtb36u9xmdXvH41xs4ISiru6bwYU7YMsFx3iW1yWyex/GSI+5jBfr1dGS0xPwdVsUJEtIZrZqDhs1ASiJhjiwHOY4h9LC+g8f1JZvwR+3OjTPH4aoxvZdTrNb6ZWKY4v8HtXGA8F8cOMR5viZS1+mvA1iAT12FeYwk15dhtnNOXVnXBttoSRFQF0VjD/6rWEKKhyA3nM1WTocZkaDEZekSBVK1AqZMgRyTIEWDZ7dc1ZfXyjtjfdN57v0Fp55Ist8i/6s01eH4sM/wJ+Pjjj3HccccBaOjwV7MwvinAO/yJiIiIiIiIiIiohdB0GZqeOynkudRWah24RxIRERERERERERER5YG03uHfu3fvdBaXFpIk4bnnnsORRx6Z7aYQEREREREREREREWVMWjv8V69eDUmS0JKGBZAkCbW1tdluRl6qqdBRX9b4XNIASZOg1AFyJAA5FmjI89+tQ4noUOqL0QZAYNduaDt3QWuu9yUUhFxVCyPZUgsEEdopIRCWoRbKiJTLqC0Koq44hLKCOgQkDRFNQVBWAETNfEpo3lXYMwBjmoJaPWhm0UZ1GTFdwa5IEerUAKqjIWyvKUFdJAhdk6BpErRYww9udE0CYjIQkwBNAjSgqrAUUkiFHNBQUlyPwmAMbQtrsXdpJaK6YuYJi+0ISirKAzWeecqGUqUOUKyZmWJZpUodorICxKwZiGEthHCkIW+0LFCL8mANuhdUmssbmZ7GMsVyBJ0KrbnH9kxFoCH/08gvBoqc21p3jqnQlAxGe4Z3Kvn9py0/AQBQHQ2hsrYY0ZiCjuXV6FBcg71LdgjtbNgfjHEMSpU633mS9vkyyajD2K+as26xnmQye/Nda82Wt+975vEYDRnLU7f1t8yf6PNrfN4fqOwVN7/fbd9rre+BwX68tue+G8/NY79mzYMGYMlQD0p7HgdUyxgu9hxqUb0WRD0axw5wGzNHzOYXs+fFNgVlFaVyHezZ1vbzYLEcQbHcMOZMZazEsZ5iLrc4foG4DSx5+Xtyt92y+MXxCMT5jLF4orqCsBpq2G5C/rdBzCw32iO+R+K1gNE+I6feK8vfnH/PPAZH2QHrdYbxPtn3AXt+t1FOKepcxw2wM94vY38Ja6GG98hlXCB7+8NaCEFddWSMA3ve51DEso+L2weAOR6R8bqYB+82HoOjDbrz82Cf5idXWmxjebDGnD+qK5Zj2gOVvRrao6iOY12yJrVbgylbBph1i5+dqK6YYwWIYwTEy1pfXdfRbLf4eTDKqo4VmsfyVK4DxOx/oOG60RhPwGi3ce4Q93/xc2mMIeBVvjFPPMZn0qgHaDhH3bh5YNwxAkTHLBkHACgMNIz/FNNklAbrURKImOsEQBgTyrrvuO3vXuzzBSXVPM7Y/5awj8Ei1mcsG9ZC2BIpMz8rnUJVZh2N1/nOnH9xvzZeN46LxrgLQOpjUlDLZv/8NpU4zkSi47R9OYN9fvGzXajE0LGoBtXREOqUINSgDFWXAMDM8gcATZOgajI0TUJdKISYKkOPSpA0KR2rSUTkKiMZ/pLUMg5cLemLByIiIiIiIiIiIopPhwQNLaNv0Q89h9pKrUPGBu3t1KkTCgsLM1V8Qr/++mvW6iYiIiIiIiIiIiKi7FIU568tM6klpN9krMP/+eefx9FHH52p4hOSZbnF/NKAiIiIiIiIiIiIiJpXc3e+t4T+6Ix1+FP+i7WPAe2j0Pdk20taQ+a8XN/wvxSTIMeAaLEEJSIhUAcUbitFUNUghWuBZsjw1yIRYEcEiqpBrm+DUH0JlJpCSFoR6trJiJQBkTIJCOgoLI4gqimI6TLq1CBimoKaWEM+ZkhWURaoQ0DIlK1VG7L7gpKGoKKaWX8xTUFUb8jsq9WCWB9ui92RAtRGgwjXhRCLKQ05fjsKEKhSEKwG5AgQDANGRKYuA3qg4V8tAKiFCrRAEGohUNUphJqyCFRdQsfCmj1tCZn5mMVyQw6tkTcrZl4XyxGUBhqzUu0Zw8Z6GK+LmYflwZqEmYf2/OOGrMSQmfm/vr7ckttbrwURVkOoVUPoEKo2sxWLlQjCe7JJjaxcAAjIjdsZGhrGFtgj2Xz5VHJhD/zyPLQpqkcoEENRIIqA3LDzFyoxBCQNpcF69CnbjiI5ao5rYM+HFv8F4Mhh9tJc+fkiYx8wstJTyb4UM1iNLGpjH2D+qn/pzjTNpmTGhHDLFBanxcvtjsct0zrRMcF+fDOWsWf/G9nP+fJ+GdzeL/OYZs9q35OZLi5rjIUjnnMA61gARjniPuK1v8TLRHfbb7AnSjeshhCEd856tVponp/EfGoxp93Onv8tZl+b20huPA97MTPSA9aM/2KlMUfbfkwFGsczMOsXxhOwbw9xDIZ6LejI3zdeE98Xt3EV4o21YDDKNt5HI7fbOAdENcUcn8D4bNvHB6iOFZrnol2xIscYC8a+ZIyxYN+HAKA8WINyqcZybWMfa0K8LhG3w/9n787j5Kjr/PG/6uwzM5kcMyEnE8IRjQai3DeICIoHh4IuoOC17A8P4AG4btAN+pW4SwTjseIqCqgoCOuyrhwLyCEikSMSCEiSyZ3JZDI9R591/v6o+dRU13TP9Mz0dM9kXs/HI4/0Uf2pT1XXNZ/ufr3FehR55f76HIhm9h8vQCvKMA//P6iGQaA/4enK1fcpl/OvSTbWdi8cVIegWufZ0dQ3KuXa9hUABvL7b5q1Eas6lw7UWeh/fHXXEgDwr0HFa4aqR/DF3Uf7t0WtpIhsoknNDKpxIFy161gAgOUqiMkmYooBTbIrWt7hzhkrO5aVbGeo+gZhj7/toUGPrUm1Ahh4j4XgflPptWWlxHYZ3P40yYYpF/dB/O0hpmtUcwP7h6P5+40m24CDgeOA4/0tkAPQa3n1u2KK4f9do0m2X2+skmMPUZh/fJdRdM4pZ9i/efvPu6psQ3VlRFVr4FrI8XL8nUA+v8jvtx0ZWtQCACiyA8uq7TeOJxvblfyaCJPBZOrrVDURBuFriQP+RERERERERERERHTAqtU3/SfChwtVH/B3XXdCLBgwsfpCRERERERERERERLUzY8YMpFIpAMC0adOwfv36cRsvfvbZZ3HppZeOS9sjUdUB/1NOOcVfYU1NTdVselL3hYiIiIiIiIiIiIhq65hjjsHDDz8MAEin07AsC0uWLBmXeW3atGlc2h2pqg74//GPf6xmc2MykfpyoFJiFuSoBdeR4NoyvEhcF44OONMAWBJgSTCTMmRDgpoFXDkGrTWKaNdMJDbug9vZBTeXA/orZruGAdeufla53dMD9PRASSahNjYgLjdDciJwZQWyIcHJKsghhv0AetUoNNWGrtiYFcsgqljQ+zNiLT8b1guh1CQvwz3n583L2JWdjrytIt2f25/JRmDmNCCjILZbgeYAkgNIFqD3ApE+B3qPDT1lQDa9+Thaf56fLMHRZZhJFUaDgnyTBGuaDFvV0KdGkU5GAACqZqNBziFtRdHhNMByFDSoOS/HV84jbXk5v35WfyBL1nQVmLZ3W+Tmi2matAziquHn7wPFdQCEcBaueEz8n7M15GwdXYU4VNmBKjlo1HNQJRua5ECVbew3koHXFq/fYO2EYM6vuC/mUy5vMZinPdLs/lM2fBi2I8N2ZMxp7EVSM5DUCmjUctAkBzHFKJp3MOe5VG5ycBnCwnUTKs3LH28iXxfAQP5qmX6Fs5GDec1NagZJJT9kBi8NNhWy4EdjPNbLcMeJcK62yOsPEvdLtXEgvJeaZCPr6EU5yuJ47B+31IHjsnhNkOkq6DAa/HOnGjrH+ucvJV+cnd6f91wqvx8oPv4G5+3nTiv2kHUfRFa06SpF58O4YiCp5P3c/B4rBsvxsnvjslGUnV2K6SpIW9GijPJK6k9okl2UXx5cj+K2yMAX8wGAOIyiGjfh7PwgcX0AYNBzwEA+ffC8H1z/4XN/UPA8pkk20tJAHn8wW72oFkH/v1J9CZ7/Re63ZSn+9lNUQyFUc0HMt2hdSDaSat5fBvGeB9dt0bxDfQrn/5c675faDkstU6nHRyNcRyJ8zCl1XFqTaoUm2aOqbTQSqzqXIi5715S9VtTPshc5/s1qb9EyiHUXzPEvdcwVbp+7ruh6JWvryNo6bmgp/0f3D+b9BYC3DsSxptzxZaSqVfcgaG33wpK1QmqhXE2dYB9EzYvhrhGztu7vo0klD80ufWwP1iMT/4tjLx04yl0bBff1sVw/Ba8Bxqqo1o5jI6d510KWI0OTbdiO94eS+NtR5PiLrP6iXP9gMRgqyXFlOO7kWU+Tqa9TUXDAHwDWrVs3bgP+EwW3SCIiIiIiIiIiIiI64BxzzDEABrL1161bV8/u1AQH/ImIiIiIiIiIiIjogCMG/IUXXnihTj2pHQ74ExEREREREREREdEBZ9asWWhtbQUAuK6LV155BY7j1LlX46uqGf40hUkuoLqQZO8fALj9GXVOVIFjyHBiEmRLhq1LsCIqHK0ZWnomZNOB2pOHvLMDThrAOOX4A4CdTgPpNJSmaYgqEmRTg+SoMJMyjAYZ+VkKckkbiRlZQAc6c152ZFIvIKvrZTMj87aGvK0ib6nYn0kgl9dhGQrcrAq1W0Ek79UwmLbDRSRlQe8xobyxDXZXamAVKopXy0BRvE/ibBuubUMBoL7zcGjpKJSCDjMpo5CTYeRlbJJnYXoih6RewH49iZmRNCzXy7/tNBJ+HvLMSBoxxUSjnCvKXTYdxc9QBuDnESfVfFEmZ1w2cHC003tNf/5mMOtU5Bla/fMV6wMA8paKvKXBsBVk8zo01ct3jmn9ucSyDVV2kNQMqJKDuGqgQc0jphh+vm6wL1lH97KQRdauUj7nXvRrddcSFBwNN83aOPQGEvKht85GUyQHAH5uf0N/jnGwX8HM0XCWcinl+lsqD3W8DZUxPJr+hOs5iPZvbX6puh0/wB0IWe/1MFQGf/C5ofJi13YvLPl8uf22kozsyUDsq+XyxMPHtGDesjgm+tnnoYz/Uq8LnntEG416DhHZ9I8hHXZDcf0T1/bz2UVWdFHutoNBWeqiXkCvFYMq22jWe4esj+I/p8Ffhohs+sc2AGhUc/6yAAM5+OVy8oVS59fwfEXGuciaz9k6TFeGJjmYqaf97H/TVfy6KEXrN5B7HjxHx2XDz5oX8zNdpageQaM8sP57rFhxB60S6ypQUyG4LYhs7rjs1bjxz9vOwHuetqIoyF42e3hbatIyft0DsU6D73mpWgLhdRm8VgnWOYjLBpq0jL+O0lbUqxeh5ovWGzBQEyKc8R9m2sqgWgdjqcFTjTon5epnhI9XYl/N2jpWdjT4226l10tf3H20f+0Y3L5KzTsim97+6XjTr+xY5k0Xro0Q2NdEewVHQwHe+7Cqc6mX+x7aDjTJLqoLoXnFxbAm1Vpx7SCx3VzbvgK3zplY1y2T4bpguG3XP85Fio+BSSUPhHbn4PVksE4W4G0XwfUxWc+7NEC8h8H3tRrb/FiPp8Hzm2hPnMM1yUZMicHqry1huTJU2YHlyNAdBWlEYFoKTGvg9bLs+jn+cv+YCZXnQILjSsNPOEE4mDx9naqOPvpotLV51wS5XA6vvvoqli9fXvX5NDU14dRTT616uyPFAX8iIiIiIiIiIiIiOiB9/etfxyWXXOLfb2lpGZf5rFixAk8++eS4tD0SHPAnIiIiIiIiIiIiogPSEUccgSOOOKLe3aiZCTHgv3//fjz++ON46aWXsGPHDvT09CCXy8F1R/YzJ0mS8Pjjj49TL4mIiIiIiIiIiGg8uZAmVUyOO4n6SlNDXQf8d+zYgeuvvx4PPvggTNMc/gVDcF0XksQdrJZk1YGq23Adyc+icx0JkuxCDmb56zZsS4ZjycjbOrS0BEcFYl0SZNOBvqsHzs7dsHK5mvXd3vAmlFgMiRlN0Be3wGjUYCZl5Dtl5GbJyKanIdNoITYtj4juBdfmLA2249W5th0Zht2fUd6fzec6Esy8Cqlbg5KVEckCei/Q2GZBy9hQ+wwou/bDTWfg5nKwjeL8Src/s1+QdR3KjCYgFoVreq+P2S4cLYJClwwrriDf1YC98WnYo3s1FKAHio4oLmTNhqrbmJ7IIaEXEFUtRBULLdFexBQTlqP42cAxZSDXNpjXXCojN5wN3GdFkbF0L8M/H0fe0pAzNZiWglxWh+tIXk0HS0a2v4uS5vVPUR2oqo2IbkFXbCiyg6RegCo7iCoWooqJWXoGDWrOzz6O64af0Zq2o36/gtnEQTfM2FTRdnHVrmOhSU7/csuYF+/ub88pyqgVso5eMvc+uN6qkcU7lHCu5EiF+zva9sTr0lYUNzdvwI17l+OWlvUj7s9UVs983rFuRxPNUOtytM9VY94TnXjvh9sGCo7mH/8b1VxRnrY/DQZy4EUuuybZMOWBfHRB5J+L/P24OnCM77Fi/nHWb6N/3ikzUdR+uWz8Zr0XzXrviNaFn9vu6IjLCpJqvnTdALEMgWOo5g5kzmuSXZRdP9S6LdoPZRtwAFO2ofZnkfdYMT+PPlynIFxbJlhjZqh6BaI+T1BcHpyXL7LeizL7+8/nogYAAP89AoAOo8E/T8YVA/O0lJ+pH14fZn8Gcg7F59YmLeNnzIttQbwuWHfCf7w/R15kwIv872BthWA+fFLJF2WFF9UjcG1/2wzOM2frfp0h0WZ4upEYVB8jtExjMdT7D3jvdVw2KsrsF8e24LYwU08PqiMRnl+p/TVYMwEorr1hugogo6gOiLi+C2+X4fkU3e/ff7O2jmvbVwDw6m+E63yI9prUjF8jAwBu3LvcrzWiyt70weuaVZ1LYToKbm7eMPSKG8ba7oUVZdAP917WUrWvGUptM8DAfiX2s1LvHTB0/R6a+CbK+xasP1RqWwvXhsnZelHNvKRqwHJlWI4My5WhyTby/eMHYtzAcSR/PIGIaLzVbcD/0UcfxUUXXYR0Ou1/k58D9kREREREREREREREo1OXAf/XXnsN559/PrLZLABvoN913RFH+BARERERERERERERkacuA/7XXXcdstms/41+SZLw0Y9+FB/72Mdw5JFHorm5GfF4vB5doxFIxgpQov0/GbcGx74Iiuz95jtvaCg0yICiwJVlWLH+X3Rkc4Bd+5+ouoYBpysFdWYjAECyVRgJGVoacHQZtqHhtff+BIsfvRLdAFxTgmTIkCwJkgvIBQlKXoKSByJ5QHKAuANEUy7UnAM1ayOyPw/59TbY6TRcANYI+ucYBpx9Az+1V5JJaNOSmN6egJOMwE5GkGuOwExIsGLeTwOl/vfBlQFHB6woYMWBzplxdES8yB8lbmJacgZimonp0RyWJDsxU0/DdBSkrWhRH8RPF0X0D1Acb+P9tF1DjxFD3laRt1X0FqLI5nUYhgrHkuFmVcCQIRsS1KwE2QLgeP2zoy7MuANTdZFTXUB1IMkuVN2GrluI6iZimoluPQZVcqDKDubHuhFTiqMK4orh//Qy2PeCo1X0M/VPbT/ZWzbZxkwt40cCiJ9yDvcTz1LCUTnhx0sZTQzQaH5KHYyeED/L12QbkFEyEmMk7ZqugmvbV0yYn51PdOXiX8I/bx5rTIx4bwqOVjISge/X6AwXsVAqEm2irWsRNzPccS34XFLJF8WmBKPVRCRGRDYRl71jSzDyQ0R2iFiXYFRPeH5JJV+0vaashB+7EnzdeKxTsRzBiBexDwHe+UKD7S9H8NgpllmcP9JW1O9zykkMioMLnmsBoEHNee3LNhrlnB9nEmxHxMmIyIuso3sXGerAOk5b0f5IIqMo7mcofmSBFS06F6bMRNE5Khj9F1OMoggjfx1qGTRhICJFxKYEY3REu3HZAOTi6A5BRO8EY3wKjgY4JaJAnOJtK6nmi/oavs4R8VFi2YPLV2rdAAPxLkXbtjJ4OrFflLo+Cb//4lwMoKKImOA5YbhIvqGOU+I1qzqX+utNTN+s9xat8yDxnoh5hfeTMNFe+PlwFKO43orI5qD1FiT2ofCyBGOANNlGHP0RV/3XiaX2gaIYp0BkVLPeO6jN1V1L/Otf0Xfx2HCCUUhiuxSC72cwAkz0ZbyOc6M1lmtP8fpS2wkwEJlW9Nr+69Thzreru5ZUHONJE4uIthLXv7WMRxSRY739MYTe37nFEXvBY1UBmj9dQu3/m7R/mzUcBZbk3Z6u5/znRfRt3laRNnU/6oeG5riA406eFBCH31+mCabmA/579+7Fo48+6n+rv7GxEQ899BBOOumkWneFiIiIiIiIiIiIiOiAUfMB/6effroos/+2227jYD8RERERERERERERVcX27QO/nJ8zZw50XR9i6gOrLzX/HdGePXv824lEAh//+Mdr3QUiIiIiIiIiIiIiOkAdfPDBaG1tRWtrK5599tkp1Zeaf8M/k/GyPCVJwiGHHAJN04Z5BU1U85K90BqAvK2iJx/zH7eHyFkzdA1OXoGjAsY0Cdk5OiS7BVo8BuetzbXodhFJUYCd7VC3OVBtG1HDgHRYK7IHNyJ9kIp33P6PiKleJr6WBtQ8IBuAWnCh99rQMjaUnA0lXYCUMwDTgpvqhpNOw7VtuACqlbhpp9NAOu33W1EUJAHIM2cAjdPgJCJwNAWQJbiKBEeX4cpevn9hugIrJsNIKrDiGnpmRZGK29gbt9A3O4KD4n2YGUljUWw/NMlG2o6ix4qhPd8Ay1FgueU/G7QcGZYre/87MrJ5Hfms7mf3q1kvu1/JA5FuQM25UAwXti7Bikkw4wpcGXBVwNb7aw9Mc5BRgIzqwlUdKHELqm4jHjVgOTJmRLJoUPOYqaeLMvWDOayVZnjeuHc5WiK9gzJuC46GAjS//bhanM9aad7+eOfxj0Ywo1aTbECp3rybtIzf9ppUK65paqtKuwcikU9aKh98ddcSaJKNa5raqpJjKt7r0dZoqDTjejII1kcY67qt5v5fLyPto+kqfsayyLUVudSmq6DHihW36QCmrBTlyot2hA6jwc9ED+Zsi9z+rK0X5Z43aRk/R3u8Bc8v4eUWmfRDicsG4vrg80epvPVwXjiAoixrTbYBJ9S//seCdRCC6zkuG34WeTirvNR779dYcHRY1kBmfVz2cvpFn0TNgZhi+FnvweULrqtgtn+wRoDoS87WgUAdgGCmvZhGZLADKMq7D2Yri+c0DD6Xi7aKlh8D50LIA+van6a/noDpKINy1U1XARwg5SQG9UHMF0DZa5Tg7ZSZwC0t6we9F0MJHsfWpFr926WufVZ3LfFvl6qVAaCotsKg5QwJXkOEl0U8HtwGRY2g8POlaJINTSlfQyFc7yB8zBDvNQAk1XzZ3P5gm8HrlPB52Z+uTIZ8sM6AyAEXrw3XGInLRtFxq9y6HUstpZEqV/ehmu2L9yyYgR7en4CB/VrkqAtq/36oufZAzSmg6HgQxBz/yUfsdyO5JhvqfBb+G61cHavg9t+s9/rnSqC4NlHW1pG1deRs3a/hEqy7A3i1bBrUvD8/y1HQoObQpGWKjodZR0efFS3K/KfyHFeGM8Q4xEQzmfo61biu69eQrbda9qXmW+TMmTP926pal5rBRERERERERERERHQAmyiD/UBt+1LzAf/ly5cD8D7V2LlzZ61nT0RERERERERERER0QKr5V+yPOeYYzJ8/Hzt37kRHRwdee+01vP3tb691N4iIiIiIiIiIiGiCcVwJzhBx0RPNZOrrVLV+/fq6J83UMtKn5ksqSRJuuOEGXH311QCAb3/72/j5z39e625QFcyK9CEa8zbUHj3v57inCjHYzsCPRzIFHaaleFmweQVKXoKaBfQ+F9H9FpR0ASgUat5/17a9XPwAdd5cIGcgsSmF2C4NheYE7IgE2XShpS0oWRNypgBkc3DaO+AYXs5mrVOaXduGa3tzdfa0A3vaAQByLAZJ1yHpmj9dNBJBbMFsmI0R2BEZVkxGtlmGmZRhJjXs7NWxMz4DetxEc2MfpukFdOdjyJkasnkdruO9x6pqQ+v/ZzsyCoYKTbUhyy50xYbtSrAd2cvvT2uQszL0bgkN21wohgPZBLS0DaVgQ87bgOzVGXA0GXbE648rS3BUwIrJXp6/Cji6V3fA1oHuBhuFOSqmxQqYGc8ASS8zUWQ/A8BNszZWvB6vbV/h3y7KebQHMoOD2bvi+bB65HSHsyvDwlmW5fpYSd8rrVcABLJU5crrKEwV4WzSYAazsKpzKYCB3GlxP5gTHCbeH5GRO5p8fbE9lXptMPvU13+InwwZ9WGlMmKvnr69KrUSJoqR7LOjeQ8jsuln94cz+YPtBXPXw5nezWqvv00Fs8ODWedpK1qU52xBARTDf10wJ73audellkcs92hrWJTKrQ7n7mcdHY1qzl+mrKMX7XtJNT/o+C7WscjND5+ntuZnDeSIB96TYBvBfdx0FD9LPfyagqP5y6HKdslzkSZ5uf1QBnLNs45etN6K6hEEagOknIT/fHBZTVdBh+HVFRKZ3sH3PJjr7q/bQK0FKAPLGtxuRH81yQZUFNUWgOO1Ed5ehfB6FNtuuC+a4mWWi/6LugdiWk2ysapzKSKyOarz5nC1ckSbpY5xpa5tyuX8l3qteC64zGKbiMuGX8Mh3E44WzvYVvC58PSi3kJENtFhNAAOcOuc4uu+L+4+2ttGLPi5+5XWdyp1XhaC6y+4LQf3gSYt42/vu/NNaFBzSKr5om1V9KdULYORHLuD8w6vu1LTBZU6z4cN14ehXhPMQQ/uCxHZLPk6cewTxD5uOQM56RYUxPV0UU0QMc9a1HOhiaHscWEIYn8N/k0n6gOJvyGD9XhMVyk+hotp+uuUBc8FWVsvmsZ/nTxw3hKZ/mK7nhGquUNEteG6Lq677rq69kGSJLiuW7P51aWqxFVXXYUzzjgDruvinnvuwZ133lmPbhARERERERERERHRAUoMttfzX63VZcBfkiQ8+OCDOOmkk+C6Lj7zmc/g2muvRSqVqkd3iIiIiIiIiIiIiOgAUq8B91L9qKWqRvrcddddI5r+sssuw+7du7Flyxbcdttt+NGPfoT3vOc9ePe7343m5mZEo9ER9+Gyyy4b8WuIiIiIiIiIiIio/hxIcDB5cvEnU1+nkq997Wv17kJJixcvHvd5SG4VP2KQZXnUxQdEN8ZavMC2J1+e8GSyc+dOLFiwAADw+UfOxbSWuJ9LJ7zR24yefAx5U4XtyMj0xICcAsmQEOmSoaYBvRdo/ksK0p59sLtSfh79RCPrXi6fyOqfrCTFe3/kZBLSQc3Itk6HFVdgxSTkZkqw4oAdBWwdcFUXrgxAceFKgNR/hHA0F67uQNIChwzJhSR7911HAlwJUo/aX6dBgpoGpu1yoGYdqDkHkb0ZSN19cHv64PavU0nXITVNh7lghteOIsHRZDiqBEeTYCYVZGd7fSzMcBFd0ovmaX2YE+/Dgpj3qyCRg3hz84aK18nKjmVIqnn/vmgjmIEczC0O5q+OJmN1qOnD+Y3hHGbRj4Kj+Vm4YrqsrfvPl8s0TdsDH54Gp6uk/1dP3441qVY/I3hV59IR1UmY6tZ2L/RzaYPZoeFM/OHW6equJSUzysN5w2tSrf68xiK8TYYzold2LPOniytG0XY5WXL9K81qHspIjwUHiuA23GPFBh17RHZ6+LgZzPEHBjLtm/XeokxskVuftXXk7IG8+Ga9t+pZ/UFZRy+qMxDMrQcwpvx+0X6prHmgOIs7eEwP15ARr886OuKy4Z/HgtnzYp8U0wdzioO588G+iDo44fmWy3Yvl7Mu1qHpKmjSMv77FdxmsrZedO04sz+XOzyPUutM9DMoIpv+PHO2jphioEnL+K8LZpyLaQRRB0jUCwgfm8Xrc7YOVbZLbn9FtQIC75PoW7l1UNSG5G3fQx2XqkWcJ4LzDhvqvS81rVjXwcx+8Vy53HxxnA2fE0VGu+kq/vWQJtsjvvZYk2oddM4d7fXLUOcE0f5w9QGC672SawAxz/A2sbZ7oV93Rjy3umtJ2WNT+L0UwrVARB0g8Vy5toL/h48V4ZouwfkOdR0d7KM4HwTrdgjBul3hLP/gfl6L/Yiqq5LrrmCdh1LnIyG4z4e3k+D1Rfjx4HafVPODziHiWB+uWSL6EMzwL1efw582MO9vvvOBYZd9KgmON73vwUsRb07WuUeVy3ak8fBH7gYA7NixA/Pnz69zj2iqG5eivSP5DEEM8IcH+kfaRi0rHRMRERERERERERERTTRVH/Af6Q8GqvEDg4mQxUREREREREREREREVE9VHfC/8847q9kcERERERERERERTSGuK8FxJ0+KhzuJ+kpTQ1Uz/OnAF8xU++oTp2D2QRpMV8EbmYOwK9uIjkwS+/c1+Jn9SlZGpAtQ84BiANEuB1raRmR/HvKmnXB6eidsfv+BTp09C+5Bs5E+pAGOKsGOSDCmSbB1wFEBVwYc3fvfVb3HBFcG7LgDAJAsCUp+4OSmpQElD2hZQCm40PtcqFkbiuFA35uGlOqD05WCk8v5r5EUBXIsBqmxAYjH4DTEvPkoEgozo0gdpsFMAlYcMOcXcFBLN949aweWxPf6bYis10ryWW/cu7woAxQYyH8M50NWK5s7mE86XJvBvPQb9y7HvEiqKPuxVK6uyE4OZuAGny+Vnw3Azy0W02iSPSivnUYunB0s1rtY3yNdxyLDf7S5tCs7lqFJywAYPou5VNbvcNnEYh7hOhrBjOaJmHNfjRz/8VaNOgGVrv+hMrvFsTGY8xy8Xyq/PJjpHczkLld7pNR8a10nITi/4P4brOtSro5AMIc/mL0fPg4H67GUWr7h6r0E5xGed1Awf1i0G8zANx3FrwEQzq8X710w01v8H8zVD9ceSCp5P3c9eD4NL1ep4wzg5XyLY1VwuvB2Vq6NYD9F31Jmwq8Z0KDmivL6O4yGonmL58R2KtoK9ilITBesA1CqP8F+iMeD09fyvBs8LgeVe08AFOXNi/chXKsgnOMfXhfh4+3KjmVFtSOAwduI2M7Fa4O59UMRbYv9tdKc/VKGOxcM15+13QsH1SmotJZApcsbfk09iP1J1LsIv//BuljBmiNi3xS1N4TgNgegKEs9qeaHrediugqvZyew0Wyn4WPUUOdKcR4S20qp412p85h4znIUqPLA+SRYT03UoSlXvyh8HEtbUWQd3W8zeP42XQXfXn7fiNfFgSw43nT2A5chNoky/HMdaTxy/l0AmOFPE4Nc7w4QEREREREREREREdHYjUvRXiIiIiIiIiIiIqKRciZZpM9k6itNDfyGPxERERERERERERHRAaAu3/BfvHgxAECSJNxzzz04/vjjR93Wc889h3/4h3/w29u8eXNV+kjDy9oRvJqei725adjROx29vTE4vToSWxWoWUC2AMkCot0O9F4besrL7be7UnABTLw056nF7kpBtm1MyxlwGmKwpunIzdZhxSRYMQmOCliOl9cPAJLj1WFQ+iMzbd17QrYANedCcrxp1JwL2XQgmy7UnA2tKwepNwu3txd2V6pkX1zbhp1OA+k0JEWBMu8gODMb4MQjcBUJatarIeDogBa1MD2aw9zoQFuV5JtetetY/3ZM8TJEk3IeKTPh5yrGFANxJZAJ2r/s1ciOHi6fuVT+8o17lwNAUcZwOCM4mAEJoChbu2Q/SuRLBrOm03a03EtphEabt1/KaHKHg25u3oBr21cgLhto1ntx9fTtg/JTg5mnIlfZdMpnOpeaR1gwdzmcYdykls7ErqXRZsjWsh5BtY8/YeVyu0tl5ZquMugYEzye+P8r/duPPLiNpJL3XyPaTJkJf5pwNnOtaz8Mua769wfRv2AuezDHHvLAc6Xa0+SB/HNRz6CS802pDOJgxj2AonWrSTagDFGbIfTWa5INyF5bIts/LOvog5bLPw85ClLOQE59XDaKzjnB/V9kIFuBY4wqe/UBsoWB7HyRmxzOhA/WVgiue02xi7ZHTbIRjwxkuKetqP+eaZKNRnWgnpDpDNRbCZ+TxTYaXB5N8m6L7aLgaEVfpQqvoyYtU5QbHa6pUyvlzk1rUq1+/8J1OYL7fXC5RKa1uF0um35t98KiPPpr21d4TzhiiljJPOy4avivH87KjmX+bdNVcPOsDVjZsQxpjH49lzpPiu2ikvPy6q4l/nLFZWPE5/LRXEeUOr/XgtjG44pRsgZI0furDa4BIWpn9Fgx/zXB3P/wNljqXFyu3hXVXzW2yUqvBzTJRpOaKaoTIf4XefrhWjvhc4EpDezrOVv3a1MEz1mQi7ft8LVN+G8qURMgeByxRnCdTUQ0UnUZ8N+6dSsAb4A+FyjcORq5XK6oPSIiIiIiIiIiIiKiqahuGf4cnCciIiIiIiIiIqIgZvgTjQ0z/ImIiIiIiIiIiIiIDgB1+4Z/tZhmIM9P0+rYk6nnwU3L4SZmAlkVkQ4F0Tyg5IHkHgda2oGWtqD2GZDadjG3fwJybdvL1O9KQZnRBG1uMwpNGmRL8mov9Lloemob3FwOmD8H3cumQ3JcSDYgWy70Xguy4UCyXcBxITkOJNP27veTerOwtm4bsh9yLAY5mYDbMhOQZbiKhPysOKyYDCsuozBNRmEGYEcBWwfiUQPN0TTisjGifM4GNe9lMDoaAO+4kbaiaNIyaEIGaTuKrK0jaw9kB4czg8eqXHY/AFzT1IbVXUtQcDSs6lzq5Z/2Z9g2qRk/N1lkJ2uy7WVMBtZBMOu03LxFtra4H8xYF88Hc3ZpdK5paqt3Fwa5dc5LRffLvcc37l2OXiPm37997rqqzN/P0w7ks09GpTKDa50zH8yjDefnj1Sp5QnneIfnEc7FDfcrOL2fnW5HSx6fNMlGs95bUV9L1RUYT6L9pJpHh9EA01UQh4FdhaZByyry6pPKQPZ9sCZM8Hwi8v17rZif6SvaCk4TnEc4AzvcR5F1Hn4umJNdyTlNPJ+2on4tj4hs+udIAGjSvPobBUcDnOJc+7QdDeSyB+qAyAPrwd9++nOSc7aOBjXn12/oMBqQdbyMf9NR/DbC211cNvzznt/v/szk4PsgHvdrMCiG/3zR+xjYvII5/8H3JHhsBLxM5lL7SPh28DFNsZFGdNBy1ZtYjnDOfDDb33SUonota7sXFi1nueuH4GPXtq/w6yaFjymCmMdIcr+D/RI1kILXSre0rK+4LcDL3wcG1stI36e13QuLrlVreV1Vrxz/uGxUdI73txl5oP4I0H986N8vtDLHRkEcI4PbprhvOQpm6mms6lxatq4EVV9wmwtv78H7tdo2w3VfwvfjioGk7J0XxTk+Z2v9r3WKzs+COOaLNoJ1ZILnzeDfaKJdq/+c5h37nP7n+P1bIho/k/4Is2fPHv/2tGnT6tgTIiIiIiIiIiIiIqL6mfTf8P+f//kfAF5NgIULa/9NBiIiIiIiIiIiIqoOZvgTjc24Dfhv317Zzxb37t1b8bQA4Loustks2tracP/99+PBBx/0n1uxYsWI+0lEREREREREREREdCCQXNd1h59s5GRZhiSV/oQrOMty01RKtCVJEh5++GGcddZZY2qPhrZz504sWLAAAHDwDTchpkyHkgcSe12oOQdK3kG0Iwd5fx+cvR1wcrk695gqISkKJEUBlP58UtuG2/9P1nXIcw9C7vBmKAUbct6GXDAhbdkFu6enan1QGhshNU2H05SAnYzAjiqwIzIcTULPwQqyc124c/N416IdeHvDbjSpmYryUG/cu9zPvBdMR/Ezh+OygayjF+V/Al7Gb5OaGfNyBTNfS2XVhrP0K7GyY5mfFR3MyAbgZ++WyscMZhWX6kNwmomYQU+TUz1yhCtVyX5Xqv9ZZ6DWR7lM9GCuq5g2/Hypx8fbcDUHgpnIQjAjvdT0APzc5mBmrWgjIptF9UdEln/weXFfHJcnMr8ugeXlxQfPJ8HlT5kJAAOZ8UOtQ5GRb7oKGtWcnzFfrvZLOF9+tMshBM8LpWolhLcJYOB9Cz8vthex/EBxzj8wkKkfXpakmkfaiiLr6LD6s7xFZrKoHSCInH0A/rSCyF6OywaSan5QxneQqL8QrjFRKre94GjI2jpyto6YYgy6Vgi2P9T6Cr5v1ch2X9W51Jt//3oI5tkPZ6jc7fA8wvunmH5NqtV/rJLrh9VdS/x1UFQvob9uUTXz7q9tH/hCWLiWDVD+HFVqWxHCdQ5KCbdbywz/4Lzrea4J19QI1yUJ1jNpUHNo0jIV1UsIH6/EsTip5kser5jjX1ti+yu1zQf3/Vpuk2J/3p1vKqq9Io79aStatH0Gr/PC7YTPTUK5OhOWo6DTSMByFKiyjYRqYG9uGtKmDtNR8Ox7vj2eiz7pBMebTr/vU4g1J+vco8rlOtJ48qI7AQA7duzA/Pnz69wjmurGPdJnuM8TxvJ5gyRJkCQJruvirLPO4mA/ERERERERERHRJOYCcDB5YnLG5ZvURGMwqYv2uq4LVVVxxRVX4P777693d4iIiIiIiIiIiIiI6mbcvuF/+eWXl33u5z//uR/lc9ZZZ+Gggw6quF1ZlpFIJDBjxgy8/e1vx2mnnYbZs2ePub9ERERERERERERERABgmiZ6enqQy+VGlVKzcGF9Im7HLcN/KMF8/8ceewxnnHFGrbtAoxTMVDv6vf+MmNoI2XIR3dED9PTBzeYg6ZqX/57LM8N/khKZ/iLHvxbU2bOAmU2wpsdRmBWBFZORmSMj1wwU5piQNBeyZuPkQzbjiOQeAJVlqF7bvsLP/hW5s8FcRpH9mXV0aJKNuOJNI7KGx5ovGczLDmeSimzTkWaLigx/YCCvV9wXbZXKbw3m6oq833BmcdqK+nmWlaxfokrVM8u/GtnJ4ZxrkVk93DGiVC56+NgyVF5xPXKXg/nHIvdcZCuH+11pnYKUlSg6XiWVvD+fiGwW5S1XWj9F1F+pZ+6/6AOAQcs30vdOZF6LdkQeda23gXLC23L43Ja2oui1Yn5+fqm+B+vpBLPw/ecDbeZsvaiteGA6UYsHKK4BIeoghOctzmvhej1+P0PvWXA/CL8fwcz58DKJawdRkyGuGEWPBaer5jm20hz+0RLXDENdr4ykD2LacP2KcB72SGoRlPPF3Uf7t1XZHpTjX8m5Kbg9jOSarVTbtczyD6r0nDWUcvWfyhHX1uJae7hjWvgYONSxNPieiH1M1AQQ/SxVs4FqI7iPA97fIGtSrXU5n5XaVgAUHacBlKzzEj7PBevFqPLgZSl3bReXDew1GrC5dya275sBO6tB7lOg9ch4c+WXq7i0k19wvOm0+z6FaPO0OveocvmOPvyRGf4HhFQqhXvuuQd/+MMf8NJLL2Hfvn2jbkuSJFiWVcXeVW7cM/zLcV13zAV7iYiIiIiIiIiI6MDhuBIcd/KMGU6mvlJ5t912G1auXIlsNgtgbHVn660uA/533nmnf/vtb397PbpARERERERERERERFPc5z//efz4xz/2B/klSYIkSZN20L/mA/5vvfUWenp6/Pv79+9HS0tLrbtBRERERERERERERFPYz3/+c9xxxx0A4A/yu66LpqYmvOMd70BzczMSiUSdezkyNR/wf/jhh/HlL3s5ZZIkYfPmzbXuAlVJ5NFXEI1MBwBYRn2yc6n65FgM8owmuE3TIO/vgbO/C06V319JUaDMaAJ0HXAc78FkAk7My0GWTReIAbIFyAYgR21Ma8ihIZYHAGzLzexvafj824OjnYMeC2Y9p+1oUd5vMBc4mOM42hzlcB5tuRzJSq3qXApN9vopspI1yQac4hzhIJGdurJjGUxXwS0t68tm0N64dzmylo64rPh5r6arMM+fRkVkuNYrs7ia/Qi+VuwbwboY5eYr9j9gIEc8rFT2fbkM2UqOGZVOV4o41g2ViR88jg2VVa9JNrKO7ufk+q+3Ff9YG8zfD+b4DzVv8X8l04+3uGz4x3ZhNPn9gLe+mtSMX++g4GiIqyM//4bf/+D7Jd4HTbKRVPP+uh9qmyk6R/ZnZIs2gIGc7Wa9F816rz+/DqNh0HZs2griioGkkvfee6V4+fx6Dg4AxRg0D1+o7IXIxw/W4QkL5vGHc5nF9OE6BRHZHHSubtIGakyEc/6Def/hWhSibgVQWQ2i4dSyLkolufVXT99ecZ82ZVv86xfxT6xXsV9HZBOru5YU1V24pWX9iPseC2xH4ZoAlfY32M9Khduu93lQ7COjPT4BQ9dpKTe92EdEHZjhBOs5iHNFqex//7Zc/P7EI/ybdCIQ27uo/yH+B8a2DY5G+LpGbLdJJV+yL1lHH1SrJfi6YG0Z01VgOQpU2UbO1tBlJ2D0nwc68wmkjQhypoZMNgLLUOCmNUR3K4inAb0XiO+rT643EQ120003ARgY7F++fDluueUWnHXWWZBluc69G52aD/in02n/5xDz5s3DokWLat0FIiIiIiIiIiIimoAcTLIMf0yevlKxl19+GTt27PDrzJ5wwgl47LHHEIvF6tyzsan5xxSzZ88G4H1qMnfu3FrPnoiIiIiIiIiIiIimuFdeeQXAQIHe733ve5N+sB+ow4B/cJA/mOVPRERERERERERERFQL+/bt82/PnTsXRx55ZP06U0U1j/Q57rjjoGkaTNPE1q1bkclkJl3hAxpQ7Wx3qj8nl4OzKwfsGt/5uLbt/egtmYCTjMDVFLiyDCeqwEwqKDTI6I+9xuyZfThr7hto0jLDZmZXQuQjB3OJBZETGszdFo8L1cidNB0vlzScJ1sJkW+qyjZunfPSoOfXpFqhSfagvNgb9y4ftu1gPu6qzqX+erq2fQWs/kzKmXq6ojxfIpHpPJKs6XCG9lBZ8vUg8vtH4ubmDbhx7/Ki7PpwvndQuazoSo89tcjG1SQbmjJ0bYFB+e3imCuXzoEWx7Zgrn9wGj87PvT6tBVFGtGSOc+1UEndg5FoUjN+Dn7KSvgZ8sPlZwfXdykipz5r6+i1Yt77oQ9kEZcTzs1u0jJF9RMisumdM+1oUd59o5obyLYP9DVr6+ixYv79uGL4rzNdBVlb9x8vla+cshJ+LQLx2rCivP7+WhHiX3AaOAO3CxhYpvB8S9XU8Ptfwfsu3k/x2tVdS5C2osg6esnz+GjUOyM+aG33wiH7c/vcdVjdtQSAt/+K/VvUlhCC12GAd12SVPIVXwveuHf5wLlEMbC6awlumLHJv04aTyOpaVAL4rqt2n0K7vfhderX4FAGaliJx4M1QUx3oLaHqAMiao6I2+J8I4j20lYUvf3HE1EXolnvLfv+vv/v5+D3h/2hquuAygv+vSD2+XK1H8ZSf2g0hrpuCdaDSVtR/5wktkkxbXu+Ad1GDHlLRcaIIFPQkc9rcCwZblYFLAmSJUHrlRHNA0oeiO9zoeZcqDkHkc5CzZZ3MnLcSRbpM4n6SsVElI8kSZg3b16de1M9Nf+G/4wZM3D22WcDAAzDwP3331/rLhARERERERERERHRFLZw4cCH4el0uo49qa66lBr+yle+4n+C8tWvfrXo5xNEREREREREREREROPphBNOAOBl+G/duhXGAZJkUpcB/+OPPx7f+ta34Lou9uzZgzPOOAMbNzIegoiIiIiIiIiIiIjG34IFC3D66acDAHK5HP7whwMj+k1yRRniOrjjjjvw5S9/GblcDrqu4+KLL8bFF1+MY445BjNmzKhXt2gIO3fuxIIFCwAAJ+FcRKV4nXtEk5mkKJB0HVIsCsyfAzsZgTlNQ36mitxMCblmwJhlY+nSHViS7CybWT+UUlmluwpNyNk6VNn2M4ZFFmijmvOnC2b9hjN7RyOYAZy2oyPOwRdZtCJL//a560pOJzIyNcmuSs2DsOGyeYlKEfvicDnjYptd1bnUz3IX+2fB0UpmeleqHttt8BgUzH0dzTGl1Lob6rUjnX48ZR3dvy3y1UW2eqXZ9x1GQ1EdgGDWfdryMvwnWs2HkQpu68Gs4Lhs+DUKgIGaCEKpLOS0HUXW1tGkZYrWS9bR/fz4Zr13VOusVH0G0e+i6Rxl0LSabBfV0Qm3WarOQ1j4/CxywEV7wRz4oPD6GyqbPyi4/ZZbX8H9W6yHcH0BkV0erEMgllfsC5Uep8plsV89fTvWpFrH5fxfbaJWUPD9ErU6AC9HO1iLIank/e06WHNIuLZ9BRrVnH9sSNtR9FgxaJJdcnqg8kx78f6OZr2G51Hva6hq5fiLdRys1SHqaoj9pNR+MdLzePD4IuoFpMwEso6OnK1hfyEJy5VhObL//yNH/H5QO+//+zkAwAz/OlrbvbDktclo6zaF2xrrNY6o8wYAvVYMnUYCeVtDg5ZHrD/Xf3PfLKSNCGxHRqovDjOnAQW5KK9f7wYi3YBiupAtQEvb0HstqD15yLn+80I2B2fffjySuWtMfT7QBMebjrv3M4jOnlbnHlUuv68Pz1/8YwDAjh07MH/+/Dr3iEZi3bp1OOGEE+A4DpYuXYq//vWviEajw79wAqt50V4AWLx48UAHVK8LhmHg7rvvxt133w0ASCaTaGhogKZpJdsoRZIkbN68ubqdJSIiIiIiIiIiIqIDztFHH41bb70VX/rSl7Bx40ZccMEFuPfeezFt2uT50CmsLgP+W7duhSRJcF0XkiT5ef7BHxv09fWhr69vRO2KdoiIiIiIiIiIiIiIhvOFL3wBkUgEX/ziF/Hwww/jne98J77yla/goosuQlNTU727N2J1GfAXwgP0Yxmwr2MyERERERERERERERFNMmeccYZ/e/bs2di1axe2bduGf/zHf8RVV12Fgw8+GM3NzSOO+ZEkCY8//ni1u1uRugz4L1y4kN/GJyJIug45mQAapsFRJMDxPrgzpkkoTAeM6Q60GXksSXZibjQFYCDvVeTpiqzGctmsV0/fPihDW5NsxPV0cbau42XFBjOhRc40ADRpmTHnQorXjya79ca9y/024qpRNp8YANJW1M+0vLZ9BQDAcpSymf+VqlbmK1EwixcYyLUO7huixoXY7gqONmzdi+A2Wu+MZCHcjzWpVgADx6JSx5VS+ejDvWYopfLdyz1XTUWZ7IHliMimn8M8kvlrsg04/XnqzkAOtCbZ0DR7RMfYiXY8yzp6UW0DAH4Wtng8bUX9rHdRt0DcBwbeS7GdRGTTfx3UgWzkuGwgrpfPoa9kOwtn7wff2yDRfwB+Vrsm2TBlpehcFWw3XIsh2H65/SWp5ovyvYPPlcrTD7c33D4itt9S8xeZz+G6A6ajIGvr/jKJNtJ2FEkl76+brO1tz0MZyfYqphXHmmCfJ8pxUdhvJGG6MvabCcQU7/0RdYrUwPoU+3ywroW4vrl1zku4ce9yaJJXlymp5P1txnQG3rMb9y4vea0o1smaVGvF2/xIBa9FJ8J7IPowVJ+G2+aK9sv+9yope9em4XUVzPkP1iIJtiX+D18bBF/rXft7NRlytg7TlZGzdWzpmYFsXoftyLAtGXZBxeK3PgMA2HLej7HkyU9CUR3ougXTUnD43svw5snMTa+mkdT3KnX+EHVlNMkeVHem0raGI7YzUfMlZ+voNBKwHAWWK6O7EEVvIQrTUmA7MhyneLzKshRv+8qqkAwZsilBzsmIZgElD0S7gFiXDS1tQDYdqH0GpIIJKWfA2d0OJ5eDg2EP9xTkSnDdSTRuOJn6SoP88Y9/LBqnDibRuK6LLVu2oK1tZHV8RKpNvdQt0oeIiIiIiIiIiIiIaKKZzF9Wr2ukDxERERERERERERFRvRxoUfEc8CciIiIiIiIiIiKiKcdxDrzALck90D7CoHG1c+dOLFiwAABwEs5FVIrXuUc0magHzQGSCcBxYG/dDte2ISmK9++IQ2A1RmE0auhboCI3C8g3O9DnZPGppX/2sxxFznHW1nFLy3qs7Fjm5z/eOuelsvMul0VaKhs4nCEKoOIsyVLti/zRm5s3jKqNIJExK7KEa5UFK7KAAdR0vnTgWdu9sGRu91TdpsLHJnHMCGbch49TQ2XWhl8vXlNLpfKYxTE0uCzCaOoSAN75QOTAN+u9uKap8lzNiZbhL963rK0jrhh+fQIh6+hImQlvXYWy4sPrFxj+PQ/vb2K/FH0IziecvT3SzORSfRLzydk6YopR9FypugRpO1q0rKarIGUm/HmUWmeV9C28rwWfCxKZz6LWT3DbK1UTQ+RQB68rwusg2AeRTd+o5tCkZgZlrI/UZDmefnH30f5tkdkflwfqFJW7Lgtnu4vpg3UwxLQ3zNhUUV9Gs67DNS8my3qvxFDXzYIm2f51efA4FJ4++P6VOoaIulyizeD/wTbSVtS/32tFsTffgLSpY3dPI3JZHY4lQ5JduLYM5BQoaRl2gw1EB9qKJQuQZW/4I5jRrqk2Xjn63orXDxUrtb0MtT8Ea2YE/1aqRs000aa4fuowGgB49dge3H4kujMxuI4Ey1DgGgpgSZDyMlx1YFhMNge2DTknQ3IA2QIkC1AM73/ZAtQsoBZcKIaL2D4T+r4spEwesB2gUIDT3QMnlxuyr4859415eQ8kwfGmY371OURmT6tzjypX2NeHFy75EQBgx44dmD9/fp17RFOdXO8OEBERERERERERERHR2E3oAf90Oo09e/YgnU7XuytERERERERERERERBPahMnw7+vrwy9/+Us8/fTTeP7557Fjxw7Y9sDPuRRFwcKFC3Hcccfh1FNPxSWXXIJkMlnHHhNV7pHd63H23OX+/+WmEcpNM1GJWB7XtuHa5X+Gae1pL3qNMqMJUtN0uIkosGUHtBnTUThyLvoOdmHFXSBuIx41in4iHJe9+0klj9VdSwB4P9u0HGXQ/IKCPysN/uy0VEyGJtl+ZIC4HyZ+Kjoc8VP9armmqQ2rOpf6P/+/tn3WkFFG1STiMiZaFAZNLmJfXJNq9fexkUSxHGiunr4dq7uW+FEUwEB0ymjXyxd3H10UjxH+iXypCJJqE/MoFTcTJOYvYiFG8pP+uGxA04rjH0odn4IRQ6ONDyonZSX8Y7yIewnOV0RZABgyckaTbDSpGSSVfMnn47IBTbeLpi/XzlBKRSyIdSa2txv3Lvf6bnvr6+bmDf40pqsg6+gVr8fgdMH3QZzDVNl7Pqnmi7YTce4U20JENv31KNoRMS7h+YQFI0eGmzbYXlCz3lu0/CLOJ2fr6DQS/nSz9Awa1ByatExRX8VtcT94XZNU8kV9M10Fq7uW+PElfp9ku+w2FFy3k8ntc9dhVedS/77peOsXlvf+BqOcxLEk6+h+/IdYp6apFG9n/TG8wWjGajuQ4ntKCcdKiW0rGG8ltscCNKStKDRt8L5VKi4rfF/s2wCQshP+88GoJnFfPDcvksKSeAcAYNO0ZuzKTkdnLgHDVpDqTsBVHLgNLpDWIHd6x2hHd5EDoEUtxKIGtECEi+NIOHLdxYz1GaWrp28f8d8H4XOkJtsVx9IN1db6nvnY1deIvlwEhbwGO6tCyShQMjK0NCCrgB0FIgYgG4DkALaOoq/CKnnvOdkC9D4XigHIpgvZciHZLiQH/v9q1oKaysLZuKlo/IrGznElOK40/IQTxGTqK00NdR/wz2az+Jd/+Rf853/+JzIZ7+K4VFkBy7KwZcsWtLW14Ve/+hWuu+46fOYzn8HNN9+MWCxW624TEREREREREREREU0odR3wX79+PS666CJs3rzZH+SXJAmSNPQnY67roq+vD9/5znfw0EMP4Te/+Q2WL59c34gmIiIiIiIiIiIioonFdV08+uijfhLN9u3bkUql0NfXh2nTpqGpqQmLFi3yk2jOOuusene5SN0G/N9880285z3vwf79+wF4A/2u6/oD/9OmTcPMmTORSCSQyWSwf/9+9PX1+a8X07/11ls466yz8Kc//QmHHnpoXZaFiIiIiIiIiIiIiCYv13Wxdu1a3Hbbbdi2bVvR40JXVxe6urqwZcsWPPnkk/jWt76Fgw8+GF/+8pfxT//0T8N+kb0WJLdUfs44M00Ty5Ytw1tvveWvBNd1cdxxx+GKK67AmWeeidbW1kGva2trwxNPPIGf/vSn+POf/1z02sMPPxyvvvoqVHX8P8PYunVryf6NRFtbGw4++OAhp3n55Zfx05/+FE8++SR27twJ27Yxb948nHDCCbj88stx6qmnjqkPo7Fz504sWLAAAHASzkVUite8DxNZMKM/fBtAyeeCz5cz0TP9lWWHw4nrUFJZODt3A7YNxxjIp5V1HVAUSLqXoSklE7AWNQOOd/hxNRl9i6IoNEowk0BmvgM0mEg05LGwKYX3Nb9Wcr4ir1Hk3IqMXWB0WZLjQWQHA0DW1nFLy9DvdSXWpAYff2qZgb4m1QpNsg/4/FqiA8XqriVF+dbBeiUTSTDjfKL2cTTEclW7fsBQxuv4vLJj2aBc+ma9tyiTvhIdRgOAgVz6IJHbDngZ7OEaAEHltpORZtmXq3EhMqFFFnzaiqLXisF0ZViuArX/dZarwHQUzNAzaFRzRf0OLpfInRfzDNYhKNUXkekf7MdQ+0Y4y1/UAhE1j26YsQlrUq3+NYO4ntAk269HkbN13D53XcXrrhrEdYWo3yDqmWQd3avb1F/jIet415EFR/PrQIj+BwXz5Ue6L4zk2nGqXgcFc/1TplfDQrxHweM4MJDhL95boHw9k6yjo8No8N9zUddF669JI7b/Uq9NWQn0WDF0GQls7p0Jw1JhuxJMS4Gm2lh31H0ll2XFix8D4GX4C8zxH53g3ydpO4qbZm0sev7Gvcv9v4NWdS71j6viffbPk7JdVNdEKHf+TFkJ3Lf5KOSyOhxLhtKhQ81Kfg6/25/Nr+aBRLsDNedANvv/BpUBR5OgFFxIjgtXlmBHvPuy5fjzUDIW1O4s3I5OwPD65uRy3t+2ob97R+oxp/S2OVUFx5ve9Yt/RGT2tDr3qHKFfX148RM/BADs2LED8+fPr+n8Ozo68POf/xyPP/44NmzYgK6uLjiOg6amJhxxxBE4+eST8alPfWrEY5lPP/00fvazn+G5557Drl27oCgK5s+fj9NPPx1XXHEFjjrqqHFaovrYsWMHPv7xj+O5554rGuAfagA/PN2JJ56IX/ziF/62XC/y8JNU3/e//31/sN91XUybNg333nsvnnvuOXz6058uuwG2trbiyiuvxJ/+9Cf85je/QUNDg//c3//+d3z/+9+v1SKMiaqqaGxsLPu8aZq47rrr8K53vQvf+9738Nprr6GnpwfpdBpvvvkm7rzzTpx22mm49NJLi371QERERERERERERFPDbbfdhoMPPhjXX389HnnkEezatQu5XA6FQgHt7e344x//iJtvvhmHHnoorr/+epjm8EXt+/r6cOmll+LUU0/FnXfeiTfffBPpdBo9PT147bXX8L3vfQ/vete7cN1111XU3mTQ3t6O0047zR/sD0bOi0QaSZIQj8cHpdSIaV3XxbPPPoszzjgDe/furefi1CfS5wc/+IG/IuLxOJ544gmsWLFiRG1ceOGFWLJkCU466STkcjm4rovvf//7+OIXvzhOvR4Qi8Vw9tlnVzy94zh47LHH/Ptnn302mpqayk5/5ZVX4u677/bvx+NxvO1tb4Oqqnj99dfR2+t9i/mee+7B7t278cgjj9Tklw1ERERERERERERUfzfeeCNWr15d9NjcuXOxZMkSSJKEtrY2bN/u/SLNtm3827/9G9ra2vCb3/ym7LfWLcvChz70ITz55JP+Yw0NDXj7298OwzDw+uuv++Owt956K/bt24ef//zn47eQNeC6Lj70oQ+hra2taPB+wYIFuPTSS3HmmWdi+fLlmDFjhv+arq4urF+/Hk888QTuvvtubN++3X/d5s2b8eEPfxh//vOf67ZMNf+G/1tvvYVNmzYB8D4B+dd//dcRD/YLRx55JL7+9a/7n6hs3rwZb731VtX6Wk5LSwsefvjhiv9dd911Ra+//PLLy7b9wx/+sGiw/7Of/Sx27tyJdevW4c9//jN2796Nf/mXf/Gff+KJJ/DVr361+gtJREREREREREREE86zzz5bNNh/2GGH4Y9//CN27dqFp556Cn/84x+xbds2rFu3rmjc9f777x9ygP6rX/1q0WD/ypUrsWfPHjz33HP461//ih07duDTn/60//xdd92FH/7wh1Veutq6++67sW7dOn/AXlVV3HLLLdi8eTO+8Y1v4PTTTy8a7AeAGTNm4PTTT8fNN9+MTZs24dvf/jY0TfM/SHnhhReKxndrreYZ/r/5zW9w8cUXAwB0XUd7ezumT58+6va6u7vR0tIC0zQhSRLuvfdeXHTRRVXqbXV84hOfwC9/+UsAQFNTE/bs2YNIJDJoukwmg8WLF6OjowMAcOmll+Kuu+4q2ebKlSvxjW98AwAQjUaxadMmzJs3b5yWYAAz/CszXCY/4OXyVzJdqddNRJKiQE4mISUTcNMZOOm099jMGUDjNNgNURRmRmFHZbiyBEcDXFmCKwNmQkLvwQBk73DkzM/j8Hl7sSTZiQY1V5TNXymRnR+RzYqyhUXmfzi7N21F/cdEJiwwulxp01XGnLV/1a5joUlepuTcaApx2ahphmww23aqZtcSTTal6n7UOhs/nC0+3HE5mM0dzmOfTLn+IuO614phpp72s8mbtMyIl6NcXjlQfDxe271wwhyfg1nfQvA9NV3Fz+xu0jIAMCjnW0ybMhPIOjosR4HpytAkB6psIy4b0GTbz58PPifmV2reAPx5AvDr7QBezZ3gawdlkgcyxcW2LJbFdBU0qjk/v7rSTPhS+ftD1SYYavspdS0jlje8TMH1KzK044rhZ2jfMGNTRf2vthv3LofpKrAcBaps++sjqXrbRTDrP5j9DRTXfhjNdddoakCJfU68djzraAg3N28Yl3kMJ7h+wselYB0GkesvHg/Xoii1DXcYDcg6elGtClHrYqg6KMH2X+udiz3ZaWiK5DAjkkXW0mG5MixHxu8OfaTsch257mLm949QcFsQdUDE8SNc/yRcp8d/jwP7bbA+x1D1Yf6n/R3oycfQnYmh0B1BcpMGvRfQMi4i3TbUnAM1Y0GybLiqAkeXIdkutH1pYH8K1r5OqPPmAtMSgO3A2bajKIdfSSbh2jacXA5KYyOkZAJQZMC0YO1pr+o6ZIZ/seB401H3/CMisxuGecXEUdjXi5f/obYZ/hdffDF+/etfAwAaGxvx+uuvY+7cuSWn7enpwfLly/0itO9+97uxbt3gmj07duzAoYceikKhAMAbe1y1alXJNi+99FLcc889ALwvRm/ZsgXx+OQcI1y+fDk2bNgA13WhaRr+67/+C+ecc86I23nkkUdw3nnnwbZtuK6Ld7zjHVi/fux1HEej5t/wF4PZkiShtbV1TIP9ADB9+nQsXrzYv1/vjKSw3t5ePPjgg/79iy++uORgPwDceeed/vqJx+O47bbbyra7cuVK/0CYz+eHnJaIiIiIiIiIiIgODM8884x/+9JLLy072A94Hwj8f//f/+fff/HFF2GUKDh9++23+4P9CxcuLEoYKTWtGODfu3cv7rzzzhEvw0Swc+dOvPrqqwC8serrrrtuVIP9gBfhft111/lJNBs2bMDOnTur1teRqPmAfzqd9m8Hi+6OxbRpA5W7M5nMEFPW3n333YdcLuffHyrO54EHHvBvf/SjHx30c5EgXdfxqU99yr8f/FCBiIiIiIiIiIiIDkz79u3zby9btmyIKQdP47ouOjs7B00THFu84ooroOt62fZmzJiBCy+8sORrJ5O//OUvALx1Issyrr766jG194UvfAGyLPvRPqL9Wqv5gP+sWbMAeCty165dVWlz9+7d/u2ZM2dWpc1qCeZiHXHEETj22GNLTtfX11f06dz73ve+YdsOfuK0efNmvPnmm2PoKRERERERERERUX25rjTp/tVaMpn0b5f6tn6Y+OY+4H2TvbGxsej5N954A1u2bPHvj3Rc8qmnnir6kvdkIZJiJEnCwQcfjDlz5oypvTlz5qC1tdX/ln+9kmjUWs8w+BOTPXv2YMOGDRV9ElXOa6+9VjTgP9RPWGpty5YtePbZZ/37Q327//XXX4dlWf79448/ftj2V6xYAV3X/R17/fr1OPzww8fQYxqpUhn8lWbsjzS/f6Jm9wuubcPu6YGUTkNOJqE0zwbiMZhzp8NMqjCTCrLNMsw44OiA2eDCibhwNBfydAOXvP2v2G8msL+QxJxor59PP1px2aj49SJnVfy/smMZNNlGk5pBXPfayDreJ9siJ3aoLOUwkVmZMhMjXo6wmVpmIGO3xvn9AHP7iSajUscpcVwaKhO52n1IWQn0WDHv+KwPHJ/LZfQH836DjwdrtIy2/5VmoY+F6KfpKmhQc/58c/35xKIuzEjOI8JQueQT6ThdSV/CeelNavGvdYPbQ87W+h9z0GtF/WzuvD3wJ01UsdCg5aHJNlTJhiUF8uxlGzlbgzVEXYjgvgF4+dJNSmbQdID3HqesBG6atRErO5aVrDkUznYPE5nnWVv388oLjoYCBvKvAfjZ1kU1CWR7yG1I7B9xvfbXC2N1S4t3nXxt+wrcOucl3Lh3uV+DwHQVf92YjuLvVyLrv9L9qhxR12kkwtOPtZZGudeL3P7VXUuwumuJ/3g9ai2U2rY1ybt+Du5Dwec0ZehjdrPe6++DoiaGaQ7UaAjuE0U58KJNGZgfT2FmJA3LVXDH/OdKzufEv50P25Hx/JH3+48xv3/khtrGV3Uu9WuDWE7xMRfywN9U8EqT+ftycNsRf38B3nu8q9CEDd0H4a2N8xDtUBDvBGa3O2h4fivctHectnt6ICne/Fzba0dRFEi6DiuQvGDtGhhDCrMDA5Z2Tw/Q01PB2iCqvWOOOQaPPOLVJnn66aeH/Wb6U0895d8+6qijkEgUj08Es+YjkUhRod9ygmOXlmXh9ddfxzHHHFNR/yeKnsA+PlTSykjMmDEDmzdvBuBFvddDzb/hf+KJJ0JVVf+nDV//+tfH1F7w9aqq4qSTThpTe9V01113+Z/oyLKMSy+9tOy0Gzdu9G/ruu7n8w8lPN0bb7wxht4SERERERERERHRRHfVVVf5tx944AE88cQTZad95ZVX8KMf/ci/f9111w2aJjguuWDBAmiaNmwfFixYUBT7MxnHJcUgv+u6fl3VsQrGLTU1NVWlzZGq+Tf8GxsbcfLJJ+PJJ58E4GU8rVq1CjfddNOI2/rmN7+J3/72t/6HB6ecckrV6gKMleu6uOuuu/z773nPezBv3ryy04tK2QAwf/58f5mGs3DhQv9To61bt464nyMtHrFnz54Rz4OIiIiIiIiIiOhAN5pxs/nz54/4NR/84Adx9dVXY+3atXAcB+eeey6uueYaXHLJJTj00EMhSRLa2trw29/+Frfccguy2SwA4Prrr8cll1wyqL3guOTChZX90k2WZcybNw9tbd6vT0czLllvwQif7du3o62tDa2traNur62tDVu3bvXHdccaETRaNR/wB4Cvfe1rePLJJyFJElzXxb/+67/ipZdewq233opDDjlk2Ndv2bIF1113HX73u9/5bUiSNKoPDcbLM88842/wwNBxPoCX4S+Ec7SGEvyAI9hGpSr5JQEREREREREREVEtuK4Epw65+KMVzPAfTaSNSAcZqe9+97tYsmQJvvGNb2Dfvn341re+hW9961slpz3iiCPwz//8z2XTR+o1LllvJ5xwQtGXrr/97W/jhz/84ajb+/a3vw1goAjwCSecMOY+jkZdBvxPOeUU/MM//APuuecef8D+oYcewv/8z//gpJNOwhlnnIF3vvOdmDVrFhKJBDKZDPbv34/169fjiSeewLPPPgvXdf2BfkmS8A//8A84+eST67E4JQWL9TY0NOAjH/nIkNNnMgN5pdFotOL5xGKxkm1QdQRz9sMZ+uUy+EeazV+Jcvn9j+xePyGy/ZXGRkjxGNxsDq5hQEom4M5shNUYRWZeBIVpMswkkJvjwmpwIDcYOOSgfYgqFpJaAY1aDs16r5d9G4iRGyonv1zm82gEs0evnr7dz0cN57EWHO8nbQVofj6syN4N3i/XV5FHOxaa7GVdimxTIqLhBDNwBZF9nLajfiZyUTb4CI+p4Rzftd0LK86cX921BGkripubN2BlxzLc3LwBa1KtiMsGTFfxXyuOycG+p+yElxndn+1dqeC0Imt/rLnfQaJui+kqiMuGn8sOAKrsnSuytu7XISgnZXknxYhs1qVuSy1UukxrUgrmRVJIWQnsN5IwHAWWK0OVHCxKdKHHjCFtRpC3VeTtJFTJgSo7/f976ziherUj1P51nrN1xBTv/QG887wGe9A+EX6Pgn1e2bHMr/0jphvJ+3RNUxvWdi/0c8/TdtTPss7213sQ7TZpGX+/CO67YcH+TtZtZk2qFdc0teHWOS8B8PapXYUmf/9PqvmB98n1suFFln/KTKBJ8/4uGk2W/kjz+ytpRxwPTVdB2vL+1gvWYBB9XN21xK9BtapzKQD4x4lrmtqwJjXwjUNxTInIZtFxdLyF1+fV07djTap12OOnqFXh16IK1THJOjo6jIai/U5kupuugjgGpg/X1hLTa5KNRjUHy/G2hXL+9M4HsOLFj+HIdRcDAHo6kpAMGVs+csfoVgoNctOsgWiQa9u9HHDLUWC6MkxbhuUqMB0FMcWAFjhOi/dTnJd3FZrQZSTw9+7Z2N+XgJHRMeMVBQ3bTUQ6c5Dbuwbl8Yvs/uB9N5DfT3Sg+cIXvoAjjzwSn/3sZ/Hmm2+WnKalpQVXX301LrjggrLtTNVxydmzZ+OYY47BCy+8ANd1cccdd+DYY4/FJz/5yRG3dffdd+OOO+7wP0A4+uijMXv27Cr3uDJ1GfAHgJ/85CfYs2cPHn/8cX9FOI6DZ555Bs8888yQrw0O9Luui7POOgs/+clPatHtimSzWdx3333+/Y9+9KNFO0Appjlwwa6qlb8twWkrqcodtmPHjhFNv2fPnklXgIOIiIiIiIiIiGi8vfDCCzjooINqMq/t27fjyiuvxP/93//5j82fPx+LFy+G67rYsmULdu3ahb179+Kf/umf8M1vfhO/+tWvcMoppwxqq17jkhPBDTfcgPPPP98fZ77yyivxyiuvYNWqVRVFx/f19eFrX/savvvd7wIYGLe+8cYbx7vrZdVtwF/TNPz+97/HV77yFdx2223+ygCG/ilLcKBflmVcc801+OY3vzmijXG8Pfjgg0U/YxkuzgcA4vG4fzufz1c8r+C04QrblRhNThgREREREREREREVO+igg2oy1rZ161acdNJJ2LVrFwDgxBNPxO233453vetdRdOtW7cOX/jCF/D8889j9+7deN/73ocnn3wSxx57bNF09RqXnAg+/OEP46yzzsJjjz3mjzmvXbsWP/3pT3H++ecPm0Tz4IMPIp1OF31B/ayzzsKHPvShui1TXUfJdV3HrbfeiksuuQRr1qzBAw88MOynQa7rQtd1XHjhhfjyl788aEOeCIJxPkuWLMFJJ5007GuSyaR/OzeCn5uJohvhNoiIiIiIiIiIiCYbF8AoY+3roh5dveyyy/zB/pNOOglPPPEENE0bNN3RRx+Np556Cqeffjqee+455HI5fOpTn8KGDRsgy7I/3VQfl7zvvvtw6qmnYv369f6gfzqdxt1334277757yNeKL66L1x155JFFyS/1MCG+Fv/ud78bv/zlL9HT04M///nP+Mtf/oJt27YhlUohnU4jmUyiqakJixYtwnHHHYfjjjtuRAUkamnXrl14/PHH/fuXXXZZRa+bOXOmf3skFb3b29tLtkFjF87iF3n545HRP9K+lJum1nn+SjIJKRYFZjbB1VUATYCmwIqosBIqjAYVvQtkmA2AMd3BQYfuw2HT92GGnsHB0c5B7YXz70XOaVLN+3mmQrVylsNE7rTpKrhhxqaKXrMm1eq/puBoftZqMNO/4GhY3bWk4jbL6bEG4sFK1QsgIgoLHndu3Lvcz5XXZLsoYzdMHNsAIG1Focm2nyUviCxnkVUdzHYOHv8q7Z/Iny6V+R9sW2SeJxXvG0VjOSdokg3IQ7chjvEA/Az14c5RzXqvn+OfMhP+42I+SXXomgFmf76x6SrosWJ+lvlUFd4mPrH1NESVgZ+eJ1QDumwja+nI2yosV0beVKHKDgBAlRx/Ok1yEFMMxBWjqI5CAdqgbRwYvO0Fs9krzUy/evr2Qdnwot2rp2/3903Rl3J1f9Z2L/Qy7Pu3/XA2fK8VK1o2kYU/mYj1FFxfB0c7i/ZDkYNfqk5SMOc+6+hY1bm0qA7GaHL9x2qo92Bt90K/DkRENv1lSip5r1aJmcAtLesH5eRripfrv7priX+cXdW5dMjjejUFr5mD5wgAfs6+6FdS8WouRGQTBUeD6Qy+ho3LRtHfB6XqdQW3gSBR16LHimFDtxejYTnyoOmCXnrXrwEAi3/3WUi6gy0fuQOLH7sCW8766QjWAg1lbfdCv96C5YjabI7/f0w2kXM0WK4COBpUyUYOGnrMGPK2hu5CFBkjgv09CURfiiPZDcS6HEx7cz+kVB+cfZ2wJml8CNFYPffcc0Vx6GvXri052C/ouo61a9f6X5reuHEj/u///g/vfe97/Wmm+rhkQ0MDnnjiCXzmM5/BAw88UFTIt9IkGtd1ccEFF+COO+7AtGnTatHtsibEgL/Q2NiI973vfXjf+95X766M2t133w3H8U5ikiRVPOB/+OGH+7f379+PbDZb9HOacoIZ/ME2iIiIiIiIiIiI6MASzOxfsGABjjzyyGFfs2LFCsyfPx87d+4EADz77LNFA/7BMcXt2yv7YDyTyaCrq6tkG5NRU1MT7r//fvz2t7/FmjVr8Oc//7no+VIfAoj/TzjhBFx77bX4yEc+UrsOD2FCDfgfCIJxPqeddhoWLVpU0euWLl1adP+VV17BCSecMORrdu3ahX379pVtg4iIiIiIiIiIaDJxIMGBNPyEE0St+yqifABvwL9SCxYs8Af8g9/MB4rHFPft24c9e/YMW3z4lVdeKdvGZHbBBRfgggsuwMaNG/HUU08Nm0Rz6qmn4ogjjqh3t4twwL+KXnjhBbzxxhv+/UqK9QqLFy/GvHnz/J322WefHXbAP/jznUgkgmOOOWaEPSYiIiIiIiIiIqLJQtd1//Zo8/bDqSLHHHMMdF33a6s+88wz+OhHPzpke8Fxyfnz52Px4sUV92UyWLp0KZYuXYrPf/7z9e7KiHHAv4qC3+5PJBK44IILKn6tJEn4wAc+gB/96EcAgF/84he4/vrrh3zNL37xC//2GWecMamLY0wEIid/qJz+euT3DyfY71qTYlG4LTNROGga7IgMKyYjN0uGGQesOGBHAXOGDSlpIhY3cHBDF+ZHU0iqgyu+h/NxhSYtA6A4PzmYgVxKMNtzNLnOI31NMJd1ddeSQf3TJBua4t0Xy2a6yqgydS1HgenK0CQHc6OpEb+eiKa2W1rW49r2FRXljo/kGCVysYPHb5G3LDKdq6lU/nY4H71Sw51ThnpNXC+fHSzy+8X0Ra+XB+YZzG0fNB/ZBhwgrjCjOOwXB/+x7HMiD99yFPT2Z70DQEwxEFNMNKo5JBWvhkJ4W6o03300GfDhmhdB8yKpitoVz4vcdpGFnlTzaNZ7ock29htJP+ffdBWs6vS+bVerbHchuJwjyc4X01zbvsJ/r4RgDYyCowHO4DoK4euyYJ2GUvUBwn0qtU2MJzG/VZ1LUXA0pB0vDz+p5P1aJeH8flE3anXXEgBARDb991fUX9Eke1zrN4TX07XtKxCXFWiyjQKKc/rTiBadC0rVPgkLHxdTVmLg9UpxDZS0HcV+I4n2fAN2pqajkNdgZ1Uc8trn/GkkF9j00R/594/4yT9CyQMJAzCmK1j84Gfh6k6FS0/lrO5a4r+34hzYrPf6dTeCjwNArxWF4XjHa8uVkTZ19ORj6Ng8E5EuGZEuYEaPi8bNOSjpAuR0Ae6evbDS6douGNEEM3fuXP/266+/XlEseDabLfqScrANAJg2bRpOP/10PPLIIwC8McfhBvx/+ctf+rfPO++8ivtP42/oSjZUMcMwcO+99/r3L7zwwhEPwAd/EfC3v/0NDz30UNlpX3rpJfzhD38o+VoiIiIiIiIiIiI68Jx88sn+7UKh4H95eCg/+MEPUCgU/PunnnrqoGk++clP+rd///vf4+WXXy7b3n//93/j1Vdf9e9zXHJimTDf8N+3bx9efPFF7NixAz09PcjlckNWQS7npptuGofeDe+hhx4qKlQxmg39+OOPx7nnnov//d//BQB87nOfw6GHHjooB2r37t34xCc+Adv2vtXwjne8Y9hP3YiIiIiIiIiIiCY615XgupMnw7/WfT3++ONx+OGH48033wQAfOUrX8Fhhx2G97///SWn/93vfoevfvWr/v1ly5bh6KOPHjTdRz/6UXzzm9/Ehg0bYNs2PvGJT+Dxxx8flOW/ceNGfO5zA7+iev/7349jjz22GotGVVLXAX/HcfDjH/8Yd9xxx6BCD6NVrwH/YJzPokWLcNppp42qne9+97t4/vnn0dXVhT179uDYY4/FVVddhZNPPhmKomDdunX43ve+h7179wIAotEofvzjHxdViiYiIiIiIiIiIqIDj6Io+M53voMPfOADcBwHhUIB5513Hj7wgQ/gwx/+MBYvXgzXdbFlyxY88MAD/heLAUBVVdx+++2Q5cGhL7Is48c//jFOO+00FAoFbNy4EUcddRSuvvpqHH300TBNE08//TT+4z/+A729vQCAmTNn4vbbb6/ZslNlJHc0X6Ovgu3bt+P888/3fx4S7MZoBq9d14UkSf633mupo6MD8+bNg2VZAICVK1di1apVo27v6aefxgc/+EH09PQMOV0kEsFdd91V02/379y5068AfhLORVQaOiNsspmIGf3VVs2sf/XgRcgfOht7TtCRm29CjtpQdRuxqIGoZkGRHdiOjIReQFS1MF3PIaEamKFl/KxaoVSm65pUK4DBmfzlso6D0wUFc5LDjw3VRqls35EQuarheYnc1dFk6X5xt/cpvCrbiMsGbm7e4Of43jRro5/T22PFYDkK1P6c6FtaDvxtm4gmhmCtEsF0FdwwY1NN+5B1vGJmo8noHyvTVdBhNBTl82uSDU22EZFNxGVj2No0wedrue4ONF/cfbR/Lowrhp8jHpeNMZ3jJypx7SGkrai/LcVlw6+NlLajfra92PaquT5Wdizzt/fw9l3pfMR1IDD4Wirr6Ehb0WHrkYhrJCGY/T7SfpR63Ujy/UeyfodrV9REAAaOFWI5R7OMoxV8n9NWtOQxTmS3V5LbX6nw9XrW0fFG+iBsT09H27YWyN0q9G4J8Q5AsgDF9MYarIgERwesKKDmAVsHzCRQmOXAidtoe/9/VqV/U1H47x6xTQZrOWhy/3OOgqyjo8+KYn8hAcuRYbkydvU0Im9oKHRHkNykIdINxDod6L0Wolv2w+3sgpNOw63DmM94ecy5r95dmFCC401v//nV0Gc11LlHlTM6e/Ha5WsBADt27MD8+fNrMt+f/OQnuOqqq/xCu8OJxWL48Y9/jE984hNDTveb3/wGl112WVEEUCmNjY347//+b5xyyikV95lqoy4Z/vv378eZZ56Jl19+2R/oDw7yu6474n/19Mtf/tIf7AeAyy67bEztnXLKKfjb3/6GD37wg1CUwQOYkiTh1FNPxbp16xjlQ0RERERERERENMVceeWV+Otf/4oLL7wQqlo+xEXTNFx88cV48cUXhx3sB7xon3Xr1uG0004r+aVsRVFw3nnnYf369RN6sF9RlKJ/5dZReLpq/RvqPRlvdZnzTTfdhM2bN0OSJEiSBNd1MX/+fJx//vk48sgj0dzcjEQiUY+ujcqXvvQlfOlLX6pqmwsXLsTvfvc7tLe345lnnsHOnTth2zbmzZuH4447Dq2trcM3QkRERERERERENIk4rgRnEmX417Ov73jHO3Dfffeht7cX69atw1tvvYXu7m4AQFNTEw499FAcc8wxSCaTI273ySefRFtbG55//nns2rULiqJg/vz5OPnkkzFnzpxxWJrqqvQL4vX+Ivl4qPmAfzabxU9+8hN/oF+WZdx888244YYbSn6bfaqbM2cOLrroonp3g4iIiIiIiIiIiCaghoYGnHnmmTjzzDOr2m5ra+uk/tKx+IXCcIP6Ypy6WvOs94cINR/wf+qpp2AYhv/t/uuvvx7//M//XOtuEE1ZwToFo83zl3Udmfcfhb75CnLNgPK2XhzW1I2kZkCVHKiyjYRqoMeIYWe6EXlLQ8aIePmMuoJYf35uOSKTdDSZy0O9RpNsL0vUjvp5kk1aBtc0tfnThLNvxyKYuSyy9QEgIpuIyCZWdS6F6Xj5ppVm7KvywPL1WjFc274CcdmAJttY3bUETaqXzRusD7C6awlWdizz806Z509E40lkRotjHIBhc7bHqw/AyDK2R8J0FaTMBDTZ9o+9gibZaNIyfn56XDFKTiPOS8Gs/3D/aWxun7vOvx08Fx+o67hUvYdr21cgWAiDQAABAABJREFUZ2u4dc5L/mNX7ToWmuQUTziGdbKyY5lfNwMArP59X5VtNOu9Rdv32u6FfgZ9+H0IXoeVyv4Xmfymo0CTbazqXDpkTSSxPlZ3LRlUr0AcG4bbFq5pais7bbCdUoJ1OipVrr1gXY/wNJpkAzJQcLSi61qRsQ9gVLWjyhHvU7PeO9AHbWAZU1bCv8YFvOvtSvP7g9fqSTXvHycB+HUKsra3rcWVgTZjioGk5t2XDQmKATgqoOdc6H0OHFVCep4EyQHgAL2LXTjTB2J5JeXA+3ZnrazuWoK0FUVSzQMY2Hc1yYYpe3Ucso4Oy1IwN5pCjxVDe74BaTOCGZEsspaON/fPRnrTdCh5CbE8EN/rItZpI7YnC3lfN9x0Bq5hHFD5/UQ0/k455ZSK6sRWOt1kUvMB/61btwLwPllRVRU33HBDrbtAREREREREREREE5Drev8mi8nU16nkj3/8Y1Wnm0xqXrQ3lUoB8H7ecNhhh6GxsbHWXSAiIiIiIiIiIiIiOuDUfMA/WCRipAUjiIiIiIiIiIiIiIioNMmtcRWBRx99FO973/sgSRIWLVqELVu21HL2NEY7d+7EggULAAAn4VxEpXidezQ6wRx7wMuyDz82lZTL8pd1HXJjA9AwDbklsyA5LqJbU7C3bMWb/7EChx2yB9P1PBr1HDKWl6WZUA2YjoJs/33LlWE53meLnbkEbEdGYzSHQ6Z1Yk6k1880DmYYa5KNrKP7OZ3h3GMhnKO6qnMpIrI5KPNVEPMoOFrJHNNgHup4ZfuuSQ0Uu0nbUWRtHaarFOXqVura9hX+bctRinKKw1Z2LPNv1zpLm4hoIhiPLP+soxedb0qde4Lns6SSHzTNgZolT5OD2C9E5nq5a4Q1qdaiLPvgdh289iq3PQdz+0XWf6nrtVKZ9+KxcoIZ78H8+vAyllPJPjhc3v+aVGvZnP7RtD9Ujn/4drls/KyjI2UmcEvLev868ObmDVjZsWzM14Liena42gQij3+o6/NyrxPtB29nHR1pKwpNtpFUvLx4kfdvugo29s7Bq23zIXerUPtkRDsB2QJsHbCj4p8LO+pCmlVALG7AcSTk0hEAwJazfjqq9THViPc/uO6B/n1athEJ1GsrOBraCw3oMWPYkZ6OVCYOw1Bh5jS4pgTJkCHnZahZCdFOQM0CesZFfK8BfV8W2LYbdk9PXZazFh5z7qt3FyaU4HjTEXd+Afqshjr3qHJGZy/e+NR3AQA7duzA/Pnz69wjmupqnuF/yimnIJFIIJPJYNu2bWhvb8ecOXNq3Q0iIiIiIiIiIiKaaFwJrjuJiqhOpr7SIHfddZd/++yzz0ZLS8uo22pvb8ejjz7q37/sssvG1LfRqvmAfzQaxWc+8xncdtttAIA77rgDN910U627QURERERERERERERT2Cc/+UlIkvehzWOPPTamAf/XXnutqL16DfjXPMMfAL7+9a9j4cKFcF0X3/72t/HSSyOPsiAiIiIiIiIiIiIiGotqJ97XOEF/kJp/wx8AGhoa8L//+78488wzsXfvXpx99tn46U9/ivPOO68e3aEpSGTWP7J7vX97Kuf4i+UOZ/m7tg3oOpzpCWRbVGRnS0h/cDYaFuo4f8FLODjaCQB+nqbpKrilpfw6PPuN90OVHTRH02hQ8+ixYjAdBUnVy+AsOBrSThQAirI5hWAGajjbdFXnUr+NAkpn9FdqPPOUg9myqzqXDrm+hpOzNcSU/kxUZehM1JubN2BV59JB65SIaKoYLhu7UikrgR4rBk2y0az3ehnV/edAkTcdVww0qRn//AgATdpAzRqh0jxrovEi9gtxHbWyYxk02S7afkUm9+quJf42G5cNaJKNlOll/wODawRd277Cv1YU88k6OjqMBj/PXVwDAiiaVzi7HRioxZS2omjSMkWPAwPXWF/cfTQAIKYYRdONZ/2MYH2D0RD1DYZrQ6wXcbwpRTwXlw3EIwbWdi/Ezc0bsCbVitVdS0bdxyCxroO1Gcr1N1yLK5zDX2o5gu9tykyg14phbjTlZ8SbjoI0vNoAIkO+t/9Yq0Qs2NMBI6JAthQoWcCOA1bchSsDruYNwGw6/WdVWReTjdgGbpixqeTz4j0Vt0sJ7p+mqyBn64gpXi0J01H8DP+0FcXf0y14cdsCOHkVsCSo3QqUvIR4HlDyQHKPA73HguQAWo8ByXEAAEpv/7GhaToU24adTldnBRARlSG+kX+gqMuA//bt25FMJnHvvffiyiuvxJYtW/DhD38YxxxzDD72sY/h3e9+N5qbmxGNRkfc9sKF1S/IRkREREREREREROPPnWQZ/pOprzS+gt/sr+eHCHUZ8D/44IOLFlqSJLiuixdeeAEvvPDCqNuVJAmWZVWji0REREREREREREREFUkHfpGUSCTq1o+6DPgLruv6A//i/3pnHBERERERERERERERjcTf/vY3/3ZTU1Pd+iG5dRhhl2XZ/1Z/NUmSBNtmFup42rlzJxYsWAAAOAnnIirF69yjsZuquf3DOeNTn0bvwRpsHbB1wGwA7KgLc4aF+IwcTl24CYti+4syNguOhh4rhlvnlC/EfePe5X7OY7w/6xGAn78ZV4yinPlg5j0N+NT2kwF4+bQxxUSjmhu2bsGaVCvXJxFRSCW52+G87KyjI2UmEFcMRGQTBUfzHrd1P5c8LhtFbWQdvWTbBUeD6SiD8s+JxlN4uw/WmxA5+mLbTKp5/7Z4PnitJrK801Z00HY+1DXhF3cfjZhiFOXSx2UDmtx/bekoRZn+Yl7B/PCCU75uk6hdVCojvpr5/aLuQXCdBOc5knlVejwKzyOo1PxEu2I9FxzNz1kvl+U+UkPl+Wcd3Z9nsFZDwdGQtXU0aZlBx0zR37Qdhekofj2G4DJkbR0be+dgb2YaMgUd+bwGuysC2exPE7D7v1Sout4/3fHbbnv/f1ZluSejYC2HG2ZsGnH9iWA9jazjnffiioE30y3ozCfQlYujc3cjJEsGLAkNm2QkdzuQ+ld/pNuE1l2AnCnA2bYTUiwKKRKBm83BSachKQocY/D2cCB6zLmv3l2YUILjTYf+55ehzWqoc48qZ3b24q1PfwcAsGPHDsyfP7/OPaKREOPUAPDYY4/hjDPOGFU7bW1tOPnkk7Fnzx4AwNlnn43//d//rVo/R6Iu3/C//PLL6zFbIiIiIiIiIiIiIppCrrjiioqm+7d/+zfcc889Fbfrui6y2Sza2trwyiuvwLZtP9Hm9NNPH213x6wuA/533nlnPWZLRERERERERERERFPIz372syGL6IoUmkcffXRU7YvXi3kkk0lcdtllo2qrGuqa4U9ERERERERERERENFkFa9NGo1HceeedaGlpqVt/OOBPU8oju9fj7LnL/dz+s+cur3OPJq4n7hzItTzs7s9DW9KHw2Z1Yl68G3MivWhSM/7zIkcTABrV3JDtmq6CBjVXMt8Y8DI+mTM/MnG5uO5BKWtSrTXqDRHR5CLyrsMZxiI7ulQuf1w2EI8MnMPE4yKfusNowLxIqih3HBjI3BaZ1CIH2XIUfHbnCTAdBQ1qHrfPXTe+C01UQlL18u41ycaugldkTtRbEnnvIi9/VefSomx9cR0Yl42K61GU2s5Xdizzb/daMQCAKtt+RrioI1CJm2ZtLNqvq5nbHyTy6MO1PsZtfmWy+4eaZ8pKICKbRXn9qzqXVrVfYt4ixz94bNUkG5C96UxXAZzi1xYczd/2BNNVkDITMN2B/H7AW/60HcV+I4lOI4Ft3U3o7Y7DNWRIhgw1LUM2vEEXR3fhRLz8fkQdqHFvO37r1J9XddknI3HeGml+f5Am24jDQFLN44mOw7Fl7yzYnVGoaRmxPKCmAb0XmL6lACVnQy5YkHd3wtrTDgeBzSBX/Pejy7qMBMB1vX+TxWTq61RWSS3Z0dabVRQFhx12GN773vfiqquuwqGHHjqqdqplygz4P/7443jve98LwPvUxbKsOveIiIiIiIiIiIiIiMZTW1vpL5a6rovFixf739C/5557cMIJJ1TcrizLSCQSaGhogKpOnGH2idOTGhjtpzRERERERERERERENPksWrSooulaWloqnnYim1ID/kREREREREREREREALBw4UL/G/6xWKzOvakODvjTlBLO7BdZ/jS0v1/6HwCA1V1LAHjZmVlHR9qKQpNtNKkZP9M/nB0azIXMOjqa9V6/jaDxyjk90Fy161jkbB1ZS0ejnkNM8TJjO4yGIV/HughEREMLnodE5nRSySOpeLnmpqsg6+iDcqaD4rKBuG4g6+hImQn/cZFBLW6LHHLRrunKyFg6OvMJZHUd17avAADcOuel8VpcmuKGv+4a+nmR5Q9414cR2UTW1sfcr0rz/ys13D5bDTfN2ojVXUuK5jPa69pyNUVG8tpyUmYCN+5djrhi+DUZAK9uQrXXe7Av4raoJyWOhYCX3d+kZVBwtEE1EExX8etKAN57WXA09FgxrOtciFQmDseRkOuMQ+1WoGYluDIgWYCSByADZtIbvIEtAaaEt875Txz61OVVXdbJYm33QmQdbx8V555y+4WoLxNWcDT/nJi2o1jfMx+vtc+B0R5HtFNGohuI73OR2J2H1pWDlDOAQgFuTx+cdBqObYfLNxSRdR2OMbjGG01NXoa/VO9uVIyBIpPb1q1b692FqpPr3QEiIiIiIiIiIiIiIho7DvgTERERERERERERER0AOOBPRERERERERERERHQAYIY/TRnM6x+7uFycqZhU8wAwZAbkUK83XYXZ8iM0J+LVQDAdxc/hvKWF2zYR0XgIZvcDQNqKAhg4/wXzjIHBucf7zQR6zBgSquG3p8l20TR9VhQZy2tflR28lZqFnelGRFUTF2Rm4reHPDb+C0o0BjfM2AQAuHHvcv//iXJtEr72HC83zNg0qtz9cq6evt3PvK+0/sDa7oVla2k1qZmiYxUwsG5KZbWPh2ua2vxaB6ar+LXAhIKjDXq/Co7mf0UxbUXRa8XwRm8zdu+bDjurQs4qSG6XoWUB2QAU04ViuLB1CVbEy/62dQlWHHD7Rz7eOvXnNVneieSLu48GAMQUw6tPo+aH3DeC9ShErbCu/ro0MdnEXzsXoCM1De7uGPReCck0MH2LjcT2DOT2LsAwYO3rHFEfZV2HPPcgyIUCnP1dzPInuJAmV4Y/Jk9faWT279+Pzs5OdHd3o1AojPj1p5xyyjj0angc8CciIiIiIiIiIiKiKe+RRx7BnXfeieeeew67du0adTuSJMGyrCr2rHIc8CciIiIiIiIiIiKiKevNN9/Exz/+cbzyyisAANd169uhMeCAP00JjPOpjqunby/6ubL4qWfw58HhnxOHXxNU6U+UyXPj3uVFP69tVHNoUjN17hUR0YFNk2xc09SGNalWPwbBdBWkbS/eR8RhBM+JmmQj5SaQs3W/HRGHAHixbIajIG9rSJs6cpYG25Fh2AocR0Km4L0ur1o48W/n40/vfKBWi0s0are0rPdjfSaKcMTNZJnfjXuXo0nLjDiSaKhYoeB1tziGRWSzZrFHwED8EzDQV9NVoCm2H4lW9PdFoOJgrxVDp5FA2ojA6dWhdSuIdAGJvS60jAMtbUPNWJBzBpyYDnOahj5Hg5n04nwKyck7aDMWa1KtmBtNefFIQMn3fFehCV1mAhlLR97W0BLtxZxIL9qys/Dy3nnI5XWYOQ3oU6GmZSgGEOsFWl7MQ+vMADva4aTTcGwbzij76RgGnK3bxri0dCBx+/9NFpOpr1TaX//6V5x++unIZrNwXReSNBDTFLwd/hAg+Fyp5+uFA/5ERERERERERERENOV0d3fjIx/5CDKZjD+A39DQgHPOOQetra341re+BcAb3L/00ksxb948dHV14bXXXsOLL76IfD7vv+5tb3sbLrrooroti8ABfyIiIiIiIiIiIiKactauXYtdu3b5g/bnnnsu7r77bjQ1NQEAvvWtb/nPXX755TjjjDP81/b19eEnP/kJVq1ahe7ubmzcuBGbN2/GT3/6U6hq/Ybd5eEnISIiIiIiIiIiIiI6sPzwhz+EJElwXReHHXYYHnjgAX+wfzjTpk3Dl770Jbz66qtYvnw5XNfFL37xC3zyk58c304Pg9/wpwMas/urb2t+FjTJRlwxEJHNkjn8leT41zpTdTJb270QWUdHk5ZBykzAdBVYjoJbWrh9ExGNh1LnrWua2kpOu7JjGTTZOxcmlTw0yUbW0dFlJtBrRpE2dXTLMUQVC5bjfdfGcmXkLRV5S4NhK7AdGY4jeTn+hgpVtWGoCjoyScyIZfGJradhTrQXAHDrnJewJtWKlJnAzc0bxnEtEI2MyO+fqtcn1bi2XdmxzM+xH22tK5GFL4TbEs+L41W9rsnD812TaoUm2UV1UUS/s44O05WRNiMAALnBgFOIAJAR3W8h2p6B3NENu30vHNuG0tgI9aBmOFoTjJwCNS9B75Zx5Op/hDEdsKLA3y//YS0Xty5WdixDs97r/e3WX39GrOMOowF7Cw3oyCfx9z3NsAsqUJAh5WXo3TKk/jB+2QAiBtC0z0VsnwXFMKH2GVBSWbh79sI1DDhG7epA0NThuhJcVxp+wgliMvWVir311ltob2+HJEmQJAk33XQTdF0f/oUh8+bNw6OPPorly5ejvb0dv/rVr/DBD34QH/3oR8eh18PjN/yJiIiIiIiIiIiIaEp56aWXAHjFdmVZxgc/+MEhp3ec8uXJZ8+ejZtvvtm//41vfKM6nRwFDvgTERERERERERER0ZTS2dkJwCvIu2jRIiQSiSGnz+VyQz7/sY99DLquw3VdvPbaa9i0aVPV+joSHPAnIiIiIiIiIiIioimlp6fHvz1z5syS08TjcbiuCwBIp9NDtpdMJtHa2urfX7duXRV6OXLM8KcD1lTM7x/PnPyVHcsAAHHZy2gM5venrARMx8vbbNZ7S76emf2VW9mxzM9lXpNq9TM2AWB+NDVls3GJiCaim5s3YE1q4KI+6+hevRVHQVQxoUoOLFdG2tRhOTJMR4FhqTBsBaalFLVlGCpiUQMt0/qQ1AzsyyUwK5pBQjWQszXMifQWzYtoIuH1ydis7lqCpJofdX6/yL43XQUFR0NENv3r9uA0pqsgbUUnXA2Qa5rasLZ7Ycllj8sGGtQ8rFgfAKA7GkNuugJ3r47YrjSwZQeswACM3dMD2TCQACAvmg4zpsGKA4XZ5WMYDjRf3H00YoqBrKMXbQdZR8dz+w/Bq68vgpz1svplQ0KiA4jtdyFbLpSCDdn0Bra0tAW1Jw95ZwfsrhSUQxcDfRk4XSk4w3zLlWhM3P5/k8Vk6isVicVi/m0xqB/W0NCAbDYLANi5c+ewbU6fPt2/vXv37rF1cJT4DX8iIiIiIiIiIiIimlKC3+rv6+srOc1BBx3k33799deHbXPfvn3+baNOhc054E9EREREREREREREU8oRRxwBwPt2/44dO0pOs3z5cn+aJ598csj2tm/fji1btkCSJABAU1NTFXtbuSkT6TN37lxcfvnl9e4GERERERERERERleNKcF2p3r2o3GTqKxV5+9vfDlVVYVkWcrkctmzZgsWLFxdNc9JJJ+FnP/sZAGDHjh249957cfHFF5ds76abbgLgfTggSRKWLl06rv0vZ8oM+C9duhR33nlnvbtBNK6unr69KMe/Wpn+a7sXDsrmD7cVnBfz+semScsUZTRrko0jknugSTauaWqrY8+IiKaOkZzLxLFZ1LvRJBuGo8Dqr28TVUzsyyVgOzJsR0beVGE73g9tTUuBIjuQZRdvnnzXoLbXdi9EykrgT52LYbkKZmgZP+M6WPOFiCaOlR3LYLqKv6+G91Nx3Xz19O3+NV84b3800nYUQHGtLcF0Fa++iKtUvd5CcHnG2kaQqEsgbpuOgt3pBuTaE1DTMmQDsBqj0GZMB0JFFJ1cDu5bWxDZokC3bcyw7SlT4+3a9hVozzcgbelIqgbeSs1Cd8c0IKtAyUuIdko49KkM5Jc2AgBc24akKJB0HdA1AIDT0+s/7gKwbG97st54q16L5RPv49lzl9e5J0R0IEgkEnj3u9+N559/HgDwxBNPDBrwv+CCC/BP//RPMAwDruvi85//PGRZxkUXXeR/k7+3txdf+cpXcNddd0GSJLiui8bGRhx//PE1XyZgEkX6ZLNZ/OhHP8Kll16Kc845Bx//+Mdx6623Ys+ePfXuGhERERERERERERFNMu973/v82w899NCg5xsbG3H11Vf739rv7e3FJZdcgpaWFpxwwgl497vfjZaWFvzHf/wHgIFv93/hC1+Arus1W46gunzDf+PGjfjVr37l37/iiitw8MEHl53+T3/6Ey688EJ0dHQUPf7rX/8aX//617FmzRp85jOfGa/uEhEREREREREREdEB5pJLLsHXv/51uK6LP/zhD9ixYwcWLFhQNM3Xv/51PPzww9iwYYP/Df7Ozk7s378fruv604nnjjnmGHz1q1+t9aL46jLg/8Mf/hDf//73AQAtLS1+vlEpmzdvxrnnnutXShY/lQC8T0wymQw+//nPQ5IkfPrTnx7fjhMREREREREREdG4cV3v32QxmfpKgx166KF46KGHkM/nAQCO4wyaJh6P48knn8SFF16Ip556CsDAGLX433VduK6Lc889F7/4xS+gaVqNlmAwyXVrv1kecsghaGtrgyRJuPbaa/Htb3+77LTnnXcefv/73xetvCDxyUk8HsfGjRsHfQJD1bVz505/HZ+EcxGV4nXuUWlTJZ9xKOEczKyjo+BogzI9O4yGkjmea1KtSJkJ//5wGf7B+TLDn4iIJoJq1bIZqU9tPxl/754NADBsxc/rBwDHkSDLLhzHu7Z95eh78fY/fwKvHf+Lkm3duHe5n2OtSTbiioGkkmdNF6JJ4GNbzkRcNdAS8a6jxf4bztcfrayjIy4bRVn3Q7U9HsfAUtn7I5lP8PXB5UiZCWiyjaSSR4fRgLbMLHTm40jl4ujpjkPbGkXTmy4aNmWh7t4PZ99+OLncsPObzH8nnvi38wEAf3rnA4OeC67Hl3oXYWNXC3r/MhvRTkDJA3rGgZp1EGvPQdm1H05XCrBtyDNnAJYFa1/nuPT5kd3r/az90WTvh19/9tzlJd/DyZrn/5hzX727MKEEx5sW/eA6qDMb69yjyln7e7Dtqn8H4BV1nT9/fp17ROPpoYcewr333ovnn38ee/fuheu6mDNnDk444QRcdtllOOuss+rdxdp/w7+jo8Mf7AeAc889t+y0r7/+uj/Y77ouZs2ahVtuuQUnnngiOjs78e///u/43e9+B0mSkMvlsHr1anzve9+r1aIQERERERERERER0RRx3nnn4bzzzqt3N4ZU86K9r7/+OoCBAgZHH3102Wl/8YtfFE374IMP4oorrsDhhx+OE088EQ8++CDOPPNM/ycTv/71r0v+7IKIiIiIiIiIiIiI6EBX82/4b9261b89f/58JBKJstP+4Q9/AODF9px00kk48cQTB03zta99DY8//jgAoKurC6+//jqWLVtW3U4TERERERERERHRuHNdCa4rDT/hBDGZ+krF3nrrLX/8GQDe85734G1ve1sde1QdNR/wT6VSALxB/BkzZgw53fr16/3onwsvvLDkdCeeeCKSySTS6TQA4NVXX+WA/xQ3mXMZq0lkZ17bvgLNei/isgFNsmG6CkxXgSbZ0CQbTVoGqzqXwnS8zEzxPODl9ovpKs3iZH4/ERFNRLU4P61JtaLDaEDW0mHY/edVS0He0BDVTUQ1C3rEQlMkh98d+oj/unL5/QBK1tkhoontxr1envj8eAqNag43zdoIwDtGiPobpbLvR8J0FRQczb9Wr0Q1a20N1X/xXCXz2pRtgSp7/bccBQ1qDs16L5q0DFJmAi+mFyFtRpC3VaRycWSyEcRejyLaCWgZB+rmXbC7UpBjMaizZ8HuSsG1y6+PchnwE10wv1+8j2I9i1ptO/NN+L+X345Iu4poJzDn7yb0VB7K/jSQzcHa0w4XgBVo19nTPm59Fus5vL6Dufzhx0q9N8HHyr13pdokIqrEww8/jC9/+csAvLHqzZs317lH1VHzSJ9sNuvfjsViZad7/vnn/ageAHjve99bcjpJktDa2urf37dvX5V6SkREREREREREREQHonQ67Y8/z507F4sWLap3l6qi5t/wj0Qi/u1MJlN2uqefftq/PWvWLBx++OFlpw3GAolv+hMREREREREREdEk40rev8liMvWVisyePRuA94XyuXPn1rk31VPzb/hPnz4dgFeIN5jnH/Z///d/AAby+4cS/OBA1/Ux95GIiIiIiIiIiIiIDlzBQf6enp469qS6av4N/+A39fv6+vDyyy/jqKOOKpqmra0NL774op/ff9pppw3ZZmdnp3+7sbGxep2lSadeeYyVZHDWK9u+Uc35uZ6mqyBtRdGs98J0FaSsBPYbSeQcDT1GDJ35OExHwexYBi1RL79f5IwSERFNNldP347VXUuQtqK4tn0Fbp3z0rjNa02qFaarIGfryNsqsvmBL6EosgNZdmG7Ep5e9l/j1gcimhhE3SxxzAn+rbCqcyma1PK/dK+UqLnVYTQgZ+uYqacranck+fpDCWbIB/uTtqMwHQVZRwcweB6rOpcCAJJKHppkY1Gs069HIKSsBLK2PtCmqaNtZzOkHhVar4zGNgfJrTmoO/bB2ueNBbiGUXHfJ0uO/yH3fQ6bL/oRFj92BWDJQF7G4m2fwcz53djYfBDmRHrRXmjAc7tb0duZhNqhoXmji/heE1qfCSVdgLRnYB3V0mjW71jfE+b4E9FoHHfccdA0DaZpYuvWrchkMkVJMpNVzb/hf9RRR0HXdX8w/5Zbbhk0zb//+78DgJ/ff9ZZZ5Vtr6urC3v27PHbO1CyloiIiIiIiIiIiIhofMyYMQNnn302AMAwDNx///117lF11HzAP5lM4txzz/ULItx///244oorsG7dOrzyyiu47rrr8MMf/hCSJEGSJBx55JE44ogjyra3bt06AAMfDgyV9U9EREREREREREQTl+tOvn80eX3lK1/xv0j+1a9+Ffv27atzj8au5gP+APAv//IvkGUZkiTBdV38/Oc/x3HHHYd3vetd+M53vgNgYAD/+uuvH7Kt3/3ud/7tlpYWfsOfiIiIiIiIiIiIiIZ1/PHH41vf+hZc18WePXtwxhlnYOPGjfXu1phIrlufz6FuueUW/PM//7P/CYroRvD+Bz/4QfzXf/1X2TZs28a8efP8T14uuOAC/OY3vxnfjk9xO3fuxIIFCwAAJ+FcRKV4nXtUrNZZjJVk9wfVOsd/ddcSaJLtZ/gLKSuBHiuGLiOBzb0zkTM15A0NhqHCcSRMb8hiYUM3fnvIYzXtLxERUbWt7FiGvUYDMpaOHenpMCwVhq0gm9dhZDVoUQuS7OKNE+8eUbviGsB0FaTtKACgLTsLu7MNSBsR7O8byP4UGf6K7AAAZNmFrnjn5uePPDB+NkxE3vEGAHqtGExXxg/m/cV/bk2qFdc0tWFt90I/mz58jV6p4HGnx4ohZ2v+vIb6+2S8/hZZ270QuwpN/n1NspFU8wCAgqMha+u4pcX7O02sI8F0FcQVw8/0B4Cso2N3vgnt+QZs621Cx74G6NsjkA1A7wVa/pKBsnEr7CGKK0qKAklR4No2XLv0ep6oOf6Lf/dZwAHUtAw1K/nLLTlAYTqQm+PAlb37siFh9stAfK8BJWdDzhmQbBfS/h44+zqHXP56CK7z8aylMFmy/B9z7qt3FyaU4HjTgrXXQ505eWp0Wvt7sOPqbwMAduzYgfnz59e5RzQad9xxB7785S8jl8tB13VcfPHFuPjii3HMMcdgxowZ9e7eiNS8aK9w4403Yvbs2bjhhhvQ1dXlP+66LhRFwRVXXIHvfve7Q7Zx7733oqOjA4D3QcH73//+ce0zERERERERERERER0YFi9e7N9WVW+o3DAM3H333bj7bu9LQclkEg0NDdA0rWQbpUiShM2bN1e3sxWq24A/AFx55ZW49NJL8fjjj+Pvf/87crkc5s6dizPOOKOiT8PefPNNfOhDH/Lvf+ADHxjP7hIREREREREREdF4cvv/TRaTqa80yNatW/3YeVFTFhhIowGAvr4+9PX1jahd0U491HXAHwB0Xcc555yDc845Z8SvXbVq1Tj0iIiIiIiIiIiIiIimivAA/VgG7OuUoO+r+4A/EY2fG2ZsKsoYBvozNZU8eqwY7lz4DC7YfBZ2WV42nuNIUFQHtiMjb6u4ce9yP2+TiIhoMlndtQRpK4q9RgMAoFHLoV2ehl4zCtuRAQCy6sDMq4ArofX3n0bb+/9zxPPRJBtNagZZRwcARBULatSBYSswLcWfFwCYlgLLUuA4EqJRE4mIUYUlJaKJ4ubmDbi2fQVm6mncNKu42N81TW0ABnL0R1oLLGV5dUEisom47GXem64CTdJx67yX/OlqXTNMzHNlRwNMV/H/5kiZiaJpbty7HHHFQNbRi2qMaZKNiGwW1TOIywbmRlPYmZuO7kwMyCvQu4GD/pyF8rdNkOYfBFeRMRRJ1yEnE3B6estm2I9nhvyYWBLUtAwtDahZQLaAaTssxNpzMBsjsGIylIILrceA2p2Fs20nnFwOAODUuesjMSHXPRFNSQsXLqzrt/HHAwf8iYiIiIiIiIiIaEJwXQmuO3kGYCdTX2mwrVu31rsLVTf0x+JERERERERERERERDQpTJhv+Luui7/+9a945plnsHHjRnR1daGnpweO4+DWW2/FUUcdVe8uEhERERERERERERFNWHUf8DdNEz/4wQ9w++23Y9u2bUXPierIqVSq5Gs/97nP4bHHHgMALFq0CE8++eS495cmpnrk/61JtfpZk+EsyolIk+yiHP9b53hZn789xNuH3v/3c9BnRHBQvA8zI2nEFC9L88a9ywGAWf5ERDQprOpcCsDLuW7SMmjWewF4tWxiiok31BZ0ZJLQVBtZ6LAAuI4E9OlY/NvPYcsFPxqy/RP/dj6mR3NojqYxP5qC6SrI2TpyjoZeMwpVdmDZMhTJRd6RYRgqHKf4Z966bgEAMgV9zMu7tnthXTK7iWiwtd0LcXC0s6JpR5PlL/L7U1bCv31Dy6ZR9bXabm7eAMCrnwIABUeD6ShFf3+YjlL095PlKDBdGaaroKBoSCp5/2+Wjv76K4rspdI7OtCzJIYG5VAof3kNjjF0DRQnl/Nz7UeiXrn+F2w+C290NCPXkYDkAK7qwmwAJEdCdI8LNefAlWVE9mYQ2bYbTjoNALDK1Ceot0d2r8fZc5f7t2tJzJeIaCqr64D/pk2b8LGPfQyvvPKKX71YFEmopJrxxz72Mfz4xz8GAGzbtg1/+ctfcOyxx45fh4mIiIiIiIiIiGh8DT8sSFQVd911l3/77LPPRktLy6jbam9vx6OPPurfv+yyy8bUt9Gq24D/li1bcNJJJ2Hfvn3+N/ld1y0a+B9u0P+MM87A4YcfjjfffBMA8Otf/5oD/kREREREREREREQ0rE9+8pP+F9Afe+yxMQ34v/baa0Xt1WvAvy5Few3DwLnnnouOjg7/sUWLFuH222/Hxo0bkU6n/Q8BhnPBBRf4tx955JFx6S8RERERERERERERHXgqSZqpZ3sjVZdv+P/gBz/A3//+d39A/yMf+QjuuecexGKxEbd1zjnn4P/9v/8H13XxxhtvYP/+/Zg5c2a1u0w0SDCvX9wWeZriftqO4qZZG+vSv1KGqjHw+8P+UHR/TaoVKTOBnD32fGEiIqJqK5d73aRmYLoDudHi/03ZZrzZ04yMEYFpKbAdGYrswFUlWIYCqC7gAIsf/CwgMvdlF1s+ckdR+3965wNY8eLHsD+bQGy2gR4zhm4jhrzlXVar/XnTtuu14TgS7KwGGDJc1YGkOzAAKKqDqG7iuFcuxPNH3j+iZf/szhMwP5pCk5oZ0euIaPyMJIs/KFiDo1QbpqsgbUf9+1lHR9b2/qWQAFB5DY/VXUtww4zxzfwX7YtlEcdjkc0vsv01yUZSzyNtRf1lErK2jk19s7GpcxZynXGoXSpmvWohsSkFd08H7GHy+0cjmPtejxz/3x7yGJa88HloeQlqFlCzgCsDkW4g1mkjuqMH6OmDs79r2PoFE0F4fQrjvV6Z309Eo1XJl84nk7p8w/+2227zV+SKFStw7733jmqwHwCOPPLIojfl9ddfr0ofiYiIiIiIiIiIqLZcV5p0/4iA4m/21/NDhJoP+G/cuBHbt2/3V8A3v/lNaJo26vYSiQTmzZvn39+8efOY+0hEREREREREREREVKl0Ou3fTiQSdetHzQf8X375Zf92MpnEe97znjG32dTU5N/u7u4ec3tERERERERERERERJX629/+5t8OjlfXWs0z/Pft2wfA+1lDa2srZHnsnznE43H/djabHXN7NDnUOlcx7Orp2/1sSpFJGZFNFBwNBXi/WpkI+f3BfgaFHwvmhwLANU1t49ovIiKi8WK6CjqMBnQZCXTkk+jIJNGXjUJTbRiG6mX2A5D261AyMjQHMKY7wDQLKMiABe9rMbKL1t9/GnqDgTdPvgsAsPh3n/Wz+B/vOxyS7ELpz+0/8qBdaNRy0CQHG5w5Xq0AQwGyCuK7ZbiyAisOmNNt2Anb60cyjxP/dj6mR3NojqYxP5ry86412YbpePnXccWA6Sj4e7oFO9ONaJnTiw6joU5rmIiCwnn1BWd0v2Avd90u/sYIiysGvrj7aNw+d13R4xdsPguq5GBmJI0GNe8fTyKyidVdSwBg3LP8Sy1LXDa8v5vkgXWkyTY0d6DOmOl4x+cl0/YhqRVgtSh4cdsCyH9U4e7cAzvwzclqEbnv9f77UraAWAcQ3+dC7/XWSWxPFnJ7F6xdu+vat8mA+f0HGLf/32QxmfpK46atrQ133HGHH+Xztre9rW59qfmAfz6f929HIpGqtNnT0+PfbmjgHz5EREREREREREREBFxxxRUVTfdv//ZvuOeeeypu13VdZLNZtLW14ZVXXoFt23BdF5Ik4fTTTx9td8es5gP+s2fP9m93dnaOuT3btrFjxw7//qxZs8bcJhERERERERERERFNfj/72c+GLKIras0++uijo2pfvF7MI5lM4rLLLhtVW9VQ8wz/gw46CIC3IrZt21b07fzR+Otf/4pMJuPfP+yww8bUHhERERERERERERFRJSRJgiRJcF0X0WgUd955J1paWurWn5p/w/+EE06Aqqr+Txzuv/9+XHnllaNu70c/+pF/e/r06VixYkU1ukkTWL2zFYVwJqUm2dAkL2uxw2jArXNeqke3Sgrn85fKBiUiIppMgue2td0L/dx+cS7O2Rq6CnFs3jcLtiXDsWQY2ShgyFCzEiKdEhJ7vYBYVwZyM2XYUR1mgwsr7gKqA6gu4ACWoeDQpy6HY8lQe2UAMuyoCzOqQJ+Rx7RYAQm9gEYth5laBkk1D7NRxnOZVsgpDUpGhpoFtDRgRwEjrcCOKrDiLnpnKzCnKfj/2bvzOLfquu//r3NOTibJ7NPpdKVlgJYChQoUiiBbUVpUFhVQQOFCK5u/ys3aXgpV4FI2gYsbRW5QcKMuICgIWBBkVUTKUpCWrft0mXb2TJJJcs75/ZHmNDOdaWc6mclM+34+Hnn0JDn5ns9J25zkk5P3N+lYtCWLSLoWxYEkkMmyTm7Jsy4OZDL8055JSbCD1xonknZN2pNF3FDz7mA//SKyRW5+v204RJ0QJVZiB4/K6C5/v6vsZ4xs5n1uln9LOgzAFRsOIe5kbi8LJBgVaqUlFfbz+1OeRcqx/Mdls/wHOsc/O89Ipd3uvzbnznHQ4drEnCApzyLtbq3PNhxWtFezPlbKxqYyzLUhQnWNYFnbbqSfhkJ+/9FzLwRgpO1hRx2K392Iu249AJ7jkHac7T18WJk1dlrenmtl9u/qjC2X4WI41br7yp6F3991umNZFpMnT+bEE0/kkksuYdKkSTs1Tr4MesO/vLycI488khdffBGAG2+8kbPOOqvTxLu99eqrr/Kb3/zG/7nESSedlNdaRURERERERERERGT4WrFiRbe3e57HXnvt5feWf/Ob33DkkUf2elzTNCkuLqasrIxAYNDb7D0qSCVXXHEFL774IoZhsGLFCs455xz+8Ic/YNv2jh+8xVtvvcWXvvQl/5cCpmkyf/78AaxaRERERERERERERIaTiRMn9mq9UaNG9XrdoWzQM/wBTj75ZI499lj/ZxKPPfYYM2bM4Nlnn93hY+vq6vjv//5vPvWpT7F+/Xp/5uNzzjmHqVOnDnTpIiIiIiIiIiIiIrILmDBhgn8Jh8OFLicvDG9nw4n6adOmTcyYMYNVq1YB+I370aNHc8ghh/DEE09kCjQMjj/+eEKhEB999BEffvhhp/U9z+Oggw7in//85y7zlzKUrV27lj322AOAT/FZQkbfo5j6ayhk+HeXgZ/yMpmSl1d2/zOhoSi7H10z/kVERIab7DGtKV1MyrVoTYf5KFrN0lVjIG1C2iDQbGEmDUrWQtV7cQItCZIjIzhBk/jIALGRBolqSFc4EHQprooxfcwaljaOIpEKkEpbdKwsxXDBM2HGJ5dxaPkq/z1Ah2tTZKaImEnqOipJeRZ/r5tE9L1Kah+NYX2wmtRBtSTLArSPCdBRAdF9Uhi2h2G5mAGX0pIEYTtFKJACMjn+tumQSNskHQvHzZyvk0pb2AGHPcqa+fOkRQV5zkV2N9fWTyXmBrENh4iVpDLQTlO6mJgTpNJuB+h1Lv619VNpTW/9/NpTln93nzuyNdiGQ1O6GMi8VsDWvPzcdVKeRdQJAZn8/uztMTfYp5p31hUbDqEm2NppzrOUZ/mvndm5D1rSYeKOTUNHCW/VjSPZGqTkA5uRS1IUvfgubjw+YDUOhc+Yu0MmffZ57s/cCbvS8/SM+1ChSxhScvtN427/bwJV5QWuqPfSjS3UXX4jAGvWrGH8+PEFrkh2dwULFxo5ciSLFi3i1FNPZdmyZX7zfv369Tz55JP+ep7n8fe//91fzsquf/DBB/PYY4+p2S8iIiIiIiIiIiIiu7WCRPpkTZo0icWLF3PhhRdiWZlv97OTJBiG4V+ycq9blsWFF17IK6+8wrhx4wa/eBERERERERERERGRIaTg0weHw2F++tOf8t3vfpcf//jHPPXUU7z77rv0lDS0zz77MHv2bC677DJqa2sHuVrZnd3cuA9Ap5+iwvCM8slSlI+IiOwqsvEQKTfzZ9hKUhGM4yVNjEQmymfEO1C5pAlnyVIMy8KYtBdFq5vxigJ4VjlgYbgG0YiBh0l7fTEvtE6iZmQrI4rb2dBShludxGi2CURNHtzzeW5vqvXfF8yr/oibG/ehKV3Mm03jWdVQRXJDhFDMIF1q4x5US6AtiVNk4W057cZqt/AM8AIeTsCjDegIBoAwdsDBND0s08VxTSzTJWg5OJ5BOJyiOtzOqHBboZ5ykd3CzY37+O//a4Kt29xfZGbityJm0r/t9qZa/zMCdI7MubZ+KiWBhB8BFHODlAfi/mNy1819fcnKHRcg5mSie26oebfT+rn12IZDZaC90+PqOiqBTATQXc0T/NifmBPkplE9x6zkRgz19rPEnqHN2+xDbpyPbTgUmSniThkbE2Wsbq0g2RrEag3gBaCj0iJcVYlbN3CRPjI4usbx9CbaZ1eK8JE+8LZchovhVKvsFgre8M8aP348N910EzfddBPNzc28//77NDQ00NzcTCQSobq6mtraWp3NLyIiIiIiIiIiIiIDYtOmTSxevJg1a9bQ0tJCPB7v8eT07VmwYMEAVLdjQ6bhn6uiooIZM2YUugwRERERERERERER2cW5rst9993Hvffey1tvvZWXMdXwFxEREREREREREREZRKtXr+aLX/wib775JkCns/lz55ftLc/zdupx+aKGvwwL28v0G2hXbDiEtGsRMDN5mOWBOEVmqlMuZtcsTRERERlcq+LVAARMh7WxStZGy2mNhzDSJmbSoGS1Qdlv/kE2DdtzHNLLPvQfXxyvpdhxcSuLaTqwHDBIFxl0VASIp0dibPLY8/XNrDijjKJmCDV5HHnlRRiuR+tEk/gYl8vP/H9+/vaBHx+M+1EJ5evASoCVcAi0JDCa2whEbIJtAZIlRia/3wQjbWCkDLwSA9P0KAsnCAVShAJpQlaahBMgkQ7w7P6PD+4TK7Kb6zp/V3diTpCUm/k8cMWGQxhX1NTjutns/uxyJZnrKc+iw7X9HP6mdDEp16IkkNgmjz9bz9yK1dzelNnuXc0Tdlhnrq41Rp0QLekwt41+Y7uPm1ux2s/x727ege7kflbK7ifgP2cAtumQ9ixWt1aweV05wXqbokYorXOJbEhCMolhWXhO7/exL2aNnVaQz5zKp8/Q8yDb8ACvcM3SPlOG/7DW0NDACSecwPLly/1GvWEYftN/Z6J8Cm3INvzb2tpoaWnBdV1Gjx5NMBgsdEkiIiIiIiIiIiIisotYsGABH3/8cadG//jx4/niF7/IJz7xCWpqaiguLi50mX0yZBr+zz33HH/84x956aWXWLZsGU7ON/fPPPMMM2fO3OYxixcvpr09c0ZERUUFBx100KDVKyIiIiIiIiIiIiLDUywW4+c//7nf6DdNkxtuuIF58+ZhWcM3zaPgDf9XX32Viy++mCVLlgDb/kxie3lHv//977ntttsAKCsrY/369YRCoYErVkRERERERERERESGvRdeeIFkMumf3X/11Vfzne98p9Bl9VtBG/533nknV199Nel0epvJDHKzknry7W9/m//93/8lnU7T2trKH//4R84555yBLlsGSSFz+wGurZ9KazpMwHRY1lrDh2tGES7pYEpNPdPK1xIxk8ytWF3QGkVERCTjzrH/BuCIt06nLV4EgOOaAHgBDyu5/RzY9McrMgsrYUR0b9IjSnCKAwTaknivvZNZB5j4o7WYE8eTriomVWrTUWlRUucR2WiwX8vFBGIQbIVAAILpzJChZpfAf1biNDZhlZeTLB9LusjA2/JO3HDB8DJRtabp4boGrxz0CADzN07DNhxuqHk3f0+WiPTajnLxbcOh0m73s/VTnuU/JuVZRNMhbm7cx7+/63i5+fZFZspfrgy001Xu2LA1tz/lWf6l6/hda+pJiZXotP3tyX4Guqt5AinPYv7GaaQ8q8f8//pkWWbfTScz38GWfY6YSWzTIeVaNCRLeGVNLfHNEezGAJXve5StSGAv30i6bh3pXlXWP9kc+cH6HKrcepGeeV7mMlwMp1qls5UrVwKZE9ADgQDz5s0rbEF5YhZqw/fffz+XXXYZqdTWNxWWZTFjxgzOOOOMXk2IMH78+E5RP4899tiA1CoiIiIiIiIiIiIiu46mpswk9oZhMHnyZMrLywtcUX4UpOG/cuVKLrnkEv/nEoZhcNVVV7Fhwwb++c9/8vvf/x7YfpxP1pe+9CUg803Ms88+O6B1i4iIiIiIiIiIiMjwV1JS0u3ycFeQSJ8FCxaQTCYBME2ThQsXcuaZZ+7UWEcffbS/3NTUxMcff8zee++dlzpFREREREREREREZNczZcoUf7m+vr6AleTXoDf8k8kkjzzyiH/2/gUXXLDTzX6AyZMnE4lEiMViACxdulQN/2Gq0Jn9uT4383SIxemYNIpVs4OkK9KE19rEaw02lRaztqiSypJtczVFRESksOpXVEHAy1zSBjX/NBnxz3rSH37c6zHSH36MsdzCchy2CZl0HGhpI5BIErBM7FHluEET1zYJbzZxbQPPNEhUmJSsSxFZUke6bh0OYFgWRiRMvNoiUQ2pEvC2/N7WAwi6jChv59VPPOxv7qZRQ+f9kcju5ubGfYiYyW1uz2bQ5+byd83QT3kWHa6NbTqdbusuYz83Ez93G9kxAGJOENtwKAkk6HBtSqxEt2NFnRCQmQ8gYiaJuUF//ew623N7U22nmrYnu86l6w4j7tqcs/I4gqZD2Epy97h/cem6w7buj+lQbsapCbZ2qmFlopplraNY2VBFx8pSQq0Goc1Q+U4LxvI60i0tO6wj32aNnTYon00XrXtbOf4iPfG2XIaL4VSrdHLMMcdQXFxMe3s7q1atYsOGDYwePbrQZfXboEf6vPLKK8RiMT+j/6qrrurXeKZpMmbMGP96XV1dv8YTERERERERERERkV1bKBTim9/8pn/93nvvLWA1+TPoDf8VK1b4y+PGjaO2trbfY1ZUVPjLra2t/R5PRERERERERERERHZt3//+95kwYQKe53HLLbfwxhtvFLqkfhv0hv+mTZuAzIS8uWfm54vrunkfU0RERERERERERAaBZwy/iwxbZWVlPPnkk4waNYpYLMasWbN4/PHHC11Wvwx6hn9RUZG/nJ24t78aGhr85REjRuRlTBl82fzCQmf5395US+LHHbQnw5Te4jH5J+tonzqK1ongBoJsDJexR0lzr3ItRUREhpPc/GhgyB7rrthwCLeN7v7MG7vZ8pdLV0P5r/5Beie24Tnd51y7ySRefeYEFjMcxly3ASsYxKiuIj2yDCuWBNel1DQxmttwG5sAsMrLMcbU0DGujNhIg2QZOCEPw92S41+WorgsgWXq5BWRQsm+Bmaz9rvm3Wdz9WHbLPzcHP+sIjPl5+oXmalOY19euYKuusvtz66fHTc3jz/7mFxds/0jZtKfh6DrPANd6+9uH7LzGKQ8q9uaAe4c+28uXXcYKdMilg6SdC1O/XAWf560iAvWHknAcIinbdKuBcGtz4ttOHzUNpLVTZXEm8MEkgZ2K4QbXDzbwoyEoQAZ/gP5eVSZ/SIiQ8/q1aspKSnhd7/7Hd/4xjdYvnw5p512Gocffjhf/vKXmT59OjU1NYRCoT6PPWHChB2vNAAGveFfU1MDgOd5ecnbb25uZvXq1f4kwNnxRURERERERERERER6sueee/p9Zcik0niex2uvvcZrr7220+MahkE6vTOnHvXfoEf67LPPPv5yQ0MDy5Yt69d4ixYtwnVdfxLgww47rF/jiYiIiIiIiIiIiMjuI9tbBvwvADzP69elUAa94T99+nSqqqr8J+6+++7r13g/+tGP/OXJkycPyLwAIiIiIiIiIiIiMvAMwPCG0aXQT5jkzVBp2PfXoEf6mKbJqaeeygMPPADAT37yE7761a9y8MEH93msG264gcWLFwOZb16+9rWv5bVWGTyFzu3Puqt5ArbhcNrYt2lKF/OLLx3DpN9WUvyv5aRK9iEdMmnfEGZNZUWhSxUREcmrKzYcQsRMUhJIEDGTQy6//4T3TiZgulSH2km7Fkct+SJJxyKWCPrrjK9sJl3iUtSYOafFbh+YN+nZfH8nGs3cEI9DSwvGSgunh+x/o6aajnFlxEfaJCvAKXZxLcD08IIugaCDZbq8ctAjA1KziGzfXc0TSHkWUSdEyrX818Kusnn2XbP8Y27Qvx51Mhm/2dz+mBMk5WbWLwkktsnQ7zp/SomV8MdPuRa26bCgeinzN07rtE2g21z9ruNl2Ybjv7Zvb53c5yN3f6+tn8oNNe92+7g7x/6bKzYcQthK0pIKsy5axlFLvkhJsIMSO8moUCtlgTgt6TC2kZmboDwQZ120jNjqUgIJg5K1ULzBJdSQxPxoLektc6AMtlljpw3Y59NF695Wjr+IyBBz3nnnFbqEvBv0hj/AggULePDBB0mlUiSTSWbPns1jjz3GjBkzevV4x3G45ppruOWWW/xcpYqKCubOnTvAlYuIiIiIiIiIiIjIriB7UvquZNAjfQAmTpzINddcg+d5GIbBpk2b+NSnPsXXvvY1nn76aRoaGoCt2UmO47B582ZeffVVfvjDH7L33ntzyy23+D+vMAyDO++8k9LS0kLsjoiIiIiIiIiIiIhIwRXkDH+Aa665ho8++ohf/epXGIaB4zgsXLiQhQsXdlrP8zxmz569zW2wddbkyy67jK9+9auDVruIiIiIiIiIiIgMAG/LZbgYTrXKbqFgDX+A+++/n4kTJ/KDH/zAb+LnNvOzuk6SkG30G4bBD3/4Q+bNmzd4RUveDJXc/u7E3CAbOsowqzqoOzbCHvEagi0OwVKTeNKgNR7iruYJQy7fWEREZGfVBFv95aFyfNv72fMJBB2qy6PUN5XiuQYfpkZD3MILuBhJEzNl4BQ7GEGXjxMjCdWbjHjPoXRJPemPVxDYcyK4Du6mBtx4fEDr9XrI7wdIjyiho8ImNtIkVeHgBV0ADNsjUJTmw2N/OaC1iUjPbm+q9bP7ofPrYcqzsA1na6Z+TnZ/1AlRYmUy+bMXwL8tu35NsDUzP0A61CkjH+Cj2CjCVpJKux3YOkdA7vZvqM7k5t806m1ubtyHuo5KaoKt28wFkNWb1/C5Fat7zPHPyu531AkRc4LYhsPNjfv497/WVEs0FWTRlCcAuG30GwActeSLlBUlKLEzcyCMKGonbKX8MeNOkM3JYt5NjKFhUxnBVpNgM4QbXIKtacyEg1FUhGFZ231dHUjZnP2B+MyqHP/hJ/vvQH9vIjJcFCTSx9+4aXLdddfx4osvcuKJJ/Y4+7FhGNt8AXD88cfz4osvqtkvIiIiIiIiIiIiIkKBz/DPOvLII/nrX//KsmXLeOqpp3jppZdYunQpDQ0NNDc3E4lEqK6upra2luOPP57Zs2dzyCGHFLpsERERERERERERySfPyFyGi+FUq/RJY2MjS5cupbGxkZaWFlzXZdasWYwaNarQpW3XkGj4Z02ZMoUpU6Zw2WWXFboUEREREREREREREdmN1NfX8+Mf/5g//vGPLFu2bJv7n3nmmW4b/g888ABr1qwBYOzYscyZM2fAa+3JoDf833zzTX7961/7188++2ymT58+2GVIgQ3F/P5shmXKs6hPlrGqvQo3ESAxyuX9OaUQcql6DcqWGzRFyrjntc8x91s/LXDVIiIinc3fOM3PXb5p1Nvc3lTL5ZUrdvi4bG501AkNQpXbd+qHs4imgnitNils1sdtrE02gYSBlYBgK4z6VwzPNNl0aDHRCQaeCZ7tEWyFSF0MUikCe9eS/njH+z4YAh/XUbo0hfO5/WkJeJghB88xMe3C5FOLSEb2M0CRmeqUvQ+ZzwVNqeJOuf226ZByLWzTochMkfIsP+c/Kze/33+c4WDbTqdxY26QsaEm/zW76xiRQJISK9Gp1oiZJFKUzMu+Z7P+d5TlDxCxkqRciw7XJuVaLGkZR1NHGNt0OOKt00mkAjiuSTKZaTFUl0cBqChKEDZTRMxMza3pEC2pMM3JMGnXBMMjHfEIxAzsqIvhZmJ+0+s35GUf+2vW2GlD8rOrDC5l94vsPm699VYWLFhAMpnsNno+N3K+q2g0yve//30Mw8CyLE4++eSC/RJg0DP8X3jhBf73f/+XO++8kx//+MdMnDhxsEsQEREREREREREREcFxHL74xS8yf/58Ojo6trl/e43+rG984xuUlZXheR6O47Bw4cKBKLVXBr3hn0hkzlDwPI/x48czcuTIwS5BREREREREREREhiJvGF5kWPvWt77Fn/70JzzPwzAMPM/j4IMPZt68efzkJz/p9mz/riKRCCeffLJ//cknnxzIkrdr0Bv+o0ePBjLfjNTU1Az25kVEREREREREREREePnll7n33nsxDAPDMKiuruaJJ55g8eLF3HjjjVx88cVA787yP+2004DMie6vvPIKyWR+Yvj6atAz/MeOHesvNzY2DvbmRXoUc4PYhkN9soy1sUoS6QAkTIyUQbDNZO/76nA3NWAEg4yMRvEcB75V6KpFRGR3dv7qowFIupZ/W9q1CJgO5Xac+RunURNs7fHxufPXZLOmY05wACvu2QnvnUxrR4jm1ghOcxF2o8WI5WDHPQJxCG1OYKRczI4UZkNr5pg8pZZIvUukHsKbkhiOh70pSnrZh6QBw7J2uN3Bkt60GfPQqcRGGphxEzdtg2vgEoCgW+jyRHZL8zdOI+VZPb5OZjP7bTJ5/dks/qzs62bUCREJ9PyBPrtedsyUZ1Fpt1NJu3+9u3Wzn0/uap5AU7p4mzkG8mV7Wf624VAZaM/UZW05XrgW+5RuorGomHWxMpKOheNmziUMBBzSaYuGtmKWHZWZu++Suhn+vkDmOJVIB2jtCEHaBMvDDWbmYrHa01jRBF4wiFugJslAUx68iMjQsmDBAiDTpC8rK+OFF15gypQpOzXWjBkz/OWOjg7ef/99DjzwwLzU2ReDfob/UUcdRSQSwfM8VqxYoaa/iIiIiIiIiIiIiAyqpqYmXnrpJf/s/muuuWanm/0A48ePp7Ky0r++bNmyfJTZZ4Pe8C8uLuaUU04BwHVdfv3rXw92CSIiIiIiIiIiIjIUFTqPXxn+u42XX34Zx3HwPA/TNJkzZ06/x8yNsK+vr+/3eDtj0Bv+ANdeey3BYObn4tdddx0ffvhhIcoQERERERERERERkd3QunXrgEw+/1577UVFRUW/xywvL/eX29ra+j3ezhj0DH+A/fbbj5///Oecd955NDc3c9xxx/HLX/6ST3/604UoRwSgUyZn2jNpikcwEyZ21KD8Y4/06rUABMaPpe6iAxj1egfwdgErFhGR3dnnPjiJkJUmYLh+drRtZo5jAcPBNjK58JdXruj28bc31frLKc/yj4ORosHNTP7Ev7+CHXBojYZJNYYIbrYItUKoEYo3pomsbMH7eDVuPA6Au+UCwJvvUbosjGFZONEoAOmcsT0n/1nXO8sqL8e1DMINHp5p4gbACUFHtYsRL8g5OCK7tWvrp2by6e12ImbPr3t+fj34nxW6Xi8yU9s8Ljs3SnaOMNtwKAkkSHkW0XQI23T8x2XHyc3nj7lBOly70yl6TaliKu12IDNvQImV2Nnd71ZdR6X/nGTl7nOHa5Nyt875MqqolaRrEU/bxE0by/BIOham6VFclOSYd09jZLidUaHMHAlxJ0jYSjE+0sToUCut6RD/jIVIt0UIRCEQz8zTYmxswBlC+f3ZzP1F6/TZT0RkV5MbNV9VVZWXMTs6Ovxl27bzMmZfFezTxTnnnMPjjz/OqFGjWL9+PbNmzeLYY4/lnnvu4Y033qCpqQlnCH1IExERERERERERkQFW6HgeRfrsNgbibPzcGJ/q6uq8jNlXBTnD37KsTtcNw8DzPF5++WVefvnlnR7XMAzS6fSOVxQRERERERERERGR3dbIkSMB8DyPVatW4bouprnz58evWbOG9evX+9fHjh3b7xp3RkHO8Pc8z79kGYaxzX07cxERERERERERERER2Z5p06b5y7FYjFdeeaVf4z300EP+smVZHHHEEf0ab2cV5Ax/2HpWfz6a9NmxRPrDNhxibmYy6YQToGlDKUUxg2AzpIsMAlMm4QUDtO1dBkBsVLCA1YqIyO7snJXHEbLSlNkJbNMhYDikt2QqZ/P7A2b30YiX1M0gbKX8zP6SQCYDOpvTPLdi9aDsw97Png+AFwtA0sRKGAQTBpENYCahZF2KyIpmaGjC2ZLf3x13O/cNJU5LC9b7qykz98RuDwEQr7Iw0yapEpj04EUwPs6Hx/6ywJX2TTbbGpRvLcNL9rWvN3Kz9QE/hz836z7mBv3X1dx5UVKeRU2wlagTIpoO+Y/PTkbSgb1Nlj9AxEx2mlugxEpgB5xO1/PtplGZ/8N3NU/otF8drp3ZvuWQMrdm+cfcIHtFNrNvyUaKzBQdrk3MyTwP77WNYXy4mRHBKCVWgqgTIuYE/f1MGRYpzyQUTNGeMgi2gpVwMKMdEChYm2K7Zo2d1uPr3Pbu67qeiIgMHZMnT6a2tpaVK1cCcPvtt3P00Ufv1Fitra3ccccd/knthx12GKWlpfkqtU8KciQ95phj/J0XERERERERERERAcAzMpfhYjjVKts499xzue666wB47LHH+OUvf8l5553XpzEcx+Hcc8+lrq4OyJycfskll+S91t4qSMP/+eefL8RmRUREREREREREREQAuPLKK/npT3/Kpk2b8DyPOXPmUF9fz+WXX77NPLTdWbZsGRdeeCEvv/yyf4L75MmTOfvsswe69B4Nzd/KiYiIiIiIiIiIiIgMoOLiYn72s5/xhS98Add1cRyH+fPnc/fdd3PWWWdx6KGHApl5Zw3DYPHixTQ2NvLRRx/x3HPP8dxzz3WKrQ+HwyxcuLCg6TZq+Its0ZQuJuVmvrmrCMapHttC++pqDBc8E+qPGokTgnhN5nrl31cUuGIREdkdXVI3g+JAkqDpkHQtbDOT359yLWLpIJFAEqwkYSNJxEpyc+M+zKv6CIBr66cyYkvmdMqzqLTbO2VGD2Z+v+cakLCwNwcoaoTijR7B1jSRNVHMpnbo6CC9fsOg1DMYDMvCCNqYHSmCrQHSYQs77mHVQTps0FFhkEpEmPLRxSz7xk8LXe529SW3v7u8amX9y1CQzdjfnuz8Xrnrp7bMl5L7+pmdCyzqhPxs/ZRn+ev6Y5gORWaKaDrkL9uGQ9QJ+ePkjpdbY26tKc8i6oRoSYeB/H8myT0WXLHhEG4b/QbXb94PgJgTJOVZpF2LskAc23RIuRYlVoJIIEllIHOMqRnR2mnM7PPSkg4Td4KkPJONiTJaN5dQFDNIlYAbNPHCQYzY0J2bRRn8IiK7ps9//vP85Cc/8WN4PM9j1apV3HzzzZ3W8zyP+fPnb3Nbtrlv2zYPPPAABx988OAU3gOzoFsXERERERERERER2cLwht9Fhr8LLriARYsWMWrUKAC/iZ9t6Gcv2bP5s2f0Z28bNWoUzz77LGeeeWbB9iFLDX8RERERERERERER2a2dcMIJLF26lB/+8IeMGTPGb+p3bfJneZ5HRUUF1113He+//z6f+tSnClH2NhTpk0cbN27k4Ycf5k9/+hPLly9n/fr1eJ5HTU0N+++/P8cddxzHH38806dPxzS3/12L53k8+eST/OpXv+KNN96grq6OSCTCHnvswezZszn//POZPHnyIO2ZiIiIiIiIiIiIDFXqS+ZHeXk58+fP5+qrr+btt9/mpZdeYunSpTQ0NNDc3EwkEqG6upra2lqOP/54Dj/8cAKBodViN7yuX01InzmOw5133smCBQtob2/f4foffvgh++yzT4/3b9y4kfPOO49Fixb1uI5t2/zgBz/gyiuvHNRJINauXcsee+wBwKf4LCEjslPjDMXs1psb9/FzOT+O1fDa+gkkllQSiEEgBk4QIps8qp9bQ3r1WmBg9uOu5gmDlqEsIiLDxyV1MwCwDReAieHNmRzndIjWdJiA2TmLOmImKQkktjwmc3zLZkCnPIsO1yblWtxQ8+6g7cNeT38Dw3LxojbBzRaRDVD5QRIz5RJc04S3cRNONDpo9RSKefD+xMeV0FFhkS4ycIOQikCygl0qv7/r+t0Ziu8JZdd3/eb9/Kz5Hcm+dqY8i/pkGZV2OxEzuc06sDVnP5v9n12vKV0M4Gf2Z9fNZvHn3p693nUb2zPQnx1ub6rFNhzqk2VAZv4CgKZUsT9XQXkgk7ufW3vMDRJNh/zHZMfIHrPijs2rG/akuaGE4Jogo/+VJlQfx6prIF23bkD3aaDszLwmsvt6xn2o0CUMKbn9pvHXXUOgsqKwBfVBuqmZtd/7HwDWrFnD+PHjB3X7u1NfUnqnIF8/zJw5M6/jBQIBysvLKS8vZ+LEiUyfPp0ZM2ZQVVWV1+10J5VKcfrpp/PYY491un2fffZh7NixeJ7HunXrWL58+TY/++hOa2srM2fO5L333vNvq66uZsqUKbS1tfHee++RSqVIpVJcffXVtLW1cf311+d9v0RERERERERERGToUl9SulOQhv/zzz8/4N/+BAIBTjnlFC699NIBzU/66le/6v+nsm2byy+/nG9961v+t5JZzc3N/PWvf+X+++/f7s9mvvnNb/r/qWzb5o477uCCCy7Atm0g843nJZdcwuOPPw7ADTfcwBFHHMFnP/vZgdg9ERERERERERERGYLUl5TuFHzS3txJD3qbLrSj9T3PI5VK8cgjj3Dcccdx6aWXkkz2/ieRvfXrX/+aP/zhDwBEIhGefvppbrrppm3+UwFUVFTwla98haeffpq99tqr2/H+/e9/++MB3HPPPXzrW9/y/1MBjB8/nkcffZRjjz3Wv23+/Pm9fu5ERERERERERERkeFNfUnpSsBkFcv8h5J7t35t/IL1ZP7uO67r8+Mc/ZuPGjfzud7/b2XK30dbWxuWXX+5f/9///V+OO+64fo158803+8tHHHEEX//617tdz7IsfvrTn7L//vsD8M477/Dkk0/yuc99rl/b393Nq/rIX74gVsOo0jY+jlTghKCjCjzbIzrZIT5iAnv8ziVdt47Drr2YlskeX571cp8ykLM5mCIiIr1x6brD/Oz+gOkQMZPUJ8tIeRYRM0lZII5tOrSkw6Rdi4CZyYbO5ivXBFv9vGiADtemJR3mttFv9LqGWcs+R0sizKufeBiAff7+X7hpEy9pYiTNzGkkQRcCLnYozftH/8p/7OeOPIW2g0dTPj6z/eINLqHGDgJtSaz6VrBMcFy8AThBYyhyi2w6KiwSlQbpEHgBMFywW3f82L0fupCPz/h/A19kNwYie7qvcwKI9NftTbW9zu+PucFOr53jipqAbTP7uy53zd/PZvR3ff+fvd7h2mBmrpdYiV7vS+7cLAMp6oQ6bbOuo5LbRr/B9Zv3g8yhiSIz5ef1Z/fVNhwq7XZWxav95yzlWf5xLGImGVkcpbU1jBuAZJlFuM7B3bR5wPdpoGRf07p7PVN+v4jkk/qS+ROPx3nooa1zanzyk59k0qRJfR7ngw8+4NVXX/Wvn3XWWZ2+LBlMBTnD33VdXNfl+eefp7a2Fsg07idNmsR1113HM888w9q1a4lGo6RSKRoaGnjnnXf49a9/zRlnnEFRURGe52EYBhdffDHxeJy2tjZWrVrF448/zv/5P/+HiooKfx3P83jooYe444478rYPCxcuZPPmzBuRKVOmMGfOnH6Nl0gkeOqpp/zrF1100XbX32+//TjmmGP8648++mi/ti8iIiIiIiIiIiJDn/qS+bNw4ULOP/98zj//fC688EJKSkp2apySkhIuuOACf6yHH344z5X2XsEifR566CE+85nPsHLlSkpKSvjZz37GsmXLuPbaaznhhBMYO3YskUgEy7KorKzkgAMO4JxzzuH3v/89y5Yt46STTsJ1Xe655x5/EuA99tiDz33uc9x+++2sXLmSs846q1PT/8YbbyQWi+Wl/p///Of+8le/+tV+z0nw/PPPd6pt9uzZO3zMSSed5C8/8cQT/dq+iIiIiIiIiIiIDH3qS+bPL37xCz9B5vTTT2fMmDE7Nc7YsWP54he/6MfQ/+IXv8hjlX1TkIb/u+++y9e+9jVSqRSRSIS//e1vPf5MpDsTJkzgL3/5i9/Qf/XVV7f5Jqu0tJQHH3yQL33pS/5fWkNDQ16+XWlubub111/3rx9//PH9HvPtt7f+5K+2tpZRo0bt8DGf/OQn/eUNGzZQX1/f7zpERERERERERERkaFJfMn9aWlp49dVX/S9MzjzzzH6N95WvfMVffvHFF4nH4/0ab2cVJMP/6quvJplMYhgGCxYs4LDDDuvzGIZhcM899/D3v/+dDRs28Ic//IFvf/vbnf6xAfz4xz/miSeeoKOjA4C///3vnHvuuf2q//XXX+80d8CBBx4IZP4i77vvPl555RXWrVtHcXExEydO5IQTTmDOnDnsu+++PY65dOlSf3nvvffuVR1d11u2bBk1NTV92ZWCGep5rfeO/wdHLfkibnUSogGMtEEgauKWOlTMWs+yCRPwyscS2Ojhjt+as3npusO4c+y/O4114L/OZv+RGykPxmlJhkk4AdKeSU0oSlkgQdhKErGSnbJE72qe0GmMuRWrB3aHRURkSLqreQJN6WIC5tYsZMjkPdtkMvtb02HCVpLWZJi4axMwHMJGkkq7nWg6hG04dLg2TU6xn+Xf4dp9yu8/4q3TcTyDWCIIwORfXowXcbGSBnarQagRzCTEayySFR6pkM1ej3+T5SffB0B65SrCK1cRBqzycpyWFgzLwnMc0nl/1oa+RY/8apvbPnXphSQqTPb57UUwOoGbslh+4s+7eXRhdM2eHoj3b91lX28vD1tkZ/U2+77rOjE3mHldNR1SbmZ+lK7jZudWydX1eu76JVai2zkBemOw5gTLzg8TtpL+sejmxn06fX5JeRaVdrtfU8wNUp8s47bRb3BpvJrWdAjbcLf57DOz5n2mVqznzxxEe32YYGsJkVXF0Nj5OQvsORFSKZwNG/Gc4TMX2qyx0/T6JbITDMAYRnPA9u/c+r5TXzJ/3nrrLZwtxxXDMDrFFO2MY4891k+aSSaTvPXWW9v0qgfDoDf8169fz6JFizIbDwT6lTFVWlrK2Wefze233w5kfoLR9UkcNWoUJ598Mg899BCGYXT6BmxnLVmyxF8uKSkhGAzyzW9+k5/97Ged1uvo6KCxsZE333yTO+64g8svv5ybbroJ09z2hxWrVq3ylydMmLDN/d0ZO3YsgUCAdDrzUXnlypV9/oe5du3aPq2/fv36Pq0vIiIiIiIiIiKyO9iZvtn48eP7tP6u1JcstA8++MBfnjBhAuXl5f0ar7y8nD322IPVqzMn7r7//vu7R8P/lVde8XP199xzTyorK/s13vTp0/3ll19+udt1jj76aB566CE8z/MntOiPhoYGf7mkpISvf/3rLFy4EMjMVH3ggQdSWVnJ2rVr+fDDDwFwHIdbb72V9evX8+tf/3qbMdva2vzl3v7jMk2T4uJiWlpathmjt/bYY48+P0ZEREREREREREQ6O/zww/v8mNyz9XtjV+pLFlpzczOQObu/uro6L2OOHDnSb/g3NjbmZcy+GvSGf+43Rv1t9sPWf4Se5/lPZldjx471l5uamvq9zew/ZMhkVGX/U5111lncfvvtjB492r//7bffZs6cOf4vC37zm99w7LHHbvPLhvb2rT+HDIVCva4lHA779eSOMRwM9Z82vnLQI+z1zNcJr7MoaoZ0COyoTf26MRQ3Q3SyibFnjJJQkjea9+BzzXuQSAf4RN1XOGDkBoKmw7pYGclkgPcbRmKaHm3REJ5rYAVc2iqLAKgsilNVFCMVsigJJLCNTGyDYnxERCTlWaRci/LA1uxH23CwrczPTrNRENF0CKwkKc8k7gRJ58RKZI8tJVZih8eXc1YeR3EgycZ4KWnP5InJTzHphfNIR23MmEUgavKJFy8mGIGi1SZFLR5Wh4vV4RKIO1Qsh/YxQVJhEytlcOwT38RudwiWf4Sz5f1K9s/hFMmQb7NP+yqt+5QQ2Zjkb7++n1ljp1E+aRPlsThFbRNoqQ0T23Nr2NHBN16MZ0KiGoxSl8m/vJgPzvvpoNXb2zifruvla3u9qUGxGdJbvY3BycbzdF3fNp1t1ssdu6fHZcXcTDRah2uTcjPv/3dWyrOIOiFubtyHeVUf7fQ4O7JnaLO/vZ503d+ImfRvu3Psv7mkbgZhK7lNDFLETLJnaDMzalfy5rL9iFdbGDP2IfL6CtKbtp6sl165iuEk9zUrX6+NIrsVz8hchotBrlV9yfxxXddf7usXLz3JHScbMT/YBr3hn/2Zh+d5bNy4sd/j5U4IkR27q+LiYn+5u5+t9FUise2bsrPPPpsHH3xwm9unTZvGc889xxFHHMF7770HwHXXXcd5552Hbdv+eqlUyl8OBHr/15K7bjLZfTbk9qxZs6ZP669fv36nvq0UERERERERERHZlb322muMGTNmQLexK/UlCy17Vr/neWzYsCEvY+b2u/NxsvvOGPSGf+63TKtXr2bFihXU1tbu9Hh///vf/eWeZpDO/earpKRkp7eVlfsFAmS+zfq///f/9rh+aWkpd9xxB7NmzQIyufl/+9vfOOmkk/x1IpGIv9zdf9ye5K7bta7e6GtOmIiIiIiIiIiIiGxrzJgxA95r25X6koWWO8nw+vXrWb16da/nMOjO6tWrqaurwzCMbcYfTP0/3b2P9ttvPwB/x2+++eadHmvFihX+ZLyGYfhjd7V8+XJ/m/n4T9f1S4OTTjqJESNGbPcxn/nMZzr9Jb/44os9jhmPx+mtWCzWY10iIiIiIiIiIiKy61BfMn9mzJjh95WBbn8l0Re/+c1vgK2xPocddlj/CtxJg36G/+GHH8748eOpq6vD8zx+9rOfcdhhh/GNb3yjT+M0NTVx+umn+/8IDcPg9NNP73bd1157zV+eNGnSzhe/RddJHA455JAdPsYwDA4++GAWLVoEZL6syJX7H7O3M3q3tbV1+o+1o//c0nfF7xZRvtIlEHdxikzSYYNUsUH58iSBRJC2PS1SzcV8UFGBZ4IbzPyH/ue6Mgg7BIuTVJdHCQUyP42KJYLUlLexd1kDYStJQ0cJAdOhKthOQ6qYG2reLeTuiohIHt3VnDkzJOYG6XBtisxUnzOWU97W+V2yssvZnOhoOuRnQo+w27GLWok5QeJOEDvgdHrs9vL752+cRrkdZ1V7FXUt5SSSNnut/Aa0W4Q3ZOazCTV5FK9PUlTXCrE4FBVBKg2uA/EEXjJF0ZganLIQVn0rXmsmq9nJ+bWlgBlLUvmvDbhr6vxs5/SHHwNQ8apNyepKkm/ZHPHKRaTDBqYJwTYPO2rgBk3SvY9V7Zeecqezt+dm5g92RrUysWWgZefVykp5lv9a3uHalAQSfqZ97noRc9s4g5gbJJoOUWlnso073EyEgm06mTlYtiznvr53N053FlQv3Ym92zm9nf8Assebrcecu8f9i0vX9dz0OKJiOf+O7Ef7GIN02Ca8ZgRmSyvuMIyHEJE88LZchotBrlV9yfypqanhwAMP5J133sHzPG655RbOO++8TvPB9lZdXR233norhmHgeR777rsve+yxxwBUvWODfoY/wJVXXonneRiGgeu6XHDBBcyZM6fXWUl/+tOfOPTQQ3nrrbf8b2HGjx/PWWedtc26sViMp59+2v+mZsaMGf2uf8qUKZ2u9/YfdO56XWdp3nffff3lniYf7qpr/n7uGCIiIiIiIiIiIrJrUV8yvy644AK/T93S0sLs2bM7zRnbGxs3bmT27Nm0tLT4Y11wwQUDVPGODfoZ/gBz587l97//Pf/85z/9bz0eeOABfvWrX3Hcccdx5JFHst9++1FeXk4wGCQajbJu3TrefPNNnnzySdatW+c/eZ7nYVkW99xzT6e8qazf/va3/rdNhmHw6U9/ut/1H3DAAZ2u93bG5dxcq3A43Om+3Dii//znP6TT6R1OkvHmm2/6y5Zl5eXXCyIiIiIiIiIiIjI0qS+ZX9/85je55ZZbWLNmDYZh8O677zJ16lRuvfVWzj777E6TG3eVSqV48MEHufrqq2loaPB71ePHj+eSSy4ZxL3orCANf8MwePLJJ/nMZz7D66+/7p99n06nefbZZ3n22Wd7fGw2Ayn7BJqmyf33399poolcv/vd75g4cSKQmaD2oIMO6nf9EyZMYM8992TlypXAtj+D6Ul2fdh2guGjjz7aX47FYrzxxhscfvjh2x3vpZde8pePOOIIgsFgr+oQERERERERERGR4Ud9yfyybZvf/va3zJw5k2QyiWEYbN68ma9//etcddVVzJw5k+nTp1NTU0NJSQnRaJT6+npef/11nnvuORoaGjqdmB4Khfjtb39b0OejIA1/gPLycp5//nnmz5/P3Xffjeu6fuMftjb2c2XjezzPw/M8Jk2axH333ccxxxzT43aeeeaZAan/C1/4AnfccUevt7Fx40aWLFniXz/iiCM63T958mT23Xdf3n//fSAzScT2/mMlk0kefvhh//opp5zSp/qHgu7yX3vrsDfP4N8HP5TvknyfPfFMopMqCIwH1zZw0wZ21CHY6mElMtmV1UviFLWESJZCIGbgBsCJGKRKPMDAiaQpjSR45aBHBqxOERHJv2z2fk+yOfjXb96PIjNFxEz6t93VPMFfzmY7R8ykn9d8e1MtUSfE2kQlAcPh7nH/2u62spn/8zdO87OTbdOhxMqcnWMbDiWBBA3xYtKeRdq0mBjeTImVIOqEiDlBSqwEl1fu+ENA3AmyMVFGcyJMa3MEs8nGbjcJxKDiY5fiug7MjjTm+6tJbyeT34hGMcNh0tHoDre5u/I+WIEH3WZTp1euItDejjm+hmCTjWebGI6HkXZI1ITpqLAwXGPbQfNsexn5hczu355ZY6ft1PtKkayUZxF1QlQG2v3rtuH4r+fZ27P5+jE32Otc+0q7feu65tY5AnLnecndVm9q7e26/ZXdz75k+OceD7PuHPtv5m+cRsTKPH8pNzNPTfb5LJrSQnt9Me7aAE5ZmMCIKtz1vYv9FZFdjDL8d0h9yfz65Cc/yQMPPMB//dd/kUql/P7z5s2beeihh3jooe57kF1PTC8qKuKXv/wlRx555GCWv42CZPhnRSIR/u///b+88cYbfOMb36C4uNhv5ncne9+hhx7KPffcw5IlS7bb7B9I559/PqaZefree+89Hnvsse2u/6Mf/Yh0Og1AMBhk9uzZ26zzX//1X/7yAw88QF1dXY/j3XPPPTQ0NPjjdTd/gYiIiIiIiIiIiOxa1JfMv6985Su89NJLTJgwwT9jP3tyerYnnXuBzien77333rzyyiucccYZhdwNoMAN/6yDDjqI++67j4aGBl577TXuvvtuvvvd7/Ktb32LOXPmcMUVV/CDH/yARx99lLq6Ov79739zwQUXUFRUVLCaDzzwQM4++2z/+pw5czp9U5brd7/7nf+tG9DjbM9z586lpqYGyMx0ffbZZ9PW1rbNei+//DLf+c53/Ovf/OY3Czbrs4iIiIiIiIiIiAwe9SUHxmGHHcb777/PPffcw5QpU3p1YvrUqVP52c9+xnvvvcchhxwyyBV3r2CRPt2xbZvp06czffr0QpfSK7feeisvvvgiq1evZtOmTRx++OHMmTOHE088kcrKStasWcNDDz3En/70J/8xe++9N7fccku34xUXF3PPPffwpS99Cc/zePHFF/nEJz7B3LlzOfDAA4lGoyxatIj777/fn5Bj77335rrrrhuM3RUREREREREREZEhQH3JgREMBrngggu44IILqKur46WXXuLjjz+msbGRtrY2SktLqaqqYtKkSRx99NGMGTOm0CVvw/B6+ppCeuXdd99l9uzZ2/2ZS9a+++7LX/7yF/bZZ5/trnfHHXdw5ZVX4rrudtcbO3Ysf/vb3zrNpD3Q1q5d639r9yk+S8iI9Gu8nclZ3eupOYwYnckOHqgc/1ljpxEYN5a2w/fADRiYaQ83YFCyqh0Wv4cRDGLsPYH2vcrpqLBorTVIRzzSFQ7FNe28M2PhgNQlIiID5+bGfXaYUZzNc84uZ69395imdDEp1+qUAR13gmxOFlMcSHLv+H/0WEeHa7OgeinXb96PlJvJaG5IFQMQtjLzBpQEEnS4NjEn6Oc4p12LsaEmv6aUZ/Uqvx9g1rLPkXZNGtqLeeuw33HgnReDC0WtUPVeHHvZGtyW1m5z5yX/DMvCDIcBcKJRrJISvGQSY3ItTkmIRY/8asC2PZRy+ftDef7Sne7macl9bc+9Deh0e3fr5eou675rzn7uGDs63vS0TlO6mIZkCSnP3OFcMPmyo/ltsrJ193TsuX5z5rNr9viYndvANhzqk2UsaRnHO+9NZPRLJmUfRTHe+Qg3Hs/PTogMMc+4Azcv4XCU22+acO21BCoqCltQH6Sbm1l9ww0ArFmzhvHjxw/atne3vqT0zpCI9BnOpk6dyjvvvMOcOXOIRLpvfpeUlDBv3jz+9a9/7fA/FcBll13G3//+9x5/BlJUVMS5557LkiVL9J9KRERERERERERkN6S+pHRnSEX6DFeVlZXcd9993HHHHTz//POsXr2a5uZmqqqq2HfffTnqqKMIBoN9GvOYY45h8eLFvPfee7zxxhusW7eOcDjM+PHjOf7446kYRt90ioiIiIiIiIiISP6pLyldDZmGf2trK4sWLeKll15i6dKlNDY20tLSgud5/OY3v+GTn/xkoUvcoZKSEj7/+c/ndcz999+f/fffP69jioiIiIiIiIiIDEnelstwMURqVV9Ssgre8G9qauL666/n/vvvJxqNdrrP8zwMwyDeQ2bfV77yFR56KJN5NmHCBFas6F1GrQwNfclVnTV2GlZVJc6UiVQcbNMyYQTO2I6813TwjRcDEPwvj1CjQ2hzEiPlgmlgtcZxl36E5zh48TjWunpSB1XReACYe0X54Khfc0ndDEYXtea9LhERGTjnrz4a23QoDSQoD8SpDLT3uG5ulnJP2cvZbP/scu76KdNhdKiV8kDcz0OOuUE6XJuGZAkAZYE4Kc/iig2Zn9Cm3a1jtKTCxJ0gjRQzPtSEbTpErCQlVqJT3nNv8qG7PgdrmyroSNh8dPwv+NSlF1Ic9gjEPSIbOrDXNEIwiOf0bjzpP89xcHLeG/vL776/zbp7P3QhngkEPJafem+/t537Hm045/nPGjut2/ebubf3tI7sXrp7rczelpvLv6PX1IjZ/RwnuXO/ZP/sbqyut2fnYulaY4mVYMHYpdutJZ9y8/vnVqzm9qbabWrKSnkWHa7d41gLqpdye1MtdqD753JzvBjCDk7QJFETpnj8WIz1Gzu9HoqIiMj2FbTh/49//IOzzjqLtWvXkp072DCMXj/+qquu4g9/+AMAq1ev5tlnn+WEE04YkFpFREREREREREREZNflOA6LFy/mjTfeYM2aNbS0tBCPx/3edW8ZhsHPf/7zAapy+wrW8H/99dc58cQTtzl73zAMRowYwaZNm3Y4xqGHHsohhxzCG2+8AcDDDz+shr+IiIiIiIiIiIiI9Fo0GuUHP/gBv/jFL6ivr+/XWNnUmkI1/M1CbDQajXLKKacQi8WAzJNwxBFH8Oc//5nW1lY2btwI9O5s/y996Uv+GE8//fTAFS0iIiIiIiIiIiIDyxuGFxnW3n77bQ444ABuueUWNm7ciOd5fT6jfygpyBn+t956Kxs2bPAb+nPnzuWOO+7ANPv+/cOnP/1pvvvd7wKwcuVKNmzYwOjRo/NarxTWMd+6APcMg3TYINToMPqFBlqmVhLdEII8/aAjm09bfIaLHXWwo2msWArXzmRmGmkHVtZ1yi52GpuoeLeZ+kMrqCqOc87K4zi0fBVNqeL8FCUiIgPuy8tPIGA6hK0k5YE4RWYKgKZ0MRs6yhhd1EqJlaA+WQZk8opLAont5jn7t5lQZKY65y57iW0elx07YG7NeE55FmnXIuWZpD2LgOHQkgoTTRURMF0ChkvMDVITaO2xlrkVq3e4/5euO4zWdIiPW0eQXF5KIGFwwHsXMzKepuz9NrwPV+LG46T78JzKwDKDQcyxY/j01w7FTLoAjKw1SFQaeCYceOfF4MI7l/0UgMPePAPHzbzHLinq4MWpf+r1toZzfn9W14z+7D4px3/31d1r4+1NtT3m8+fm8mcz9rOv0z1l9vdkR/PA5M4bkB27p5z86zfvx4Lqwcnx7/qcXV65gis2HELETGKbDinXotJu5/LK3s2pd3nlik7zAmTVBFs5oGoDze1h2vYIYiUtikaWEujoAGX4i4jIAFm9ejWf+cxn2Lx5M5A5AT3b7B+uTf+CNPz/3//7f36zf+bMmdx55507PdZBBx2EZVk4Wxqx7733nhr+IiIiIiIiIiIiIrJd8+bNY/PmzX6v2vM8ZsyYwZe//GU+8YlPUFNTQ3Hx8Dq5d9Ab/m+88Yafg2QYBtdff32/xisqKmL8+PGsWrUKgBUrendWgYiIiIiIiIiIiIjsnpqbm3n44Yf9s/qDwSD3338/Z599dqFL65dBz/B/7733/OXKyko++clP9nvMiooKf7mlpaXf44mIiIiIiIiIiMjgM7zhd5Hh6YUXXvBTYwzD4MYbbxz2zX4owBn+uWf3T5w4MS9jhkIhf7mjoyMvY8rA601e6qyx0ygp+Q9GOIQXT2CUl0GoiJLVCYqabI688iL+8aN7+l1HVvm/1pIeX01gXROkUrh7jMSKJTGa20h3kxvpLFnKvneO54lXn/Bvu72pltubanudYSkiIoPvcx+cREkgSdoziZhJRtjtVAbagS0Z+q5FWSBBSzpMSzrs5/s3pYqJpkPYpkOJlegx8zmb85yVXe5u/fJAnJgTzOTwb8lCjlhJUq7F2kQlsXSQSCDJx83VOJ5B0HIYXdy23TF7k98PMCIYZWV7FU3tEUpWG4QbPIrXdWC99Lb/xleGFjeZxOzoINCWxEykMZJpylMupSELzzLwTIOOigCHXXsxiWpoH+9CxMEIOrxxwu97tY3usvtz8+6Hm2zNXd93Zt+LDsd9kvzq6bU8V8qziDohf26W7vL7u772dzd21+spz9rm9h3NDWAbDrblFPQzx22j3/Bz+OuTZX2uY27F6m5z/PeO1LOstIZ1FaXERhoEW4OY8TLMTWHceDwvtYvsrO6OGd31NHRcERk+1qxZA2RifEKhEBdddFGBK8qPQT/DP/fDo2VZeRmzqanJX849219EREREREREREREpKvW1lYgc2L6pEmTCIfDBa4oPwb9DP+amhog883Jxo0b+z1eMpn08/sBqqur+z2miIiIiIiIiIiIFIBnZC7DxXCqVTrJPXE8N0FmuBv0M/zHjRvnL69du9aP+NlZr7zySqcYnwMOOKBf44mIiIiIiIiIiIjIrm3q1Kn+8vr16wtYSX4N+hn+Rx11FEVFRSSTmVzCBx98kMsuu2ynx/vxj3/sL9fU1LD//vv3u0YZPLnZdrnZd7m3O9EoZPPzt/wZMPemo2oErRMN9n3gYt4//6d5qSe9ei0B0yI9thJcj8CaTaTr1vW4fmDPiaz50ji+vPwEyoNxqux2P3/z2vqpVNrtyvIXERliPvfBSQCkPZMyO8GoolZqgq2d1ikJJOhwbWJO0M/TT7lWp5z9JreYkkCi26zl3Nuy+cw9KbESAMScICVmws+HtgMOS1rGkXACbE5ESDoWHckA4dJ2RoVaqbTb6XDtzLo52c+9ze/PbjNkpUkkbOwqCDdAsK6FtPL7h7T0+g2wfgMOYFgWVkkJ1h6jMdIu7vJVWDMOILzJwFlrUdRsE682SZXt/Nv+4Zzfn6trlv+ssdM67VNv5peS3Vv29Rp6l9ff03rbW6c36+fef3PjPgDMq/po+8UPgL4cb3p6/LX1mUZLpd3uz5Gwd1kDa0eMIJa2MdwATlEZZRvKleEvBaX8fpFd05FHHklVVRWNjY3U1dWxYsUKamtrC11Wvw36Gf7hcJjjjz8ez/PwPI+bb76ZhoaGnRrr8ccf509/+hOGYWAYBqeddlp+ixURERERERERERGRXU4gEODSSy/1r995550FrCZ/Br3hD/Dd734XyEyIsGnTJk455RSam5v7NMZTTz3FV7/6VSAzH0AgEGDevHn5LlVEREREREREREQGkzeMLjKszZs3j2nTpuF5Hj/96U9ZtGhRoUvqt4I0/I866ihOP/10PC/zv+LVV19l6tSp/PznPyeajW7phuM4/OMf/+Css87ilFNOoa2tDc/zMAyDb3/72+y5556DtAciIiIiIiIiIiIiMpwFg0GeeOIJ9t13X1KpFF/4whe46667cIZxzOmgZ/hn/eIXv2D58uW88cYbGIbBunXruOCCC7jkkkuYPHkygN/Mv/TSS/E8j1WrVhGLxTrd53kexx13HDfffHOhdkXypKesO6uqEqOyAm9zI0Z1Fck9KvE2t+OZ4AbBDeb369T0ylWwchWGZe0wwzi9chUl68cC0JIM09BRDEDAcIkEkjvMbRYRkcGXdk0CpkvISlEVbCdiZfL2U55F1AlRYmVy+TtcG8jk3OcqMROkXIvKnHlbcmVf+7NZxLbhEHOD22Ttd3pMdn4Aw/HrKDJTjIs0s6q9irRrkkpbmKaH45q0pMIQzuRJ24az0znK44qauGnU27AX7L/sYtwAeEUFe3soO8FzHJyWFiyAmmqMKXtjxVIAWDGDqlialr1DNFZsf5ztZQ7vqnnE3c1NoBz/3dPcitXc1Txhu+vsKFe/p9f5vuTx92b9rrJzxtzVPKHfmfqFUBNsJeVZNKW2zotzSNkqYvsEeaNoPFEzjBM0KVlZTSCdxosnMnO8iQxBu+rxUmRX9+KLLwJw0003ccUVV7B8+XL+z//5P9x666188YtfZPr06dTU1BAKhfo89jHHHJPvcnulYJ/oIpEITz31FF/+8pd5/vnn/eZ9KpXiP//5j7+e53m89957/q8BAD+z3/M8PvvZz7Jw4UJMsyA/VhARERERERERERGRYei4447DMAz/erbnvHbtWu66666dHtcwDNLpdD5K7LOCdslHjhzJs88+y4033khlZaV/e7ahn73k3gaZLwHKy8u58cYbefzxxykrKytI/SIiIiIiIiIiIpI/hjf8LjL8dXeyefb2nb0USsFPizcMg3nz5rFmzRp++tOfcvLJJ1NZWdntkxQKhfj0pz/Nj370I1auXMm8efM6fQMjIiIiIiIiIiIiItJb2eb8UGra98eQCWkNh8NceOGFXHjhhQBs3LiRhoYGmpubiUQiVFdXM3r0aAKBIVOyDALDsmj/1CQ6KiwcewxeAIw0sHeIQIeHEwQn4rLX499k+cn35W273WW69qR04T/5/Y/e5tJ1h5HyTN7YtAfBQJpwIEV9ogRGKQdWRGSoOOG9kwmYLgHDpTqYyeAvMlN+bn7KtYiSyc/PZvdX2u3UJ8soD8T9cXrK78/yc/zTISrtdppSxds8JuZunRvANjO3Z7P7ATpcm30i9ZQFEqxor6Y9WUQiFcAyXYoDSWzD4fLKFf16PnLznosaIdToYLS292tMKQynpQUjGsVzHKyD9svc6BokxkXYfLCHV5Hq8bFd3+8sWvd2t1n2u0o2cU85/dn9lt1Tb3L8tyebpb8z+prb35Pbm2r7fVwYbHMrVnNt/VRSnsXHsRpSrkVVsJ0RRVEmj6mnLlJOa02Epk2llFQUUbS6GT5Uhr8Mvu6OlT3dv6seP0V2Vd/73vcKXULeDdnu+ahRoxg1alShyxAREREREREREZHB4m25DBfDqVbZxq7Y8C94pI+IiIiIiIiIiIiIiPSfGv4iIiIiIiIiIiIiIruAIRvpIwJg1Yxkw4wAqTIXgo6f03/wjRfjBQzsKDjFBm5xfnIv+yo3m+/Osf8G4IhNe2CbDiErTchKF6QuERHp7Esff4aA4TI60kZxIElpIOFnJne4NlE3hG062KZDyrVIuRY1wVaaUsU0pYoBiDlBKu32HnOaU55FyrOImJl8fdtwSJmZ2yrtdn8dgKZUsb8csTLjpVyLkkACwM/xT3kWEStJYEvG/4jidqpDMcJb5h3Il0kPXkQJYEfTeGXFeRtXBo8ZDmNOHA+xOO6yj8GyMCvKKXE8Jq+2eOrxB7d5THeZwtn3NrnvcXbF7OGecvx3dJ9IocTcoH9s6Um+5gIYbDXBVgAaU8WMKmolYiWpCbZiGy6JdIBE0qZ9TBFmOghUYH2YmevNc4bn/srwtb25XnTcEJGhRA1/ERERERERERERGRo8MIZTLv5wqlV2C3lt+M+cOTOfw/WZYRg8++yzBa1BRERERERERERERIa3RCLBv//9b1avXk1TUxNtbW2UlpZSWVnJxIkTmT59OqFQqNBlbiOvDf/nn38ewzDyOWSveZ5XsG2LiIiIiIiIiIiIyPDW0dHBwoULuffee1m8eDHOdiLkAoEA06dP54ILLuCss84iGAwOYqU9K3ikj+d1/t1Lb5r2O/MYGZ7S6zdQfWgx8ZTNG4f+fuvtITDTUNQMnmnS4djs9fg3/Yz/fNjZvNqDqtdRGkhQHojnrRYREdl5X/r4M4SsFNXBdsLZvPwtufq24ZDyLIrMVKflaDpEfbLMz94Hus1Obkpn8u4rA1vHirmZN3nZrP/s7dllwM/qz70vm9vv5/9nM/pNKLfjjCpuo6ooRlWwnfJAnHlVH+XtORozbQOta8cQGx2kJOnmbVwZPG48jtnQBBXlmGPH4G1uIL1+A4sWL+rTOF3z63fF/P6s7L5m9zd3X5XjL3MrVne6flfzhE7XU541qJn5XeePGeztD6Tsc31+60Ra0yFSnkV5ACaGNzMiGGVFSTUvrzwAXAMnGKTiiGlYazaRrltX4Mpld5M9Tuj4ILLrWrRoEd/4xjdYv349sG0PuqtUKsWrr77Kq6++yjXXXMP999/PZz7zmcEodbvMfA/oeV6fLpBp2GcvvXlM7vrZbYqIiIiIiIiIiMgw5w3Diwx7N9xwA5/97GdZt25dp5719uT2puvq6pg9ezY/+MEPBrzWHcnrGf6u27czwl544QXOP/98Vq1ahed5jB49mq985Sscd9xxHHjggYwYMYLi4mLa29tpaGhgyZIlvPDCC/z2t79l48aNGIZBbW0tDzzwAMccc0w+d0VEREREREREREREdnF333033/ve94DOTfxwOMz06dOZNm0a1dXVfp968+bNvP3227z++uvE4/FOj1mwYAEjRozgoosuKtj+FCzS5/e//z3nnnsu6XSaQCDA9773Pa688spus47KysooKyujtraWU089lZtuuolbb72V66+/npUrV/KZz3yG3/zmN5xxxhkF2BMRERERERERERERGW5Wr17NFVdc0alpP3r0aL7//e9z1llnUVpa2uNjo9EoCxcu5LrrrmP9+vV+es3ll1/OZz/7WSZMmNDjYwdSQRr+77zzDueddx6pVArbtvnzn//M7Nmze/34YDDId7/7XQ499FBOOeUUUqkU5557Lvvttx9Tp04dwMplMGVz8Y5asnen/P7Jv74IsyyT31+6NkWk3iJRYZKoyt8/597k1faU23fv+H/krQ4REdl5p344i6qiGKNCrQAETIdxRU2d8vSzy9F0yM/rj6ZDAESspJ+nX58syzzGdCixEjSliikJJEi5Fra5dZxsxnJuln+ubOZyxEyS8ixSnuVvrySQ6JTfn1tb2rP8/P60a7Ggemlen6t1myoIlkEgZlJsGWh2pOEpvWkzbNqMYVl425lcbEfvc3bl3P6eZDP7ld2/e+ua29/TfXc1Tyh4fn532/fnfhmmwlaSuBOkJRVmXHkTACVWgikl63mhZhId6SLMtEFHdRGGO4JAqAi3LIxbZBNojuHVbwbAbWnd7mugSH/15VixOx5T82K4xeQMp1plGwsWLKCjo8Nv+M+cOZNHHnmEsrKyHT62pKTEn7D39NNP55lnnsEwDDo6Ovj+97/P/fffP9DldyvvGf69cdVVV5FMJjEMg6uvvrpPzf5cs2fP5uqrrwYgmUxy1VVX5bNMEREREREREREREdkFpdNpHn30Uf/M/AMOOICnnnqqV83+XKWlpfzlL3/xT0T3PI9HHnkEp0BfQA96w3/dunU888wzmY2bJnPnzu3XeN/+9rexLAvP83j66af9WZRFRERERERERERERLrzj3/8g7a2NjzPwzAMbrvtNmzb3qmxbNvmtttu8yf8bWtr4x//KEwKyKA3/P/xj3/4T2JtbS01NTX9Gq+mpoba2lr/+ssvv9zfEkVERERERERERERkF7ZixQp/uaKigk9/+tP9Gu/Tn/40lZWV/vXly5f3a7ydNegZ/qtWrfKXc5+A/sgdZ/XqnnMXZXjJZt29su6RTrePPngDa9eNoKM1yIh3kkSWNlPW0UHbERPZ69ELWP6Fe/u8jd6wqioxKivwikMYm5oA5buKiAxVX15+AiErTdK1GFWUALZm9tuGQ8wNdsrPrwm2+o/N5vSnPIv6ZBmVdrufqR8hiR1wqLTbiTpbc/+7ys3iz8puGyDmBqlPlvnXbcMhmg5l5gXIeUw0HcI2Haq2bMc2HG4Y/W4en6mMj47/BdNevxiAjkqb8A4y4GVo++uaN7q9XTnC21Jmv+yMbJ7/Xc2FmYgv93iSq9DzCvTH/I2Z16ewlSTphlkVryZsZebFsQ2H2nGbqC8rpa0mgpW0SYeLCVaGMFwPz9yS619bQWhDO2aqBiOaIL1y1fY2KbJTdMwYHIaXuQwXw6lW6ay+vh4AwzDYc889/Rz/nWUYBhMnTqSpKTMXzaZNm/pd484Y9DP80+k0kMky2rBhQ17GzB0nO76IiIiIiIiIiIiISHcsK+cErVQqL2Pm5vabZkGmzx38hv+YMWP85bVr1/LBBx/0a7z333+fNWvW+N/AjB49ul/jiYiIiIiIiIiIiMiuLRs173keq1at6nfTP5VKsXLlym3GH2yD3vA/4IADAPwG/fXXX9+v8bKPz06IkJ0NWURERERERERERESkO5MmTfKXo9Eojz/+eL/Ge/zxx2lra+t2/ME06A3/Qw89lL333hvINOl/+9vfctNNN+3UWDfeeCO//e1v/S8P9tprLw499NC81SqFtWjd293m47049U8sP/HnlKz3SJUHSUwaSdsRE4nVWN2M0rO+5tgaRUWkR5XT+IkKNn5+rz49VkREBs85K4+jPBhndKiVvSKbAYhYSUoCiU6Z+REzSaXd3jm/33CoDGzN5c9m9Ffa7UTMpJ/rn/IsSqzM3AApzyLqhPyc/9wM/uz9ueNn/ywPxP2sf8jMHdDh2thG5s8O185k+ruZMSvtdm6oyX9+/6QHLwIgHYFkGXRUWBhW346pMjR0995p1thp/kW6l31ucv/U8yW9MbdiNXMrVm/zup9vuceWuRWrO2X1dz3uFGpegf64YsMhpDyLsJXCNlwAPopWs7GjjLgTJOYGqQ7FqCltI1wRp3Uvj4apJpun2rROCNI23qZ9VICOygAdNcUYaVf5/TJg+nJ80LFEZOg7/PDDGTFiBIZh4HkeV1xxBa2trTt+YDdaW1u58sor/T51VVUVhx9+eD7L7bWCBAl95zvfwfM8/8n87ne/y2mnncb777/fq8cvW7aMU089lWuuucYfwzAMvvOd7wxw5SIiIiIiIiIiIiIy3BmGwZe//GW/t7xq1SqOP/546urq+jTOunXrOOGEE1i5cqU/1llnndXvSYB3VqAQGz3//PN55JFHeOKJJ/yG/eOPP87jjz/OoYceynHHHcfUqVMZMWIEkUiEWCzG5s2beffdd3nhhRdYvHgxgP8EApx00kmcf/75hdgdERERERERERERERlmvve97/HrX/+aaDSKYRi8+eabTJkyhcsvv5z/+q//ora2tsfHrly5kl/84hfcfvvttLe3+33u0tJSFixYMIh70VlBGv4ADz/8MF/84hd56qmn/Ka953m8/vrrfkO/O9msfsMw/Cdx1qxZPPzww4NStxTe3s+ej9ccJDzRIFVs4wQzMQSeCcu/cG+Pj+vvz+nS6zcQME0q0iNo2r+kX2OJiMjAOGflcZTb8S2xAA626WCTiT6IpkMQgIiZ7BStk41CyI1IAOhwbVKuhW06pNyt67Smw5lxLadzJI/hEHVCFJmpbW7DzGw3q1PMj7l1u0VmZpKobFxQNioodzv5NPnXF/m/9wy2guGCmQZzZDVu3bq8b08GTncxiLJz9FxKX11euWJAo3Syx6qUZ3F7U22n48FAHBsG222j3wDg5sZ9WJeoJOHYAFQF2ykPxAGoqWilPlnGyqIEHwccWpuKSW+ycYMGhgtGGpyQQXSMTdH4kVSvWosbjxdsn2TXNmvstO0eKxTlkwfelstwMZxqlW2MHDmS++67j7PPPts/uby9vZ3/+Z//4X/+53+YOHEiBx10ENXV1RQXF9Pe3k5DQwNvv/02q1ZlIuRyk2wsy+JnP/sZ1dXVBdungjX8i4qKeOyxx7j11lu5/vrrSSQSnX7mkG3s58o2+bP3FxUVce2113L11VcTCBRsV0RERERERERERERkGDrzzDNpaWnh//v//j/S6bTfvIfMWfzZxn6u3N51dn3btvnJT37C6aefPmi1d6cgGf5ZlmUxf/58li1bxrx58xg1ahSe53Xb7Af8+2pqapg3bx7Lli3jO9/5jpr9IiIiIiIiIiIiIrJTvvnNb/LPf/6TAw44YJuEme50PTH9oIMO4tVXX2XOnDmDVnNPhkSnfMKECdx4443ceOONLFu2jNdee40VK1bQ3NxMNBqluLiYiooK9tprLw477DD222+/QpcsIiIiIiIiIiIiIruIQw45hCVLlvD000/z85//nBdffJGNGzf2uP6oUaM49thjmTNnDp/+9KcHsdLtGxIN/1xTpkxhypQphS5DhrDRI1tYHxtBssIgHTFIT0iwz7h6Fk15gimvfA2AZUf9utNjjrr8Qkp4tV/btaoqSU+sITohRNsehZllW0REujdr2ecosZOErBRlgQQRK5OXX2SmiJhJUp5FlBAdrr3DPPxsZn5loJ2mdDExJ8iaeCXRVBEldgcJx2ZzspjRoVbGFTVhG06nfP7sGFkxJ5iZC8DOZDB3uDZFZiqT079ltagTAjLzBnSQyS7OzhsQsZJ+tn/euQZ2FA6+8WIim1ysDo9gaxpsGzMcVv7xEJabHTxr7LROecLKDu6fnrKZd5TZLLu3uRWrAfqV5d/TnDI93ba9OoajeVUfAXD95v1YEaumMVlMY7KYqmA7EdMi7VqU2QlGlbZRFk4QHVFE68cV4BhYCYOECaMPXc+6TRVULd0X/vFWQfdHdm25x9qux4aux2jpO8PLXIaL4VSr9M6JJ57IiSeeCMCqVatYtWoVTU1NRKNRSkpKqKysZOLEiUycOLHAlXZvyDX8RUREREREREREREQKbSg39ntS0Ax/ERERERERERERERHJDzX8RURERERERERERER2AYr0kWHl+s37sbmlBCNh4lSl+fCkn3W633O7z9ZPhwysqfvivPv+Tm/baWwisKkKb88w8QkDlKUsIiJ9ds7K4/z8/uJAkkq7vVNOf8qz/Iz8ykC7/7iuWckpz/Iz9iGToV8SSNCSDpNwbJo6wmxsL2VEpJ2Ek3kLFTG3bg+gxEpsM25NsNW/LZvfn5v5H3ODFJkpf7tZJYEE0XTIv3555Yp8PF2+WWOnMWnv9TgjSnAiNoG2JLguZn0z6bp1ed2W5FduVv+idW+zaN3bfo6/DAw9t9JbXTP0b2+q7XX+ftQJUWSmer3+9rY7nC2oXsr8jdNoTYewDZcNiTIAyu04VcF2qoKZY7ltOHxYUUNdWzmOZ3DkqJWUBeLEqoM8e9gMRv2jkHshkqH5dfpBufiSZ5s2bSKeM0dZcXExI0aM6Pe4DQ0NtLdv/ZwZiUSorq7u97j9kdeG/+rVW99kjB49mmAwmM/hh20tIiIiIiIiIiIiIjL4NmzYwOTJk/3GvG3bPPfccxx55JH9HnvFihUcf/zxxGIxACoqKvjwww+pqqrq99g7K6+RPnvuuSe1tbXU1tby8ssv53PoYV2LiIiIiIiIiIiIiAy+a665hmg0iudlfjpy55135qXZDzB9+nR++tOf4nkenufR3NzM9ddfn5exd1beM/yzT9xQMJRqEREREREREREREZHBs379en75y19iGAaGYXDiiSdy4YUX5nUbX/3qVznttNOATD/6nnvuobGxMa/b6Iu8Z/gbRvcZ6oUwlGqRvsvm0mbd1TyBBdVLWXD0UgAO/NfZ2zzGWR8mvN7k4JcvxjPBDYCVhPLNadKVEQJVlTiNTTvcthkOY0zaE2dJZluGZZE46VDWTsv8lzHSmu9aRGQoOGflcSQcmzI7QVWwnfJAvFM+PmSy+YvMbedesQ2HmBukPlnm5/BnM/Mr7XawoClVTNq1SLsm4UBmjLRrErLSpF2LmBsklbSIWElKrIQ/bnZsgGg6lMnj3zKPQG42c+6cAdkc/5gT7DQvQMwJ+mPnW/rjFfBx5gwQd8tt7vYeIAXXNQtYmcADI/d9aPY5zn1fKtJbl1eu4K7mCb1aN+Zkjhtdj2Pdyc47EzGTu1R+f1bESmIbDinPojoIGxJlNHSUMLlkI5V2O02pYgD2L13PnsUNnZ4z23BoPyKG8+6hBNqSWE0xvPrNOC0thdodEX++Heklj+GV4T+cat0NPfjggzhO5rOVaZrcfPPNA7Kd2267jb/85S84jkMqleLBBx9k7ty5A7KtHVHXUkRERERERERERER2Ob/73e+AzInhn/vc5zjooIMGZDu1tbWcfPLJfuLMgw8+OCDb6Y28n+Gf9fbbbxMIDNjwveJ5ns7yFxEREREREREREdnNxONx3n77bb8//IUvfGFAt3faaafx6KOP4nkeb775Jh0dHRQVFQ3oNrszIB15z/O48sorB2LoXjMMQxn+IiIiIiIiIiIiw4jhZS7DxXCqdXezePFiP87HMAw+//nPD+j2PvvZz/rL6XSaN954g09+8pMDus3uDEjDfyg023Vm/64hNz/1gY8/yQN8kjcO/T0AoWCKUz+cRcIJsGjKExzwz3Mof98k1ORipsBwPcyURyCe+Y/99O9/wedmnk6gsiKTWbwdbjxOYP0mrJISnGgUa88JbD4wQHy8Q7A6Tm1l84Dut4iIbN/5q48mls5kHZfZCQ4sXQtkspLnb5zm5xqXBBLbzUKOmEkiRVvvr7Tbga35/rbpEDAd9izeOuFS3LVJuRZJ18I2HP8x2W1mdWxZzzYdP5s/YmXuj7lBImaSlGdRGWgn5ga3rr9lDoCUZ/m1ZPP/C035s4WTfe71/A+e3Oz+3OdeWf7SV73J2L+reQLjirqfayzmBv1jQ5ZtOFxeuf3PNMPZgurMXGq3N9UCUBaIszZRyZKWcVQVxTLHZ8Nhn0g9JV6Cj2M1AFRtmQPn+L0/5B+HTyMQK6J4YzElq0sx33wfNx4v2D7J8JM7l0vua3/usVjHBJGhbdWqVf5yeXk51dXVA7q9ESNGUFlZSVNT5pi+fPnygjT8857h73lewZv92TpEREREREREREREZPeTbbwbhsGYMWMGZZujR4/eZvuDLa9n+H/ve9/L53B5s9deexW6BBEREREREREREREZJC0tLf5yaWnpoGyzpKTEX25tbR2UbXa1WzT8RUREREREREREZBjwtlyGi+FU624mO2Gu53ls2rRpULbZ0NDgL9u2PSjb7GpAMvxFBkIqbZFKW9Q+MQcjaWJVdVBWlCDlZjKOOxI24fTW9a2Ei5V0CbQlMd56n5P2PAystXjJnrOcc6U3bcY4/EBaJ5cQH2Hw7tyfDsRuiYhIH11SNwPbdCgPxikNJCgPxEl5FtF0Jue+pwzk3sjmI9cny4i5Qf+28mCcykAmqz97e/a+7GNyb095FiVWAqzMcodrU7klVxgycwfE3GCm5gBE0yFs08E2HYrMlP+YgbQzefzKjx88XbOC9dwPvp7+j3TNchbJh7kVq7mreYI/p0uJleh0zMjO65Jdd3eRnafgruYJNKSKGRdJ0tBRQtrLpBPXxSoYF2kmbKYoC8T9eXUq7Xb+ts/+kDSJjbZo3jvCOGsK9kfrSa/fgGFZeI7T43Zl99b1Nb4vr/k6RogMLZWVlf5yfX39oGwzdzu52x9Mec/wFxEREREREREREREppD333NNfjsVivPXWWwO6vbfffptoNNrt9geTGv4iIiIiIiIiIiIisks5+OCDgcykvQBPPfXUgG7vySef7Hb7g00NfxERERERERERERkSDG/4XWRoqqqq4sADDwQyOf5333038Xh8QLYVj8e5++67/S8X9t9/f0aMGDEg29oRZfjLsPHOjIUATHnlayRjNt7GEHUfjccNeuzzzkV4AY/mKR5m2sANQMUHNsE2j1DAJDDjADzLwEy6JMttwnVRnCVL/bG7y9ibNXYaHSNCbDg2jWHCqR/O4s+TFg3a/oqISPfuHvcvAOZvnEal3e5n3dumw+1NtdiG0ynrOJuB3BeVdjuk8McpMlP+fRGz+7lgut4edTJzCpRYCSKBbR8TMZPYtkPUCVESSNDh2p22A1u3j5vJL85nbrMy4Yeu7PsS/R0VVvb57ynHH/qW6yyyI03pYoBtjgWQOZbtTtn9Xc2tWA1d9v+Yd0+jNR5ic7yY6nA7VUUxaoKtQGZenRGjW9i8rhzDtQi2Qv0hYYr2rqXyvZGYH63FbWlVjr90a0c5/LlzvOhYLTL0nX766bzzzjsArFu3jptuuonrrrsu79u55ZZbqKurAzK/KDjzzDPzvo3e0hn+IiIiIiIiIiIiIrLLufDCCwmFQhiGged5/OAHP2DhwoV53cbvfvc7brjhBv/s/mAwyAUXXJDXbfSFGv4iIiIiIiIiIiIyNHjD8CJDVk1NDZdeeime52EYBq7rcv755/OjH/0Iz+v/X97tt9/Oeeedh+d5/ja+/e1vM2rUqDxUv3PU8BcRERERERERERGRXdKCBQvYb7/9gEzcTiqVYt68eRx55JE8+eSTfW78e57HU089xVFHHcVVV11FKpXyx9533335/ve/n+9d6BNl+Muws+yoX7PXoxfgGZAudTE7DNygh1nVwUfH/4K9Hv8mANHxAdyAQdlKGzdgY7hguOAEYePhlYwecxj2on/3mM2XyeWD8PQj2e/Ej/jj3s8M5m6KiMgO3DRq6+t3Ns+/a17/zuT3QyY7P+YG/Vz+7Y2T8qxut1sZaCflWd3e393jSqxEp/ubnGLiTpCUlzk/oyTQ+f6+UL7s8KK/L5Hdz13NE/zsfttwdvr4tTuYvzHzGrl3WQOvtU0gbtokggHCVpKmdDEt6TBt6RATypppi4VIxSxiozPHUidkEGwrpvQjsKoq8ZIpnJaWQu6ODEEDNT9L7rg61osMrnA4zKOPPsrRRx/N5s2b/Xiff/3rX5x88smMGzeOz33uc0yfPp2DDz6YmpoaKioqKC4upr29nZaWFurr63nzzTd5/fXXeeKJJ1i7di2Af1a/53lUV1fz6KOPEg6HC7q/aviLiIiIiIiIiIiIyC5r8uTJ/O1vf+PUU09l5cqVft6+53msXbuWe++9l3vvvbdXY2V/EWAYht/snzhxIn/+85/Zd999B2wfekuRPiIiIiIiIiIiIjI0FDqPXxn+u6wDDzyQt956iy996UvdNu17e+n6mC984Qu89dZbHHTQQQXewww1/EVERERERERERERkl1dWVsZDDz3En/70Jz75yU/6TXvY2vzf3gXwH3PkkUfy6KOP8sc//pHy8vJC7lYnivSRYWn5F+5l/sZpPL9+EvXrK7AaA3x4/C8y9518HwB7Pf5NwtUxWvYM4CQtAhuC2K0G//nWTzODXLjj7WQy9gYmv09ERPKnJtjK5ZUruKt5ArA1c39uxepO62Xv70523buaJxAxk4wraqIpVUzKs/x1cpdtw9luRn92nex6uXVlr8fcoJ/dnztGzA3666S3/JmdT6CvlBErsnMy8znp/48MjrkVq7l+836UWIkejynZY1jXY9vuJjuHzyV1Mxhd3kqJnaSqKEbYSvG3DfviuCaW6RIOpKgpbyMeSdCwqYzgmiAAiQqTshFVeA2NuNFoIXdFhoCdyevf0bFh1thpOxx3oOYJEJHeO+WUUzjllFN47bXXeOSRR3jppZdYvHgxyWTPn7ts22b69OkcffTRfOELX2DGjBmDWHHvqeEvIiIiIiIiIiIiIrudww8/nMMPPxyARCLB8uXLaWxspLGxkba2NkpLS6mqqqKqqoq99tqLUChU4Ip3TA1/ERERERERERERGRIML3MZLoZTrbJ9oVCI/fffv9Bl9Jsa/iIiIiIiIiIiIiIig2Dp0qXceuutQGbegJ///Od5HV8Nfxm2bhr1Nox6Gz7R/f3ZLP+9nz2f5Z+5f/AKExGRQddT3nFfXFs/lUq7HdiasV8SSBBNh4g6ISoD7f62stn9XbfdNc8/u05362bz/XOlPIuoE6LITFEeiNOSDhPOuf+u5gm7fXbzriKb3auM+KEtN2NZf1cyGKJOaLs5/rLV3eP+xQXekYTNFBsSZayLleG4JgDJdADbdKgsipNMByirbKclZeA0B8A1SI8sJRCL4zU2FXgvpNB6k7ffdX0Rkf5at24dv/jFL/xJgHf5hn9jYyNLly6lsbGRlpYWXNdl1qxZjBo1qtCliYiIiIiIiIiIyEDytlyGi+FUqwwpnuf5Tf98GhIN//r6en784x/zxz/+kWXLlm1z/zPPPNNtw/+BBx5gzZo1AIwdO5Y5c+YMeK0iIiIiIiIiIiIiIkNRwRv+t956KwsWLCCZTOJ5234ltr1vOaLRKN///vcxDAPLsjj55JP1SwARERERERERERER2S2Zhdqw4zh88YtfZP78+XR0dGxzf29+zvCNb3yDsrIyPM/DcRwWLlw4EKXKIFq07u1O+Xl9ydLryccnPNDvMUREZGibW7Gau5on+Mu5f3Zdryc1wVYur1wBZPL1O1ybDtem0m6nMtC+TW5/7iV7XzZzuet6ETPpr9edlGcRc4NEnRAAHa5NzAliGw4B06E1HSLmBom5wZ15ekSkn5TZLIOhxEoov7+P7h3/D+4c+28SToCQlSYUSBFP2SQdi9aOEAHTJRhIYwccrEgaN+jhRKB1rzBuTUWhy5chIB89BxGRoaZgDf9vfetb/OlPf/KzijzP4+CDD2bevHn85Cc/6fZs/64ikQgnn3yyf/3JJ58cyJJFRERERERERERkoHnD6CIyxBSk4f/yyy9z7733YhgGhmFQXV3NE088weLFi7nxxhu5+OKLgd6d5X/aaacBmUkOXnnlFZLJ5ECWLiIiIiIiIiIiIiIyJBWk4b9gwQIg06QvLS3lhRde4KSTTtqpsWbMmOEvd3R08P777+elRhERERERERERERGR4WTQJ+1tamripZde8s/ev+aaa5gyZcpOjzd+/HgqKytpamoCYNmyZRx44IF5qVUGR3eZecrRExGRvsrN599eVn/2vq6Z/1mXV65g/sZMXnfEyvxyMJvP31Ouctfbt5e/nJv1DxBzg3S4NiVWAsxMfn/KzWT9t6ZDtKTCLG0YxSFlq3qcA0CGvkXr3u6UA69M+KEv+3fUm/els8ZO0/tX6bfs8SHmBomYyW7vk+79edIiAI5463RiiSBO2sQ0PVYDQSvzvLkpCzNt4JkQiHtgmpjhMG48XsDKpdD0+i0iu6JBb/i//PLLOE7mgGtZFnPmzOn3mDU1NX7Dv76+vt/jiYiIiIiIiIiIyOAzvMxluBhOtcruYdAjfdatWwdk8vn32msvKioq+j1meXm5v9zW1tbv8UREREREREREREREhptBb/g3Njb6y1VVVXkZs6Ojw1+2bTsvY4qIiIiIiIiIiIiIDCeDHukzEGfj58b4VFdX52VMGXjKyRMRkaHgruYJ2+T41wRb/bz8nclNzj4mO0Zu/n/uuJDJ7I85QWJOkJRn0ZYOkXItkq5F2rVYHyulpKijT3UoH35o6ZrfL8NPT3+H+nuVfJpX9ZG/nJ1nJvc4IjvW0FKMk7TAM3AMDydiUlEcpb69BDoy5zsa7paVXRcjGARl+O/2cl/Ld9Sn6O54oN7GAPC2XIaL4VSr7BYG/Qz/kSNHAuB5HqtWrcJ13R08YvvWrFnD+vXr/etjx47t13giIiIiIiIiIiIiIsPRoDf8p03b+k1oLBbjlVde6dd4Dz30kL9sWRZHHHFEv8YTERERERERERERERmOBr3hP3nyZGprazEMA4Dbb799p8dqbW3ljjvuwDAMDMPgsMMOo7S0NF+lioiIiIiIiIiIiIgMG4Pe8Ac499xz8TwPz/N47LHH+OUvf9nnMRzH4dxzz6Wurg7Py4RlXXLJJfkuVbbjwcXvsWjd233Kq1O2nYiIDCUpz/LzkXPVdVTSlCoGMrnJUSdEzA12u253Y3S3Xq6YG6QpVUzUCdGSDpPyLFrTITYkylgVrWRp4ygW1+3Bv9+vZcPiMaz9sIa6jkpga65zT5QpPvTo72R409+fDJa7mif4l65zy0jvmKaHGdgSG5ywaGmO0BArxjIyPQPDBSsBdtQhXR7CGFNTwGplKOlrbyOXjhP5Z3jD7yIylBSk4X/llVdSU1ODYRh4nsecOXO49dZbcZzeTUS0bNkyZs6cyeOPP+6f3T958mTOPvvsAa5cRERERERERERERGRoChRio8XFxfzsZz/jC1/4Aq7r4jgO8+fP5+677+ass87i0EMPBTIT+xqGweLFi2lsbOSjjz7iueee47nnnvN/IQAQDodZuHChHxMkIiIiIiIiIiIiIrK7KUjDH+Dzn/88P/nJT/wYHs/zWLVqFTfffHOn9TzPY/78+dvclm3u27bNAw88wMEHHzw4hUu3Fq17Wz9jExGRYSXmBgGYV/XRNvc1JouJpYNQDDXBVorMFB2uDWYm4idX1+sAETPZ430pz6LDtam020l5FivbxxNNBWlJhGmLF5FMBvBcA881KFti45nQkbZYG6tkXFET9ckyQFEPIoOpN+9zZ42d5r8nVoyl7Iy5Fav92LZr66dSabf796U8q9tjinTmpE3clAUdJmbchHiQxrUjSdekMOMmgZiBHQUz7RL8cAPpunWFLlmGmZ6OB3rtF5GdMVAnrxck0ifrggsuYNGiRYwaNQrYupPZhn72kj2bP3tGf/a2UaNG8eyzz3LmmWcWbB9EREREREREREQkT7xheBHZCdled74VtOEPcMIJJ7B06VJ++MMfMmbMGH9Huzb5szzPo6Kiguuuu47333+fT33qU4UoW0RERERERERERESkT0444QRc1/Wj7vOtYJE+ucrLy5k/fz5XX301b7/9Ni+99BJLly6loaGB5uZmIpEI1dXV1NbWcvzxx3P44YcTCAyJ0kVERERERERERERkF9XW1kZLSwuu6zJ69GiCwWChS9quIdU1N02Tgw8+WHn8uwFl24mISKF1uHaP94WtJFXBdiJWkpRndbovm/1vG46fp5zyLFKeRTQdotJu7zZnOeYGWZeoJLxlzJZ0mIiZJO2axNM27R1B4m0hcAxIG5nsYSDc4AEG7zeMBOCAsnXM3ziNm0bpWCoy1GhOK+mvuRWrub2plpJAotOxJPdYdFfzBOZWaC6X7riJAEbUwkwaGC64RR6GC2abRbDJJNgMRS0egbYkuG6hy5Uhorf9Cb3GD6LhFpMznGqVXnnuuef44x//yEsvvcSyZcs6nYX/zDPPMHPmzG0es3jxYtrbM/PvVFRUcNBBBw1avV0NqYa/iIiIiIiIiIiIiMhge/XVV7n44otZsmQJsG3G/vYm2f3973/PbbfdBkBZWRnr168nFAoNXLHbUfAMfxERERERERERERGRQrnzzjs59thjWbJkSZ8a/Vnf/va3sSwLz/NobW3lj3/840CVukNq+IuIiIiIiIiIiIjIbun+++/nsssuI5VK+bdZlsWMGTM444wztvkCoDvjx4/vFPXz2GOPDUitvaFIH8mL3mTZZXPxlN8vIiJDQWWgvdvbb27ch5ZUmLCVoshMETEzmfuRQBKA+mSZn+O/Z2gzsDXPPxLcNvM/KztnQGs687POjYkyoqnMOPUtpSTbg9BuYcVMzKSBmQY3AJ6ZyfFviBXxbno0o0OtTAxv7nYbypYVGRpmjZ2m97zSLxEz2el6d3PDSPeshIGRzhxHcTNnZAbaTKwE2FEINaSx6lvxYvHCFipDwo5eq/vS65D8MbZchovhVKtsa+XKlVxyySX+WfyGYXDllVcyb948qqqqAHjooYd6dZb/l770JZ5++mk8z+PZZ58d0Lq3J68N/xdffDGfw+2UY445ptAliIiIiIiIiIiIiMgQt2DBApLJzBftpmmycOFCzjzzzJ0a6+ijj/aXm5qa+Pjjj9l7773zUmdf5LXhf9xxx/Xq246BYhgG6XS6YNsXERERERERERERkaEvmUzyyCOP+P3sCy64YKeb/QCTJ08mEokQi8UAWLp0aUEa/gOS4e95XsEuIiIiIiIiIiIiIiLb88orrxCLxfye8lVXXdWv8UzTZMyYMf71urq6fo23s/Ke4b8zTffufhXQ3Ti9XU+GHmXaiYjIcDGv6iPOj45hbawyk5lsb83fBzJ5/luylVOetU2ucnc5yzE3SEOyBIC0Z7EqWsmm9hLaoiGc5iKMpIEdzZyHUdQIZjpzidS7lC6PkqooojngMr6y2d9uV7P3OARQxrOIyHB3eeUK7mqesM3t2WPO3IrVBahqeDCiFoGYgZXIXDeTYLgQiEEgAZFNaUL1cbzNDTjRaGGLlSFvR/n96nMMIG/LZbgYTrVKJytWrPCXx40bR21tbb/HrKio8JdbW1v7Pd7OyGvD/3vf+16f1vc8j1/96lesWrXKvx4IBJg6dSoHHnggI0aMoLi4mPb2dhoaGliyZAn/+c9/SKfTfvO/traWc889N5+7ISIiIiIiIiIiIiK7sE2bNgGZk8xzz8zPF9d18z5mbxSs4d/a2soZZ5zBqlWr8DyPkSNH8t3vfpdzzjmHESNG9Pi4hoYGfvOb3/DDH/6QTZs2sXLlSl599VX+8Ic/UFpamo/dEBEREREREREREZFdWFFRkb+cnbi3vxoaGvzl7fW4B9KAZPjviOM4nHzyyfztb38DYObMmXzwwQd8+9vf3uETMWLECC699FI++OADZs6cied5PP3005x88skF+9ZERERERERERERE8sADYxhdFOkzfNXU1ACZ1Jl85O03NzezevVqP5kmO/5gy3uGf2/cdtttvPTSSxiGwYEHHshTTz2Fbds7fmCO8vJynnzySQ4//HCWLFnCSy+9xG233dbvyRWkb3aUaSciIjLU3dU8ods85LRn8mE08wZtUkk9a+KVABQHkowPNVFiJbANh5gbBPBz/bNy8/2j6RCt6RCxdGbdtU0VxJvDkDAJr8vk8QdbIdjmUdTiEmxNE9wUw1myFBewgJEVR7Dpv5KkXZMNoTKo+sjf1ucOnYU12sTZsBHPUY6/iMhwlz0u5Wb5dzdHjMCpH84i4QRoSYTxgpmum70lnt8zwQ1k8vuDbR6RuhjmhkbSyu+XLWaNndYpi78vPY7cdRete3ubsURk6Ntnn3385YaGBpYtW8aUKVN2erxFixb5J6QbhsFhhx3W7xp3xqCf4e84Drfddpt//fbbb+9zsz8rGAz6Y3mex49+9COd5S8iIiIiIiIiIiIi2zV9+nSqqqr8M/Lvu+++fo33ox/9yF+ePHnygMwL0BuD3vB/9dVX/QkRKisrmTlzZr/GmzlzJlVVVQBs3ryZf/7zn/2uUURERERERERERER2XaZpcuqpp+J5Hp7n8ZOf/IQ333xzp8a64YYbWLx4MZA5u/9rX/taPkvtk0Fv+L/77rtAZscnTpzY7/G6jpMdX0RERERERERERIYZbxheZNhasGABwWAQwzBIJpPMnj2bf/3rX71+vOM4/Pd//zff//73/V8KVFRUMHfu3IEqeYcGPcO/sbHRX06lUnkZM3ec3PFlaFCGnYiIDDXXb97Pz+CHbXP8RxW1EraStKTCbIiVstQdTdrLnCeRcGxakmEml2ykJJAZIzdXOeVlMvmz+f7RdIiGVDGxdJDmZIhosohkMgAJEyNtENkAVsojXWRQ8UEc/vEWhmXh5GTxB8aMJlZj0r6kiuZxJaTGNvj3ZfJjNwzk0yUiIkNAd/PN7I72+uOFEPDwAi6jxjUzItLOoilPADD5nYuwYmAlwAuAkc48xjMzF7O9A6+ltYDVy1CUj7kJs2Nk/1QfRGT4mDhxItdccw0LFizAMAw2bdrEpz71Kb7yla/wta99jUMPPRTIxMkbhoHjOGzevJmPPvqI5557jnvvvZc1a9bgeZlvfgzD4M4776S0tLRg+zToDf+ysjIg8yStWLGCjo4OioqKdnq8jo4Oli9f7n+DUsgnU0RERERERERERESGj2uuuYaPPvqIX/3qV35Tf+HChSxcuLDTep7nMXv27G1ug0yj3/M8LrvsMr761a8OWu3dGfRIn/Hjx/vLsViMhx9+uF/jPfTQQ8RiMf/J3WOPPfo1noiIiIiIiIiIiIjsPu6//36uvfZa/6RywM/2NwzDv2Rvy70PMg3/G2+8sdPEvYUy6A3/4447zs9F8jyPK6+8kg0bdu5n6OvXr+eqq67yn9hgMMhxxx2Xx2pFRERERERERERkUBU6k1/5/bsd0zS57rrrePHFFznxxBP9k8u7yjb+szzP4/jjj+fFF19k3rx5g1Xudg16pE95eTmnnXYaf/jDHzAMg40bN3LUUUfx0EMPccghh/R6nMWLF3PmmWeyceNGIPNkn3rqqZSXlw9U6dKNbC5d18w75dWJiMhQF3VCnXL8u5NwbFJuJpM/kd76tilguCyPVbNXZLOf4w+Z/P6mVDEpz2JcURMRM0mHaWMbLgEzs07SsUhHbayESWizQbjRIVIXw4wlMeJJ0oDndK7J2WMkxRscIvUGbfVBGt8fA1PzkzkrIgNj1thpek8s/abc/q0mvXAebn2IQMLADRi41Wna4kW8+omtqQFuAIpaM/n9VoeH4YJjGxguFDU70NaOG48XcC9kV6XXe5Fdx5FHHslf//pXli1bxlNPPcVLL73E0qVLaWhooLm5mUgkQnV1NbW1tRx//PHMnj27Tz3twTDoDX+A2267jb/+9a+0tbVhGAYrVqzg8MMP54wzzuBrX/saxx57LMXFxds8LhqN8uKLL/KrX/2Khx9+GNd1/V8KlJaWcttttxVgb0RERERERERERERkVzFlyhSmTJnCZZddVuhS+qwgDf9x48axcOFCTj/9dDo6OjAMA9d1+cMf/uCf+T9hwgRGjBhBJBIhFouxefPmTjMeZzOSPM+jqKiIhQsXMm7cuELsjoiIiIiIiIiIiIhIwRWk4Q/w2c9+lr/85S989atfZcOGDX72UXbCg5UrV7Jy5Uq/qZ8rd5KEmpoaHnzwQU444YRC7IaIiIiIiIiIiIjkieFlLsPFcKpVdg8Fa/gDzJw5k6VLl/Lf//3f/PKXvyS+JUsvd+KDrtezXwiEQiHOO+88fvjDH1JZWTmodUvGOYfuT8iI+NeVWSciIsPBzY37AGw3v982HMoCCdJFmfz+aCroZ/mXGElK7A6KA0libhDbdYiYSf9xNcFWUp5FXUclKc8i7VqkPJOg6dCSCNMWC2HGLOxo5v1NUVMK870VONEohmV1W4/50VqcvfbFMw0CMTBc5feLDAea50okP2qfmIORsDDTmWNnIGbQkTT5zycf7LRexQeGn91vt2c6cJbt4ZkG4booXrR9m3lyRPpLr+0iMtQUtOEPmUl87777bm688UZ++9vf8vzzz/Paa6+xatWqTmf2G4bBxIkTOeywwzjuuOM466yzqKioKFzhIiIiIiIiIiIiIjKsrV692l+urKyktLS0z2O0tbXR1NTkX58wYUJeatsZBW/4Z5WXl3PRRRdx0UUXAZkz+VtbW4lGoxQXF1NeXr7Nmf8iIiIiIiIiIiKyC/G2XIaL4VSrbOOpp57i85//vH/99ddf5+CDD+7zOB988AGHHXaY379+9tlnOe644/JVZp+YBdlqLxiGQXl5OePGjaOiokLNfhERERERERERERHJm/vuu8+PkJ85c+ZONfsBDj30UI499lh/rJ/97Gd5rrT3hmzDf6h7/vnn/cmD+3JZtmxZr7fx4osv8vWvf50pU6ZQWlpKRUUFU6dOZe7cubz55psDuHd9p8w6EREZTrrm98+tWN3p/htq3vXvD1kpqkPthAMpADbHi4mmimhPB4mYSWJOkJgbBCDmBlmZqGZVvJoPozU0JouJuzar/n/27jw8qur+4/jnzkz2BQg7JKwFUVAUK6KyqWhURKwL1qqg2GpdsFVbrVUsYuuuP1FbsBRwAZe6oZQqUGWziKJAUBIQIWwhEAiQfZ25vz9ibjNZZ5KZzJL363nu89w7c865507OnIHvnPneoiQVV1aVKS+OkK3ckL1UijouRe7OlZHUXpIazCts9u6u8jib1j0zR10/y1aPJVlydO7ky5cEgA8tO5BmbTVx7w3Ae/0+uEX2fIeij9gUddSQo9CQK9KU4XJfFHjqk7cp+qhLkQWmoo47Fb8rX3H7ihRzuEIxhytkO3hUzry8AF0F2pLUHkM92gB/2r17t+Lj491ikjNmzPCqjU2bNmnatGkaMmSI2rdvr4SEBA0aNEhTp07V6tWr/dPxVlZRUaEVK1ZYr9G1117bovauv/56a//jjz92S1ffmoImpQ/+p6CgQLfffrsWLlxY57m8vDxt3bpVf/3rX3XPPffo8ccfV0RERAB6CQAAAAAAACDY3HbbbSoqKmpW3YqKCj3wwAN67rnn6gSst2/fru3bt2vBggW6/vrr9be//a1Z+e6DRVpamvU6GYah1NTUFrV30UUXWfvHjx/Xd999p5NPPrlFbTYHAX8fiI6O1pgxYzwqGx8f3+jzlZWVmjhxolauXGk9lpiYqMGDB6u8vFzp6ekqKSmRaZp69tlndfjwYb366qst6j8AAAAAAAAQDAyzagsVwdbXN954Q5988kmz69988816/fXXrePY2FiddNJJcjgcSk9PV35+viRp4cKFOnDggJYtWyaHIzRDzBkZGdZ+586d1bNnzxa117NnT3Xu3FmHDx+WJKWnpxPwD1Vdu3Zt0RuppgcffNAt2D99+nT94Q9/UGxsrCQpNzdXf/jDH6w8UK+99ppGjBih2267zSfnBwAAAAAAABB6jh49qt/+9reSpEGDBik/P18HDhzwuP7s2bPdgv233HKLnnjiCXXo0EGSVFRUpCeeeEJ//vOfJUmfffaZHnzwQT355JO+u4hWVB2YNwxD3bp180mb3bt3t9o9ePCgT9r0VkAC/v369fNLu4ZhaOfOnX5puzXs27dPs2bNso6nT5+umTNnupXp2LGj5s6dq9LSUivlzyOPPKIpU6ZYXwoAAICGlbkiFGF3z5X/4vFedfL4V5h2xdgq5IhwKrcsXiWVVSn0on/M5V/qjFCFaVeE4VSE4VSxK1I55Yk6Wh6no2WxOlSUoCy1U6SjUuWVDh23xajcaZdhM2UvNWS4pJgjLpnHjsssKWm0z65N6dqwtCoXeOXOTNkiI+UqL/fVSwLAx1J7DLXy93OvK6D5fvLmr2U4TEXmV937xqiUnNGSUWlo14S5VrnBf71NipccJS4ZzqqltobTlGymbOUumXZDimC9I3yPOR7B5t5777WCzXPmzNGUKVM8rltUVOSW5/+GG27Qyy+/7FYmLi5Ojz76qCRZQf8XXnhBd911V4tXxwdCaWmptR8dHe2TNqOioqz95qZVaqmAfOLt3r1bhmH4/MYFhmE0XSiIzZo1S2VlZZKkXr166aGHHmq07Pvvv6/i4mIdOnRICxYs0B133NFaXQUAAAAAAAAQJD777DO98sorkqQpU6Z4nH682oIFC5STkyOpKo3P888/32DZ6dOn69VXX9W+fftUWlqq559/Xk8//XRzux4wSUlJ1v6RI0d80mZubq61H6j7G9gCctYf1bxTdHO36nbCwQcffGDtT506VZGRkQ2WTUpK0lVXXVVvXQAAAAAAACAkmSG4BVhpaaluvfVWSVUxw2eeecbrNt5//31rf9KkSW7B8NoiIyN10003WcehGpfs1KmTJMk0Te3du1d5eXktau/48ePas2ePFavu3Llzi/vYHAFZ4d+rVy+vg/TFxcU6duyYKisrJf0vyN+hQwclJib6vI+tbdu2bdq1a5d1XPOuzg25+OKL9dprr0mSVq9ercLCwiZvCgwAAAAAAAAgfMycOVM//PCDJOmpp56yAtmeKigo0Nq1a61jT+OS1anId+7cqe3bt+uEE07w6ryBdsopp0iqijM7nU4tWbJE119/fbPb++ijj+R0Oq02TzzxRJ/001sBS+nTHE6nU5s3b9Zbb72lv//97yooKJDNZtPs2bM9GojBLC3tf3nfoqKiNGzYsCbrnHXWWdZ+ZWWl0tPTNXz4cL/0DwCAcBFlq1CE4Wyy3BNd0zQ9Z4jyK2MkSTGOChWWR6l/Yq4ibE7llcfoaEWcHIZT+ZUx6hF9TNvyu6rSZVNeaYyKyiJVXu5QZGTVYoWKSrvsNpdMp022cikyX4oodMrp4SqS8aMul+vAQUkl5O8HQkDNPP5AuBv8xXWSpNLiSNkPRCn2gCFHsRRRYiqvvyFnpOSKNOWKNGUrNxSRX/W86ZBs5ZKtUipLkpyRkukw5Sisej5WkukwJJfkKJVMm1QaL1W2/9/n+AlrJ6tiYJmidkepsKdDMUdcis0qUUnPeFXG2mUvcynuy12qPOybVA1AtWUH0pTaY2iguwHo22+/tVb0jxw5UlOnTvW6jfT0dGuRteQec2zIsGHDFBkZqfIf/2+SlpYWcgH/gQMHKiUlRfv375dpmnrkkUd0zTXXKCIiwuu2ysvL9eijj1pp7Lt27aqhQwMzRwQ0pY+37Ha7Tj/9dD399NPasmWLTjvtNOXm5uqyyy5z+9lJazt+/LgmTZqkPn36KCYmRgkJCerbt68uv/xyvfTSS8rPz2+yjYyMDGs/JSXFo4GVkpLilvZn27ZtzbsAAAAAAAAAIAgYZuhtgeJyufSrX/1KFRUVcjgcmj17drNSn9eMS0ZGRiolJaXJOrXLhWpc8uc//7lM05RhGNq1a5duuOGGZrVzww03aOfOnVZb11xzjY976rmQvU1979699cknn+j000/X/v37dcMNN2jIkCEaOHBgq/clLy9P77zzjttjhYWF2r17tz788EM99NBDevTRRzVt2rQG29izZ4+136tXL4/Oa7PZ1LNnT2VmZkpq3i8n9u/f71X57Oxsr88BAAAAAAAAhLvmxM2Sk5Obfb6//vWv+vLLLyVJ9957r4YMGdKsdmrGJZOTkz3+0qBXr17auXOnpOZndAm0++67T7Nnz1ZRUZFM09Q777yjgwcPav78+erXr1+T9Xfu3Kmbb75Za9eutVb3x8bG6oEHHmiF3tcvZAP+UtWNDx555BHdfPPNKi0t1X333afFixcHpC99+vRRz549FRUVpSNHjrj9FCYvL0933XWXNm/erHnz5tVbv6CgwNpv166dx+etef+Cmm14ypNv7AAAAAAAAAA0rjmptk2zeT8R2L9/vx588EFJVXHJhx9+uFntSIGLSwaDjh076umnn9Ztt91mBezXrFmjE044QRdffLEuueQS/fSnP1WXLl0UHx+vwsJC5eTk6Ouvv9a///1vffzxx3K5XNbf0TAMPf300+rSpUvArimkA/6SdPXVV+vXv/61Kioq9K9//UuHDh1S165d/X5em82mcePG6aabbtJFF11U587VhYWFWrhwoaZPn64jR6pyBc6fP18DBw7U/fffX6e9oqIiaz86OtrjfsTExNTbRmsiNykAIJSUuSJ0rCJOPaOONVk2wuZUx8hCOWxOtYuM1qGSBHWNyleHiCIpVsopT1SJM0L5ldH64cgAFZRHqbAsSmXlDpUURskst6nCFSUjtlKmy5AqbVJlVV7imCMur/pduTOzuZcMIECqczvz72WEu+KjMXIcdyiy2JDhkqKPmXKUmDLtUmKmtP6JOTrp5dtUES8Zrqqc/ZIUl10VHIk+6lTlQZucUYbKEwzFHXSqIs6myihDpk2yV5hyRhmqjJZkM7Vr4t+tc3dIKNb6Ue9Kkk5YcJvK2ttU2j5OpkMyKiVntE3ROd0lcvjDx8jfj0C74447rCD7iy++qNjY2Ga3FcpxSV+49dZblZGRoRdeeMH6dYPT6dTSpUu1dOnSRutWp/Cp/rLg7rvv1q9//evW6HaDQj7gHx8fr379+mn79u0yTVNr167VVVdd5ffzjh49WitWrGi0X7/+9a81fvx4jR492vpZy8yZM3XjjTfW+VKioqLC2nc4PP+z1Cxb3owb+O3bt8+r8tnZ2dwYGAAAAAAAAP5h/riFihp9/eqrr9S9e3e/n/Ldd9/VRx99JEm64oordOmll7aovUDFJYPJ888/r759++q+++5TRUWFFfhv7BcYNQP9UVFReuaZZ3THHXe0VpcbFPIBf8n9pyY1c04Fg5SUFL311lsaMWKEJKm4uFjz5s3TH//4R7dyNb+FKy0t9bj9mmXj4uK87l9L8oQBAAAAAAAAqNK9e3e/x9qqU4dLVQuOZ82a1eI2AxWXDDa/+c1vNG7cOP3lL3/RO++8I6fTaT1X874G1V8CmKYph8Ohn//853rggQd04okntnqf6xMWAf/Dhw9b+9V584PJmWeeqbFjx2rVqlWSpBUrVtQJ+MfHx1v7JSUlHrddXFxcbxsAAAAAAAAAwst9991n3Rx45syZPvmCgbjk/wwePFhvvPGGnnvuOX366adau3atdu7cqaNHj6qgoEAJCQlKSkrSgAEDNGrUKJ1//vkBzddfn5AP+O/cuVOZmZnWtyydOnUKcI/qVzPg//3339d5vmPHjta+N3f0PnjwYL1ttIZF36QruUdEq54TAICWireXKt7u2aqVhztl6MmjP1E7hxRrK1eCo1QdIooUa6v6uWqXyHzllCcqryJGx0tjlFsQp/KiSKnIrojjdtnLJdMmVcTbZdhNGRWGIgoNRRRLiRnH5Mr4IaR+rQygeVJ7DCWPP8LW4C+uk1Fq//HzrupTrTr3vstuyBktDX36NkVISr91jlVv4Ou/lqPUUGRBVZ24fSUyI2yylVXKFeVQ9BGpMtYhZ5Qhe5mp0o4OVUYbijpquJ1//anvWvs/OWe30nf0VFmSQ5XdyhW5N0rOaFO28gR1/Mr/rwUA+Ft6errmzp0rSTr11FOtlf4tFYpxSX/r1q2brrvuOl133XWB7orXbIHuQEtU3wihel+q+hYmGNXM31V9E9+aTjjhBGt/7969HrVZVFSko0eP1tsGAAAAAAAAEHLMENxaSU5OjhUD3bx5sxwOh5VHvr6tZurzRx55xO256vuNSu4xxdzcXLeV+42peW9Q4pLBI2QD/jt27NCll16qf/3rX26r+88888wA96x+Nd8o9d01u2aOp8OHD3v0bdrmzZsbbAMAAAAAAAAAmlI7plg75lifrKwstzTrxCWDR0BS+sycObNZ9UpKSnTo0CFt2rRJW7ZssR43TVOGYeiBBx5wu4FCMElPT7f268vrNHz4cEVGRlp3tF67dq0mTZrUaJtr16619pOTk9WvXz8f9RYAAAAAAABAMImIiPAqdc6xY8fkcrkkSTExMW6LkO12u7Xfr18/9ezZU1lZWZKkzz//XGeffXajbdeMS0ZFRWn48OEe9wv+FZCA/4wZM1oUmK/+6Ur1T1BM09T48eN9lrfK10pKSvTRRx9Zx/W9YRISEnTuuedq2bJlkqRFixY1GfB/4403rP0JEyb4qLcAALQNu0s7KcJwqkNEke5P+qHBcrG2ch2riFOE4VSsrVwRhtPt+RJnhHbnJym/JFrlOTFy5Ffl7o/bLzmjq8o4Cg3Zyw1F5VX95jfp2wI5v9vux6sDEGxSewyVJHL5I+w4XTYl9spTQX6MJMkR6VRBaZzs5T/+n98lySZVRrvX+/6GORr2l9vkjKjK929G2GQvrpCtqEz20nK5OibIXlwhSSrrFKPyBEPFPUx9f8McNWTpwI/Vd8cvJUm7Lpjv9lzq3KG+uWCgGZYdSLM+B9A0w6zaQkVr9vWcc86pN1V4Q/r06WOl9bnvvvs0Y8aMessZhqFLL71UL7/8sqSquOR9993XaNuLFi2y9s8777ywuWlvOAjJlD41A/2GYejOO+/UO++8I5stOC9n+vTpOnTokHV8+eWX11vuxhtvtPaXLl2qTZs2NdjmRx99pG+//dY6njJlSov7CQAAAAAAAKDtqRlb3LJli5YsWdJg2Y0bN+rjjz+uty4CLyAr/KX/rdJvDsMwNHDgQF1yySW6+eabddJJJ/mwZ01bvny5li1bprvvvlvJyckNlquoqND06dP17LPPWo8NGzZMl112Wb3lJ02apL/85S/67rvv5HQ6dd111+nTTz91u+GvJGVkZOjWW2+1jsePHx+09y4AAAAAAAAAENzOOussXXLJJfr3v/8tSbr11ls1YMAADRo0yK3cgQMHdN1118nprPrl88knn9xklpJAOu+88wJyXsMw9Omnnwbk3AEJ+K9cudLrOoZhKDo6WomJiUpJSVFcXJwfeuaZ4uJiPffcc3r++ed1zjnnaMyYMRoyZIg6deqkyMhIHTlyRF999ZUWLVrkdrfqpKQkvfHGGw2mM7LZbJo7d67Gjh2rsrIyZWRk6LTTTtO0adN0xhlnqKKiQmvWrNGcOXOUn58vSerYsaNmzZrVKtcNAAAAAAAAIDy98MILWr9+vY4ePars7GydeeaZuv322zVq1CjZ7XZt2LBBL730kpXJJDo6WnPnzg3ae6pK0qpVq1q9f9VZaQIlIAH/MWPGBOK0PudyubR27Vq3m1Q0ZMCAAXr77bd1wgknNFpuxIgReu211zR58mSVlZXp0KFDeuihh+ot265dO73//vvq379/s/oPAEBbMz1niCJsVStRukTmq7B2QuEfy+RXxijRUaL9pR2UHH1MHSKKJFXl86+psDJah0oTdSg3UZIUnWOXo1CKyTXVIb1Qps2minaRckUYijpSJluFU6bdkO3AEbn8fK0AglNqj6Hk8UfIu/fgMK3J7q9Iu1Pt40rUO/GY9kR00PpT360qMOp/Zfu/c2tVPu4KQ/3eu1W2ckOOYkOuSFPfPzhbkjTyN7fKtBuSyyXXnv2yde0i1zffyR4fL/VLUXFXh46d5JKtvOngSeb4f/jjkoEWYe5vhhDK4R9O+vfvrw8++ECXXXaZ8vLylJ+fryeeeEJPPPFEnbJRUVF69dVXyToShIIz6X2QGzRokC6//HJ16NChybJ9+vTRU089pU2bNum0007zqP1JkyZpw4YNGjt2bL3fBtntdk2YMEFpaWkaPXq01/0HAAAAAAAAgNpGjx6tLVu26LLLLpPdbq/zvGEYGjNmjDZs2BDUqXxqMk2zVbdAC1gO/1A2aNAgffDBB5KknTt3KiMjQ/v379fx48fldDqVmJioLl266IwzzlC/fv2adY6TTz5ZK1euVGZmptavX6+srCzZ7XYlJydr1KhR6tatmy8vCQAAAAAAAEAY2b17d7Pq9erVSx9++KEOHjyotWvXav/+/XI6nerZs6dGjBihvn37+rajfrRgwYJAd6HVBSTgv2bNGmt/6NChateuXbPbysvLU1ra/34W1dor3vv37+/XlDp9+/YNqTcRAADBrMK0K788Rg6bU+1+/FdQhOF0K3OoPFFFlZHaX9JepU6Hiisj1TfuyI+Fq8pX11md8xPl5CXIVepQ5IEIdf2qoiplT4UpW2mljMPHZC8rk3p0kblzrwy7XUZkhCqPHmvNywYQZFJ7DJUk0jsg5Nx7cJgOliYq0ubUGV32anteF3160pJG6+y8+mX1W/IrKcKoyjHwY1qeiHxDP33kNkUUmXK4TBlOU8aebMlul5kYK1tMjIyk9qqMj5IzwlC77w1t/DEFkLeq33MAAO9069ZNV199daC70SJTpkwJdBdaXUAC/jVT1axYsaJFd0v++uuvdeGFF0qq+klJZWWlT/oIAAAAAAAAoHUZpikjCNKieCqU+oq2IWApfXx5t+JgyI0EAAAAAAAAAEAgBeymvb4K9gMAAAAAAAAAEArWrVunfv36qV+/fn5JFR9WN+3lSwQAANCYfSUdFOcoV4LNqdzyeHWMLFShM9p6fnrOEB0qSVClaVO0vVLxjnJJUmZRJ7WLLFGFaVc7R4mibBWSpP37OsmRE6GocslRLNkqTdlKnIo8WCBVVKoy+2BVw+TsBwCEuCt3XqBoe4UqXXZJ0oJeX0o9PazsMGXaTBkuQ6bDlGTIVi5FFJmyl5mKzK9UxIHjcpWUypbcQ5VbMmSPj5eZGCdXpE2mQypr3/y+LzuQRh5/+FV992RhzLWA+eMWKkKprwgKJSUl1g2V/RHPDtgKf18pKiqy9mNiYgLYEwAAAAAAAAAAAifkA/7btm2z9tu3bx+4jgAAAAAAAAAAEEAhHfDPy8vT/PnzJVX9/GHQoEEB7hEAAAAAAAAAAIHhtxz+M2fO9Kjca6+9ps8//9zjdk3TVHFxsTIzM/Xpp5/q+PHj1nMjR470tpsAAKANOVIap9KICDkMp/IqqlIBxtjLrecPlSfKYXOpa1SBYmwVKnFFKKu4nRyGS6UlCSqKiFSBI1pZxe2UUxSvuG0RspdLUXmmIguqknfaiytkRjrk3LYjINcIIHTUzu9cXw5oIBikbhuvwvIo/feU972u2++DW6Q4pwwZUoRLpstQZawpe6khe5mpiEKnbBUuuRJjZO4ul3PXbkmS6XTKlRgjV4RNxd0ko7Jl10Aef/hLQ3M3c3rzGWbVFipCqa9oG/wW8J8xY0ajNx0wzap3w+uvv97sc5imaZ0jIiJCkydPbnZbAAAAAAAAAACEspBO6WMYhhX0f/bZZ9W3b99AdwkAAAAAAAAAgIDw2wp/6X+r+FtapiHx8fE6//zzdffdd2v06NHNbgcAAAAAAAAAgFDnt4D/ypUr633cNE2dd955Viqep59+WqeffrrH7dpsNsXFxSkpKUm9e/duNG0QAABAtTM2Xa3S8ghJUqYjSSmJx1XqjFC0vUK/OXCGKkybiiojVemyKSmiSJKU6ChRjK1Cm472VEJkmdpFlGh7XhflFCSo6EC8EsulLhtLFLFtnxQTrcq9+2VKMiMjA3ilAEIF+Z0RCm7aO0r9E47obz2/9Lpu/09vqtopcEg2U0alIXuxTZH5UmS+ZLgk027IFWGTLee4lJJcVb6iQmaHBFUkRKiks0Ppt85u8XWQvx/+ktpjKPO5r5k/bqEilPqKNsFvAf8xY8Z4VO7UU0/1uCwAAAAAAAAAAKifX1P6NKYlqXwAAAAAAAAAAIC7gAT8XS5XIE4LAAAAAAAAIIgZZtUWKkKpr2gbArbCHwAAoDVM3JGqXUc7quhgvFRpSA5TspkqKo5Sp3aF6pN4VPmV0Up0lEqSHLaqhQldIvMVYTgV7yjV/pj2OlwSp3V5feV02VSUHy1HoU2Je52K2HdUlYePuJ3TVV7e6tcJIPSQ9xmhIMLm9Dp///jvL1ZucZwMmynTZUiRLtlKbIo6bJOtXIo9bMpWKRkuU84om0ybVHRashwlTkUcLZG2/iCb3Saje4Jslb6LpC07kEYufwBA2LMFugMAAAAAAAAAAKDlCPgDAAAAAAAAABAGSOkDAAAAAAAAIDiYP26hIpT6ijbBpwF/u93udmwYhiorK5ss5ysNnQ8AALRd3+7uKeN4hGSTun1hqCLGpspYqSzJoSORccqJ7KId183Rbw6coUibU5KUXxmtnlHHJEmxtnI5DJcKy6JUWBgt02XIdixCEfmGoo+Uy3UoJ5CXByDEkccfwe7vyeu8rrN04MfWfr/lN8vIcygiz6aIQikm11REkUuOYpdcEYZMm6mKeLvK4wzFHZJs5VFyxMfJ1bm9HAUVinQYkqreK7bISNk6d1Jl1gFJdXPy1zxu7DnA12qPLeZ1AIHk04C/aXr2lZan5QAAAAAAAAAAgGd8nsPfMAwZhuFROV+eEwAAAAAAAACAtsynK/xHjx7tUfDd03IAAAAAAAAA2g7DrNpCRSj1FW2DTwP+q1at8mk5AACAluq4JkpR+S7Zy1yK33JIrgPZMmJiVHL2QEXllsqeky9dJ83qsUH3Hhymo+VxkqSc8kTlV8aowrQpLbuHnJU2OYsdijoYIUexFFEo2coq5SopCfAVAgAQnEZsvkoxCaUqroiRmW+T4ZJcDslWYSqioELOmKr7+zlKXCqPi1RFvF22ClPGwF5yHM6Xcey4Yju01/gxV8iw75arvFyuH/P3S3XzpjeUv79adV51cvnD32qORQCorUOHDhozZozf2vdpwB8AAAAAAAAAANRv2LBhWrlypd/a93kOfwAAAAAAAAAA0PpY4Q8AAAAAAAAgOJg/bqEilPqKNiEgAf/XXnvN2k9NTVXXrl2b3dbBgwe1fPly63jy5Mkt6hsAAAgfJ//fbUr5IEPOo8ckSZXVT5SXK/rTNLnKy//3mKRnu23ULfvPVlZxe31X1l2FZVEqKo5SxZFo2SoMRRbZFL9XiigxZdokV5RDEZ07qfLwkda+NABhJLXHUPI8I+xct3ususYVKNJRqQiHU3mKV0RhhCpjDTmjHCpPtCthd4lMu6HK2KrQRFFXQ6bNoZisQpmHDstZWCj9+BnuqfreSzUfI38/WhPzOxB6XC6Xli9frnXr1mnTpk06cuSIjh8/rrKyMq/aMQxDO3fu9FMvGxeQgP+NN94owzAkSStWrGhRwH/r1q1u7RHwBwAAAAAAAAB4Y9asWXr22WeVlZXl9rhpev8zjupYdSAELKWPaZo+vXBftwcAAAAAAACg9RmkyUErKi4u1uWXX65PP/3UCu5Xx5m9iTlXl23OFwS+FLCAP8F5AAAAAAAAAEAgTZ48Wf/5z38kyQrY22w2denSRdnZ2Va5Ll26yDAMHTt2zC3FT3Wcu1OnToqLi2vdztfDFugOtFTNb0z4EgEAAFQb+Ztb1XlLhZW/vzZXeXm9j2873kWHihKUWxCnYwcT5MyOUex+u2KybYo+InXemK+kLw6q3ffFijiYL9Pp9OdlAAAQkhb1WaVK06b+ibnafMZbcsRXqKSLqfJEqaiHdHyAoaKe0SrtFCnDZaoyVqqIl754ao7KO8fKSO7erPOm9hhaJ08/efsBAA358MMP9f7778swDBmGoQ4dOugf//iH8vLy6qT2WbRokQ4cOKCSkhLt2LFDL7/8sk499VQrPm232zVnzhxlZmYqMzMzEJcjKQwC/oWFhdZ+MHyDAgAAAAAAAAAIfk899ZSkqkXl0dHR+uyzzzR16lTFxsY2Wq9///761a9+pY0bN+qll15SZGSkcnJyNGHCBL377rut0fUGhXzAf8uWLdZ+hw4dAtgTAAAAAAAAAC1imqG3ISQdP35c69evt1b333333TrllFO8buf222/XO++8I8MwVFlZqSlTpuiHH37wQ489E9IB/8zMTP3973+3/ignnXRSoLsEAAAAAAAAAAhyX3zxhUzTtFLyTJ06tdltXXrppbrlllskSaWlpXrooYd80sfm8NtNez19gZ5++mktXLjQ43ZN01RxcbEyMzO1efNmOZ1O6w7I5557bnO7CwAAwsglJ45W/AlFMiqccjVSztG5k5amfSpJ6rf8ZqnAIUehTUa/IlWW2xV1MEKOYinquBSVZyr2ULlMuyEVl8j+3WFV1kgtCAAtkdpjqJYdSAt0NwCfWjrwY808cqIkKS62TCXJppyVNlW6DNkPRKm0vU3Rx13K6xOpsiQp41ezJUklnSNU1r6jEvMKVJl90Cd9IY8/AoX5HQheNXP0d+rUSf369Wu0fGlpaaPP33PPPZozZ45M09QHH3yg/Px8JSYm+qSv3vBbwP+VV15p9Ca61d+cLF++vFntV9evPkd8fLwmT57crLYAAAAAAAAAAG3H0aNHJVXFl3v27FlvmYiICFVWVkpqOuD/k5/8RMnJydq/f78qKyu1bt06XXTRRb7ttAdCNqVPdRqf6hsqLFiwQF27dg10twAAAAAAAAA0k2GG3obQFx0dXe/jiYmJ1sLzgweb/tVZ9+7drf1A5fH32wp/6X+r8Ftapj52u10DBw7UhRdeqNtvv10DBgxoVjsAAAAAAAAAgLalXbt21n5BQUG9ZTp06KDc3FxJ0q5du5pss6yszNrPz89vYQ+bx28B/8zMzHofN01T/fr1s1LxLFy4UGeffbbH7dpsNsXFxSkxMVEOh1+/rwAAACGoKkdvnvTVt/JkWUHqFZO17P3XFJEVKVvVLzVVlhMjW7mhmBwpssBUXHalYvYcl7k/W87CQlX68wIAtEnkd0Y4m54zRCd0PKy3+33q9vgZ029TaXubytr/L3+/JGVfVKnOqyKkdgmSj3L4A4FEHn8gOPXt21dSVbz68OHD9ZY56aSTrJX669ata7S9srIyff/991bcOzY21oe99ZzfIua9e/f2qFzXrl09LgsAAAAAAAAgjJk/bqEilPoKN4MHD7b2Dx8+rKNHjyopKcmtzLBhw/TRRx/JNE199dVX2rFjR4OZZl577TUrz79hGEpOTvZf5xsRkBz+vXr1sraYmJhAdAEAAAAAAAAA0Eb17NnTbSH6V199VafMVVddJakqgO9yuTRlyhTl5eXVKbd+/Xr9/ve/t1b3S9KoUaP80OumBSQnzu7duwNxWgAAAAAAAAAAJEnjxo3TvHnzJEn//ve/ddFFF7k9f9JJJ2nUqFH6/PPPZRiGvvzyS5144om69tprdcIJJ6i8vFyff/653n//fVVWViV/NQxDEyZMUNeuXVv9eqQArfAHAAAICg6H7IVVP7nstaJU8XslR6GU9J1N3dabStxTqU5LdyhqzXeq3LZDzsLCAHcYQLiquv8IEH4e7pShR7t8p1hHuW7POlMTd6Raz+X9RCpKlpzR7nV2XThPibvL5EyMlmG3t3KPAf9gngeCU/UKftM09fbbb6u8vLxOmZdeekkRERHW8cGDB/X888/rtttu029+8xu98847qqystFb3x8fH66mnnmqdC6gHd70FAAAAAAAAEBQMV9UWKkKpr6hr3LhxuuKKK1RWViZJ2rRpk84880y3MieffLLeffddXX311SorK7MC+6ZZdQMHwzBkGIZM01RiYqLeeecdDRw4sHUvpAYC/gAAAAAAAACANsdut+vdd99tstyll16qLVu26P7779e///1vt18CmKapyMhIXXnllXr00UfVr18/f3a5SUEX8M/NzdWRI0d0/Phx65sVb4wePdoPvQIAAAAAAAAAtFUDBgzQ+++/r6KiIm3cuFGHDh2SaZrq1q2bTj/9dMXGxga6i5KCJOC/bNkyLViwQOvWrVNWVlaz2zEMw7o5AgAAQJNiY+SMj1bqVVMUUViipFKnHIfzVTywk1wRhuJ2F6jy8JFA9xJAG7DsQFqguwD41YJea/WbA2fIYXPp3oPDVOmy6+SRPyiroJ1y9iRJ+l+O82UH0mRbtVFGZKRcTmcguw0AQB1xcXEaNWpUoLvRoIAG/Ldv365f/OIX2rx5s6T/5T0CAAAAAAAA0AaZP26hIpT6ijYhYAH/r7/+Wueee66Ki4tlmqZ1swNJbvu1vwSo+Vx9zwMAAAAAAAAA0BYFJOB//Phx/exnP1NRUZEVwE9MTNTFF1+svn376vHHH5dUFdy/4YYb1LNnTx09elRbt27VN998o9LSUqveSSedpKuvvjoQlwEAAAAAAAAAQNAISMD/xRdfVFZWlhW0v+SSS/T666+rQ4cOkqTHH3/cem7KlCk677zzrLoFBQWaN2+eZs6cqePHjysjI0M7d+7U/Pnz5XAExS0JAABAAFTn/fVGWZ8kVcbYVRljU8IP5TJcLklS5LFyOY4Xy8zO8XU3AaBeqT2GkscfYW9Wjw31Pt5vzy3W/rIDadZnuqu8vFX6BSC4GGbVFipCqa/wTH5+vpYtW6a1a9cqIyNDR48eVV5enkzT1MKFC3XWWWcFuouNCkiEfPbs2TIMQ6Zp6oQTTtD777+vyMhIj+omJCTot7/9ra6++mpdeumlSktL06JFi+RyubRw4UI/9xwAAAAAAAAAEG6OHTummTNnav78+SosLHR7rjolfUlJSb11f/7zn+udd96RJPXq1UuZmZl+729DbK19wh07dujgwYOSqlL2PPzwwx4H+2vq2bOnli9frm7dusk0Tb355pv65z//6evuAgAAAAAAAADC2Lp163TqqafqhRdeUEFBgdf3jf39738v0zRlmqb27t2rTz/91E89bVqrB/w3btwoqepbEZvNpssuu6zR8q4ff1pfn86dO+vRRx+1jv/85z/7ppMAAAAAAAAAgLD39ddf68ILL9T+/fvdHjcMQ506dfIo+H/66adr2LBh1vG7777r8356qtUD/keOHJFU9YL17t1bcXFxjZZv6GcS1a655hpFRkbKNE1t3bpVP/zwg8/6CgAAQkNz8vcbdrtKkyK06u9zVdLJpqND26miXZRks8mesVvOHbvkzMtrVn/Iww3AW8wbCCc/efPXGvj6r/WTlTfqpr2j9IdDQzU9Z0iD5XdN/Lv1Wd6cz3QgFDDPe8E0Q29DyCosLNRll12m4uJiSVWL1EeMGKEPP/xQ+fn5OnTokCRZ95ttzJVXXmm1sXz5cv91ugmtHvDPq/Ef544dO9ZbJjY21vrmpHa+pNri4+PVt29f63jDhvpvAgQAAAAAAAAAQLWnn35aBw8etAL606ZN0+eff64JEyYoNjbWq7bGjRtn7e/evdtKa9/aWj3gHxMTY+039HOIxMREa7/2Tynq0759e2v/wIEDze8cAAAAAAAAAKBNePnll61g/3nnnadZs2bJZmteyPyUU06R3W63jtPT033SR2+1esC/5qr+goKCest0797d2vfkhTl8+LC1X15e3oLeAQCAtsJ0OhX3znpJ0jfTZ8tWKRkuU67EGDnz8mQ6nc1um3QEAIC2JrXHUGvrf+8X6j/9G6UsdGhBr7UqcUbq0S7fNVoXAIDWtnHjRuXk5FiL0mfOnNmi9qKiopScnGwdZ2Zmtqi95mr1gP+gQYMkVa3u37dvX71lhg4dapVZuXJlo+3t3btXu3btsr6J6dChgw97CwAAAAAAAKC1GGbobQhNNRead+jQQWeddVaL26yZiSavmfeEa6lWD/gPHjxYDodDUtUNeXft2lWnzMiRI639ffv26a233mqwvYcffljS/9IDnXjiib7sLgAAAAAAAAAgzOTk5EiquiFv7969fdJmdHS0tV9WVuaTNr3V6gH/uLg4/fSnP7WOP/vsszplrrzySkVFRckwDJmmqV//+tf65z//6ZbzPz8/X3fccYdee+01a3V/u3btfPJNDAAAAAAAAAAgfDlrpHGtmXu/JY4dO2bt11zt35paPeAvSRdddJG1v2TJkjrPt2vXTtOmTZNpmjIMQ/n5+br22mvVtWtXnX322frpT3+qrl27as6cOZJklbvrrrsUGRnZatcBAAACz1d5fw2XVJoUofKkaDl6JTddoYZlB9J80gcAAEJRfZ/FH+/eoJXz/iFJmtVjQ4P1yN8PoF5mCG0IWV26dJFUFVs+dOhQi9srLy/Xnj17rONOnTq1uM3mCEjA/9prr5VU9WJ+/PHH9ebynzFjhoYMGWIF803T1JEjR/Tll19q48aNKisrs56TpOHDh+vBBx9s1esAAAAAAAAAAISenj17Wvv79++3Uvw013//+1+3ND6DBw9uUXvNFZCA/4ABA7RkyRK98847evPNN+VyueqUiY2N1cqVKzVmzBgrlU91cN8wDGvfNE1dcskl+uSTTxQREdF6FwEAAAAAAAAACEnnnHOOlVZekhYtWtSi9l566SVrv0uXLjrppJNa1F5zOQJyVknjx49vskzHjh21cuVKLVmyRG+99ZbWr1+vQ4cOyTRNdevWTWeffbYmT56sCy64oBV6DAAAAAAAAAAIBzExMTr33HP1ySefSJKefPJJTZ48WR07dvS6rSVLlmjx4sXWlweXX365L7vqlYAF/L0xYcIETZgwIdDdAAAAQcaXeX/XPVN1b6ARf/i1nFE9FBcVJeeu3TJr3MipNfoBAECoaOjzr6F721xy0c8ll0uujB88+nwF0DYZZtUWKkKpr6jrwQcf1CeffCLDMHT48GFddtllWrp0qVc33P344491/fXXS6rKRhMREaH777/fTz1uWkBS+gAAAAAAAAAAEEjnnHOOrrrqKiul/Pr16zVkyBDNmzdPhYWFDdZzOp1at26drr32Wl122WUqKCiw7jd71113qU+fPq10BXWFxAp/AAAAAAAAAAB87ZVXXtGuXbu0ceNGGYahAwcO6JZbbtHtt9+ugQMHSpIVzP/Nb34j0zS1Z88eFRcXuz1nmqbGjh2rJ598MpCXwwp/AAAAAAAAAEDbFBsbq48//lhjx451C95XVFRo69atVjnTNJWenq709HQVFRVZvwqoLn/JJZfogw8+kM0W2JA7AX8AABCS/JU3f/0Tc3ToDIf2Xt5Vx24YrtLLhtcp01BuYgAAwlX1525qj6HWVp/6PiOryzu3ZMj53Xby9wNonGmG3oaQ17lzZ3366ad6/PHH1aFDB+txwzDctpqPSVVfArRr106PP/64lixZosTExID0vyYC/gAAAAAAAACANs0wDN1///3at2+fZs+erQkTJqhDhw4yTbPOFh0drXHjxumZZ57R7t27df/991tfAgSaT3P4T5061ZfNec0wDM2bNy+gfQAAAAAAAAAAhKaYmBjdeuutuvXWWyVJhw4dUm5uro4fP67Y2Fh16tRJ3bp1k8MRnLfH9WmvXnnllYB9k1GdX4mAPwAAAAAAABCaDLNqCxWh1Fc0T9euXdW1a9dAd8NjpPQBAAAhx1/5+6tl/Gq2ipNdKupu6PDQqvURNXMS+/v8AAAEo6Y+/xrK3w8AAFqPz393YHKjCgAAAAAAAAAAWp1PA/6ZmZm+bA4AAAAAAAAAgKBRUFCg4uJidezYMSjz+Pu0R7179/ZlcwAAAAAAAADaEvPHLVSEUl/RLKZp6q233tLChQv1+eefq7Cw0HquW7duSk1N1eTJkzV27NjAdbKG4PsKAgAAoJXUl2u42s6rX/7fwW3kIAYAtE3efP6l9hja6GcrAACtzTRN/etf/7LS0Nvtdo0fP97j+pmZmbryyiuVlpZmtVdTdna2Xn31Vb366qu68sorNX/+fMXHx/vuApqBgD8AAAAAAAAAIOxs2LBBEydOlGEYkqSJEyd6HPDfu3evzj77bOXk5FiB/up2aqp+7r333lNWVpaWL1+uuLg4H12B92wBOzMAAAAAAAAAAH7y8ccfS/pfUP7uu+/2qJ5pmrryyit16NAhSVWBfsMwZJpmna3mc+vXr9f999/vn4vxEAF/AAAAAAAAAEHBMENvQ/BavXq1td+/f3+NGjXKo3qvvPKKvvnmG7cV/TabTVOnTtUnn3yibdu26ZtvvtGcOXN00kknWYF/0zT18ssva+vWrT6/Fk8R8AcAACElULn0yUkMwF+YXxCsmvOZW10ntcdQ7n+DkLbsQBrzMxDiTNO0gvaGYeiqq67yuO5zzz3n1o7dbtfixYv1j3/8QxdeeKEGDhyo0047Tbfccos2btyoq666yvoVgcvl0vz5831+PZ4i4A8AAAAAAAAACCu7du1SQUGBFYi/+OKLPar3zTffaOvWrdaKfcMwdM899zSY+z8iIkKvv/66+vTpY9V5++23fXYd3iLgDwAAAAAAACA4uMzQ2xCUdu7cae3bbDadfvrpHtWrzvtfLTIyssm8/FFRUfrd735nfbmQnZ2tAwcOeNlj3yDgDwAAAAAAAAAIK3v37rX2e/bsqdjYWI/qrVq1yto3DEOpqanq0KFDk/V+9rOfWXUkKS0tMGnBHAE5KwAAgJfIAwwAQOtpyecun9kIdTVz9zeVxz+1x1C3MtXHNd8H3AsACIz8/HxJVQH4pKQkj+qYpqmvvvrKLZ3PuHHjPKrbvXt3denSRTk5OTIMgxX+AAAAAAAAAAD4QklJibUfFRXlUZ2MjAwVFha6PXbOOed4fM7u3btb+wUFBR7X8yVW+AMAAAAAAAAIDuaPW6gIpb62MXFxcdZ+Xl6eR3W++uort+PIyEidfPLJHp8zOjra2i8uLva4ni+xwh8AAAAAAAAAEFaq8+6bpqnMzEy5XK4m63zxxRdux6eccoocDs/XzB8/ftzaj4mJ8bieL7HCHwAABJQn+U19mQuYHKoAgglzEoIROfjRFjV3Pq5dr/qY+R0IvAEDBlj75eXlWr9+vc4+++xG6yxfvtwtf/+oUaO8OueRI0es/Xbt2nnXYR9hhT8AAAAAAAAAIKwMGzZMDodDhmFIkv7+9783Wn7dunXas2eP22Pnnnuux+c7ePCgcnNzreNevXp50VvfIeAPAAAAAAAAICgYkgwzhLZAv2BoUHR0tMaNGyfTNGWaphYuXKhly5Y1WH769Olux+3atdOFF17o8fk+//xzt+OBAwd612EfIeAPAAAAAAAAAAg7t956qyTJMAy5XC5dccUVevrpp3Xs2DGrzK5du3T11Vdr5cqVbul8rrvuOkVERHh8ruXLl1v7HTp0CNgKf3L4AwCAoJHaY6hbvlNf5xD2NpcqOYwBAAAAIHRNnDhR5557rhXMLykp0R/+8Af98Y9/VKdOneR0Ot3S8FSLjo7WAw884PF5SktL9c9//tNKHzRy5EifXYO3WOEPAAAAAAAAAAhLCxYsUI8ePSTJWsHvdDp16NAhHTlyxEr5Ux2sNwxDTz75pFXHE++9957y8/NlmqYk73L/+xoBfwAAAAAAAADBwZRkmiG0BfoFQ1N69eqlNWvWaNCgQVZgv76tOvA/ffp03XnnnR63b5qmHn/8cesLA6nqlwWBQsAfAAAAAAAAABC2+vXrp7S0NM2aNUvDhg2zgvvVW1RUlMaPH6+1a9dqxowZXrX91ltvKT093VrdP3ToUPXp08f3F+EhcvgDAICAaCg/fmvmza99z4BA9AEAAACB19C/CwGED4fDoWnTpmnatGk6duyYsrKyVFBQoPbt26tfv36KiopqVrsXXnihMjMzreP4+HhfdblZCPgDAAAAAAAACA6mZIRSmpxQ6issHTp0UIcOHXzSVseOHdWxY0eftOULpPQBAAAAAAAAACAMEPAHAAAAAAAAACAMkNIHAAC0CcsOpNWbm7/6MXK2AgDAfWwAAAh1BPwBAAAAAAAABAdToZUXP5T6ijaBlD4AAAAAAAAAAIQBAv4AAAAAAAAAAIQBAv4AAKDVBSI/cGqPoY3m6U/tMZS8xQBaHfMOgg33tAEAILSRwx8AAAAAAABAUDBMU4YZOonxQ6mvaBtY4Q8AAAAAAAAAQBgg4A8AAAAAAAAAQBgg4A8AAFpVoPNVLzuQ1mQufwAA2jLy+AMIKFcIbkAQIeAPAAAAAAAAAEAYIOAPAAAAAAAAAEAYIOAPAABaTTCky0ntMTQo+gEA1ZiTECyqxyJjEgCA0OUIdAcAAAAAAAAAQJIM05RhmoHuhsdCqa9oG1jhDwAAAAAAAABAGCDgDwAAAAAAAABAGCDgDwAA2ozqnMTLDqQFuCcAAAQn8vcDABDayOEPAAAAAAAAIDiYP26hIpT6ijaBFf4AAAAAAAAAAIQBAv4AAAAAAAAAAIQBUvoAAIA2Y9mBNKX2GEp+YgBAm8bnIIDgZkpmKOXJCaW+oi1ghT8AAAAAAAAAAGGAgD8AAAAAAAAAAGGAgD8AAAAAAAAAAGGAHP4AALRx1Xl8lx1IC3BPWkf1dZK/GADQFqX2GOr2mc/nIYBgY5hVW6gIpb6ibWCFPwAAAAAAAAAAYYCAPwAAAAAAAAAAYYCAPwAAAAAAAAAAYYCAv5/s3r1b8fHxMgzD2mbMmOFVG5s2bdK0adM0ZMgQtW/fXgkJCRo0aJCmTp2q1atX+6fjAIA2pWbe3tQeQ/2Wx9efbTdXW7lnAYDgx3yE1lL9WVz9uRxsn80AIEkyzdDbAuD48eN67733dOedd2rkyJHq2rWrIiMjlZCQoD59+uhnP/uZZs+ercLCwma1v2bNGk2dOlWDBg1SQkKC2rdvryFDhmjatGnatGmTj68GvsRNe/3ktttuU1FRUbPqVlRU6IEHHtBzzz0ns9aksX37dm3fvl0LFizQ9ddfr7/97W9KSEjwRZcBAAAAAAAABLFt27bpd7/7nZYvX66Kioo6z1dUVKiwsFB79uzR4sWL9cADD+j555/XjTfe6FH7BQUFuv3227Vw4cI6z+Xl5Wnr1q3661//qnvuuUePP/64IiIiWnpJ8DEC/n7wxhtv6JNPPml2/Ztvvlmvv/66dRwbG6uTTjpJDodD6enpys/PlyQtXLhQBw4c0LJly+Rw8KcEAAAAAAAAwtl3332npUuXuj1mt9v1k5/8RF27dpXT6VRGRoaOHj0qqSpIf9NNN2nnzp169NFHG227srJSEydO1MqVK63HEhMTNXjwYJWXlys9PV0lJSUyTVPPPvusDh8+rFdffdX3F4kWIaWPjx09elS//e1vJUmDBg1Sjx49vKo/e/Zst2D/Lbfcov3792vDhg364osvdODAAT300EPW85999pkefPBBn/QdAAAAAAAACCTDFXpbIDgcDl1++eVavHixjh49qm3btmn16tX6/PPPdeTIES1evFg9e/a0yv/5z3/WkiVLGm3zwQcfdAv2T58+XdnZ2Vq3bp2+/vpr7du3T7/85S+t51977TXNnj3b9xeHFiHg72P33nuvDh8+LEmaM2eOVz9rKSoqcsvzf8MNN+jll19Whw4drMfi4uL06KOPugX9X3jhBWVlZbW88wCANqW18vYGc35g8mYDAAAACCURERH65S9/qZ07d+qDDz7QxIkTlZiY6FbGMAxNnDhRX3zxhbp162Y9/sc//rHBdvft26dZs2ZZx9OnT9fMmTMVGxtrPdaxY0fNnTtX119/vfXYI488ouLiYl9cGnyEgL8PffbZZ3rllVckSVOmTNGYMWO8qr9gwQLl5ORIqkrj8/zzzzdYdvr06UpJSZEklZaWNloWAAAAAAAAQOibOHGi5s6dq169ejVZNiUlRY888oh1/N1332nnzp31lp01a5bKysokSb169XJbbFxf2eovAg4dOqQFCxZ4cwnwMwL+PlJaWqpbb71VkpSUlKRnnnnG6zbef/99a3/SpElKSkpqsGxkZKRuuukm6/iDDz7w+nwAAAAAAAAAwteECRPcjrdt21ZvuZqxxalTpyoyMrLBNpOSknTVVVfVWxeBR8DfR2bOnKkffvhBkvTUU0+pU6dOXtUvKCjQ2rVrreOLLrqoyToXX3yxtb9z505t377dq3MCAAAAAAAAQcU0Q28LYrUXFOfn59cps23bNu3atcs69jYuuXr1ahUWFragl/AlAv4+8O2331or+keOHKmpU6d63UZ6eroqKyut47POOqvJOsOGDXP7ti0tjTzEAICW8XVO+2DO3w8AwYK5EgAA+MuePXvcjjt37lynTM2YYlRUlIYNG9ZkuzVjl5WVlUpPT29BL+FLBPxbyOVy6Ve/+pUqKirkcDg0e/ZsGYbhdTsZGRnWfmRkpJWfvzG1yzX0kxwAAAAAAAAAbU/NFOIOh0Onn356nTI145IpKSmKiIhost2UlBS3hcjEJYOHI9AdCHV//etf9eWXX0qS7r33Xg0ZMqRZ7dT8ti05OdnjLw169epl3Wxj9+7dXp93//79XpXPzs72+hwAAAAAAABAuGtO3Cw5OdkPPalSVFSkl156yTpOTU1Vhw4d6pSrGZf05GbAkmSz2dSzZ09lZmZKal5cEv5BwL8F9u/frwcffFCS1KdPHz388MPNbqugoMDab9euncf1EhMT623DU578kgAAAAAAAABoFeaPW6io0dfhw4d7X92P9wD43e9+p6ysLEmSYRiaOXNmveUCFZeEf5DSpwXuuOMOazC/+OKLio2NbXZbRUVF1n50dLTH9WJiYuptAwCA+qT2GGpttTWVv9+bHNMNnSMY+fq+BQDQHKEyZyJ0McYAoG1ZtGiR5syZYx3fc889DebmJy4ZXljh30zvvvuuPvroI0nSFVdcoUsvvbRF7VVUVFj7Dofnf5aaZcvLy70+7759+7wqn52d3axvKwEAAAAAAIBw9tVXX6l79+6B7obWrl2rm2++2To+/fTT9dhjjzVYPlBxSfgHAf9myMvL01133SVJio+P16xZs1rcZs1fB5SWlnpcr2bZuLg4r8/rzzxhAAAAAAAAgDcM05ThxzQ3vlazr927dw94rC0tLU0TJkxQWVmZJKlfv35asmSJ2w12awtUXBL+QUqfZrjvvvusm3DMnDnTJ2/k+Ph4a7+kpMTjesXFxfW2AQAAAAAAAKDt2L59uy688ELl5eVJknr06KEVK1Y0+asD4pLhhRX+XkpPT9fcuXMlSaeeeqq10r+lOnbsaO17c0fvgwcP1tsGAAAtVV+u39QeQ32a6x8AAAAA0HKZmZkaN26ccnJyJEmdOnXSihUr1K9fvybrEpcML6zw91JOTo519+zNmzfL4XDIMIwGtz179lh1H3nkEbfndu/ebT13wgknWPu5ublu35A1pmYO/pptAAAAAAAAAAh/+/fv1/nnn6/9+/dLkhITE/XJJ5/opJNO8qh+zZji3r17PapTVFSko0eP1tsGAouAf5A48cQT3Y43b97cZJ2srCwdPny4wTYAAAAAAACAkGKaobcF0KFDhzRu3DhlZmZKqsrHv3TpUp1++uket1Ezpnj48GGPVvnXjl0SlwwepPTxUkREhFc/UTl27JhcLpckKSYmxu0mGHa73drv16+fevbsqaysLEnS559/rrPPPrvRtteuXWvtR0VFafjw4R73CwAAAAAAAEDoOnr0qC644AJt375dUlV8cPHixRo5cqRX7QwfPlyRkZEqLy+XVBVznDRpUqN1asYlk5OTPUodhNbBCn8vnXPOOTpy5IjHW0pKilX3vvvua/A5wzB06aWXWseLFi1qsi81y5x33nncHAMA4BOpPYY2moe/qecBAACAUNPUfaqAYJOfn6/U1FR9++23kiSHw6F//vOfuuCCC7xuKyEhQeeee6517Elc8o033rD2J0yY4PU54T8E/IPIlClTrP0tW7ZoyZIlDZbduHGjPv7443rrAgAAAAAAAAhPxcXFGj9+vL7++mtJks1m0+uvv67LLrus2W3eeOON1v7SpUu1adOmBst+9NFH1hcNEnHJYEPAP4icddZZuuSSS6zjW2+9Vdu2batT7sCBA7ruuuvkdDolSSeffHKTP7MBAAAAAAAAgp4pyRVCWyun8C8rK9PEiRP1+eefS6rKGvKPf/xDP//5z1vU7qRJkzRkyBBJktPp1HXXXVdvLv+MjAzdeuut1vH48eN15plntujc8C1y+AeZF154QevXr9fRo0eVnZ2tM888U7fffrtGjRolu92uDRs26KWXXtKhQ4ckSdHR0Zo7d64MwwhwzwEAAAAAAAD406xZs/Sf//zHOm7fvr3efvttvf322x7Vv/7663X99dfXedxms2nu3LkaO3asysrKlJGRodNOO03Tpk3TGWecoYqKCq1Zs0Zz5sxRfn6+JKljx46aNWuWby4MPkPAP8j0799fH3zwgS677DLl5eUpPz9fTzzxhJ544ok6ZaOiovTqq6/yLRoAoF7NybPvaZ1wynHK/QgAAOEitcdQ6zO6+vNt2YE0PusAIIwUFxe7HR87dkzLli3zuP6IESMafe61117T5MmTVVZWpkOHDumhhx6qt2y7du30/vvvq3///h6fG62DlD5BaPTo0dqyZYsuu+wy2e32Os8bhqExY8Zow4YNpPIBAAAAAAAA4BOTJk3Shg0bNHbs2Hozitjtdk2YMEFpaWkaPXp0AHqIprDC3892797drHq9evXShx9+qIMHD2rt2rXav3+/nE6nevbsqREjRqhv376+7SgAAAAAAAAQYIZpyjBbOTF+C7R2X2fMmKEZM2b49Rwnn3yyVq5cqczMTK1fv15ZWVmy2+1KTk7WqFGj1K1bN7+eHy1DwD/IdevWTVdffXWguwEAAAAAAACgDenbty+LjkMQKX0AAAhD3ubq9WV+32UH0oIyx399fSKnMQAgXNXO5Q+gYcH4b1cAaC5W+AMAAAAAAAAIDqakEErpoxDqKtoGVvgDAAAAAAAAABAGCPgDAAAAAAAAABAGCPgDAICwz+9LXlYAoSDc52IACFbMvwDCCTn8AQAAAAAAAAQH0wyxHP4h1Fe0CazwBwAAAAAAAAAgDBDwBwAAAAAAAAAgDBDwBwAgDPkzZ72nbQd73nxytQIIRsxN8KVg/ywGgklrzr/M9QD8iRz+AAAAAAAAAIKD68ctVIRSX9EmsMIfAAAAAAAAAIAwQMAfAAAAAAAAAIAwQMAfAIAw1Zbz9rblawcQ+sjtjJZI7THUGkOMJSD48L5smmGaIbcBwYSAPwAAAAAAAAAAYYCAPwAAAAAAAAAAYYCAPwAAYWzZgTRr8xVv0gQEKrVOzb6R3gdAKCLlA5qj5mceYwgAgLbJEegOAAAAAAAAAIAkyTSrtlARSn1Fm8AKfwAAAAAAAAAAwgABfwAAAAAAAAAAwgABfwAA2qiW5Pavmce/qRzBgcyhT/5+AKGK+QvNQd5+ILjxHgXQGsjhDwAAAAAAACBIhFgOf4VSX9EWsMIfAAAAAAAAAIAwQMAfAAAAAAAAAIAwQMAfAIA2qGZu6Opc/jU3bwU6H2l9fSb/NYBQFuh5FaGp+rOPz0AguHhy3yvUYJqhtwFBhIA/AAAAAAAAAABhgIA/AAAAAAAAAABhgIA/AAAAAAAAAABhwBHoDgAAgNax7ECaUnsMDcu8vjVzoobj9QEA4A1yhQO+4Yt/Y/J+bAbXj1uoCKW+ok1ghT8AAAAAAAAAAGGAgD8AAAAAAAAAAGGAgD8AAAAAAAAAAGGAHP4AALQhjeUebUl+0aZymlbfP8DfPM2tSi5VAKGgeq7i3iTwRmt95gLhiPdOcDBMU4ZpBrobHgulvqJtYIU/AAAAAAAAAABhgIA/AAAAAAAAAABhgJQ+AAAAAAAAAIKDaVZtoSKU+oo2gYA/AABtXDjkKiW/NQAAAPwptcfQev/NGQ7/lgYQXkjpAwAAAAAAAABAGCDgDwAAAAAAAABAGCClDwAAAAAAAIDg4DKrtlARSn1Fm0DAHwCANqy1co766zzNyd1PnlUAAAC0FP+mBBCsSOkDAAAAAAAAAEAYIOAPAAAAAAAAAEAYIKUPAAAAAAAAgOBgSjJDKC9+CHUVbQMBfwAA2qBwyDnanPz9ABCKUnsMZc6Dx8LhMx4IVry/AIQCUvoAAAAAAAAAABAGWOEPAAAAAAAAIEiYoZXSh5w+CDKs8AcAAAAAAAAAIAwQ8AcAAC3WVD7TYMo9HUx9AQDA1/icAwCgbSPgDwAAAAAAAABAGCCHPwAAAAAAAIDgYIZYDv9Q6ivaBFb4AwAAAAAAAAAQBgj4AwDQxjSVb785WiNf8LIDaS06T/V1++P6AcDfmLvgDfL4A/7Tkn+TVtflPQrAnwj4AwAAAAAAAAAQBsjhDwAAAAAAACA4uMyqLVSEUl/RJrDCHwAAAAAAAACAMMAKfwAA2pBA5YD25rxN5TRtTs5T8vcDCAepPYaS9xmN4nMOaD3LDqT59N+4AOArrPAHAAAAAAAAACAMsMIfAAAAAAAAQHAwXVVbqAilvqJNYIU/AAAAAAAAAABhgBX+AADAb7zNN+2P3KbVuVW9zbMKAMGIPP4AEDi159/G5uOa/+5k3gbQmgj4AwAAAAAAAAgOplm1hYpQ6ivaBFL6AAAAAAAAAAAQBgj4AwAAAAAAAAAQBkjpAwAAfK5mzlJP8+Y3N7dpffmsa+bt97YfAAAAQEuRtx9AoBDwBwAAAAAAABAcXGbVFipCqa9oE0jpAwAAAAAAAABAGCDgDwAAAAAAAABAGCClDwAA8Jnm5slvLMdpfW02lLPfV/0BACCU8HkH+B85+QGECgL+AAAAAAAAAIKDaVZtoSKU+oo2gZQ+AAAAAAAAAACEAQL+AAAAAAAAAACEAVL6AADQhlTnHvV1rt+WtNdQPtSG2qxdftmBNHIXA2hTas555JRu2/j8AxC2SJMDNBsr/AEAAAAAAAAACAME/AEAAAAAAAAACAOk9AEAoA0KljQ4tVNR1O5Tzefr628wXAMABFJqj6Gk9QEAAICFgD8AAAAAAACA4GCaoZXDP5T6ijaBlD4AAAAAAAAAAIQBAv4AAAAAAAAAAIQBUvoAAIBWV51vur4c/J7moiZ/PwBUqTkfks+/beAzEGhdzK0AQgkBfwAAAAAAAADBweWSDFege+E5Vwj1FW0CKX0AAAAAAAAAAAgDBPwBAAAAAAAAAAgDBPwBAEDQaCg/as1cxeQtBoCGMUeGP/7GQOtZdiCN/P2BYJqhtwFBhIA/AAAAAAAAAABhgIA/AAAAAAAAAABhgIA/AAAAAAAAAABhgIA/AABtlK/ykXqT27R22cbqpfYY2mCeYvIXA0DDmCPDF39boHWQuz/AAp2Pnxz+CHEE/AEAAAAAAAAACAME/AEAAAAAAAAACAME/AEAAAAAAAAACAME/AEAQIs0lmvfE/XlR63ZHvmKAcB7zJ0A0Dzk7g8CLjP0NiCIEPAHAAAAAAAAACAMEPAHAAAAAAAAACAMOALdAQAAAAAAAACQJNN0yTRdge6Gx0Kpr2gbWOEPAAACrjpXKjmnAQCoq6X3ywHgGfL3AwgHBPwBAAAAAAAAAAgDBPwBAAAAAAAAAAgD5PAHAAAAAAAAEBxMSS4z0L3wXAh1FW0DK/wBAGjDWjtPaUM5iGs+Ro5iAAAAtDby9wMIFwT8AQAAAAAAAAAIAwT8AQAAAAAAAAAIA+TwBwAAAAAAABAcTLNqCxWh1Fe0CazwBwCgjWvtfKW1z0fOfgAA6tfQvW8AAAAaQsAfAAAAAAAAAIAwQEofAAAAAAAAAMHB5ZLkCnQvPOcKob6iTWCFPwAAAAAAAAAAYYCAPwAAaNU8/uQiBoDWwXwb2vj7AQCA5iDgDwAAAAAAAABAGCCHPwAAAAAAAIDgYJpVW6gIpb6iTWCFPwAAAAAAAAAAYYCAPwAAAAAAQYT8/UDras37WQGAvxHwBwAAAAAAAAAgDJDDHwAAAAAAAEBQMF0umXIFuhseM12h01e0DazwBwAAAAAAAAAgDBDwBwAArZ4rmNzEANA6mG8BoHHk7wcQbkjpAwAAAAAAACA4mGbVFipCqa9oE1jhDwAAAAAAAABAGCDgDwAAAAAAAABAGCDgDwAAApa7lNzSAAAAAAD4Djn8AQAAAAAAAAQH05RcIZQXnxz+CDKs8AcAAAAAAAAAIAwQ8AcAAAAAAAAAIAwQ8AcAAAFB/n4AaB3Mt6GFvxcAAGgJcvgDAAAAAAAACA6mKckV6F54jhz+CDKs8AcAAAAAAAAAIAwQ8AcAAAAAAAAAIAwQ8AcAAAAAAAAAIAyQwx8AAAAAAABAUDBdpkwjdPLim+TwR5BhhT8AAAAAAAAAAGGAFf7NVF5erg0bNuiLL75QWlqatm/frr179yovL09Op1Pt2rVTnz59dOaZZ+raa6/VOeec4/U51qxZo1deeUXr1q1TVlaW7Ha7kpOTde6552rq1Kk67bTT/HBlAIC2JrXH0EB3AQAAAADQTMQQURMB/2a644479I9//KPB548cOaIjR47o66+/1l//+leNHTtW8+bNU79+/Zpsu6CgQLfffrsWLlxY57m8vDxt3bpVf/3rX3XPPffo8ccfV0RERIuuBQAAAAAAAAgKpkuSK9C98JwZuL4SQ0R9CPg3U+38XImJierfv7/at28vp9OprKws7dq1yyq3atUqnXPOOVq1apVOOOGEBtutrKzUxIkTtXLlSre2Bw8erPLycqWnp6ukpESmaerZZ5/V4cOH9eqrry5cra4AAEamSURBVPrnIgEAAAAAAAAEHWKIaAg5/JspLi5OV1xxhRYsWKCdO3cqLy9PGzdu1GeffabVq1frhx9+0J49e3T77bdbdQ4ePKgbbrhBLlfD3/w9+OCDbm/U6dOnKzs7W+vWrdPXX3+tffv26Ze//KX1/GuvvabZs2f75yIBAAAAAAAABB1iiGiIYXIrab/705/+pJkzZ1rHn332mc4999w65fbt26cBAwaorKxMUtUbtWa9mm644Qbr5zpdu3bVrl27FBsb64feu9u/f79SUlIkSXu+6aPkHvwUCABCFbn7AaBtWXYgLdBdgAf4fAZaXyDmR1u371v9nMGsZrxplH2Cog3/x7h8pdQs1lrnEklVsb3k5GS/nzMUYogIHFb4t4IHHnhA8fHx1vGqVavqLTdr1izrjdqrVy899NBDDbY5a9Ys68156NAhLViwwHcdBgAAAAAAAALAdJkht7U2YohoDAH/VhAdHa0TTzzROj548GC95T744ANrf+rUqYqMjGywzaSkJF111VX11gUAAAAAAAAQnoghojEE/FtJZWWltZ+YmFjn+W3btmnXrl3W8UUXXdRkmxdffLG1v3r1ahUWFrawlwAAAAAAAACCFTFENIWAfyvIzc3Vd999Zx2fddZZdcqkpf0vX1xUVJSGDRvWZLs126msrFR6enoLewoAaGuWHUizNgAAEHh8JgOti/ccQg0xRDSFgL+fuVwu3XHHHaqoqJAkDRgwQBMmTKhTLiMjw9pPSUlRRETTN8NNSUlx+8nOtm3bfNBjAAAAAAAAIEBMV+htrYgYIpriCHQHwlFFRYUOHjyozz//XM8//7y++uorSVJycrLee++9et+Ie/bssfZ79erl0XlsNpt69uypzMxMSdLu3bu97uv+/fu9Kr9v3z5rP/tQZSMlAQDBrtQs1v4DFW7HAIDwVXPOR3DjMxloPYGaG22V+9WtWzc5HITmaitTqdT698FttjKVWvvZ2dle109OTvaqfKBiiAgdzCo+UFlZ2ei3adHR0br66qv1xBNPqEePHvWWKSgosPbbtWvn8blr3g+gZhueSklJ8bpOtRGXePdlAQAg2OxW79PdjwEA4ct9zkdw2x3oDgBtRuDmxhTt27fP62BvW7BBnwW6C802fPhwr+uYpnffbgQqhojQQUqfVnDhhRdqypQpDQb7JamoqMjaj46O9rjtmJiYetsAAAAAAAAAEF6IIaIprPD3AZvNptTUVOu4pKREBw4c0M6dO2Wapj766CN99NFHuvDCC7Vo0SJ16tSpThvVOf4lefVzrpply8vLve57zRQ9nsjMzNTo0aMlSevWrWvRLwSAhmRnZ1vfin/11Vfq3r17gHuEcMQ4Q2tgnKG1MNbQGhhnaA2MM7SGYBln3bp1C8h5g1G3bt28jlEFm+zsbHXu3NnvaZoCFUNE6CDg7wM2m02ffPJJncezs7P14osv6plnnlFFRYWWL1+u888/X+vXr3f7Vk2SYmNjrf3S0tLaTTWoZtm4uDiv+96Sn46lpKTw0zP4Xffu3Rln8DvGGVoD4wythbGG1sA4Q2tgnKE1MM6Cg8PhCPm/Q2v1P1AxRIQOUvr4Uffu3fXYY49pyZIlstvtkqQtW7boz3/+c52y8fHx1n5JSYnH5ygu/t/NnGq2AQAAAAAAACC8EENEUwj4t4LU1FTdfPPN1vHLL78sl8vlVqZjx47Wvjd39D548GC9bQAAAAAAAAAIL8QQ0RQC/q1k0qRJ1n5ubq527Njh9vwJJ5xg7e/du9ejNouKinT06NF62wAAAAAAAAAQXoghoikE/FtJ7Zvb5ubmuh2feOKJ1v7hw4c9+oZu8+bNDbYBAAAAAAAAILwQQ0RTCPi3kvz8fLfj9u3bux0PHz5ckZGR1vHatWubbLNmmeTkZPXr169lnQQAAAAAAAAQtIghoikE/FtJzTeWw+FQr1693J5PSEjQueeeax0vWrSoyTbfeOMNa3/ChAk+6CUAAAAAAACAYEUMEU0h4N8K8vLy9Nxzz1nHY8aMqfdu2DfeeKO1v3TpUm3atKnBNj/66CN9++231vGUKVN801kAAAAAAAAAQYsYIhpDwL8Z3n//fT388MM6fPhwk2V/+OEHXXDBBdq/f7/12B/+8Id6y06aNElDhgyRJDmdTl133XX15uHKyMjQrbfeah2PHz9eZ555preXAQAAAAAAACDEEENEYxyB7kAoys/P16OPPqrHHntMY8aM0TnnnKMhQ4aoY8eOio6OVn5+vnbs2KGVK1dq6dKlqqiosOreeeedGjduXL3t2mw2zZ07V2PHjlVZWZkyMjJ02mmnadq0aTrjjDNUUVGhNWvWaM6cOdY9ATp27KhZs2a1ynUDAAAAAAAACCxiiGgMAf8WcDqd+uyzz/TZZ581WdZut+v3v/+9HnvssUbLjRgxQq+99pomT56ssrIyHTp0SA899FC9Zdu1a6f3339f/fv3b1b/AQAAAAAAAIQeYohoCCl9mmHUqFGaNm2aBgwY0GTZuLg4TZ48WV9//bUef/xxGYbRZJ1JkyZpw4YNGjt2bL3l7Xa7JkyYoLS0NI0ePbpZ1wAAAAAAAAAgdBFDRH0M0zTNQHcilOXm5iotLU2ZmZnKzc1VeXm5EhISlJSUpMGDB2vIkCGKjIxsdvuZmZlav369srKyZLfblZycrFGjRqlbt24+vAoAAAAAAAAAoYoYIqoR8AcAAAAAAAAAIAyQ0gcAAAAAAAAAgDBAwB8AAAAAAAAAgDBAwB8AAAAAAAAAgDBAwB8AAAAAAAAAgDBAwB8AAAAAAAAAgDBAwB8AAAAAAAAAgDBAwB8AAAAAAAAAgDBAwB8AAAAAAAAAgDBAwB8AAAAAAAAAgDBAwB8eWbNmjaZOnapBgwYpISFB7du315AhQzRt2jRt2rQp0N1DkFm1apUMw/B627Ztm8fnYEyGt6ysLC1evFgPPfSQUlNT1bFjR7exsmrVqma37Y+xY5qmli5dqmuuuUYDBgxQbGysOnXqpNNOO00PPPCAvv/++2b3F/7jy3HWGvOexNwXao4fP6733ntPd955p0aOHKmuXbsqMjJSCQkJ6tOnj372s59p9uzZKiwsbFb7zGeo5uuxxpyG2srLy/Xf//5XzzzzjG644QYNHz5c3bp1U0xMjCIjI9W5c2edccYZuvPOO/Xf//63WedgToM/xhnzGYA2yQQakZ+fb15//fWmpAY3wzDMe++91ywvLw90dxEkVq5c2eiYaWjLyMhosm3GZHjbuHGj2a1btybHysqVK71u219j5+DBg2Zqamqj7UZERJhPPfWU6XK5vO43fM8f48yf855pMveFmoyMDHP8+PFmRESER+OgXbt25oIFCzxun/kM1fw11pjTUNsvf/lLr8bC2LFjzZ07d3rUNnMaqvljnDGfAWiLHAIaUFlZqYkTJ2rlypXWY4mJiRo8eLDKy8uVnp6ukpISmaapZ599VocPH9arr74awB4jGEVHR2vMmDEelY2Pj2/0ecZk+MvLy9PBgwd93q6/xk5+fr7OO+88paenW4916tRJgwYNUkFBgdLT01VRUaGKigrdd999Kigo0MyZM31+ffCOv8ZZNV/OexJzXyj67rvvtHTpUrfH7Ha7fvKTn6hr165yOp3KyMjQ0aNHJVWNyZtuukk7d+7Uo48+2mjbzGeoyZ9jrRpzGiTJNE2348TERPXv31/t27eX0+lUVlaWdu3aZZVbtWqVzjnnHK1atUonnHBCg+0yp6Emf42zasxnANqMwHzPgFBw3333uX0rPX36dLOoqMh6/siRI3W+gf/b3/4WwB4jWNRcRdG7d2+ftcuYDH81x06PHj3MiRMnmo8++qg5f/58t7+rtyv8/TV2Jk2a5LZC7KWXXnJbubNv3z5zwoQJbu0uXbrUq77D9/wxzvw175kmc18oeuedd0xJpsPhMC+//HJz8eLFZl5enlsZl8tlLl682OzZs6fb3+6jjz5qtG3mM9Tkr7HGnIba7rrrLvOKK64wFyxY0OCK6r1795q3336729/ujDPOMJ1OZ4PtMqehJn+MM+YzAG0RAX/Ua+/evWZUVJTbB1dDav58rWvXrm4fcGib/PGPKsZk27B//37zo48+MrOzs90ez8zMbHYg1l9j56uvvnLr07x58+otV1lZaY4ZM8Yqd/LJJ/Oz8QDzxzjz138mmftC0+LFi81f/vKX5p49e5osu3fvXrcUU0OGDGm0LPMZavLXWGNOQ0s8/PDDbnPKZ599Vm855jS0hKfjjPkMQFtEwB/1uvfee60PpF69epllZWUNls3NzTVjY2Ot8i+99FIr9hTByB//qGJMtm0tCcT6a+xceeWVVrkRI0Y02of09HS3/v/rX//yuP9oPcEY8Gfuaxtefvllt7H3ww8/1FuO+Qwt5elYY05DS5SUlJjx8fHW3+7hhx+utxxzGlrC03HGfAagLbIJqMcHH3xg7U+dOlWRkZENlk1KStJVV11Vb13AVxiTaC5/jJ3S0lJ9/PHH1vGvf/3rRvtw4oknavTo0U22C9TG3Nc2TJgwwe1427Zt9ZZjPkNLeTrW/IU5rW2Ijo7WiSeeaB03dN8c5jS0hKfjzF+YzwAEMwL+qGPbtm3atWuXdXzRRRc1Wefiiy+29levXq3CwkK/9A1tE2MSzeWvsbNq1SoVFxc3u93aN1gE6sPc13YkJSW5Hefn59cpw3wGX/BkrPkLc1rbUllZae0nJibWeZ45Db7Q1DjzF+YzAMGOgD/qSEtLs/ajoqI0bNiwJuucddZZ1n5lZaXS09P90je0TYxJNJe/xk7Ndvv27auuXbt61e7BgweVk5PTZB20bcx9bceePXvcjjt37lynDPMZfMGTseYvzGltR25urr777jvruObfsRpzGlrKk3HmL8xnAIIdAX/UkZGRYe2npKQoIiKiyTopKSluP2Fr7Z8HI3gdP35ckyZNUp8+fRQTE6OEhAT17dtXl19+uV566SWPVpYxJtFc/ho7Ndvt37+/R32pXY4xGb58Me9JzH1tyfvvv2/tOxwOnX766XXKMJ/BFzwZa7Uxp8EbLpdLd9xxhyoqKiRJAwYMqJNKSmJOQ8t4Os5qYz4D0FYQ8EcdNVf+9OrVy6M6NptNPXv2tI53797t624hROXl5emdd97Rnj17VFpaqsLCQu3evVsffvihpk2bpl69eunFF19stA3GJJrLX2OnOe326NFDDoej0XYRHnwx70nMfW1FUVGRXnrpJes4NTVVHTp0qFOO+Qwt5elYq405DU2pqKjQvn379Oabb+qss87S22+/LUlKTk7We++9V28wlDkN3mrOOKuN+QxAW+FougjamoKCAmu/Xbt2HtermTOvZhtAnz591LNnT0VFRenIkSNKT0+38i3m5eXprrvu0ubNmzVv3rx66zMm0Vz+GjvNaddmsykuLk55eXkNtovw0dJ5T2Luayt+97vfKSsrS5JkGIZmzpxZbznmM7SUp2OtPsxpqKmysrLR4Gp0dLSuvvpqPfHEE+rRo0e9ZZjT0BRfjLP6MJ8BaAtY4Y86ioqKrP3o6GiP68XExNTbBtoem82mcePGadGiRcrNzVVmZqY+//xzffrpp0pLS9OxY8c0e/ZsderUyaozf/58Pfnkk/W2x5hEc/lr7DAmUZuv5z2JcdYWLFq0SHPmzLGO77nnngbzADOfoSW8GWsScxpa5sILL9SUKVMaDcIyp6GlPBlnEvMZgLaJgD/qqM6DJ8ntp41NqVm2vLzcp31CaBk9erRWrFihX/ziF0pKSqrzfHx8vH79619r48aN6tOnj/X4zJkzdejQoTrlGZNoLn+NHcYkavP1vCcxzsLd2rVrdfPNN1vHp59+uh577LEGyzOfobm8HWsScxoaZ7PZlJqaam2jR4/WT37yExmGIUn66KOPNG7cOKWmpurIkSP1tsGchqb4YpxJzGcA2iYC/qgjNjbW2i8tLfW4Xs2ycXFxPu0TwlNKSoreeust67i4uLjen04yJtFc/ho7jEk0l6fznsQ4C2dpaWmaMGGCysrKJEn9+vXTkiVL3G7mVxvzGZqjOWPNG8xpbZPNZtMnn3xibatXr9aOHTuUlZWlBx54wErDsnz5cp1//vkqKSmp0wZzGprii3HmDeYzAOGEgD/qiI+Pt/a9+dAsLi6utw2gMWeeeabGjh1rHa9YsaJOGcYkmstfY4cxiZbwZN6TGGfhavv27brwwgutXNE9evTQihUr1L1790brMZ/BW80da95iTkO17t2767HHHtOSJUtkt9slSVu2bNGf//znOmWZ09Bc3owzbzGfAQgXBPxRR8eOHa397Oxsj+sdPHiw3jaAptT8R9X3339f53nGJJrLX2OnOe0WFBS4/SOfMdm2NTXvScx94SgzM1Pjxo1TTk6OJKlTp05asWKF+vXr12Rd5jN4oyVjrTmY01BTamqqWxqpl19+WS6Xy60McxpaypNx1hzMZwDCAQF/1HHCCSdY+3v37vWoTlFRkY4ePVpvG0BTaq40qy//ImMSzeWvsdOcdvft29dgG2h7mpr3JOa+cLN//36df/752r9/vyQpMTFRn3zyiU466SSP6jOfwVMtHWvNwZyG2iZNmmTt5+bmaseOHW7PM6fBF5oaZ83BfAYgHBDwRx0nnniitX/48GGPvrHevHlzg20ATam5oqZmPsRqjEk0l7/GTs3Htm7dqsrKyibb3bRpk7Vvt9s1YMCAJusgfDU170nMfeHk0KFDGjdunDIzMyVV/c2XLl2q008/3eM2mM/gCV+MteZgTkNtKSkpbse5ublux8xp8IWmxllzMJ8BCAcE/FHH8OHD3W7ktXbt2ibr1CyTnJzst58LIzylp6db+126dKnzPGMSzeWvsTNq1Chrv7i4WBs3bvSq3REjRvjshokITU3NexJzX7g4evSoLrjgAm3fvl2SFBUVpcWLF2vkyJFetcN8hqb4aqw1B3MaasvPz3c7bt++vdsxcxp8oalx1hzMZwDCAQF/1JGQkKBzzz3XOl60aFGTdd544w1rf8KECX7pF8JTSUmJPvroI+v47LPPrlOGMYnm8tfYGThwoNvPcJtqt7y8XO+++651fNlllzXZD4QvT+Y9ibkvHOTn5ys1NVXffvutJMnhcOif//ynLrjgAq/bYj5DY3w51rzFnIb61AxuOhwO9erVy+155jT4QlPjzFvMZwDChgnU48033zQlmZJMu91ubty4scGyH374oVVWkrl+/fpW7ClC3b333us2fhYvXlxvOcZk25aZmen2N125cqXHdf01dh5//HGrXEJCgrl///4Gy86aNcsqGxkZae7du9fj/qP1tGScecPTec80mftCWVFRkTly5Ejr72Gz2cw333yzRW0yn6E+/hhr3mBOQ23Hjx83k5OTrb/d+eefX2855jS0hKfjzBvMZwDCBQF/1MvpdJpDhgyxPpBOPPFE88CBA3XKpaenm926dbPKjR8/PgC9RTBZtmyZec8995j79u1rtFx5ebl5//33u/3DZ9iwYabL5aq3PGOybWtJINZfY6ewsNDs0qWLVX706NFmfn5+nXJr16414+LirHJ33HGHx31H62ruOPPXvGeazH2hqrS01Bw3bpz19zAMw5w/f36L22U+Q23+GGvMaajtvffeM6dPn27m5OQ0WXbHjh3mGWec4TYuVqxYUW9Z5jTU5I9xxnwGoK0yTNM0BdRj/fr1Gjt2rMrKyiRJXbt21bRp03TGGWeooqJCa9as0Zw5c6y8eR07dtSXX36p/v37B7LbCLDFixfrZz/7mWw2m8455xyNGTNGQ4YMUadOnRQZGakjR47oq6++0qJFi7Rv3z6rXlJSktatW+f2E9zaGJNtw4UXXqg1a9a4PWaapsrLy63jiIgI2WzuWelGjx6t5cuX19umv8bOBx98oCuvvFLVH6X9+vXTtGnTdPLJJ6uwsFDLli3T/PnzrfP2799fX375pTp27OjFKwJ/8OU48+e8JzH3haKnnnpK999/v3XcoUMHDR8+3OP6119/va6//vp6n2M+Q03+GGvMaajtlVde0U033SS73a4xY8bonHPO0ZAhQ9SxY0dFR0crPz9fO3bs0MqVK7V06VJVVFRYde+88069+OKLDbbNnIZq/hhnzGcA2qwAftmAEPD222+bUVFRbt9017e1a9fOXL16daC7iyDwwQcfNDleam8DBgxo9CeQNTEmw9+YMWO8HkOSzDFjxjTarr/GznPPPWfabLYm2+3Ro4eZnp7ewlcHvuLLcebvec80mftCzZ/+9Kdmja/q7U9/+lOj7TOfoZo/xhpzGmpbsGCB12PCbrebf/jDHxpdIV2NOQ2m6Z9xxnwGoK0i4I8mbdmyxRw7dqxpGEa9H7ATJkwwd+/eHehuIkhkZGSYl19+udmhQ4cm/9HTp08f86mnnjILCwu9OgdjMrz5K+Bvmv4bO6tXrzaHDRtWb7+ioqLMyZMnm0eOHGnGqwF/8eU4a415zzSZ+0KJvwP+psl8hir+GGvMaajthx9+MKdNm2YOGDCgyTERFxdnTp482dy0aZNX52BOgz/GGfMZgLaKlD7wWGZmptavX6+srCzZ7XYlJydr1KhR6tatW6C7hiC1c+dOZWRkaP/+/Tp+/LicTqcSExPVpUsXnXHGGerXr1+L2mdMorn8NXbS09O1ceNGHThwQDExMUpOTta5556r9u3b+6bjCHr+nvck5j64Yz6DPzGnobbc3FylpaUpMzNTubm5Ki8vV0JCgpKSkjR48GANGTJEkZGRzW6fOQ2Sf8YZ8xmAtoSAPwAAAAAAAAAAYcDWdBEAAAAAAAAAABDsCPgDAAAAAAAAABAGCPgDAAAAAAAAABAGCPgDAAAAAAAAABAGCPgDAAAAAAAAABAGCPgDAAAAAAAAABAGCPgDAAAAAAAAABAGCPgDAAAAAAAAABAGCPgDAAAAAAAAABAGCPgDAAAAAAAAABAGCPgDAAAAAAAAABAGCPgDAAAAAAAAABAGCPgDAAAAAAAAABAGCPgDAAAAAAAAABAGCPgDAAAAAAAAABAGCPgDAAAAAAAAABAGCPgDAMLS7t27ZRiGtd14442B7lJYmjFjhtvrvGrVqkB3KeBWrVrl9prMmDEj0F1qltrXUd/2yiuv+O38Y8eOdTsXAEhSnz59Gp2Xxo4dG+guAgAABBQBfwAAAAAAAAAAwgABfwAAAAAAAAAAwoAj0B0AAABtR83ULGPGjCEFUAi54YYbNHnyZLfHBg8eHKDeAAhFr7zyim666SbreMGCBV6n3Fu0aJFKSkrcHrvgggt80T0AAICwQMAfAAAATerXr5/GjRsX6G4AaOPOOeecQHcBAAAgqJHSBwAANNuMGTNkmqa1cbNEAAAAAAACh4A/AAAAAAAAAABhgIA/AAAAAAAAAABhgIA/AAAAAAAAAABhgJv2AgDQiM2bNys9PV05OTkqLS1Vly5dlJKSopEjRyomJsan53K5XPrqq6+Ulpam3NxcxcXFqXv37ho9erS6devW4va3bNmitLQ0ZWdnS5KSk5M1YsQI9evXr8VttwUVFRVavXq1du3apSNHjiguLk4DBgzQqFGjlJCQ4PPz5eTkaP369Tp48KByc3MVHx+vLl26aPjw4erbt6/Pz9daMjMz9eWXXyorK0sVFRXq1q2bfvrTn2rIkCE+P5fT6dTXX3+tH374QTk5OSorK1Pnzp3Vt29fnXPOOYqKimrxOXbs2KENGzbowIEDqqysVPfu3fXTn/5UgwcP9sEV1M/pdGr9+vXavXu3srOz5XQ6NXjwYF166aVN1t2+fbvS0tJ0+PBh5eXlKSkpST169NDIkSOVlJTkk/6Vl5db/Tt8+LBcLpc6d+6sAQMGaMSIEbLb7c1uu6KiQt9++62+++475ebmqqioSFFRUUpISFDv3r01cOBA9e/f3yfX4SumaWrLli3KyMhQTk6OioqK1KlTJyUnJ2vUqFGKj49vUfuFhYXaunWrtm3bptzcXJWUlKhdu3bq1KmThg0bpoEDB7b4GgoKCrRp0yZt375dx48fV1lZmWJjY9WhQwf16dNHJ510krp27dri8wAAAMAHTAAAwlBmZqYpydqmTJnicd38/HzzwQcfNHv06OHWRs0tOjravPzyy81vv/3W43YXLFjg1saCBQtM0zRNp9NpvvTSS2ZycnK95zIMw0xNTfXqXDUtXLjQHDhwYIPXcvbZZ5tr1qyxyvfu3dt6rnfv3o22/ac//cmtrZUrV9YpM2bMmAbP3dj2pz/9qU5bNZ8fM2aMV6/DlClT3OpnZmZ6VK+4uNj8wx/+YCYlJdXbz6ioKPNXv/qVefjwYdM0TXPlypVNXkdDnE6n+eqrr5o//elPTcMwGnxtTjzxRHPBggWm0+n06jXwRkuuoz7r1q0zzz777AavafDgweZ7771nla89bryRmZlpTp06tcG/mSQzNjbWvP76681du3Y163o++eQT87TTTmuw/SFDhpiLFy9u1vU09L7Kzc01f/e735ndunWrc76hQ4c22F5BQYE5Y8YMs2/fvg321263m2PHjnWbC7z17bffmldffbUZHx/f4Hnat29v3nnnneahQ4e8ajs7O9u84447zA4dOjQ5d3Tq1MmcNGmS+cknnzT7WnwhJyfHvPvuu83u3bs32NfIyEjzsssuM9PS0rxqe/v27eaMGTPMESNGmA6Ho9HXo1u3buYjjzxiHj161Otr+Oabb8yf/exnZmRkZJOve9++fc0777zT3Lp1q1sbtT+Pvdk8nadb8tkAAAAQbgj4AwDCUnMD/qtWrTK7dOnicTDCbrebf/zjHz1qu76Af15ennn++ed7dK7Y2FivAlilpaXmz372M4/aNgzDfPbZZ03TJOBf065du8wBAwZ41N8ePXqYW7ZsaXag/PvvvzeHDh3q1Ws0YsQIMycnx6vXwVO+DPg/8sgjps1m8+iapk2bZrpcrmYH/B999FGPgpPVW2RkpPmPf/zD4/ZdLpd5xx13eNz+b3/7W9M0Wx7w37RpU6NfQjYU8F+yZIlXc5ok85ZbbjErKio8fk0qKirMO++80+O/sSQzISHB/Ne//uVR+8uXLzfbtWvn9RxyzjnneHwNvvaPf/zDTEhI8LivNpvNfOSRRzxqe8mSJV6/FpLMnj17ml999ZXH1/D444979Tet3h588EG3dgj4AwAAtC5S+gAA8KOlS5fqqquuUmlpqdvj0dHR6tOnj2JjY7Vv3z4dPnzYes7pdOqxxx7TwYMHNW/ePK/OV1FRoUsvvVRr1661HuvSpYuSk5NVWVmpnTt3qqioyHquuLhYV111lb777jv17t270bZdLpeuuuoq/etf/6rzXPfu3dWzZ08VFhYqMzNTZWVlMk1T9957r09SB4WLAwcO6LzzztPu3bvdHrfb7erbt6/at2+vAwcO6MCBA1b5iy66SM8995zX5/ryyy916aWX6siRI/WeKykpSYWFhdq1a5fb+Fy/fr3OOussffHFF+rcubP3F9kKHnvsMf3pT3+q83hSUpJ69+6tsrIyZWZmqqSkRJL04osvqkuXLl6fx+l06uabb9arr75a57mOHTuqZ8+eioyMVHZ2trKysqznysvL9ctf/lL5+fm6++67mzzPnXfeqb/97W91Hu/UqZN69eqlsrIy7d6923rvPv/88y3+2+zbt0/XXHONcnJyrMd69uypbt26qaCgQHv37q233t///nfdfvvtcjqdbo/Hxsaqd+/eSkhI0NGjR7Vr1y65XC63eocOHdIHH3wgwzAa7VtxcbGuuOIKLVu2rM5z3bp1U7du3WSz2bR//363/hcUFGjixIl68803dfXVVzfY/tatWzVhwgSVlZW5PR4VFaU+ffqoXbt2cjqdysvL0549e1RRUdFof1vD9OnT9ec//7nO44mJiUpJSVFcXJxycnLc5haXy6U//elPys3N1axZsxptv/ZnlCTFxMQoJSVFCQkJMgxDubm52rNnj9vfNSsrS2PHjtXXX3+tE088sdFzzJs3Tw888ECdxxMSEtSnTx/FxcWppKRER48e1f79+2WaZqPtAQAAoBUF+hsHAAD8wdsV/nv37jXbt2/vVqdjx47m3LlzzYKCArey69atM0eOHFlnJeLs2bMbPUftFf79+vWz9q+77jpzy5YtbuVLS0vN+fPnm4mJiW71Jk2a1OT1P/vss3X6d/nll9c5R35+vvnyyy9bqU/at2/vljLDFyv8v/76a3PFihXmihUr3Mqecsop1uP1bTt37qzTVs36/l7hf9FFF7mVj4yMNGfMmFEnFcl3331nXnHFFVa5Pn36uNVramV8dnZ2nRXYp5xyivnmm2/WGXslJSXm22+/bfbv39+t/CWXXGK6XC6vXo+m+GKF/3//+986qYmGDRtmrly50q2/RUVF5rx588yOHTuakkyHw2H27NnTrV5THn74YbfyERER5m9+85s66UVM0zR/+OEH89Zbb3Xrm8PhMP/73/82eo7333+/zvtq1KhR5rp169yup7S01Hz77bfNlJQUqy+1U3Y1pvb7qmvXrqZU9Yui2267zdyxY4db+eLiYnPFihVuj/3nP/+pszp7woQJ5qpVq+qs3s/NzTWffPLJOivSn3jiiUb7aZqmOXnyZLc68fHx5vTp0+tNlbR582bzqquuciufkJBQ53pquuSSS9zKn3rqqea//vUvs6ysrE7Z8vJyc+PGjeZf/vIX8+STTw7ICv/58+e79dcwDHPy5Mnmhg0b6qTgysrKMh944AEzIiLCrc7bb7/d6Dneeecd0263m+PHjzdffvllc8eOHfWm98rPz683pdupp57a6HxRWlpaJx3WlVdeaX799df11svPzzc//fRT89577zW7du1aZ4V/SUmJNa///ve/d2v397//faOfAyUlJY2+FtVa8tkAAAAQbgj4AwDCkrcB/0svvdStfEpKirl79+4GyzudTvOGG25wqxMbG2tmZWU1WKd2wL86GDR37txG+7ZmzRq3wF1ERESjaVyys7PN2NhYt/M0lXZo586d9eaZ9kXAv6aWBmVaK+D/9ttvu5WNiooyP/3000bbf/DBB+u8fp4Eymt/sXDLLbeY5eXljdY5duxYnXz477//fqN1vNXSgL/T6TQHDx5c54uJxq5t9+7ddQL9ngTI//vf/7q9Rzp16mRu2LChyT6+9dZbbvVOOeWUBsuWlpbWeY9cf/31jd5H4ciRI+ZJJ53k9fXUfl9VfyHxzjvvNHlNplk1Pmrm+bfZbOa8efOarLd161azc+fOVr3IyEgzOzu7wfJvvfWWWx/79+9v/vDDD02e56mnnnKrd9lll9Vb7vjx42756QcNGmQWFxc32X61jIwMj8v6ws6dO93m3piYGPPf//53k/VWr15txsTEWPW6dOnSaKB7165djX4+1VZSUlLni5PG+rV06VK3spMnT/b4XGVlZfV+WVutoXvZtBQBfwAAgP+xCQCANm779u1aunSpdWyz2fTuu+82mjbHZrNp/vz5Ovnkk63HiouLNXv2bK/Ofdddd+mXv/xlo2VGjRrllvKioqJCn376aYPl582bp+LiYuv43HPP1V/+8pdGz9GvXz+9/vrrHvY6/P3f//2f2/Ff/vIXnXfeeY3W+fOf/6wLLrjAq/OsX79en3zyiXV88cUXa86cOYqIiGi0Xvv27fXee+8pISHBeuzZZ5/16tz+tmLFCm3dutU67t69u956661Gr61379566623vD7XzJkzrdQlNptNH374oX760582We+aa67Rvffeax1v2bJF//nPf+ot++677yo7O9s6PuGEEzRv3jzZbA3/c7pjx4567733mvx7euJ3v/udrrrqKo/KzpkzRwcPHrSO//KXv2jq1KlN1jvppJP0yiuvWMfl5eV66aWX6i1rmqZmzJhhHcfGxmrZsmXq379/k+f5/e9/7zanLVmyRN9//32dcpmZmaqsrLSOb7zxRsXExDTZfrVBgwZ5XNYXnnrqKbe5d/78+br44oubrDd69Gg988wz1nFOTo4WLlzYYPm+ffs2mdatpujoaL3++utq166d9diCBQsaLF/7b3H77bd7fK7IyEj169fP4/IAAADwPQL+AIA2b968eW75h6+99loNHz68yXoOh0NPP/2022Nz5871OJdxTEyMpk+f7lHZa665xu1448aNDZZ97bXX3I4ff/xxj85x/vnnex2wDkcZGRlav369ddyzZ0/dddddHtWtPR6a8vzzz7sd/9///V+TOdOrdevWze3Lov/+9786dOiQV+f3p/nz57sdP/TQQ25fUDRk5MiRuvzyyz0+T0ZGhlv++GuuuUZnn322x/Xvv/9+ORz/u63Ve++9V2+52u+rRx55RJGRkU22P2jQIN14440e96c+sbGx9eZTr4/T6dSLL75oHffq1cvtS42mXHLJJTrttNOs44Zej2XLlmnbtm3W8W9+8xuPgv3VHnroIWvfNE198MEHdcpU39ehmi++OPGXo0ePuo2Rs846Sz//+c89rv+rX/3K7d4VDb3uzZWUlOT25cO6desaLBtKrzsAAADqIuAPAGjzVq9e7XbsyUrYahdccIGSk5Ot40OHDtW7UrU+48aNU8eOHT0qe+qpp7od79u3r95yhw8fdjt///79deaZZ3p0Dkm6/vrrPS4brlatWuV2/POf/9zjgNfQoUPr/K0a4nK53Fb3Dx8+XCeccIKn3ZQkXXjhhW7HNW8AHWg1X8eIiAivgp/eBMg//vhjt+MbbrjB47pS1Sr8008/3Tqu7zV0uVz64osvrOO4uDhNnDjR43O09H01fvx4JSYmelQ2LS3NupG05N34rVZzXG3btq3OzaQl6d///rfbsbev+ymnnOJ2k/D6XvcePXq4Hf/zn/8Mipvy1mfVqlVugXJvX4+IiAide+651vG6devcbrjrC3379rX2s7Ky3G5AX1Pt172xXxsAAAAg+BDwBwC0aWVlZdq8ebN1HBERoZEjR3pc32azuQVpJLmtDm+MJylHqtVc+SlJeXl59Zb7+uuv3Y69WencnPLh6KuvvnI7Hjt2rFf1PS3/7bffuv0dvRkP1Xr16uV2nJGR4XUb/rBnzx7l5ORYx6eccoqSkpI8rj9mzBiPy9YOFLf0ddy2bVudX+ls375dBQUF1vGwYcMUHR3tcfvDhw93+xWBtzz5xVE1X78eUv3jquZ54uLimpU+JyUlpdFz9O7dWwMGDLCOv/zyS1100UWNrk4PFF+/7vn5+crKymqyzvHjxzVv3jzddNNNGjZsmLp37664uDgZhlFnq/1rr/q+yJGk8847T3a73Tr+v//7P91+++3atWuX19cEAACA1tf8/3kAABAGDh48qPLycut40KBBHqXpqGno0KFu+e/37t3rUb3aQfzGxMXFuR3XTrlQrXaA6MQTT/T4HFLVLwIiIyPdXpO2JjMz0+14yJAhXtWveV+HxtQOcP7tb3/T3/72N6/OVdvRo0dbVN9XWvoatm/fXikpKQ3+kqWm2q+jN++r+jidTuXn57vlO2/p+yo6Olp9+vTRDz/80Kw+1VyZ3ZTar8ekSZOadc6a6htXNc9TVFTU6L0MmnsOSZoxY4auu+466/izzz7TZ599pj59+ig1NVVjxozR2Wef7VVOe3+o/bp78yVNQ44ePer2pUhNRUVFeuSRR/TCCy+orKysWe0fP3683sdTUlI0depUzZ0713ps9uzZmj17tk4//XSNGzdOo0eP1ogRI7z6Ig8AAACtgxX+AIA27dixY27HnTp18rqN2nVqt9kQb1YI19bQfQJqB3BqBi09YRiGx6lDwlXt19DTtEvels/NzfWqXU809MuP1tbS19CbOq3xOrb0fSVVfYnRXN68J1vj9SgqKmp2kNnTc1T7xS9+oUcffbTOvS12796tl19+Wb/4xS/Up08f9enTR7fccos+++wzj++j4kut+X4+cuSIzjrrLD399NMt+js0VveFF17QhAkT6jz+zTff6Mknn9T48ePVqVMnnXbaafrjH//odoNuAAAABBYBfwBAm1ZYWOh2XHslvSdq16mZ+qO11Q7gePtrBUmKioryVXdCUu0xERsb61V9T8dQQ6trW8LXOb+bq6WvoRRcr2Og31fe5OBvjdfDH+doLEj/0EMP6YsvvtAll1zilmqmpj179mju3Lk6//zzdcopp2jFihU+72NjWvP9fPXVV+vbb791eywlJUWTJ0/WE088oYULF2rx4sVatmyZVqxYYW3e3FcgOjpaH374od54440G70timqY2b96sxx9/XEOGDNGll17a7F+xAAAAwHdI6QMAaNPi4+PdjouKirxuo3adhISEFvWpJWqvPK4dePVEfn6+r7oTkmoHmouLi736m3o6hmoHwa+99lqvbhhdn9o32wyU+l5Db3nzOtYcsx9//HGL8uVLcruZrBRa76va4+qJJ55wuylxcwwePLjRcyQlJentt99u0TmacuaZZ2rp0qXKzs7W8uXLtWrVKq1Zs6bevPLfffedUlNT9eyzz+ruu+/2a7+q1X5NFixY4HZD9+YYOnRoncc++ugjtxtiJyQkaPbs2br22mubTKv06aefenV+wzB07bXX6tprr1V6erpWrFihVatW6fPPP683///SpUu1Zs0aLf3/9u49KqrrbAP4wx1BhFFALvGCIDiDlCCCJF5AazSNpkmK7aLGxDRVcdW2xsZLLhIUXU1sYm2tWUTTqKFVsTGtSD4jsiIVSAQpAhKQiQoqKgp4QUJVwNnfH37Mx2GG4RycQR2f31qzlvvM3mfv2XPOwfWeM+/+n//BxIkTFfVFRERERObDgD8RET3SVCqVpNybtAxdAx9d99mXuuZTvnjxoqL2zc3NvQpmPgzkBp27pl5pbGxUFPCXewx1TQXl4eGBqVOnyu7nQWZsDpVSMo+dg+ljxoy55zz+Xd3reQUAdXV15hqOSV2Pq4CAALMfVx4eHrC3t0d7ezuAu2uK9NWx6+vri7lz52Lu3LkA7n4Xhw4dwt69e7Fv3z60tbUBuPv0+euvv44nnngCMTExFh9X13nXaDRmyePfVXp6uqS8efNm/PznP5fV9l7W+NBoNNBoNFi8eDGEEKiqqsLBgwexZ88e5Ofn6+s1Nzdj1qxZOH36tMENdSIiIiLqG0zpQ0REjzRfX19Jeo6qqirFC9aWlZVJyvdz8UiNRiMpl5SUKGpfVlZ2X/Jfy9V53YPuFi7uTkNDg6x6I0aMkJS//fZbRf0cP35cVr2uC7FaUyqMe53D69evy1qwF+ibeVSr1ZIc8krPq/Pnz/fqpkdv9MV82NjYSK5zN2/e7NVNEHPw8/PDnDlzsGfPHpw8eRJRUVH694QQ2LBhQ5+Mo6/O54KCAv2/Bw0apGhRZnPl2bexsYFarcbixYuRl5eH3NxcyQ2P+vp6yUL2RERERNS3GPAnIqJHmqOjIyIiIvTl1tZWydOKPRFCSNIrAOiTp0m7M3r0aElqiby8PEULue7bt88Sw9LrHDTtzY2FzouXXr58WXY7nU6HY8eOyarbOWAIAIcPH5bdj5L60dHRku/qm2++wa1btxT19aAaNmyY5Cn78vJyRU8XK5nzyZMnS8qHDh2S3VYulUqFoKAgffnUqVPQarWy21v6vOqsL+ajL/tRYtiwYdi5c6dkm5Lr+b3oq/nofN0LCgrqdk2Drm7cuIHi4mKLjGnixIl47733JNu6m/euaYce5BvMRERERA8rBvyJiOiRFxsbKylv375ddtvs7GzJk8i+vr4IDg4219AUs7e3x49+9CN9+fbt2/jkk09ktW1ubkZaWpqlhgZAmtu9N3ndOz9VfO7cOdlB5C+//FJ2DvW4uDhJOT09XZ8mpCdlZWUoLS2VVdfR0RFTpkzRl1taWrBt2zZZbR8Gnc+rtrY2g1Qkpig5B59++mlJecuWLbK/LyV+/OMfS8offvihrHZ37tzBRx99ZPbxdCc6OlqSVuzQoUOorKw0ez9d533Tpk1m76M3goKCMHjwYH25r35ZMXXqVMnaEenp6b1KEdeTzgFyJb9G27p1q0VvKI4fP15S7m7ezbG+BxERERGZxoA/ERE98n75y19KnjzfsWOHrCch79y5g+XLl0u2zZs3z+zjU2r+/PmSckpKitGFLbtatmyZoqfme6NzLvQzZ84obj9mzBj9v4UQ+Oyzz3ps09bWhuTkZNl9aDQajBs3Tl++cOECNm7cKKvtsmXLZPdjrH5ycjLOnTunaB8Pqq4LEK9duxbNzc09tsvPz8fevXtl9xMZGSl5urq2thYrV66U3V6urudVamqqJL1Kd95//32Ul5ebfTzdcXBwwGuvvaYvCyGQmJho9psgzz//vORXD4WFhUhNTTVrH73R2toqubnXV2uqDB48GC+99JK+3NLSgkWLFpm9n84LSldUVOD69es9trlw4QJWr15t9rF0Jnctm67rYdTU1FhsTERERESPKgb8iYjokRccHIyZM2fqyzqdDvHx8Th//ny3bYQQmDdvniR/v6urKxYuXGjRscoxbdo0TJw4UV9uamrCD3/4w26fPG9tbcXrr7+OzZs3A5Cm3TG30NBQ/b8bGxsN0iH15JlnnpGUU1JSTObmb29vx4IFCxSnsugcMAWAt99+Gzk5OSbbJCUlITs7W1E/kyZNwvTp0/XlhoYGTJs2DVVVVbL3odPpsHfvXqxYsUJR35Y2bdo0qNVqfbmurg4JCQkmA89nz55FQkKC4r7WrFkjSRXyhz/8ASkpKYrShZw/fx7Lli1DUVGR0fdDQkIwZ84cfbm9vR0zZszoNnWLTqfD+vXr8dZbbwGw7HnV1eLFiyVPuefn52PWrFmK0nu1tLRg48aN3f5CyM7ODmvWrDHo9+OPP1Y01u+++w4LFizAhQsXDN7buXMn3n33XVy7dk32/j788EPJ+h6RkZGKxnMvVq5cKUnTtXv3biQmJip6Ev/q1atYu3YtMjMzjb7/5JNP6v/d2tqKN9980+T+GhoaMHPmTFk3BjokJSXh73//u35R5p4IIbB+/XrJtu7mvfPfAACShZaJiIiIyEwEERGRFaqpqREA9K+5c+earF9bWys8PDwkbTw9PcUnn3wivv/+e0ndI0eOiEmTJknqAhCpqakm+9i2bZuk/rZt2xR9ps5tY2NjTdbVarXCxcVF0sbe3l7Ex8eLLVu2iC+++ELs3r1brFy5UgQEBOjrPP3002LYsGH68rBhw0z2k5ycLOkjJyfHZP0NGzZI6nt4eIgVK1aIf/zjHyIrK0tkZ2frX6dPnzZo39bWJvz9/SX7UKvVIicnR+h0Okm9gwcPinHjxunrdf6cAERNTY3JsU6dOlVS39HRUaxatUrU19dL6lVUVIj4+Hh9veHDh0vaJScnm+zn8uXLYsiQIZI2Li4uYvHixaK0tFTyuTpcvXpVZGdni9dee03ftqdjQqmcnBxFn8OY3NxcYWNjI9lPZGSkwffV0tIitm7dKjw9PfXHatfvuSfvvvuuwTkZGRkpdu3aJa5evWpQv729XVRWVorNmzeLadOmCXt7+x6P4cbGRjF48GCDfqZPny42bdok9u3bJ/bs2SPWrl0rRo8erX8/LCxMPPnkk7I/j9Lzypjc3Fzh4OAg2Y+/v7/44IMPxNmzZ422OXfunPjss8/Eiy++KAYMGCDre09MTDSYjylTpojMzEyDa6cQQrS2torS0lKxYcMGMWHCBP3xYex87LheuLi4iPj4eLFz505x5swZo+PQarVi0aJFBsfbv/71r56myqx27dplMB/BwcFiy5Yt4tKlSwb1dTqdOHXqlEhLSxMvvPCC6Nevn8m/D1lZWQb7f/nllw3m5caNG+Kvf/2r8PHxkVwr5RxXzz33nAAgvL29xcKFC8WXX34pGhsbDerduXNH5OXlGVwrXVxcxPnz57udo/DwcIPz9E9/+pPIzMyU/A3Izs4WN2/e7H6yO1Hy95GIiIjI2jHgT0REVklpwF8IIb744gvh5ORkEEzp16+f0Gg0IjIyUnh7exu8D0C8+uqrPe6/LwP+Qghx8OBB4ezsbHS8xl6BgYGivr5eEvAPDAw02YfSwOSVK1f0Qd2eXt0FGvfs2WO0vre3txg7dqwICwsTbm5ukvfeeOMNMXfuXMm2ngL+tbW1krnoeNnb24uRI0eKqKgo8dhjjxkEVNPT0xUHyo8fP24Q9O94ubu7C41GI8aNGydCQ0OFr6+v0XoPYsBfCCFSUlKMjnfQoEFizJgxIjQ0VB/k7HitXbtWxMbGyg6Qd1iyZInRvmxtbcXw4cNFZGSkiIyMFIGBgQY3xOQew6WlpWLgwIGyzytPT0+h1Woln8fOzs5kH+YI+AtxN/jc3TXA19dXhIeHi+joaBESEiJUKpWi87BDa2ur+NnPfma0rb29vQgMDBRRUVEiIiJCBAQECEdHR6N1TQX8u748PDzEqFGjRExMjBgzZozw8vIyWi8hIaFX83av1q9fL2xtbY2OaciQISIiIkJERUWJkSNHGlyrOl6m/j4888wzRtuMGDFCjBs3ToSEhBjM8+zZs2UfVx0Bf2PHTFhYmIiJiRFhYWGif//+Ruv1dPM7LS1N9vnT03W6gyWvhUREREQPG6b0ISIi+j8zZsxAVlYWvL29Jdtv3ryJyspKFBcXo76+XvKenZ0d3nzzTdkL4/alp556Cjk5OdBoND3WjYuLQ35+Pry8vPD999/rt7u7u5t1TAMHDsTnn39uMMdKxMfHIyUlxWB7fX09/vOf/6C8vFySK37p0qX4/e9/r7ifxx57DF999RUCAwMl29vb23Hy5EkUFRVJ0j75+fnhwIEDklQqcoWFhaG4uFiS3qdDU1MTKisrUVhYiIqKCtTV1Rndx9ChQxX32xeSkpLwzjvvGKS0uXLlCo4dO4aKigpJCpbf/va3ePvtt3vV1x//+Ed8+umn8PDwkGzX6XQ4c+YMiouLUVxcjNOnTxtdLNTNzc2gbVfh4eH4+uuvJalVTNXNz89HcHCwRc+r7iQkJOj776qurg5lZWU4evQotFqt0bQ5dnZ28PPzM9mHg4MDdu/ejXXr1qFfv36S99rb23H69GkUFRWhpKQENTU1RtPbeHp6GrQ15fr166iqqkJBQQGOHTtmNK3X/Pnz8be//U32Ps3pd7/7Hfbv3w9fX1+D92pra1FSUoKioiKcPHnS6LoWTk5OJq+RO3bsQHR0tMH26upqFBYWQqvVSuY5ISHBLAuC19XVoby8HAUFBSgvL5cc0wDQr18/fPTRRz2mtnvppZewfPnyPk1zRURERPQoYcCfiIiok9jYWJw6dQpvvfWWyUCXs7Mznn/+eZSUlPQqmNxXYmJiUFJSgh07duC5555DQEAAnJ2d4ezsjMDAQLz44ovYv38/cnJy4OPjA51OJ8nzbYnA5KRJk1BVVYVNmzbh2WefRUBAANzc3CQ52HuSlJSEzMxMg3zQnYWHh2P//v14//33ex1YCgwMxPHjx7FixYpuF6F0cnLC/PnzUVZWhtGjR/eqHwDw8vLCgQMHkJubi2effRaurq4m69vY2CAiIgJvvPEGjh8/jrS0tF73bWmrV69GXl4ennjiiW7rqNVqfP755/jzn/98T329/PLLOHPmDNasWWM00N2VSqXCrFmzkJaWhkuXLuHxxx/vsc2oUaOQn5+PjIwMzJ49G0FBQXB1dYWjoyOGDh2Kn/zkJ0hPT0dxcTFCQkIA3M3N3qGvAv7A3VzqlZWVSEtLQ0xMDOzs7EzWd3JywpQpU/DBBx+gtrYWCxYskNXP8uXLUVNTg6VLl8q6+eTj44M5c+bgn//8Jy5evGj0RlliYiIyMjIwb948yQLBpsb+wgsvIC8vD1u2bIG9vb2ssVvC9OnTUV1djY0bN+IHP/hBj9eg/v37Y8aMGUhNTUVdXZ3BeiWdeXh4IDc3F0lJSSaPpdDQUOzcuRO7du2Co6Oj7LF//PHH2Lp1K+Lj42XdwBw4cCAWLlyIEydOIDExUVYf69atQ2lpKZYuXYoJEybA29sbzs7OssdIRERERN2zEULBamZERESPmNLSUlRUVKC+vh63b9+Gl5cXhgwZggkTJkgWZ7QW3377LcLCwvTlV155xSxPhlrSiRMncPToUdTX16O9vR2+vr6Ijo6W9csGJVpbW3H48GFUV1ejsbERrq6uGDlyJCZNmgQ3Nzez9gUAbW1tOHr0KGpqatDY2IiWlha4urpCpVIhODgYGo3GooHjf//735g8ebK+nJycjFWrVt3zfqurq1FQUICLFy+ira0NPj4+GDt2rOS4M6cLFy6gqKgI9fX1uHLlCmxtbTFgwAD4+/tDrVYjMDBQ0c2m3rhx4wZUKhV0Oh2Au7+o6WkRaEtpamrSz39jYyPa2trg5uYGb29vjBo1CiEhIWYJvJ46dQqlpaVoaGjAtWvXYG9vD3d3dwwdOhRqtRrDhw9XvM+GhgZUVlaiuroaV69exX//+1+4uLhApVJh1KhRCA8P7/FG2f3S0NCAwsJCXLp0CVeuXIFOp8OAAQPg4+MDtVqNkSNHwsHBQfF+b926hSNHjuDEiRO4du0aHB0d4efnh6ioKFk3vOSoqamBVqvF2bNn0dTUhNbWVvTv3x9eXl4ICwuDRqO5rzdXAOmi2LGxsYoXhCciIiKyJvf3f2ZEREQPuMcff1zWE7/W4quvvpKUx44de59GIp9arYZarbZ4P46Ojnjqqacs3k8HBwcHjB8/HuPHj++zPvvCiBEjMGLEiD7rz9/fH/7+/n3WnzE5OTn6YD9wf88rd3d3o6mjzC0oKEjWU/lKeHl5ITY2FrGxsWbdb1/w8vLCzJkzzb5fZ2dnTJ48WXJzztwCAgIQEBBgsf0TERERkXkxpQ8REREBuJtvOzU1VbLN2oLN1HurV6+GjY2N5LV9+/b7PayHwl/+8hdJmecVUe8NHz7c4FpERERERP+PAX8iIiIrpTRrX1JSErRarb4cERHxSP26gUgOpefV5s2bJb+cGTx4MGbMmGHuYREREREREQFgwJ+IiMhqzZ49G+vXr5csFmpMU1MTfv3rX+O9996TbF+yZIklh0f0UFqyZAneeecdXLx40WS9W7duYc2aNfjVr34l2b5o0aJe5WonIiIiIiKSg4v2EhERWam4uDgcPnwYDg4OmDJlCmJiYhASEgIPDw/cvn0bly5dwpEjR5CRkYGmpiZJ25kzZyIzM/M+jZweBNeuXUNxcbHJOqGhofD19e2jET0YXnnlFXz66aewtbXFhAkTMH78eGg0GgwcOBDt7e1oaGjA0aNHkZGRgcuXL0vaRkREoLCwkAF/onvw9ddf4+bNm92+r1KpEBkZ2YcjIiIiInqwMOBPRERkpToC/kpNnDgRGRkZUKlUFhgV0cOtI+CvVGhoKPbv34+hQ4daYFTUk7q6OlRUVJh9v5GRkbxWEhEREdEDxf5+D4CIiIgsw9/fX1F9V1dX/OY3v8GqVavg5ORkoVERPdz8/PxgY2MjO5e/g4MDXn31Vaxbtw7u7u4WHh11JysrC7/4xS/Mvt+cnBzExcWZfb9ERERERL3FJ/yJiIis2HfffYesrCwUFBRAq9Xi3LlzaG5uRltbGzw8PODp6Ynw8HDExcXhpz/9KTw9Pe/3kIkeeLW1tThw4AC++eYbnDhxAmfPnkVTUxNaW1sxYMAADBo0CBqNBnFxcYiPj+dT/Q+A7du3M+BPRERERI8EBvyJiIiIiMiqMeBPRERERI8KBvyJiIiIiIiIiIiIiKyA7f0eABERERERERERERER3TsG/ImIiIiIiIiIiIiIrAAD/kREREREREREREREVoABfyIiIiIiIiIiIiIiK8CAPxERERERERERERGRFWDAn4iIiIiIiIiIiIjICjDgT0RERERERERERERkBRjwJyIiIiIiIiIiIiKyAgz4ExERERERERERERFZAQb8iYiIiIiIiIiIiIisAAP+RERERERERERERERWgAF/IiIiIiIiIiIiIiIrwIA/EREREREREREREZEVYMCfiIiIiIiIiIiIiMgKMOBPRERERERERERERGQFGPAnIiIiIiIiIiIiIrICDPgTEREREREREREREVkBBvyJiIiIiIiIiIiIiKwAA/5ERERERERERERERFbgfwER03F/jQlzKwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "image/png": { + "height": 575, + "width": 766 + } + }, + "output_type": "display_data" + } + ], + "source": [ + "# We can select and plot the first month\n", + "# using .isel(time=0) and inbuilt xarray plotting,\n", + "# just to check the data looks reasonable:\n", + "SI_obs_ds.isel(time=0).seaice_conc.plot()" + ] + }, + { + "cell_type": "markdown", + "id": "64abc79c-689a-4e73-91c3-5fe86f7c7d6c", + "metadata": { + "execution": {} + }, + "source": [ + "Note that the dataset also includes variables for grid cell area and given in $\\text{km}^2$. \n", + "\n", + "We will need this to convert the spatial data into a time series of the total Arctic sea ice area. \n", + "\n", + "The code below shows how this can be done:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b7bf75ee-8e48-4e26-ac0d-200e940bd66e", + "metadata": { + "execution": {} + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABg4AAAR+CAYAAAAIkM5AAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOz9ebgleVXmi6/Ye5/5ZGZlzVRRSqMgjrebh7LboRm8Uty2W9Rrdzt0i7bdqN0Ov+vPe8Fu6L48V23aFuWqDQi0ioCighMIKsVQDAVVUFBAVVFQA2RV1pCZlfNwTp5z9t5x/zgZO3estSLiGxFrfWPnOe/neXioM+SJ2HvH8I211vu+SZqmKQEAAAAAAAAAAAAAAAAAABBRr+sdAAAAAAAAAAAAAAAAAADA7IDGAQAAAAAAAAAAAAAAAAAAJqBxAAAAAAAAAAAAAAAAAACACWgcAAAAAAAAAAAAAAAAAABgAhoHAAAAAAAAAAAAAAAAAACYgMYBAAAAAAAAAAAAAAAAAAAmoHEAAAAAAAAAAAAAAAAAAIAJaBwAAAAAAAAAAAAAAAAAAGACGgcAAAAAAAAAAAAAAAAAAJiAxgEAAAAAAAAAAAAAAAAAACagcQAAAAAAAAAAAAAAAAAAgAloHAAAAAAAAAAAAAAAAAAAYAIaBwAAAAAAAAAAAAAAAAAAmIDGAQAAAAAAAAAAAAAAAAAAJqBxAAAAAAAAAAAAAAAAAACACWgcAAAAAAAAAAAAAAAAAABgAhoHAAAAAAAAAAAAAAAAAACYgMYBAAAAAAAAAAAAAAAAAAAmoHEAAAAAAAAAAAAAAAAAAIAJaBwAAAAAAAAAAAAAAAAAAGACGgcAAAAAAAAAAAAAAAAAAJiAxgHojEcffZT+8i//kl7+8pfTC17wArriiisoSZLJ/2655ZZO9+8pT3lKbn/q/u9Nb3pTp/sPAAAAAAAAAAAAAAAATRh0vQNg93HnnXfSd33Xd9GhQ4e63hVXrrjiiq53AQAAAAAAAAAAAAAAAGqDxgGIzqlTpy6JpsFznvMcOnz4cPDv33bbbXTq1CkiIrr88svpBS94gdeuAQAAAAAAAAAAAAAAgBtoHIBOue666+jGG2+kZz3rWXT99dfTj//4j3e9SxP+4A/+IPh3T506Rddee+3k6x/8wR+k+fl5j90CAAAAAAAAAAAAAAAAV9A4ANF52tOeRu985zvpxhtvzBXbDxw40N1OteRP//RP6fz585Ovf+zHfqy7nQEAAAAAAAAAAAAAAIAWoHEAonP99dfT9ddf3/VumDKtTvjar/1auvHGGzvcGwAAAAAAAAAAAAAAAGhOr+sdAMCa8XhM73jHO+hHfuRH6OlPfzrt27ePlpaW6ClPeQr9i3/xL+iP//iPaTwem23vgQceoFtvvXXy9Y/+6I+a/W0AAAAAAAAAAAAAAACIDRQHYEdx++2304tf/GK66667xM8eeugheuihh+gd73gH/eqv/iq9/e1vp6/+6q9uvc03v/nNk//u9Xr0Iz/yI63/JgAAAAAAAAAAAAAAAHQFFAdgx/Dud7+bnve85+WaBtdccw1967d+Kz3nOc+h6667bvL9z3zmM/Rt3/Zt9MUvfrHVNtM0pbe85S2Tr5///OfntgMAAAAAAAAAAAAAAACXGmgcgB3BfffdRz/wAz9A6+vrRET07d/+7XTrrbfSoUOH6NZbb6VbbrmFHn30UfrABz4wURkcOXKEfviHf5i2trYab/dDH/pQLtQZocgAAAAAAAAAAAAAAIBLHTQOwI7g3/7bf0vnzp0jIqLv//7vp1tuuYW+9Vu/Vfze8573PPrYxz5GN9xwAxERffrTn6a3ve1tjbc7HYq8b98++t7v/d7GfwsAAAAAAAAAAAAAAABmATQOwCXPxz/+cfroRz9KRERXX301/f7v/z71+/3C37/qqqvo13/91ydfv+51r2u03XPnztE73vGOydf/8l/+S1pcXGz0twAAAAAAAAAAAAAAAGBWQOMAXPK89a1vnfz3v/k3/4b27NlT+W++93u/l5aXl4mI6JOf/CSdPXu29nb//M//PPfvYFMEAAAAAAAAAAAAAADYCaBxAC55MrUB0bYVUQhzc3P09Kc/nYiIRqMRffazn6293Wmboqc97WmqNRIAAAAAAAAAAAAAAABcagy63gEA2pCmKd1zzz2Tr3/pl36JXv3qVwf924ceemjy30ePHq213YMHD9IHP/jBydcvetGLav17AAAAAAAAAAAAAAAAmFXQOACXNKdOnaLRaDT5+tZbb238d+rwlre8hcbjMRERJUmCxgEAAAAAAAAAAAAAAGDHAKsicElz7tw5k7+TNQFCmbYpet7znkdf8RVfYbIfAAAAAAAAAAAAAAAA0DVQHIBLmn379uW+vvPOO+nv//2/77rN2267je67777J1z/6oz/quj0AAAAAAAAAAAAAAACICRQH4JJmdXWVlpeXJ18fOXLEfZvTaoPV1VX6/u//fvdtAgAAAAAAAAAAAAAAQCzQOACXPP/wH/7DyX/fdtttrtva2NigP/mTP5l8/c//+T+nlZUV120CAAAAAAAAAAAAAABATNA4AJc8N9100+S/3/rWt9bOK6jDO9/5Tjpx4sTka9gUAQAAAAAAAAAAAAAAdhpoHIBLnhe/+MWTqf/777+f/vt//+9u25q2KXrKU55Cz3nOc9y2BQAAAAAAAAAAAAAAAF2AxgG45LniiivoZS972eTrl73sZfQrv/IrNBwOS//d4cOH6Vd+5Vfo537u54K2c/jwYfq7v/u7ydcvetGLKEmSZjsNAAAAAAAAAAAAAAAAM0qSpmna9U6A3cdNN91EH/7wh3PfS9OUNjc3J1/Pzc1Rr5fvbT372c+m9773veLvpWlK3/d930d/9Vd/NfneU57yFPqhH/ohuvHGG+nKK6+kzc1NOnr0KN11111066230kc+8hEajUb0Az/wA/THf/zHlfv8G7/xG/QLv/ALRESUJAndf//99FVf9VW1XjcAAAAAAAAAAAAAAADMOoOudwDsTjY3N2ljY6P0d7a2ttR/p5EkCb397W+nn/mZn6E3vOENRER04MABeuUrX9l+Zy8wbVP07d/+7WgaAAAAAAAAAAAAAAAAdiSwKgI7hrm5OXr9619PH/zgB+k7vuM7hFphmn6/T9/yLd9Cv/7rv06//du/Xfm3P/OZz9DnPve5ydcIRQYAAAAAAAAAAAAAAOxUYFUEdiwnTpygj370o/TII4/QiRMnaG5uji6//HJ6+tOfTt/0Td9E+/bt63oXAQAAAAAAAAAAAAAAYOZA4wAAAAAAAAAAAAAAAAAAABNgVQQAAAAAAAAAAAAAAAAAgAloHAAAAAAAAAAAAAAAAAAAYAIaBwAAAAAAAAAAAAAAAAAAmDDoegfAzmU4HNKhQ4eIiOjaa6+lwQCHGwAAAAAAAAAAAAAAAMw6UBwANw4dOkQ33HAD3XDDDZMGAgAAAAAAAAAAAAAAAIDZBo0DAAAAAAAAAAAAAAAAAABMQOMAAAAAAAAAAAAAAAAAAAAT0DgAAAAAAAAAAAAAAAAAAMAENA4AAAAAAAAAAAAAAAAAADABjQMAAAAAAAAAAAAAAAAAAExA4wAAAAAAAAAAAAAAAAAAABPQOAAAAAAAAAAAAAAAAAAAwAQ0DgAAAAAAAAAAAAAAAAAAMAGNAwAAAAAAAAAAAAAAAAAATEDjAAAAAAAAAAAAAAAAAAAAE9A4AAAAAAAAAAAAAAAAAADABDQOAAAAAAAAAAAAAAAAAAAwAY0DAAAAAAAAAAAAAAAAAABMQOMAAAAAAAAAAAAAAAAAAAAT0DgAAAAAAAAAAAAAAAAAAMAENA4AAAAAAAAAAAAAAAAAADABjQMAAAAAAAAAAAAAAAAAAExA4wAAAAAAAAAAAAAAAAAAABPQOAAAAAAAAAAAAAAAAAAAwAQ0DgAAAAAAAAAAAAAAAAAAMAGNAwAAAAAAAAAAAAAAAAAATEDjAAAAAAAAAAAAAAAAAAAAE9A4AAAAAAAAAAAAAAAAAADABDQOAAAAAAAAAAAAAAAAAAAwAY0DAAAAAAAAAAAAAAAAAABMQOMAAAAAAAAAAAAAAAAAAAAT0DgAAAAAAAAAAAAAAAAAAMAENA4AAAAAAAAAAAAAAAAAADABjQMAAAAAAAAAAAAAAAAAAExA4wAAAAAAAAAAAAAAAAAAABMGXe/Apc6jjz5Kn/zkJ+mOO+6Y/P/x48cnP//gBz9Iz33uc6Psy6lTp+gv/uIv6M/+7M/oi1/8Ij322GM0HA7piiuuoGc84xn0j//xP6bv+I7voG/5lm+hubm5KPsEAAAAAAAAAAAAAAAA4NIiSdM07XonLkXuvPNO+q7v+i46dOhQ6e/Fahy8+c1vpl/4hV+go0ePVv7uzTffTN/5nd/pvk+PPPII3XDDDUREdPDgQXryk5/svk0AAAAAAAAAAAAAAAAA7YDioCGnTp2qbBrE4qd/+qfpta99be57X/mVX0nXX389zc/P06FDh+j++++n0WjU0R4CAAAAAAAAAAAAAAAAuFRA48CA6667jm688UZ61rOeRddffz39+I//eLRtv+QlL5k0DZIkoR//8R+nl7zkJfT0pz8993tra2v0vve9j9785jfTYICPHQAAAAAAAAAAAAAAAIAOKsgNedrTnkbvfOc76cYbb6Rrr7128v0DBw5E24cPf/jD9KpXvYqIiPr9Pr3lLW+hH/qhH1J/d3l5mV74whfSC1/4wmj7BwAAAAAAAAAAAAAAAODSA42Dhlx//fV0/fXXd7b98XhMP/VTP0VZRMVLX/rSwqYBAAAAAAAAAAAAAAAAABBKr+sdAM24+eab6d577yUiov3799PLXvayjvcIAAAAAAAAAAAAAAAAwE4AjYNLlN/93d+d/Pf3f//30/Lycod7AwAAAAAAAAAAAAAAAGCngMbBJcr73ve+yX8/73nP63BPAAAAAAAAAAAAAAAAAOwk0Di4BHnggQfoxIkTk6+/6Zu+iYiIPvOZz9BP/dRP0dOf/nRaXl6m/fv30zd8wzfQz/zMz9Add9zR1e4CAAAAAAAAAAAAAAAAuIRAOPIlyOc+97nc19dccw29/OUvp1e+8pU0Ho8n319fX6eTJ0/SPffcQ695zWvoRS96Eb3+9a+nxcXFRtt95JFHav3+448/3mg7AAAAAAAAAAAAAAAAALoDjYNLkGPHjuW+/m//7b/Rb/zGbxARUZIk9HVf93V09dVX05EjR+jzn/88pWlKRERvfvOb6eGHH6abb76ZBoP6H/0NN9zQfucBAAAAAAAAAAAAAAAAzDSwKroEOXXqVO7rrGnw/Oc/n+6//366++676QMf+ADdfffd9MADD9BNN900+d1bbrmFXvGKV8Tc3V3NE2c26N/9wSfpub/2QfqfH/lS17sDAAAAAAAAAAAAAAAAlUBxcAly/vx58b3nPOc59O53v5vm5uZy33/qU59K7373u+mmm26iD37wg0RE9OpXv5p+/ud/nq644opa2z148GCt33/88cfpm7/5m2v9m53Gr7/3i/S+e48QEdEvv/te+sbr99E/fGq99x0AAAAAAAAAAAAAAABigsbBJcjKyor43mtf+1rRNMgYDAb0ute9jr72a7+W0jSltbU1+tM//VP69//+39fa7pOf/ORG+7ubec9d+ZyHn33bnfSJl31nR3sDAAAAAAAAAAAAAAAA1cCq6BJkdXU19/Uzn/lM+rqv+7rSf/M1X/M19KxnPWvy9Yc//GGXfQN5Tp8f5r4+cmaD1jaHBb8NAAAAAAAAAAAAAAAA3YPGwSXIlVdemfv6mc98ZtC/m/69L3/5y6b7BHT6vUR87+bPH+5gTwAAAAAAAAAAAAAAACAMNA4uQZ7xjGfkvg7NKpj+vePHj5vuE9BZXZBuYH9x56Md7AkAAAAAAAAAAAAAAACEgcbBJcjTnva0XJ7BxsZG0L+bDlVeWloy3y8gWd8cie995P6j9MSZsM8MAAAAAAAAAAAAAAAAYoPGwSXIYDCgb/u2b5t8HWo7dODAgcl/X3PNNda7BRjD0Zg2R2Px/dE4pb/+3GMd7BEAAAAAAAAAAAAAAABUg8bBJcr3fd/3Tf77wx/+cKXqYHNzMxeI/I/+0T9y2zewzfqWVBtk/M3dhyLuCQAAAAAAAAAAAAAAAISDxsElyg/+4A/SysoKERGdOHGCXv/615f+/hvf+EY6evTo5OsXvvCFrvsHdJuijEOnzhf+DAAAAAAAAAAAAAAAALoEjYMZ4pZbbqEkSSb/e9Ob3lT4u1dffTX9/M///OTr//gf/yN94AMfKPy7L33pSydfP//5z6dnPetZZvsNdNZKGgdlagQAAAAAAAAAAAAAAADokkHXO3Apc9NNN+Xsf4iI0jQVv9Pr5fszz372s+m9731v6+3/4i/+Ir373e+mO++8k9bW1uj5z38+/at/9a/ohS98IV1zzTV0+PBhete73kVvfetbaTze9tq//PLL6Y1vfGPrbYNqypoD50uaCgAAAAAAAAAAAAAAANAlaBy0YHNzszJbYGtrS/13FqysrNBf//Vf03d+53fSvffeS+PxmN7ylrfQW97yFvX3r732WnrnO99JX/mVX2myfVBOmeLg/BCNAwAAAAAAAAAAAAAAwGwCq6JLnOuuu44+/elP00te8hK67LLL1N9ZWFign/iJn6BPf/rTdOONN8bdwV1MWcbB1iilrdE44t4AAAAAAAAAAAAAAABAGEnKvXXAJcvm5ibdcsstdODAATp69Cjt27ePnvrUp9Kzn/3sSZByTB555BG64YYbiIjo4MGD9OQnPzn6PnTJzZ8/TC9+8x2FP7/rFTfRnsW5iHsEAAAAAAAAAAAAAAAA1cCqaAcxPz9PN910U9e7AS6wtjks/fn61giNAwAAAAAAAAAAAAAAwMwBqyIAnCizKiIi2tiCVREAAAAAAAAAAAAAAGD2QOMAACfWt8obB1U/BwAAAAAAAAAAAAAAgC5A4wAAJ9YqFAdVigQAAAAAAAAAAAAAAADoAjQOAHCiqjEAxQEAAAAAAAAAAAAAAGAWQeMAACeqGgPn0TgAAAAAAAAAAAAAAADMIGgcAOBElVURGgcAAAAAAAAAAAAAAIBZBI0DAJxY3xyW/xyNAwAAAAAAAAAAAAAAwAyCxgEATlRbFY0j7QkAAAAAAAAAAAAAAACEg8YBAE5UWRVVhScDAAAAAAAAAAAAAABAF6BxAIATVY0BWBUBAAAAAAAAAAAAAABmETQOAHCi2qoIjQMAAAAAAAAAAAAAAMDsgcYBAE5wxcHqwiD3NRoHu4v1zRH9X2//LD3vVbfQK//mXhqOkHEBAAAAAAAAAAAAAGYTNA4AcIJnHOxfmct9HcOqaDRO6dU330c/9Ibb6Pdv/bL79kAx//MjX6K3f+oR+vLRc/T6D32J3nfv4a53addx+5eO0T9/3cfoh95wG937+Omudwd0wMZwRJ9++AQ9cWaj610BAAAAAAAAAABmmkH1rwAAmsAbA5cvz9PB4+sXf77pP3H+R594mH7z/fcTEdHHv3SMrrtsiV7w9de6bxdIfv3m+3Jfv/Ozj9H/9g1P6mhvdh/nt0b0M2+7c1Iw/tm33Uk3//yzKUmSjvcMxOLsxpC+5398lB584hztXRzQH/z4N9M/+Ir9Xe8WAAAAAAAAAAAwk0BxAIAT3Kro8pX53NcxrIr+9u7Hc1//5Fs+5b5NIDl6Vk43Hzi61sGedMtjJ9fpN977RXrLbQ9Ft2p6/71HclPmDxw5S2c2hlG2/fCxNXrLxw/Qpx46EWV7QOcPb3uIHnziHBERnT4/pN+79UC3OwQAAAAAAAAAAMwwUBwA4MBwNKZNVhi9fGUh93WMxsGtDxwT31vfHNHSfN992+AiH3tQfg5Pu2a1gz3pjo3hiF74P26dNFEOHD1H//mffV207WtF+/XNEe1dnFN+247HT63TP/vtj9Dp89tNit/518/sVGmSpikR0a5UWnDVz7s++xj99g/9g472BgAAAAAAAAAAmG2gOADAAS2/4PIOMg6+6cn7xPc++sBR9+2CPLfeL9/zzeHuCkf+xJeP55QXf/25x6Ju//OPnxLfOxdBcfC+e49MmgZERP/+Dz/tvs0iHjp2jv7Jb36Envqf3kP/59s/u+sCunfbOQcAAAAAAAAAALQBjQMAHOA2RURE+5lVUYzGweJAKgtu/vwh9+2Ci6RpqjZrzinHyE6Gh9EePbtJ43EaZdujcUp3PyrDkHmAuQfvvSd/vqXpttd+F7z2gw/SFw6doTQlesenHqFbFSUMAAAAAAAAAAAAABEaBwC4oBUkr+CNgwhFy/NDuY3333uERpEKtoDo4eNr9OjJdfH9tY6Kx11x/Nxm7uvROKXT57eibPsLh06rxfoYjYOnXb1HfO+TB467b1fjT+44mPv69R96sJP9AAAAAAAAAAAAwOyDxgEADnA1QZIQ7VvKWxVtRLDN0HIUjp3bpM8cREhrLIqsobqaOu+KE2ub4nvHzsnveVAUSry26f8Z9JW77MdnZNI/Rs4KAAAAAAAAAAAALk3QOADAAT7JvDzXp8W5vG1QFMXBlt6cuPnzR9y3PYusbQ7p/sNnJgGxMbi1oHEQY9p9ljh+TqoLuArBi08eKGocdHMOfuzB+DkjG4r6aNU5GHqW0F4/AAAAAAAAAAAAikHjAAAH+CTv0nyflnjjIMK0b9FE8W7MObjz4RP0zF+6mZ7/6g/Tv/7d26P464/HaeF0eYxp91nihNIkOHY2TuPgjgJroBjhyNo5eM9jp+mkosDw5MjpDfG9PQuDqPvQJTxjg4hocQ5LIAAAAAAAAAAAoAg8NQPgAJ9kXprv09L87DQOHnzinFrI3amkaUov/bPPTaa/b33gGH3o/ifct3vo9Hk6sab7+J/b2F0T0Jq6IIbi4NGT6/T4qfPqz2Kcg5olWZoS3faluDkHh07L96DXS6LuQ5ccVhonXAUGAAAAAAAAAACAi6BxAIADfJp8eW4gFAebw7H71HtZjsIRZQJ3p/Lph0/QfYfP5r73qQL7GkvKJtrXt0a7KqT6uDJhf/yc/zFYpDYgitO8KWrexbYrOqw0DmIoLmaFJ87I178ZIWcGAAAAAAAAAAC4VEHjAAAHeLFwcV5mHBARnXf03U7TtLRxcPTs7mkc/NHtB8X3YoQTn6vw0I8x8T4rqFZFERQHnz14qvBn6xHsoorOwY9FDkg+pKgudlNAt9YoReMAAAAAAAAAAAAoBo0DABwICUcm8g1ILmsaEOme3zuRU+tb9O67HhPfP6JMIFtTlWOwtksKt+NxSidUxYF/4+DkevE2qho7FhQpDh44cjbKMZix2xUHWsbDcJxGyToBAAAAAAAAAAAuRdA4AMAB0ThQMg6IfCfOiwqWGbtFcfBXn3l0km0wTZHvvSVVjaEYhetZ4NT6Fmn12RiNg7LPIEZAdVkD76Fja+7bzzikFM53VeOgoEmzOYLqIDYHj6/R5x87TWmKpg0AAAAAAAAAzDKDrncAgJ2IalU0kH06raBttw9QHKRpSn90+8Pqzw5HaBzwBhJntxRutXwDIqJjZyM0DkoaaFWfjwVlDTxtCt4L7Xg/u4sCuosyXTaGY4QkR+Qdn3qEfvHPPkfDcUr/9BufRK/5V8/sepcAAAAAAAAAABQAxQEADmhWRYN+j+b6Se77VaqANlT97d3QOHjgyFn6wqEz6s8On9lwDyeutCraJYoDLd+AKI7ioOw9jhGOXKY40OyDvDgEqyL1+8g5iMv/8657aHjhuvvuux6nB47o12cAPDi/NYLSpWPObgzpJ99yB339f/lb+ok330Fnzm91vUsAAAAAAKAENA4AcECzKiIiMdnqalVUEbz8xC6wKnr4eLEVzGic0jHn92DWFAfnt0b0sQeP0qMn16Nut6hBcPzcpnsRp8yqaH0rglVRmeIgUvMuTVO1cbC+NXJvns0KRe81rIrisbY5pNPn8+fch+472tHegN3EybVN+pev/zg94z//Lf2L3/k4nUaxujPeccdB+rt7DtO5zRG99/OH6c8//WjXuwQAAAAAAEpA4wAABzSrIiKiJd44cJw4h1XRtrd+GVox1ZLKxkEEj/2Mtc0h/dPf+gj98Btvp+/89Q/Rxx6IV7DTgpGJtou2Z52bJ2WqjxiKg/MlE+1HIikOTq1vFU7WxzwGu2I4GtOxc/r1bguKg2g8ckI2LPcswjET+POOTz1Cn/jycSIiuuOhE/S7H/lyx3u0e3nFuz6f+/r/fuc9He0JAAAAAAAIAY0DABzgxcrlue3iCA9I9rQqKpt0Jtod4cinKxoH3gHJVY2htYge8++95zA9+MQ5ItqeNH/Txw5E2/axEksib7uizsORZ0BxUNYg2w12RcfObVKRsAWKg3gcVBRgw9HuULyAbnnrbQ/lvv7N99/f0Z4AAAAAAABwaYHGAQAOFFoVDWJaFZUXxI6f29zxNiXcFoPj7TFfNc0dc9qb2zZp079eFGUcEJU3FSxY6zoceQYyDg6VNMh2Q+OgLIQaGQfx0BoH8DcHMdCC4L3VbgAAAAAAAOwE0DgAwIEiq6LFiIoD/rdX2LbHKRXad+wUZl5xEDEcmU/2nyywD/LZdvHnUNZUsKDsPfZ+/4ejcWlzLpbioKxBoRXUdhpHzhS//rLw6p3GcDTuNBj2oNKsPFPR3AXAgq990h7xvTsOHO9gTwAAAAAAALi0QOMAAAeE4mAuyzjIn3JVOQRt4I2DJ122RL0k/zs7PeegKgDxsHPjYJbCkflk/8mKpoolRRkHRL6Kg9E4LZ0o97YqqlL9nFrfcm0eZhw6VXye7wrFQcl1bjcoDo6e3aD//bW30le/7G/oR3//k1EsujQ0xQGmvncHaZrSX33mUfqv77mX7nrkVNe7Q0REt38ZjYPYjJVGOl+XAgAAAACA2QKNAwAc4JPmS0XhyK4ZB/mC2Mp8ny5fWch97+jZeFPnXXB6PV+U4qoLb8VBVeMgruIgXzxd2xzRxjDO9styDDwzDqrOr/Nb5YqAtoQ0BWI078oyDnZD4bbUqmgXZBy87faH6dMPnyQiog/f9wT92acf7WQ/NMVBVXMX7Az+5JMH6f/3x5+hN3z4S/S9r72VHj4mm0ieaPfa2790LOo+AH1gYXkeAekAAAAAALMMGgcAOMALllnjYJE3DhwLx+dZUXhhrk9X7ck3Dna64uAUe0h9+rV5uwJvj3k+2dtno3VRFQdKk+jUWpyiXVeNg5DJas/p6xAbnBg5B2Xb2B2Kg+LXvxsUB79+8325r//zX94dfR/SNKVHNMUBrIp2Bb81FUY8Gqf0X99zb9Tta2utzz1yqjP1zW7l6Fm55lycw6MoAAAAAMAsg9UaAA4UWxV1l3GwONenK1fnc9/THuJ2Enya9elX5xsHh06fd/X85scBf/+7zDggimdXVBqO7Kh6CWnMuTbvlPP7+suWcl/HyDlA42B3WxXNAqfWt+iMcqwh42B38BhT9/3tPYeibl9Tnw3HKX3qoRNR92O3o605cQ0GAAAAAJht0DgAwIEiq6K44cj5h7GFQa9TxUGapvTxB4/Ruz/3OG1FsgfhjYOnXbOa+3ptc0SnHQtX/Di4cjX//p+LNO2YpqmaM+AdTEy0XRTQCoYZ3ELJkpDGzDnHxgG3C+slRNddtpj7XteKg90RjlxmVbTzX/8scPC4tCkiIjqzAasi4E+RsuD2LyHnICaaPWbMAQoAAAAAAFAfGEsCYMxwNBa+2ctdZBwMpeLgqtXuGgev+eAD9Kr3bltmfPNTLqc/+cl/REnim4rHMw6eds0e8TuHT5+nfUtzLttf28pvXzQOIk17nz4/pK2RVFbEUBycLAlGJvK2KmLKn/k+bQ7HNJzKNfC0quB2YYtzfbp6b75x4K042ByOS7NMdoPi4ImSxslumHZdmuuLe81wNKZBP97syCMndE97WBWBGBQpy27/MnIOYnJUud8NxyltDsc0P8AsGwAAAADALIJVGgDGaM2ApQvhb9zLdX3Lr2jFFQeLiuIgllXRkTPnJ00DIqJPHDhO9x0+67rN8TilM0xxcNXqAl2+krcL8gxIXmPT3Pz9Pxdp2ruoOF9V1DfZdsU2jjk2DriiZ3m+P1H/ZHhOO3LFwcKgR9fsias4KPP3J9od4cg862Sa3dA4uHLPvPheWWC2BwcLGgewKtq9xLz2FA1pfObgyV1xDZgVjhUoDJE1AQAAAAAwu6BxAIAx2mTbUkHGQUx/9cUOw5H/6PaHxfe8C1dnN4c0ZkP2+5bn6Fo28X3Ys3FQYVUU62G5yA7oZIRw5OMVGQYxFQdL831amc8L7Twn7nXFQdxzsKoxsdMVB+NxWmpHFRJgfamzPCfFpY+c0K2DvCi0KorcOHjo2Dl6yTs+S//ydz5Of/apR6JuezfD1x5ERAeOnouy7a3RWFXcbf8sLW0sAluOntHv956WgQAAAAAAoB2wKgLAGG2yLbMqWmSNA24nZIlQHMz1ROH6iQiKg83hmN56m2wceBcsTyvFgL2LA7p23yJ9/vHTk+95KQ7G41QcCzwcOdbDclEAcQyrIq44GPQSZhU0ovNbI3FuWMAbM0tzfZrr5QtIns27DaV5dw1rHHgrDqoaE7FyNrpircIOjtvK7UR4A4uog8ZBgeJgczSmjeGIFgb25/8065sjeu0tD9DrP/SlyWf+iQPH6euv30vPuHav67YBkWZKeODYOfqG6/e5b7vKEvLcxlBtbAB7ilSuazu8gQ0AAAAAcCkDxQEAxvAp5yTZtighImGT4qo40DIO2MPxybUtd5n+e+56XH1Y5DZC1vB8g15CtDK/3TiYxkv5oBXr+Psf62G5S6siHsD8965cEb/jZVckQ8oHtLyQPwddw5GH0qro6j1xMw6q3tudHo5c1aDcDTYlXH1GVJw54MXB48Xb81YdjMcpvej3bqff/sADolH06YdOum4bbKM16B46FucYrFpn7Qa7tlnhaMH9CIoDAAAAAIDZBY0DAIwR9ihz/UkI8OIgYjiyZlW0KqfqijxnrXjTxw6o3/cuFp1mjYk9i3PU6yXSqsipcaDlF/D3f21rRGPup+RAUfE4ilXRufw2vvKKFRr08vOnVXZGTRHhyHN9WmZWReue4cjsHFxQFAcn17bUwq4VvHHD2elWRVVFwd3ROJCvMabiIE3T0u153ws+//hp+uSBE+rP4K0eB573QkT05UhWRVWNg51+DZwltHBkIigOAAAAAABmGTQOADBGC2TNEIoDx4IhLxYtDHq0b2lOFG09PdbvfvQUfebgSfVn3lN+3Kpo79J2wZgrDrysirRiBVccpKmuTLCmSHFwIobigG3jipV52s8Cqr2aV/z8Wp7v585Hog4UB6xxReR7DvKm0Xw/f9vf6UUzKA66Vxw8cWajNEvirHPjoKw5HCugfrejKQ5iZRzwBjJnp9u1zQppmhZaFUFxAAAAAAAwu6BxAIAxWiDr5L95xoEyhWeFNu3c6yUi56DoQc6COwuaBkQxFAf5v793cY6IKJriYG0rv/0kIbqcFcyJ4hSuiq2K/BUHvHC9f2WeLl/Ovw9eAcki40AJR/acdNQCyvcsDGhxLn/rPXLGL+eAKw6efPlS7uudbtNRqTjoIOMghsooI01TtWgfU3FQlG+Q4W1bV3YMoGjsz3A0ppFyzB84FklxsFX+Ge90u7ZZ4ezGsLCBCOUPAAAAAMDsgsYBAMZogawZPADW1aqIPaAtXshZ4FPvntPOZQUh7ynTU0xxsG9pu3HwJKY4OH5u08UqhjcElub6tLIg8+hjPDAXWRXx98gDnqOwf3lONFC8Ggfrm/lzYHm+L1Q/VdOobeCNwYVBj5IkoWtE88rvHDzOmkNfcfly7uudrzgo/3y3IjcOfuPm++hr/8vf0ne86hb6/GOnq/9BS4oKdY+fOk/DSK+9qknBm7zWlB0DO/34nwWKmnNHz266N42I5H2Ag2MgDsdKLAmh/AEAAAAAmF3QOADAGF6EXpqacOaTxq7hyMq0MxHRlav5ou1RJ395IqK1kofB6FZFFxQHvHFC5DN5zz/b5fkBLQx61GdWUXEUB3phOoZVEVeW7F2ao8tXuVWRU+OATZouzw9oJaJVkRZQTkR0NTsGjzipXojkZ3/Dft442NkFm6qiYJmFjjWfeugE/db776eN4Zi+dPQc/erffsF9m0WqttE4dQuG5xyqsIPzvheUHQOejUOwTZkdWIyA5KrmPBoHcShTt8ZWHDx8bI1+96Nfpo8/eCzqdgEAAAAALkXk+CsAoBUyHPlis0DLOEjTdBKebElR0TKm4qCsIMTDi63hfz/LOFhgAdVEPlPH/EF4eX47JHt5vp8rpsewyigKHz6/NabzWyOhhLGEvw8rCwO6gikOqgJ8m29bngP8VPMNR5aKAyISOQeHHc/BE+fKFQebozFtDsc0P9iZcwSzFI788r+8O/f1h+57wn2bZRkqj5xYpyezRpIHRyqO706tilA0dqesOfflo+foG67f57r9KmXnTrdrmxXKGgcxG9h//ImH6b/81T0TJcxv/9A/oO/+X66Ltn0iovfc9Ti94cNfousuW6RXvPDr6eo9MvsIAAAAAGBW2JmVAgA6hBcrl6cUBzzjgMhv4pUXLTO1Q8zGQVlRxl9xoGcczPVlk8bD51wL5iUi4bHvXbhK07R0ot8754AXBFbmpWWTl2WXPBf7tDwXMxyZNy4uNA6E4sAzHJkpDljGAdHOLp7OSjjyaJzSvY/7WxNxymzYYuUcVN1jvG3ryo4BZBz4U3aOxQhIrlJ2dnH9O7sxpMdPxcsZmQXK1K0xFAebwzH9xz+/i37xz+/Krfn+6jOPum97moPH1+j/+OPP0GcOnqT33HWIXvHOe6JuHwAAAACgLlAcAGCMtCoqDkfOft9j4rvYqog1DhzDkctsIPzDkbniYLtx0O8llCRE6VRWo4figBfMs8bB8kI8j/3s75c1p06ub9K1+/ym3aTyYkBz/XzP2stnXtpF9YW6x7NgIZp3F9QuPOPAKxx5fXMk9kGbMD+7MaT9SnD3TqCycRDJ5/9TD51Qvz8ap8K+zBL++U/zSEVosRVVx/cZb6uiknN8p1t1zQK8gTrNgShWRVWKg3jHwINPnKX/9333019/7jEiIvp33/736GX/9Ouibb9Lyq2K/D+D//qee+ltn3hYfD9G1tM0v3Hzfbn7znvuOhR1+wAAAAAAdYHiAABjpFXRxULxgtIg8Jq25t7WWdFy/3K+QMizACwpUxV4T5nKjIPtPmmSJDTPCtceU8dawZwovuKgKng4uuJgoT+x7MnwmvoWQeXz/UkD5+LvxAsoX4isOOBqAyKZcUC0s6euq4qCsRQH77nrcfX73tfBWVQc7F+ey33tb1VU/B7E9lbfjZQ1rg8ci6A4qFhjxVAcjMcp/erffoGe/xsfond99jFK0+3hhf/50S/TweNxGnhdU2pVFOE8fO89eoG+rLnqwd8V7AcAAAAAwKyCxgEAxuxbmqOnXLFMV+9ZoD0LA1pdKLcq8ghIHo1TMUmb2aRwL/PhOCUvyooy3lZFfIps31SxijcOPCbe+eeaKU9iFq6JqoOHTzoGJG8Ox+I43FYc5CesN0c+x6BqVcTff8dpU6H6Geg5I2UFlTbwfINBL6G9S0pA9A62KuLXoBhNQ854nNLf3K03Ds5s+BbNyxsHsRQH+eP7qVet5r72Vp+VWhVBceBOWeMgRtF8FqyKPv6lY/S6Wx4kvtxKU6J7HotvYdYFx8qsiiKch0XXmTJFjDUbwxEC2QEAAABwyQGrIgCM+bn/9Wn0c//r09SfzfUT6vcSGk09PXpMO2nFsCwUeMBsMbxsYojKJz3PbgxdbTr4Q2KWcUBENDfoEU3VsjaH9oXrtaKMA+bv7z1pd1yZOp/GU3GgFWxWFwayceOW88HVPwNx/K9t+b3/RYoD3rzwssvhioP9K/OUJAmtLAxy2Q4xrTpiwxuU+1fm6PCUwiOGVdGnHz6R2+Y03kXz8yXnVgzFwfmtkXiNX3XVSs66yfs9KA1HhuLAnbLmXIxg4mqrIv99uOexU4U/i6G6mAW6VhwUBcXHVBzc+fBJ9fvelnUAAAAAAG2A4gCAiCRJQots4t/DqkibMs0UB3ODOEVbomobCM+HRWFVtDTVOOj7N0/WNnSropgT70TlU35ERCccGwfa57u80BfHoFfxduYUBxcURzzjwWvq/QRTk1xxIcdglTevdrDigL82btUWQ3FQ5mHt3jgoub88fuo8DZ0bJ1owslQceNulFb/HMSaddztl59j61ojS1E/1mG1jGn4PiFG0LrMkixEQPQuUhyP7noejcUpbBcrGmIqDWx84qn6/7DoNAAAAANA1aBwAEJkl9tDq8cCgTVZl+Qpi2tvRqqiqIOlVNBuNUxG4Oa044HZNPhkHerFCFG3dFQcVVkXrflZF2ue/PNfvLBx5ab5PyxHf/w12bmfZDrFeP28aZUVzrnqJMXHbFdyK5vKV+I2Dzz1ysvBn3kXzsvvLaJyWFvMs4DZFC4MePYmFsXsff2X3oc3ROFrOxW6lzKooTf0nvtfZNZ5bxcWwqypTdUFx4N+8LmsOlB2f1nzkfr1x4JV1BgAAAABgARoHAERmkeUceGQcaA/iE8VBpKIlUfUDuVcwqPZ39y5dLJbGeA+KrIqWWTiy98RrVePglKviQBbOB/1elHDkNE3FZ7A0JxUH57fGOeswS3hBokhxME7JZR+44uDy1axxsHsyDqRVUb5xEKNoVNYg9VYcbFQUZb0bF0+cOZ/7+uq9C7km7vY+eFsVlV9jPe7B4CJV13fvgGpelL1qNd84iNE4PVuSZXLg6M4PR94YSsuyabwVB2XNqVjT/qfWtwqbyLgGAQAAAGCWQeMAgMjwgOQi39U28AehJLmoNBhwmx6nwtlonFZOUZU9TLfhtFIMyykOuFVMxHBkXrQ961w0qQpH5sVlS7hdU6a2EFY9Du//5kg2BDSrIiK/aT9+HmYNE378Efk0r3jT6PLlXWhVtMmtivJF6xgZB2WqFnfFQcX95bRz0Z5bFV29Z5H2LOaPvy7DkYn8r8G7nSorGO+iMf/7V65yxYH/5182RHHo9PkdXziuGiLxbh6VNQc2hmN3uywioo8/eEyEY2fAqggAAAAAswwaBwBEJo7igHmrD/qUJNsNA2FVVOD72paQB0GvotUplm8w6CW5grFUHNi/B7wYsTLJOOCKg7hWRVeu5ieuPcORueJgeUGfuPcommvn1fL8YPI5TOP1Gchw5AuvfyBDED0K2KJxsFJkVbRzixb8PLy8g4yDssKod+G+a8UBtyq6anWBVhelVdbYSfUT0sD2vgbvdqrOMW+bFn4v4FZFa5sjt+Mvg1sncna6XVFV88jbLqqsMJ+mcRrIRfkGRLAqAgAAAMBsg8YBAJERigOXcGRukXLxVNemvT2mrbQHQf7A7mVVpAUjZ40TojjhyPxBsEhxwIvr1nDFwVOvzAeTujYOCponMTImtAfxpfm+yBgh8pt41Rp4RPIcJPJR/oQ2Dnay4qDKqihG46Ds/e0yHDnG9o+cZoqDvQu0h1kVEflN/YdkmHhfg3c7VUVZb8WBsCpi6xAi/6yhqmvsQzu8cVCVY7G+NXKzDAzZfgzLui8eOlP4s52uOAEAAADApQ0aBwBEZpEVLj0mjbg9xcJgetpeTjt7PLBpvsHX7I3jLcytivayCdcuw5GF4sA9HDlfuPuqq1dyX7uGI7PXlr0HsnFjf/xpxajl+T4tDHrU7+W371U0koqDC1ZFA82qyP49KGocdGVVlKYp/e3dh+j/edfn6ZYvHnHf3nA0FgUjEY7sPGk6HI1Li1JdWxV5Nw6eOCsVB9yqyHM/tOY0v/5AceBLlerF+/3nRVluVUTkP/FeNSTx5R2ecxAyIOM5dV+leIhhFVSmOoHiAAAQk8Onz9MPveE2+sZX/B29/C/vomEE1RUA4NIGjQMAIrM0lz/tqiahmsAf1MsUB0Rehdv8Q9J8v0f7mU2IV9Hs9Hp+23uX8hOuXVjlZEXzFdY48g5HPnEu/x5zxcGJtS03f1/+2rJJdx6O7DFtz9//uX5Cc/0eJUlCyxHswtI0LVQcxMo4OMHUJBPFwby0ivHm0ZPr9KLf+wT91Fs/Rb9365fpx37/k/SxEusGC7RJcn4NGo1T10lXHtDN8VcclB9XWh6MJUeUcGTNLsxLfaY1xa7es5jfNhoHrsya4oDb9RH5HwP873PVw4GjO11xUP0ZezaQKhUHDutwTtmQCDIOAAAxeeOHv0Qf/9IxOnN+SG+97WH6iPN6HABw6YPGAQCRERkHDg8MfLpqepta48Bj6pY/KK8s9HMBxUSOVkVCcZDfboxwZDltfyHjgE97OyoOxuNUfA5fccVy7uvNoZzKtoK/tqxgyI/BDYf3nxejps+B5Qh2UVujVAQhZooD7Ry0tkoYjVMRfJ0VzaVdlm/R7P33HqYXvPrD9JH78w8m7/+Cr+pAKxpzxQGRr11RVWPQXXFQ2bjw3T4PR75qzwL1e4lQvXjtB7/+LQx6QvHgXbje7WxUZUw4F03557tvaU6sAbxVV/w4/Mbr9+W+/vIusyrilp1EvudhlfKqSpFgQZmqBYoDEJu1zSHd/PnDdP/hYgstsHO557HT+a8fPdXRngAALhXQOAAgMvyBKUY48sJcuVWRx7SzNm3Oi0WxwpH3LuW3KxQHQ3+rnC4UB9rD6PWXLYnvedkV8WJMWTiyteqBT/dNh2PziWePSUetEJE1L/q9hJhbkvk5eGp9i/hbesWqblXkGY68ORzT//n2z6oTvd5Fa60YeNmy9Nf3tCuqasp0rTjw3P5onNLRs/lrSzbtLxsHXoqD/LG9ujCQGR/OjbPdTlVjeN35/edrrKX5vmyeOjYO0jQVf/8brtub+3qnZxzw++G+pbloloFE1c0rr+GJacqOsfVN2ISAeKxvjuif/OZH6MVvvoP+yW9+hP7unkNd7xKIDF+Tl1mpAQAAERoHAESH27R4FK1EOPLUNucUf/Whg1WRNm3OJz3dMg5Y42AfsyoSGQcj28LpaJyKKeaijINzm0M3qyDtQfzafYuiaM3tjOy2z5pHBeHIaWqfsyGtoi6+7zwg2WPSUStETJ/73nZZPNuC6GLRPGY48t2PnRKWSRnek978+rI411MnXT0VB1XvrXvjoMOMgxNrm+K8zixa+L3A66GVHwOri7Jx4G0Xt9upOr88rwPD0VissZbn++IY8LQq2hiOacjOg69nioPDpzfc8466RKxJ53q5Zj6R73FQpejzVhyMxmmpqgCKAxCTt3/qID10bDtXZThO6b//7Rc63iMQG7429V6LAgAufdA4ACAyctrdo3FQbNMSy1+dT3quLPRplTcO3KyKWMbBYlXGge+0O9HFwjWfdByn9jY1k/1QCmKrCwPRSPFSHPBJ/qxYox2D1g00XoSYLhgLxYFDwaZMcUAk3wP7xkG+WL9nYTAJSY8ZjnzHgeOFP/NQW02jTZtrwdSuioOKorS3tzqftOXFOt5kteTI6XzzKkmIrrhgFSUaB07qE35sr8wPhOoLGQe+VN3fPAvGWkF2aV6qHz2n3bXj6+uetFd878AODkjW7DP5fdjzPlRl2eadcVDVGEDGAYjJ2z5xMPf1g0/sbMUTkPBhDa/ncQDAzgGNAwAiwyf+oygOpsKRB3zc3GkfRMFGsSo6s+EVjsytirjiIP8eWE8ca4WQiVXRggwG9Xpg5vvRS7an3i9jAbEnCybC2yIVB7pVEZG9XRR/UJ8umHalOChT/mwav36uONg/5e0fc9r2kwdOFP4stuJgpahx4JlxUFGQ9A4n5schD2X1nDJ74mz+GLxiZZ4GF8791Uh5N7wgvLowEKqvnTzpPQtUKw783n+tObk0pykO/K5F2rF91Z4FetK+fEj3gR1sV6TZZ/KsIdeMg4rGQJUyqy1VazzvJjoA08TI9ACzjVQc+K5FAQCXPmgcABAZ70ljIvkQND3p3O8llDj7qxPpVkXdhSNXZBw4T7sTXSxW8yk7ouqp5Ob7IT+DJEmEz7tb40BkHOhWRUREG8Z2UZqvdYYMB/YPKO/3kknRlEhmjXgrDi7PNQ6kv7eHXVaapqWKA+9QVG3aXFW7eFoVVRxbZzeGNDa26ZqGF+yuWs03DjwbF0dOn89ve8/FQqlUHMSxKlpZUPztIxTt0jSlj95/lD724FE3a7pZZdYUB5pVkee0Oz8GB72EFgY9+sorlnPf39mNA2mfuZsUB5WNAygOQES8j3cw24zGqbjvQnkJAKgCjQMAIiP89R2CecV019Q2kySJEg6sBeNyqyIvX+vT68yqaKnKqsi6cZDffr+XTAqWi3M90bjxskngBbGseH5ZJKuiYsWBFtBtbRdVrDgQE8cOx2FZzgiRvA54ZxxMNw648mec+oRDPvjEucJ8AyL/UFTROFvoU5Ikonngqjhgxxaf+E9TX5sU3kTuUnFw9dS2eTM3mlWREo7scf5zfvHP7qJ//bu30w+/8Xb6hT/97K5qHmxWTLd6Tlvz+0ByQXW3GjEcWVM+JUlCf+/Kldz3DxzduY0D3khfmOtHzTiour952UVmVL02b/UdANPAGmt3o605kXEAAKgCjQMAIsOLph42QfwhaJEFggrVw9h+H7j0f1WzKnJaqJziVkWLFeHIxg+NMph3u2BJtN24iTVpxwuzWcGMW/V4TR8VZhwoigPrrI+1rfy2pzMORMHC4SGKe8svsHPQPxy5THEgVS8e00ZlagOiGFZFPGdFP/6sw9Gn4c2za/cuit/xfGCrtiqKl3EwvW1pW+fUPFXuQzLjwPc4PLW2Re/49COTr//8zkfp92894LpNjYPH1+juR09Fb1rw+2uf2SXGVBwszfXVe7DntCW/v2fH/lOu4I2DnZtxoCoOIuZMVFmzeBdSq9Z4KOSCmGiNMg/lOZhNtOsRGgcAgCrQOAAgMqJoHzkcmUixSXHYBz7tuzw/EPYU0ayKKhUHtoUUXizkherpzAkiv2k3XjTLiufeResMXhDKLELmev4BtdKq6OKxF0NxIJp3XHHQ9z0G6igOiHyaVzzfYHofiGKEI4c1rjynTfmxdTUr3BN5Nw7KrYrOOFollSkO9rBmbjyrovgZB0fOnKcRe49/+d2fp3sfP+263Wn+6PaH6dm/9kH6Z7/9UfrXv3s7nTjnozLT4OcXV7y5Ng4K7sVdWhVNGgdccbCjrYrkmlQ08B0beF0rDqqaIsg4ADHRGmlQvewetGdvWBUBAKpA4wCAyPBQVI+iLZ8g50XLgXPhnEibsuuLxsH61sj89Y8V70ZeKJ13Vn3wSX9eqBJWKV6F+y29cB8jZ4NIPixn70Ovl4iQbu+A6rxVUYxw5LqKA+Nw5LVixcGCFhDscAzc8VBecfDsp12Z+zp2OPLqheMvplURbyLuWZQT755T/1WKA0+rpCdKFAcy4yCmVVHcjIOT6/K1jVOin33bndEmjV/zwQcoExrc+sAx+u7/8dFo1jj8/OIZO+tbfgULfo3Jhij4msArZ4hIz9kgIrqSNfE8mxfTnFzbpBe/+Q76tv/2AXrV333RNWMlQygO5pSMg4iWbeLn7oqDCrsuKA5ARLT1pncDHcwOWpPgrFPWWRmnz2/RrQ8cpWNsyAQAMJugcQBAZGIUjauKljEKx/xBaWVhQKsLc8rv2S5WNdslXiiNHY68xIvGzlZJk/3gORMXHtRjbV8Lp82QdjHGzZutbhsHfIJRHoPe4chMcbB8sXGQJP6NmyOnz9NDx/LWG89++lW5r9e3Rq5Fq1DFgWvGAW+eLQyiTdsTyclC3jjw3P6RM/lw5KunwpF54dZr2k1Oe8cNxiXatirSeODIWfqbux933TbRdjDzIRZU/ciJdfq+195K9x8+4759fi3cv5xXHnkW7YvuA/wY8Jy25NOdqxfOf35P8Bjg0PjVv/0i3fz5w/ToyXX6Hx98gG770jH3bfLC/eJcn5YXYioOKsKR3TMOEI4MZoOicyFW4xJ0j3a/G43TqNehR0+u03P++wfpX/3P2+mmV3+YHnzibLRtAwCagcYBAJGJUbTSHtKm8S5aEsnpsRXFqojIvmilPXzzQrn3Z1Bk0TPZfrSJf71oIptX9gWLzeFYfBbT74MM6Pa2KioJR3aYtKqvOLB9/SdKMg607Q+NC/h3PJS3KVpdGNA/+Ir94veqJkHbwK9BWSCqd9Mqtw+8gTovlVfcWs0Srj7jU85Efo2DJ86UKQ7iNE9UxUEEq7JpeObONHc/6m9XtDVKhVUSEdGJtS36f993v/v2KxUHrlZFLOvmwmcfMxxZU18SyWvw5mjsPvF5fmtEb/vEw7nvffSBo67bJJLXoYVBXMVBVWOga8UBMg5ALI4X2NR5NnBnkfNbI3rrbQ/RH97+UGUGyk6j6H4XM+fgN993H524MFRx7NwmveNTj1T8CwBA16BxAEBktIdFazRZeNk+xLAq2vaW7lOS71nYNw6UB0TeKPFXHOjFiqLte008F1kmxWheacX46SlP72NQTHrPTTct8seDddGcKCDjwPkzOMYUB/tZ42Dg3Dy8g+UbPPMr96vZCp52RYXhyBGtivhxuLIgG6heD2ujcSruL8vzffE5eDQuzm0MReNyOuNgb6T3QAtH5oqjLqyKMmL4SpdNER484R/Iy4sylzHFAQ+yt0Q0kC+shWIqDnjw92qB8onIX3VwyxefEN8rKiRaEqQ4cDwXNjpWHFQ1pmJlHBw5fZ7+7p5D9Pip9SjbA7NHYeNgl1kV/eRbPkUv/8u76WV/cTf99B9+uuvdiUrReitm4+BP78g3Cl53y4PRtg0AaIZ8igcAuBJj2lwE0Q3yD2gy48Dfqmh5oU9JktDqwiC3OLF+YNcaMfw99564F/763CoqQs4FkSyITcKJoyhO5IPwdMGO2zRsjmwfnGUoZolNUicB5X6Nk43hSDQP+ZSv93XorkdP5r6+8Sv3i4ItkW/BZBasisQ5OB/Pqkiboluc21Y8TF93PfIFtOLEFasXC8axCrfCX35+ILbt7e1cpjjgzV0PyqaZYzQuhOJgKZ7igOf8ZPcBYVfl+DkUXYf4fZhoe/2iNRSseNfnHhPfW1Kuy9bwwv3iXF+sizzPw6pwZHfFAc+6WRjkGkoxLEK+eOgM/e+vvZXObY7o8pV5+tOf/Ef01Vfvcd8umC2OFTQOPK3CZo2Dx9foQ/ddbKK+794jdHJtUzS1dyrFigM/9es0w4DndADA7IGzFIDIiHDkof2EmbRJ4YVz33BgIs0mZPthea8omtkuVLQiIH8QnxuwwrmzTQ6frIs18cwtOJYmVkX5/fFpHMmF6XTxnhdNNo3PAxGKOV9ikxRB9cMbJZ6F+6HShKjO+bB9/0+v5z//r7hiWWR9EPkWLqVFSEHjwNGqSOSMKCHxXg9rWrFsYa4XRfGgTfBOf/7xmqe68i2/7dTVquB0SePAW+1AVF6YjzHpzM8v3sT0vAYUWdZ1GY68p0D5RGS/FplmbXNIH7j3iPh+DG9z7X64LBp48TIOuAo3dsbBdBOVKI5V0dvvODi53hw/t0n/x598xn2bYPY4AcUBHTh2TnwvhvJqViga1PBU3k1z32GZZ/D3rlyJsm0AQHPQOAAgMjHCkaVNSlx/9TRNxcPocsEDu/VCRXst/PXGDkfmhSpZuPSxJxBZC5NwZN9gXCJZjFia61N/KpDXu3BYpvqIYdXFC5FCceD4+rXGAX/N3KpImwBqg2ZN0eslomDjOWUqps0vXHuE2qVjxYHXw5pWjFqc64vm7WmHxgF/T3tJXunGj8c0JdWHvw3afWh1YaBbZjkWjk+uFRckYhTuy6aZvdUWRNLfnk91rm+N3Lz9pVVRB+HIRZZpirLAs4n5/nuPqMdCDG9zTYEnMg4cPwN+P7psKW7hnh9fPGsmxnXg9i8fz31996On6XOPnHTfLpgtihQHuynj4OjZDfG9MmXgToPfkybfj2RVpF13+HMpAGD2QOMAgMjMO0+7E2kZB+WNA63Q2Hb7vAaUFWtWnaddtSLwoJd/z72bN3xyh4fxyml7J8VBcDiyR8ZBeUC0d84DL5AszxdnHHShOPA8BoZj+bf6FeeA9XtQZNXEz4W4VkV6KKnntKnWQI3l7682DgZxFA/8miJUX4pNi/UxuFEQ0M4nnYl8py3LChIxCvfljQP/YtEG+1z3s8ZBmlZbyTRFWhVlAwz5+9HmcOymejnLzq9sDcSvQ9l+ePGuz0qbIiKZweABv8ZuKw5iZhzkt7+P2WW5Kw5YoY4rDjybZxl8DUZE9Fvv9w9HB7PF8XOyaE4U5140KzxyXGZ8lGUR7TTObuivNVbGwWcfOSW+t5saVwBcqqBxAEBkYoQjSz9ZbtXjWzTUijBZwdDbJoM/eM/3e5SwRGZpF+VrVcQtWrqy6YgZjiwLpuUB0dbvQZFFBVGcnJEqxYFn80ab3ObNM644sFa9iOblhWOOnwu+VkUyGJcozuefERaOHMeqqJdsF+y54oHbSlnA31P+nmtFU/P7kFIQXV0YRLfMKm8cRJj2LtnGxnBsrvSYJk1TcX/Zz6yKiPwaN6GKAyK/iffC61BExcGZ81t0y30yGJkollXRbCkO9rFj0D/joFxxME591SZERMo8Ab3v3iN096OyiAd2LkWWPLFsamaBR07IxsGptd3TOCgq0sdoIhPJDDSi3XX8AXCpgsYBAJHR/LWtJ400m5Bp5nq+GQdFBZvp/88omnxoStWkK1H8cOTY0/YZvGhSNHHtE46sW1VlePrMj8epojiYyleIEo5cpTjw+wy2lEIgVxxI1VEsxQFrHDgVbDaHY3FMdRKOzEPi5/uycO+lOFDuA0mSxFEc8AYus8vjjSsie8sw7eF4ZWFA/V4imgeeD61lk4wxGgdVwauewazadZ0XbYn8lEdFDWStcRAroDtbA/FmLpFfE/OzB08VXueiNA6Ua5G4F2z6Td3z+3F0xcEmVxwsiN85v+m7D0XNOagOdhfHzhaEI0e4F80Kj5xcE98rsxTcaRQN7MUIRz6/NaIvPH5GfD+WTRIAoDloHAAQGW9v59E4FQUYoTjgRUvjYFpesOklF/eBF62sFwv8wVuzxIg/7Z5/zV0pDrJimZy4tn9YL5qyzPAMiOZFCiJuVTQDGQeO5+AoKOPA7xhM01RaU1w4/3mxaN1p0riseRmrcTBSGli64iCOVVF2DO5d4gH1/hkH8/1yqywi++YVL9gmycXjjxeOPTMOysKRZ6Fx4GlRoZ1bvGi7vQ8+70ORVRGfdifys0ooylpJkiTateh0SUEoxqSntM/siXNwOE7dpu75tTB244Dfj65kVkVEvg08bR8y3v+FI5j23UWcKCiQx2ggzgqa4mA3WRUVfdYxivf3Pn6ahkrNY31r5Kp+BAC0B40DACKjFUwsH5Y0yfUCD0eObFW0Mj+Y2AXxaVv7jAPeOFAUB84P62LavsKmxuuhVSoOsnBk/2IFL0ZxX3GZM2C3YNSKUEsdZxxIuzC/fQjLOPB7/7XjOQtoX1KmTD3QCiGTjA9Htcs0WiFIUxx4TXlxX+/MLiqG4oAfA/w9540rIv+smdWp+xBXgXlZ5aRp2nnGQVV+gGfOiHotmOtHC0nnNk1Z8zyW6qQooDsjlm1a2WuL0zjQrIoUyzCn5g0/DkXjoGOrIiL/a8G5gvN8NE7peMEUOth5FIUj7xbFwWic0mMnlcbBbrIqKrjWxMg4+JySb5CBBiYAsw0aBwBERrPOsZw2VgMxxbQzKxpq5qctkKGkFx+U+eS5taciL4JrjQPvwjEvxFTZ9LgpDhSbFCKtaOyRccCaFlVWRYbNC60QNl0k4sWa4Tg1t0jgigPevOs648BTdcML1kTF4chuk8bK382mjD3VLrl9UK5tK/MDeQ2MpDhYuPAZxLBKahKOPDRW/hRNehNpx6GTx/7WqLQpFyMUtVpx4GhVpJxbC4OemPj3al6sbTHV3dR2+cS7x8TtxnAspitzjQNxH/Q5FrRrUUaMSWM9HDlOSPl4LHM2Lus4HHnf0pxo5nelOCDSVZpgZ9J1xsEDR87Quz77WGfWQEfOnFfvyWUN/p1GkbIgxjHw2UdOFv5sN6leALgUkas2AIArWiHbsmioPQAt8GnnXlyrouWp6U7vaVdeAOXe8kR64Xg8TqmneA43QUzXzZfb1HgULst8/nmxwuOhuctwZFVxMNU40Kadt0YpzQ9sPn8iZdqbnYOek6b8oajfS0RAOH8PLIu2WhEie/1cceBVMOQPQMvz/cn5za8JXo0DbcJzeaEv7do2hpSmqfiM2sI/h+x1742gOOCB86Jx0JPnoKaUaYNsYF889ngj86zTpHPVFGOabisC+HlhSVk4MpFv40C7t8wPetuv95z/PvC/O30fWF3o09GzF3/mUbTQCjGrU+cfb6B5qZ+Kps2Jtu8XG8ORaG5boRXuF+f60ULKtWOw63DklQsh7dPHh+c+jMdp6XurNfvBzmM4Ghfek2Ko3z56/1H6N2/6BG2NUtq7OKA3vuhZ9A+feoX7dqfRbIqIdlfGQVGDoMzSzooyxQEaBwDMNlAcABAZTXHgbVW0KKyKfCfOhUVEieLAesKBBx3rigOlcGxYtOIFe/6AHENxUGSTQhQrHJlnHMR7D/hrX5zr5ZpC2rSz9Xsgi7ZVdmG2OSfT8MlGIqk6cb8GZYqDuThWRWWqJ9E4c1P85Pdhrp/QwqBPe9nE/6iiqNMU2bzKFAf+igehOGDXnF4vIX5YWk9bl1nEyIwDnwfWkClGL5ukjMpw5MiKg/l+T6jwvN4D3jSZ3i4/BjymLbXJzjLFAW+4WVFVFPTKdyAqtq7T7KI8Ckfa/ShmxsFwNBZ2YSvzfaEEXncMR+ZZHxwoDnYHJ0oa2Z7XgIw//uTDk7Xu6fND+oE33Ebv+/xh9+1O88gJGYxMtLsyDorudd6Kg63RmB584mzhz60dCAAAtqBxAEBk1KKlZTAse0DpJXKb3oVjOW1erDgwD0fmVkXKFDkv2hLZFm6lv32F4sClcK/YpCzoVi0ejYOqjAPPnAexbR5OrSoObN8DXrQVqh/Hz4BPbnObou3v+W1f81TPpt1FOPKWz4NCHV9xN6siUbTc3gd+DSTyKd5LX/FMcdBBOLJyzeXngLXigKsIVnKNA1649ima8MaBdv/3LNwTVTcOPBsX2nGQJEnOMojI06qINfFLGgcxFAeDXpJTPMVYCxBVFwU9QzH1RvL26+bnoUcDVSuK84B4z2l/rWi/sjCgpfn8Z+9pVVR1bHsrLsBsUBSMTBRHcXDkzIb43k++9VN0c8TmwcHjuuLg1C7JOCgbVPEOR17bGFGZMyMUBwDMNmgcABAZzaLBtGg35MWivrDAkIVj20lPviiZLtp5hyPzB281HFmzizIqHqaptAjiNjXSKsXe11gLGZwoDiJYtVRlHHgWznkRik81etuFEVUrDvjEv2XjJERxwI8BS6sinu+QFQuJSBQMY4UjTxeovMPRM2RI/PY+rKqNA/uH1vOKPQiRvAaf3RiquRhtCMuaidvALs04cHpg5bYQ1+xdFL/jHUpZVZT3DUdm18ELn3ks5VHZvYCrHz2aR1rOxvR6LFY4clVR0HPSVCvcZ3kr3KLLJWdCaWTHVBxoa7GV+YFYl3TZOIBV0e7gWEkIdgzFgXYcjsYpvfJv7nXfdsZuVxyUDQp4hyNXKZu8GxcAgHagcQBAZHq9REwdWj60yClT6SPrXbCR/uLFFhHWD6z8tWhNAs+Jc+2zlIVrf19jXojpJRcbFt6NI6LqjAPP4q1UfLBpf2fFCVF1xoHnOchfi1q07fnZlYn3f+r95oqDaFZF88X2IH7hyDzrZXsf5vo9cU3wCCgW94KBblVEZP/Axq9pWtaMDKmPaFUUySrnNCtG7F+el/YszpOeVdPEMcORM+WVVB7Z78NonIr7cZlVkUfRuuwYJIqTN0RU3RTxPAbLFGi8oe6xFuLFqiSRqqvROHVr2mhr3OUFmfFQlUXShqqiMKyKdgdFwchE/vchouJr7EPH1syHF4ooyzgYR9qHLim7z3lbFVWtRWIFdGdsDsf02YMn6QlFCQMAkKBxAEAHeBYNRcFSKdgMRMEm3qQnf1jaGI4pLdMu1iTIIkOxL7IqHpb5u0/2iX/+DsUCPmG4Mn9x0lEUTke2n4G2fV4wiWnVw7flbRdGFJBx4Pj6gxQHjs2jsualKBh6NQ5KVE/a8e+zD7rigMg/JJ6ouIGmNQ6sQ/F4AVS7DvOAbu8Gdi4cWRSN41gV7Vuai3YOTP5+ZePA72FdHAeZ4oBnTDjsg/a6pyfcee5ODKuimPfBaaoUNZ4FG646SUqGGDyauPw6uDDoiUY+kV/Thh/b84MezfV7MuPAU3FQcX5pzR2w8zh+rrhAqiljrOH2gRmjcUrHzsYp3hY1DsYp0dkIzZOuKRsS8VCfTlN1nYlpVbS+OaLvec2t9D2vuZW+41W30CcPHI+2bQAuVdA4AKADhK/tDlMc8CLM9AO69wNb0LS1o+JAWxiJjIMIhUteOJ0umOiv33jal/u7V4Yjx2seeduFERX7y0/2QYRi2r3+kIwDz4D0smsQt6bwKlpqFiEZ0TIOSlQ3IuslQiho9jmszA9EMLG1RL2J8svSLouovIEtwpGdjsOT6/kJz33Lc+JauLOtirjiIF5Iuva6pgcXVub5OehvVcRtymJdi6oUB74ZB7JwXzTE4NE40a6DvJGv/Z4VRbaNMVQ3F/ehwqoIioNdwbESxcHmaOx2/ckoOw4Pn/ZvHIzGKT12Um8cEO2OnIOqtaav+mx2FAd/+ZlH6d7HTxPRdijzb73//mjbBuBSBY0DADrAs2gqJp2VxoF4WHUu2EwXzLRGhmXhQnpra8GwCbHYB7PifVkQYEYMX+N1Pu1cMnHtsQ+8aMqLNJ4e/1XNo14vEcV0y+ZNmkqLDKk68Svc8wKspjjg4ciWwbTSW7/YqmjdadKxrGgcL+OAh/NOKw78A4p5MSg7Bnu9REw+WyseQpRfXPlm3UDlheDV+emMAz5tHlFxMBenaZFRqThwLFiKvJML12LRQHR4/7V1RZltoovi4HzxdYhIaSB3lHHgOelZ1kiO0TgRzauOFQfZMcjPAc8GXlXjCIqD3UGZVRGR771oNJb5b9McPn3ebdvT2xiWTNTz+/VOpKo475lzUN04iNfAfO0tD+S+/sj9R6NtG4BLFTQOAOgAz8IxtyoK8ZYeWisOSmxqtMaBpb+qmHRVJsuSJJGqC6OJb74wThL5eccoXPJC2PSkpdZMsd4HmXMRz6onaOLe0apn2/op/z1+Hnra5fAHIzUg3DGgu1RxwIqmvMFlhbQIubgPIpzcy6qohuIghlXRwlSxzD2kPsQyrkvFAWtkek3ZnVrP/919S3OK6sb3Ybkq+NSzYFl0HIisE4fmxdqW/Eynz30ZjuyfcbCHZxzEUhxUFGRcw5ELslaItPugvU1G14qDIss0vhb22j4RFAdgm6rGgUdA/MW/XX4MHj7j3zgosinKOLkLFAdV1wJX9VnF/e3sRrz331LlDcBuAY0DADrAMxAvJJTS21taFMwqrIosp534a9GK5ESa6sJHcbA015/I8r23PQ0vxExPO3uGQxNtT9zzYhiftPRsnjSZdrZsnmnns7Cr6jjjgDdTLBUH2oRnRqxwZO08zIgWjlyiOODhnB5TXmUFO964sM44kMov5Rx0DOgmKm9gx5g2J9oOXJzmsqW53HFAFMGqiB0HexfjKR6K1iMy58Eh44Db9c31qTd1zPFjwKN4fqYkZ4OIaH7AVTc+xQx+fIuAbsdJz6KsFSK5PvPJOJDXwbl+IuzaqhpsTSlaC/HPoEurIigOdgeVigPHBmLVMRjDquiRE2ulP+fWgjuRqql+jyGWjKrmqOd9iGP5zAPAbgGNAwA6gD8seSoOtKKpt1URf1BaZf7i3CbI1KoowFubyO8z4A9/IRkTHg/LZf7q2jFh3bziU+/CosGxcB6Sc+HZvNEWx7yB56l4aKa4sLwGdR+OLJRXOXsMGdDuQT3FQbyMAyL/xoW4Dmv3IWeblrKci1g5A6cVqyKuuvEs1hDJe9IVqwv57XtmHBSsR5bmefPC36qIX3v4EINH4ZhfA1YX8uddDNtCIvn+XrM3fwx4TnryafaFMsWBh1WR0rhIkkSoDrym7oXyab6gceA57V1RkOP37Bh87pGT9MEvHHH31QcX6VRxUHGfOxLBqgiKA6KzFY0B3uy2ZJYyDnDdAaA+aBwA0AGeRTs54acUrnkwqrtNzcUiQZIk4oHJ0qooZNJV+77VIoI/pPLXShQnEFCEE1eGI9vtg+ZXvcKKNp4FE64eiG1VpBWgqhQHlotYbvnC1RXb2+eTnn5WRdPXIGHTsjWilPs6GVCmepDFKp+HZTFpOl/8PngUjcomffcuOWcc8PtQkOLA26qoOBjXS3GgZhxEsOmZhh9bl6/Ml/7ckiLFAb8fuDQOKpr4MQrHZZZpRHGGCNI0Feqbq/cs5r729JbWCvcZ3ErSJRy5oHHBG0deU/f82M7Of3EP8FQcVCh6vJrnRbzp1i/TC//HrfRv3vRJ+uE33uayBgCSsnBkIt+sk6przKEIjYOjZ8tVDbsh46CqOeRpVVR1nfHcNqcs6wIAoIPGAQAd4DllxSeHFhRrIOEtbSzZK7PoIFK8XQ2LBjLjQL/MeRXv+cNfyPvvUSzg1g/TzRstHNqyaKc9pC5XWBXZhiOz5pHmr+7YPNMKUCLjwFHxIK2K4l4DygrWy6xgOxqnLlZdYsq1xKrIumCdwc+D5bKA5ogFM6IZzTgwvg/xh9Bp5ZsIR970aWCd5I2DZWlV5Fm4J5KNvP3L+cZBN4oD//eAH4P8XhzjHBQB3Yvl90GXwvmWzNy5iikOXMORS67FooHtcS8oyHrpTHFw4To0SxkHntvWeMW7Pj/57zseOkF3P3o66vZ3K1UDAp7XgVmwKqpS3nBrwZ1I1VrPMxy5StnklTWlod1rx2gmAFAKGgcAdICrTQh/WFYmPT2nrYkUiwhWLPRUHITY1BD5TbyXeatPth2hcMmnSqaLVVo4tGXzQlucL0f0+OfWW5pdlef2eeG830tErohoXIzGZoVLPkkT26qozCKHF2yJfIqGpYqDCBkjRFJ5M22Vw6/LPt7exQ2c2BkHIY0Dy/cgTVPRxJ1uWvFg3NE4NZ+6HY/TIKsiz2INkWxmX7nKGgeORcPNUf5vZxPmvIGoBRm333a5bWEMmxxuC1Fl2eexD1ox5uo9ERsHJfcDEVQfI+NgLq7igL//2VqMrw09G3iz1DjQpr5v//KxaNvvmoeOnaMDR89F3+5onIpjnK8NPY/BKhuaGFZFVXk+u8GqqDIc2dG2ruoaG1NxoD13e6q+ANgJoHEAQAfwB1jLgoUomKkT736BdFujsfh7/GGZ75PlA5ssFujhyOKB3ah4L4t1SuOgg4wDPuHpWTwVk9bz+VBKIt/mSYhVkefrD8nZ4MdfmkqlQFP45LYWjiwzPgytioa8UNOb+m95Png8rIop05xVUf61j8ap2Xs/jSgYzRerHjysIvgE7fR7LxsHvooDNRyZB5QbfgbDcUr8z03fd3jGAZH9cXh2cyj2IbZVkdZAkVZFjuHIBQ088R44WOVUNa940drjHORNdN6wEoVzhyam9t5eszdvVeTra83WRJGbuPJ+tH3sxVIciAZylnEQ1aoo/7f5miCmVdF9h86I7+1dmlN+c+fxm++7n57za7fQc191C/3W+++Pum2taH7VHp51Ek9xwJelx85tuvvO8/OAX4+5QnAnUvUZeyoOZBM3f/2PmXGg4dk4A2AngMYBAB3gWTTlDwCxp621h1S+OFsc+NkUBGccOFnVSF/l6lDQTcNp8wzpr15ukWC5YOfHAJ8uJfJvXuW2FTDtbHkOVllkEOnnpdU+8IwD/l5vf88zHLk4Z0VTHHgs1suyXng4MpFT8054W8e1KirzFp+FcGRhVeSovCPKF2m1a5L11PUpZXrxsuV50bTwtCraGEqbGt44cLUqKijei6wTh32oUh9GURyIjIPuFQdJQnQFOwY8FQdltnExXn9R4yJGODZRceZX3HDk/D7wzz+m4uCLh2XjwFt1NQusb47odR96YPL1b9x8n7nSr2r7HN44qJrIbwP/jJ961ar4nScqMgjawgeqrrss30DV7tk7jU4bB+xecMVKvMbVNEWDQp7HPwA7ATQOAOgAOe1rOO0sipZKOLJj0fCs6m+f3wdeNLC1KgrLOJCKg3hWRVoh19quqCiQr2gfLI+BImn+NJ7hyGFWRfHOQW372nFpdQyGZBxw6yTebGjD+WFxwXqu3xPvvYtVUUnWiPreu0wbF58HQnXmULgR012lGQfOVkUB56CV6kvbPlG+ecQnvbe3b3sM8KDFfi+hlfm+sG2LaRNDRHQFtyryDEcOVBysb43M/YV56Dk/3mIo/+o2DjwyDngxZGV+IBRHvsdgieIgQvNGNi7iZhwUZX5FzTioCEj3smnS+KKiOPAsVs4KR86cF+/zPRGzHbRQ3KtWuWWZp1VR/m9ff9mSOP8PO9sV8evxdZct5b4+ub7zMw64HRBXZPsqDvLH/5WicWW/DtAoWu9CcQBAOWgcANAB8+yBxTQcWQRihkx62t2o+UQHkZx29/SWFdPmHWccaI0brXBpXTDgxQI+YesZyigKpsp0r2fBIMSqKGbOSMi0teU+hGUc+DVOygrWRJq3s/2DSmnGgfJ5bIzsHxjKFAf8uuBi0VFyLeIhrdaFw5AGrq/iQH6e0/sw6CXCKsF64pg3Di5bmqMkScS12NOiRPvbl6/EmzItuhZq9wTLAQIi2Yzn6y6+DhkaW5alaSrznhbiKf8yeMFueb4v9oP/jiVlGQexwqFz279wHHhaZk4jByk6sCriigPWPPRqmmhoigOeBbMT0c7tI2f8ff0z+HV+0Eto3/Jc6e9Ywo/B1YUBXcNC2r1zDviaTDQOdoHigF+PuG2db8YBy1tiDUyiOAHJfG2WgcYBAOWgcQBAB3gW7cKsivikp6HigC0OF+d6wk+VFxItJ622hsyeoEBx4PXAHhSOrHwm1gWDoim3DNdw5Iptq9s3PAZDrIo87cLCgmE11YlR46BB48Ty/S8rFBFpwagxwpGLi1VE9udfmqalypsY085lyg/ZOLWe9i5u3GQMeo7NO6UIOL0PSZKIiWNvxcG+Cz7eXIHn+bCqFUOlTcnYbcpPHgcXgmEjWJZV5R15W5ZtDMeiEcEn/T2zZjL4MMfqwkAoH2IGYnIF2jQxw5G7yjjI1DZdWhXx5mEsxcF4nKoZB7tBcaBN/D98bC3a9jUVsrwOxAtHXlno0zV78kXrQ6e8Gwf5fbheKA62zG1jixiNU3rXZx+jt9z2UFTLKq44uHYfbxxEVBwwxYv39jOKGwc7/zoEQBvkyA8AwB3XYNagcGTHjIOK8CkiokVuVWRYONzg3uZFGQdOhbMmGQfb27d9cONFS/6Q6nkMymBmLePA7xgU3tZK4ZwX022tkvLHQEjOCJFd0UQoDgIyDixVR2Xe+kSKTYmHVVGJ8ipG4+78lvSWXynLODDe/tZIFi3zk75+GSNEYaobvg+mzTvlfObNi4W5Xu56bW0XxacXswBQGQzs97DKz61+L5k0MHK/tzUSU+gWFCl/tKwT6+tAlfqwqIGoNTWaoBVD+XsswpFdMg5YwXBBFgzPb41pOBoLCzsLisKJieKEQxc1LmIpDkTBtCDjwLN4X5lxEElx8OjJdbWAHrNw2hVaUfJAxMYBPwaW5wfiehRTcbCyMBDT7ofP+GYccCsmnnGwORzT+S27e0AZv/zuz9Pv33qAiIj+8LaH6D0/94+ppzyrWMOvR7xxEDPj4PJVRXHQaeMAigMAyoDioCWPPvoo/eVf/iW9/OUvpxe84AV0xRVXUJIkk//dcsstnezXqVOn6Prrr8/ty4/92I91si9A4lk0kgWz6mnvcVocFlSXoiC4aXwVB3zaXF+IeYXz8oc/PeNAsUoxLhjwIkxMiwT+WhYDJv7HqZ1VSYhdlWhcGL7+kGlrT6uikIwDV6uikjBMIv9g1NE4FUXo/JSrvCZYF6y0qanpYql3OLJ2TV0sCSW1blzy16Md7zEVB/P9HiVJ/nPn56X1NVhYFV2whVia81fcZPBG9tJcP8q0fwZfj2RNO74GILK3KODXYX4MatdlS8syrQBSGY4cIeNAKxgS6RPRFvBzscw2LkbGQXYd5MegX8ZBmFXR5mhsateWsa1+K8848AqG5mj5BkS7pHGgTPMfOHYu2vb5M8HyQp9W2DHomXHAr++rWuPA0apoNE7F/fD6y5bF78XIOVjfHE2aBkREXzh0hu5+7JT7donk2vRJ3KrIsXHAhzNWFwZisCiG+qhLxcHB42v03b/9Ufrq//Qeeuk7Phcl0wEAK6A4aMidd95J3/Vd30WHDh3qeldUXvrSl9Jjjz3W9W6AArr2V9cmbrdGY+r32k9ZFD0kTbM0n9++pbdrcMYBe2i0+gyk4qCbjAP+ACDDkf2sSkL8zfVjMCWlntR6+5pVEf+eaziysv1+L6F+L8kV+TeHNp9BWMaB3+cvFQfcqogrDnwLhkT5BmqSJDQ/6OV+z94qrHza2Ltgpk2vTjfw3BsHQZZ5jqqXgKwfaVUSx6qIW7f5WhVJBVyMaf+MIgVkr5fQ0lw/d7+0fh+q7kNq1olhAVU7nvhxGMPjn68FVpSMg+3fG6pqlLYUFe6J4jROihoX8TIOdOtGrYF3fjimVWPVh2aZ1VXGgZZvQLRbrIrka3woYuNAKI/m+9I20rFwym2QVhTLtCOn/RQH2nPmtXsXKUkopw49tb5FT9q3JH7XkjseOi6+9+ATZ+mbnnyZ63bH41TcZ7ni4HTEcOSFQY9WFwZ0futis8azeZXRpeLgdR96kO56dLtJ9Cd3HKT/7Ruupec942r37QJgARQHDTl16tTMNg1uvfVWesMb3tD1boASPH1dg6adlSl8qwdWsThUHo6k4sDSJiasceA1cc0nKrTGgVbItXxgHiuTNSIc2bFwGFI0VG0izBQH1YVzadVkWbSsbhwQ+R2DXYdDC8UBe/3cusp6sa4VQYRNjbO3Nn/46SX5ffDefl3FgYdV0jQhOR+e1yDNso/vk3Xx7BSbXNxXYFW0OfSZNCaSDYHFub467b+25VMsKMtc8rYsE5Z1IVZFjlk7muolhse/UBwoBTsiP2/pspD2OFkv+vZjKA62RmPxmpYLrIqIfBp4mvKFWxXFUhzcV9A42A3hyNpne/TsJp2JpLbQlUdccdCxVZGj4kCzBNyzOKC9i/lmaYyA5I8+cFR8L0bBXGte8SZJzHDkxTktZ8O/iXh6Xd+Gpgqy5o9ufzj39SvedY/7NgGwAo0DA6677jr6nu/5HvqlX/ol+r3f+71O92Vzc5Ne/OIXU5qmdNVVV9E3fuM3dro/QMczmDWkaMktIiz3QVsccngx3dOqqKho6+XxL/105cNhNvE8DQ91boM2WSMUB44TzyKUMjAc2GofOi9aKgUjDa/ifUjGAf+eZeGyMhx5znfiWp/0ZRkfzhP/Qnk1P8gVDXkh23raXSuClXmLe4cj6+cg2wdDyXZZwTpDWBUZF8+EVdGFxoGW+eJlV6RZFWXT/rntR1YcEPmHRFeFIw96CfGequd9ULsOd6U46CvHgF/joNi60FP5d3H7BeHIERQHWiEqK5RpjQPLtfBkH5TzSoQjx1IcFFoV7QbFgf4ePxQp54AfB5ryyMuujEg+G64u9Onqvfnj0LNxoL225YX+xEIwI0bj4GMPHBPfO3rWN9+BSL/Gc8XB+a2xy3WYSM+74cdgt+HI8TMODh6Pl3MCQFtgVdSQpz3tafTOd76TbrzxRrr22msn3z9w4EB3O0VEr3zlK+nee+8lIqJXvepVnTcygA5/gHUNR1amC4usiizgUx3aZBuXaFs+LPHJ8dhF25Bw5Gy/clYplt7KFTYp29uPdwyqGQOOdk2NMg4in4NEfs0rmXFQrbiwLByXFYqIlElj42KJVgDmRSIxbW4eTl6RMdKXU+eW8M9grp/kjgPNIiRNUzER3YTxOBXNK035xgupljkjwqpIKdLFzjjIwpE1Fd765khMPlogGgcXtr08n7cJcrMqEsX7i699mWc9OFuW8XM+a+BPnyuWxwC33tLuQzEm7rVJY6Lta9L0MeA1bVzWSI6iOCi4H8VQHGhrsaxhpl0Tre+FRLIQlyRE+1mxdGuU0micqmsFK7ZGY3rwibPqz86c3zK7/8wqRZaMB46do2+4fp/79vmz2fL8YBLUXfQ7lmgh4VxxcPr8kNY3Ry7hxPz6NuglNN/v0WVLc/TQ1Pe5UtCak2ubap7BE87B0ET6NZ43Doi2cw72r8jg4rZoQfWiedVl48BJeVkGIg7ApQQUBw25/vrr6bu/+7tzTYOu+cIXvkCvfOUriYjouc99Lr3oRS/qeI9AEXHDkcOsiqz2gVsVaX7KfJ8sJ71CMw68LAL4Q7I2VUakHQN2qwdtyo1/Dp7HYNOMA6t9aObxHzfjQPu+VfF+OOZWRdVF26xwbEGV4kCGI9su1rUCED/e3BUH/CF9oeL8M3z/iRR7EFYk0xQ//LxpitYAC2ne8eO2DbwAHJJxsGlcOOSTi/smigMlGDhy0dY7oDxDhCNPfQ58H+ytiqrXAp6Fa7n9asWBpWVeRpHH/mokm5Kyc5GflzHCkRcKFAfWjUMi/d6WKe56vUQMlsSwKlqZH6hKWO+cgy8fPVe4xtkapW4ZE7NC14oDPeOgX/o7pttXhsp444DIT3XA73HL831KkoT2LecL5N6Kg48/eIy0pV6MxgHPElkY9EQTUfs9K8R6ZNCnPZ1YFRU0DiJYFQFwKYPGwQ4hTVP6iZ/4CdrY2KD5+Xl63ete1/UugRK6DkfWHqCtikYh4cj8ocVyykpOu+sTTF5F25BwZG2/LCf++QKZ+6tvbz9e4TykaGi5DyGFe8/GTXjGAbersso4qN84IZJKhSakaSpef1U4srdV0Xy/Rz32HnhPuopiHc8YcfZX1ya7pvE8/7QCXIhdWOycEe/CIT+u9yxuHwPz/Z6Y7PUq3PNCZNbIFpOmTqGYZZlL3teBoMaBaB7FHWKQAwwOVjXKpDER0epi/hiIViwqDUe2b5wUKw74AIvHtL8c5BlMvWY+WOKhONAKxlrmi3fh/v7DutogI5bXf1cUNYUOHI0TkCysihYG6rS35QBD/m/r4chcle7VOODqn+y1X8YC4U86521o+QZEcayK+GewujDYti9kjwjRbOtgVUREPvceADxA42CH8MY3vpE+8pGPEBHRS17yEnrGM57R8R6BMuLapGgZB57hyHxxJgvn/GHJNOMgYNqdyM+qh9ukFFoViYwDy8ZBub86kW84Mm/CaJ9Bv5eI4pldOHJIwSZeMGtoOLKbVZE26aoWjts/MGrFV34OcI936ynLENVV7IyDKsWP9T5UKQ607VvlrGivQzveuBLGMmcjTHHg2zgoCoVNksTdrqvo7y4VKA68rIrKGjiycRDXqohIOwYs1yLVWTOeeVcZfE2WFep486gTqyJxHbY/DoszDrhVkUfGQbl1p2gcRFAcrC7oigPv4tXxc+WF0dM7vHFQdH4dOBarcZDf/pKScTAcp6YDDBmbw7H4u9m2Rc6B0+Q9f/+z+0/sjINbCxoHT3SQcbC6uP1s6FmTmGZDsfLlDexOrYqcBigyita4j5xYd90uAFagcbADOHToEL30pS8lIqKv+qqvope97GUd7xGowteqqNpffXuhwIqWRvugTbVwvMKRNW/t4IwDo9cfrjjw8bcnkp+BZo3hGY4cUrQj8pv6bmJVZGmTIgpWXYcjK69fK2JtGbwHar7AILLigO2DNl3pHUqqTdfltu9o1UUkz8EQxYFX446oQHHg+BmE5Izw71lbdWiy/AxhERFpwm8642CaaOHIOasirnqwDkeuXgt4WuXwIkFIA9ujaKdZdBDJIraXTcn5kmuRd+OkTAHHr4keE/di2p8N0ixGaCAKq6KFgch3IPJpnExzpuIad2p9ZwckF13fDnQZjqw8G3jYtWj3t+z6c82evF3RES+rooI1GVcceGYcPHJirfDzPnpm003tkSGbJxdVkNNYPg9No4Uj8/vQ2QhB6V0pDtYKru8HTyAgGVwaoHGwA/jZn/1ZOnnyJBERveY1r6HFRekZCGYLGYpq5G0+Gotp42CbFC/FwbzWOPB5YNMKn4UZB4rHuAVV/u4ZnhP/IXZRXscgUZi3s/Z9q6IBbwJpQczSIsLu9fNjqbBx4lS0Csk4UK1qDLbPHwyI5Pkupq2drYpCAuKtC3badF9un5RmhmXhpuo6pJ2TXlZhRAWNg57P+U9U7q1f9D2t6dVuH4oLpsvOqpuMouPAe9o/o1RxMOfbvBD3gaCMAcPmlQiGrs5YGI1TE8u4aYosOmJYRIzHqbge5K2KfBsnZQo478Yhka7+nKYLxcHyfJ/m+gnxHGJvxUFVc3SnWxUVXWOfOLMRZcparkkGtKw8G2iB3m3Rri2ZGv0arjiIZFWU3QNjZhzcceBE4c/Wt0auGRNE8j3Icm5E5pnh81DGaJyKNd7iXE9cE6NkHBRca7wVB0Xn+cHjaByASwM0Di5x/vqv/5re8Y53EBHRD/zAD9ALXvCCjvcIhODla6s9dBUVLeXEdbyMAy+rIq1gpRWNiXwK92maNg5Htiwa8mlnbR88VS+hE/fcX9qscBkwaTobVkU+05ZBGQdKM8HiGqCdyyIcmRcMt3zDkbuwKqq6DsRXHPDGgWPGiKY4iB2OzFUnka2KtHvBQoniIHbGgfe0P5FeBM9lHCz4Fk1FAzvyMSCuwwGNCyJ79ROftJ0oDhb9Jz2r1qT8/bdunJQp4HhD27pxSKRZd1Y0DiJkHKwubNuTcNWBd+Og6vg6HWHSuEvKisIx7IqECnK+L5q32u+ZbFspyGYFYx6QfMTJqojf47JJ973sOuhpmXXsXLmawTsgueh65LkWy9AaswuDvrwPOTcOxuO0OBzZu3FTcG6hcQAuFWRFD1wynD17lv7Df/gPRES0d+9eevWrX+26vUceeaTW7z/++ONOe3Lp4yXP1h+S4lr1aItTsU9OjQPtfSy0iREZA+0/g83RmPgzbyeKA/Z+ajkTnoXzkIINkZIz4TZxX21V5BpQXmhV5PMZhGQczA3k9yzef009xK9BfNraPRxZaxz0/QqGRJplWX57auPANBy5vHni2bjQAup5xgqRLKRaZSwQhal+PCeOt0apci+I5++fUXQcek/7E+nH0/R77l005ceAHo7sdx1oEo5MtL3fReuGJhQpDoRVkUPBpqqRPN+Xr3NrNKZ+z+b1lyngoigOCpo2GVyJ5lG8F4qDC5/74lwvd855WxXxoGhOUTFvp1DWGH3o2Bp9/XX7om5/eWFAvd523s709d9DcaCpXnoX1uW8mealviu06XF4Fiyi6vw+enaD/t6VK27bL7JrEo2DCCH1RNvK21X2fOqtvjm7ORRrswx3q6KCc+vgcWQcgEsDNA4uYf7Tf/pPdPDgQSIi+pVf+RV60pOe5Lq9G264wfXv7ya8Cob6dFeRx76PRFzzU+VoBYM0TdXiUh1Ub+2iaXeH168tjIoUB1J1Ytg4KFggT8Mf2E0n7gMsGoj87KKaWBW5vv7IdmFbbFWsqQs0+yKL7WsFa35eu1sViYyDasWN9ZSv8JZn+9DrbefMTDc7Y+aM9HoJDXpJTmViFhAfqjjix7+j4kANxp3zuwbrBcuponmEiX+ibsORtULs9Ofgrfopy1eIsQ+icaBcc/WQclvlS1HGQQyLCG1NND3prjWwN4Z2jZOyxkWMjIOi957vS0accOQL4dCDPhFdLNa7Kw42yhsDZyIrDh49uU6PHF+jf/AV+wvXaJaUFeS/fDSC4oBb9Uxs6wa549Qj44A3jaafCz3t4qaR+Xvbr1+sw538/bf3ofwYj604WJ3PGgf+WTtF1+LVhXzGhLfi4FSJFZW3VVHRa0PGAbhUQOPgEuUTn/gEveY1ryEiohtvvHGiPACXBl4Pq6riQPHSJvKzSQlpHPAHtnG6vf155SGyDrpVUZG/vn3hUF8YhfnbWxYuRSCfGo7sM+2v/a2ihzKvcGR+LId4S1tmPHDrsSLVjwjmNFMc5P9OX1VcyO9ZWBVVWeQQyaKlveKAvf8Bk8beVkXa+zDf79HWyGfik78H2vbn+j0aji/+nlnGSGDjbODavCu2Cbr4Pb9pc+1ePP0ZcCWeV+NAWGYVhSM7FA11xUFx48C6eRcy8c+PC9vGAWvgKmsRz5Byou1jmivQsoYBVyJ6TBpra6LpNam3ZVuZAi6G4kBeC/PbFE30CFZF2SBJjMZJbj+qFAcRMw4+8IXD9B/+8NN0fmtMT79mld75M99uqvLRKGsKeReMiZQm1oXzf2WhT0fPXvy+R+FWNq+mGgeOQ1Rl+5CdB1yR7DFtn7G+Wf7ajp71PQ6Kns/5WsxHcaA8Hw/64j7k3jgoUTa5Kw4KroEPw6oIXCKgcXAJMhwO6d/9u39H4/GY+v0+/c7v/A71lEkmazJ1QyiPP/44ffM3f7PT3lzaeAVzqhN+EW1SxuNUPKRoNjnaAv38cNR66kd7HwvDkR0WqyH+7p7bz1gXIWAh4cgdKA6ccib4xJDmLc2LOJZTnrJxEnYMWEmkQ7y1k8Rn4r3KIoeog3BkpXnnef4RBTYOBr3c9dKzYKZ9DnP9hKafobzCkYsVN34P7GEZB7xw6GcVxfdBNs+crIo29eNQnoP229fez5ziwDmgXBTuAxrItnZV3DKvOmOByNYqQyuEZAXDPREyDrjyJknKm0dEtg2kMgUcf++3Rtv5ClqjvSmyeZX/21EyDgqKhTEaJ9PwgiBXvMUKR37izAb93Ns+M7lH3nf4LH3gC0fou77RV7VfZsESw6apKKibK4887kXSW3/Krsx5iCNDKA7mdcXB0EnxQFR9fns3kKRt3YVw5J6fdW0GX5P2ku3robTM870OlZ1ra5s27gdFFDXnz5wf0qm1Ldq3PKf+3IsHjpylX/u7L9BwlNIv3PQ19HXX7Y26fXDpgcbBJciv/dqv0V133UVERD/90z9Nz3zmM6Ns98lPfnKU7ewGvCxK+IP6XD+Z+EjG2AdtUcQXpUS6fc/5zRHtXWx30+SvIUl0f3sin2lH7fWHT5vbFQtCmjcxw5ELmzcOn8FonFLK3soQb2nXjINAqyI+Jd0UkXFQcA4MevmJd49wZK1gzouWm6MxDUdjMfXUlCqbHqL4VkXa+8CtIiwLNyGKA+ntG7tx0O05KBUHfu8/Uf4ziBaOXGhV5G+VpDYO+sVFY2uPdS1rQ+yP432QX0/DMw7sPgutWHlRceBvVaQ18KaLMurrj2TZpl0TN4YjddCiKVVDFHwfXDIORChsvHDoafjx9aTLFnPe3qfX41gVveJd94h9iTHxW1Y09lZbjMapWJNMLMuE8ihC82rqHPNS3op94ANVBf7+3OrTkqrz29+qSLeM8l4PE8km8uJcn5IkUcORx+O0sHbRljLFwWic0uZoXGjx3JaypsjBE2u0b9k352SaNE3p5952J33+8dNERPT5x0/TrS/9Drf3HewM/MfUgSnHjx+nX/qlXyIiouuuu45++Zd/ueM9Ak1wsyoK9JYm8rEqUh9SVasipXFg8NDCJ/Xm+tJfPUOGE1sUTXmxsHj7wlPSMeOAT7dub99voRhqVcItZCzeg9CAbNeMg8aFUyOrmICMg+3t208ZnRdWRXLbvGhJZGuVsiGmTHWboGmsH1arwpGJfIuWIc0T2bgyahwEWMRo37c6/ok0f/vqxoll4YzfC+b6Sa6BxxvqXoGQonFQZFUUIRy530tyzUF5D/a1KgppHvk20OVaoN9LRGN301lxkDWP+NrMY9JTTvznj7vYIfHTa0/tmmht11Nll+Vpl5ZRZNHCs3+0XBbP/XjSvqXc1zGsiv7unkP07s89Lr5/ssT33ILN4bj0/ubdNNFUBFnhnDfK+PODBaVWRY734WlEMPCFeyBX5HoUzTP4fZ5f+72tivhnO7EqEooDf6ui7FqsDRd6WCdmlDUOiHwyPiZ/u0TNczCyXdHB4+uTpgER0eOnztOXpj3LAFBA4+AS4/Tp07S+vj2h8dhjj9HevXspSZLC/33oQx+a/Ns/+IM/yP3slltu6ehVAP7wME7llHATRLGkxLPTo2ioTapo0+7aA5uFRDvUIofIp2jGF4VFwchEvhMeUpIrF2Yxi3bFigMeyNV+H7RgM82qx6NxlBF6HPJMD6uiVUjGAVGcnA9VcaB8z7Jw2kRxYFmsI1K85QMm/j0LZtq9wOsaIBpnBce/5wO7yLlQGjeuGQd8uo4VTHkz18NfnmhbyZfbbqFVkX84Mj8OvO3CQq7DnqqH4TjwPugYTCksQub7k4lCaRHhYVVU3kjOQtqnsbVsK2kcFCgOLNGGWcq+9ijYFRVtxfXPW3HArLCu27eY+9o7HHk4GtP//Vf3qD87ubbpuu0q+5+qYmZbtOv78lyB4sDhOlAWjtyZ4qAgGNg144Bdj77i8uXc19HDkQsCovm9ywJ+fVm88Llzyzwin2Mwo6pB6dm0KFP1xc45eOCJM+J73jk34NIHjQMAOsArEE4US0oyAzyKhvxmP+gl6mvt9RKxbxYS7ZAJv6Kfmfi7B9iDXNy+X9FEhKApigPPaWcRThwxHFmzW4ltVSSnneNatYRkHOjbNwhH5oUaZdJbU8C4Ng60aX9nxUFoOHJuHxwVB4uq4sCncB96/PPXb5pxENC84IVDy6KhyJhgx2AsqyJZuL1gVcRe+9qW/YO6HGTIvwfe3tYhDeyY98Gi67Cn8oIXLJenCna8cXB2c0gp9/lrSWjWyzSmDdSSxoV2XbIungvFARsWkMefh1URL5hmVkX+NkkZaZrS2U1uVcQUB87F87sfO02HTp9Xf+atOKi6vnurLbShrizrRATER2herZQoDqJlHEz8/f1tejJ44+AG1jg4eta3gSUyDuZ1uyaPz6BQcaC4Eng2EasVB37bLrsOHDwRt3HwhUOyceAdTA0ufZBxcInR7/fpiiuuCP79U6dO0XC4fSFYWFig1dXVyc/m5uKGsICLaIXUzdGYlqidr16ot7r2Mw+ropWFQaFVz+JcP7e/Fg8toRY52s8sFouiaNqZ4iAkHNlv2jd04tijcK4dx1rByHPauWuPd+6trYVyEinvgUnzsrpovzDoUS/ZVlplWBZOpeIgYNrePBy52rLJ1aqokeLAx6qo6Pjnx9/maGwWTFdVtCbytampsmjh12Q3qyKuOJjXH9Z9FAfl9wFvX+UqmxgirWjmaNlXqDzzOw65/dDKVMOKNw7SdPs6rBVymiKKRQWWYdPXf8/rYKVVkXHhvkr1EqNgx4+B7HPn61MPm6SM7dDR/Peu440D5+J5margRMeKA++mCd/+9FCXp21qhlS9TIUj9+Mch7womt2D+TrEIuurCH49vGF//hx44syGbzhvgfJDqC4c3gN+bc3WpHP9Hs0PernjzlNxUNk4cFqLEZW/rum8lxh8UWkceL7vYGeAxsElxg033EBHjx4N/v3nPve5E7uiH/zBH6Q3velNTnsG6qBNwls8NIdOem7vg4PiQEwzFBfOF+d6dGrqPmlhVRRSKCj6mUc4cmnjIKLiICQc2WqxnqZpcOHQIxxZ+xva+RbTqil2xkFoOLKY+DaQJ1cVTImIkiSh5flB7kFu3XDiOUR55TnlStT9pG0Tuyara0DT459o+9gtmsyuQ0jzyNOqqKpxxBUHHoGUaZqWhCPHzzgQigPHe+BonBKvfWjHoTwH7N6H0PWIp/qpbIhAaxCc2xiaNg6EPYXSwPNU/3HFwfQ5nyTbytfp895dcVDZPPOf9l4usCryVBxoBanYVkVl1zhvq6Cq6+u5zRENR+NcBozn9pfm+5PidIxgXGGZVqo48DkOpb+/btMzGqduxXveoOdWRZujMZ1eH9K+ZZ/BzqLPgR93Q49w5JJ7wZ6FAR0bXmzeeU6+n6rIE+mscRBZcaA1DqA4AFXAqgiADlAVBx7TvkqxJEOEIRlsv2iaQYNbJZiEI9fIONAe2NrK9EOmjIu2b1ks4A0czV/d62Fdn/jXF+A+4chhVkWexZqNppOmZoqD/N/h5/rk+2Li2ycgXMOzcBkWDOw7ZRfSOPCceOcFME1x4GWREprxoYV2WxXOhL++GozrN+koMg7muOKAZwzYP7Bpr6cw42BrZG5TU3UceN4DtWNZtavytCoaBlrG8bWIpeKgZIhAGyg4Y1w4kE3cyJZtFddhb7sefj0TjQPn+9BwNBbXgWzam9+bPcORtePqWtY4WNscudrElBXtvBUHIcHjno0ToQafaiB6Nu4m29/kioOSxoHD9sfjVHjXX5y291uHcKqsioiInnAKSN4ajcX1JbsWyOehCOHIg+l7EbPN61Rx4HgeljznHD6l26h5sDkc04NPyCBkNA5AFWgczBC33HJLLrwY6oCdi75QsVcclFn1eEx7l/lYcqRMuv1DC39AqqM4IGq/WKwTjuwpUef7oX0Ofo0DpWATOHFs8cCgSWy1wjn3Gt66YJPSljRNg2xSiBS7KKtwZHYc9wMzDiymjEIK5kTy3DDNOAgomnsG8mmT3ppFh+vEe4DqwsuuKTQcXSukauHmFvugvX5+XvIiYxtExgHbPrcq8phy086prFi4PCdtaqyD8WTzJn8OeN4DtXOJX/OJfM9BfiyHWvaZKg4K7DmItov4XI1mXTivyvrY3o/uLMM8P38iTXFQkXFgXDTVClXZepDfkzzDkfmzwXy/R1euLojf8yyel11jvTMOuKLyipV58TueVk38XrCcswryL9yXhSNrjUPzrJWhtMrKmifa84FXA4tfjy5bmhPhwF4ByWtK8+qi4oAHRMdVHMhBQr8m5qxaFZ3bHEWzCvrS0bNqvYMH2Htzan2LXvk399L//08+Q3c9cirqtkEz0DhowU033USLi4u5/33N13xN5e/cdNNNHe0xmBW0B0gTj/0a4cgeEwZSBllmVWRfOAwN5SXSp+DbLpjrhCN7yoP5dFPMcGTt74RO3Hs0z+b6iSo55sWaNJUWP03QFmOxC0Zb7HVok93a9i3ef3kO6Nv2LNw3sioyDkXlh5IWCO1lFUSkNE+0xoGTTUYbqyKr5kWQVVPf7/2vaqDFCEfW7P8W53WrIiI5FdqWqubNLCgOPM/BWQhHLlMcEPkW7YnCGsmejZMqBZy34qDqWuidcaAVorLmEW/icFsnS3hBanVxQHsXpR3LGcfiedn1bWM4dsuZIZJr8stX5sV572mXxK8D0/cfT9vOyfZLhsr4cThO7T32NcVH9h5o65Chl+KAfQ6L8326ijXQjjopDng4OdFU4yBCQHTZvSBWQDZRdZ5IV4oDIr/PnqPZFBHFVxy84p330Os/9CX68zsfpR94w8eheLgEQOOgBZubm7SxsZH73+ZmXu64tbVV+Ttg99HrJWLKweKBtU44sghDMlgoCG99JZQ3Q8ikXTIOij0qtfembdHqfA3FgdeUz3gsp531cGSfh4VWigMHq6JQX+ntf9v+PdCUM7HDkUMzDvj5YfH6RaGmwC5NFOwMpx3DrIr8HpTUgq0Wjuw6cR2QsaCEE1sQGlKvXZ+tCgYh90L+mQzHqdmkXVUTWVp1Dc2nLLXjsMiqiMg+ILnqM/A8/lXLuoDmkeU+8GOp6F7E98s076hEcUDkP3EfMkzhGhJfYZUUX3FQ3jyzLthpRbAse4zfmz2nfLWhosW5nrgHnK7wH2+DNnE9zcl1v2dzOfE/oL1L+XPR9bWXZJ3EyBgoD0eW10XrwrF6HhRM2xPZKR+nKcocunJPvnHgpThQm4gXrsfzQoHtH45c2jhwtCwrC0kn8lUc8Psx54jTZ8/5wgw0Ds6c36K/uPPRyddrmyP6xJePRds+aAYaBwB0hMeUR51wZB6G1LVVkcW0U51wZA/VhwjiK8k4kL7GNgs1rVgUpDgwsupRLSIKCyb2i1VeeCzy99f2yWKxqiouQsOhjY4BXrAq9NZ2uAbwz79IdeOrOODXwcjFKq1xEHkfqqxyiPyaJyGNG237lvsg74WaVZT8ntVxWBUKy5vq49S+aMmLVYNeMnnPtaa29QNzteIgf10aG6m+iPRraYjiwLN5UXQfFFk/hkUboThgawFPxQWR1kgO+Ax2kOKgKuPAU21BJC1iFga9ydpf2oU6Kg5E4XiOkiShPUx10JXigIjoxLl4216e6wvFhadVkRzqiqs4EI2jnGWaf+OAKw56ycXtaopcD8XB5mgslahzfbqKNw68FAfsM1icu3gtiKE4KFsTiSEmp2vReJwKZQ8Pae/KqojIr2nEKVQcRLQq+sj9R8X3Dp2K8/pBc4qreqCSW265xfTvPfe5zzWfOLPeR2DHXD+h6fuXTThydRBdhodVEV8cl1kVeXic18p4cCgcCxlqieKAFwt4oG5TtIejkIwDou0HBl7MqUsdxYFLOHKwTYqPr6l2DC30C6bunSa+QxUHvHlo8bAkPaXDbKos/eX539IaeDHtMYjCrIo2R5YB0fUtQmKHI6uTfk7hyGrGQUHBYlnaT9dGZkyUWxURbT+wlt0zau+DMt2Y0esltDjXyx2r1hL9qgbSvHJd3ByO1XOlLtq5pN3z+Odia5fEi8ZF4ch+AblVwxwiINy4cC7OQ/Va7Fc0qrJKmrWMA+uCGZ9wXS2xiPFUHBRNnO9dHNDxcxcngF2L5x0qDkThfqFPe5ZY48DRqqhMeSSVp7bHYJqmpdchbY1u3UDj97aV+cHEwlRfhzhY9Wzq60JhVRQp42D6WiDzzvzDkafvPTz/yEtxcPr8lmjeXL9/iR6bCibu0qqo68aBtV1lGe+797D4nle2CLADigMAOoLfKE2mfbfqFM7tF4t8qqPcqogrDgwaB4EFK6KCxkFbq6KSQo3YPp+2N3pg1BowWpEqZuE8dOrfZOK/oT0Ekc1iuZbiwCugOjDjwKNxERqO7FmwC1FeeRZsNNWP7rHP3gPHcNgwxYFPxkHhOahO+rV/D8bjVLwWvXEgj02rwmGV4mBZaeZaP7CKgO553rzI74O3VRF/v9WCkVnWjmyeag1UOXFv9x7w6zmf6pzsg6NtmiiYicaB78R7iHWdZ9FIrAnZ642eccCtitwVB6xgPDXMI8OR/RoHZwoKx1xx4GnXU1UU8wxI5ufh0vyA9rJQXM+mSVnGgbe//PktOWm/WtU4sFYclIRDqxkHxhkLREUWlt0pDlYW4jWPiCoyDpyzXjJOKOf4dZct5b7W8jCs4NeBr7h8Off1kTPnyZvT57fo0ZPr6s88w+mnGY1TuuWLT4jve4fUg/agcQBAR3gU7fjfKLMqkhMGsa2K7D3OuT1BmVWRXjhvt1jkVkVFwbBEStHQSnFQIsnNbd9psc4/g/lBTw0nJtLCWdtvnxf/C216lCKORzgz0exmHHjIk6sKphlxMw40f39PxYEMiNbOAT7xaVW0TtO0dLorg6uLvALSi47/nlLM9bgPEhVYFSnHptVxWPX+a01l68I9L9rybfKvrSX6VaoP7R7slbNRNO3vWTTj9yKtWU3kG5DL1wN8iMDzOkwU1kj2ylva/lvlhXtvxUFV48K7aCvyruaKFQeeVkVScbC9H8LnP6JdD8ezaCWHqvq0VygOPDMOShoHkZtXRExxoDynWR+LXHGxUqK4ILJ5Hhb7oDSulub6dOVqXuLoFZArns/nixUHfPjIgjLbONHAdmsc5FVFC4MeXb6Sf/+9QtI3hiNxb3vKlSu5r2MoDu4rUBsQVVspWfGZgydzSrMMz4B4YAMaBwB0hMcDQz3Fgf3DmvDxLLEc4A+QFjdrUSwoef1JkphP+vHXUKo4cJrwKJPkTuOR8UAkLSLKVB8eUyahvtJeRSv+wFM06UqkBSO2PwfTNBWNg8LmCdu+iVWRsKboIuOg2qbGs2AjJr0L3gOvKavhOBUTfloDx8uuqZ5lXP7YtDgGteKntg96wcLmobGqYNrvJeK4rJKx10ULYpyG35/XrG1qeM7GXHnRlMizcVBgl+d4HZAKyND7gKPiIHY4ckAjmTcwLfeBK0+qFAfWU/dVx6F3xoFooueKdRHDkc8XNA6Ez7+j4qCiKMaLipaIZ4P52BkHXHlSUjQ2Pga1931acTDo94gvkWMqDpLEZ4CBw+/H/V5Cc/1EKg68wpE39XOQSD4jeDROyuwzRQPbybKGByPvX553XwdN/q6iZHjKFXnFQYzGQVEwMlG8cOQPfEHaFBH52sUBG9A4AKAjPBZrUnEQXri2WCjxqZrVWuHIca2KiOzfgxBf8QyvwiWfLCryi9aKNhYP7FUP6tN4KA5Cj4F+LyHeT/E5B+M2TjSJdbFVlH3zKtSqyDOUs6pgSRRZcVBwHfa6BmjvpdbAEY1To+2LKd+ya4CH6kW5l2jnYe/Cg3v+3/p8Btr2xQOrsVXReZ65I6yKePPedvtV12Jfq6Kw+4DndaipVZGp4qCkYEakWMYZWjURha2JPF//cFyuPPHPOChXwXqqLYjKzwPexNGyeazgIc2rE6sipjjw9PmvaMx6TruK/Lf5Ae1jigPP7ZeGIwvbRttjkBcje4k89jytK4lk84Lb9PE1cgyP/+W5PiVJQpexUCWv46DMtsy7eUQkry/T195oVkUsAP2y5TlxLHB1ihVaUf4pV+QVB0ciNA4eOHK28GeeNk3TvP/eI+r3Pa//wAY0DgDoCI8bdcikref261gVxQlHLg/6lQtmW8VB0bQ1kZ+vcZWncYYejmxfOC+yiCBSwpENFuuhVkVJkshzwOCBqU1At8XDElcbEBUXrGTR1mDam9t1FQVji4JVXKsiT3sQYRFT0LzzUl1ok6NqxoHTpHOtrBkH1Y3eOAk7DmMpDojkPdDaJkYqDvLvAT8uza2KRAMvvz0vuziiaouYyfc9i9aBVkUyJN1QcVBiT6Ft27pwLo6BkLwZ04Dq8uaNt10PX1PyNSn/ejSWisE21FEcWOZ7cM5u5AtCKwWKA0+PbV68f9K+xdzXJxTrDCv4s8HyQl/aNLk2DmTGQgZXQnkrDlYWpApaWqbZHotl0/ZEinXv2PY9ICJaZ+HIWSOf34M8mhZEcuK9POPAoXFSQ3EQy6ro8hVFceBkVaT93a/sQHGgWQRlnHFUPWU8cmKtUPWAjIPZB40DADpi9qyKPBoHZVZFbNopok1N0c/bPrDzhVGZVZHXAzufGCjaB20K3WKxKB+Uy4qG9h7rdY4Bj6nz0ElXIp+Jf01x0C+0KvJXHIRaFVkVLcbjNEj1wY/Lcao3XZog/e3jTjtrf0crXHuFI4dM22fw65BNA12xKgq0qrH6DEIsWvi5YV24q7LM4kXk2BkHmuLDqmBQNemdwT+XoWHhVtyLCpVffoXzslBUIv+Je3kMxG3iitwr9nq97XrkIAVXHMj3w/LznxXFAV+XZkoDEY7sadfD9oGHop6MqDhYntOsijxtmkoUB33fa0BV0Z7It3lKJD97fh3kA0YehfMi60D+2ofjlNLUfvt84n116v7vkXfGKVsTxVA8EMnC9P7leWUd5HMealbO1+zNNy+Pnds0bRxrlClazm4MXY69ae58+GThz5BxMPugcQBAR8iipcG0c51wZIdJT/6Qym/I0wirIoMHtrqNA++Mg7JwZK+FEvdnLGreJEni0ryqelAu+5nFe1DnGPAo3POHrlpWTQbv/0g5j4usivjDgsWUlXg4KFQc+DyshgbjaoVkq4JVsF2TU8EsVHHAJw29Mg7qXAMsjkFerOz3EhrEbhwEWLR4F22rMne4dZF10VRcC5XPgH/P7DogjsGCfAGlcGvWvBA2OYGKA8PjoEqByJtX1pOeZRPvGZ6vvypnwl1xUJVxoKhibTMeitcjIt9hOHIrGvGi5UpBOLLnxCsv3InGgWPGgQgnXhgo4ch+r10qHqYUB46KHyKlaaE1DpytajSrqGnEOiRi40BXf9tvv8wRwCPvjMNVJNMWnl0pDi5bnnNXXmZo7//VLN9iNE5LFQEWlBXnx6lvA5moPEfBs3kLbEDjAICO8Ji2rrIGyG3feNIzTdNaVkUejYM6NjHaz7k/f12ERUkXGQcVXp65fXCYuBf+5tHDkfmkabFVkkvOSI1j0MPfmBeriIobB9bHP1H3GQea3UtIsYrIzyqo6DrA98ss44C9B71EPwa8mpdtwpEtjkG+/bIGupj6N3poCrFo4du2LtxXHYfejQvxOWgB3U5Fq9AGsmfOAp92Lwypd1L+bI3G4m/xIomX8isjRIHnZduo/S3+XvP8GctzcKSE1FdlHBAZKw5G+dczP/V6+Wc/Tn0KlkTKtHNROPK6z7RvmqaieH7dZflpX0+bDNE4mO/TXp7vELFpsjxXrDiIYVXE8QypJ1IUB2ygSjwPO1gVFWUO6epv++1L5cfUMRAhHLrs2cBbcZKhKQ5iWRVpqp/LV+ZF1p63XVHVdebMhm/xvuwee2p9y13xANqBxgEAHeHxsLTBFQcRp703R2NhkxK7cRBqT3Dx57bNkzrhyHzfrKxSqqwJpnGxy2ozcR9dceDQOOAP6jW2vzkat1401ck4sLaJSdNUZhwEWhXZBQMHTts7FgzXA2xqiOS0s1XRTrsOcU9hIr+CQZ1wZK4EsFEchG/fq3A6E4oD/qDO7gUe9+BpQmxqvCZNQ9WX2vc3RjbvAz+WCwOaneya1KwP9nrdMw4CzkWxD4ZFI5EzwT4DT8WBdj3lx4CWe2GquCi1KpLnI79uWcGLx4XhyE7Fc+355MlMcXDCs3GgZI1IxYGfVZFUPJQ1DmwLd1KJrtwHnAvHVYoDvg6xUP9yijKHtGuiR+OAB5Qv5zIO7NdhHG5HnM9b6U5xIMKRnayK+N9dnh/QoN+jK1by4dhPnHVuHFRM9XsHJJcpGjaHY3fFA2gHGgcAdIQMZrVQHHB/8To2Ke0Wi9rNRlsgZnALE4ubRZUsnWPtrSutiopfv1awsFgsrSuLkyI8rHraKA5iNw6kRDvutLOmhtAyCupQK+PA+GFB99YPm/T19PfXfbXle+KlOAhVXdhtP+wYtL4HZNQKR/ZooNdRHERSvmjngbAKsQ5HrrAqEq/dePshn4OX8q6N4sDqfeCvpcguy+s6oL2XfFvex0BISLWnTYk8DvLXfU/FgfY5cqWxu+KghlURkf3nn3GW+fevLmZWRXHCkfnEOZG0Kjq1vuk27cotRJfmZcbB+tbIrWCqFS0zvG2CQtbE3g3MssYJkVSDtV2Ha9SxKvKYuBfNq6nGgXj9HuHIZYoD55yNDN4cjKs40JunV+3JK5+OnD7vsn2i7eGuqhwBfq22puoee3Ld16oJtAONAwA6wuNhsU4wKy+qt5Vm8psiUbnigEvm+aKqCbUzDgwn3tM0FRMVdTIOiGyOATHdUxJQHcOqp07h3mKxWM+qyL5xUsuqyGHSaKj8+1hWRVrRoVhxwL21fabticKmXInspsxCrYq8iqahyqdYGQd1rIp8mnfxQ+rFQ7KyD7yAYj3xX1SomOwTVxwYTxvz60FI0djLLquWVZHRPvDiU9G9yCscWPs7C33ePGLXYeOCVcgggZddFVF15pKr4kD5WyFWRZaF27LmnVbAtb4GEW2vjc8WTHxzxcGZ8z5WFXzinIjo+v35xsHWKBXrZyt442JlfkD7WNOEyEdxMRqnYphgeqhLexa1/AxC1gPuGQeK4mOauQjhwKKRP581DpQBIofCvbQLKy7cW98H0jQtXRPFyjjgOSb7V+bEM/LGcOwSUCzcAC5s9yqWc+CpODi/Je0LOWUZBCb7ULHOREDybIPGAQAd4XGjDgmiy7AuGvOFeZKUe/zPQsaB5XuwNUrFYqNMceBllVK0OA3ZB5uMgTpFw24VB9zCJ3Y4sjpt2LJ4r01KFYcj8ymrdq9fWxAWTXv7FWzlhGlf8/dX7Ju8FAdFWTNeD8uhE/fRMg6iKw64r3eZ4oBP/Vs1sKrvxd5WRSKonO1D7Glz1arIado+9D406CXELw9dqx68zkNtW/I67Jxx0LniIL8tT8WBVqDh2+/1EnEftizalU17q4oDB6uitc0R8Tp01jDg+zBOfaa9tSniJ+1bEt874RBMujUai890ab4vmiZEPgHJmvVK3qbGXvk6jbwWK01055ByLWNimi4n7vVwZPvCeZldk7CMNH79WyOZ9zK9HomVcSCtiuZpSVHle9gVFTWvrlpljQPHjAOtKM+vQ96Ng6p1pmfWDGgPGgcAdIS0Kmp/o5YFo+KisfR0tLUqWp7rU6+gYEkkH9gsiha1FQeiedP8PdCKpmWNE22xbrFYrJqsmcajeVVLceASjhy+fQ+rlpBi2WT7yr619dfWJmW0wrm2/bbHn1Z0iZ9xEPb+93qJEszr07yIrTgQjYuC98Br+3UauKJ5FdkuTByHXs0j5TMQVkXGRbsqyyzv7cuMg3gWFaF5R0mSuJwHaZoG74OX4iBEfeXePGqQcWDbOJjtjANtn0wVByUNtL5yD/Twly5TI+vNC/99WJrbDifm9x+PaVetabGy0KfFub44/0472ITwYSKi8nBkIm/Vj1yPuisOeNGcqeFjePzXsSpyaRywZ/TVkuaR9fa15+PFkmPQS/HBr2/7l+dVS2UPuyIRjlygODgSuXHwpH15q6SzHYYjE0FxMOugcQBAR8gOe/sbVZ1JS+uFgihYl9gUEREtzcuCTVt5IC/8l026Esn3oM1i9byy0OhCcVA1WVO2Dxbb559BWdFunvn9WgRE17Eq8rBqqTVtrVoVtVQcsH/f7yVqMC6RvU2MVnSIrTiocw30kmeLUNoC5ZdX0VoGVMdVHJQVqzge09a1Mg544dCgcDZUgjhDwpGti3ZVjQPv7fP3UlNdRFO9DMruA/bXIm1it+he5KU44K9j0JPqK69rEBHReJyK90FtHjkWjbhdED8OomccaEVTh6ylyT5UrEeE4spBcXBGbRz0L2w/jl0SXxevLPQpSRK6bDlvF8Qnki3QC/d6xoOH4kCzX5r2+NdtG/2OwZhZNxncKoo/F3lYJnKKMof6qurN36qoLBzZ+vVXDRXFsCrSzu39y3OqKt+jcVCUM3I1tyqK2DjYsyAt03iItjWVjQMoDmYaNA4A6AgPxUGdSUvrolndxoE2gdn2gYE/JPIgOo5l0UIrupQqDhSrFIsH5rIQNLEPDotFqTgoyxiwfw9qKQ4iBLPWad4RtffZ55NSRTZF29v3VRwsDHqFTQuZceBTMCwNp4408R+qutgapTQ2sAgIVV3Igl37bW9PWjdXHFjsA7cbqmVVZHAM8KwbIr154120q5txYG5TE+Bv7zVpWuVtn9sHh2uRdi0ttCoyVD7m/071echt1CwVB9qacr4vr0Wewag8u4vbE8ZUHCSJrv7zLJpVKT74dSmG4mC+35tc+7T7cwzFQbYuvmx5Pvd9D5sMLV8hK1buZTYhHhkH/Jlg0Ety1xztutxW+TpNyLVYXIMNt08kP4NV9nzqYVvKEffj+eKJe2vFw9ZoLK4F0xkHch3mO0RAxKyKnBUnRLJx0EuI9i7O0Xy/J67LmkqqLTJjIgtHzjcOjjo2Dnhjcu/SnKjVeIcjV13foTiYbdA4AKAjeFG7beE+TdNaVkViodLyYbVOKC+R7r3ftnEgCxXl+2A56aeFO5cVLTWrFIsHJm2yqggPeWqdoqH2s7bvAT+O+QPBNDHCoUsbBw7NIz7hWdY4EHZlxo2DOoobq6JlnWlzr0nXqoLtZPtOway8cF6UdSMsMgy2PRynws+6TsaBFu5dlzp2YTJnwED5p94LNKsiv6Il0SwqDgIyDqysimoov+TUfftjIMTfPkO+BzbXwpB70YJQW9gV7LTjOciqyFJxUGFV5JG1Ndn2UG5ba6R7Ki6qjoEYigNeiFqdKpZr10WrnJlpipS4l7FpWx6earJtNsE73+9NPgeuOIhhlbQ0388dhx7K19zfCrgWexaO0zQtbBxldJlxQOR7DSCSxyBRfriPHwMW67BpVMXB1LnvZV06DW8K7luao94FRTZXoGjP820R16AZsCratzQnmmgeTZNpqu6xJ9ftr8HADjQOAOgI/sDW9mFJW+iVTno6WxWVTboT6UXFtjdrOW1erjiwVF3wm+H8oFea8UDkU7jmkzVln4PHpGWdjIMoioMS1UkMxUXZOegRjMitnoryDYjk+dH2YSnUIoeo+4wDIkdv8YpQ2gyPxpn2N4reA4/GYUgga34fHFQ/vGBdI+OgS8WBtUVHdTiyX9Fwe5ChOuPAy6pI3gdqHAMOeUtEcs2V4WUTEWKb5zlxr10LtDWZ1zEwGqfifsitijwDykMUN9v7FG8f+DnPP38PxQGftJ0eZpnrS5sWF9VDgcd9DMUBn/ifHprau8itiuKFsmZ4KF+nEYqDyFZFG8OxCOblA1XiGhQx44BI3husrYrOKqqXXONAKC6srYrktXD6+ThGODJXHOxfuXju88ZBDMXBSoFV0dmNoUs4M5FsHOxdGojGgXc4ctX1HYqD2QaNAwA6QloVtbtRag/9daZth+N2NhlVUlDOoupt2rJoLKyKyi9xlnZRvOhTZlOU4bFY5j6apRkHDh7/dRQHHo2D0Id1IllE8GicVOds2C7Y61g1WduVhYbyEjlmHARO2xNpVkFGVkW8YFqkOFA+G4tjUHwORYoDEQ7u1DgobR6y5oWDVVMd1ZNF0Tg0JNyzaKvth7Qq8isaDsepKNaoE+9eAd217gMOyptWigOnJqravHK0ydGsiiIWDUPsovh5uTkcU8olU0bbLxpk8Qwmrcr88cx4yJAWHReL5UmSRFE9FHncy4wD/4n/6TBW7i/uYVVU9UzgZZta9LfUBqZj4VgrAgvFQc9fcaApPzK8w4HVgPL5acUBX4cZr0XEmjj/ej2bpxn83N4/1TTkzTQtl6QtvBmwUmBVRER09IzP1D2/vmiKA/fGATsWLl/xb94CO9A4AKAjrB9WQ2XhGWrRtsViQSoOygvng35PPDC1tyqqGY4s7KKabz80EDW3fYdJw3MVIWDTuIQjt7CIsNiHzq2KxIRf+XFgHYxZR3HArYraPizxSevZUBzUKBob7UNRCF7V9omMrIoC3wOPjIPQYmGGsMsyCWivY1VkX7Ti97F+L1Hvt7x5bukvr+0Hb2B55DtkaOdzSCgmD9Zuvn1uE1N8HfSYOteL1nELxyH3Ytdp91CrIiflV0jjwNNjP7SJ32XGgXfzkkg+G6wulKseXPaBF+0uFAr3s8aBh01GWcF47xLLOIgQjrzM3n8v29SMIMs0x3uhFnQrFAfOVj1E5etC74wDXgxemuvnng34c1KaymeJNlTZJnqpf6c5eY4pDqbOfW6d7BKOvKE3EFcXBuJZ6ciZ8+bbJyqwKlqMm3HAB1S44gKKg9kGjQMAOsK6aBn6oD7ZvvKzNoVDXrCuUhwQ2U87cW/gsoIVkcxAaKc4yL//QYoDMfHd7vWPx6loYNQLR7Yv2sVWHLSxKuL5AE2oY1Wk7UP7cOTwjAPrglWdjAN+bRoqthJNaGNVZCXP5hM1xeHI8vsWD0xcdVG0fS3joO20bVurIotzsI3qxOT9D2zc8EI+P27akKbyXlClOLD0FtcKT9rxLq5BRhYNbbJ2LIpmWgMtOBzZTHXB10OK6sVx2jtUfcSVf1bXYW09yy1BtGujVdEytHHgOW1c1TyKoTg4I6yK8mtST7uojCJ/8S7Ckadfv7Aqcija8Uln7ZnA9RgMGOjyaiATyfc/SeRxP8fDgQ2L5hmlGQdiHWK7fVG0Zo0T7TOxPAaqbBO9Mx6IpOLgshLFgYdVEG/eLF+4DiRJQlfvWcz97AmnnANhVbQYX3HA15nX7su/djQOZhs0DgDoCGkTYesvTlRVNFN8LVvcrIWPZkDjQBRO2loVVQThcYQ80zDjoKxommG9WNQyIsoUBzHCgcs+g34vERPxbR8a61hUeEy5CJuUimOQ20W1fWAasXOgXzJpa104FwXrGpPeRFbvf7WveobXpGfVQ1KGdg22sSoKK1xr229buFcVBzWsijwUF6WqJ4dp19B7geeU5dZIWgVVZxz4WaQQ6Q0cqby0KVzWsmxzuA6oReuCJq6Xv3OjSV/PSePCcGD7rCUifT3DrwXatdGqgcfXc0XNK2vLwPw+lN8LvAPaiTTFQf7ZwDOgumgfskIhtyryCEcumzTn4cgeioOiYOhpvIYoiORAl7bu8AxHFirsub7In/NQPnJEI3/qc+D3BuvCucwZKQ+Htt4HsSZiaw9+bRyn9qoPfm6XKQ64SscCfh5OK6+4XdETZ30aBzxDpROrInYsXMOaJrAqmm3QOACgI3g4ctuCYWgQ3eRnioVLmweWMh/PIpbm8/uwk8KRgxoHxg+MfLKGqLyB41EwqTPpSaRNvbd7YJFWRfEm7okUm5QKyyprn3kucdbO88nPjBtHomBd8tr1YOD2i3URjFuyD6JobVQwOh9oVZQkiTLtbPAeBCoeVKukto079u97iXwon4ZL5C0eFkWxrFRxYD9xLcKxC66B/HOxnPbWip98e7xouDkat8o5mkZrgqiTpk5F4zoNbH4MeNwH5/qJWjTX9s1C+UOknAexrYqE4qGggSksI41ef5BVkZ/iQITCFqxHXa2KKtZj3gHtRNL6ghequlQc7J85xYFD46AiHJnIV3HA1/Sa8snzHBCKC+WZiJ+bFspHTlnWROyMAxmQrSkO7N6Dqrwd1bbW+D3g4cjTigOpvrTddpqm4jowrfy5apU1DpwUB7wxuW95TtQI/DMO8u/tNVAcXFKgcQBAR4hpd+Nw5IWBPt11cfu2C4WqiQYNS5n0eJyKxV7dYNo2i9VGGQfGx4AW6FQejswLFvYP65WqD+MFs7Qqilc4J1LssiKHI/NzoDzjwLZxElqwJvLJt9jeh3CrIv4AG9uqiEgW82Ja5XjI0+sUbIk01VdcuyqPolVTxYFlODFvXhHJBpZaNHUKJ97enjwWPD5/bful4ch8iMOggdNG8WDlLx0WjuwXDhwaUq5fh9rvg/Y3QjIOrBQHfD0XbFVlGo5cT3FgeQ3KOFthYyqatzEVB0s848A/nLgs48CjaCYyDpRnAq589czZUBUHjo2DEAUoH2DwsMops7OVGQu2jQtetObnoKo+7VBxQGSfc1AWjsyfBayUjxnrWyPit9Xp5o1QHMS0KmIZB1qQtiVCcbA3/9pPn98yG2AB9qBxAEBHaFNmbQh9SLu4fUWa2OJGHTLVweHywDaNg7qhnES2hWO5OO1AccAe0HpJfKsWbrlV9RlYe4zXKdh4yLPleVh+HFg3L+qEI/Pjr3U4cqBFDlGR4iCyVZFDwWY4GovjqOxa4HEOilDcgmNQOzfavgd1Mk6IpCLG4oG9zjEgrIoMCme88Fj0HnhaBWkFwCrFwfY+2Dww8/dxvmCQwaNxRtQu48BGcRCufNMK57EsuzwnPUPCmYn8QuJDAqp7vUQ2jrrOODD0N696LvBUPWWc3cgXq/hQkWhexFAczBdlHGyaF634unxajS0UB+seGQcBjQMnuzSiMMu0qNtXzkM+RGNduB+OxuI15TIOHCwbp5GDffljQFOFWu5D1TCFeg80vg6UWRV52kYSyWsAUf4z4NfEtu4LRXBFk2pV5ByOzO9J1+7NKw7SlOiM8z6A5qBxAEBHWIcBSS/TioKlYmHCbU7qIKeKqgvnlooD/SGx/BLHF6ttCsd830PCka2Lxrx5szI/KFedOFj1cMstviDmWE/6yJyLsoKN/WK9bjiy9T7wB546jZO2FhG1inXKftk0Duo0L+yn7LSiR5n6yCMUkL8HhRkLxqozompPbbEPDqqfWsdA375wJqyKCu4F0l/c16qIvw/aGsFq4ji0eeNllVMn78gjIJtPa9ZpXBDZFI+DMg7U5pFT46CO4sDBLmrQ0+2i+HtgpjgIPAa8cj7SNK38DDxVTxm8aLZnsQPFQYFdEM84GKcyzLktZeHE+3jGgYdVUZBVj6dVUfX92DPjQJ6HmuKCvf4Wz8Ia2rpwKaJVEQ9H5seArjjwa2CKcGSnQaJpysKRPRtXRPoU/3SzQNYi7K/DRIriQGscbA7NVIecrdFYDLddwxoHREQn1+2zZoANaBwA0BHW3uZ1piyJtiet+DRym3DessVxEeKBrcVDS4gsnWNZtLUJR27bOCiWRGt4LFb5cVxVOLee9GmlODBYqNZtHFh/Brz5V8eqiKidRQa3SSqbsh30e0owtkfGQR2rLvtpf6L4ioNQqx5r1RlRPYsYIp9JvzqNgzhWRYGKA8OiHbfHWBj0RCCkXjS2CoYN+wy8CiYh9hgZHkUD/jd4g3waD+WP9jfUSV+tgevk8R9aONf+bRNCm0de5yG3fiy6FlpaZk6jrYn5PgjFgUfGQYWNaZSMA144nSgO5sTvWgcUl03883DkzeHYPGeiyiaGyLdwzT9P7Tzk6zTLJrpck8h7gbfiQLORnR4uE+HMzoqDVZ5xoNyfPMOR+eftdQ/MGI1T0ZTbv3Lx3PNsXBHJxmW/l+Suex7DC5yt0Vhci/YtDUTjIE3lNcsK7dq2f2VerM+QczC7oHEAQEcIiX5bq6IaNiEZlhPndQvGRHIq31pxUN9f3rJxUP36pbeyseKgwi7Ko2jZNuOgjeqFqGbjwGHKo27hVEyatA5HbmeR0WbinE/ZloXiEvkslus0UD0KNlUPiByP90BaFRUUrBweFusrbuyLtnVs+3jx3EN1Eqo4sAwnDmlkq/7uZoqDsOaVl7d1G6sii8KxUH4NwhsXRE7qt4CCndW2Q7dP5OdvrQVUa0iffx/FQWg4slfOh7YtWbC1L1iJoiVvHAjllYPqoWCwyTPnJaNsXb53Ua7RrVUHIdciOchmVzgPuRZ7Fm5Dcpe8Mw60a8pSiVWRZTAxkZLxwc5BbZDQch+qmlfqEIvhZ3BqfUtkDExnHHhfg7Tm4bT6jb9+i7xBjlaM1xQHRH4ByaqF5qBH+5b8Q+qBDWgcANARfKHWdqFU11uayLZwXqdgmcGLGW18/bT3r+60d5vPIHS6LPc7xoVrLgkvC0Ym8inaiYeEqolj48VqHasij4yD9lYt7fahTsaBpjhoI9Guew3wsCmpZ1Vk/7CoTcrVURx4vAdF2+/1EvEZtc446FhxpO1DeTiyfeEstHGj7ZdV0ZbfS7XmVZIkyvFnlHHQ0KrIrGhd4z4kAoId7oNak27yMwflD5HyGajhyJriwEd1UnQt8Jo2DR1m8Zp4Dw9H5so7n8YNUYhVkX8wMS9U8SKih+qBF+6ynIG+qrz2LRpOX4v3LGqKB9uiXci1kA+yWVgmFm1fVRw4TlyHNC7kEJ2x4kA5pqdfs7dVkQxHlusBvhZsO8Q1TVVAtbYWsTwGjp+T1jfTaiOvrKUMobpiig/ZOLO/BmpKqr2Lc+qAoV/jQH8+2sdC4j1C6oENaBwA0BHWBcM6Fh0ZMmeh+T7UKVhmyEmvNoV7+W/LisZEtoVD4acb0Diwnnhe26rZOPCYuOcPy5WFQ9t9qKM4kFM+DlOedZtX5hkP9Swy2hSs6l4DfBQH4UVjjweV9U05ZVonoLpr1YV1xkFsxRFRzXBkh8J5aONGK+RaFe6qHtQn33fyOA9VfcSzKgpvIMZW3nmFI8uJf71YxG3/zQrXgcMs2j7E/Az4+emmOAhsnnmdA0REC+wYEK/dIxyZBV2u8oyDGIqDjWKff4+sr9y2edNiqmg7P+iJpq61TQdvxmsDHVyFYNG4LPpbscORQ54J+HOIZdGcSCpRF+fy1oHejQOeQagVi61zF6cJUkA6Fu95MPLyfD/3bOCVtZTBrdJ4OLVUv/srDhYGPVqc69P8oCdev1dAsra+Xhj0REg9rIpmFzQOAOgI62lvPiHCb8IavoqD6u1bKg74vidJdeHSsmjGbVqqCmZE9g+Ma/zhqCJnwsOqRQShVRYOZyjjoItwZOOA3lGNjAM9IL1NOHJ404LIadpeeKmGF+xMMg6G1Q9IuX0QRcv2hRte/C17D6yLJnWVbx4Sbd5Er2NVtDFsFxBOFOYpXfR9qwdW/oBW3Lzw8ZYOVf54TZqGFm21fbB4D+pYFSVJIs+DSHk7SZK4TdyHqu+SJHFpoIrPoDDjwOn1d5xxoDYO2PVOvHbjcOQ0Tekst+qZrwhHNm5ejMap+ExXpoZqPNYB0/A1Cb8W87DoM8ZWRSHXQs/CdYjiwbNwG2ZV5JxxUKEA5MpL68KxeDZUGgee+yDtGwOaR4bHAA9G3s8K1d7XoKJw9gzvjAUiWYyfDmbfw/ZHC3O2gD+bDHoJDfo9uoxlvZxaQzjyrILGAQAdwQuGo3HaKpi0TsEsQy4U4k0bEynTpq0yFuRDYsLH2BiWRdutcbhFzsXfMVYclISwhWzfYqEogtCqFAfcqqjlpI8sFpQH9Oa2bfH6eeMkejhyuF2QVsxqcwzWaVoQKRYhHVsVeeQLVDcO7G1SqgoVpdtva5kX6GueYXkPmOyDOAfDrYrStP11IHTaXw0nNircyQnHsJwFq+0HZxxECoYttyqyL1oJBWLFIIVH8TK0iedxHSZSVCc1VBcWhUupAi3KOPApGjXPOPBpHhJVhyNbKw7WNkfCW5wXyvl10Er1dHEfZBFsunBqnTPFqSqc83W69esXzybKtcircZCmqbwWx844YNvX1oRe52BGVePAu3Asc0biBmSHDFOI5pHh9k+wQvR0MLK2bfNwZDHUxz7/COHIp5mKYLpxwBsZZyJZFWX3n328cQDFwcyCxgEAHaHahLS4UdZ5SCv6nXaKA9lJrkLaVDQv2GyOWOOkiVVQm9dfs1BApExbtixY8QekKsWBx2KldsaBKBy2tEqppTiwnbZO07S9VVFbxQGXpdfIeCCyVR3NVWUciHBwe5uYsqJxjHDkqpB0jwdGPt1V2jwRE//ttl8nlJbI3qqMqKbqRPN4b3kcyu2HFc2J7Ap38gEtrGhstf3Qz8Daqi1D2mOEhxOb3AfH4Y0LIi2c1F5xEKr6sCqc17kXxrCLKvoMpM+/k+olsuKA3wsHvSRnj0JkaxeqoU2u8iKV97QvH6ghKlccWBYsiaqPA6/G1WT7YphHXgu9Cpe6hWzAtPmovfIvI6SBx5/X2jyLapzn60JWOPawbJxGTLwrz4ZyiMMxHFlZE3kWz7lVEVcceFplEWkZK+WKA+vGFZEsxu+dKtbz3JlYioPs/rNvOd84QDjy7ILGAQAdoT1EtblZiYfEAMWBfGhvvlDg65wwxYFd0WqTKw4ih0PzqZqygu3F7dvaE5R5qWrE8Piv9ji33Yd6GQe2i0Xt39eeuG75wMILVmUNLK2512b7/EGjX9E849eo2P7+HlNmvGivhdJOY/0eaM2rMsWBdcGyjuKDSF6DLB5W6zTRtf1r+xmIjIOC96DXU8KJjQp30hqgW8VB0WfgVSzgxb869wETxQEv2lasBzwaKKHnotcxWMe2zGPaNNQ6L57iIKxx4RYQrrz/XmqTDL4mJZLTtt52SVoRbHqoxqNpl/975c8mvLHMhw/aIoe6Aib+jYrGmnovJOPAQvmXEWRVJNYhcRUH4ll0aNu4OMc89nmhmEi+B5bFc35Oa4MMXg1UImlVxD31va9B4l7MXr93xgKRDEfeV9I48ApHls9nUBxcaqBxAEBHWAeT1pm0nezDwG6xJBanDax6WlkVBcrCp7GUKNedtFe333Khxh84lmpaFbVdKI7GKfG6c+XEseGkj7b9suPAWpqrLXSrXr+1TUYduyBrb21hk1QVTu5QsJMh8WWKE/uCTV2rIq6MavseaP9+lsOR+fnf9jNI01RaFZUcA9p70/Yz4MdAkeJA275V0VLcC4oyDpwUB6GDDB6Tftv2GDUaBw7NC74eqsx78VDeBE78uxWuazTwZOHMXv1YtBbwUhzwYZbQgHCvjAO9ccBfu23Rml+HeoncplfGRAaf9p3r5xu23hkHVcehDKg3VhwE2Hd6BURrx7K2fbWBb6U+C2igeWQtTcOPQdk48A3o5oVgLRzZU3EQ0sT0nLrnE+z7lyusiqxzTgoK5hne4dhEFY0DkbMSV3HAMw5OonEws6BxAEBHeCsOQgrXvGjT9GY1Vgq2IVZFlmFMdQoFGXKhYjdt3aRx0lpxwBeHka2K1MJ57XBku+bN9t8vKVaIxpFt0ZSofjhszIyD7Z/bNW7q2pXxgqpPxkGZv7/9lFf9jAPjxoFS9Kpj1xQ7HFlO+rUNR0+Fp3adjAMig8ZBjYBsUbg3UxwEhiM7TdqFnoceBePRWB4DpQHZDjkjIcW6aVysegLXhF5WMa2sigw+A76W6F5xEDfjIOTz9y7ar2/l16RLc32RPSZyFowL59JfPL8u9i7aVVlmyZwJ78ZF9bS31Xug/Z2FfrVNDZFl3k2A4oCvg42PAX5M86EuL8s+ou37IX8vtfw7kTdnuA8hn4GnVdF6x+HEVddi78YFkWJVNNUsiGdVVJBxwBo5vMkBZgc0DgDoCG0R36ZwJTraAVZFVvLUkeJFWWVTom2/zUKlrrc8kb5Ya+qrKYP44isO2ocj2xYNieorDlo1b5Sid8yMA+31aw9J01gvlus2sCzfg7oB6T4ZB+FWRWLavwPFgfUDg/YeluUsWGcc1G1gW0+ZqYGgpYqLhFgdq/VxyIv/ZcegsAoyyxiotgbY/r5TxkHgeegx7a7aY9RQHFh8BnUHGTysQkLXRG5WRTXWZB5T9/w9DLUK6jzjwKlxoD0T8Oa9d77AkjLMEltxsBI5mLTqOODT5/aKg+pnE7eMg8BhGm2d7BbSHqA4sM44kNlXFRkHltP+qgq1unnTeePA0iqpwrbP+zpYdS32GKDg8MZBWTiyl1VR0UDLZUt56yhkHMwuaBwA0BHajbPNjbJJODK3Kmp6s+IFQ6JAxUHPbto0NAhvGm0CrGnhWoYhBlglGT8wdh2OHCpLnkZMHLcIBdOO37LCuXnGQSPFge1iXRbv421fNC0qFQf2D6u1wpHZ9c8mHJkVbCs9/m3fA92qKJ7ioOtwZP0huXgfkiQxn7rnD53ligOfollVoaJw+5GLxrJYkdK4ZdFGvw/VmHZ3sMmpGiSwWotNE6r+6dJjv+hnFkWr0In/rjMOPJRvRGHPBLJxaRdKSySvQ9owi3fRjgfDLldNGxvb1FQNc3gHVPPta+eBl12Tdj9Tt++qOKgOqvdWnVRmHPDrv+H2Q59LxPO4YfNEfAYBtmmWDTxRuGdrYm/FQdW12OsePE1ZOPKexUiNg4KBlr3CqigfZg1mBzQOAOiIfi8RE7ltblYW4chNi7baAiMoHNnwYTE0CK/qd5ruA5e2loXSZlgXLMRkVWU4st20//a/b184b9M8Urdfx1e5g8aBueKgpl2Qpce9zDkpf+3W/v5aMHDZdXCeTbnZhCPXyxmx/vy1acVaGQfGzcP6Vl3trkF1Mx62f84LV20/g7Bpf23bVtOmoVZFfoqDMNWFeg9u0Twm0h+6yxrYHgWL2lZFDoW7qmLJ5Pu8cOvUPOLX+7KfmXwGgXkrbs2zgILl9vd9Qkk3R/lzeV75/PkxYRlKS1RdMCXSPP6NFQcb3SkOxuNUPB9VWhUZKw748RRmVWQVjpzfdi8JUzwQyeO3KZvsnqaHI/tN/BNVnweeORsbyvuoqy78michSlSPzLOiv8Vfv7fqqLbiwGCAgnP6fHHjgNsan3XLOCgKRx6w3xub24UBG9A4AKBDZCBTG8VBefiOvn2bxeJI+XdBjQNuU9PiRll30pVIL2Y0bxwYZBy0vFGKyaoKxYGlVRNRs8K59NVscQxoypcajYO2Dwt8cTpQmoMc6weGunZBlpOudfMV+OK57YOCahVVYVOT+/cGDwvCqqjiOiz81Y0VB/P9HvVKPgfZvLWd9q7dOGxbNDZo3rW3Kgo/BrSJXwvCw5F9iqahyh+PSdO6DWzrnBFtH/hah+NRtOHHcajiwMwuq45VEbsPuXwGRa/fS3EgGhdhGQddhiMT2U78S6uiGVAciIwDR2935X7Gz3XvxoFUHAQUjZ2OwaLmnTZIZ3UvDJl2nxPT9rZFy6qMA898gdA1kVfzaPtv1W9eWRbvq6wTve3SxL24X968JGo/QMEpsyri4cj8mmnFhrBy3X7dHlljwAc0DgDoEEt/5zoPaRlWhTNtkRWmOLArWsoFav3CPVHzwq1NOHO7G2WILDy3fbVxYjvxX1UwEZM+xlZFZcfB/EBKc9tMedQNhtV+p33RrN6kK/982rz/snlWUbA1njCqa9PjYY8hMw5qKk6MPf6rpu2tG1c8J6I6HF0+rLZpXmrHQNU+WE+ci4yDGooD/mDVeB/YawjNOLB6WOOvo9CqSLsHOzQOSq2KPKbdRdF6dsORPRonRDWtihyKVtI+Mqxx4pZxEKi6ccs4CAhHJrIt2ARZFcXOOFiIpzjQjmN+HHg3DoRtmvJs5uUvX2egy2viPMSyjK9VrSfORSOfhyOz98VS8RCqwnRtoAV8Bp1mHPD3v+WzIKeqietp1ZVxaq2kccCuiW6KA74uvbD+1dbI1tdBYAMaBwB0CJcOt5n2k7L0kMaBTeGsecaBYdG4QeFee5BrerPm0wFNtt92oXBuo17jQM94sGtezfWT0mlnbR9iNi40O6k2Ux4WAd1dZxy08fetrzgwnrZXrp9l10GPgoGwqanZvDMP5q1sXNiqLuqGI2vKrDbeulrjJOHpxwzrwpWcqirJOOD+1kYPi6Eh3VJxYGQPMQpbj2jHh7Xqhaj8fsybKhZFg5Ap32liWBUFZxyYTRvzKcu412I+SFB0P3JTHIRmHDhZhIQME/HXrv27NoRYFXmpnjLObVQpDnzef6KwYRbPjIM0VaySIhaN66wHPDKviMLOA5m1FteqKKZNUJLo10Jp1+S3D9qzt8x6MWwciHVx9cR/zMaFZd6ixnic0hl2Hdy7ON04yGcM8N+1QlgVXfgctPWp1VoY2ILGAQAdIgNxmj+w1AkFzbBarDTOODCcMus6HLmJVZHllN14nIrFad1wZKJ2i/UmzRvRPDLMuej3yhsX2uK1zWfQJKDcumBUt3gvHphabH/Emi51bZraFmy0f19nws0mHLmeVZF1wayuZZ13zkelTZBhzkyT7RNpGQdtj0N9qkqD/8yqaBbcOHBTHAQ2Dhwm7fg1VLPByO1DX743ba/DIb7iuX3wUBwENm+sMz4m2xfnYryQdu1vFE38e3nsh64HrAdIJn8n4PNXFQeGk55rzPJCsyrSclYsA5q7VRxUK+C8cmaI9GezIMXBDKiO7MKRq89Dobw1zzjI70N1xoHjtHtfH6aQ1smO4cgBORe2hfsqqyKlgWrYwKtaly5oaxDD69CZjSHxS+q+5YvNAs9g6mn4e5o1TbU1suV9CNiBxgEAHWJ5sbaZdm6YcaAuTusX7luFIw+rp2o4lkUrYRETFI5sN+3LmwZEAVZFM1C048dAm0mfEDls1c8t7bKCXr+Ysmk76cqmLCvfA7uCjZyyrTfpbe3vr21jGo8HldBQ2gzrUNC6igPrgl3drBnt+LRs3oU00EXWRosHxtE4FcdRaTiyyDgwsipqqDiwkoeLB/WC7XuEYoYUKar2oW3RoO610Po8HI9T8T4UNw58jsFaRUOHa3FoOPGOVRxsVb//g15CvI5sa1WU/1shVkXWAc1VigPPYFrtb/HJbt644sMHbQi1bfOaeA/NOCDya14E+etz21zrjAM+UMIzDhxtgkKvwzLzzWYf0lSuibTPwKtxRFQ98a+uAYzCuYmqm7ialaHlMXCa5RsQ5a2K5ACZbeMso+j5aK6fEO9lWSqvgB1oHADQIZbesnW9rYnsCvd2ioMWRVt2kw+Zdk+SxCznoW7RmkhOOrZ5YNHCjFYW6oUjE7U7BqW/foDiwLJ5VHfKcwYaJ10rDiytovi2q2ySrL21eaGk30tqhWO3DQcnUkLwamYctM95qKd4sA7EaxuOTNTugbXJfdDSqkgrOpY1L7z81YVlVnDR2GnStCQUk1+iNls2T+vmHalT162bF6yBW/NaaK260LaR4XYM1LgWeEw8hq7J+LnhFcpatH3+2rdGNv7aIQXDJEncFCdEROtbTHGgWRWpdkl+Ac0r8/EUB1oBTloVccWBpeJB235I48CmcBgSTFz0M6+sD015xK/PaaoPxDWlrlWRpU2QVP/p6xFpHWzz+rW/o10LPafeu84YqGriausjy+swD0bu95LcdZBv3zocPEMMtFw4FpMkEc8qlsorYAcaBwB0iG3jwEJx0Gz73KKEKDDjwLDL3aRorf1e4+aJmPSu37hppThQppSqMw6Uol2rcOBwT+MMaVUU7xiwDMfe/rf1X7+1x3zbjIM2jRO+7cqMA+NJ19rBwMqkY9uHRS5Jr1QcWIcj1804EPJ024Jl5Tmo5Yy0saxrkPVjaVWkFf7LFAcynNjmYUkUKgruBV7BnHWOQ+uCUV3Vi0fRoE7BjMi+cKeGhHfdOKjZxG0LX5MVXYt44drqHGgajkxkM/Ec+v5LxZVf0X5Jsc/UmpqW06Z8qGZ5IWLGQUDuFr82W77/uuIgplVR+ECXn1VRtfLIOu+NU9U48AiHz+CfQbFtoO2zSEao6kXUQ1wzBvrsa9/CvVQc5Lff78mJe0/Fwd7FQc6uitcrLI+/acRAy9S9h6+TrbNugA1oHADQIZYLJZtw5Ib+/qzYliRUGYpLZDttLScKqrdPpDywNg5HrmdNQKSEQbVRHLBg5F5SfQxYL5b5pGgzqyJLxUE9e4jtvxG3aGmpOiFqojiwOwbFlG3F+889r62tiiobB8aNIyL50F9UsJ3sg/EDuwgfq1uwNA5Hrty+sUS7SQNdPLC2eGBRFQdl4chORdvG4chOgZRlqgvrglHbfAGi9u+DVBzUVX7ZnodExYVjy+O/bB9KbeMciob8Xl40zOGnOAgr3HtNuzYNx7a1KuK5Wx0oDja6Uxzwa9FAyd3i10arxhWRPoijnQd8gMCqaFnHQtYvpL362VB7T0wbB6KBlt+eR+N08rcCrwNSceBzDBTtg9WzuEbVUNFAKdzbKg7Kt58kiatV0+nzrHGwlA9D9rTKmqZsXeqZ9QLsQOMAgA6xXLA28Xa2WiyKYOCApgGRXKy1mzYPn26bxqp5UteaQNt2m8+fh9CtzA/UAKxpkiQRn1U7u6j6n4HlpENdqyL7xkkT1Y/tgq1+xoGdVZFUO9RVHFg3DuoV7YnaZ0zIwn29fbB+D6oUDyJjw1hxUHUN0K6TrRoHgaG8Zb/T5qG9ruLAq2jE3wfNIoTIUXFQQ/1j2UAnks2vypwN1S7JtnFQdS+yVN4R1bUqsm1eF/2dWjYlDuHQfL2b4aU4CPV3tx5gKNp+6Odva1VUPmm9vX3faV+hOJivUhz4hcJqnzW/P2h5Zc23H9ZA9Cpc86nxonOQSFsL+WStqFZNylrV0ue9qpHvWbgNDmkXQyQ2r187lkIUB1aF85GS98PPOe/Cfci90DMcmq9LhVWWczj4ZD/E88nF7YrnQYQjzyRoHADQIZYFC5tw5Gbbr1swvLh9w6J1jRCuaaS/bP19GI1T4tboIYoHvu3huLm3rZSEVzeOiGwfmnjBRpsm5vDGRTvFQT2rIi3jwnLaOah5Z7xYniXFQd1J39aKA160r7TpUQoWLb3N+UN/WdFY24euVRdtiyYWzbs2dmm8UBEUjmxYOOMFgiQpb54IebbBw2qdgOZZ8LfvWnGQJIn9dbh2OLJtOKe2/0XngpdVTR31j4ddTOi1SDsH22bdbG8/bNraTXEQeC30CscmCluXqgHNhjYVfB+46sFTcRGigpXNW7/tE+nDJF52TXWauNZDFJN9CBhmUBUHhj7v9TMODK2K+JqwYC1gfQ+a/J1Qu6xIAd1E+rXQ2jZ0mpCBFvH6PRUXVY0rp4wDqbwoURzAqmgmQeMAgA6xVRzUD4W0mvaWxcpm0/7Dcdr4gS3UT1buQ3uPb3Vx3kBx0HT7RIrioCIY+eI+8JyJuIoD08ZFg4Bqy+3XmbAs2n7sjANL1c/sKQ4qitYOBZuqyR6Ov1VRXMWDUJ9VnIOa6qnVfbBm80j7nTaFU80qqkz55THtq01MFx0HXhkLdc5F62OwbvOKSN6r2u5D3eaFZd4Tkf45hobzdpFx4DFtGnoc8HMjTW2KRqHrEe19sSiaBSsO2PXPsmATYlWUJImrTcW5jaqMA79p75DCuZfqi0hfz2rDJH4ZB+HXADflU0A4sjrAYFS8T9O0MnPI0raX01hxYBaQ3a3iQLWPVCf+edaI4WfQQHHgm/GQ3xb/PKzDwTOk8mZKceC0FgW2oHEAQIeIG1XDC+U4QIqnYbVgbqo40Bawza2CbMKRmyxWtAnZqoIZUYFVSsPPgGccVAUjZ1hKlJsUbGTBJO72LSet6hRKMixVJ9m/n6a+VVHz119X7cAXitbT9pWhqA4WEVJxULNx0DZjoUQKrGFdNBG+4gENVHENaKM4MDgH2xRO61pFyaJd+4clzeqiSIHGX7tV0bCO+sp62rWOr3aG9bWIK+dqWxUZKw7mSxpYHpO+aSpVL7X8zU0K92xNWLB97RrZ9j0Yj1NxHauTcWDxGYQOE1mGw3NCrIq294E3b/0UByLjIKJFiXY/5O+JleKFSG9eadcBt6JxDSW4Xzhy9ZpA2y+rxsH255n/nlAcDOQ6zOoYCM44MHwWm6Zx48DKLkvL+1HeA3kPsrkOpmmq5P3I66B13tg0VYoH73DwDL6+nF53ea1FgS1oHADQIVYLJdXPtl9dOLbq8PPGQWjGgbpYa/jALGXZzRoHTW6W2g2+ybQ9UfPPYG3LpnFgGQ4cNHEvCiYtiuaBYYi57fPCqWHRsInigKjdgllkHFRZFfXsPv+6yiM55dtuoc5fe9U5qC2W2zysjsfyAaGycMweIEbjtNWkjywWVWQcGBdtR+z6HdJA9WzeBSkOHK2KFivef/5zL8VB0XHooTgYjsbiGI7pbx/qbZ//HduiAW9exMyaIVLOgzqTvgbHgG7fWLwPHsGYomhacC/UrpFtG3ia1UNR0bSvWPVYFG1Cm6jCqsm0aJ+f9i9uYPo0L0Kmva1zfqYRlmWKfadH4yojNHvNa+K965yTNJVDddo+qENsRnYtXHVDVG1VZDnxHfoZeNlVbbJ7Yb+XqMOFscKxt7cVYFXkpLohip9xUPVc4B0OXrQfi6VWRVAczCJoHADQIbyo0fRGpS30QwommlVQE5pnHCg3q4aBTDLjIGwfLIIZtQVmSNFaVxw0e/3cXqOqYJlhOWXSLBzZrmDSpGBkqbho0jixVJ0Q1T8XtUmnJqSpLHhXFcusrn8ZWzUbF1ogmmXGBVG1VZHW4GzzPoiJniq7JuOHxbre7tb70CRnxNLjW05Ulb//Hv7yakBzDZuStpOO2jW0jlVR2wfmJnlH1hPPfE1QGRIuLOPsFQdFeFgV6cMs8Y4BouYZB0QGn7+yjimzz3QJh56FcGRhVaRbaPLPwGradGsk1yX8nuxpExNyDGprda3Y3AT+TFd0P/aaeO/ariw0mFdbJ1sVTjUF4CJvXilrVSvVh5x2L2oc2DavL/6dsGdzL8WJtp4LsgpybVwo23dq3BAp62J2vfUOB8/g1/Xp6z5fo1reh4AdaBwA0CFWC1Yt0DOoaNuzKRpylUC44sBuyoPvQ5W3e4b8DOrfLLUbbJBVkaHioKlVk+VixSKgu3urosiKC8NjgKj+1L9V0VZrOlY1Lax9xUcjfg2obxfWZh/UB8SqcGTjxkFdqxyL6980/PodlvVi98DKHxJD7oPiGGhRtCqbqNLwKNrySa25flLYyNYaK63tsmoOMphbFTXJODAuXItJ30qrIju7LiItJDy8YGfSOAgslmS4KA6GfNo7/BxoO/GuKRfLmqge076hk8ae4cjhVkU+igMtK4HfE7281YnChmm0e4RVxkOoVRDfrzRtfw0iaqk4cLArI9LPwyRJlLw3m8KpqgAccNWLn+JBrIkK1iTWdnkZofdj/n2rwjEvVs/1dcWDV+Mg1CqJ359Mr0MVzSPvcHCi7eEyfl2bvhZzu0goDmYTNA4A6BCrKbe6000ZXlZF/cBpf0t5XJNJVyJl0qZJxoH2/gcUzNSiYePX37R5Y1c4bFa4tyuYmFgVRc44sFSdECnHQaVFhk3jRJNVV50DvKg+bGnTUzffgUgJRze0qSGSi2GOdoy0KZqIcODKgGg7qy4ieQ6GNG/EA2t0qyK7ggW/h1c1jkQgnIniILx5oe1f22lf7UG5TPlhbREgPK1DMg6cQ8Kr1iPWhWN+HJYrDmzzHYr+Rp2ioUXhXHqb659BvyeLhm3PAW3/y4Nh/RUHxRkHPgWzrdFYrCcKrYq48sqqaBhgE+OrOKge6Fmct78GT7YvFAdhRVsin4DuOhkHFpZZqo1skce/sO30KRz3Enk/0NX3PhPvheHI/BrcUP0vth+oRI+VcVC0FolrlSTfA24naNk4qHoPPMPBMzZHMutjunHAFQfIOJhN0DgAoENEh9uoaEwUVjj2mjYOmTIl0hcQTW9WMmchbB8srGp0OWz1+6952zZXHNQv2hMZWxU1mLi3XKxbWBVZbj8kZ8NSdUJUP6DYqnGiKg4q3n8th6XNa29imWZZsFJDaWuGIxO19NivqTiwPP7TVAaCNpn2trUqCigaG0468YmqqsaRCIQzURywY6Ak78Zj2rrutLm18siigWvdvKgMRzaedm0TTGwx7R06ZTn5mYfioEZAtfXEe6hFStHPLIpmja2KjAo22v2wKHvLq3mhqwDL/eUtLUJCbFrm+z3iecVW07a8+Fw0TKEOsBgUjus0cT0C0utYplkOMU2jFW15QLXeuIkbjsztaqwmzkPV8B7NY6LwkPjuFQdsiMmwcF/1HniGg2eoFprTVkUOeVvAHjQOAOgQqw63tsBp0jiwyjgIHHZXF7F2zYtmE/eNFAfKAis058FqsSQnixq+/lZWQfWLhpYFEznlGbdgZJVx0OaBqW7x3EqerDWcisIoM7Rp8Jg2TUS2nz9/2Ncmy6q2T9R24p0XrisUB4bnv6YWCVF9SMu8NlZFDabNDVVX/BioalzIol37hyVeLCtTPXj4u6uewjWKpm0LBvzzC7kXmgc018xZECH1LYtWtTIOlGlvj5yLcn9zO+VXhgyortE88cg4iOzvHhqOLD9/m4JNSChshigaGRXOtWIV/6w9rYpCGohJkghVmFXjgK/niovmtuuQyd+ocR2Mobohih8OHLImU217nQKqizMOfF6/sMtSbJmI/M7D0GESr4wF9RhUzgOv7RPJ+xk/BrV6iaXyansfyi27vHJugC1oHADQIVY3Sq3YGlK4FtPGRo2L0Gl/7WbVtGgkMw7iFe41WwI+UVKE1aSZtKhppvqwLNqFTPvK5lWbxkX998Ay46DJ67dUnRBpYXjl+yCvQU3Pv/YZB0TtihZSdRRXcSKDv+RkGWdg/PnzifWqY1Be/+ysoojCLNtMVT9isqo6HNnSrkk7BsrgD0seGQdlVkUeigOtYNkrORe7nvYnkplIbSzTiOrbpvFrpXk4cg2LkDRtP+3Kt99Lyu/HXH1mMW0ZGspJpE072h6DVdvvVnHgM2m7pjUOOlYcLM7Ja5HlGpATOkzD7wOaUsJi+7UUBw4ZA3XsyiyOAf081PfBWvWVEfJc4GUVRaQUjYusmpxef+j92C0cOdC2z8OyT/s784Oe+lzgqXyqsirSntWsMi4y1Cbu1HWP75NVzguwBY0DADpESvSbXShFwbQXVri28rcfNSzaa4FUVhkHIZOuRDbhoPwhL9QmiEgu4poWreQDSmjOhJ3Hf50H9cn2DaeNm2zfNOOggbe29ntt9oEXnKoVB1ye3Wzb6rR5RdFYm7xq87AoXnuDgPI2BZtQT+lpkiQxLZzyqZ664cht3n/tuG2SM9HmgbWJ4kAWLVu8/yXhbxr8YWk4TlsXjUUgaYlVkYe/e6g1QIZ34yAopN7YpkH665fvg7lVUY0Gmman1bZwXVd9J4+B9kWDUG9tIsUyrGXhVk5al6/J5QCHQeMgOBzZtmmSwRUHvaQsZ8FLcVB9PY6rONCPAam4MJr2Dg6mVSaOXVQvNRrITlZFRQMlXuHAIWsSyyE6sf3A64BX1kfodZhfG4bjlMYOAd1F90LZuLK5Bon1UGjGg2nGQfmazDMcPEMNqi9RHFjdA4AtaBwA0CHzRh1uMWkb2aamadHech+a+Jtvb7+9RF68/lCvJpKvv2nORdOMA9tp3/oFGz6F2KZoJqabGikO7KadQ7av7UObBXv9jAOb19+kaKwrDuK9diLbKTepemqm+onZvLA8/rUHjUaqjxYP7E3symwDsuu9/9rP2xbuRPOoQnVh7e9et3ljblVU0yaISK4XRi0emtM0rW3bZ3kOENX7DNRjsG3hvGbjRJyDDuHIpTYpzoqDys9/lsKRjQo261vD3NdLJQo8PkRgkfWyvQ+siao1DjzDkQOvRXy/zKyKxLNZQeNAWau4BJTXyjlp/x5wu7KiaW8ibR1gpTiobuImSeLSPCQKV5/JZzErxUGY6sTLLivUvtOrcC+uw4Hb91UcVKteLLdPJK9pXIlqrfoDPqBxAECHWIVB8YJViD0Ekd20ddOiPZE28dxtOHIzq6LmigOxWDCyqwp//Z4T//WLdm28naVVUfVxaCmRl8WaapsUbR/aWKXUPRd5waJpIJ6mOKhUO/R74neihyM7Fs5DVT9W1wAizWO/KhzZTnGjZu00yDlp8/qbBKRbPrDVbZ5qE7BtH5hE86Ii50JOetkWres2T1pPuzdRHBjlPRX926p7kVgHGVsF1bEIIXIIqK68DuX3oa1VFFG9JqK14qBu48gyZ2XyN0TBsMAmyMEujUhaFS3NDwp/10txEKLA0wqGbTM+MsSauKh5wxsHRtPOoffDXi8R16DYGQdWg3S5v1GjgSkK50aKg9AGHr9HmE38B94LLNXnZX8nNByZyOZaFLoe8Qjn1rZfdAxaqn/FPgQMtFjVYgr3oaKBYn0PBj6gcQBAh3hlHIRYdBApD8uN8wWaT9ybFc4b7oNF0YgXu9soLpouVprY9Gjbj6444PJgU6uk2IqD+q9f24emqhOi+hPXVhYddcMgM6zs2oiaXQPE+Wdo1dNY+dViwV61OK/cdqvGQX3VibYPrYq2DXJOLL11ZRO/fkB42wemkCnb3D4Ye8vKIL4Kuyxjb+smtn0iY8BQ9UIUMnFvdx8kqtc80YoI1uHQVc0j+f63K1qMx6mS91OWcWB9DNZVHNiGQ6dpKi06Cu4F1oqjDG5VtFximRYv46C6cUBkVzTjDaCi64BXMKi4H5YMFHlkPdRSHDgcA5plWBHWzduM0MK11fM4J/RabJl3l/87YZ+Bdmx42GUFWxUZnYNyTR62fUvlU4jqRZz/xhP/VbZxonmKcOSZBI0DADrEaqHUNJxYK1o3mbRppziwKZo18TcnspEph8qRQ7bf2CqmZihu0e+Zevw3UByMU2rsa1l3yo/IVp7atHFgOXFeNyTcqnCuTYiGXAZ4McNScRBUNLbMl+DnYGhIvOHEfehDUoYWjtx02lJ70G0SjtzmgcnkGmC4/apj0MOqKMTXO7cP5oqDepZtlqo3Inn+FE1aT2M5baf6alcpDgyVd0RKsahGODKRgV1WjYKd9vO0xTqASG+AlysObK1i6iqfrG1KtGMw1Fvcq2hf2jhwUj2sb+b/zpLSPPHy9yeqkXHAjj/edGm+fXY/rFG4jz3x77H9No0Lu3DiMBWol1WMuB8XbN8q74wTqjrxCugOzVzyKtyHroc8C/chA0XWaxAObwTwZqm0KoLiYBZB4wCADrFaKDWfNpe/1+SBuWnjgkhOWsVWHFgUTsWUaY3GgZW3LX/fQqedLUMZLTIOiNpMvdc/D7punGj70HTBOh6nxE/fyowDHkjWWHXEJ9vCAtot5bnaPlRu3/Bh1Uxx0OIYlFZF9Sadt7fftHEn9zukiWw56WdxDWilOKh5DMz3e8RPk7YPTPwBLbbiINTTN0OEU7fdvrAHCTgGDe+Dmlqgak1gqbwjqqc80gLa2x6Dde2itDyYNjkPqgKuZB+sFQeiWFbzOty2aKrtf2E4stO0O7cqKmtg8sK5lU1Fk3BkIj+blqJGslAcGBXN+DlUpoDzKFzXskxzyJqoY5XkZdUSei3mzUW3cOIixYPhAFPp9gOteoiMFAdbYa+fr4O8Mg4Kw6ldFQfVqhPrNQhHXIvZ+y2tiqA4mEXQOACgQ4SvqdG0b3gwsM2CeVRzyjm3D/xm1fBhscuMAzFlWuP1W3nbNm1eWC7Wm1gFae9V06JNk+17Kg6qiraTfbAKCFcmxasmnvnDSuyAdEvFgbBsa5BxYLn90GuQ1Tk4HI3Fw27VtLlWWG98DCgP2kGFe8NJP4trQKvt11SdJEli/sAk7TnqqR5iZxxYT5qKKdOgcOT877Tx2FeL1hXHAT9P2tpUhPoqZwh/Z/OMg6rGibxOtPoMlP0vuxZZKw7qXoesp521zy+0YNaJVZGX4qBBODKRpeIgzKpoad7HpoNnVpVmDDgUrusM01iuBTPq3AtkOLDVxHnY/ZBv36xwH3gt5vcoq4nz0GNQPQ8djsHgkHij62BTqyrTcOQA1YumPrakqonLv0bGwWyCxgEAHWK1UGpiz0BUNGljoTho4/FvlLMQOu3LFQ+NXn/YVFHI9u2OgQ4UB42siuTvNG8cNLApMQwlbJxx4JR1QhSgOLAqWjds3NkqDupfh+SUT5tQ1KbKL5sFu/bZVRZtjZrHRHrjJkR1InI2WikO2lsVjdPmRYO6igMiRaLd8oEpJBA0/3Pbol1duyxrq6I6U6ZF+9DGpkE7f6pUD6Jo1NImou69SBaPjbdfpbhQG5h2yqOqfeg648CygV3074uOAetw9IxaVkVOzYsm4cjb2/dRHIRaFVmFQ8tnkxLFgcPEeZ1rsdUgXe5v1FA+8c/GIqCcKMxfXtu+Wc5GaOFaPAs7nQMF2+/1EvkZOCgOCjMOnMKJQ+/F1s373N8KaJ54WVVlnGevR1gVOVnmAVvQOACgQ7hEv2koal1f8wwzxUGDSd8MWbiOq7qwmPbmExVVfrbW29f+XUzFxeTf8smSIKsipWAQ1arIbqFa154hw0t1QlQ/46B50bjZNUjIg0fNH5jlNaB+wbCdVVH9jAVtH5peA7UpxUqbGC2Qzug+1NQurlXORIPCveWkW91wciJ7j3Fuc1GZcWDt7167aG1cNG1wHRbhvMZF66r7MT9X2kzbE9V/D6ynLbndVLVVkbHiQPm3Zddjc8VBzTWhtU2F2jgozDiwbRplrG0Oc1+XWhU52SWFhCNbPQdphDaQZDCoTeNA2LbVyDqxmPZukzFg0jioZVXkpDgQheu4E+dCfVakeGCvP03b34eI6j2X8ffA4lokGjdFIfEOiheicMWD5RAbRxyDasaBn+Jhex+gONgJoHEAQIdoCyWLcOLQgo0+5VX/ZtF02p/IbrEkC+eBjQODxSovdNdSHBhN2YiCVUObnDYPC40UB0pBpUurolYZBzWnLDOsVCfaIr+u4qDplCffdui0vfDWblEwsFAcmBatIxfOtX+3UBEMq50jsZVvlhYB/GEr5BxUlXfDhtegBsegddGSW4TEVxzUy9kQ14CWD6wWlnltpj1Vq6LKcGB5HW4aUk6kFO4rrgPWdlWycVFxHdLWAW1UHzWtiswzDmoeg9YZB3XUZ14WHTyYuAvFQVUgJ1GWx5T/npW/eOi1iO8Xb3g0RTayu804KG1cGN8HiOopsb0m/kML9x6NE+3v8EGlyfadGmhdB2SHWgV5KQ5CMxbkEJNd4TxEBWqt/ORU5a9pdnVt1kDABzQOAOgQq2nPxlZF2kKhQcGkyaRvhtXNyirnocn7L73NaygOjAqXdULQpvENR64fSklk6bMfMnFut1BtUrAislSdNMg4cAonD1cc2DWueNZK2LS5XSAafw9CP38vuzYion7NgiVR82twU9WJ9Fa2s4sKuRZr78FGQ+WLVDxUHwPWRcuQYtk01o2LuhkHomDV1iZGeCqH3IfsmlfahGWVZZd2rWoz7Vk7oNp54r2qgaddp6xVH2U5Ezs942A7hF0/Br0UB+tbecXB8vyg8HetG1cX96E64yBJEuUaZGUTwxrZhXZRThkHNe5H0qrIYto87PVrP2s6SJfffrjiwW/iP9SqyGaIhxOqALR8Fiv7G7FVL6HWiW6Nm1HY58+b61bbH4/TZlZF5o0DviZhigPlfYFd0eyBxgEAHaJdvJvcLJqGE6vTpk2sitLmhXMuj2yyUEnT1Kxo1ywcub41wuR3jQrXdR4QprFcLMvJkvIpQyJ9sdp00kduP97E+WicEt/tkMYJkV3zQis01bUqsrOpCWyaWCoOGjTwhNqjjeKgac6KWUC1/HfVihO7h8WmqhPToi2fcAy4Fltl/RDVm/DMsC7chRTLpjFXHAR6CmdYF6358RsSUm+rOKh/LdQn7pvvQ+1wZJGzYVu4rvoMrMOR+TE06CXUK7kWumcc1GyetS0a8WJl2ZpUs+iwmPRcq6F8srZryxDXwgLVg7SLtJn2DbVp4ddoK5uO0HDm7Z85hCPXuA55hOPWsioS6xCnjIGCJq6XxzxXbhTdj9VnMYP3oFZAt0POBrfICQ2Jt1IdNVUcmDWOVPVZtWWbdcYBvyfxRoF2f7BqIAM70DgAoENUxUETq5yGwbj9XkL8WarJzaLptD+RfKBqslDRni+Dp10NpmyEt3kLxYGdt3Z8f/FGGQOqVZFN86RZOHKzbeuewtWNEyK75oV27lYdi2bbFmqPphkHbRQH9ZVPsmDQpnHRrHliNXGtFRqrPv/taUujgPaGAdlC9WTobV42ZTz5HeVYbf4e1D8GeNGsbdGI//voGQej8KIlkX0wLC86htwH+HqhTdFaDjHEVd4RNciZEDYNLVUnNYcptPOk3Vqk3iCJdfNOFmzr3ofbFY1C7VGI9KaOReGeW6aVWRV5+VuHBsXz5xCuFGhKaBNRZDw4hTOXrQesJ67TVE4611EcWOxDqL88kVRptw2ozwi2ynGYeE/TNPhe4GVVJJuoNY5BF8VB2PtvZZcWeg54KR604rvWvPJSvGRUKWG1z4XndYHuQeMAgA7RbiBNFuxNC1ZESiBOgwVzG6sevlhrZBXUoGCawR/oGmU8NJz2J7KbNGtqk2M55VC3WEFE1FOaV1bTviGfg9ViTTtuyxbIuX1wVBxUFfD5cTJuGIjWtHkoLQqaLxSb+MvbWlU1bN45NW+Iwj4Hr4DsYMWFgeqs6N+GnIOWD8xNGmi8mNU+Y4A/oHWtOKiYtja2aWlyL7R8aBaql5CMBeNpz9rhyNYe/zUVD9aKg7rXIhnOGzcgnK9DY77/2vSpSeNgK7xxEEtxUHQt9LBIIQrPHvNqnPDzoEz5Ym3VUzfrRTsO2xZP69wL+DXCyq4q1CrHo3CrHcfFVkXKOsgg56FWxoHxEIH2N2I2bojC10NWlrVi+0rxXfsMxPFvHI5cNdCiXZsRkDx7oHEAQIeo0swmjYMW4cQWC+amVklEijyuwWKpacFM236TBxYx5Vrn/bfKOGjYvPFVHIROHNtIJIVlVIjiwVVxEPb6raZs1IyDiiaiVdG0yaQ3kVIwMMw4CLkGmIYjNwxJFw8MDR/WNH//Km91IrsH1qbXIKucldE4Je6wEdJEN1VdNFBdWYeTynDketPW5hkHVds3LhY0uQ9JxUGLaf8mjQtt4r7NPtS0CrIu3NYtnGsDBG2UR3WKVUQeioN6x4B7xkFtxUH7gk0tqyLRPI0XjkwkG8wWFilE4faZ3LbDzKpIrMvihSNr/7624qBLqyIzxUF5KGyGlWXlNOpzSeD2iWzOgzrXQpF5ZhKOzN7/guuQx7aJmisOzMKZlb+jrcn4WrmNZagGV1GFKA6QcTB7oHEAQIeoGQeNJu5bTPxbTNy3sCqSNhXtt0/UwibEIOMgtGCu/W7TxUqdyaJprHw9x+NUFA5DvKWJFIlww31oUrCxCybWFAfNjkFLxUHVqWiWc9KweeiacdAg46JVODKfLgwtnPPj3+jzD89YMFIcNGycWHmrqoWKhs2b5lkf9e2a+ENc22BMLu+utioyVhxwf/UKyzbrSb86gZwZlhkHTa5D5oqD2o0D28J5E/WhLFy0yZmoaVXEFRexw5GNm2d1LFq0IpKFt3Q9qyJ5DbTIWeD7UJT34qU4CD0OFuedGgc1CufyPWj3/tcpWhPZZf5NUysc2eg5hCMmzosyDgyznjLqDDTpOTsWjYPwa7EY5OvUqsiocdAwnDm24sArYyFDKA7Y+9DrJeI9gOJg9kDjAIAOSZLE5IGBLzBCvL0zLCb+22Qc2Cge6lu0ZFgUzdpYRVl52zad+LYKRNOmIxsrDsxsQgImPY2KVq2Klk4ZByET51b+7mLaPDjjwO6BXRTOg/ztLRU3DQv3bqqjuNcA+f6HZ+1M01zxIPc79DOwKl6LBm6IVZEo2tpmHFSHI/sWjasUB1aqr6Lth1yHReOgVdG6/va1e2Wbfajjca/93LpwHdI44NeBNkUrGZJefh56ZxxUrYWs7brqNG604zO+VZFiU2NQOAttolpP2xf9ncLGgSiY2WxfqtHDJ/5dFAd1w5GN70V1itZWE9ehVkXWjZvtvxE2bU60Xbjl12CLrI86KkwPu6DG77/ZxH+o4sSnecmvJYNeol4HvMORQ7K3ZN4XFAezBhoHAHSMRSBPkzC+i79rUDhvoXiwsKlolXFgULhv6m1OZOdtK0LQIk8b150uyu+DzbRnE5sQqThoqHZQXn94zoSP4iDkGNBUEU2OgaZFY1PFQYN9MFUcGFkVNX1gbNrAlQHxNo2L4MahUcFQ91SOew42ad7Iaefmx2Capoo9R4XiwNjfPXTCL0Ozams6bawFcobkXPTZ59/GX19krYQoDpRztY1VkWgcVKg+rO2yGjVvLEPSa078W58DoRY1F39uWzSq0zga9Hvi+LOxKhrmvi61KnKyqTgfqDjwylgIvSd6ZRzUWRNb2fVlaO9h2XHY6yXKcdi2gRkeUi6tiqwyDrqzKtLWEmXXYqu12DS1mpgRrIqKts9VT8Nx2modcHH7zRQPVnZpodu3sgwt3I8A2ziv6yCwA40DADrGQh7XZNI6QywWDYqGbRQPzSb+m2ccWDywtbEqMps2b1q0M7IqalO048U1K7ugkGLF/MDmYYkfN31leqd4H4xUJw2KlmrGQZOA9AbT/kRy+sdScRCUcWCQcZIhigTBOSM2D4xNpt23f8+maNU4HNksY2H2VD8hdmVy2rn5w5J2/FZlHEjFg23BqGjCL4O/92navGij/buwjAF2DlpOuzfIWCBqa1UUVizJ6DrjgMhY9THmBcO450DdY8Bc8VGzceNROJdWRYPg7RMZ2SUFhiN7KQ7kxHtBxkG0xkH4xL2H4qDueWCdNVJqVeQUDhvaxPM4BtVw5BqqD4t9qHMMemw/PJzYPpybKPzz97JLkwrQgmtgz2f7GVz9pa0L+VoVGQezBxoHAHSMiVVRq4yDbhUHFkUj1aooNONAKRzXnXZs4mk82b7RpKv09w9tnNgsltsoDqwmHaRVTEjh3KZw3WTC8uLv2kxZNSmcW2UcNC0aS8VB8wfmJqob03Bksf1m0+6NrboaKg6sHljFpHXjcGSbxqH2t4uwkqk3ybmwVBxoBacqqyJrf/e6RWOrgPaifxdyLZbhyC0yDhooj7SA7jbXorpWQZbKL237IXlH/H1qpfoY1rsXWCsORLGs5jlgbtdV1TjidmUORfvyjAP5M4vieWg4ssekM1ENqyLjnJuL22/uL9/aLov9+ySpXhN4N9BKw5GNBpg4oYVrl8aB0rjqlXwG/Dpp4XNf5xiMY1UUdg2w2n5o3pA2QDY2UTyEKV68FQf8eq5ZZvFmAhQHswcaBwB0DL94WmQcxG4cNA1G3d6+fThznX1QvYVr3qz5dGI3igN+DDQrWjadtGwz7esVjhrSPLGSZ7eyq3LMOKii30tEgLKFVVHo+eeZcdBEcdBm+9JPOLRwbjNxLz//0OYpl0g33H7TaxD7vaYFwzaqJ80up9k+1C8aW/qr82IdUfGEmcf2t/992INqhuUDu3bvDrJsMzoHierZY0wjwoEbngdpmrYOR45plZMhQuLbqD5qqkDNFQd1Mw6ci7bVnz8rXLe0KtoajcV7ENuqKE1TcT1cKmheeCkOpI2s/jnw5u7maGxik1JnoEOsxVr62/N1xFy/V5m5Zd1Aq3Md8CqcynOx6Bi0L9rXVf9ZKdCnqaP6sFqH5f5G4MS9eg0atS9cN1UcELW7BxZtP7RxZZ1xwPdDux/IBioaB7MGGgcAdIzFQqlpwYpIC2VrYFMiLFLqZBy0n7bljYs6+2Ax7djm9VvYhIzGKfFnDG7BU4QoWjZ8WKjrZ5rbB4Nw1DRN/z/23j36trMsD33m+v323rkoEIKYkoCItwINx4EIShUjYkQuUYsyqrVF8XgpHWhrj4N6O4dj7LFqe061tD20imi1o6ekKFCJKNEANVChSasDxAsaJUISyiWBXPblt+b5Y7nWXut737Xm9z7v8831C5nvGAyy955rfd+a85vf5Xnf53nMe1AnVaQ5MNoKv90b9PVQsU5Y5ovi0Gxlksb3OGB8FlSgOeAcUkc2J2affzNz5OrEiebA7K0dtFyTCLiuuQfWEI4/LHmVqlHGwegeB0JTTFa20DIOdMwj2usjwTyy+4EYcCxnnTCsD6FBddTj4GjeaxkfQx4H4krbKGBon3+ufS+BuYtxcHgwM88/67PgyrZtM0ZtxTgw+8I6qSJA4zNhk5j1jIM066UAXU8R+/Hsc0hJFak8DioqrRft65NXtfr+q38fQS5p11yoNiju+766kMG7NwrmlZEN3OI35LHSxjSHbpG4Wo8ac2R1An8KfUyJgymm2HMogDO20hRwtH0V1cYpc+a8vvqsw0465np4m4UoeJjxOLBVPgxo6yVOaqv9NfII5edmXX3VuTUlywPX3vd6oTNFjQEFG9eKkhcWOK8FrvWso1qZHmWlK+OzIGUc7DFxA/CScTKpIpXPCgnals/ucNYNVjguQ+UzYqWKhu9BeYBKMQ4KXfFZN5w8kXsclNIMA4kL98AsYl0Bdc/AmkLqQOvauVCVQHNlA0fWFmc8DpQVjxHAFNgG3I7HeFAyXoD4/bdzUA60LuchYHfiAPASqLkx6Mq2bemD3Qe0qTbfNg48MFkhVxRhHJgxKE5e1fj9lH3IJHC9PkQSJ2zidqgP+5QqGpoH7RqU70PI40C8DnlJ9JBUUYPEyXaPBa+IUcA6qUxcKYo4d4WRjXPug7qIZQp9TImDKabYcyioeUqNfWazmPI4ECQubMV/IHHiLNZRemJGpkZR5cPKM3jtqyruI8kTRaWDnzyJV/uem3O6kuaAWMm2AITmtKzGvYCizs4B9qDAbxSZBKbKHBtwjHFJqS5d4oBrn6/23vxc9fgTmaLm1sFyHHDjsKSWM4yDzDtQSoxccOJgMHmiPqzZCsM9Mw4qnoFSoqFcv6qlilQJNOfeRaVq0triQY8FwM4XmeRN1Cjeuz+Z9yCaOPhkM0e+10kc7JIq8v49m7zwgPdtfdi/x0EbjweTxNyxJyj93vLmyHEGsIJ9vPn5+nmghUzPuaO5mce2VXzbMZhvP5pAVCcwAV+yaluoGQfePLatkOHQkW2VVPyfrXsGyn3QRvu1iSvxu1fGxDj45IgpcTDFFHsOTcV5ArgXVFpabfEAaCqotmYBU8DfSEbvAWOGuAxFtbdXGcD6C/D66ly1MeBJNOTlsgCuyhHggPuMObIKtLFV/7XJowbJu2rGge6gwHg8qMyxAX4eVszBgM6gmmbdmDmAlEuTeZwE5uHiwMKug33xsZp7oKy0LQ9nQzJFXvt5xkFdhdsyvHukkssC6t7D8pqUMS/t9aFJoHn3LmyOmwRtmfWw6TMIAvfed4TaL8Gykc2RoxIlap8Tj/kUTV6l++AA79vMkZXG5MvwJES3Jg4cMNnrfzQMeL9DwrS1QXeZmPBCaVIPeL9/+3pogFOBxrt3D7ea05rE6XjV7i37kGEcpOdB5x3athZ1XSdnPAABxoF4DVpGrVSR9VrTgfYLyaiCceB6HBTr0MQ4OHYxJQ6mmGLPUW5kGNCGlQkBbDUcs1liALtt1zJVZub3JzwGgDjrwshTRKrtBaCdt7mqHQOqAxMLWi6uzVdauvegBjgWbdZSoKXowEYD14rklYxxkEgcHMUTiB5o3pfob237pEm8gnW1aJ97BuVmnTXGtPNw3TugMiVkpZIAjc8DKxmnrLStqeoaav9o3qdo6lGPg67rbAKdrLZkn4EZg0pj3lqvn0bsP2BY4768//uQKlJJNQFxqSJPzipTcXxa4HHArkPLz+/6/jLK5F4WsLnv7LmNP1908nCY+aT2WXCSF9vGQQvGgff+bksknzjozH5hbMZBc38BQjo0bRJumNDjMg68MTyqx0Fltfu2f1e8B5Z9tiN5ZTzHWjAOxmM8APXPwBubisRFrceD3QPpGAeu34zzHAz7dWIcHLuYEgdTTLHnsAe2+GbRVHomgHPmwG4ZB7y+O7NQZyQqFObIVseUb19hTg3wUkXn5j11YGVlUhZ9yAMGrrY1yThg2meAkm19UHkc1DJ/FB4LJWhcOwdoGQfxMei9q+yGmQWuZVJFJOuj1BplK95pj4dZfg5cfC4xDwsSWKxknLLStnx2Q9X+XvsAf2A7mluT+iHQGvAqDdnkFcc4MDI5CdDI+lxwJuHsPOTtIaOAURqwo6SKNq/J6JtH5wLvPc0xDmKFBMp1CIjf/9ZSRUwCMy1VFJBta6Iv7yYOtlc7q9bh9YgwgduD9jVzgJpxUP8etGCduMD1NnNaA5oLpIqC84DS62fVh8A4kDMOgrJ9JfOuReJkV8X/cZJKUjIOvCSotyaU92byODh+MSUOpphiz6EAzo5MpW39q62ocst4HJTgHsc44H//bNaZ/kY3K6baPtC+QmPdlekhQUtA4zGQGgMCqRygzhTTNcQSGFRHpIpUVT501b/AGJD1+VAyDpgEpur5AzzrRnVgZJM3KsDGjAGWcUAChpb5xrN+VJJxNWBJeVjNHJYYqSLXGJbsA6OvD9j5gp0HyjE46xZr/FAo9iHLqDVELcMm0Lh7UN67g5mtZjZti6tty3FQNQaEGstR4N5bK5UG2VGPAyAHGkXvf2upoiFj5EUftIyD+8/Uz4UtKq3dPemOcdBCpiOSQJMbdAdlchZ9KBnw2j7s2peXa4AmcWCf4XZz3DzrsYyoZFyLBFpIqkhc8e99ftc9UBRyrse5o7k5l+xK3qgT+EA9A1QhGVzbh239KFkIU+Lg+MWUOJhiij2H2SxTwD0HWAGaKosM40DRfrm5jIDWiz7kNisGsA0xDvIa66xMD7Ct0i0/BsYeg65ERY05roBxAjjSCCnGwbga9wqDdHYOMIBFYqPIeRwIEweG+VXJ+BBVurHJG5XGvpFqIj02aG33c7p3UOE1BNSNQQXjahmlLnZNpa+ScRABStZDBdyZdYiWy0own0jmjUqyi/EXMObg4mrjcp/jhbLa2MzFFXJZZfspxkE0cSDahywjLFUkNGgH7DxUlzhozzjYFmp9f8B/frveRZVk4K4+7GYcaCvuKbkyQRHRrj5Efn+Lantg+xiwyWt94mCbMfAy1MmjiM8HoE/geTI9uyTTlAxoIOZxATj70AbJq1qPA8X4W/XBk+xy+mGLmHR9mEITU+Jgiin2HIqFMmOOrNgw50Dj/EaFrbQ934cccJMxxi0Nwxht23KB77qAvrrr8aCoOA+wXgRSJSxo5x1mmM1KREt1qA9jMw4k5shktbdSIoGZh5SGZGYeZhM35IadZV4ZwIJM3ljGQd3vL/vJezzwrCdFpZd30KqRi7LV3jqJlJq1SMk4iEgzrIeq4r18d6pBe6FEA+t3U44VFjhnADtlpWnf95RUkSebyIZhfYxukF1vSrv4dzHjIMiAtB4HOcCGkSoy+tZpj4PNz28zRgbaaJt737HLILjsX9l/JiJJTAOaJkFLZh4s+zeuVJGWdQXY9fDkwWwrA24UqaIh5pUwgQ7Ek2em4l8sVTRUxKCWSooyMMt/y3o8AM49qDSIZ5jn28KTnvTeRVvENDEOjltMiYMppthzKKQ6LGDGV1oym6WMVJA1xGMkIvjEBWANqqN9yDEO7L2KHpitpvLuqoqNa72KawlwHDFHzkuVeJTsmntwMOuMruQD1RyZrfpXVLmYd5CUyTmXMGZlPA68uZKlx1vGR6VEicoYtnhvaoF7Sw9mxx/3+1WgbeYdVDAOfGmKOGCZAUyZtejQmQPZMeBWWNYwDpr5vNQmr1qCxpXzQFnxTiYQOYkQXaWpt37UeRzoQKuoVJF3jfIeDHscaPZhyyiB/weGVJGYcVDKtu3ogwFtGzEOIlJFWdCs763fzC7QVrEG7vp8HeNAx77z+rDr/ivOomXUGtMCOubpRvtn69sHGvhceO9AwBw5zTgw+v675yG1XJo3j0aSV9nECVAvW6dm+6xHeR8Ot8gn2jlwYhwct5gSB1NMsedQVLpkTCElwH1CKkhRbWnlCYKJgyRNP+Nx4B4Yg2Og7G8kceFdywD3JWgWk6vKJ69y5sz5dzBjjuxtlhUG1bXAqWKzbgA7UiYH4ECL+bxHectqxqA3V7JVPuU9YE1RadCUfAdVHge0ObJTac2M/zLhUmOOvgxFtaUrl1Zl0K2rdGTW4q7rZGOAMeYFdBR9k0Qnk3fnyDEI8H4/KqmiWjPE9VDKlLDJo6asj5r2hdW2+/Y4KAGnB4RUUcl6yCYvStm2HaBhG6miGAtWLVXktj+iOTKTyFcapC/6UM/8UfrcLMMk8HawXprI1ATnAaVsIuDvpWNSRbl3IJK48drPAvc+46Dea6UJ46DSnLulx8G2cVgaxGfXoSn0MSUOpphiz1FuJKhKx4THQAupollltTug2ahkQGPALpjRZxClpa+Ht5EJMx4SMkGuti5R8cyC1oCmysiANQmpIAXjICRX5SZviGdQ9IFlHFD3n9T3d2VSmOSpJxNTkzhw+slqe1qZlMrEjejAaLxeyOQNW2XFes14/eTGIMe4AESMA+edrUniG231BFjCsl5UPheMMS9gqxBpnxdSttC7jmUdsMwXFXCnkAmSJw4ImZIMcMFIJyqBQ4U5cwY4zHsc5ACre8+c2/gz47WSrbhPMQ4EMjFRFqyK+bet/WUftoXcHJmSTBMzDsy+fMcYKNseEbQFHI15AXC7b3Nk7/lFzJGzz79Wpmf178XzUXssADHGgSR5VMk6UTEevahlPZQeHBPj4PjFlDiYYoo9hzHHFQAWtaAdoNksZmRqFBsVFixQ9cFWGPLV5gCTuOAZJzKpohTroTywjwvcK1g/DFiz61rFPDCmxwHrM+Jt5BnAwAP5avowc4DN0mS3NlQV97xMCzcPmc06zTjg2vfWKwa0ZeRJlqFg3ZSfOZjVyaWV71/f86A1OweoZELKqbt+DtK8A3YvVNm+m0BkEwecSbmq4p4zR9YBNqxUUTlfZKqN7X4gLhmWM0eul4gBFqwfW22aeAbF+ztkTl2uAVmJjlKfv4ZxoDbGLPcRu0DbUy0kQoIJxJIRkU2c+NJ59dXeWeC81EivmYeUknF931upol2MA5HX1HpEKt7V5tSAZ448lMDUsi7CHgdqc+JA4sZrP1vxXivRs2q/gddKbfKkReJqWx+2Mg5M8nRiHBy3mBIHU0yx51AsVGylMeDpaxOgYSmREQGNBRuVrMdBFrTIeBwogPtM4mIBbm3+HQXcp5JXAtZJYgwoDLEiWqqmfY/1IWD+8IwDJnFDehw4G3kGMPDmDd4Ylay4d7xGakIF2rGgsUpb2bKOEowDRi5NOA+PKdnnzdfsGLTzYC3zR1NxzBYRqAyijWRe5Rjwrhvba8Me3EnGQdAQErAsyaN5jzn7+x3Au6YP1utIJ1VU8x6oGA+eOfQuwHIZlnnGgyZRnwu9VNEm4+Cik4eDn1Hri5dSRbsZB/pq8ygT+IKT2sSBqy8/ojGtJIGZYd+5DMB64L6JOfJOj4MG1ebBZ1CuA2ngPsh6UZsTh6WKxMB95Pl7/97GZ8OfB1t4fCyjNoFTngcViZMptDElDqaYYs+hWCitOXIAMDnMg2YZj4Nyo0IlLhJSTYs+5Cq9Usa4gmpzc0AJSCUBGnPWTPJKYcpkASuedaPxGTkGjIMRpXJYg/YFfX/z7yjGgasnzP1+vtqZY92oQDs2eWZ1RVnQNg7WLa5zQFvi0G5lCRKMAwHrqh4w1vx+QMc4YEErI1tIsp7KatX69rl1wLtP3pxSE3YeqJ8L14NNIJaA31CVJeDfJ96c2ZFnIKqNc4mDuFSR53PBRBSwXIYtIuJBk7RUURK0v/dMPWi/DDVoWMpclOvcRtsl87uBOfLojANPvnGXVJGRi+O8tpZRzgM15xLDOEjJlcWq3ZU+N8uwHge7pJL0oHF0HrCFfLk+lL+h63afDVsD94MJVIF09K7Pj524AOrvQVnolJWJ2uxDwYDbyjjQzoFT6GNKHEwxxZ5DQc3LgJblYsEc2DPAfblRUVSaRqrdAYU5sk7fH4gv2Ob5h39//hmkkleCSsNSXiYi12SrPJj2eamiZnJRLONA4HFR23bXdebALGMckBr7KqmieokSDWhn5+G6MWh1RTWMg+rx51XcU+Nfxzpi3gHDuiGlqoBE4oCcA3SMA1YuTQOasMwndx1mmUfF2KmRyVn0QQPalJrGVdrirtcSmbhw5BlqEkiG+SWUS2KkinjmWQywXIay4jla6WqkirKMgzJxUOFxYIGrERkHLWRigmNQ7nHgrGER4Dwjmee1PySXteiDLnkYNWn31oCsVI+p9o4kLlp4HAyaI+f3Qbs+f+JgtlO+US1VVCZuBiv+S9aNOHEQZRywBRTrUWvQbd+9lowDvw/G52ZiHBy7mBIHU0yx5ygnyrHNkRWGUBlzYoVMR5ZxkK04t1JB9e172rbh9hOgvXc9MwaYCr+t7QsYB6HkmUAiwGoa86AlwM0DtFSRU2kWjQzjpNzIyjwOSOBWBRhVa/yLQDvW66SsxGQBC3Ye9KWKFL8/wDgo+sDINLCsJyVozco1GY8DEeOgNnmlkEz02+eTd7Q5Msk4UEnlcObIzhgknwGbRFd4HS2DmQtUGs8uYLtng+qxzZFL0L7G48AwTpKgmTFH3pG8UAOWgOO5M/AM1NW23hqya032JTN1ybsaxoEpJMu8A0GpJmUCfxkRc14vacLKxS3DSpbtfg8NHpAEj6MsUE+qKsP6qJXpWYY8cRFO3GilohZ9qJUq0ieuzveh7j6oipimaBdT4mCKKfYcig07W+kK2M3smNrqgO0rI9Nh9WzH8zjo+97R9s5V/McZDzxg5l3PeQzwyRMrVaSQaeFlSpgqm+gGcT0Ut5PRjQABAABJREFUrBOAZ9600HePzEEKxoHX530bs9ZXnGtAO3YelnkckO+gf2AfN3mpMIZUMk54qSIueVECGixwaJhnlWNQJRfG+wt4c/C4fVBJBTDa4i5oyEoVsYkDoVQRwwJVmSNHActlqN4BID4GrDn6+FJF6opXY468K3HQQCYmyn4yjIPkM/B+w06ZGFEBy+qzJWg9sjmyN3/uZBw4a0BeY79eqsabI7LAfa1EzDJUyetlRItZ1KyXSOIGsPPgvs2ZNR4HlVJFo3oc+H1QMV+naBdT4mCKKfYcCk07pb47U+nJGiJ67S/6ELsHco+DwILp69nm2k8zHqKJg/LALDBHzkkV5YHjkFSRoNo4U+2sYJ0ATtV/tcZ+LnEF8JXGQEPGAamvzgB2fd+bPtSOAZU5Ngucl4mD0+e4Ki/aHFmUOMvMAZZ1lJ8Dqs25haA1uxa28jig30ESLGDb965jAQs6gSQCThng3tsz0IkL0muk3Lcq9c1r3kWVObP37taMATsHce3P57aYJartzTKOlsFIFZVjMKuxHemD0l9iGdE9Ydm/sv/RKOehkwMyMSrJzNVnS8YFIdeVYjw4z3DXe+gn8NWJg10G3VrGByCQKkr+/ug7oGa9RD0O7DyQewdN4ibIuGjhcbBtDCjZPrYPZQLLfw/K9+No3kv7MUU+psTBFFPsORQbVlPpObJUUcrjQGAMmTFnBryK//r2/UNitOI/l+k3gGFUqklQbcuaUgKaA+O+q43LZxZhHAAag2L2PbDVdgLGyciMA9/jYDzGhXfPWMYDwAGn5TtYDxrb9rlnwM0BXj8Z0JQ1ZwY0Facs48d7V2iZHBK0buVxUC0VJJIqUiavWODYSHSQzBsV42AILFm0fRykinQyGUzyonxftYmDivZLyUD2/jvtD1W6qqWK7i+AojI57UX5DmYqjQHHHHmnTIweNItKhtkEfg60LNsf2pO5c0DiPjB74rLgpNzTZNoHdq/J3hwh9zjYyTjwzsLiiveoVJCYcTCYuHDkrJTJq7BUkfr+DzAe1O0DNgm87R6U42/eIy2VtQyWcQBMckXHLabEwRRT7DkMNU4BGCb03RWASciUUlBta+URcsB9JMvvAoYjMw6Oh1QRPwYUpoRK1gvzDjLVVeuhYBzw1b4CmZZE8q4F46DreNCSkspyxmxKJoVJXhngmpMqAqyhWk2wc0DXdRJj0DLhW1vpDNjkKfP+sYwD1xyaBExog2wZ44Cbh2VyYaTXipu8YjXuWbkko/HO3QNGNs8bg7RUD5k40MqUxJ+Blengfj+dOBC9Ax7oP+xxoJUqYqSi1OC9MUce2eMgeg/U+t7R9t0ChhF9NhZ90DDPvPZPHOw2aVcy/5ZRa0wL+HOwXCppALhWy9WcMQbZu9tXsz4iiRvv3+UeB4OSce0ZB9ulivLqD7V92DYXuGeRSa7oWMWUOJhiij1HE4mSBGga3SjM5z1KVYuQvr2AmmiqHEf0OPA2NfHERe4ZGC3VqDmyALi3rIdM8mpkxoEAODeVNSOzTgCv2na8ivvykBqZgzSMAz5xVEpVcTI1fAJRBdqV0h61oLFb5UNUO7Lm0IAdLwqD7lDySiEZaJh/db9/NutQdpWt9GMTeDqPg80/184D9h3U/P7aObDrOsk6CPAJtHLfQjMeCMBuNuucd3BcqaIy0ZnR1y59ioaMaQGdOWQJlh0499aLVsmzxXfvbt8yDnKgNeN1opKKWkYJvO9iPZT3fp7UVgfi0nkXFM+gZExEwxYU7W5fJZm47bM1c7FJHirNmYdAawH7vYy9SxUF52LjN5cEjvcuVVQmbkY2ibeMgyFzai3joO976zWyJXnUYvwvo5Zx4P39xDg4XjElDqaYYs+h0NTLGJNmZUq8zX1E31xBj80ARkDOINr7/VHQOCtTU1YF7KPavdxgRpI3ikq/jEG2qTYm2s+YI3vXj5lANIwbKmnBj0GFvnJOLk3AOEgkEGczC1oqnkHtO+ABKsxmPcM8U8iEmENq4B1UzAH2HRh3DC4+R46BMnlHglZmHdizQXlGNpFnHHBJdGuOTFb8k7J5qmrTqK70Msp9Ywa0Yt5FhdcTwHutmGpTcvx5gPfQWlQmj88eWc+eSDD7MbMGJEGzSOLAG6PZat+wx8FJLeMgCpwrE9gAyzjQzQFlAdAg40LI/FtGVqqIlStbtX829gysbK04eeZIEQ39eyZ5lfc4SCYOgokbRRHbxuePbGHndqkij+2hSRzUPgf/LDIxDo5TTImDKabYc2jMkXmpnuyB3T+k8IwHIL5Ypc2RE/fAe17jSxXxiSPAYxwIKv4jY0AAGmbkmky18cjmyN71Esmw2mrfPcokAZoqH8O6SSQvFffe+97dfcizblQeF4DGaycGnOefgZJ1xEkV8ZKB5bNiQUsV44BhnAAJubRE8n5X+yGvHZHGPZvAUyUuorrWy1Alb1QeBxngmpEOLMeqTKpqRK8dYEsxzyDjwAI2GeCcmQfsGqD1OCiB+fVwjYFHBg3L5G0ptRQNhvmkSmADnHSgWQeFjIOhechLnJTsoWhEgGulXNwyovdAlTxdfT54LlIbdJvEzUDFv1yqyPgLxBI3eakqO4ds64O3V1R4LCz6Uce8OXEwM2vFxDg4XjElDqaYYs9RHtjnfazSpu9tZVBIXz4J2HgVGRmpJCC+WKXNkRPApWvKGk0cZBkHCVNQQHNgNdrWEdBMcGBkTUEX1+pBw32YI7OgWQtz4JjHQVntPC7jQPP7vQQin7xgqi0tUFDPeCjHK8c4KKvNI3NAHrCwgF2AeScArjPMN5UxKGsQrWMccPOAqTQVgbaRZ6DS2GcTaKpqW6trPWxMC+TZp8ugEwdC0JBJItoxKHoHqp9/8ftpubB4MY8HJmXkihQyNdlq7xJ4L6WA1sMbo1nQrKzWHhoHZbVtttKW8vkQAsdnivFTZ47czuekKnEhZDwAsYp/pVzcMqLmwKp1eNV+cB725qlMH/bNODhdygQNtS/2efH6vzVx4JqDqxIH9XNBOU9PHgfHK6bEwRRT7Dm8zUxkw+oC1ynQLFftH23/YNahKy6PLlY2cRIFzvnNmqsnm/U4CC6UmWp/QCWTk0le5Q/sVuM+UG0sAA09I7ZIKJ4B63WhqHbPvIPlRvb+kT0OWpiDZ/sgkSoK+UyUiQMB4yDEOsoDBimpIkfjOjoPsfr63rWqauOxGQdzlnEgkOoCnARiKIGcT94BfAJNBZybQzpp0i6TSqpsv6058nga+9bv5xgwDgYTB1pTSkYyTA1aGnPknYwDfbVtWN9dxLpafb5cjyrGoSqBDWiSdzlz5ngxjyp5uuqDAY6HgHvNHLxqP5jEVa0Bq88HzYG7rpPeg6jHwcmDzedTJr+y7Q/df7VJu5s42FJI4D2bsT0OAE0h2RTtYkocTDHFnsOt9AmANt7EnpJoEEgVRaWCLHAe9VngATO//fp7UG4sD2YdZlngPsk4iMrkSKSKEqwPY4ookEoK6atLGAdcleXqegnjoASsyErHsUHrBoyD2PPX//7F92aA43zyImRQbaodBebIIdaRoOI/MQd563D0GWTmIJVMjTVorvU4KKq8ZIyDStBUBJplkui24nncZ6CqdmUr/vctVaRqv+978+zqZFLK+6+RqqotIrB7ANbjwGEBl9U5RXiGmewcADhJVAK0zlS7z+e9GYe7PA68MZrWFy/6PzQGrVSWFrQd0pcH1MB9fB5QJg+txwORPMxWfJdSNVuMaZehvP9APImsmgOXwSRwlQbBtuI/KFUkloqKMg7YNWAZ3llqO+NA6y+x0Y9AAskUMSWTN1NoY0ocTDHFniNLkfU21yGZjsPcRkmSOEgeGDKAGZDbrGWkEba3H0ycqKWKBMa8IW3pBlIxEYNqW+kV36yZQ9I+noFI456rdteBtlS1e0bbXMB48cZMZCoo52HF84+wXkzyRuBzkQLOiQMrC1gCGo3rjM+KPbCrKu7r+lBWeak8DmpfQxVgYpOn4z4DD7SuHQcZ5uPm57j3QCWTwBYyqEBD777VVTtrKl3Z/aiigAGwc+esw2Axi+9zwwM2jEl7+fuPEqCZN39duCNx4CU21FJFw/rumsTl+c/H9+SqBDbAAffmHcwwHgifEzVwHpbKEYLm547mKLs/tBYoEzcA5zWjOAstI5q4MVJFSbmwPOMgyXgo7t2s2342c2Wiks9/GYZxsOM52EIyTfJiCk1MiYMppthzZE3JvM11CLApNkrzPrZZYGjRpg/JjULW4yBTZWCry+LTatYcttxcnwzK5JhqT8acOAFaKg4rGamk8n4xB3Z7SAoyDgSVLtbjgJUqItpO3H8LWhOMg0TyUFHl4+madwNVnpvXKyruedDUJm8IxgFRZbrtWg3jgE8eAgTzSzgH0qBxuR7VMg5OaA7M7DMo5+Ao63Bb+6OvQ4n9kAGtRFJB9YkLjUwHa1KuAk59v5nhZ6AyR6Z9PsrksShxUfMOzmadWQdZjf35vDeAZc09MHNgArTy+r6LcTCbWYmUrEyIlc7bfQ/UoDVnTqxJYAP2HDcEmgN2z+KxZ6rbJxKoaqmgWlPY8+2Xa4AucbNof4hxoE0cMPKRygRatKBLcQ7b9fno81dLFZ06PNh6Lum6zjz/bPvn+1HPfDF+axPj4FjF4b478ECPv/iLv8A73/lOvOtd71r9/0c+8pHVv//Wb/0WrrrqqiZt33PPPXjLW96C3/zN38TNN9+M9773vfjIRz6Cg4MDPPzhD8eVV16JZz7zmfiWb/kWPOIRj2jShyny4W1mIsCxV50fAkycCfzs0RwHszpDPd/jIFdtHd0o5D0O+MU6Y8q77TPRzWq5QQ//fqOtLGAcJOSymMOK0uOA2SxmpYr2KVVjEkcEaFfOQznQelypJCPVNbLHBuBU+zLJu8RcpJAqKu9bJHmjAG0ZWvyua6PzQIp1JQItWZPw8kDLMw64MWDmPxIwyrAPFdWW3mdqx2H5DrCgDW1OLALN2DFQrhksaOn1uwY0VZlTm7WATtyIWEcBn5P1OY9lHLi+awxonQDtSn8DwCZHyzh5MMPZo/OfG9vjwHv/+74PFSCsB8f60CSwASsTw7B+tIyHOOMi63FQvkODwL0wceGdY4faLz2B0owDInkllSoKVLoDThFhEjiPGoQr2O/rEWVcHB50G/N3O8bBdnxJbRI/hTamxAEZt9xyC57znOfg9ttvH73tO+64A9/93d+N//yf/zPuvfde95p7770Xt912G66//nr88A//MP7P//P/xP/2v/1vmAXBjCnax8Gsw8Gs21igQ4wDd5POSxUBi4V6V3XOeigYB1ngPMs4kEoVEYyDrCGS+f1RxsEeZXK8azmpoLgR2jKyVR4eJTjKOMiyThafKQ8pde+wosqKZTsAGsYBY8a4DIW++nF8B2MeB2WVT6x9r8o0Vu2dB+3YSmdgC+NgxHlYBVqy98DMP+RhrXx1xmQ9AUmD6pL1IjDoBiLAsUqqKA7WLNpXSRVxCUxV8swDmupkStok78aUDAQSBumHB/g4zq3+zJoje3NXTR+UoLGX+B4605w4nAFnzn8u63EQBa63SYUwxUgAJxmmYt30fU8V06h8ZgBOPrRcA/IeBzHgWiUXB/jv76A5srn/6uQZ4bORkSoKnomMVJG44n/o/qtZT1GprBMHsw2gPjv+t/Vjp8eBYb9OjIPjFFPigIy77rprL0kDAHj/+9+P//gf/+PG33Vdh8c97nG47LLLcHBwgD/6oz/CBz/4QQDA/fffj5e97GV497vfjVe/+tV09cIU7eLkwQz3zc9PjhHgzDVHjkhEeIyDUOKCOyTs6kP0wMxWuJ1vnz+wmypficdBkHGQ0PcHPNAuD5iEEgcCjflMxbmt8ojef3u/amjZ66EA78vKjKFDyjKaeBwEDrsKxgFbZQnYd5aRKkoblDdJ3tT3IWtQ7TLfQqBtHjTNPANvzczOw5F1WKUtza6FCo8Lr/0hbfVlmPHPShUlWC+WccAw77z9GClVJDNHZoHrcVkvCp8TYIvHQcV6rNgHee3XroUqqSjrc1KbOChBMyXjoEaqSMM6AoD7zmz2/XDWDa4HSn15IJ5A8/p37qhHZQ1Xun2vDzzrpkdPFNMoWScmgVolk5NPHq9HVqooY47rgc5jexwwezIp66U8Ew38/vLfj+Y9juZ9GFNYhqm0D7avlsoaTlxoGQ/LiHgcWPbrxDg4TjElDgTxqEc9Cl/4hV+IpzzlKbj88svx4he/eJR2u67DM5/5TLz4xS/G1VdfbeSI3vKWt+AlL3kJ3vOe9wAAfuEXfgFPecpT8NKXvnSU/k1RHycPZxvU2phUjr02BJp5m9WEx0HX1YMFy7CgSQ64jSYuMsAxo+E41H60ysCC9lGZlBI4FYCWEdBOoG1rPQ7GYxx416c9DojNUikvUssayiZOjpxDYgq0ZhgHCY8FqyubBwzHZD2t+pBInmUZL75kXUaqiHkGcWmGZSw1rtfXkjjziB+DKtCYlauyjAMNaMhWW6tkWjIG3ZRcXIKBqaq4ttV9deuA4h0EeNk2lb6212/KmHVkg25VpS27DpRgDu1z4vmu1RjziqrdAbuH2GWMvAwV42b1+aAxrDdPLJ4llzlgzgWqBDYvF6YDja0xb03ySjMHLiMqVVQqAGTadxkHQ2OwKCzNStVwiQPNXgiIJ262eU5eeJJ7B6PAvZ7xEGNcqBkn5/vBMw4Y2dQp2sWUOCDjcz7nc/D6178eX/iFX4jLLrts9fe33npr87Znsxle8IIX4Ed+5EfwhCc8Yet1X/ZlX4abbroJT3/601fJg5e//OX4ru/6Lpw4caJ5P6eoj4w5bxawcbWdA4tVFjAD8pU+tsItCpzzoG1WJsltP6ytvX+ZlIzXg6LKyNDCR2QceM8r73HAMA64xEG2yoSVJlhGC8ZBJHGhkSrKMQ5aGDSHWB9JjwNvzOSAc4ZxwEm0rF+f0bjOjAEVYGLlqur6oGMckD4romrfMumckcxjgGt3LqwcB+U7wFZcs347Mrkock+oSp55/a5h/9h9iIZxULsXUZkjq3xOxpYq8hgnrMb/fWfKCtfhvZBa3zy6HnjrZSZ5YpLINaybRqwnoNYcWVfxzoDWlv2c1PgPAsdmDRB6HBzMusG1yPhspH9/nvXBvod931tz4iGpKNdz8ohOHFjGQYxxkk1eRhkP6va39mPyOHjARrw0dgoAwOWXX47nP//5G0mDseLJT34yrrvuup1Jg2U89KEPxf/z//w/qz9/5CMfwVvf+taW3ZuCiEy1cXlImQUr/l2pokTigqH0ZatcrK5xDjiPgBZZiRJAwDiY5wAzBUW/PGBEkjfl85r3C830UPsJ5kd5v6IHZl9TOcd6oRgHxQbrAhIwWtJza8N7X2P6+nqPg1DytJTJEYDW8eRdHjSy9yDA+ijpwcHEgZfsC5kDC4Bz6zcTfAZp5hc/Bq22NAvacvfAK15QmANXexyIKPpltXfMoFqwDnoyOaQ5Mq3xT1TaLq5rI5VTmzgpJXX432/3pDV7Ygtcjwvct/M4qLv/MqkiMons9ZOteC7NkS88SQCWWdA0mMh25fISFb9WOo9h3YzrM6KsNi/7UAVam70g337f9+GKd5Vc3OKz9VXey7AG9WrGwXhjkGFceP+eSSCWc+gg40Aslxb1OFCbg5/vR3EfdjEOTAJ7Yhwcp5gSBw+C+Iqv+ApceOGFqz+/973v3WNvpvAiQ0/LSMQA/sE+pPGfAKuWkc1ypz0OUlJFOcAQEHgcnMsBZgqpIlYiA/DHbHTDngKOxfff+86hUGwYWcaBt4mL3APvcBH5/RrGAT8HSIyJxVJFY0v1GEOypDEwMD7rKJvEzcrl2PsfSZ5qDuzsPOjNFcyBudyP1BYxqGR6MskbhUyFa47MStWIQLtaxkHphUCbI5Nj0MokaGRSWHNm3pyam4dU1Z5llXA940Ajk8FKFXnPia04L/dCNVJFiuKN9bBSRbufg+dFkau4L/fkDOtGxzh4IJgjq5K3gL+Hj0oVpYyBz8ZAa8Bh3ZUapMFQSBWx86A3f3GMAx3rY/j5a+egcgxEGQ9Zxs0yQh4HRqpoYhwcp5gSBw+CODg4wEMf+tDVn+++++499mYKLzJSOSXAGjXn7bouBZgoGAdlpU204jcP2vEHRlPpvgfGgdG0DfZBAlomEkje84puWDKgobn/SVNUgJBJSY4Br7qpWqrIMc/MzAFAbB5QSCRkEngtGDfReUBR7ZhJnhlDsijjwDXE5FlHCp+TNPMsyfyKJU40gImq2hjgtGXZMaiSKmKNYQGNTEZGOlKhL+yxxWokQhbtt2F9VJsji0BLdi9QzlcsaKuS61LJldV7HBTrMOtx4Mp11TA+cgUM61EyDmr2QiqPi22fH2LBeoyDlFSRORdwclFMuAblhMdB5vfvE7QGOOB634yL42COnJWOXYZXqT6o8e/JhSmTV0HGgdoceWj8HQ+Pg3IdmhgHxymmxMGDIO677z7ceeedqz9/2qd92h57M4UX5YY94zGgkAqKVRuX0gBE4iBZZcHqOi+jPFhH2jdgkYRxEQXNS0p07BmUBzbKFDJR7ewadCfvQUpf/Fys7XJTdFgpjbDZh9yG0TuklFXktW0D0TnIq7LNVLvHN4oZnxMFYHAspIoSBuHWkCxXbQ9Eq71L0C7++43PSTB5k9W4NnNgSKpJA5rSUkUOsMYk8Nj3UKavn1iPFcmbjHSkQl/b1fenK95FGv+sVJMItKxN4quAY1Y6U2fOrGEcsKaUbhK5RiZHUECyjBJsqkkcyBkHRiooJhPifUeq/SrGgeYd9O5dzXtgpXJ01d5MxX0GNPYSb8PmtJo5GIhXuy/at4mDPsE6iMp1eX2gpYrc+88k73TJo6H2bdKkD8v2ZtpX7QHW42jem/do19nUJE+SyasptDElDh4E8brXvQ7ztcX3aU972h57M4UXp0qN9QRwz1S8ZxYLicdBcrOYNSguf3/k/mdlggCBx0ECsAIaAacJiQiAkCpKJC7UjIOoMbLbh+AY8A75rDkykJMrA4LGvCXjgKh0VEpVMYBBBjT2+sBQ1Fl9ecAzJBOYIyd8JhSgaZ71EZ2D+ORRO3NkDjQEOOCQ9jhQ/f7imUX2I4rkTYb9p1iHvTHLShWxwCmbPFKYUwO814nC4wLgi3lUwLX1myLbF5ljH8y6KoNjhWTlMjjGgbbatwRNPWbnenhzpVaqKP4MVKyfw9oxINgHbOsDY46cuf9+xfsQcKyZg73P1qwDXpI7NQYJv52mUkUD92A261DegjGTN65sbCJ5Vo7BKONCYY7sypYdbO+Hyu9rijZxuO8OTNE25vM5fvInf3L15yc+8Ym48sorqe+67bbbQtd/8IMfpNp5MIbxOAgc2DNgxTIyC3UWtPfbjy3UxhAxKVFx9miOvu+rNrqKxE3WYyA7BhQbtRRgIqBos1WOgFPhEDVHNpvj8VknXoV4rURF2uOA1DReRll9cuZojvm8D7E2rCkqnzigKo2zBu0CenZ5wBjX48BeHwNtc8Dx0bxH+djGNijPjAFVpSVbce/NFQzjgE1clHPQ0bwPzwFe+2PLRWX2Qwrg2j+kc1JF7BjkPQbyjAu/fS5xQbN+yL2QSqaC3Q+WBUyqxEW1VJcnE0KOgXI/dGEF+1Ll8bCM6Djsug4Hs24DqM2AlpxUT5sEdu0Y9PZitWexMgzziKi4l0sVhSu+de0z1f7A4hkM4M1bIyrX5V3D3oNy/jqYdVVz8eHBbOOzGdaLfQYD5tjO/Tlzbj4I+G9tv5gHo4wLBWjvrSO7JJOUrJ8p9DElDj7J4yd/8idx8803r/587bXX0t/16Ec/WtGlKZzIVPrYTfq4wLUxYqMSF7nNWlauqdys9f0CuKjZ7GYA62WoGQdRfX0FPbGsSol4bSgo2hnWhUnchdvmZZK29SE6BrzqpnrGgb3/mTkIyDEOgMWG+8KT9Ztl9qDqXcvJBOXm4Sw9dz7vUTLKR/U4cObByGHf+kzk3v9FH7LMq9gzyIwBBePC60PtWth1HU4dzjYOupxkGNe+y3qaz3FqFjsw299f/wxspVveZyOWwPRlIiLvkSsRUplAtqyncTX+rTGqJnFRnThpBZqO7HHAMj5KMIcFzln2qcLrahnHgXHA+J8dFomDDGjJSBeqkofmt1eOQW+uqD2LlWFB2zjjIsU4OGvXwqFnoChiWQYjVbTt/rPBzMU2gUpKFRX7l2rJulmHM2t/Zp9B3/fmHBX1uAByycOox4GRjRZIFXn7yF3PosSQsj4bU2hjkir6JI4bb7wRP/RDP7T68wte8AJ83dd93R57NMW2yGgrSxgHRfuRzXrGFHfVfnLDnu2Dt6GqXTCzMkFA/vfbSuNjIFUU6IPCkMpWmkYkInzGSW2U96u20n89sqyTDONgISWw+Xdpc+QA2OXpXUZBy4zHgeKgkp2HTaVbuNrdSd4kWB/3J31mwlJNSV3brDkz4CXv8smT2lDou8+TrAurcT6eZJgHbisS2BmvHYpxkJDL8s1ho8w7nnFgQQMN66X2PSzH6rwHpe9sJGJGNkdmE4iqSlv2HSzHCZs4sO8gx3gBElJFZzbn7gv34nGQ13dPAccGtK0BzjUJbNbzyVuveK8TLnGz+R06qaKa/bhCNnPVvjmXDL8D3jt4pPQ4GJH1EQXNV+0LvIa89oHhOWAb44CNsFSR0GPkfB9ijIMyyaiQS5pCFxPj4JM03vve9+IFL3gBzp07BwB4zGMeg3/7b/9t6jvf//73h67/4Ac/iKc+9ampNh8skdmwstIA65FZqCUeB8nNarYP28xhayqeFYmbcjOxf6miPGASAmwEhlSsPAJg37++X7xXtd9Rboz2wTopK8RPHc6qK1W7rsOJgp4bqTbNGIIC/mY2ClpmPDYUlYYlwBGudk+CRm7yJuFxEJHLAzywLJg4SWore4mWsFxU1qQ+kcDV6Ovnx8Dd959b/ZlhHJRAbzXjwLnu7Lk5cCrWfmYeKPvKGHSXTKEQ88mViZjjZKDGKyNVlN2HLIOdC7yxcm7e42RwLmF9p0zyUiQXxvt8sMA9x/qReSyQz98FjUXVxvvxOCCA64MZgPN9z2j82z35eMA5K9e1bQ5ggvEesz4r/BhgPAZUcwDbvss4GFsuS5RAjRoDr9o3eAQpleR8bih54a3VucRBUKpIxLrb1QdggHEg8jqaok3sJXHwiU98ArfddhvuuusuXHrppXjMYx6DkydPpr7z9ttvx6//+q+v/vx3/s7fyXbzARvvf//7cfXVV+MjH/kIAODSSy/F9ddfj0suuST1vVdccYWie1M4kan0YTWNNz6T8jjIAUaAADhP9iEj1VIeLqMyQYCzUdq7VJEAMAk8g6Uh1fpXxGVCeMbDNo3/WvBXYY6cfQZl4qBWpmgZJ4vEQUiujKwwXIa3mY4zDjiwBPASl4xUET/+AQFo7flMZAyqw3NQknGRrLj3QL7oWmiYf2m5tEjytAQt89X2QCyBVb6HCsZBSqqIeA8zc5Hi0Gy9VnLMu2gfyvf2cNZVJ3FVHgNsIYc3BhjQwFRaV67HqkpTtpBDVfHPJi7KNYBOHJHJM0/jn614LRkHNfshPeMgnsBSgZaL9uPMG8u6YZNHnHSp10cauCW8x1RyZQAHXCtBUyPVQyROgBzrhUkcqLxeyuKXWp+Ach1k9mIAl8R3GQcZnwvjcRBjHLQwRx6S7FKwb6doF6MmDn7+538eP/MzP4N3vOMdmK8tRqdOncIzn/lMfOu3fite8IIXUN/97ne/G9/yLd+yqrB8sCYO7rjjDjzrWc9asQM+9VM/Fddffz2e8IQn7LlnU+yKFOMgUemtaL/c2MwIE6s04yBbce/KJNTdAwXjwJjSJTX2s4kTZqNuAJsgaJc1pDIb1MA98DZrZ8/1QGU+W2GOnE2eldIynvzPrshUOmUTd96BKgpaZkxJNVJFuTGQlaryDpiRd9CCxkHGQVYuLXlg8Z5Zrbb7MrLAkZUqGptxYD8TYhyY5BHjcUCCxqIDs2F9pBgH8Xkgk0Dz3tcs8y6SxFZJFbG+T95YOTuf40LEkuCm0pb0OODNkVUeByzjgHsHjddTcA1YRsZ3zWj8y8yRKxIHZg+WA6zKAqCa9cD6fChB24rEhSCB7bV9LBgHhMdDDriPgbaL9oVSVcQ86CWZUx4HBBtbVfVuPC6qE8iadcCX6Nk9Bg6cIrpMAjOaRFdJla1H1GtC+Q5OoY84ukHEHXfcgS/6oi/Ci1/8Ytx00004OjpC3/er/91///24/vrr8cIXvhBPfepT8T/+x/+g24roUn+yxUc+8hF85Vd+Jf7wD/8QAHDhhRfiDW94A77wC79wzz2bYihMpU/G44Co+M9o+2Y0hbe1P7bHwbaK85pgN8jrUYImccCq2JwFAbNstXPf99YcOZq8SVKkzSEpApg4z+z0Uf2hWcI4SLJOsoyDHOsoJxW2NGZdj6zHQcYcmQMstXJh0cOKd31kLShB47Q5cliqKHdgyf5+wNEXzjIOEjI1CmPeaB9aMA4yMiUSj4MI80ig76s0R170IXYPGHmK1bUiqSLWb8a7V4xMBnsPjEyLyuOg2uMhn8AGEh4HScbVqv1E8syeRTQyITVj4Hh4HGh+/6J9puI+n8AGeNaJL1tKVnwT+voqg3aA8zhQmjMbc+SKYqJtcnl0H5h3QJRALftd7fUjmodZ2cBynGaq/qNj0BRRCTwOouPQ7oXzfZhCF80TB3fccQe+9Eu/FO985ztXoH7XdeZ/wAJ8ete73oWnPvWp+Kf/9J+27tonVdx99934qq/6Kvze7/0eAODEiRO47rrr8GVf9mV77tkUNZHZsLNGdBuf2bPHQXahzgKXGZkE5nBQRvbAbir8osak4vaB+DjMHlhSFedJY07mgFZGlnViEgeVtNxlZDarmUrrZWSNWTPJwyxo730mbA4sngOBGGBjzJGz9z/6/icP7N54jbM+kgncxBg0EgmMMW+SddKGcVB5WBdU2y8+o/MYoJI3Kakifh+yDEZXfdu1tDFq6fdSK5Xk/X4CuCjvQa22tZVq0iRO6oF7y3hhgEP2HTRSbSNLJQE6qRiq2l6oL9/3vX0XD4f7oJTKYZ6DquKYldD15ms6eVSsX4w5cqbi2sjEEMD92IwD1+NAyXohDKLpxAG5F8juRZfh7Z9q5iFVAh+Ij8E2jIPYOFSyrqbQR/PEwbd+67fij//4jwEsEgZLlsEFF1yAT//0T8dsNlv93TKJcPbsWbzsZS/D3/pbf2tl7jvF9rjnnnvwnOc8B+9617sAAAcHB/j3//7f4znPec6eezZFbeTMka1+3Ljt5xkP2YU6K9d0MOvMfavVl82aggItTDmz1b5RwExR7ZvbLGTAa9fjIvAORDdGbh+Sh/ZygxiVKrKgaf39V8xBxpw3yjg4KsESvtKXOayz8hzbrs8apANB0Li4//efOwoxONXmyFmPh1lHJJCTlV52DuKr3RltaXceHplxYEHLus/NnDWYOTDbuaj+HTgo7hUDmCgTF973DUXG78iCluNK5ahAK1aiIrsHWQbLPlP5fLCsF1XFvfV6iUgVaZJXzD04ecAzv8tg/WasOa8QOK4BbUX67uyZzJUqopNH8fXYFDCNLFVk5fLGk6kBtrC+Rvc4KPYBgbPIerAFhSqvG+/96yqknJXMp+gYVDGO1iPMOBDsw6ZoF00TB294wxvwa7/2axuMgq/7uq/D7/zO7+Cee+7BBz7wAdx333248cYb8bf/9t/G7C8XrGWC4T/8h/+Aa665Bvfdd1/Lbj6g4/7778c111yD3/7t3wawuHc/+7M/i6//+q/fc8+miERGpiMLWC0+w4M2bRgHscVK0wcOPFQwPsqNQqTS7Gjeo8T3opW2+zZmBXKmTG51l8AcuTYM64SQKsp7HBSU1D1KFUVlaoA8aJnRNldUOGUl2/JybUnQuBizfR9k3SR/v5pxIPEZSZrUj23M6yePImNgf4wDQGVOzM9FCtAs4/XhGoMG34OMVNG+Kz1dqSaBVFG1KaYIMCrBvmrWjcwgvGh/ZHPmlGygkYvSyJQcVLyHKo+PxWft2KlJ4qneQYBjwJlqX9kcwL8DPOMgD5znEgeEVFFDxgMj1QRok1d1zJ8yeTMu80nFPGLVCJQGxdExWO6Xsj4viz7EihlaGDRPoYumiYOf+qmfAnDed+BHf/RH8Z/+03/CU57ylNU1h4eHeMYznoGf//mfx3/7b/8N/8v/8r+s2Ad93+NNb3oTrr76atx9990tu/qAjLNnz+Lrv/7r8Zu/+Zurv3vFK16BF73oRXvs1RRMZDbs5SEhKpEBZI1ReXmG7e3nZDqiUj2LPnCLlQWsCcaH0GOB6UMWtM4aswI5iqTbfuAedF1nK74D7yCzOS4jm7xJexwkDs2m2p/4/VmZlEzyUHFYz0iUKPrgy9REpIrseCmTUTvb37NUk02g5xO4YdZHArTWmCNnWSfFPoTyONhvAq8cB5F5QFHtaWUDY+2XBYnR9yDDflOZw7JzocoYlTZHFklUsGPATxzkJcvGZhywoPHiWg1wyjwDpUSI91nKHDkB3DGeOzrWDSdX5l02qjmyyBgX8Kq9a56/LSJjg2EcdJ1l/rH3fz7vzWfH9Dg4Kj5XzTgQ/X6WdVOexVLJo+AYbMI4OCqTF8MG0esxMQ6OVzRLHHziE5/AW97ylpX80DXXXIMf+IEf2PmZJz3pSXjHO96Bb//2b99IHtx000348i//cvzP//k/W3X3ARdHR0f4pm/6Jvzqr/7q6u9+4id+Ai95yUv22Ksp2CirbSMb9nKDLDFHDnkc5GVKjgPjoFxQa81pjTGxALAC6pNH3r2K+wskpYoEyYtMlYm3sYsmjzKHRmuOHAPtF5/hWSeArdC/IG2QHbn/+eRlOQdGQcuMZFo5Vud9fLOanYdLmZy4ObCdA2to0ctwEwcBg2QDmifl0uL3X5/AHZNxoDisekB3hnEQSRyd7wO/FhtjPgK4tNXO/DNQMB7CcllJ4CjDflOBZqzGv7duMMmbEqiolyqyycuIXNsyzBggK/4XfVDIhdW1X77/tDlyai0ux7+K9VAhkSKUCPH35XGpnAxoVu4JGNBWxzioGwNeEQ9vjlzsCcZmHJT68hXngpYeB7XMq4NOA9x6bCFGquisSKqo9mzezCCc9HtKGXQbj4PdY8CewwWMgyDzRfkOTKGPZomD//pf/yuOjs5r5P7wD/9w1edOnjyJV77ylfipn/qpVdKh73vccssteMYznoEPfOADrbq897jxxhs3DKNf/epXu9f1fY9v+7Zvw3XXXbf6u5e//OX4vu/7vpF6OoU6MqBlViID8Mxx6ydqicdBgiLe97aqQXEPTlc+g4ym8fm27WdqD4zevcqC9lHg1JN0iAImGdDGe1/CUjGJQ+O+WSeAgHGQAE0Vc0AWtCxZD1mJkLi+PQ8aA46u68jJU88TI5K88RIXkTCHpbBBez6Bm2Z9CPXtFdX2s27hHVAbCsYBCxoD3j6EuQc840EB2mXHYdZnIMN+U8mkmCRq5T1QMC4AXq5JJdNhxkAtYOSY5zLgNbseG8nUQOJ4s/3EOyhI3i0+F38PlIwDnwlcIVUkkmry+lCVuBCBdpl5UFXxzjCPlBXXTAJTWW3NMB68PvBjwDmbEubI7HvI7okVkomLz3FrsdIgPSxVJDSIX0b5/IZZDxPj4DjHYasvvvXWW1f//YhHPAJPfvKTQ59/6UtfiiuuuALf9E3fhDNnzgAA3vve9+JLvuRLcMMNN+AzP/Mzld2l4uqrr8Zb3/rWjb8rq1OuvvrqlXfDMp7xjGfg13/91+l2X/Oa1+Dnf/7nV3++4IIL8Pa3vx3Pfvazqz7/lV/5lfiH//Af0u1PoY9yQxEDbHKAFZBbLDKmpMvIgGbeoiJhPVQe2AxoTFRbexvK2gOje0AJy4T4iYuDWR347DMOooBJgnHgJk9yjIPIO2Are3Ssk9oEgGEcZM2RI8lDwRyQBS1ZIzTAnzOjh6UyeRauuE/qerLSAMvwqtEiclEZbffF9Um5uhZSRUHQrrwHkXlYAVpb0D52D1p4HEQSFwqKvlJfnQFMskUM2T6cOcdV2wPeGsgd2DNJzMNZt9Eu8x6wiQPXY2HeI0og5AGrVoyDut+flWpbhk0cJSTbZPrmccAyJRPkVEnXANctpYqqEhcqn5NMAnk2w/043y4L3jO/vy3jgJBKylSbl2sBKdnGsn68M/QDwePAGLSz7ZPzoKp9gJAqEpnTb/QhzDjQ7EOmaBPNEgcf/ehHASxoZ49+9KOp7/i6r/s6XH/99fiar/kafOITn0DXdbj11lvxpV/6pfiN3/gNPP7xj1d2ORxnzpzB6dOnd15z9uxZ93OZuPfeezf+fP/99+NNb3pT9ecvu+yyVPtT6COzYTemlCNLBSmq/TNVHllt72XQ5sgSxgF/YPSq/bPGrMv2a0FrxTPIVHm0kEqKyYUpqp151glgK/TjjAM+eaiYA9KMg5S2unPvz82BU/XtpzX+jVRabLOcZRwczBYSAevvXcSg2noMRKWKcoclCeunfAZB5lsGMFNUuTEVpuuRlQsD8oDRekRBK5d9GEre5KV69F4fUeZNKVVUvw6oKj0zsmGHsxnOrlXqMsAd6/OgSCADXhKzFjDy9gBM8opbCw3jgDZH5t8BVbVv+R7WrIdZts96+B4HDGiqkyqqaV/lMZEpaCulvTjZvh7lx046jJ4ypObEJWhbUcyjZByw81B5/9nXwHt/GJ8JWqqILGiSzUFkIYmqfcBLHOzeDyjnwGVYxkHU4yDfhyl00Uyq6Ght48doRC7jqquuwg033ICHP/zhABaJiA984AN4xjOegVtuuSXdzymmOA5htEVD5si5KkMgZ0zJVje1ah9gWRfcgd1sDphKV+cz1YwDt6ojB1YAUeBeL1UU2bD7yZNota2OcaDyuYjMA2qpooi+uMKgfZ+MA29DP6ZMDZCnCCuSV6VBdcjjIAuYJg/sGUPOZRjmW2IdBuKA6XowVWbZ5NG+PQ6ywLW/F9gz4yC6DiaBO2OIGar2zidOgDzjINsHmnHgmTNTJuUlaF3Xftd1TvJyvHnAMJ/JxEHG70cF3DKeO0qponIMdB2XvMhJ5eQr7r29dU1kCgkUVc+sVNSB0GPCysSM63FgvVY4xgFb8c4ahGfY3+vBnktUVfcla7uacSBiPp07mpsxMJS8MucQicdBTi5p8jg4XtGMcfCwhz0MwCJpcMcdd6S+6ylPeQpuvPFGXH311bj99tvRdR0+/OEP45nPfCZ+9Vd/FU9/+tMFPY7HjTfeKP2+q666qirJ8i3f8i34lm/5FmnbU+w3MhIJGU3fZUirjffcPtuHcjGrPTRkK22BhZzD4azb+C217XubunjiIHdg9sZgxJgVyFUcs5TYzev5Q7M1R84nrrzv3RUl0B42R04AFgqD9ixoaYDjkESKc+9HlirKghYSg/gTB/j46XOrP0cYB3lz5GL8BQ+risSJAc7S61Cm2p0BS3JyTW08DgLVxoflPiCYPEruBUqAl2McZKWKcgkkU20fWAcyBRzLyLI+FNXGUU3lZXjJRq7inx8DJw9mG/t/Brxm10LvHNL3fXgvl5MLayUTMp5MD2CrpE8czKruoxI4Zt7D8hq22teyXhKsE6IP3n2r2RMpPSYYj4FyDUoxDkj5ShXrwfU4IN5DmUk76THAz0Fs4kJT9e+dYYcYH1auLV/tX+6jh94DpVzbFPpoxjh47GMfu/rv22+/fSVdxMYTn/hEvPWtb13JHnVdh7vuugtXX3013vzmN6e+e4op9h3lZB7Slm4glRPyODDVVSNLJTnXKvrAegww1dYAnzwqN2e1lU3r4W3mIps1jTl1QqrIS54En0NGpoSp7DLtJ1gngK0OPxVkHGQ8DhQG7VnQkq2uArZIRET17cUSJdmKe4pxUD6DxDoUZhwlgfOMPMr5z/CsG7fCMQDaZj0ugOPKOKj/bNqcOsk8U5jyGa+RZBI/ClybJHagfUXFdZ71ka+2ZJMn3vvCgEapJLaR6RDMA5X336uIphInCZkalTEoA5qqZHoAz/usVq5KU208n/dmHFRJ9cikivg9oQGuGa8b5zM1ezKpObHxOCAYB4kxyLJwD4oEl8ogG6iU6zrUvAPs71ck0AFeKkqVwPQ+N2xMrLn365H1OJjMkY9XNEscXHnllQAWAH/f93jLW96S/s7P+qzPwtve9jZ89md/9qoK4t5778Xzn/98vO51r0t//xRT7CsyjANb6TmeTI/XPlNtnKmycQ+qIyYvzOaAqDb326+7Bxp9ffuZyIahTB4xBtH2wMRXvM+6mCknYDd1kXfwTFFdxpgjL1knG9+b8DiI9kHLOor//qwxK6vrDGwZ/0HAiD0kLCOrLZqRalpGOWZijAMeLAI8ffsoYJpfBzNeQ65Be8igO39YL0Hr6DqoYBzYcchXvEer3XywaFyporIP8QRa7uCekc2z5tSaSt/cMxBIFVXeA595yTAO+LlQAVqxe3JXLpEYAxnftYzf2UYfiPdQJZHifbb2XKCqdvYq5RmDaB60LNbjzDpAMQ6c3094TOT05ctinnjiImOMyyZvjMcBK9Vj1qI6JrphfbCMAzKBq5DLA5z9WLXXjipxE2fdKBk3y4gyAJUG4VPoo1ni4FGPehSuuOKK1Z9VwP6jH/1ovO1tb8OVV165Sh6cPn0a//Jf/sswnXKKKY5LlAeWo4AvCGMCVoZNXPDAPVXtb4xBcxIRkj5UmxNzlUVlqBgHTPtZY96MKei2PkQ2S9YUdNzkmaLaGcglEEuQN+1xkGD9cDI5WsZBTKKkM32OzIEAf0hYRglanJv3mAfeAct4YFgfvMdBdh7KHhYyiaNlpOYAF6jg5RkYwLI84IfNkU3yTiFVFJNpWY8I6wnwn0FkLlJQ5NOSXUngiNX3X7S9ee28j1f7HQfWB3sPPGB1bJ8LBXDL+o55CZZSn5ppPyRTI5LqsSzICtA8sf8qgy3oUUkVuTIxFe+Bqn3j85FgHCjeQaDuPVQaszJSRU09DliNfxHjoPYdMO+hyOOg+veLDMrZxIVKLojxfzwejIPN+zTvEToLTdE2miUOAOArvuIr0Pc9+r7Ha17zGnz84x+XfO8jH/lIvOUtb8FTn/rUVfIgY8A8xRT7jgw9UiETYkHbcRkHpto0yTjgpGI4irQCtF60zzIe8u13Xa7a3cqU5BkHmcRFRJ5h9ZnEoZGtcCwjU+0kN0dOMA6YxEna4yA5D2YBu4w8BbDF4yIzD1NyUfwzMEZ0wXcgS9HPAKbbPhNi/nnV7iNre2d0pQGPcRIHDa0xLM+6iIKm7l5g5ErXrHRhtuI147fjrVvhZyBmfTAVv8YgutYcOen1dP4zieSZwKCYTaJ6FdEU4yCRxFZJ5TDFHMpqc1YyTMW48D5Xk8zPSiYuI1NIoJDroT0OlHJVJnEwvCdXSiWxRW1lH+YkvsayQFWsF/ZckmFf7/pc/e/XyLUxUlGq374elnGw+z3wJQMnjPe4RNPEwVd/9VcDWIBS9913H171qlfJvvthD3sYbrjhhpWh8MQ2mOKBHJkMf4YWvK39kMeBADRWmyMzFc/sPVB4TAD8gVEh0QHkDmxW15m4/4n2bfKEYN0k9J1ZWrrpQ4pxUCYOcqBhpOI+q28PNPA4iHpcJA8rWckw16A54fPBzMOZZ5A1yDbmyEmpJmYdzIwBX6qIr7RWgCVxqSIF42Dzz5G5IOMxAfjPa/RK16w5shkHScZBQqoIiAPHvkQK/wwkjIPKe9B1lnnGgDaZYh4FcMOygLM+S9vaDyVQBcm7xefirAeFTNYyyv0TD1qSMjEuaBiXyuFlYvhCAoVUi5fArPv9mmpzgPNaUfpssPOAjvWiSeCy94D//ZrkGW3OrDKId1k3u5+B0iB+GSVrLepxAEw+B8cpmiYOnve85+Hiiy9esQ5+7Md+DPfee6/s+y+++GJcf/31eO5znzsxDqZ4QEe5oPUBalbWlBPwpIIigFW5OIebT9HjXHNkIpHIbtgU1e4Af2BUgPaLz+mSRxKD7hTrZWTGgcBnAsgBl0aqqKK6aT2UBukM6yXLOMhUOQJ2zEalirIV/9lq16zHApB7BlbXO8v4CFZaJ7Tdl5Gp9vWlisaVKMkm8BSMAysPwEsVKRgHGWPafSRvMuxLADidYBy4Uj3Be+A/g3FZHzm5pjx4nGH+SOYB1uPAkyoiEgeZYharbx5/B/veGgPXzMXlODl71NPYgjFnrrwHqopzlgGnkAoDcvuhjN/ZMljZumzidj2Mx0HFPFQmLjKAKe1xIJJrMswvknEQle1cBlvMYs7iLHBPYjM6g/J4El8plbWMrMfBoh/5BMYUmjhs+eUXXXQRfuAHfgA333zz6u/e/va34yu+4itkbZw6dQq/8iu/gv/1f/1fceONN8q+d4opxgxvMj87n+PUbBj8U8iElDI9kSozVkdws32+2rv8/YwxLsAD1wptbYAHrmWMh9QzKCmxjFQRv1mywL3g+Qd+v6Uka1gfkT6UB/x9ShVx+vpqxkFOKiguVZSUKHGuz8yDCtZHyBzZHNJyEi1H8z7EJi0BVk6uTixVlNHXF+g6R++BgnGQ03cv9yFRmZ7sM8iDNlmT8CxwVSbQIoUMCqkilwGaYX2MKFUELMbL6bU/U+bECfZVG4+DuvZnsw4nDrqN38wwDjKeRwqpHnYecOUCj3qcdJg4w33gEgeqamNfpmS4DzpzZP5MkPE7WwabRFYCp8fN46AauBbMwYBXzFEL3DvvYSUesh68x4FKLo1kHRn1A03yrgYbUUmVrUfW40DVjyk00TRxAADf//3f37oJHBwc4Od+7ueatzPFFK3C21jXHlrtJp2RCuI3q+V8TkklJQ7LGSO29WAPrOXmiPU4YDfsWYmUZaSkigRSNRmpElttPS7jQPUMMtVmJR00KlVUylRkEgeUOXLSmDVd6ZuWKsolcPNSRUX7jFRR+Qwy5shJiRZg8Ztqv0dhUK40SD+cdSEJzfJ5cTI5PGAHqBgH/FyQNQX05ssQaKmoNk+bhOcO7iaJHgDNXami6DxMVDluXOskEKPBaItvtn9+3HPJo7KYg0/eRJNnQG4/dOrwAGePzq3+LDFID1WbtwGN60Bzv9L1JCHOULK2x5Yqcs2RK+6BzBw5UdBkz2Ia9l3NelyeH1MeAyVwXsU40FT7A3xRWwkus/eA9zhwCimPepwKIpbsmUAnFcRhA1mvp1X75h2MS2VNHgdTlNFUqmiKKaaoi22gSU0oGAcGtA3IdGSkCZZRbijmfSBxIjAFXfSB26yWla6sVBFb8Z+p7Nn4XKriPJ88yRyYFB4HKcYBSck1fUjIVJSyMlHGQQawsGAZAVqbavcYaGnBimjFe+7Ann0H3MNSqOI9Pw+fSlScZ+WqvDETSl42kCqa9/XrQNqcWyCRkN0LeIyDqFRHJnGQ9bnIJm8UoJnpQ9IkPCqTkPI4cK6N3gNfV5l/BoxMRIYByO4Dd30mlDwrE/gC4D4kF2bk2uLJw4zvmgK4YmXj3ErnoGThMlj5SpVUTbkf6bpac2BNxTEr1eT2QcD8qta3FwKnhgVJ+WwkpIqOmcdB7Rjw1ixmHmYTmKrkHVtEoJDrAzhz7Izf5bYo15BBxoHz/CePg+MTU+JgiimOQbiMg8rFKkOLXkYpVZSp9mba9ysM6vqgSFwAXpUBx/hQmSOzUkVe1WBV+wa0SQDHTPIqoWvKbNDLMObAkfbL6jKRVFHtPTia9+Z5hRkHRqaF17ePSFMsY9+Mg7Q5b7LS2BuzMZ+JfAI1U3GeAYsAv78pnxOBVBFQPw+W72p0DirnzHlf73O0jKxclwewRt/DFGiZlCrKvgNG31tgjBt9BlmZCNaQ0mvb+76h8PobuQdZjfe+75NSRXzyfhmZBJ7G44CXz8zItS3DJJEjJvECY1JfNi4u0wPEzcGXwYKmCnNswGM81CYu8ok7gNeX9/qgkO2rrzbXVNt7n63zWNAxHqz3HDcG5qTPB8t+8/rJvIf0GBDIpQHOO1BtjtwmcVEz/kpZNoVEUDSRr9iHTNEupsTBFFMcg3BN6aor7kvQLi9VFPM4KBYnAeMBqP/9mQ3qZh/iC+bRvEfZTdacWMU4YKWaMpU2Co37jK6ppQTn24+Y4yo8FgC+0scDeCPyDIAHWPAyOczzz8qkyD0OkoBdFLiezbrUgUExD5YV55FnkPV4cFl3CZ+TEoSuCQ9grAXO2EPi6novcRQEbbKSaR5LKZI46Ps+ZVSfBU0zbXvXM6CZ9drIzkPjMQ66rnPWwegzSEp2Jas9vX1T5B60YP5k5LrG9DgAgFNFwQGTOMjI1in07Vm5rEwB09DnqkFTQeIE4KqNAXsP+gD7ez0yDEyFObKVsOVkapjE4eqzxLlAyTgoxwAt1UPLZXF7sm1SRdFgZZxlcl3kO1DOFWzigmH9KPZAZZR7yKFEfka6e4r2MSUOppjiGIQHMrBSPdFKV2D/xqgZmQ57SBJJ9VQsmN59YoF7034lcJ0FKra2H2Kd5JMXucRFvn3D+AgxDnhphPVg9a09gDdujszff1PZREkV5RgHnkxJJDIG8YBGMi3zDmalggCxOXIUMHWlihJzkEAuDagfB1mpKlfXNVlxr2Ec1CePvC1LTKYly/rJsf+y1e5uH5IJtChwFT2kl5FO3iT9jqxUSy5xAuRYF1HAqu97M24iCTyJx0FiLSrbV3gcRPbkZg/E+Ix4clmkVJHKGLUWNDWJK1YmhtDXB7YVsY2bPNqnZJxhnWWkgoiKf8UatO2ztXOxqg+sfKQvGTYi48CsARrGQXXyzrB+NIyDmjlQZQy9HgrGweRxcHxiShxMMcUxCH+i5KRqFB4DkcVCAdy7Mh21v1+QuPA+V3MPvMWMlamxwHUdYKPQ9gZ40BrIV9sCuSqXrDHr4jNl4qZ+s3i6mTlyXR/ud/oalSpKmUMb0PSBxzhISxUJ5LIyybMWjIMIaJxNYPpSRZk5IJ88BAKJg6xUlQC0ylbcl9XGAHA6kDzKmhNnWT9slenqeqfaPerxkPa6SFbbZlknWX1xK9MTbD8JGqYTB0ng2utv7B3Ig1aZPXlmH7CMjFG9ef4iqaI6c+T9SxUpDNoXn+PWgizz7/xnEnJVAvCS3Q96UkXRNWBbH2rWI2X77Fys8zjg2ve9dsZjXmXOwpufY5NXbRgHjFzbucT4W8bEOPjkiqBHeds4OjrCu971Ltxyyy348z//c9x999247777woO26zr87M/+bKNeTjGFPjITZfaguPgMX22b0VNdte8sJLWVXrbSlpUqih8YvQWdYXwAvFSMwpgYyFVctzBHjmwUFXJNLOOg7/uUrvR6sDINGsZBptq9BWi9MGatlbnIgqbWFDMImAm8Tli5MiBvDg14yRue8RBNIPvAOT8HKJKHQH0CMW2K6wE2UdAymTzy5M0iySNvzxLTV8+xfspEU9xfwD6zeQ9EhlKWcaCW6okzDor2R/S48K6PzsNehXyGcRAFLLzrI0nkTAHDMjLFNBmvp1X7iWKmbAIf2GKOXNGHg1mHWbfJnJJJFdGgIQeYsdJ9KtZFJoGqAK5ZJv422VxmP8EU1GzDAqL7yUXCYfi7vZiRBUxl8Abh9j2MSMcug/WaMWsgLVXEvQOqqn+moM/3F+iN90EkLONg99m06xayrev3b/I4OD5xLBIHd911F370R38U/+7f/Tt86EMfSn3XEmiYEgdTPJAi43GgMMVUgoYM48FlXJCVnirGQc2B3TtU0cA9WenF0iHLUMpVMX2wB8b6zZI1iCYSB+Tv9zboNOvDGHRXMg6KxMHBrEtXmu7b4wBYgEC1CZDsPJgZ/3OR10nmGbB6tuthPA4ijIMk62fbgaW+/XwC3dNCr5cqaiDVFK72zkv1nDjoNu57SK7Kma/GBA0zpqyL6/3kzcGsPgmbZhwkEuiA43GQlCoKS7YlE3hZqRaXcRCYCzJz8OJ65x2ISAUl5bqApEG5gHGQSWIrpHoyBt0nDmYbySeVTAlrjEozDkhjXHcdHluqSFBxbZJX5P1fflewDgdz51xQxzjw9wFByzJ33LBSPTzjIME8EryHLPNK4bEBOL+/sv3yOjZxwRR0bWN7nEwI1JTFJzVSvgdF4mBiHByf2Hvi4O1vfzu+7uu+Dh/60Ic2mAURM60ppnighzefsx4HnMfAfkFDt9KTBGyYxAXgZflrGAceJZprn622VABmQK7SSSGXlTkwsUZw61EemGu1fbNmjOvBmyNv9uECInGSkUhgTcjWY5sxa03iwNOVjs5DStB+0T7xDA7jc9AyrM8EkzjgGQfZSmtX4z8wB2Q9FoBFpV0JnNcncLlD4jJcqaa0OTAxBg4PcPbo3OrPYzIOsvr6aYPqLTIdpwInpXwCLVdxnG0/C5xn92NZ0Gbf5sg+44B/BziPAz6JfPKQl6tbRiaJrdAXzxh0nzSApQg0JaWCVMa0tfOAC1yPLFWkMMhmk8jbmX8x5J7dE3oJDgY0ddfiyjFQztlzFXAd9HrJJg7sGBy34t8UtJE+GwzrDOCwAR+L4UH7+bw3n69JHJSJo8nj4PgEn0ISxLvf/W581Vd9Fe68804jSdD3PfW/KaZ4IMaSmrUetQulRqbF0rNrNwsKxsGSmrge9VI9OYmSZZQb+5qFitVS9YKt9FIAZkBSqkgil6VjHIzJuvFMrFmpInbDerpgHERligCecQFoWE8u46DS5yCrrQ7kAAvvOY3N/FKYM19QgkYBn4ls+94aGDmwWWkGVi6Mq7jOzkEKbWmFQXTpcxCTq8q9h+Ua5M2tkfbDHgcC1kdesktbcV9zSF+PLHDO6CpvXp+TCip//4mDzkhv7Ipstae3b8lU/FOVtolCDiNVpGAchBIHeamezFyc8RlS9MHsQ2TV3jxwrqj2jiQwjVyZwCC7dgy6BQwCj4Vt312GyhjWm4eqkycixoFJIgeW45I1TkmmkdiE2YfTPiMcA1RhEA9wc5C/D+VlgtxEfiXjQNWHKbSxV8bBS17yEnziE59YJQz6vsfVV1+Nr/mar8GVV16JSy+9FBdddNE+uzjFFKMFS81SgHbehuLsfI5TFRR9FXDNUhN1Hgdx0IrVUvWCBq7LansRYBYyJ1aMwQRg0UKmpPbAfNoxsdZJFVUyDggqaBlmox4xR25gzAvUsz68+xTWFj8sx38ycSAwiY9Um5aHCyaB6/lMVLcvGAOHB7yuqUqy7uThDPeeOf8+VSdwkz4vPmg9PuOg1J/NMg4y5shhj4MWrJewVE8BmCVN2sMV96VU0UEsiZzxWQH0CbQoaGWMGIPvYRaw8Ct9+WprruKeL6bRmCNzlbaLaxWgMc/+yrKetvahWipo8zpWX559Bt77ylS8W9ZJgPXTIHlUb46cTx4DPnBf8wxUxrCZtbhMdrMyMRmT9qznmNc+LRcm8hio9lggZJO9sGeCikp/0fhfhneGGPI4APIFBFO0i70lDt73vvfhbW97G7quQ9/3uOSSS/Cf/tN/wlVXXbWvLk0xxV7jcNbh9NqfaydrC9rlQcPl99ZQ9DObg40+kBRhmccBkeV39WxFiYPazUpZlclKJWX0pW2FWR40jWxWMgfV1WfISj9vnOoYB3V9MFJFEsZB/f1XsI68ZIdn+uyFN1YiutKA3axHQHs3gcgwDgrmV4SirHgHrTlyhHGQr3Y/MZvhfnD0ZJM8pA3KuXmgHC9RwPhg1qHrsKGLHJaJEUjGlYyD0yGPA23iIAoa5n1O8qCNNcQMJjATFcd931tDyqCp4b6lisr9YzpxkmRchJ+/53s1olwXkFuPTxXtR5LHy7DShZGKf34fuIyMZJkqccAWU+hkUriCKh84ZMZAgvXRwByZNaZdfFf+HQQyjIN88mzbd9f0gWYcJM7m5f51zASqPYuLGAds+6rkYc34c8Y/kzxehld4UrMmK7xupmgTe5Mq+u3f/m0A582MX/nKV05Jgyke1FFuKuoZB/mKe+/AXAtaZfRUd/UhYk67HjRwT2T5y43RyYMZ7c9S/v56U848YOe1H9mo2UrPPOMgJlWUb59lHHjvCZ28YRkHBcB7ikgc5GRy8oyP2awzz6AWtCilGYD4GEj9fq+6jEmeJfqgYH2U4yaUOBCYtGdAkxJgZe4/wM8DLFCzHmWfo6ClMakn3sNSripikO17HAQqTZNSRdkiAt9nIyhVlOxDhnHgJrGjiYu0VFHuPcyCVkayLGkOHU2cyFk3DHCfSKCxXk/rkZGpUVT72gQqz7igq33L5AnpMcAnLjjWxSwhG7vrM5G1SGGOTHsciKSKvD7XvAcqxkFGPrOUdmOrveeFfPgDxSTe7ENouTBuHlQlD5lCCt8cmQftvfWrhhFvz8KTVNFxib0lDm6//fbVf19yySV4wQtesK+uTDHFsQjWnFZRce8dLscG7tnfb2RySMBIwThgZZKAhFSRALBbfI4/MCnkqjKHBXtQJqSKymrvyt/f1By5sg+WcZD//ecCPieKSmeAr3jPVFctIyNV5FaZKjwOAhv2jBHdMow5ckSuSpDAzGi7lgm8aKX1MtgDK2uEtx5Zfe1Mpe8y9sk4yPiseO1L5KKi5sRJ1kMGNGD1hDfbzz0D6/Ew3u8HBIyDpFSRN2dF5gIrFZWX6Eh5HBCAXbkWxCRKFJXGZSEDn7iggXsygZZlvKzaT/k8CKSChAbZEtbJyFJF7FqoMqfOJPHt/VdV3EcSqDwDeBlsQZuVyiJ/P+k5pWM9xQu6vLky4y/gJZ45j4OJcXBcYm+Jg4O/1N3sug6Pe9zj6CrdKab4ZAlW000B2HgLSi1opdBVBnjQ4EgAlgAcaKv67UAmcZCv9gYcmZSRK87LhEdks26NUZnkGafv7pkxsuuZpWfWShUV5sgVGpJl+HNALetFI5dVVrxXMw4UHgcJqSLXY4Eag8UcEPKZyLNuSomro3lffWiQGJQnDguqeZBlvVhNZyJ5mgRMWpiUR1gn+/Y4UIPWAOEzkfRZyJjzevNFNImdBa7ZKstlpBkHSY+DTPIW8PsbGYaG+Ul5DPBzkWEcBBKHyzCsm4Q5MQXaHgOpIvYeWOYvyXhInAutQbNCqohnnimA83qPA6/iP//7Ad7jYMzEhXcdixtnEpgKuSDTPvkO0nJhJD7QzJy6ov2u68x17BwE2PV41tXdh8nj4PjG3hIHj3nMY1b/ff/99++rG1NMcWyCzfJbbeu8RARQf2Ap2y9pjmwfqis9BWAJ274KrAIcjf1KmQa2qsG0L5Rq4cZgpn1F8owbfzZpwY8BdsNYyokwjAM3cVDLekpUGK5HCVrWGrNKPA4yjBePlk7cg0zFeQvQGKhnHSiSqKk5QMQ8swlUkvknSOBHQSvLvssnjyJSJd7hLgSaJuUJ1KA1ED+0W+ZJtuK+/h4oGAdZc94sA7V8b6Kg3ZmjzTXjZDCJnjVH9p5/pJAg+w4AuWdgzJEpxgEvV6Wo9k2ZI5P78ME+VK4HxuNjRH3zZSjkouzZKAEaC4Dz2vsvk2pynhvrccAlLngWrgVt2Yr7Yh4KzINZ5huQAO5N8lj0DpKMA5nPyciME8DuH08e1sk5Tx4Hxzf2ljh4+tOfvjJGvvXWW3Hu3Ll9dWWKKY5FlEBXTYa17/sUJXUZ3saaBu5FFf+1mzVF4mTxufLAWsE4ENz7ZVhTxNpKV021d0bb11Q2UFJF/GFF8RzMgZn0OGBNWQFerklhjuxtauv13TXvoJHKqax2dPVck4BVxl9g1nEJ1H17HHjjplouKllpDeQOC1aiRMN8Yz0OmHk4S89mdZ3XwzIOeObZ4SwImiYr/SxgGvv9XrVdtA9Zc+CMTIg3VrMa/3HgPJfEt9XOOcZBjZ7yRvtJwCL7/LPJw77vU0nUU0Wi5UzA42QZKXNkQbVr+ZlQpbOg2t7rQ+16XLbPVtoqWRecOS8/Bs0cTJkTZ8Zg/Cxo2+f2pLNZh3LJVCROInvS8vzGgrZsxT9gWeMKyTYaOB/ZoDwrWblqn8QGVKwrwFuP686mqgTqFPrYW+Lg8ssvx7Oe9SwAwD333IM3vvGN++rKFFMci2CMURUSHcBiQ1FurGorjWTmxORm1R7U2Ir7+IHFAiUJxgErVWSkclS/n5dJoYxhExuFcqyOaUybMYErg02enC6liojEgdLnhE2glZvKesYBV921HuVBJQJYqQzKMzIhBjSmPA4yiYN8AtP6rGRAaw3zqhY4U3jtlG1HAYsWyaPadxDI7wXs+I8yLvJyUVamIQoc59bjDHDp3a9w+0mpomwhibn/I3scmH1I9Pcn9yJZqShvuKYYBwJz5pDHACnXuB4Zvx+zDyR+P8DvCWwBwx6kipIJ3L7v926QnVkLFcCtJxdWm0RX/H4WNPfap5NXibVA8R6ywL3HeOn7+D1gk2cqg3SWBauSSwPs/rF2PVYlb6bQx94SBwDw4z/+4zhx4gQA4GUvexnuueeefXZniin2Gkylm6utPaLGP5DboGx8jlysVNXOjDGnlHHAShWJQNtMlZHGHJnfrCiMScsNTa05sJFG2IdUkUkcEKClU6FdXW0tYv2Uxqy11c5sddfG9Sl/AV4WYONziQOr4hlc4GzqaY1/gTlwzONAk8Cz5si16xB3SN31maxMDPMMMowDtUxN+PcrJPMSwL2CAapkHHRd/B5kpYqMPEWy4j4KHJfzVZ5xEPz9SfZlttrT62/I44D0eNnoQ6biP5k8BZIyOeT8b/vAzUXZxOW29mNSRbl30LtnGdaJJnlU377iGWTWQkX7JnER+f1def9JxkFf3gM+gadgvVT7XLheR/F74Pnf1YTKY4EtpFCYoy+DZQCqTOKn0MdeEwef//mfj3/1r/4VAOAP//AP8bznPQ933nnnPrs0xRR7C2azpDLlBPiFWsU4sPTQ2vYLSir7+/dsjmwqnklzZBa4tpW2vFQRZY6c0Ha21VWEVJEn1VPRh/I+RSsc14M9sJXgXi0ddD18j4PaxEFJC+fuQWnqXDIptrdv56CoQXVGV7eVz0jMZ0EAmh7MzPxdyzjQeO3wh8UMWLQe5cGmturdAjVE4iRpitfCIHtMxkG20s2wPpjkTQK0kZi0C5l/Jw/q9IQ3289Vemb3AlamJMg4SO6HMpKNgDcPj/f8gbxBeZm8ZxgHttqcr3ZmgPvMvtwyD7lqXxa4zj7/ZWT2JNl52Fu3Q2NAAFxmpJKyc4D3mdg7wO9Fl5FLXBRncRI4ziTyFVXv7Dzg7d24Mci9g2b8iTwmWLk0tn2AZwBmJQuX8ff/wy343B+8Ho//4V/DlS9/E/7lb/0x9T1TnI+9Jg4A4Nu+7dvwi7/4i7jwwgvxlre8BU984hPx8pe/HL/3e79HUYOmmOKBGkyVgbegs5WWdMW/QB4A4DcK5qAqYhyMbo5MyjQowKJF+5lqZ15P9Hz75WYpU21MtO9saKoSBy3NkSvfAWuOHE8ceOOm2mdExLwxjAPSoJ0bf7pqfxa0zsgUmHdQJJdU0wed1w5/WFTNxSxNXJG8zFYbtzDIjlQcZxPp5dg7mlvJi12h8HhQGnQv+hBkHCRAI3NIp1g/OdAqoy0O5GUyslJFdg3OVfyHGR+GeZpL3ACxeSArFwZYoClUbZ702PA+E5Np4Zi/Q32oTSQrQGPvc5E9SdbnxVu3I2Mwm0AHcj4bnwyMg8xarDKmzfi92EK2fAIzwzhgwHPDhCfbZyv+WQaqknFgGYC1HgfFO0AmUM8czXHmaI77zh7h4/efo8bRFJtxuO8OAMA3fuM34mlPexqe//zn4/d///dx7bXX4tprr8WJEyfw8Ic/HBdccEHo+7quw/ve975GvZ1iijbBbJa8xUxV8c9KFenaZ0FDDjBiKt2UUkXsYs3qGJr2E/RkSbUz+fwBDWjoavxXbDKsObJwDFRu2E8bc+T47++6DicPZhtAQTXrRcS8sYyD8aSSMgcVm7xjQfvNfkdAG10CtQPOrn1vRR9UXjsWsBhXLs37HDsPM3NQ2pi3gcdBLeMEyK/F21hPB7O6w6ZmHeJBGwUD1I6/gMdBEjQHcnMQkE/i24rzWPvZe5A1Bs3OQ1mPA6+YKONxULsGr9qf9yhr/kJSQQmvoWVk5DutVBEHNLGJdE+io+/7MHMosyfOysR4c1YoeSOQqckk0RUV1yZxlEqcKH5//f0v54s5WcSbSSIrTOJZ5pMrVUSxTjSMg3OyOYCbg5TmyPWMA1ECVSRlPcX5OBaJg9/+7d/G937v9+K9730vuq5bMQ3OnDmD22+/Pfx90ZdriimOQzBVBt5ixkgkAN6GnQTtVIBN5UKhMIQEOF1BlUSL1/7oUkWkx4LXB4VU0bwH5vMes4rnqUie+ObAw/fAGDMLGQe1Y0DBOAAWz+DM2lexBukscG4ZB7UyOXrGS0yqSDMHZmRCstri2/pQMwa8e0Wxfshn0Pe9uZadB9lqR8U6lAVMFCbdGcaBTRzE2vZYX6H3sIFUUUayDGDMiXnWjWG/EYmDrFRRNnlUMqWi1bbleA1LFSUBi2wSO+9xkEvislJt59tPgsaJApLzn+H3gzKpINYc2Rkv5+Z9eD3NSGZlK56z+wGFMWrmPSyTh4xUT6bavonHQcpjQsM4yJgjx5lvfALVlyoi5iFyP9JqDqj9/ZZ1zCcOSqlL1uNANgYT5/MpFrH3O/iKV7wCV111Fd71rnetEgZd19H/m2KKB2owGVZ3kz5ipeXcqS7igXtOpkPlccBU3KtMUQGeIq6QCFm0z1fZKCQyvE1NNWhX9JV5Dh7IUlN1rkrcAH61WU0Yc2TSZ4GVScgYsa0HyzjQgLY8YFDOFWzyKFPtqPAZAbhDu9dPhTly7RrgSyOwkn0ccGXGAAPaJg/sGbBiGSWVPMM4yOq7AzHgWsE+NBXnIbmwXLX34no+eWTNGIkxeJgDbLJrcUauDBBIFSUYH0A+eWfN2XOJGyDocVC8/1FpB+99iVUa+wUkkciMQUaqzwtaX9wZL1S1s9mTRIDjXAI7ux9QgIZWqiiQPEr+fu8zGY+F8T0OynMIBxxn+lCO1/A8lJAN9KWKmDFY4gMc48D7rpqwcwAJ2kulirgEKm8Sz8+DU/ixV8bBr/7qr+J7vud7VhScdbbByZMn8dCHPhQXXXTRPrs4xRSjBaPplt2kr4fZLJGVpmzVPastqzIoZireFYD5+fa5A6OiyhTgtb0BjVSNt7Gu3SywlND18DYUdebI+SrPZbByVaU5Ms84YJN3mmp3nnGQBwwzgIFuDir6kKh2VjEOag7NvlRRfg6oXQO8uYo9IBjmWeUzYPVs1yNd6SnweillzjIeB2FzZOe9zZgDU6yX0hgyIdnnfd9w+/wYkDAOivajFedldW48cZIDDLLrcdYYNWsSn6149yv+E1JFAXP0RftetTkvkwIsALBTlXJlQI4BqJLpYPcEfgHNHEBsT5e5B2lzZC+RH6p4F7BOlB4PVMU/f/8tFjAy40LA+AByc2EL5lU148AF7uNjsATuWbmy5XddGJwD2PufTRyuB5s4aDUG2XPRFOdjr4mDv//3//4qadD3PR75yEfie7/3e3HNNdfgcz/3czFLyH5MMcUDLZgqC29Cl5kj15gziwAjgAfNVDIpHtg8dGBpaY7MVtuWzIHq9hNSRRkzutVnPF3JygOTAjDbfmDbHU3NkSs3bIZxQCYOWIqq1dfn7kHZ7zE9DlKMA5HPiGH9JKqtVcB5zTzkVvwLDKpZ0H7xXdwzsKABy7oRyMQkq42ZBFpZcXw6xDjg5REA3qD+fPv5Q2L5mYxBN8B4HCQS+BLJwJxUUVYuKlttm02eZPXFswxQL4Ed0bfOMg5s4iDKOLDXZ7TNF9/Z41QArcjsR7Nz8LY+jK2vnql4zwL32XOpQionsxYozGEzoLnGHJrfkyqkkrzPhVgf2b2QuyfNyYWF2k94vXj9jK7DAD8GsonD9aA9DoxkITsPT1JF6thb4uAd73gH3ve+9602Q0960pNwww034NJLL91Xl6aYYq/BULO8xYxNqDKbRW+DSJsjkxRxmceCt1kYOLCoKo0Bu1gfzfsqjX+VMauVCMgAp0y1MX9gUgAmXdfhxEG3sUmqkmkpEixKj4Nqc+Ric8aYIwN2U1cL2qmq3ctqFNbjgBl/BrAaudIZSIKGIr8Vpg++ZB6TPOQqnbxxyks1caDBvvX1AY1kW8n6yTAOavxp1sOVKgoB9/m5OAOaNDFHDrSvYL9lzWEzgCWQM0gH7D04FRwD2UpH67eTYzwAi3F98rBuHGUkOgDH40AgERKSyXELSIIV74m5mJUMLcOwcCv74LKuCNAsY1KelQoq2+66KHCfrzbOyFcqgPvMuUwB3Nt5eNzf730uMhWfOMyNgYyMs1tEFmzfLSKolirKz4FeH1jGQc7joGQc1BW1Gb8/VqpIsCeeYjP2lnq5+eabAWAlTfQzP/MzU9Jgigd1WG3bisSBszlkvT4Yc2Al44DxeADaSXQsvnt3H0xlk5BxANQdGFTGrAYwDBxWWC3F9ch4HLSSiqmSKjraBLdzUkVcpUfJOKjdnJXByCTM5z3Kx8RXu3PgPasnvNk2X2XTTKoo0Ieywoqfh+PrgF/xTzwDErTzKxxFv5+US2NYN2YPkGYcEIkDqcdBMHGQlCrat0m6VxUX9nkgE1dAHjQH9KaU0WeQ1TY25shpqaIc4yDs8eD0N/YO6BkHfVk6uyP85Blf7Q4wFe88C9nuQUjQlASOPY82CjhOnE0MaJeVzAvOgexZcD1sMUng95sirjhwmpGxZVmPu9qPeRxs3qt54P3f3YfAeziLn8V2tQ3U70eWRWTrITGpr5Yqyq0B2/pQnbwsfY6UjIPK97Ad62VKHGRjb4mDu+66a/Xfl19+OZ7ylKfsqytTTHEsggJsRDI9AAccK8wAl8Eu1CrQbpu26q5QmLIuwz8w1siEaKRyMlU+isXZ2yxVy4QITCEB7h1UmVMv2ufomSZxQDIOGNBEOQewY1Ax/pik0TJUCcRSqijUBxHzijHn9K7h5gAOsPBk1XjJPlHyimK95Cr9FH0oK45DyavkezibdQ5oFUlg59fjTMV7ttIW8CQj69s/UwJ2lVXqG59JmlJmKp2BXAEDIJAqcpifkci+Az7rhmd/HsxixUTe/jGURHcrbevbV1TbZhiAMo8Dci72QHZOqihRcZ+UCWG13bddz5kT6xgHjFRLRiIlOwel2xfpy2eeQTqBmzyXZJNX3jxYuyd150DBHFBtzmyq/TOMA+5smimgWA8FC3WKzdjbHfy0T/s0AIvM3qMe9ah9dWOKKY5NlJUmNZs1W9WSAS1VjINxgWtVRplZrG1VSYZx4BwYKw7tCm1twFmoQ8asObAASEoVGX13DXBeAxqpEjeL9rl3oJk5coXPhXIOKMdgLT3VAoaCStsEYDg24wLwaOHjVdx7Y4CpuD8OUkUmgV3NesrPw1lt5axMzKIPPHDWxmskw7ph5gE+eZOttPXa7/t64Iit7ttsPwfYZH02DOMg+A6cKYCK6D1g16DV9UnZRK+/keRNdj98ytk7ZBLYQA60Bohq34RBt8rjwIDntTIhycTRts9ExqHaHDm6DmTnAK8PGdCYkwri7wGjPqBtX1XtzTMAy6R32KQ+4XEAeHhELoG+aD+RPGSSZwYb4OagvTAOBMlDgL8HU2yPvSUOHv3oR6/+++67795XN6aY4tgEA9goq50ZirpbbUxLRHCgkcmqiypNa/qg1M/zK73iFd+8VFGm0lIPWAH1G1bV5qD8XM2BWSUVBXAHhr7vjRfABaRUUTkGT9P69uOOQY1ECX9QUQC2iz7w1d6sGWMZjMdB2c9ZF9e3BzyfFQ60Zyq9l2EOzaRJPbMWZCu9FJJdGX3bcr6mxkACuLPJm3EZB4r2XamW2gSawuMgMQctrs8Vs2T11e09iK2FWcAozzhwEgeZMRhsP5u48ECmGGibr7bNnAmsx4FGIqPaHNn5/ZqK80y1dXQdyu1FsqwjIDcGFKwTpccA8/wze2KFVNKiD/x+xJrER6WCcizY7DqY8f2azTrjVSlhvdQmLhIFTGUYj4NKxoHKZyMrnzmFjb0lDr7kS74En/Ipn4K+7/G+971vSh5M8aAPJsufre5aD+bA5Gf1NZWutQulinHAHFiUoLFbaVWVPNJUvLPV7oAmeZEBTBSMh8Xn4hW/KtAY4N7BM0dzlBKkrDmyqfKpAAy8ezSmvr53ncIcOSSRIhp/ympvnWQc8Q6MLBOkNCi3CfTaBLaCcZCr9LLzsKDiPiFVxMwDBjBImDMrEichxoFEsi/BvBMkD7Pazhltb8ADrYKJg7RUUZb1k1sLtpkj10Z2P+zdr1JuYld4gGlEKsn1GksC1xmpJAY06/ueLurqus48MwY0NCzcVLV1MHmYnAP2DZwr2s/sSbNzIJDbkx4HffmMZKHXtvedkfbjc5DDwg1JpuWleqxkWK1UkiZ5CniMg7pEPlvAU4Zlfk1SRdnY2x28+OKL8Q3f8A0AgHPnzuEXfuEX9tWVKaY4FkExDowpbQK4ZsyZncV0Rpoz06CRSK6JObBozZEdivIAaJI5oJRhKk0DGyVFtbP32Go3zCVYIJMqqrgHKtAYcDbLFb+/lCkChFJFo3sccGNQAVhmKq1tZQ83/my1Iw+aMjIpACvXla+2B/hqYyXzi610UiQvs+bI5fUKr5nIOrBvrxGN1w4PmmiAe2cfUnlozoLmXvtZc+C4TEnuHTAG0dHEgZj1M7rHQXIt9O5XhnEQ3Y963Y1X+/IJVIZxV0ZWvjELWgI5Fm7eHDkH1nlydRGDbuA4SAXx98BKNeXHYKSoUFXtnUmkl55/2TkgyoLNmqR780bIpF3gM8Cei7LFA+tBexwQChheKIs7p1jEXlMv1157LS699FIAwP/xf/wf+IM/+IN9dmeKKfYa5cJec2BVTorMYpHN6u9sv3KhUDEOFiZym383tFlRmDEuwwP6hp6BryfLVvvqGAfMM+i6jq52VZmEMwcmC9YlGAfEHHD6rK0GHDNx4M4BInPqaqkqwfM/WbAt5n2kfY1UVkqmRQAaA1wCWeYzQyZvjDk6AZguw0rVcNXeCn39qL56ttrZ+0yKecbcg0O+fQVwnwFNNFJRDnBMShVFQXMgL9FQVvpG1wK9VFEucRCtts0yj7x9UM7jINZ+WqooWeGZ2QcuI1NMpJAq8sZsqNpYANzmzHlzUkVpg3RnzITfw8RcnB1/QDZxIXj+wvbne2AcZBPY2WKerFxVeg5IMC9XnyGNgdkiTi9MMUOtx4FILkuFDUxxPvZ6Bx/1qEfh9a9/PR760Ifiox/9KL78y78cv/Ebv7HPLk0xxd6CqTIxh7SUTAoj07J5TRfM6m+0T1aaKeQJlmEMggelinT3fzbrTN+Hqi29/rFSRR5gWFvlozCFBLgN83zeO3qyoor3mmprUdveZ2va9xkHqor3CtaTW1mjAs7HSx567241cC0ADAELeNceWOfzHuWrwst1xUErlb8CC9orDwfsgbWFXFuUnq1I4HqVXrXrgMZrhAcMWswDY0s1uV5LJONAIVUUZr0k70EWNM0mDrKVpor9aM7nI9f+bGaB+1Knemf7gmKmrMZ+Ri6LkWssw3teIZkWhUxJORdEQNvkO5hNnrmyscE+mLUg0AcFaJnzmFAkjjIeC6Jq78S+zHoc5MZgdC+QfQbl+3cQlmxrMAYqx6DK5wUAThfn07E9DiZzZH0c7rPxP//zP8fll1+O//gf/yO+4zu+A7feeiue/exn4+lPfzq+4Ru+AV/wBV+AT/u0T8MFF1wQ/u7HPOYxDXo8xRTtgqHIqwArgKPGKY1n2Ip3e0hIVpuuFXAP3QNFhefm52c4Nz/fgWHGgwPaivTVgcXvq/lNVksxkzw6/10lEFXT9qJ9FjiPj8ES3MuAloy2aGmMDPDmyDLW0cjmyKbCkKm0dgCms0fzKvaGSrKMpQi3lIuqkusSgOaAd1iqrLQ2VU38PMzq+yqkiizjoB6w6HsvgZqvuAfq14FyuFKJg1l5aK2/BwrZuAOzD4u0n58HMlI1Vk84zziIggZZ1gXDuluPcrycSjIe4pWuCubRDOsb0ZjHQT55d/JghrNH59sPJQ4kybMOOLv9O4eCrbQF8kkLwB+zkT4ofBZYfXPv2rhkXnIO2HIWiYTVNuer3TXAfSRxkZsDgVwhg8rjoGQqxJJnuXk4i03oGQ+5dZAz6Ob6oJQqYhkH2SKaZSgLS6dYxF4TB4997GM3MnBd16Hve9x000246aab6O/tug7nzp1TdHGKKUYLxhhUCZozwL1KogLgZRpUpqCAc2AZ0RzZb3/3gu1VQ9GgnWdOfNRjCDedz3tjzqsyh61ivSRNqDbbj+t7q2RqAK7a8f5CqujkwYxm/VByaV7iRiQVVXtgk2irE+boq+tECUQD2lUCNlmgYvNzzDuoYV5Zxg8H2iu9ZmrXIYVUkVIuDtBU/AOL31YzniSMg7LiN2UMm0+cROSiWrBOvO/dFtlqeyAPmGQqfQG/gKbv++pqzRLkjksV5UDDvTMOBHvSUycOcM+Z8/uKmFRRvpAiDdoJQWPKmNj5zOhSNZmK96RUj90P5d5BIA4cZoBjy3wUgLYZxgExBjNroWL8eZ8LMX/Sc0BuHsy/Azn2X0aycRnsnlQqVUSux1aykJQqEp4NpljEXhMHy1jfFC7/P2qEM8UUD/RgQDuVMTDALRZKiQhaqkh4D6LmuFk91zKi5qiujqLI42Dx/XMAuzMHHrjO6vwzwLGfOBC1XyXVo2OdlBv2msRFKVVUSwX1gqk08Q7J7CvIVtm0AGsi7StAY68PtaCF/w5qEog1fdAZtHOHBattn1gHzTq8P6miyGHJTR4JkhdAIIGzZ9BUMQ4yFe9WHkTDOGCZVwqporA5cgK0Bfx5q5bxAgg8DtKMg/w8UDKmxjYIL/ehpcHlrpAYtCeB0wxYVHodRZImq/aTLFgF68HsS0PGrGUBTfT+54pp3DUoaVI+ulRQ4j3MsN6WUd6viFSVinGQmYuMVFHwPcwWEWTfweye2MgmK8yRK/ugSJ4ug00i6pJXOnxoikUcm9RL3/cb/5tiigdbMJVuCrBiGVaqaL+MgzGrjZcRPbAopaKA+ILt6ssrpYrIin/2PjDVfq5UEdl+CTLUgAbK5FH5DvT9sDFZyThgjZEBDePjxEFMy3NX+7UHFltdRgBmnlQRKVOjAs6rf7/3DormAUauSuVxwRoTs4lDgK80a2HMGzmwubralFySxzzjmC8PTI8DHjhWtN91nU0g13ocNGAcREHbtETEFuZjTfR9L2AcaKutqeRZuQ8ZWSqovGcR8FxRSBEt4LF9UMrU5PXtF9/LV/wzwF2GCZutuDe+X8H9mHd91qQ8Ahxnq829z0TugSJxUe4JQzJBMmPa4hmENP5zyatsUaVNoCeTl2lz5jzzqXZParCgBOOA3ROxZ6EylBjZFIvYK+PgRS960T6bn2KKYxU2y89U/I/NONgv42HRBx3rIcw4EGmbr9oPGrMpq+29jW2VVI+wD8yBxdvUeCBwTTDAnaraetG+/wxOzbYnA2ziQMj6IRI3GdCWrXQx1V1UpbFT5VYJmKjuAUvP9ZNnGtZDTR+ytOxl2N8/buIGSLBeBEnkcv2IHJZ8xgEB2iWkclpUO0cOzIq9AJu8BPwkKhOHs26jXdbr45QgcXDmaB6SCsquh97cXcN89NoG4j4P5e8PA5aCPWHmHVDIdZXjJsN4YH4/mzjb3ocIaKqQKsoxABWgWWYuyoOmOcaBNwdkpWoia6HCHFiZuNm3xwGZN0jtB9QeB3Fz5Jxcjz0TJNtnEpikdKRJXCcSByxGlCngWMaRI6OcVYWYYs+Jg5/7uZ/bZ/NTTHGsgql0UmlLA1yVRdNqf7baOAMaBTfMcnPkIGjlbSZUoB1QOQYbGjTTUkUijfWazaKi2n0Z3vszdGi4vwC3WWNkwJuD4omjVPKQrHQqk6wqqaLa9lX3oPzc/C8ZJ0OeFUqDagY0UCXPDD2brnTXvYPV5siC5ElGJsZ7TlTFfQK0kVT8J+6BopAhU+2ZMSRdjxMHs43KeZZxoBiDQEwqyM7F0Wrj+Bq4DA/gTksVBQEbBfsq5XGwZ8aB5B1MVnxnKt5LqaKoRAqQl43L6rt7n4m8hzaBnZMJioO23FlkPVKgdQuPg1TFP8E4EIL2POOA3xeadyD4Hso9DsIJ5Fz72eSd14faNVwpVVQyX2r990pvJCZ55hYVToyDdEyplymmOCZhdQ3jwH1OqihODVQyHvhqYyHrIZi8UYKmQJyeWd6jrktom7sSFfExAOiAU8bnA1CCpjXAea66arN9T2d/IHEglSqKV1qVvz8nE8PJZGQPqsvPlB87c46cg2jGjUPRr5BulMqFMcwzmTkyd1jSrkPxPvR9L0meZGRS/OTRJ4HHQQAwMPIMxDMo38EIaKSS7LLAKcc4UEgVAeMC197czSZOgLw5ct8HfS4Ee/Ky4jNW8Z/3GCjvWSn/tCsU7K+svndmT+YxbqJRjtdZVw+YAfuvOM8C11kGpps4GBG4Zc7itn1+T8j4HZr2EwncbQUskZi71d71zyDDugIEknnJ9rPnonK8MMlDdgxkfY42+8A9hxbJMyBX3DrFIqbEwRRTHJNgJkqlxj5zWFUc1DPtL65Tsh6CUkUiwHAZWakittIe2HJgrziw+cA9KxXEeAzoQFNGV7OlOTIw/B6Uh3pGnmIZ1BykZPyQ9FQVcMxW+lkjQk3iDOCTd7w5chw4V91/m7gaj3GyrQ81h3Z/DmJAex4wc+dhlVTRiMwPCxgE7kFSWxvgvZYApUk4J5VhPA4oxkE8eb0eGWNawH9vqhkHzn7p1EEske6t3zGfC15bfRmlOfLYjAMjVZRgHDC/P8s4yJwJrFSfALRNgobR39/3vXlnIsBllvGQLajyDdKjFec8cJ41h160r2QcEKBx4hmwBSxD10fmAnMWns9D/qdZ2cIs6yS7F8l67Xif4c2RH5geB0oZ5SnOxyflHfzQhz607y5MMUU4mCoDpcY+k2FX+guwh2VpH4LVpkrQePH52IJtpRF0oC1QK5elA+6ZSisrz5Aw5yWqTVuaIwPD9+BIyHhgkndN5dJobXVeImSzfQ4w5RkH3IHZe04qua4xWTdl0qKacdIweVV3/70DClNtz9PTVXJVM4d5w7L/mNegvAdnUvruHPNoPSIHdtVcyFb8GYNuinGQBc5zoGFGKkvBOPDnYD5xQvmMZFg3Cp+RQu4wZY4s8HrJgsYx0NzuQaOgVfYemOR92Bw6tyfPJ25y1dZd16WB08w8xPgNlpFiPAhAUzMPRNp3zk/RPrjV3oFzWZb5VY7B6DyYNWfO7omz4H3f9zQ2okieLqNMINX2QWIO7Xq/TYyDbOw1cfCqV71K/p0f/vCH8RVf8RXy751iitZBARZCjX2mfaXHAXtYlvosBLU9FdVV6xHdLCilkrzNOlvxTxs0Mx4HwsQRA9xJNf69as+Be2DnAB3joE7f3iZu2PCMKWuqjCxQwDIOCtCyUqpIdQ+8scNUvHdBaYT1YA4NqjFokhZk4iYzD1PvgOvzEu+DkckJABau18zoCbR8+6btkM9D/j3MVLqp9mNs8kLCOHCA9pjXRg6wYXx+lnHm6Mj8XTRx4M1dJbN2V5RjgGHhZmQyFFJB5bg5fc7e122hkE9lWG/rkan2zkp1AfmCrixwnPU+M2tgWKooPwayGvPlmImxTvKgZWZPYs5BFGjKV7z7BvW5d3Db924Lb+0KzYNqj4Ms6yY4B2SYj9uur2cclOegBOOAfA9tIa3Ga2YyR87HXu/gd33Xd+HXfu3XZN9311134Su/8ivx7ne/W/adU0wxVpSTeh1gpAOuGXqs1F+A1jcXApfBAwtrPrS1/WC1pVJfHuA2694hhR0GDGDS0mOg5sCoMsQEtgDHQdaLVqalRqpKU20P8Nq2quQhC5iqkkdstatSsoxJ4KrGIFvp2FKyr4755yRPqUrjRLW7kzxSvQe1B3aFvnoJXGeq3Tlz5kTyRiSbyFb8mcTBYbx9D7DJeG1kKy2B+t9fyvYdzDqJMWuk4tskjwTJs5jHQT6JeuoEL1WUMeVdfUYM2mVkegAicbBnfXWXcRDyOMiBdgrmVbYPGRaowmPAJLETUkEc44Bfi9kClo3rk6yXUqoIyM6D0XUgV3VvfD7CzDu+gALIGbQrpYpMIr3yPhj2seAdBHL4wBSL2Gvi4Ny5c/iGb/gG/Lf/9t/S33X33Xfj6quvxn//7/8937EppthDMPriClr06rMEYCSt9id1HbWMg9iBRVntDsSrLZX68oDdWNRs1r3kiUoqqKb9cjOZM+eNA3flBlktFzUEWlhKrg64ZxJHmftPG3SLgGN2w6zyOmH1vW0CWTcGGakiWirKeJyMB1gvg/JZEfm8ZA6rWuYTB9xJzJGLz0SkijKA4TJSUkWyeYDbC5X36mRQ399re/G94wHH3pCp/v0CxoX3zDJyVZxUEF/xKfE4KBkHGakqAeMiXm3OF5Owe5CN6/de7Zxjn2WlihQSrlmpkkxRm8IcNsM8UhjD5jwO8okDb87OeI0Asfcgm8DNjoFSXi6eQM+N/wxorhh/y2AlwzL7sF2fmRIH+dg7Z+Oee+7Bc5/7XPzJn/xJ6jue85zn4J3vfKewZ1NMMW5QHgdS4D4vUZECK0h6sgHPU9W2sXugrHb32h+WKtLpywPcZl1RYbatfSp5pmQc1FTcCyoMl+GbIw+MwZZyZVXPX9c+a9Ct8zgg5yDRPfDmD4ZxkfO5iDO/zDugkmipZXwo1yGCceBJOUjkGRIHZW3ypDaBs3kdI5eVqXZTJNCU5shsIQcrVXKmkJSJyvQs2y7z/imPg+B7kNE3t4yL8T0eFOtx5h1QJFHL+3b67LiJi7LPUdAsU0yUff5Afl+eBe58+VAetI0zLvLnIltEFLwHCfaXwmMgA1y3aD+SxPaZv8GKd0diNJS8ce5XyPMpmcBN+3wk5TstHpNjXS2+s7Lav2R9JqSK2D0Zsw+3bXv3YO+w9wM+9noHZ7MZuq7DnXfeiWc/+9mUqfF9992H5z73ubjppptWVa6f93mfp+7qFFM0DwY4V5ojM6BFS3+BWtCkJethbHPkskJuqNpS3T4DGipBS0qqSGhOzAAWyuSRC5oEfTZyc0B8s9qy0tn7fi9s8pAF7kWMA3IMupVeRPIm8wzKOahG31glmcZK9ajMqQE/gT7ks6Eyp86ZI5fUeKFcFWsSPqJU0XzeoxyqzHqY8ZkonwE7DlmpEsu+i//+ruscc94I6yI/Blh98/L3nyITJ2XEmD959lUueZa//2XiYEzGifeZaMW99TrJSRVFfv+i/dy+3P7+fLVxxuMgnLgw+xFmDPAV354xbOj3k7K5m5/RSQVFQePFZ/bLOHDNkZNSRal5MPsOJg3Ko/NwmvWT8N2K4hDbou/tnqyecZC7/95nMvKdU5yPvSYOfvqnfxp936PrOvzxH/8xnve85+Hee++t/vzp06fxNV/zNXjrW9+KruvQ9z0++7M/G29+85sb9nqKKdqErTKoAO2E1caUMawQtLdgxXD7fd83rraNgbZ5c+TYZlkJGgOOxwOjcZ8aA3HWizJ5whzY1T4X0Q1jW7kyInGTkSpy3p86k3aNVI2VCqvbMCsMKQG+0ksKnBMJ5AxQs9k2m7hpnLwamIeymtLLyByWjBlkah3UJHC4in/NGFi0nwesIgd21VrI7AW99pmKe8BLHo7LfGH1zSWMA28N2rNUTyyBmF8LyoRLRCrJzAHU79dW3OfNkaPt5/ZENnEmqDZOMA6Og1RRpA/ecNk3cB+5B+U7M7bHAcN8rrk+K1UUSeBl16GsVFC2qJOV7VyGawxMSxVxjINM8qg8x1KMA6H32xTnY6938SUveQn+0T/6R6vkwbve9S688IUvxLxG1/rMGfyNv/E38OY3v3mVNHjsYx+LG264AY961KNG6P0UU2hD4XGglSqqAKwEeq5b2ycYD4vvETIOBqWKdKAt4ABnAwc2ZbU3YDesVMV/ArS0jIPxQMvFZ+ObxRJUySaPopJhBjBMjAFGLk2ZuGEZBzqPg83P1R5UVGOQrfQyBt1C5hdjjsyYsgK237WHhZass5p+eGulQt8/ZUqrlOwbMYFzkjywq55BhiKvkOgAuHXoaG6LKJiKe8CRLKwEjr1CDmYuZEFDReJgNuuMz0JGrkrxDmQAMwXjoDSd3hUKua6MQTngFXNEGAfeHiTXfrjaOC1VlGPAWamorFSRIIGbmIe972vV9uozCeaRov3Mvvw4MA7cIpoR90NZc+KsfKeVDc4nD6vNkUVSRRmpoKxcndf+xDbQxN7TL//X//V/4Zu/+ZtXVPDrr78e3/7t377zM+fOncMLX/hCXH/99aukwRVXXIEbbrgBj370o8fo9hRTyIPRNSwBIyVoWgcaK8GKzfbn/UJ+INJ+tg/lZmGo0s2asGUZB1HQWPf8AbuxqNksKZMniuTZ2FI9CnmOzT7EkifSin9is6r0uGCNCVUV96pqZ3YMdF3n6PxX/H6hQTcDXqvGgDf/DckE+e3rEife95fhAUWMQbydfyKApe4emGo3MoEzpseBuxegtLXjzMdVHwQSHQC3F/SqwnnJMK7a0Wd95J8BK1XEmCMDOakSxVpkpaISFf9U4mLTVLv0ztjdfn4/kkmgAl4xR/098OQio1JFeXPkrFRTMQ93sbk4qy+uOBNkkkdZxkVWJgbIMY+YAp6h9mOJC3ut51mwK7Jn867rLPMtkkBNJu8s+z7JOAibM2elkuz19dX+3P6vDG/c1t4GiceB2INyikXsPXEAAK961avwrGc9C32/OCS++tWvxv/+v//v7rVHR0f4pm/6Jrz+9a9fJQ3+yl/5K7jhhhvwmZ/5mSP3fIopdMFsVrSVlnF6ekuPg5o+uAfVEUEzpUwSEK80yx5QyjBVDlUV5+009usq3vO6zuc/G9uo9n3vVPZkGQcx0EQpV8aA1lbfXtc+UDcPqYB7VqZEJVUEcKCh1OeDMQiXSRU5VWY1iROlZB7FONA8/4w5slayj+uHIonKylV5XiBjyuQAunmISZ54e4WxpYq894SRB2DWIcBWxrOMC0aycdu1Y/p8ABr23akTvFSRgnFhq23rQaP5vEeJcUb3JBmpKEABGuaqbbPFNFlzZMWZgGUfAnnQOqtvD+Qq/jP+DsvIrEXepQrGQXQqKOeBGPOqSB6OnLzL7gnTc4C3Flf2ofSXOHs0ryrgqelD7XvY5h08FpD3Az6OxV08PDzEa1/7Wnz+53/+Khnwj//xP8a/+Tf/ZuO6vu/xohe9CNddd93qukc+8pF485vfjM/5nM/ZU++nmEITTJWBtNpbwjjQSkQMAvdeZYnwHgyaI5egbdrjIFZpZgA7tUwOIRellYoa22Mh9vwzOpLbIipVlD2k7vosJ1WUaZ+jJ6uA4xJoG9scefHZ+KFROQ9TzLNyDJBSRb6++LjrkJu8GpwHNPNwptJLOQ/S4H2iynEZRqqo0pjXWyuY55CpNs3qGi9DxTjgK+7LZ8BJtgFcIQdrjquQKgLEjAMJ6yYCmublQ6055rgJzEy1uWsKmgbux5UpYd7/zfbL9SgImqalkhRjgAdO1TI5jFRQZi3MPn8gV23tsW6irAtvHoyyMDPMq+yeMG1OnDybpxMXjoRt7f0v73vfa1gvy37UhJUtVryDE+NAEccicQAAn/Ipn4I3vvGNeMxjHrNKCvy9v/f38IY3vGF1zbd927fh3//7f7/690svvRS/8Ru/gcc//vF77PkUU2iC2awoq72Zw4q00pOQKVHpGq8+GzywWB3L3MIUrTQzYFEStGZM6cpDkrTamvBYyAHXsc2aW9WRTN5EfR6U1e7MgVkpleQdWCi5JFpbnANslMkzinEg9LlQVDuz74D33KqYbw3lyoCadaC4/8eCcZDYC5D6sjaBlgdNa0FL95BKGVTzoFEWMFxGNHkM+Pep3E/UhmoeBFiZEg3jgE4cEF5L56/Nr8fHzuPgLF/pyyTR2fkHyMvUAHwBwfk+5O5BttpWzTgYGzQFkswvby4MSRXlfj+QS960SVyMm7xSYANR6V5l+xnJQiC/DqSlkhJ7MbeAR5Q4qO2HtweIsh6yCdQp/Dg2iQMAuOyyy3D99dfjkksuQdd1ODo6wjd+4zfi7W9/O77ru74Lr371q1dJg4c97GF405vehCuvvHLf3Z5iCknYhXpkqSCzWSGqzcXGqEOgkb8wjQOYzOc9yuYzMi3R9gFdheO2z9dVGys17pnkmbDiPdi+qsJyPaL3wCRu9gxa5w3C431QzYMsRVxpwkX5fBjAUsl4iCewpVJFDwTmWyOprHk/7POzDAVov/qsSKpIAxZUvoMJM8D1YFhX5/ugWQuZak+vGpNlHCh9JhQeB7XPwDAORPNQxpiVGQMZ4LpMojKsn1LiKZK4UDCfyj5nEjeLPuSA+7xUULTSmk+cLNrPyUdaydJs4iI/B8RYN1rGAVfxz6+FEsaB2ZPE3gGbQI9K9SiYT4kEqjmXJJN3SYPw6J5Y7XMSShw4jOGozwuQK+bwxmv0NTBr4eRxIInDfXegjL/6V/8qXv/61+Mrv/Ircf/99+Pee+/FVVddhXPnzgFYyBU95CEPwfXXX48nP/nJe+7tFFPoQlHtnQGuKdDYbA4yoD3DONBUGS4jsli7lGixOfKgKaeRSkqCtsRm0WzQpBr7Ne1rqs0Bh6I/QI31waoscB57DxVmhMtgKk3lrJfZDPfj/G+qGgMqbfFDbrOuNCfmJOt0zCfmwGKSd1KpopoEtvL3O4mDYPKOTly5bIceJyu+T8s84ir9FAk0w7qrlCpqBVqHQNtGXhc1RSSuxwG5Fhi5qNrEgQC09T5T275MqihR8a3wGMhozCtkYsr7FvE40JhD6xI3iz4EgftS4zvw+4G8z0XWHNcWk0RB083+LqVKaudTBQtVyb4DYvfAJg7zoGkEOFaYM2f3hMeBcWAkE0PzUM7jgJHsXI9sAjU7BjJFhYz6g9sH5705qJRL8u7X2aM5DmYHdPtZNYApFnEs7+LTn/50/NIv/RK6bqHJdfbs2RVF5eKLL8Z//s//GU972tP23MspptCGrbKpqbRtV+1dJVMiBI19wCYO3CqrTXcdWDI0vG0RlyrSgeYABxxrq60ZjX2hVFHwwOqaP8nNkWNyVSmfEyZxI0xcAHaDz0imsfNgee/OVEu05Ks8l6FgHGTmIWuMGn8HVZW+1e0rPR6cZzcE3KrWYZftUFtxr0zik1I1JTuCShywrB/nOqramWA8LUPlM8HIJJTg7uGsw0yUwGKlqhbfxVSck4yDo6ONP588rAcZ1iNT8W2BewY455JngCaJWjIOSgmoXWH2pCNKVW27NgoYsaynZWSl89IeC+VcEGUcuFIlPOuEkisj5NrOt5+bhxT66mUfYoyDXOII8Fio0TGQSxwo9qSZeTi7JzRrYJh1kzsXZfyuAC9xFWAcOO8/Y9Ct9DjY9n27Ql3UNsUijmXiAAC+9mu/Fv/iX/wL9H2/MvS44IIL8PrXvx5f8iVfsufeTTGFPpiFupwYM6Ato+2r0rYGOJkKN6OtlGjYcQ+8TUwGtPY+PyxVlD+krkdUXx/QAseURIMyeRX2ONAAJbs+P/gOCOWqTKUrI1OTZr0wzCfNBpGt9Dzq84ek1WeJamMl68aaEtYwDjQyOX6lU9zjIAOaz2YdyqKo6DzMrkHe768HbdslEFmpmjE9Dsq2Zx0o4Nwc2BPGtOxcXH6uyhy5TN6R1fYAD1x6czUnV8UBdzqpIl7jXMH+ypgTK97BU0XCJcc4EIDGIakkAeNgVt7/XMV/HLTNaeznZVLiZ7Fd7UsYBwl9e6C+0hnIaetv60NkDDIFPEPtxxkHueRFxhx6GZkEnt0T5hInYcZBdg4o1+Aw64kvpnKlioLtA1sK60iPg23ftysUY3AKG8f6Lv7dv/t38QM/8APo+x4XXHABfuVXfgVf/uVfvu9uTTFFk2BkWpQeA+UifVRhRiOVRyCqXNRV/5EDi1vhmASNo5qOavMfjcdAInlFtK/QFF7GyZKiHgQMAYU5cmyzrNV3j1fZ2KqObPKsrLYdT6qG1RVt6jVDafzrQMOlTMGusFJFXPvefWNYTwq5rI3vj3ociCRqFm1zoK3SIHtUjwNS312VRGe8prb1gTdHjgP3KpkeQOtxwBRTsAbVOqkiHriTJM/MPoQH7qnERYpxsN9KY4U5claqKG2OnADNgfwzyEqVKObBTMV7NonMFFCVYYsp6seAwuPAjoGcXFUWtFWYtEfA6+w8nJGLAxRzQI71lElg+4yjfPIs0g+vD3HGQZlAnRgHimjicXBwwNFDd8Xp06fx1V/91VXXdl238kSYYooHSmwzRty14WltCnn2qDdg6ua/62RiZrMOs27TAGcQuHUOSV2gsqSMyIElk03fFlYiICbVlGU8MNrCUnNkgp6sTF5Ff7+iuq2MMvkzKJck1dcnQGvhHABwrAeFrjTgJe6G2+77XmaOC5AG1ULg3Ht/h7RFVWOAleqxUkG5d/Bg1gFrqidjJe/85DnJOBAyj2pp8hKPAxI0VJlD5/TVNckbZg5Q7sWMXFlCqoi5BZZxUelxUNyDUnKnvv0EcC2Yi6UeB5LEwdGWK732FdXmCY+JpL49IAANk2MgW3GefQbuWTAkVZQ/E7A+J4C3H8zJxOyfccC0n2OhHguPA5NAj7BOku9AMnmXNkhP/Hbv+pBUkScZKpAqiuAz7lkgOw8nzwVTLKJJ4mCoSjkay4Gm/t4ppjhO4Wq69T1m2D7Z2UpbXZUZsNiAntxBTFJWmwOLxX29qiBa6Zmpsly2vx67Nuw+aKyVKhpTpmbxeUW1sxK4rqi0FOmrA/HNYpvkUewZKKWiPIr2ulygF0qDdsA7tNXIZWkoqQzjIFNV4/aBOLQqExceW2CoD2WChR0DXdfhcNZttMfMQfl1oAPObv/+MlSUaM/Aj9X4l47Byj6UHgcUaMnKhYnegYy+tUmgsV4rBHCvkukBOLkywK80Zgo5WMCorIxXmSPXJi78JHJeoiMjFcTMRUYqKSNVJAAMMzI5XRefC837l6x0zeqrZ41Z4zIpScaBIHmW8Zqxe+IcaM4A9xmNfQXjIHsuy94DTRHB/hKoGbk0IH8uyvqsZM6FXdfhxEG3MY8wUkUZfMbbC2fHYKaocYrz0ewuZqp+y+j7YckUdZtTTDF2MNQsVaUt4G+uhg5syio3wMmyDxrDaitNIwcWtTEzENcWloO2hLantuI/vlmVymUlGR9ZxgvAsB6KMSCeA4bnIB3jxOsDZ47MVhsTjBtBheN6KKqNc6wfZx0YODS0NCiveQbKxAlAJHBF7XufqwUNsmaI6xGVbNvWB4WucS1YoJJMs6Bx/WFVZcbHyCWVB3u22h5IeL3skXEB6JInPOvFWQuIMcAyPrw+UB4HJ6zHQm3hnmJPngIMzX6ImYOK5x8EzWy1eVYmJipTkgVNcxXHCqmiTMV1dh4q+1sj2zvUh8ieLGMMva39rMZ/RLLPu17BfMqMwewYiFb8y+XKgu1n98SKMWj2gxGfEYFUkdL7bYrz0YRx8IxnPGMC8aeYIhhMhlWrre1VmQxJNGgr3qPVfmrGQeTAotLzXY+oKZ4ctCUq/qXmyIQppNLjIJw4EEukAI5UzyDrQVlp7M9BhzvUB5WJGyDu8eBdw/ahlCqqqTR0GQcjmxObeTDVviNVFEzgZubBE7MZ7sf576uaA8pDonodGvTa0byDKXNkoceBPTSOV/XPysSo9gKWdTauvrzbhxrGQUOponqDas1abCu+K6WKGjEOWI+PxXflgfOIObJiLiqff98v9gE1AHAWNAdy1c4mcTGyVNTi+lwxRxY0TEsVEQUku9pnEsisXBmQ93jw3pna8Q/4zKNI8kTCOEjK2B5PxsF4CdS8x4CWcZCdg8JSSQcd7ltj3XJSRfz52Pc7SyZQk+eCKRbRJHFw4403tvjaKab4pA632jBqypiRqCASF2fObf57CbzF+xA7sCl1nYHYZklBiS4jW/GukIra+P6qamdhxbupMqqptNTdgyhF3lLC8xuTKOtC6XPhUtQH2tezXvKMA5U5ck2loVquimMctGWdDEumCd9B4vmrE3jGZyQ4D2RkcrpuAdSt2q4G7XUJVPMMztUd2Mu+Rgwpl1GClkfzBQgz9E6X4DL7DjBeU1v7IPL6qFmHlebIrFyTKols5sDK9lt5HNSCZir5yijzdD0Uz8AbO6fPzavGcwtz5IhMyL4lUoC8hKjZB4elkpKgpeu1k2F9EAlkIeMgev+9cX4073Gi0r7Tmy8i4zAz/s/3IZdAPJ4eB5kEatTnIpe8K/cCedbRuIyHDNvjfB/4gqYM+3bV/uRx0CSm9MsUUxyT8KscYsB5qsrQrXYcl3EQNWXUMw4CiQOhTNTqO4KAjdHRlIO2NdXOOp8NzhhWWO28ReN/a9sNqJC22nGIcaAbA94Bb+jQUoLretZLzRjgaeHrwQAGeo+D+IFB+Q568h5Dz0BZ7cxUerX3uhlvHTIeH5UHVuVawFZ8l68LxzjgQKsSXGZZN0zydHWdaE/AMD5UMkmLz3JyTTKTcBK41zEONKwX77tqovSZiUjlKOaiUw7FsFbjWmKOnJDJUBRSZKSigPyejPXYWLWfBA1ns86YmkfugWV9MIwDnvmVLSTIVjt7a3ZkHGZB+/m8R/mReMW9NnFAMX8yUkXJgiZTRJStdk/6rMQTF8nfbyRz46yXTGGrNwflkydT4kARU+JgiimOSTCaborFefVZFzQcqrTUehxEKeJ6j4P69pW64ssoDyyDiSNxH5hKQ6VBNgMYKOmIbrX1TtZJ++TRmGNgG0V7Z/tl4iZR6QpwFHWVTAs1/pz+jc04UOrbe30fksrQShXlE0dp5lVQsk2ZvCuf/9j68gCXvFv0IS+TwlaamXmINUgnCjiWYeUpRIwDgnXD/n6Ar3hXJXAZuTpAmDggZVI8cEVjED6eRAfg37fqxIEgeZaR6lGwz1hz8G3XZ0HbuFRRfj3MGDQr1sOM10x2P5itdvYS7ZE+ZPXlfa+VqFSRtg8RfftlsJJ5gMDjgUxeLyO7Jy7bj/x2ADhKngtPlD5XjDlyn30P+TkA8JInE+StiAfdXbzpppvwuMc9Do973OPwWZ/1WfvuzhRTrMKrkItX3OuqrYHhA5sSNPY+P3Rg0lea1m/YlWDRMkrQdeiwpr//8UpTlb484GxWKzZLZoOWGANetfWuQ2OL5FG02lElkwJsqbaNyjWJWT9jStUYbemKzbKecRA/sCn17SnmW0O5LMrjQWzQPcw4aCcTVHtYsvOgknnFAsd50A6onQM07wCTPF1G+QxUkmlcAl04B1VLFYl+PynTUIIrY5sj+4yDfLV1LePH6wMzF3oST6fPHVV9VrEvZhlPgGYtykoVZYxxveuzoCUzBo05cUqqiGGdcO8g4CVOoqCtdw6ob9+TVou8B2qZIIBgXRSX70OqyEo28cmjcMU/uQaurhezjqJyVdn2ze8Psp7cPgTnAbaIZhkq77EpNqOJx8Fxjvvuuw+33norAEwGzlMcq2A8DpQVz56+8jBoKWYcRCvuxRXfkQOLEizb2v7g8xdLRTGVjmaDlgDNBNXWasbBrmegZPyc/45YtWNr1tHYcmVMtWk7Y9T4+Ae0rI8qxoWwsqbrOpw46DbGfVyqKJO8Ylgf2nUgOgaV7bOGgEqDbBVwyngceO8uY5DNzkOuMWgtcC6aixngXDkPs8C1ivnDMl6amSNXMw48j4M866bv6302JIwDZ+zUMg6yoPniMzxgqEjeZUxZvevjMikxxlsZiiQi63MCePruRPsJqZzsfpBdg5bhzZeR98DbA/V9X41ZefNVtto7yzjgEqgZqaKcfGcmeQvkmeCZpAmQLygzRVSMVNFRuR+MfZ7BA9ZDWUwxxfl40DEOppjiuAZT6anOqEaz7Gqd/+iBIWuClWlfbcjpfUfUHDl9/4lKUyVoxhmj6lgX3uZut1yVPnkUrbRSejy4oNmQVJGa9UJUmqmA8weqx4Gq0ncZ0fuglSqKPwP97w8y34SMD/v8SdBWyDzipWoI0C44ByvbXnzOqTYlgWNaqogADqXMM/LA3iqBW9t+CW7LzJETjANOrosfg4ozwWzWmTnwdGXiQCEfavW9ecYFZQ6dlCrKJvHYxO3qesGekGWdHc17lLZgzJ6Q2QcsI3s28/obM+bVMg4AGM+CXeEWswSfgTWoz0nlMPOQlWxLzAPJMdD3weRR1qA8wboCnMRFdA46jO9BTB+yzKu0XFSe+TSFjekuTjHFMQlPA3AQtBNXWkaz7OVCzlZ4LSMKWLVmHOxaLFuYI5f3b8icV834oEBbgRHaMhiKrjJ55hrD7vQ4aJA8CoImSsDIBe2Cc0DaHDkI2sydg6rK46CmytLVkxUmz2qqndXMl0jyygcKxp0D5OtgsA9Sg3JSW9omT3TMr9o+zAXAsceUYAzC6Wp/Inm67To+eRE/MKvaBpwCglqDbtFawFb8l+D22ObIXj+ZudD1WmJZLyrZvtrkoaDK055DItXeebBo38ao5dydrrQd0WfCZd0I5LoyHgdZ0DzbPhB7BhmfncW1eRasuf/BgnONZFm5Hw88A7FUEJBMXiU9Dsb2ObHmyITHQZr5k5OLMtjAxDiQxJQ4mGKKYxKMi7xc4z8IGDQHDQernTfbnyXlx4ym3o72zW9vIFW0aGcXcC0GDI1MzvBCbQ2IhKBZxWZZq/FvP7sLPFYaM6++IyqTYsYh//tnfylXth5hjwX5GBxIXAho2au2iQN7eU3XcRIt2/pQAxqW7+CYCVTvQCE1SCcSJ/l1MFbxmqXFb7QtMqZVzsM1fej7XiJP4DMOKt4B0TrggjbVyZv87wc84D7OulEalLMG3exawMqkmMTBwQHVPsO8XFxn+8kMQ5f5ODbrg2SdKOYA+/wj+vr5/VBeqihZ8U6yzlbXC84mbPLON+ZlWDc86yLr88EU0GxemwPus4kLBfOJkcxcj3nSGBfgWS+A3hx50T6fPIoyQO1v311EaNpP7kmtMXUwcwRrjhw2iU/OgzaJPCUOFDElDqaY4hhFFLhSbNLXI0oRlpvzRgGbsv0k4yFS5dLEHDlIkTVgQfr5xwGDrJbjepgDIwHcKkG7oT4oaPmmD2GpIvEcEJ2DhPr2i/Zj1YbZ6q5dn6urdteOAQXrRp3A3fUMvEpUqTnyyB4Piz4EE9hir6FI26vrlHJJBEXcu4R5DIxkI6DRVt/efmW1rYj1wMwB5TuaMkgnq31VLEzaHLkw8GUZBxa45X7/iYOO8tLzGQfjVfwDvEGwrbQVAIYZU1RiEiqlimrZFqs+JCVULeMhmLgQJJFZuSRvnHKsGx40NvNwcB7yCmhioLHHuogwDmIFZPbaXPve9VmPA09RYbAPCeZPtqjRG7O1Xkdu+9E5ILEPAfKJi6zPCpBXA8iwjgCtGsIU52O6i1NMcYwiChrIKy2DFGFllZvb/lC1c6nlOaK2t5EJEujneVI5u/pQVgGoJUooc2ShOW9V+0qZkKC+9jjmyEHQMl3xH0se2UNq7j2w9NRY8jDTB3tY3Ue1e/zApmTdAEHGgcPIGVuqSP0MohXPSo8DkzxnZXIyFedMxbvL/GEqXbkDsz2ok4Ap6bGg0vb2PlcDGinXIqMvzlabq+bhStCiBHhpqSKyfQOWCVkvvM/EyD4PgmKiDGgp8VlJeCx4fYjeA2YN3GhfUMzDy5VpCjkyxqgK2bao39/GtUX7syALtQXjILoelOz9CGjuXc95HBQJvEqfFUDAOHCuj/gMZM9l3h46ZhKvbZ+RKsoWs2RYR4C2oGeK8zElDqaY4hiF3Sxtn6z7vm+gbR3bMJfAdT5xEJVp2R9wPgZoDOyudlJn1A/2bo7MSMXoKr5ns85sbnbdf4WebhkRg2xvDsgD97EDm5JxAsRBM28zT+ubExIJasYHI9NgDklZ1kfg0OCBOl4CtL7t+GHBjkHx7x9ah6RzIFfppWQ/Mc/Au0VMH1zJxhHlqthqU1XixPtcFeNAWMjAjkErjzA246CUKhoXNFcxQL19HJ28Ecn21VZ8l3Ml8w5kJEoUDMBsxX92T8Qwfzfbb5G84eYAgJVK4u+B4lzIMv/89hXV5vv1OMgyDrhnEF8Ht7YfrnbPAve5tcC7X5HEhfV8yjEuonPgog+5PVk+garHaKaYEgdTTHGsogR8IsA1kK+0jAIGClryRvvBDLPcHDhwYGmhb+9LFW2/B6ayKfv8iQx/1gRq47PEYUUp0eH2Ydf9F/oLbPuOXZsl7/nk54DYhlFxSF0Pe2AhGAcimZK9MA6IA5ua/RSp9PGqwHKsI6bave0cMFRtp0wis5We0j4Qxng+cE6ClpIEdkbjP/4MlJJpVq4tvg6Ozfxz+0A/f451VF528lDDOmFBezaB6zIOqucBUfKGlKpRVHt7bdfqe1v5VCZxoQXus8asUdDWeB4JDKrZOQDg9oRlEVMMNM4nrzJSLdnklTdvZH4/EPdayRp0K5hP5asbwa6z+6GobPB69H1v56HgWuTKVQUYF1nfs+wcCAiSN2TyehlKGeMpzsd0F6eY4hhFxOPAryrIglaxibpcyNRSRUObFcUhYVf7uw4sWR1NL3x6Yr1cUjZ5wQA2Sp8LBrht7vMxevKoHrj33o8saGyfwZBUkXgMBkE7V8+VBWwIwEoFli3jOEj1ROYB3xxZmTwcfw4IS/ZJQes4aLy4TjcOjUE1MQaBcSvOle+hff5x4B7g3wNmDmjJ/Ks9sKvkshiJAleeQ5VAZv0FWMZBQiZDxziIj0EPMOOMcR198WqfiXwxRylxFQXNjIRq2OPA3vuQMaqgoIpmnLj6+kTyJiFToiio2qdclss4SPh8MF4r5v0PjD9AMw+Vcknz1DOIsj6cszgpF8e0752jMz4bWY8HJnGgNqiOJq9sQdXEOFDElDiYYopjFObAtGOibME4iFaaKUy4NtoPaouqJSoiBxY1YAj4G/zd5shaKp4BjAiZkJS+d7lRGFnb2evDrgNLi+RRBLhXyvQsI2oMqX4PoqClm0ClKz3jm2W9x0G82lDN+ii1ZSOsp2z7TKVj62ewSzLQ+/eUMS1Z7a00yOYYBw0TBxTzbdyKe1+ig6x4J1gnStlCFjRTrYdM4kK5H2YSZ4vrNL8/o3GumgsZ4EiVvMmAZgrA0s5/QdBUrO0NxEDDNqwL7v5731UTGZkShb4+y/wD8gVdao8D5vdnZWLm/X77kD2XunMQ6XWz7ft2tx/DAkwfkmeCjEH9Miz7LCfZFe2DynNpis2Y7uIUUxyjsAtlTFtaX20dq/ZNSwUFEidu+6QZ3jIiG3b1bwcWz99o7J/bBdqpJUryh8VMH0oqYVWlpxi8t/q22/tQHlAUiYNIpZ8rjyFP3m1vv+97xwhQzHoJJg8BnVRRXaWvdvxF1oBlyFkfgXeglCo6nMWr23a1PQQa+j4f4ybQldXe0TV4GYpK322frTmwedWAYwLH+664VzJAo6wvr/2UOTKpb6xaD5lqd2XihjZHFr2DXdfRGu8q9hMzB6jeAdfjYUTWR1amI7seZY1RJT4PhGQgYO/VAbkfyFQ8S6SaSI8HIC/Xlal2X1ybLyJIg7Zl8oYYA2YvHGHdJMdA19mzeO066LOg8x4HGYPurFTTLq+/baH2OEj7bEyMA0lMiYMppjhGEdmsN2EcBHQdF/TZzb8bm3FgzWm1vx/Yvli1MEcGPJr+LpkQbR8YaqAUsGIAA7HHgam438k40ILmQOz5e+9HWqYlINPgbaTVBuXDycPNf591C4NTJhQSLVlj4n3LtLh92PUOiBOo0d8/xjoY9fnItM9qK2eru9ajNJVlgfNRGQctK+4r2leABZn2lYdkJnkJaAA7ILYGLmPfUlnedVqT9HEZB2URB508E4C2QP3vVzCPSqkiz8dnV1ij+nzFecgcVyChyZrjtvI5iYCGCvYd+/5510bvgXd5rNo+Pw+za8C265l9cZlwish1KeZB2iDc9V0LAvdu8oj32Yjq+yukirLeY+W8FR2DLTwIp5gSB1NMcawiUvHqVlilQdN6Uzi1tjXgHRiHABttpW3EY0Ctq72MErSJAMd5c+h4hYXUHJkwxdPrm/P3X2OOnPQ5kZsTx+agcvyG2w9WuinH33Hw2GBYD61N4iPJy3y1f/T565l30QOLwhD0/Gc5xoFStq/8/TXAmVJjnqs4b8n64DwOdIwLInGS8dmgQWtNHxiZEOU8wIIm0r0QMQ947CtaLotYCz1pSU5fv76ApwyNTA83B2+7PmyOnKw2LquDmTWZ8RkBHBa0KHkaMwfOrwUZg+qsRIrHOBqT8QAcj2rvkqWQGQMMC5ll3vkSsrH2Z7POJJAikmlmHkz6C3BSRTm5KHYOWkYLD8IppsTBFFMcq4hUOrkVVmrQMGDMu/h8FrCJbZb0oJX9/LbFylYVabLZpdzSbo39xqDd2BIRzmeH9opqffNI1XmL5FFks+RXtoiB+53GuCMkLgbNkXWsI8+cfihx1d6YOA6ajfoO7Dl56Va6j8x6yVZ3rQcrk6EcA0y1p3cNexsiydtlKBmAUcYJoJNpAdjkoW4vYCQLyUpLlVQRbc5NSqbxPiMtGQcjsy4I4MgbJwp9eSBS7auQ6eHm4G3XR9dEbw9X+w4CmiQiW+2rYiAzsqnLkHgcJIB7xRhM6fsfA48Djc9C8Z2BLkgYByT7UyUhm/HZyBZVlgVgjFRRFhvIjkG1jOwUi5gSB1NMcYyiBBzC+uZq0CoKWsqrTYdAQ7FMRuDAojYmXkYEOFJWGS4+z0hEtKu2BYY37Ba4zIKmkWprbduABxzvaL+BOXIENGshlRQ2R1ZKlDj3bmizqtbRNJV2hDmwWjLu7I6Kc1vdOC7jwrs/+WdQrMMDz0ALWnOHReV6VAJXjEE1MC7jwABWKa8dhvGgAU0BLnlkq/sSv5+sNlQlr1QeE2wC0dz/ffiMCFg33vfUBsO6UBUy+Mak3BhknoEp3glKFWWl67xxm6q4Z+4Ba44smofLe5D7/fE+KIF7jcdCpH29x0EctM3vi2dF4tfzUfJCxbzi2Z+iedAUsESkinJnghbmyHGDajHza0ocSGJKHEwxxTGKNONArO++a6FypYrEoGFUW1oNWnptLKO8Nwp9e+97th3Y5vPeVOPLAcORKz1dbddgxfGY+uZqfwUgJhPRJHkYkksbIXk4lDgSguaMREKWjlsGQxHPaiqXEQHOTKXzoTZxN/z8dYDtMswcEByDStZVdbW3SCYGiP9+wJ8n2Ntg269JXOiqy4xkIwGanjjgTcK5xIVuHjSJo8oDu90LsFJB8cSFMoFomWe1PiO65I1lfZCsCxHrpY515MzFAsAOSMhFEc/AVtvmqq2j5yJX3zwjUyIBTWt9TjTFNHYOzgDnTOIkUe0tmAdSiQuJx0F9EaMXJcg/5j1Q+S2x7E9VQVekgKeM7NnUnoPjjIMsAy/rs6GQrZvCxnQXp5jiGEVkomyj7Vx/YPMOMvlq59hmVbVJXbUfOLCoDUmXUZs4UOgo2s/vF7SMmFNv+/c8aFqvsW7BmvySGjmw2wMKD1YtI6IxP4Zc2dCBUTn+fFPCaPJSnbiJg5Z5g+rAO9DYHHno+XuHybxcVwy4VMpVMYwTQFPluIxyHe37GuaNBWt44DwO3JqDslCqiDMnzshVWeB+SDJNKZ3ISjSo+iADrUeU6QG0snkMaKI8E0S9ZhbXaJI3bgEPWe3LVdtzoPkyyr25wuMgAtxppIpI1pFoL5IBDTUyOeUcxIO2VOImkbhoYwycq/ZmtoVlv+eV5sg++5F5Bpp3gG0/yr7evDbHxFaYI5fPYTayx4G6qGuKRUyJgymmOEaRZRxk50W7WdkBGjrZ77S+dRCwUWeUIxXHquq6MsrNwrZqpxbV5gqJCrVU0aBUiVrfPVBtqjQkPf8dvFyZpP3AZtX1OBDLxAya4yolWpx3OCpTsw/GgcqQcNvnd/XBSBVlzaGDEgVNPA4CBuWAWK6NpGcr++CNn6GDY/aQuNl+/MAoZX1Q5si6tcCbQ8LrYGIO4M2RNXMxA1p7oBLrccCCJsq1gHkHlIwDBrTyGYjxcdh1nel3dbWv4ExgihcClb4LX6TNv4sCx97ckTKGZZInZMW/Sj6VnYMADeMiB9rqgfvI8zfedyMzHrzrGcZBWXhQmzhwE6iMSTrLunH2AkwRRQa8zyaxWamy9di7x4HYA3OKRUyJgymmOEYRmSiVFX7LsFJF9e0Deo+BoYXS6pvnfv9s1pnky1apolbmyJXJG99jQlztzZgjZzTmXami7X3wtCzzck31Gyblb199R+DArAaMgVilk/ds1GNwmHGiuwfeAS8uUzO+z0g5RtXmyGd2ACdyqaKgTMwYcl1R0FwJ2tISHSmvj3jiQAncKzwGUsw3Si5MmMB0vX6CRRSp+1/K5HCg7ZjmyOU1s45PXrHVtkrPLcag2duT08+AqHj22meHIWtQ7bEwo1FKFUVAM5eFGZyL/MQJ3wdmLjQ+J9VSRaI5IKFvrgCt2fG3uDZfTJExZ1ZUWmcYF971lEF0F98HADrZuij7eRkq9ifLeFj04fgxDqLvYdbjwDC/kmezKRYx3cUppjhGYSfresaBgoYVYRycOWcPampt6fBhuQVwOro5ckaqSAsY9v2wIVU5RjJjwKsU3i3Vo6uwW0bInLiJOXL9ZlENGAMOaLrz9+vngGiliwqs2vbZsRkvJehcc1hqnTyLvQPjyeUBWomSbX0Yegb2gKJjXdHV3imNfy+Bu7sfVtNYB5wzMinKeYABTTOJm+g6qG6frXY1PhNkHyipKKHfFQvYaBkH8WpXl3FAa8wTRSRCnw/DPq72eskn0Mp7f+ZoPigVtq19gNuXZ4BjiVwTmTyzxVysVFbi9wvWwgxoqQCOU+bQEo8DNeOA6cPmn2u74M1VHOuDYxwoEkfe51JzQJhxkE8cZJNHNnkX60OZQMoykadYxOG+OzB2XHLJJfiyL/uyfXdjiincyHgcKCreI6Cd8qC6aj9YbdoCuD0x63Bmo40tjING5si1xmwu4yBd7exUms7nODU72PoZ5Tj0+r9rw+prWebuwcm9myPXH1jUgDHggEYjzwFRY8rWldZhj420v0D8wKw2R46A16pD0vm2Y4CFSs921+eHjEmbSpSMXO0NbGEcjGgQzch1KaUDmUOzArDc9dmwZJsQtD57tPBYGAKBVdXGCtA85zNCAkbC9ViRPAH4Z8AxHoTP4GAG4CjU/uK6/H7Ae25H875qbffeU8pjYNbh9Pr3JvTNObmmePJ20bbmHfCqvWvmIEDDRM+AlopzgZ2D+MTF2FJJXh+YeWjGMg5Ee0JWrkfFPmQZD0D+XKKQKsquyVmfDYVk1xQ2HnSJgyc/+cn4rd/6rX13Y4op3Mh4HGiqjflq6xLwptpPVpsqqGj2wFLJOBBJFdXqq/rGtNpKW2DxO0/tWClUusbAFqmYgDkxINA3j3gcmENSfvxFKMJqwBhwQKOAx0EGLFtGtNpXoWe7rW2gxuNAa8DFybRokxeRQ0OZ2MxKFUX15b1D8pgG4Yt/bweas4flzBjYtg5E2s+BhnnQUmoOXPMOCqvbKJP2xs+/Bjg1FX4q0JqZA0cef951KfZlwOto1zW8QXS8fWUSmdWYb2GODCzWwMPt9TPn21cxDsjECaBJIsvMkUVyYcCi4rzmVirmAiVwz5wLMhX/NoktkGraC+OAuwcqJjprUK0qZmIT2ICTPEvKBCmkiqLvYZT5W4ZaynqKRUzplymmOEZhFspAtbOk2jchk6KYlKOgkRI03PYd45sj1y3YqgPKxuc9beUdY6Dve6nGe1Qqxns/suB15B1Q6HiWUY6/2ByQbz9SaaWipe/6jqFKZ6VEi8bjQM042L1Z9n0+cs8hcmiQSxUFD4stEuhR0EoLmnOAhTKJ7mrsDybxlRXfecaBsv2xQVOX+TR0/4VJZNdriADv2bmAMUbVmnNzoIlKqgkgpYKEDEzGa8XMAakkPvcMFKwXb9yeqa24FzGB7RqUAA0FxrBDrLtV241AUyBjUi7wGEh4HCgq/kMeDw3a34dUUck4qJULc8+FDOuGlUsTFVRlqv6z2Ij1WowzDrJ7wkzixGtfVdz5YI8pcTDFFMcoIpVubQCTeo8FNWAEOIelwWrj9lIpWz0GDFCgWZRqpWpcY9qsTIizudh1YHUpoYnDomdOHZHLAvLvgTHG2yUX1iB5FzGmbJG4iFR5KKUZtrUfBszE5tyDwLVYripaZeW9H+nkRSCBawBTceJgTFPeZZTv4CDjQChbF5EK2+iDcBx67/EQcFl6HOQ05uMyGXYvMC5oaQBLMfMpyrxRS1XVJQ407Cvm/ivXQtocuWESm2UcsF1gvFaOh89EPoHmzn+1iQsREzhjzmskOijGQ30ByUbbomIub+6YVwLHCglbuw/mPRaY9iOyxUPtcx4LPOPC7QOTOCjvQbXPiOZcGMFDNq9Tef3wVf9ZfIhJHKv7kJkDvetVxZ0P9jhWUkXz+Ry//uu/jptuugm33HIL/uf//J/42Mc+htOnTw9/eC26rsP73ve+Rr2cYop2EaEnNwENAxl2VVZ9o/2oTEUDc+TaxUpZXbUeJwupjzNbpYqKCrsuV2UHxCtN/Qq3POthvborAlwvP59qP8S60XtsRCqd7AFBkTirT96VVXgSqSQDGsWA88wz6LoOB7NuY8xFK63l/gKDEiUaTeX1iCRwjVRRWi4tBlgpzdnP92F/rIeIVNkyPOZXZi2MSsYBn2SMA6rivRyHOtC0pg9K9hnjsQDo2F8K0FzqcUAblCt9Nob7YKULedk2I5lZ47VjEqg61kdttaliP3DiMM74WV2nkirao0zJ4jNctbOK+eQWMY1oUh71OVoPm0Ad7/4v2s/Pwwekv8C265l7YPtQ9zlXqoiYB9nkmUo2MMV6SRazeAbx0ciOQzXrZWIcaOLYJA5+6qd+Cv/sn/0z/MVf/MXG39dSk9Yjq287xRT7ir17HARAm3Ih8Tbb0YhS1JuYI1eyPizjQJPNZhkPLaSqdrUP6LQkyz6cOS/tujt51cLjIFDloQaNAZ9xss0UroXPRqzavDikJ/XtF+3HKq3UPicmcRCUSlKM/13fX0YTybJAxXdrqaKwtnuDBPrQoV1a7S0AzYHcOOy6DicOuo3fPexxoEvgUPrqAl3n1WeDcmmA2mslXvGvZL34iSMOuGYisgauX6NoG+BAc0D3+wHOnLWlXFdV8kzIepIB1wKZnkX7tTIlmkQ+y7iYz3uUUwVXcV/OwRxoqmQcsBr3FHBOeIxsa58pqst4HDSRatoL42Dzz7WMk/JdYYvqWJ8LFTaQ8RnI+pyw/g7rYdeD2H1gvKbWo1y3J48DTew9cXDvvffia7/2a3HDDTeskgTLzeHQRnE9ltcyiYYppjguEaEntgBMbKVpQKZFAtjEFsoW5rC1wGkLfXkg4nGgl0pyKx2jHgNJ4DBiyuW1nx2HkWprW12VfwbbDkw1SZ0WcmG77r9S13v1HeHkobbi/cSsw5n19kcGrqO6qt79GdMcWS5VFKw0VRyS9X3YL2gOCJgfsxnOHp3P4O6TcVAD3LZkfdTIRakNsrsOWD/OMCbhbHhgK1X1T0s0+PuQXWO6lMrKFBCU7fT94vuHwCelQTljDtxSrqpuHmqXvKrWF5d4HNjPVHscFO133bga995cySRP6PZVjAM3ecolb6jkUUKqRSEbmDFnViQwyz6X8+tQKAoJWNaDivnFjgEVNsAaxC/6kHsHJFJFfe4+GMnQAOvqaN6jhIMV+NAUxyBx8Hf+zt/Bm9/8ZgBYAf+z2QyPfOQj8cEPfnB13SMf+Uh0XYePfvSjG9JFy8TCIx7xCFx88cXjdn6KKcRx7BgHO9pvAVpmq23HlIpRmYCVUUoVbQPtrDm1XiYGGKg2buAxEJPq8aq7sqBpfbW1ipK62b4PmhwejNN+RN9dqeu9rf1Bc2KhrvKi/dgcpKy09j4fleoB8gmcmDmyOHET9bhosAZEkmeAV92l8zhgTEkBEfPl7O421kNJC2d8HpRzIXNgVxrjAot7EGF8WNlG3e8HKn0eRPKV27xmTjhr4DKU7D/XmHU+x6nZjg4gX+W5qw+MQXTK50QwD+V8VsrERd3nFKCdl7hjQcOxq43dQgKJvvu4oGmGcaB4D5QV/8xaYJPXvL49JZWVrPYuu6t4BtWMA1GlOVt1LzMIJ7yezvchtx8wXn8Cj4PS7HoolFJN3vdNwcVe0y+ve93r8NrXvhZdt9BhvOSSS/AzP/MzuOuuu4xk0S/90i/hAx/4AO677z780R/9EV75ylfi8z//81cMg4ODA/y//+//iz/90z/Fn/7pn+7j50wxRToioFEbmZT6w0KTaudApSvgHZb1UjHbK/41h2S6fTFgB/jmxJHkFSCouA5UurUBzAJSRU3MketZHy0YDxHQTKVnu/kdUeBYS0eNGpKpkzfRSjNPezd/D+rHgJGsG5FxBOgTN24fRpTpofTdXbAo9xyiB8emHgM11c5CrwvKHFnMwAzPA8K5mJFKAnRjwFtH9zn+gFrgXpc8KhkTNVIxymKWsv26d1DLulmPeqmc/HvQdZ0B/GtBK5U8Bgtce/1k1mRWKsn6XLCMA+4dBFSsk7jHyPlr8/vyDHCvkWri3r9t1zPzcak4Ust6UK0FJnnK+qzQkn0xPGQ9sklcew6KJY68PsTlkvjkXQsm9hSL2Gvi4Cd+4icALGSGLrjgAvzmb/4mXvziF+Oiiy7a+bnP+qzPwrd/+7fj5ptvxite8QqcPHkSd955J57//OfjuuuuG6PrU0zRJDxt123RAjCJgHbqSlMgTk2zOv8K1kXdhk1BR/WiNnFgDiiNPBYi5sCAptJyo42Axv6iUkxb8bzLFM0ckiTAfT3ro0XyMHJgbJG82qZvvS3sPKQdf2Ma43qfH2RdiTSV18OCJjsSyOe0iQM7/0QZJ/oxGGW+ZdYhRiLCWyfVXhtRnwepOS0hVaTUuK8BrNQMRDsPjQicu9W+8Ypzdi7wzZmD76Cw2r2mfe+aVB/MPmhsxkE8eaY0aOc9DjR7kvJz1VJFojHAVjv7UkUEcG6Yn9z9VxmkA3zyRFLxHzKn1rBeNtuPgKYlNvDA9Dgw96CScaBK4rPJMysTxDLvOKmevu/NeImbI8cZZ2VkMaqUQXkDGeUpFrG3u/ixj30M73jHO1Zsg3/wD/4BnvSkJ4W/5yUveQle85rXoOs6nDt3Di960Yvwx3/8xw16PMUU7SPkcdBAYz9kjNpAqsdIRITNkfVyPduAqxZtA/WATSuPhYgxYAvGQURfWgkWnf+OgFRRA8aBW2lVmbxqIlW04/nb6jp94mLRhwjrIVvpGzswqZM39rASYzx43xGN0uT6TID5lp0Hw6yzBpJ95XdEq53H1hb3DtTyivcRK76jjA9ALVUTB01UVYarPgTeg77vpe+hxzysAW5VrI8I624ZLVk/QF21qTKByJizKlmwTLWnkvXDAqeqgpoThwVwfq42caDZE7HVzi5gRtwDxpzbu47+/V7yrjZxYMaAoOI/Ue1NMT4SwL1CvrGUlYkkLrzrFR4Htbkble8VKxWkWotp1o9ArixawOVF9nxq18CIVJO+mGaKRewtcfD2t78dfX9+IL74xS+mv+t5z3sevuM7vgMAcP/99+OHfuiHJH2cYoqxY98eBxHQ5kyxkS6lDZgIy4Q0YT1UAvcN9N0Bex+3VTqpTUmXEfMY0ANWEdaN4oBg2j8M/P4GUkGuTMQ2nwuhGeHqOyKso3MN7r/z+yNyVdnkhZFoGJKpETOP4oyD/YLGVqpo5N8/ButmxD4wlbbePRoych2KbAInV/EdB02sMa8ueUMxHtLvQU6yTy3Zxmjss3OBN4dHTeKV1fYAZw6cMWpnKj7NWqR8Byqef1kRmlkLWKkWMw5oxkFMKmzbdaqK++rEicsCzgPn9YkbzRjwbtuYHgc54D6fQFN6LFC/P5E48a5nxmA5fdYyDlTnQob1BegYD5b1xY1/gGEceHKB4yaPon5nG9d692AyR5bE3u7iuofBIx7xCDzucY/bef3999+/89+/93u/F8Ci8uaXf/mXcffdd+c7WRF/8Rd/gV/5lV/BD/3QD+GrvuqrcOmll65YFF3X4cYbbxylH7fccgte+tKX4q/9tb+Ghz3sYfjUT/1U/NW/+lfx4he/GG95y1tG6cMU+YhsFpQH9fPfEWEctGA8xDZrLeR6ajfMLfTdAUeqaEulk/KQtqv9SMU90MAcNjAGJcmzWV3ixmu/xTuwaKfO50JSbR3xOCj+7eRh/h3wDvoxr5UkYBqsclHPw9EDq6enq5br2tUHtVSRBWyGKt31kn2ROXDRh3bV9jVVVmN4zQw9h1J/OHcP4pV+yiRylPm4uEa7H4iYZDd5/kTFc3kNC5x7c/iwz4hu/HlrcJVUj5B1wgCHygQmU/FeGrgq54B6j4PyGWgq/qulikTFHKzGviqJyJsja+bBruucvRCpMc8kTkiZmMW1+Xkg6nGzHgrgunz/ao2Jl6Go+meTJ6okPs04ELFuLOuwcvwLqu29dyYqV1QmeqLjMJM8UyVQp7BxuK+GP/KRjwBYLA6XX365e82JEydw7tw5AMOJg8/+7M/GFVdcgdtuuw3nzp3DTTfdhGc/+9naTq/FLbfcguc85zm4/fbbm7VRE2fPnsX3f//34//+v/9vQyP6gz/4A/zBH/wBfu7nfg7f/M3fjH/1r/4VPvVTP3VPPZ2iJvbNOIhUGagBI8CTCRoCzfTArdkwbwNtxwLuR05cWKmi+op/hcdARGO+iVRQROO/QbWzK9NQyXqReAwEtI3VhqCL9mOgkdXUTTIOgsC9GrhOV9wrkleBMaCWKopW3I/BOts1Bjw92cwzUFTbAwKPgyB4LgUtBcasOeA4DpqV66TaoHzXPDCG1xBj0q3UN4+zfrSJA0YuK1PxzwDHx00uLLMWmORdNeNAoy/OShWpziRRycJd1zHJE7biXrkeH8y6jXZ5xoHg90eqnQUeAxmPBbsnHd/joASNS9mhmijlkoDFfmvojKlaC3iDcM07EC2iWV0nMAZmfX7Wo3wPvee5KzIeBy32xFMs4ljwNi644AL37x/ykIeswPAagP6v/JW/svrv1j4Hd911196TBgDwbd/2bfhn/+yfre7TRRddhKc85Sn4oi/6IjzkIQ9ZXfeLv/iL+Nqv/dpVImaK4xmmymZk0DJSZdKi4j2ir+8BNhK5pMoNYwvQGqinqLcAzICYTEkLY9KItnMLj4PIZk1d7e61v6sPLZJHEcBKVVkz9B275gEr1yRmvIwo0bL4fExb1EiWKdaBEjQZkfERlUhoItkXqPZTH1BstX0csMv2AbDsoWGfh81/z0gl7dvjgKl0s2vReAk0X9c8yzraX/LEm8PGZP247TPm0MIxODrrhnj+yrUw4nW10QeZOTJZ8a8yZiWB27Kfs46biy3rjgNNMwlUOnkhGIeWcceDlpRU1J49DjLV3t71zHzsAc11XiuatYA1CLcsYA3zrn4OyicPvXNoLevqfD9y70HG48C7V5M5sib2dhcf+tCHrv774x//uHvNJZdcsvrvP/mTPxn8ztOnT6/+eyypIgB41KMeha/5mq/Btddei1e96lWjtfuv//W/xr/7d/9u9efv+I7vwG233YZ3vvOdePvb344PfOADG34Pv/mbv4kf/MEfHK1/U8QjItXTQqIhsllpYkxc/P6+375RcA2AJH2oA85b6Ot77ZdeEstoYUy7aD8AWDQA7iObhSYeB5Hf3yB5tGBtFO1sY500qTYPsI5GSB4O9UFtEB3VNlYZsZ3/vO3/ri6U4zNT5bqMiFRLOT/lGQdBn5sGCfRItafa54Wp9C5lggCuwm9XP8b0OGBAEylwHGDdra5Rm7QHTLJbJI6YakvVM/DMmaPzcGYemDlr8Jjm0EA8gepdM3b7ikrrbe1XA+cyuSyy2lckVWQLeGpBc825ICIZunGdsJiFBa8l5sgJ4F4jFcQlzoBGHg9h0DjP/PH6XeNzYJ+/6B2gpYpYxgMplSSQK3PlAgPAPZA/G+U8Djb72nUT40AVe5Mq+szP/EwAi6rhD33oQ+41T3jCE1bMgZtuumnn950+fRp/+Id/uKIwXXTRRcLe2vicz/kcvP71r8cXfuEX4rLLLlv9/a233tq03WXcc889ePnLX77689/+238br3zlKzeuufjii3HttdcCAH70R38UAPDTP/3T+O7v/u6t8lBT7Dci9MQWoG2kyqRJtbPzHWeP5jiYHbh/bz/fgvVQl7holTioZRyo2o8AFrayRiFXVb9hVxnhrUdMpqVN8uhw1m2Mr63myC3MmQMH5hZzQNwcWduHKEVcnbzZtmH35kBAX+kMxKRa1AnksDGxEKxb9aH4jnm/AOe9yk01aMsANmUfOrLKdD326XHAmBNbwC6TuCA8FsQJzIi+t/dveaki4hkI54LD2WyjwnFMjwNgsQ5F2ge0awFT7apN3sUrrpXSiRFz8F3X0cakRd+3FfCUYRL5KpmUan3/zetYFjaTwF60rxsDjEE34EimCcyhI8C54lzEJs4Azdmw3D/sg3HgFT/UvAYq6Ui24t+8AyKflVrGgytVJGAcnD0XGwPZ83FUNnbj2kb4yBR7ZBw88YlPXP33hz70oZXnwXo8+clPBrBILvzO7/wO/uiP/mjr9/3CL/wC7r///hWl/4orrhD3eDMuv/xyPP/5z99IGowZP/dzP4c777wTwCJJ8s//+T/feu0P//AP49GPfjSAhVfErmun2G+EPA4aGKNGzHjKxfHkYaNq460a//bvFeastaBBC5kWoH6z0oLxAQQBiwbAdUSmYpxqY7/9vu+beGwA9Yf2FombDOtI8fu9eSwyD6WlcoKV1mrAyq2y2vUMxFJNQOzQqk6clGP/aEiqqQXrxpUL2/IOCg5pm23nK43HZl4BbRkHY1dbM5VuqkrjZYS8dlxa/viMA6PxL6x4HzLnlUvGEcBt22rr4faljAOzDu63/RrQyNuTjW1OXD4n2hhVJFUkq3Zmq/0T8yDPOMizQHOMg/y5KCMVpHgGWY8DxXzsPbY6xoFmLWAKGLzrxmYceGulwuMgKlWUXQ/Y5CXQBhuYYhF7u5OXX345PuMzPmP159/5nd8x13z91389gIWB8nw+x4te9CLcdddd5rp3vOMd+L7v+74Nw5Qv/dIvbdDr4xOvfe1rV//9whe+EA9/+MO3Xnvy5El867d+6+rPv/zLv9y0b1PwkQJNRzaFVOn4rYdvyFMn1bPog77adCtw30CmBajXlm7x/L3viUgVNTHojjAeBO2XFVrbAAuvWzKD6kqKrK1saZE83DUHaCprNr4jkDwE9Am8KHDb2uMAiMplNXgHdhwYykrMrM9MJHkMtPE48J7hVp8RwSFts+04YJU1oavpR1RjPsN4iIKWbhI3lbxhqu2184DxugiwTxefVzMeiIrzzDMIggZq6U6FXFbOYyBe7aoESxSJI6nHAZE4AZTVxhzjgN2T0TIlonlQ5TGhlawjgVuFx0EANFWczRjGzzIk1f5JxsG8NEcW9MH7Xi9Ue0LWINv6rJDJQ1Kqx2ccxKv9rWRuMHGQNMhmWI+raxsUtU2xiL2mYJ71rGet/vuNb3yj+fcnPOEJqwRA13X4r//1v+Lxj388/uE//If4N//m3+AVr3gF/ubf/Jt4xjOegbvvvnvltv785z8fn/7pnz7a7xg7Pv7xj+Ntb3vb6s/PfvazBz/z1V/91av/ft/73oc/+IM/aNK3KXKRkYnJamsDQXPkBhXv3uJWW3EPiCquK4HDFhIhQESqSJ+48b5n14a5vAeaMcB7HGgSF3X33/t7mUF1JWjQxJw4cf9PCFhHXdeZ57hbLqotcD+sra0dg1HGQQtzZG/8bav6V68DvjHqfllHXjvLcMEqKWA2LmC3DFN1P2IC7SCwDwL8JK5WLoqots9KloUk+5y1KPkeUOa4Uo3/pNeJ2OumyhxamMRlpHqOhPc/6vUDeM9flzhi3kEgIRNCPH9AB1jRMikiBiLPeNDtB1SMA4W+fq7amUkcxBNny1DI6JpzQAVgvx6KojKvAMLzczJty8yJuTlAJWPMmjN7ibOOKCYxvz8oVWRUMaLmyCmPA/2eeIpF7DVxsGQU9H2P/+//+/9w5swZc80rXvEKnDhxYvXn22+/Hf/8n/9z/N2/+3fxPd/zPXjNa16Dc+fOrV6KT/mUT8FP/MRPjPMD9hTvec97cO7cudWfv/iLv3jwM09+8pNx8uTJ1Z//x//4H036NkUuYrq2+okxkmG3WXU9aAvsqPT0pIpamCM77fd9L9NRLKOa8dDg/nvfs2uzUm6kWlT7jl1tXVvl4RtQiZI3lcDZcZsD2jEu6sdgFriOGqKpK40j1e6AfT8172C9z4RS1xrwDxe7fn8L1pH3+yPzgFQmpwIwKKvwsv4Gi35s3oMhjW+lx4HR9h2USdKyDxnQzsxDcq+VeubXrMuPgShwNp/3JoGTY97EQAM162af5tAAV/GuTJ4w1d5tGQdc4oBN4LFSRXY9FFX8k/rm7BjQyQQpx+BwH+bzHiXGzYxDNnEDaIBrA5omGAfMuaR8bn1fB9oDumfgzeHMPKDzGeGA+xOkhLIp4Kn0WTHef+Tvr2Xfb+1Hcj3IyGXZeXCSKlLF3hkHf+Nv/A0897nPxVOf+lTccsst5porr7wS1113HU6ePLliFAAL4G5ZAdd1Hfq+x0Me8hBcd911+NzP/dxRf8fY8fu///ur/z558uTKv2BXlNe9973vbdK3KXIR2aypK12BOtB8GSVgpQBtXZmSEONgHODa+zuZOXK1VFEbj4UM46AFcD8268bKtNRV+wMaqSDAGYNbZVJa3P/6zWK75FVApqO5KWkMsMqOQQ/oiKwDEoPyQMV9eZjJMw7q1wCvXxqDdK8P/hj0GQe6KssqiZAGRnBRuZ59goZKiRIgLtO0uKZ1xXv9OtjCIH1oHLqJdCFouG/JuBrg3FZ7jzsPSD0GCGNa0740cRGvNAb4PZlKqoiXSSH11UUJTNac2Rqkj5s88iVsGeA8zvjZdi0nVZRhPAikmtwCFi55BHD7Ypd9S0gV0awfYh+wuK44F6nkykipLpVUUm3iYhl5jwP+HTRr8cQ4kMXhPhs/ODjAddddN3jd8573PPzu7/4uXvayl+GNb3zjBjOh73ucPHkSL3jBC3DttdficY97XMsuH4v4sz/7s9V/X3HFFdUUpMc85jF43/veBwC49dZbw+3edtttoes/+MEPhtt4sEdks2wAE4Wu8RaJCm+MqQEjwN/g1Wr8Lz7fADBx2vcWcJU5ca2+uGpzUkak0s4kjxpU+0beAYnGf2WlnQfkKJJ3gJM8qZUqaiDTskvbtlnyKjEGs5W++/c4iAHnLZI324zRLjhx4Py9psJyGRFjYsB7B/Tr4K4+qBkH3vy3bQ1ehtUTFiSPkhXfSpmUqEwNkJsLy3doH3JREY338pAsKeKoTF4vQ51Ai0oVqRO4+2YcRGRLl9HSoJxhPGT2Y8bjg5CKAvg9SXT8LcMk8mmZFK7iXVXQVT7/+V9WnA8xmaQ+G4TOv/eeMO+hlYqLSAUJGAcJjwNFxXlUMnPoOsog2pUqGv6czhyZfAdFErIn6fZFiROSdbWM7Fxg1+D6dzArkzTF9thr4iASn/M5n4PXvva1uOeee3DzzTfjjjvuQN/3uOyyy/AFX/AFuOiii/bdxdHi4x//+Oq/H/rQh1Z/7iEPeYj7HbVRw2yYIhcxxkGLSktfosIHUvSJg0ilaymdcOKA0/Eb6oMn1eMfUNpUW9dKFTVrf6dMiE7T9vx31G8WWrBuzIFxS5WFX+XaiPVRmbyQyIUZwGgXaNsoeZXQ984zDmKAhdqcN+5x0KLavD55YdcB/e+PSBW1kmra+vs95puw2h5YgDa7bqul5tPNryJ6aFb6zYQZB+IkbrmO1VD01UnUCHDYYg6IVrzLTcKjHhuNJePqKt5163Et63A9tImL+O83YI3SnLkqcaIbg+VephY0Ve3J2Ip3VTGJ9+zOzXucHBhTShYyY5DtS4jmgfOcVFC+4j9jzsyMwe37MFs84l83/H1D4Q3dGsaBymuFr/hXJe9Y1pEmeRctHigjK1+ZeQfNuUQkozvFAyhxsIyLL754ZZj8YI177rln9d8XXHBB9ecuvPBC9zumOD6RqbZuYYi4bOfQ2SvYStN8+0tj1PWNVy3jYExzYHV13XrUUqTbSRUFKs6b+FzUH9haJE9qPR6amiNXanxbsE7P+tl1YDnTwJzZ68NOc2SxlmV0s6rU9AW2gNY714EGUkUucL4leXWuLWC6aHvcdbAmUb6t/a7L6cv7a/AcB7PtB3ZVlevGdwQPzeXwUFb8D72DvjyFEDTdg1xUJHnSZA4ImuN690hZ8T7UvmHd7MUcWfceMlIlyj1x+fuPKphPSulEyuNAOAbZim/Vu8gwPgDdnty7b2PqywOaeRjg3gMz/wWqrRXmuBlzZgX7in3+gM8KGNUcWbQnjLIul6HyO2LGP6CRqgIc2eSgVFF2Lkh5HDQoKJpiEQ+4xMEUwNmzZ1f/fXhY/wjXr/WMqIfi/e9/f+j6D37wg3jqU58abufBHCHGgUhLcz28Te7ZLRIVLWRSAJjEQW2lp8ycuGKxVleZrkftgdVuTtr8/p0V502qfesrLVt4HNgDQ0QqS/cOrMe2eaD8e41Mzf6q/bd9z26pIu17EJUqUrNevI9HkmctknfArgTa5t9nDeqjiROFEaDtQz3zTW3O7Fb6HfU4tWOrV05RimkoalCsfA8saBeXyckAx+VBv4air2Zg1kgmnv+39smzQZP41pJdg+1rJcso0FIInDMyEcp3cNscuGt9UbKOKMaHcE8WNefedh27HynvXZkY2xZWtoxlHHAV56bKOMEC5wyyNWczW0ASkEkR7EkyoKlNYGoYB/UG2RrGgc++rJkHNUlkIxdX+Q6q/I6Y5HXb9uvHIJDfG2c8DiZz5HYxJQ4egLEuy3T//fdXf2792osvvjjc7hVXXBH+zBSxqNVXX/xbA8ZBQF/bANeHmon5xKzDelprq1SRMeFqU3Hvte+BaC2lirxKL1ttPx7jYvVvDcagpWjXt69InpQH43m/2LDUSCjtO3k0tkRFef+zoPEycubIWeA6xzjIPoOu63A46za+d/fv17NOvLnUqzbq+97Ow4dZxoW3Bu2aA/TvgMd82y7VpGW+RRMnQBvGQdZnYMxKU+/fM9R0mzyskMgQF3LE/K7a+00Nz4OeTMx4rBO9ZFxcJsLsiYXmyIxMS47x4cu1OTVEo7S/i/m6al/IAmXmAEBnjsxWnKuSiN55ZnTGQUA2cxmqJHK0gGQ9FHsSJeOAk0ryZYuZ9hffp2EcMGOQT94V38tW/ItYRyzriTZHTiTPvOvDjAPnHRxivS3DrsUT40AVUwrmARif8imfsvrv++67r/pz9957r/sdUxyfKDc4uzbLLfTlXcZBrb66rOK9suK7QaWt277z+/0DShupIsDP9I9W7R2pOJcAVvXtN/E4qDToLp/JrMtJlGz0ofLQ0qKqwpMo2BYtEhfe94zJeoiaMjbR2A8cWtskzzzwuk6yLTsPzmadYV3EWEetxuA2rxPtO8BU+pVDtAX7cMz3IHpgVhlibm2/AjAwJu1qr5Wdc2B75h+TvFF6fUTbz76HUcaN14ecQXh8DCpZyD7rbGAOaNh+DWjmgfas7xkDWgPOeiCq+K+VuFclr5gENqBdB8w9qDHoFiWRrVxmJHGQn4tYxgugYUF6yZZ64FqzHssYByKfD9rnhJUKIuWyFFJZAHCyKAYtfSV3xXzeo7xd0X74rCcueTVJFeni2DEO7r77brzpTW/C2972Nvz+7/8+PvKRj+Cuu+5C3/f4xV/8RXzxF3/xvru497j00ktX//3BD36w+nO33367+x1THJ8IGZOOpe1cyzhoBJxvWyhsVUcrjwGHcSA+JG+274N2J4s8rwEqVL8/oC+vNEJbRgQwaOJx4DBnvDHYymMCqJ8Hyr9vwTjYBRa0ooOGxoD4PYhWuqpowRvfMZsBOH/fI6Ch6h3sOmD9jFY7DyrmocOD2cYhJeRzIkwcnN7RzjIMWJjWVo8xLgCnsishD7GtH0PAWctqY0YmJ+dxUK61NYCVdj8SAY6UEjnbvmOo2lBlSnr+szm5qmwhDVNxrDRk5Ay6dePArTgfNMguk2djMy50SVwDGtaCdqIEYlltXStVpBoDrFSN8RpRrgOkXBXThxTjQLAnOwgU8JRRzhXMXOjtIXKMg3gffNnO4c+pCpqMz0z1OyhiHBTjpmT3bgsVaB71Odrog3Ovov3w1s+j+W7W2zJa4SNTHKPEwUc/+lH8yI/8CF71qlfhE5/4xMa/Lakp26rr/+bf/Jt4zWteAwB4zGMegz/90z9t3t99xud93uet/vvDH/4w7r333g35om2x7lGw/h1THJ8IeRw0yKj6ppi11c4qwKYOuD5zrhHjoAK0UGk4elFm+QHg7LkeOFn04RjoyzdJXgWqTZt4HFRKpbSo9F5GLXCmqm5bj/I96ntfqgnQV9me/5765JWecRA7MLYYgzG5qDYJrBOz2cZBxeuDd5DJShUBizlgXa5uF2jW4v4Dy/t4tLWdbX/fxONgZJkWIA7eG23rEauNy3cga1DNVHuqk+gR4F5lxrjxHUF9Yw/YlRpkB0Hr7DTI6Eu3BO5rgGvlPOCNoUHGwTHzOMjMxdECgtV1ogQiLVPSqP3aPrSUrKsBrv15KF/xX6sv713LPIOMTEw5V6g8DsZmHHTdgn26/nVjehyo5MJ4g/LYHmwZOtYR/w4oWKAp1ksjfGSKYyJVdNNNN+HzP//z8dM//dP4+Mc/jr4yq7eM7/u+70PfL7Sv/vzP/xw33HBDo54ej3j84x+/8ef//t//++Bn/uIv/gIf+tCHtn7HFMcjao1ZgfEYB9ulijb/XqVvXgtct9D1ddv3qs2djQFLiTbtO8/RA+hsH/ahL99eLivicaB5B+xvqLn/UsYBKVUkMcZ1Kerb5MLasH5iclnaexAx5wbGSp7tAg3bJLDK++i/A20k21LV1o1+/7a1uEye5bXt49rCY8hlhYHbxHqYlclJy9Q4lXZD5xIFWLT5+UwCvQXzbzdoUBZyHMy6vRpkpxkHhFxWOUQyaxEjlaP0W3FBmxHXQsoYV7gnY81xVfuRMvFZJma3hdkPKBkHFckrpTmyInnESohmjFkV83HG40CRwPTe3VqfD6V0YMm8YTwO2HkougYuQ7UXOHkY2wetrhMlsDNSRYoxEPU729X+JFWki70nDt71rnfh6quvxm233bbx913X4RGPeERVEuELvuAL8OQnP3n15+uuu07ez+MUj3vc43D55Zev/vxf/st/GfzM2972ttV/nzp1Ck996lOb9G2KXKQYBxLQsP6wUCYUZJWulcB1K+C2RqpIWVVj2vcYB57GfiPALAKcjgGa7jowq/XFgXq5rnIDozRfqn0GarAK2FJpVNu+inEQqLQx81BaoqI+ceX9ewvQbqfHgXkGyor77e0A7aSKIslLy7rRjEELHG1jHKjH3/FgHNQkjnb2IQWaxkAby/rIPQNGpkMtFxTxWmmRQI5WXKv9bqIeA2qT9KjHh7dHy4xDBrhUrkUR9vG2fx+dcSDck7EV/2ZfzgL3xceqq50bGbMCnFyW1OOASR6xjAtn/qvBo/q+l0h2sePPu5Z5BrO/lKtcj9qCc+85scPAJNBqGAeiMcAmb1T7MaO+UJ281DAQlWNw8X2xfmRYLzaBune4+5Mm9nonP/GJT+Caa65Zmfb2fY8v+qIvwute9zrcfffduOOOOwCgqpL3BS94weo7fv3Xf71dp49BdF2H5z3veas//9Iv/dLgZ9aveeYznzmZIx/TCJmCNgBtu66rpqedbSYVVHdgLIEMVfs1B3bVwuyFx9zwnoE9JI0HGJ7/Ny1YAjgH5pE9Drz77x2YbeJGyTioA69bJLBcj41KubJWrJ+dySvxGIhulvct1zVaxb3TB29eUkgVhaSamnkccAns7DvoVWgOGhP3+nsQNeaTehwYf4WYvn6ecRA/sKrB+whw36KIo3b8r/ogZqBGZUrUBuFZ5hmglSqipJKE7yBQI1WkZBzEEyfKPZnZg9VW+4pYuAa0rNVXFzEQaY8DpVSRwOOAbZ/9/apq+xTjoJlcViVw7SRxWUZ+uR+iGAe0VBD3DpbX0YmDIOtzdZ3oHTByfSMzDrZ5HNSEfQcmxoEq9po4+Mmf/EncfvvtqwnlpS99Kf7Lf/kveP7zn1+l2b8ez3rWs1b/feutt24YAX8yxote9KLVf//u7/4u3vCGN2y99uabb8b111/vfnaK4xUxxoFeJgaolwlpJxXEATYyqZ6KZ9ACsF617yYOvIr3cRI3Y4OWEZmaNtredQdme0Acn3HQRKrIBc22ybS0mQNq50FVddeutoc2601kQgL61rbCsA1w7gFXrseBxGcjwjgo7/+4ySu1x8Fs1pnqvCjjIKPvv4yoOa0FjDLV1pv97/vdUh1q9qUHvA8Bt8agWsx6iCTP9iFVZQo5HOZkqP2gvrOafWiT90OJI+1caEArArRUVvzX9EH5DjDVrkrGBS1VVO5HaOCak8pRnU26zkqNVXm9CM2RGYNsFQPRZdwQoDXA7cuZpMkyVH47+6649z5bwziw89C4v78cpuwywEgmArpiqnINr5HLW/VB4DXi7eNqfRbUDNApzsdeEwevfOUrV0mDZz7zmfipn/opzMiNxpOe9CQcHJy32n7Pe94j6eOYceONN6LrutX/Xv3qV2+99ou/+IvxnOc8Z/Xn7/zO78R73/tec90HPvAB/K2/9bdwdLQw+bvyyivxwhe+UN73KTThbRa2LRStKi1rZUJKvTudxn4laNpApgawB0YXNG4k0wQsNitlcYYvVdRKoqT+sNDCnDdyYFNq+m5rH9jC+DCAtTBxUJs8a1JpWl9t28og3VS6VDIugDxo5m3Wd0WLMRg5NKqo+WWUzIGa5OWi/XEZB2NJtm31GWlwQMlL9QgYB0mpmMxtcIH7gNeOWiYHqAGONYDhMiLAdYu1KFpxr9JWX7VvWCexeTi9DhjJxCHGhXYtijJ+AG0hR4R9vAylQTgDGivHoMycmNyTlR8bW6po0Yd8tffYclUmccKCxqQxq888ij8DqceBSCqHNUfOzEPlR2tw42YeB+Q7qGIdAZtG0dtCVdBl94BJxkFwPmaS18uw+NAkVaSKvd3Jm2++GXfeeecKFP2RH/mR1PedOnUKV1xxxerPf/qnf5r6vpq4+uqrccEFF2z87/M+7/MGr7n66qsl7f/0T/80Hv7whwMAPvjBD+JpT3savv/7vx9vfOMb8aY3vQk/+qM/iic/+cmrhMIFF1yAf/tv/63MxHUKfUQWilbmL7WVlq0yurXGiK007GqAczVIUIYBTmvMeWUSJfWVpqpN+q7viLBuVHJdpcxCzRiQmiNXblhbjEPvd2xr3xrzit7ByjnA+/tsH6KAxRjGpLveATVgt/qeigRyOS+pTOJjrKM2zJ+aOXjRvp7xEJUpaWOOHGMc2Kp/XbWx9/3roQaN/eTxEHCuTeJGQNsWJvVRr5dSxiC7H9t38ixuDu4wDjLmxETFe8lMG5P1ArSVSqpKnAiZNyxwq0rilaawNZXWgLcnUwL3w2OwZIaVvyMS5hnUMB5E67F332qMWb1rmPeAlQlaXKt5Dyxo/8BgHNh5kE2cbH5uiPm4ar9kHJDvgF/EVTMGNfOwXKooeB8iRWzmuoaqEA/2ONxXw+uMgEsuuQRf/MVfnP7Ohz3sYfizP/szAMBdd92V/r6hOHPmDE6fPr3zmrNnz7qfU8RnfdZn4Zd/+ZdxzTXX4K677sLdd9+Nf/JP/gn+yT/5J+baU6dO4ed//ufxtKc9TdL2FG1i20JxMDtw/r5RpWUlYKDWtM2238qYtcocWbwonTyYbTA6XMZBK4+DQKXhGFJBuwGTNs/h8KDDmaPdfWjFePG+q9acuJVU07YDUyuZHFttWSeVpOhDpMqt73tpleX2Puxi3YzDPPIqfq3PjEourg60B9odEGqBoxbrcBS0auN1cnxAQyC2DqkN0oF44iQ9DwU0/luMQVtxH0ucpD0OgtWOdk+mHQNDoKHLvkqMgfL9m/8laLVLhkxdzHPiYIbTa/vQcPJQKhVUAdgVoGJmPWIYH4DOJJxOXAgTmIxclnIMRgoItl3DJm5YY1bfFDbeh4hc5Xp4e1L2PbBz4PiJA5NAo8YAW/HvaOz3PWbY/XvK5Aa7HWF9NmQeD0H29XooPA7cd5D0eZg8DnSxN8bBnXfeCWBR3fkZn/EZku+84IILVv89BOh/ssQznvEM/O7v/i6uueaaDammZXRdhy/7si/DO9/5zkmi6AEQkYWiFeOgPDB6E3Xf9810/qulipqZAw+Ddi3NkQF7D86cs/egGeMjUGmq1pcH7IF/bMDE+x7fGLYN4wWol6mwYFUbqaIxPRaAepkKNVgD1CdtAJ0R3tB37HwHxjIHrmA9je1x4f2bipJce2huwXiISjQ0kSoqfr/nZ7EeSlPM6IFZD5jGD6xqySwDnEfmAME8XIImQ8B52b804yCYuDL74STzKXL/gW0SJZl3ICbXBejnougzsKD52B4Pm+0rq92rPQ5MMYvIHJmViUkB9zHg0AN1M+8hJZUkKqZxk8cE6wXg3gNWKku5J2Wq/b0+ZJhPZaK0xqBYNQ96Y5fymqEZB6TPhmgePlniEAGpIkUCzfVZqZ6H28lJP9hjb4yDpeY+ABfwZuKjH/3o6r8f9rCHSb5zV9x4443S77vqqquqjE/KeMxjHoPXve51uP322/G2t70Nt912G46OjnD55Zfji77oi/CZn/mZ0n5O0S4ilXbjAcfDoDWgrHivrDZuJdFRcVgyIIGYcVAD3reQJwDqEzdeHySVroENcytj1BqK5rjmyNsq7vXvQAS0KzeSqjFYXe3tGVJm5RkSiSugjVzXboPyseaBOqmiFm3vNIYdKXm4DbRrItcWNGY15sgKuag9ypT4xpS7DLLFgClxYFevx1aqZ1zWUYTxADhSRYe5Z5D3mtGOgWHGgXYt4syJ1cmT2DPQmjPHpNIW7W/+eWx9fe863hyZSxyYNVkolxUdf953RILR2Nfp+3uMgwqZGBELNirVdr593Z5U9Q5k5uJyDqMq7tl3kPS5UBVRuGcxxuuGNUdWSxWRkl3r31U9D4rm4Sls7C1x8MhHPhLAonL5jjvuSH/fmTNnVjJFAPCIRzwi/Z0PtLjsssvwDd/wDfvuxhSJiDEONAY8Zdgqo+FKU0BXdW9Aoy2/X1ndtOt7xgTtz3/f8GapVeIkcmBuIdMS0dUtn41qc2DNeYeTR1pz5Lp70GIcLk0R19+7bYmLVqyfWqka77moGQe7qjxbMQ4iFPHRDKqdPrSSKqoxqF9GM6+fStBk33JtXh8UY6BWLmxbH1KMg2DFvzp5E5FrAxZAQTk85ObAI/5+IFZAsPh37Vxg9wHjVtvX7kOXUd6fWWerZSMRlesC9GtBVi4qBRgSUi1GXz91/1ngVmSOXAKm1R4HOvnIKHDsVaRrfSZqkkflO8DK9MRZZ9uuoQBTQqZp23W8QXf8/nvXje1xoPI6Yc15VdKRrMa/KnmYkSryngHjf3Y467CuH1PNvBH7/UxxPvZ2Jy+//PLVf992220r6SI2fvu3f3tDnuiJT3xi6vummGIfEam0a1VpaUA7Z6L2KGvZCrNllODnVtCygUwOUAdct5JoCfVhJG3zXQu1Wp4h2r415FSxboZBi6OGyaOaA5sHVulYR1z7raSKahMniz5otbXjjAOBXFfgwNYqgcUkkPchVdTM66YicQK0Yf5FKz2bMA4q5cKWcbqoRsto3Hv7oIhcVfaQOJt1xhhyJ/NOCNasPh+oOC3nB4k5crDiW504iAJnctA8aY6sfv4AYRC9Z7moMUFrwILrmSEQ8fpaD9XZgPc40K3J8eSdmnEQHwMqjwlaJsYzSSeeAfv8vQSbjHFAvgOZeaB8DDW5C5V0I+sxYOYhIeOBkkoi739GqqhM8LDst0gh4XqUxUZqjObBHHtLHPz1v/7XcerUqVUG6pd+6ZdS3/eKV7xi9d+PfOQj8YQnPCH1fVNMsY+ILBRKTeH1qAOMHDpmM8ZDHeNAJ5Nhs+ylhFgLM8r1qNkwmwNCK33/nRrvetZLRKKhRaUl4IGGnjlym0rvxXdVsF4ayeQAFrjznoFvTNxGKmq7Qbr+HkTAkmaMg4hUUTPJsuFqo3agfT1o04pxUJu8aTMHBkHTFgncoFTLPafPbfz5olM8odl7hjsNspsksCNeP95+SFvtvev+t2AfRhgPAHBG3IdyDYpWO6vlqoYTJ9ox6PtsDPlMaEDT832I3QP7Ho4nk9O+/TrQTMWEpqWKhHNhdh0C1IwDAjRNgMYl1lknVWT7yHTB3vvK8edcx94D4y9Qm7wQSqaVRRA1zJtWrB/vu70wzCfa44Br3+wHyOcfZZ1uXKtiXQTXoNV1jZjYU+wxcXDhhRfiy7/8y9H3C1Dux3/8x/HhD3+Y+q43vOEN+JVf+RV03YIK87Vf+7Xazk4xxUjhU+QrKx1liYNhmQzvEJmpMNxov1pbug1o5VJUi3vdqtp/GTUbZvv7G5mC7gJMGiQvMua0MrmuimqzlubINT4PqsomL8oEpvf7fRO4Nsmr7dXeukPS+c/vFzBc9CHAemgmWTZcbVTOQbo1oD552MocuTZ5odK0Xo+oTIYFTfP3IOIzAQD3njna+PPFJ3nvsqhEgKm4V0g1BUAzN4GprnjfyXzS++1ENbb3LVWk3g9HpZpsAje7Dg3vQ8tQm6RnTdrH1re3UkV082Gpqm3XqUBbz3jYbV94LogC92pzZIZxYAt6dD4jjFTRiQNOooVmHDjX0VI1xP0HdBX3gB0/Ne+BLHnEVvyrGAesVJJoDjCSoZXV/oDHgtQkT+jk1SRVJIu93skf/MEfBLDQVP7Qhz6Ea665Bh/72MdC33H99dfjm7/5mwEs/BIODw/xspe9TN3VKaYYJWIeB20qLcsDswfce9V/zcyZt8qUtAFuXbmooq1W/gLLqPJZaFTxbgCTgESDQioooqtoPA6asU5qfC50Y8CA1y5oqwerVt9j2q9LHLTSuN8GGqkOaRvfETgsuYwDxTsQYRw08rqx1Ua2D2dKQ9RWyeM9mCPXUqStlqr++Q9qi5s+pLtgnuUumnrf97jnTME4OMkzDrJSQS2Sd1HmUTaBlWlf8R7WME/Xw5gjJ/sQBW7VQEHNGryr/fzvH96HlmFYD8m1KCoToSzm2We1+eKz9T5Du66jpYpIjwNlIUE0eaNnHBTJSwK4T/lsCFgvvL69BW1L5ntN+wC/Jy3vf42/AKB9Dw3roaIPKvYX43Ewn/cou6gaAwCbPGMZB7F96EYfyj0p2QdWLsv6PEyMA1XsNXHw1//6X8fXf/3XrybDd7zjHfhrf+2v4Wd/9mfxiU98Yuvnjo6OcNNNN+Ebv/Ebcc011+DjH/84+r5H13X47u/+bjz2sY8d6RdMMYU2IguFkpa78T0VlYbeAiID7isPrK0qvl1TugKca22OXLNhtdX+4xuTtpHIqAcsmiXPKqoNDSV8ZHPkpnJhFTRpD0jUJS7qQKMWBumZav9FHxSgZX21b7MEYkXyxvrMtGF9hVhHjRLY21gPx8HjoAXjIFLxfvrc3ByWLz7FMw4W7Uc0/vXrQISm78/F2Yr3eubTcTRHzrKPosC9EjAECHNk8TzgynUNyDSoZdNqJBs321cyDob3IGWU82DG64WtdFWxkdn2rbb3eHJNanNkxiBYacwblUsD7DzFnsu8ftcMAeVadBw8DkwCbWS5qqHvNv8ufAe8j1WxXkTn8uj8vx4ynwmS+dXqXDAFwJcEieLVr341/uRP/gQ333wzuq7DBz7wAXzHd3wHXvKSl+BzP/dzAWCVFPie7/ke9H2PP/uzP8O999678W993+Oqq67Cj//4j+/z50wxRSq8uXV0xgGh7774XKNq52rQsA1oBdjFuhVgtq0PZXt93xvgtpkx7q5KzxGA24hERCu5Lu8daGFIef67hu+BX+U63hhwpZJG9jlpAdoeS4+DHX1oxX6qMccdSy5tF2BhgJpmzLvadXgfHgclWJLugtkHHM371X67jNLfAAAuTEgVAYt7cGbtz7tAU7sO6BMnu8yhvX+TV3vvTGDq38NI8hJo4HGQZhzk2o+CZuq9EFPtqpZNCxtUCwtJ9s04sL+d09ZmnwGrL69MoGXNsQG1x0HcYyAzD5VgI+WzIaq0Xnz3HAez3euqkvWhkkvK7ImMZBfjccAmb1yPA+IdIBOYXdfhcNZttFnlsyFaiywWVPf8AR3zpsZvz4tyT6Y6m06xZ8YBAFx00UW4/vrrcdVVV20kAc6ePYt3v/vdq+v6vsd73vMevOc978E999yzYiksr3/Oc56DX/7lX8ZsGhxTPIBjuVCsx7aFwh4Wx6v2LSUqDmd5iZDVd1WDhm1AK1eqqGirRaXz5vft3rC5OpYyqaL6zcIYwG2s0rQV62WY8TG2OXILsGoZNca4rlTRYav263xOJBIdIY8DL3kjAO3MO1Bf7axjnRTzwDnbh3IdaOdzU8/60Jkj1wGnakNSoF6ubxktfB6837FtLSj9DQDg4oRUkdd+xOOgjcZ/jHEgl+oZWaqpRrJy49/Fc3EYuFcnDoKmjOoEbtd15jfEJcuSyZtgxbVyHmKqzVsmLliJDNqYlWUcCN/DKOtBnTigPA7MO6D0OKgBbTXts/r2yoIi1uNA+x5u/rkGNzbzEC3VFH8GatYNMw+o1qJa9QcvjM8DiQ9FCig2rmuEj01xDBIHAPBpn/ZpuOGGG/BjP/ZjuOSSS1Z/vzQ7Xv5v/e+ARTLhoQ99KH7sx34Mb3jDG/CQhzxkL/2fYgpl1C4UrRgHNfrireQxACfLvRU03OzDSVEfPEpbuRlsTYMbYl20AiyBWKVVG8Cqnh7ZivlRw7oxmzNh8qgucdHQHLkieen6nIxoTg3o5Sm874gkrgCfNZbtw26PgzbvwMnD4T40kyoKyJS0kuyr1Xdt4XEQrbQcQ6oH2L4WlP4GAHDhCa1U0djrgGEcBIB7ID8XheTKGiSxo8krA1geJqWKgsC9OnkUNkduUMiSBW7TyZsAcNT3vQywA+xv7/thY1RjjpySKorL1HjXsfeg7Htl89KzWfQe+PuhcUHTpsmjqvY1vmsu870KNLbzIFvUZ1kvdcCxmYsTY6AcPzUeB6ox4CVvmeRZeR8jwSRvVJJ11ueqnnFg9sWi5E21XFaDYoopFnEsEgfA4gV92ctehve///341//6X+P5z38+LrnkEvR9b/53wQUX4FnPehb+6T/9p7j11lvxspe9TFbtPMUU+45q0KzRxFhzYFLpOHpRW2nWgp4PkObI4kXJbFaK39rSnDpU6dhALiqyUWtRaQrUbdYsUKAbAzUHFtccudXvd6WK2rFeaqs97SFNL5W1GzBsw7yKvAP2oNiIceAlz0rmWSufm0DyZmzJtlF8XoISIZKKe8/r51wd4+CikwepwzIQXAdGMKjevQ5qqwwBz6S9Xq5Lw7yKVRvaQo4k4yIwDwP699B4LAyAZmMksaM+E9kxmDUIVxrjAhXAtfF6GRe0BnTjgPF4WLSvYyBG74E6gcpo7FsJUV3ipCpxIVqL3Gr3qt+vewdYxoHUHLlMoI34DLzPDpsjO98xcvKsHCb78DhQFfTYAg5yHhSdTabA/j0Oyrjwwgvxnd/5nfjO7/xOAMAdd9yBD3/4w/jYxz6Giy66CI94xCNw2WWX4fDw2HV9iikksXfGQcWBqdTXz1aXbbRfLVPSJnFCmSOLF6UhmrYrEyOrNuelWjSVroFq67E8DhyZllbjD3AkAlyPBT1YtWq/QqpIWdlURu2B0TyDBpW2Y5uyArED2z6Bc7Uh6jIigFUrj4PaassWYyAyBgF7mG7FONjG/rv3tE0cpNsPjQE96yRmTqxPIIY8DkZIHA2aAxuJlFwfou+A+j2MFFAAnkSNah44/25F74HaoHuXXFVr0BiIz4OZ5KXdh1YCVip99aLvlc1LJbOic4DeHDmWvAO0e0JOLkuTxPXGDSPXlSlqo5Nnwj2p6QPFOEgkz7rYGPDGqPQdIJJn7DwYYZzZPmjW4/LZ1XhcABPjoGXsDX2//fbb8Tu/8zurPz/pSU/CYx/7WHPdp3/6p+PTP/3TR+zZFFPsN2oOrH3fN5NoqDJGbQqa1lVZGdBKlLxwTalGNkce2rB5B7gxq823/ZvisJwDTDRjoARAPY31lsmjOsZBO58RC9w6cmUN54DaA9sYVZ6RxFmrxNWuDXsryayaaiO1Ieq2tiNyac2SN1uegV0L9NXe0WrrTIXbMmqYd8sopYouSvobAJbavnsdaOBxkDBJH1sqqM08GJMpae1xMFRpqJZNzMq0aJJXMeDGAnbj+UwoTVm3ffbsfI4LsT0puW+Pg/m8N5JC7JrISLQAHhNWxzgYHH/FPZp1SO1JNQbZSsZF3JxZyjgYudo+KpW27brUPEAwDpRMdHsPBtahY+BxYO4/2bw5B4fMkTUFPbTPRkMPwgd77C1x8NrXvhYvfelLV3/+vd/7vX11ZYopjlXULBTe3CmrNq4wx21hSrqMWtCsVeJkaVC9/v3l7x3bHLmGcaCTCbEH5qVxfRmq6qpd33G0o/3xqq2HK/615sgVybuG7Ru5sorEhXIOqGFcAONIFUUAw30wDlpJZtWMASNZ18gcedsz6PveYf6IWA+VJu0t5NKOg8eBy7zb8h7eaxIHCsZBxudC8QwizLsW62B9ArPFXFzr8dGqD9FqX/U7EK22LOdHRRLVyOYNVbuKpYpqmIfL8GRUlObI29rY+HeRISfgJ4627UOX4Rb0CM2Rh9oH7FqZqTiPgnZlNXD6HSRAQ2XFfTSBD7STqgLqGBfaxJHI5yMjVVSaI1d0QVnYZ/eBu69XSxUxkmXWg1HlccAzDlivE5710hajeTDH3u7kxz72sZVnwWWXXYYnPOEJ++rKFFMcq2D01b3P0e1XUHSVdNgyaqVqWlDDt31X2YdWgOG27yvb84A0lUxIxJSrTaVlfaXNWDIlrr67OaAozZGHQauWPiNDHhtAG5mgbd+1nXWk78O2xJkXtqqljVRPxBh1TINiOwe3Ae23zT+jJtC3zkFjsF6i1c5t5uFt/Sg9Di4+JWAcROS6WswDAdCoxTy07wRmtOL6zDntPBTRF3cZuMn2w+bIDYpJ7D0IMg6S4yBSce6eSYTGvIs2BoBroVSR1/chzMot6BFWnNdgZso1OWsMq/bYqKu41yXPIgb1q/ZF8xDLOFDuBY4D48AwbyjWyXjAvcc4yCwFGsYBmbwSShWx70GE+bnrOrUqxIM59pY4uPTSSwEsqnsvv/zyfXVjiimOXZgMtzNRjqlvPjrjoJKirjbjW48SNCoPbC0TJ8AwTd6vbGoDmAHbF+sWOv9+pU0dcKt6B04eDoMGVqpINwYYc+Ry3shETaVhi2r/ZdRq21ojPD3jANh+YD8OjINW7Kca4KyUKjrZaA7atgaMmkDf0ocxPA6GDkumukvQB38dGM/jIKJv3UKyLnJotlWmLTwWticwW1S7l+0PARb7lCpqkUCs8fra+Pcmfjux5IW6kCPC+vDGh1IqaFsbm/9efIew0hcYZt34TOBxgWNlAi0q16WWzIu2712T+/0E40G0H4ucg3ZdI5XrIhkHSqmeGo175XocTVx4UkpjG1S3M0eue/6Abl/MJO+ANnvCKRaxtzv5qEc9avXf99xzz766McUUxy5qNkuuEZms0nT4wKykQ5r2K0GTpsDtwIGt5e8HhqUqlJVN5nsqzKHP96s9aAbsSBw0kquqAQ1s8kjJOBiusmihqXz+uypYT0JK/GD7lYkrBWAWoYi3YrxENsstjFEB+x56oEkzqaJqmaAR18HK5OVeGAe9vg+zWYfya7ZR1a3HgSBxkKi4V/z+iEyLTaLqK/6BHcy7FtXuRqpsz1JFAYN0ID8GIuMPsPenhddJmHWRHAe1CVzAfz+UgNmijd1jsAQVMwlUBrj3xyEpVeSA7gxommGiRiXzlPffb5+puNfJZTEeB0rGCeVxoDQmrnToLsHzDGjLMA6UnkfRvVhrr5e6d0Bjjmw9DuoZB6r3gPc4aIcPPdhjb4mDL/iCL8BsNkPf9/izP/sznDlzZl9dmWKKYxU1C4XHQmgFGLnVzgUtXVVpCtRpawNtfQasTEe/889K0HTR/u7FsqUxritRsS15M8JhedF+XeKincfBcMW9Uq6qRl/bAhUN2x9RpgaIgLbtAbNFO3XA9diMg77vTR9U4H2NXFarMVCrLewm0FXJw2qvnXIe0LNe9uFxADhjYMtzuK+UKhKYI0eqnZuYIwcOrC2Yb958PqpkYPEb+n43aGESB4dJ0Dqir+/8G6upvIyaffDGvzcYAzWSictokUStTeAC24pZdKD1UPuANpHvraMMaEibIzu3rgY0K/eFqYr7oM+IOonO6LvvEzQGdIBl13WUQXe5V8gkjmzisu5zLVkPQybhnkF55h0oEy9D5syuGoTYa2UoDPOKHAKW8cZLFalMwmuTVy2lhB/ssVfGwVVXXQUAuO+++/Crv/qr++rKFFMcq6jZLLUETGpM8ezmtCVoXydV1NJnofy9LUFTYFhfuKkxbkCiokW1s/cd2xkHbSq+a0yhWlS5rtqvODC0kEZYtV8hkdDWnLkWtG0BmGUYLyrGQd1muSXzrGYMWLm4VsnrLYnDlgn0StCgBWhb6/Oz+vdGkm01ySPAYRycasA4CICWTcyRA/ruLUzaF+2MV0Thz4Pb74FatszKZMSq3eUyPYMyNfpEfgi4F0sFATGpCu/56BkHQ6Cdrn33/QsahAP82cB7/2o8BkpcNTMODXA8AFyrzZFrZHvLUK4FDHBvjXnH85jw2le+A7Ua9+V+VelxMES68RILOZ+HGHDvsYK0jIPhZ6BifJRjdz5QPLAeKvYbyzho7UP5YI69pmD+wT/4B6v//v7v/37ce++9e+zNFFMcj6jZrLT0OBiqtgeAs+faVTvXUtTbaqzHgHv1ojR0YGxqjOtKFW0BzRokb7zfsl2ioRVgNjwGW/p8lL+jRiZGyrip0Lc2v1/afi3rSF9tH6l0HI1xsFWuzalwbCXX5YzBMqEmkyqqPDC7Xi9jP4MGyaMoYNFCqgjwKs78fliPAwHjIADcm/ewQfJmN2iqv//eu7QNOGuSQA0wrwBvT5hlHNSDhi0SiLXm6MtoIZsYkUtSS2R4n4+8g4AWtN3WxnoYc2Sxx8Eg40EoIeoNn6FqZzdxkWJ9xEBT9X6I0nc3c2Gm4j7vsTCmMS+gPRNFq/1XfZAyDjb/HDXoXrSfkUrKtd91SKkBMObAhnVDtu+d52tZByqjeiZ5Bnjn8ylxoIq9Jg6e+9zn4u/9vb+Hvu/xR3/0R3juc5+LO++8c59dmmKKvUcNaDKqKWQF40Gr714e2OoYBy2r7ssDk/392kVpqNpuzN8ObD+0l89GItNRuVlpoem77Xvcd6DhMygPO95eqVW1u/dd3jvYcgzWgoY2eaIHDHe232j8mUq7CHDeSK6rziC8lVRRnVQZoDMJrzfo1iePooBFC3Nktx9b1oEmHgeJamtF8qwmebpq38yFbRKY2/ZCLRgXrlRLoOI8b45ctw9ctK0FiwCCcdAkeROQa/KSyGqficA7OOty8xAj1VICm5mfH/HaOv/vdoywz8AD+4aAW3VBWcRjw/v3rDmyouI+VW1OeBwoPRYkv1/qcTB+tXfU48DbK2b2hNm92D7egfISdh705q7axMH+PQ70e7IpFrH3O/kv/sW/wD/6R/8IXdfhrW99K57whCfg5S9/Od773vfuu2tTTLGXsKDxuIyDmkq7VpWmQH21ZcuK76GK55bV3t73GcZBU3PqesCihVxPbaWXt38YVaaloYZijUxD0zFQJZXUrv0axgfgPIORJUKUlOz1YI15vc+yUWOM1kouzvoLjP/792mOnPU40Em21SVw7m3hcVDpcwG0Sd6UcnG7gGvPcyjffoB512AtiCQuAD37KwIaq+UhAPsM5/3uiu8WDLxIxbH3bOSsiwDjQLEnjoJmqipXYItU0pBBtvPvbBcoqaLGMilDFe/qBDZX8a8xhl20HwctlWtBxOdlGUamJgFcs4kDJeuifH5DBuGtmU9Rj4N9sG5UvlvR4oH1UJ2NyufPJq+UhXUP9sjv7hPxzGc+c/Xfl156KT70oQ/hIx/5CK699lpce+21+NRP/VR8xmd8Bh7ykIfgxIkT1d/bdR1uuOGGFl2eYormYUHjWo+DRlWGNdXWwknZgoZ1VXbSxMHAM7BtN2YcjGjOHDkwtdGYrwNuW7JurLbvsFSQUq6qptKrpcdHTbVvCdorDdJrkqeAl7zQV3sD9VJZqsRVudGvBQwXfVCZAw8/gzKBfDJpiLpqu/L5q2npG99TmbywMjmKavdgpa1QomM9auZBwCYOFB4H9h0YF7iPANct1sFa5h3QZj8QSVwAwJlz5VyQBK0d0Kzve1f2ocV+2JtHz87nODXzx3aLtaBWKgzwn002eZFh/agMys9stBFkfYilkqLA+YmDjpYp8R7dEGjWO92TSuUMrENqFiwDXCsBQ9N+lTlxuR8YF7gvk0eZxAmbOLAa+4k+BBkHasm2qEG4ZT3tgXEgMkfOSBU1YxxUJi6UJvFTbMZeEwc33njjxqK6/O/+L1+8u+++G7/3e78XWni3bSynmOKBEjUL1b4ZB6a6SgQYAR5FvbLKTgncDtyDlubQwDBw3NKcues6HM66jXHnbRY8I7YWgA2wreK93TtQAxq2lCqq2Sy28ncAnHdwZI+FWlPWJrrSgc3yWB4HtYAhIJQqqkheWEPQRqB9xBx6bMZBg3UoWmXWyqi89tB8z+lNqSIF4yDiMdDC48CuAfVSOS2qzYFdCcQGoG0QNFAzQL32j+a9//cN9gJRjfsWnls1RUTn23fuQdYgOsD6aSEbGAXNDGg3sseB0qSc8XjwGAcZOKRWMnEZZTV4nnEQYzwA2j1Z7Vl0PexaMC7jQSmVEwXtl9EygcfIdWXWYyuVtHsMKhkfAMe6URWSeGtYWSxU2wf2PYwUkCxj7mITexfY+aSJY3knu67b+N8UUzyYggUNVe9KzYHZVDs3BO299vu+b2KMuupDsOJfTYMbAmxaAUW17S/+zqPG55/BMnEx1FYLXeNl1Eh0NDXnrpBJKDdQLc2Jx06ceIm73jkwtDDAcrWFKwG7Vj4ztYwHQGmOPPwOGJ+LRsnr2mr/rhPq+9cy3xqAtrWMk2UoTUHXo1aqpGQcXCjwOIiAhm3MietBmxbsM+83bANuW8jGhc2RxYnkWubh4u/17ENf33nX729TcV/bvjc/qVkXu4BbMw82YJ8OgWZKqSLXYyEoU5K5/94cPiTT4kp2CZMn4QT2MWAcSM2BicSFsuJ/yGcF0CZvoomjbddlzoXlezDkz6xOoEbfAbVcFzMGVQVV0T3Arj6w7yElF9ZQjWCKPTMOALhgwBRTPJijZqJsVela235LfwFTbeyBll5VQUNz2vLA1Bq4HwKOWujplt93P8634W1YW+qLHxSMB2/D6sqUNKq29hMH7ZJH3mbzqO8xw/m/b2tOXDEHNE2c+DIZQwkNxT2YzTrMuk0PjVqpnLE9DlqaI9ccGsv3QiVVVAvYtJCoOf9ddZVeLZLI0UpLy3poJFe15dDYwuPAyCTtuAct9NVrjaG9f5NIFQUqjq3Xi2IMxsxhy/UoK1UUMadtwcD1QZMdwHkL2byEVBAgSBwEZCLaeBzUv4NeHxTGpOvfGfU4yIyBSOJsGZ7+eiaJvO8EdlQmBgDKR6Q0R67SlxfuB/bNODDM90q8Tnk2Kj86KFUkTqA+ED0ObPKIa9vDFWqlilRyVZRBeEMm9hR7ThzMKzJnU0zxYIuazVpLmR6ra+xVG49ozFrBuADUyYvdlV7tzZF3A0ctq72973PHQFPgvsPpwfbbVRVUMS5GZLwAi3ngxFohb1uD7OPlc7LoQ4/Dg/LvWgGmsw3N7mqPD1H71R4HDZN35aFhzASyBW3HlYpa9KEOvG/Rh6jHQflomkm2bbkH957ZlCrSeBwUB8adHgPtQdudxsANkqi1koFAmzG4YLFuVnjuSmCVEgZpqSJXsrCO9TPrkGbgeqDJTtZJE7mqgFxWA7mmWsnAxb+NwfqJeQwopJoiHgvKSmvv2Q2Blt4/a82BY78/Ow+X7ff94h7s+k1lRXYmeWGA84pq6xK0VY6BKn374pLMNFQmHWpAa8B5BlLWR4z14n1Hpv29exwQPhvsuWQ2s3uQWqmiZh4HhFzY4nuOpcDOAzKmOznFFMcsaqp8mgImFRINZ8rqMiFwXXNY8RYvbcX17gObOSQ2Nkce0+Ng0f7wMxjTmLRGrgvYr89HS48DwBsDDYH7PbOOvN9fI5Wjeg/rQeM2BtnVjANHIkUlWVdDkx9NqqhaKmpcua5FH1pom8cOS2UfZPNg8T3lug8sgJw2jIP6e9AkeROptm70HtRUnPd975iyiiT7Kiu+F9KR7RMH26R6mlS7Bz0exjBH3p240K8FEYPwFmvhPj0OAAc4HmjfJhD59hdSzZt/N6jv7vx75jFEGC/ev+cZH7HknduHFGgc15e37yHdPKVvr2R9lL9/KHG1DGVRUZl0GJLr8s+l4yUu1O+AxUMI1klmDAaLWLb3gesEI5flsk4mxoEspsTBFFMcs7AT5bgyKTWblaaMgwp9c29haMk4KO+BWs+3jCHgyEgTiPX7akCbFpq6277Ha6tp4qLCkKmFtvmu7yrbU+rp2vYJn5OGyUOgzpxXNQ/VHhZazcO1uqYtx0ANaGXAwlZSRbWAYcvk8YhyVVGJiFbAtZUNtOPwvrNH5u8uauBxsKvatUUCqyZ5vWq/0Ti0Y3B4Hl58rs08tIvxUOI5eXPkujUAaLMWHwdz5Ei1a4u1wBRQ7Pr9LRIn0WpftUxIBft6o33xPYia03rAbs4cOFdtrTZHBgjgdkTGhde+0iC7ymNBWPFeTmG1jAPLukj0IfgOqP0fo8lD5W/3Ps/4fGSSR1aBopZxoFHFUDEO1HLOD+aY7uQUUxyzMIZoziSopMSWUWrTrkt2rPrUsNrYW2DKW9B6YRjSN24tFTS0Wfj/2fvzeNmuskwcf3ad4c4DuTcjGcgEAQIGAglTZLCFMBn7C40DiSJDq4o/6tQAAQAASURBVGhoUUDUEBBsBoVu0wg00j8ZtIlxAIEGRBEIKMQAhkGSyBRMDJlDQpJ7c885Vfv3R6XqVK31rmFXvc+7K6fW+/nkk3Pq1N1r7b3XXnut532f52Ho6caOl+szoWGIB+RtmLUpqaORY87q3gN2xX1qDKg+gxOcP1OuDAiwPkgJtBy5NsAHCqwZB5YG3VkeB1qVzpkSGUzJvknNkSmAXWKzpg3YDCJnHnDZBoBO4qCJxwBjPeTOJfFq8/Y8JrjMvzzQQpofp50L5HdAHvNL5xmczhxZpQ+Z5uSs9htJJZHkskajKWg3rcZ+c5kU3Xlg2vMHbD0O2ObI/TaaykXZVZtrtz9JtbdmxfvEjAPFceB5DCS6oJ08bMo6cafIaV/FE/lc1O71n7wTk7QP6N0Hfw5qbg4N6GETJUrioESJmYucxYot40BIHBCleqSXnLthkpIZqlIxCW1Vlrb6+vHiC0amvj4gSRTkmSNrJW/c85HNkZmMh7Qxp+UzCAhSRdRq6+aJG6Y5eb89aQzOGOOAlDjLBey4cm1S4oAzD+VuVpiSfTnJQ1YfpqXHsxgH0jzo+hsAwLZN00sVNdmwMuYifw3QoNqbJpkmJU95a6HcBKrUh6WpzZHTrLtBuMsTDZBg4PEw3n4MONd/FzWRivHHoH77UYNwwhzUVKpFey72JRvjoJV28mba9wCgq/GfSmCzzZGBHLmq8d+nGQO5a4Cx77ScuPDuQQuMA83n0B1DqeSF+y6a/hkc/z39DLKTh81ZL1P5XDRMHg5CYn5MEk0ZH/22edhAiZI4KFFi5iLP44CjaQzkbRZXHeDevNpaqrLTlErxFszx9tUZBwngXHtx5IZvDCkBx/7LWWsc5kgkuPekU9lW2jKTN5MwDnR9TnIkMnjJM9EcOeMe8AC7XFNSu0pj6XPNe5AjFcPy+ZiN888DrRg+C21LdAT7IdyHuw6MMw46FbBJQbLKm4MioBVjPTRNtbdWAj1PNpK3FsqdB931IDD9+1C6hiHQhMU8yvV4AFgV//F16GgwrkETc2RtwAxoDpqpVxs3BI7V23dB04S+u/SamKYLUyewpzZHnsTjwHkXGDIupO9YSkUB/hhQZRwkxt8gVD0OnH+a9PnQliublnEw5TTcxOcGkD2PVJNnuckjj/UwKeOgeeJAek9qF1fOc5QrWaLEjEUONYsplZMjk8AEzqUJ3q+4FzaqqsaYCXNkor47kN6w+/dfm/GQBm20Tahix5EZBzzQ0GMciDI5tubIPuuFA1YBeebQzDko2xyZdA1yNfZ5Hgd5G1ZmAtEdA73ar/ZiSRX5z1+eTJBq8iwTNGUk8KaViNCTbEvfB5dxsHV5UcWgexrGgY7HQf6G1TPEZEn2iWsxqbqOxPwJMQ4IG/WOUPGfa45sWcAwCIZ8pO+zkW/OzGA+RZ9BC3NoY+C+KWioLeHqFsKkzl8Cdk09DpQZB+I6ODkG0sfIjRzZYL99vXfRRFJJnmzhxM3DfYQnN8bVuwYpxoFm0mKS9jU9JqR/n5Yr8z/THIOxAo7R0BoDE0k1icyriZovIcT0fGJCfPe738Vll12Gm2++GbfddhsOHDjQ+Bjnn38+oWclSvAjx5CMK9GQBgtYgBGQB5q6G8iFTqVWbQ6ks+xsqaKmHgfaiYsciq5pxX+GVI5uxX280k0yg9SVKsphHNgB9zn69qrm5BlSTQAHrAGkSssQYMVhfWQzHoyTN2u9Gsv3fF7XNU+qKBO0ZWibh/qQzThQuAeNPQ5oiYN0AtH1ONDwNwAayqR46wEG4yG/2lzLayXrPchkHGTOg9L41FgTLnU6WBk5dn4CV3EeWg23MxruM6iRxM5N3Ijta1z/Bs/gTEi2KVZbA81lMvQTF077ScaB//dpkrjNrz/3/IG0XJTmmkxFJmYqqahmiStAVy7KY77nMg68ezD5XOTuKZsyDqYtqmsKXKvLdU0p1zZtHyb1ONAq5piMceDjIxrFLCX6MTOJg2uvvRZ/9Ed/hPe85z248cYbpz5eSRyUuLdGTrU3VV89CzS2q3QF/PNltt8/Xjx5wkzc9NuPv6x9jwllxkGGtjWz4t+XCZHa51X8pzbMzCpPIFeuyw64l+Ygz2NB8RnodCp0qvHqmTzWQ8seB6RK13bMkePJG6ZcnLRZquvaW/wzmW9uH+q6f/6psTELHgfTAmaDmIRxoOFvADTbsDI8Hvxq0wYyLSyvj4w5EFCUSso0CF8RPteqOB/NS+UmUFmMm0ZSRYyK+8gz4D6bGtcgl/kFcNYDU4N2ytW+SY8Db10+Xftu/1O4tXriYkrGB8Mc2TJ50yRxN/wOlXGQkbhQTN6464hcfXv3Mk11DRr2QVuyzUtcWMulue1PwDqayhw5w29QCv+dPFkfdJ7BIq6jGTOROPizP/sz/Mqv/AruvPNO1JFs4mDTGPpOVVXi5rJEiXtTuKZysseBfoXdINxKMQm0YUrlyMaocdBUk/HQ70MKOOYBVkBaKsWrtCYzHsTkUYvAvfQZ05zYPVdmlScgA3+ezwUJLAFyK115oHW/D50xE3TZpN3pg3XFv1Gld2izwNDVHh5LTOD2ACzc0zanyjjcdu1fF+J7UAJ9Vrs9LHTGK+oZkmFtV7oOYmkxDRy6Hgd6jIMGMi2Ed1GTDSvrXeQn0PKkiljMp5BUhzQuNK5BfgKVM/5z3wPS3zTWxDkFFINgGHQ3MmemSLY1BQ11n8PGwLnyNfBA00S1tfvnaW9BU8k8bakimXGQAk7Hf58qcTABaOomr6aRrZvI40CxiGASY9r+9/SeAxe4T5EetCXbppXrmnoOati+9PdplqRNDdJD/Zj0fZTye5SCyUQuMQOJg/e+9714/vOfLwL+o7/Xde0lDFJ/L1Hi3hgu8CBVc3EZB/5bZrVbY3kkocGUKhIXi057jOqu0YhJlfTIMjX948U3jL5EiPb5pxcLTNZFzobRBws0k1epxI1Q5an4DAz0nUfHmXu+DKBgEFmJI/YY7FRYibQn9Uut0jfXnJfGOMg15uVUOgOheXi9H6trvGcgJFW15GDSzORhbrUjYx5MJS69PrhGdErPovtez/M4UEocTME4UDFHzpTpAYRqa5JJeM57ENCbi91xGEreuHPB8kJHpYArt+Kfl8DNZxx4vlcaY9ADbSLtUyr+8xkHHJP4ZjId2owDf/w3A+2mfR9Oaw6tDdynGBfaBVWTMA48mRxjmRZvX6IpFZVRbe2NAUXQPjdxoCmj2pxxwGW9NPU40GY9NZ0DpGNM137eGHCZD5PORU3nIICPD817tJo4+M53voNf+qVfGiYN6rrGGWecgec+97m43/3uhzPPPHO4+Hzzm9+Mk08+Gbfeeiu+8Y1v4FOf+hS+8IUvAOgnEB70oAfhjW98I3bs2NHmKZUoMXXkyAOwtLX77cuVlssj1YfMiVl60bvteVJFytXOMYqytHjUBK2l9lMyNdovxpwNk28QzQMtpUpHZvJMAo1Gk9sSkKefPKrGxr3POHCr7TWrrdPAJRO0Xj/eejWzKJdE8vrIrbTTouO6kVvpxUzehDwOhm1Lz4DW9Q+8gzYvudX+zPegwHxzrndd15QEnnv+McBASmTrSRWlgUvf44AkVdQINNXwOHDbbyBVZGhOLEnUaLGuc+4/4Be36CUu8kADbXmK4XEaeI34DEx9n41GBt2MZ6CJXJjGPNgUNHNlWtSB83ZBy1SxrxZYN4imFefa+u5VVWGhU41LJKakWhTNkZtKVQHKUkkNnr9BuF+ZZghOqm+veQ3cfzrrHgfaspHTyrUBuqybe4PHAVMRo0TLiYM3vvGNY8bHr33ta3HeeeeJ3z3llFPwpCc9afj76173OnzlK1/Bi1/8YlxyySW44oor8MpXvhJ/93d/hyOOOILe9xIlWJEjVWQJmkp9YBqjZum7O/3RlipyK73WIgAuwAGNx9pPnL+2VFHKHLr/GQ+08xIXGckzC2PYwXWRpYr0k0exxEHb5sjMam/peDkG2SzALlTxzZIsy92watOyR0Maz6PjQALR9BgHcbbD8DPie1CeA+JeN6F/1zQaVdsLG2lWxbUoVeQkDrZt0mEcuBT1qEwM4Tlocg9YCbycTTuT+ZdrEO2tBxftEicA7xrkSiUBnPdhE5kIv5BDg/HQgHFBmItz1qGj4cm0TDkMmwLHbnJx2uRNU9DMTRyoexw0rLbWkisbPe/GjANN4H6Civ/pPA4mkEpSHAO+x8aEiYMpwPOmfeB7HDR7BqdnHEzHegKUWTcZzwCgV9w6GeunSBUxo7U0TLfbxZ//+Z+jqvrVMU95ylOCSYNQnHLKKfjHf/xHnHPOOajrGldccQWe/vSnY3V1ldTrEiX4kSNVxNwsSuCP2wefkqvXflVVyQ2TzzhQBi0jgAlTU3h4vIREAVsmJoeibmrQbQxch6RSBsHSdB4/Xhw0Yi6OcjwmmMlDIHcMcOaB3Eo7FvPLbb9Xyxsmt31N1onM/FpvT5Iq0vM4SPvcAOT3oHAt/WeQk0RuAhixkhdApjnyAVeqSKceyUveN6i2NpdpUQYM14+TBi69tQAxeRYCTlnvgtxqR4Y5NiAA59ExqJ9EbuIxwPB58BgXDTwWGB4HSY8B7Yr7hsCx9rrcvYSS8en438d/n5Z45EkmNjRHnhY0BZpLlbjT9HTmyJPoqysyDiYATTXlqiaRiel/T+8aeGuhhoyDtj0OpmYcNE2eKheSTGLQDegVtukwDkriQDNaSxz8y7/8C+66666hL8HLX/7yiY7T6XTw7ne/G6eeeirqusbXvvY1vPnNb9bsaokSppGjL8+cGMOmmOsxaloK6IOGqZcF0xQUiL+sLRgHqQ0rXyYmvWFy5TOoGvsZ1eZMc2Bg/DkUx4Dy4sSj6CZAS119+zRoRk/eeZvWDNCMpC1u73HgH0faMFEl44RjjSXPhA2EnlRU+h0EkOXSEnNAv08c0D4HsGf3od+P8eOsCMkil3Gg5XHQBDSk+ExMAdpqPQc5CVw/ecozCM9lHLBM0kNyUawEYhO5Ku8+EEzSrSv+3WPUgQR2v2+M828mk6G9L2oKHGuPwyaMF0b7bYOmQLusC41q52mSyJOAtp5c11QyQX4BS05oypa5YyjVB+2CMvf+JT0OlBPITce/diFJ23JVTd8B0ne0FRnmPVq7mldeeeXw502bNuHxj3989PsxFkGn08Hv/d7vAehrzv6v//W/ilFyiXttuDRvEbT1JmW9R1na9LnVpWzg2teYdwEbbuLCBe7HGQc8oCZ0vJRMjWaVIZBniulXefKA6xxTSNX2peTZyDWXQEzNau9+HxLPADF5llNx74FlZLks0RyZNAazPQ5YgFWC8TIIrjlyvOJemhNYgDWQ+x7kJS+l9iTvAY0xOC3jQOs5yElg7PfMkZUYBw20dbVNSaVjRI1pSXOxb5KeZp/qvgfy5KJoCVxPMi43gUtiPDQxR1ZhHOTLdblyjjo+H8JeIFO2j8E4SAGnbI3/lEm9+/fpzZGbgZba5z+tMasK66YhcOmzvzSrrTMq/p2vTDMfTwLaavpMTMo40MQnmksVzVbyTN+g3Dhx0MBnZzS0TMInegaJ+4ISLSYObr31VgB9WZJjjz0WHWFiGTX4uvvuu6PH+0//6T9h586dAIAbb7wRX/rSlxR7W6KEXcRA60FQZWIkiQpnwcCWyklVG/rt21XcM4GacPspqSZu+zJoazcGcwzCNautJRB89Blwr0en0qFlj4b7DLhrdqZUUEyqa/0z5xlc5J5/ls+CVqVvJmBAYxyIrK8040AzgSgdanTj6CaTlxc6aqasqaRF6DP2ezDF/AJa8DgQ/qb1OprI44DGOJCfQdEcmiGTEvNYcKtMSV4f4hxAAOuGx/Lew3mMAzWpIi+Ba8s4yH0PSH/TWJM18lgwAG2BcPKEkcCauuJdueI/ZlIv/X369p3jpxIHzvBsG7Sctn2guca7++epgPMG5uiDcOeoafYFTVhvg9BkXKT2IKHQXJelmNdu+PvC6ebhph4HmowP6d83Td5N24fcNYAbWuNwkuRV8TjgRmuJg7vuumv4865du8TvbN++fcgcuO2226LHW1hYwDHHHDP8/V//9V+n72SJEi2EC8CtiJWWPGPahU7laWOmPAbUK/4Tun7WHgejL2ORcUBOnKRlarjnnyMTojoGMxbM1Ir7FOPAA6z1X6WpBZOlVFOWv4A64yA9BlnzUC5gwGJ+SWNZ6gPzGayqKipV4gNlZNBelOzjvgfd8BgHwnOhkURvAhhSGQeL6cTBPpdxsEmLcZC3YZfAXIoxa2TDzErg5cg1MefhXOCKNQ/nsM4A3nqoiVwWYz3SZAxyzImFBK7hPWgK3Htg1ZTAdRPWk/T3ad8Fbv9T+u4+42Cq5pvLpBDMkRszDhRBQxV99alA2+YyLe4reppb0NQcfL0PRNZH4hnQngebAteajA+x/cQcqG2O3LrHgbsGyUhcaJvElxiP1hIHO3bsGP584MAB8TsDBgEAXHPNNcljbt68efjzjTfeOEXvSpRoL3K0vZmVllVV+Rr7XsU/2Rg1pfHvtq9d8R+pNJPlKZSB+8Ri2bv+yuefJ1XES17kVFpSgXOp4jkGmhIWJu6CM5U80mT95GzWmO0D7bJecg3JLD0OJIDUM0c29JpZJfrcdDqVt+HNuv+KY7CqquSmzcrjoNurg/KbYoWZEvNjOeMZvOsAy+PAeQdlVpv3/60GYJUvE8OSDMsBLpnPgC/VE5AqcthHbsJp0sgF7r0qX6Xxn+s1Utc1RS4rR6pqEIwkdo7fmWX7jSvelat9U6Chr2+vXW1sW+3cFLh290YaLNzGclUtmyMzK/5jHiuh9qe5B/61z/t3mnszz2chKVXFrviPf983556q+QkYN7rroVQRZyi03gcT+YwQC6pKtJg4OOyww4Y/33777eJ3jjvuuOHPX/7yl5PHvPrqq4c/a1HmS5SwjpzNClvDzV2wr7imkGRz4tSCiS2TEgOMWPIUseOlPA70jWnTgJFHCVVMXngb5qzkGdnjYDR5REzchfqQSp4xPSZkY2Iu48BfMNuZ4+aChizml8g4MJYp6fcjfB2YyWsgT1uV6fXTP158HmZV++ewHQYhvo/UzHlzPA44iQPPZyWz0hlQkmlpUu1Nkm7MAY6YazFfqke+Bu76UItx4c8BtpJxuYwLWgKxQbWp/z7Wr/YGYkl0/fabAuf8auNmoOW074Km5+8ml/U9DhomLhRwmCbzsNgHRZmWSYxZrdvXNKietNpcE5+YNcZBWipId180vVzYdHiovxfPSxxovQ+Kx8HsRWuJgwc96EEA+i+6q6++WjQ//pEf+ZHhdz7zmc9g3759weNdeumluOGGG4YPyN69ewm9LlGCH8sOCJ5Taak9MXqVbiN9kKqrlpUqzNbbT4CmRNC6334YMGFWeA5CqvQZ3RSwzalzKg3dcakKWGRUOXhmgGyplNFqazLjBpD0Re2SR+6xerVt+4AAWgnzoFuFzALug2AJ6RpIz3MbclGxTTtdLi3C+gr1QdskvqlcGMDxOAi1Bci6w1pzcZ7HwbhU0TYlc2SPcRQ4f5ZBdeod7P5tNNTmoRzJPiLrKCeBD7QvVaStLT+I3IprlmSZLxkZBk0oxrSSOXJgDDCqPJtWvHsyIdOChg1lMrRBS6/aOgGaejI1Uz6G0vwTmgMHfx8NjQR2E+Cwrmtd0HoCjwEqaJ7TPpHxkGuMq1lY5e6tU13wi3l0k3dJ4F6R8SG1n/Z40GYdaTEOJuvHRHJdBMm0EuvRWuLgAQ94ALZv3w4A6Ha7+MY3vuF958lPfjKAfrbshz/8Id7whjeIxzpw4AD+23/7bwDWM+6nnnoqo9slStDDnSjbYBz4G7awMSxgwTgYb5Ntzhyr9nZfXJ2Kb4wLjC+YXN8LbcAsR6KCOQazjHGJ7UsyJaPPABs0BzLkqoiA0STGsHyD8vH2+pvY8X/DqvTN9zggMg6kxAl7How8h/SkRcYcwPT6kY7nM784+vq5iaP+534f9KRa0u+BfS7jYBPHHLlJtbfOPWhQbU16FnKYf0xafq5MgZc4UJMqymN+sZKYsXVw6nONYg6f+RoxZyYUcjQxR2awPhobgypXvPvjL8U40C3oaeKxAeh7POQyH0N/U2EcNAAupT9NZY4c2QOEQhM0nwS01dTY10ocTCVVlCigckPdZ6QxcO/8+ykfgaYG3doG5U0ZF4Pw9ucT9kODcaC1Hi7Rj9YSB4uLizjjjDOGv3/iE5/wvnPmmWfikEMOAdBPCLz+9a/Hi1/8Ynz961/HysoK7rzzTvzt3/4tHve4x+Gf//mfh2yD4447bshWKFHi3hY5VX5sqaBYH6T+6JsjxzeM5h4LEcaBNmDWP6YEWowC17aMA+meM+9BFmBCl0qJVVtzQVMg7XHATNyIpojeM0i+/olNuwjWaAF2mZWelh4HokE50aBY6sdo1Tc7aZH1HmSzHhLjwP29Ukoi5yaOALkKlcU4WFnz78FdBziMg1x9eZZUk+QblJu80HoWcqR6mOzDXJkQdy5wCw8mjRyvI0DSFSe9B0KgufC5RjFHE41/TyJDYRzkrAPW29evNm8KnGrq28vtpzwOuKBlinGgb8yan8AGOBKeTTTepftjbY6s6bPhnfsExrBTJQ4amnMDsiLBNOty9/K1XXHf1GPAnHGgXG2f4zUnhTsXTfo+aDoHAxz2XYn1aC1xAADPeMYzhj9/8IMf9P6+uLiI//7f/zvqukZVVajrGu985ztxyimnYMuWLdi1axee/vSn48tf/vLw71VV4TWveY3hWZQooRuuVJG0KdGm47kRe1mImySyKadnSulVfHOlksbO30A/L6Vx7b4YLRkXoT6omhNnACZsffOYvjsbNAXS94Clqw2EgOt4tbV+8ipx/lKlsRZgl7lYZY1BqTpHZN0oayq74ZsDhhOo7Gp/6b3DNkFL9YHldZKbOOp/7l8XLQZcCrzv9moccJIJeubImYwDEgNSmktyZVq05kJfriuDdaT5Hs6s+HcTSlrrwdyKa5rHQYZcWuhzjTHQRCaDcQ2kQ+Qm0aXEW9No7nGgy0DL9bgYtk83Zk2BluO/Tw1aNmBdAfrm1EBDxoHweE5nDDuBTIom42ACY1pNc95JEifSVzT7kEqeaRc0NTUn1mbdNE1csA3ic1knWu+jwjiYvWg1cfCc5zwHCwsLqOsal156KS699FLvOy94wQvw3Oc+d5gUAPoZzdH/Ro0/fvEXfxHPfe5zzc6hRAntcDdrrvEcwK+29j0O1vsg9UcfuG7IOFCvNg8vFnzzIz5oDMQ19rUBw+UJqn01x0DMnDr0GT15EkmecZJH4/fAreBgjgFx/LlyYezk1QQyMSzAKrfSWGsu6HQqD7QRPQ6MWTfjCVQu68s9Xo5cGVsuKeVxwJSqyvbZIDKP3Dlnn+NvAABbNykxDjJN+UTPIXOZFs6awEvcGUsG5jD/+p+zPA4m8xhgPYdBg24peaXBesnwmgr1QeMaVFXly1UFn0N92bgmoHFd1x5oqV1tnKq21X4nNq349vTVp7wFTZhvUvuMBG5MKkW6PuYeA4pz0STmxJoV75Ocv8gAnIpx0BQ41/Y4GP+9qTnxtO+BpnJp+oyL5skzzX5Mkjxj74vmPXRW+BPGnj17cNNNN6Hb7Wukbtu2Tfze+973Ppxwwgn4/d//fezfv9/7e13X2LFjB171qlfhZS97GbXPJUqwI4eiT/c4cH0WRtoT6aDqUkHxl4VXVUAGLcdlgnQoeLEQGQdtGpNmyGUxPQ5kxgNX3zy2YGKDpv32m1Xca44BqVrQBS34GvfxeZDptZJtykkcg4udzliSVmYccFkfsY0jew72ZJLE9yA3iZvaOLvta1TZAvJ9zJdp0bsGLvvRveeuvwEAbCMxDpowLjTug2gMG6o4JyVvfINoY8nAjOQdIBURaD0HLmidyfhQu/6ZknWiVFG7jAO1e9DpYLW7/pxns25UQON8qRbp0kxbadq02lg7keyCvimpGte4ePrzz2e+Ae0zDqTrM809mMTjQEvbXWp/EsaDZvu9Gl6xrhvS8NCUi0oxDrRB42kZB/oeAwnWkfL5a3kcTLo/dNuv6/45xuYWthrBvEeriQMA2L17d/I7VVXh1a9+NX75l38ZH/rQh3DJJZfghhtuQF3XOOyww/CYxzwG//k//2ccdNBB/A6XKEEOF7Tq1f2JcPQFSmccuIDBCBV9dc1/cbkV6tNGquKcbswaqTRiyVOMHzMOWvCr7dPVnj5oZwtYuBXv+qyb8KbBwhzZqzZzq52JwH2Kot7r+dV9loyPfn94CczczQJzHl7oVMAILittGtmsD6/qezR5xk4cZVQaeZt0ss9CSi5Mq/0mlZ5M6bxUEYPrbwAAW9U8Dvx1kLRhdJ9NNZ8J4V6G5gG/ytCO+URNIGcaM7pSRW7CadLIBc5ZCdxsc2SxylaBcZDJugF412BxoQJWR/qQ+S7UmAubJE4YzKOmwK128sQD7VKMAzJoKbUR+5uGOXKTqnfp+libA3vA7RTPwWRSQXrrAek92u3V0XOSGQdT9MG5f6lLoF3x31gqSLmQI7eAYv3vysnDTMaZGz54P2H7AZ+V5UaJg8naLiFH64mDJnHIIYfgRS96EV70ohe13ZUSJWghgeCr3R4WOuuVfAwjstGI6ruLgJ0tYEM3R45QxGfB48DXcrWXKvKAe6JUUR7rhgxcGpsjpzbN9oyDkWpzElAyGknGhei1wgFurSUypD6Ixqhk8N7XGA/Pg+qJuwyKNDuJm2YccNpvUunpmdCZShWNMw4WOxWWFzmgOSBvGFkyQak5cDR82TitPqQ37cxnINdjgCZVlAmc8yTDJpfL0ngXNQGNaKyLzDHAeB80McaUKpGn1hdvIJMD6M9FLnDrzvVuaEs15XhdjQZjPZT7DAKBYpKpGAf+GiRVce/PRZPPhZMwDjTNkUOSiYsRUqE0F05zD9x/2pT1o/0MNq34t2YcqJsjTzAGAb39edPkJcCXMJ33uFclDjRiZWUF119//fD3o48+usXelCjhx5Kw8U6ChsqAiQscr4yChgKIywZsXICMJQ0wCK/SbOR6+xt1vkwN4ADXRENEQJBIsNZWzjClY7MufOCyXXNkX+PfHQOKjIMEcGlhkB5L3gGheahliQxNg+qMSh828yVW9e/LJNm+A9z+9P+NrWTeTHgcUBMHfrXfKPvRTRxoGSP325bWQT0sIw4kaZ2/dJygTAspievrG6elijTXI7keA6zEgT//5JrUK1bbj0RYqsqv9o+Bi7mRy7oBeGMw5Tc2CG1t8f4x8kEzaWxOW1DV2ONA2SS9qceBD1pO1bw4lzRiHCg8h02SZ9KfpmGfSc9QrwZiw0qTddFUJkf6zjS3QLp/TaWCQseZtA9pg3LdeahJ8hLQfwaasK4An5k6LfvS81maMHGgZY4MDO5BeK3JLKYpMYeJg8997nN48pOfDKAvgbS25lOtS5RoMyQQeHWtB2xa/52xSB+NGHAmAbYamyT3mGPte6Cps1FVqnIchF/lYss4SMkkeGABG7QVq515wHVOlQPb48DXWA+DphasE3ch5oIYTIkKwAGNpaoiddZRM9BW+jeTxuSMA9tngG6OHBmDLE3t9ePlJE6sPQ5cc2QOaFtVFRY61fj1zqx2ZpojA+Psx7scc+RtSsbIQH61K6u6LDUHDqKua+8e8DT+bZOHuaAJy+8kF7hlzYO51Z5WHgtAWKaBxULNYb1In2u8i3PZDkBAqqhlj4Pp9dWbgYaaxrhS+6k+UMyRm8hVCaD2dIwD+TkbZf+n+qDpsZDFOHCmaE3QPqcP2pJhHuumqcfB1ObEfvI2FtrrMa+ALJG81JZKmsTnA5DeR5P1Q4NxUBIHujGX/I26rof/lSgxaxHarI8Ga6MS6sNo+ytkmSAgTZH3Kr7JjINBpRfAN+TsHzPOOmGbIy9nMA68hYFmtXVOpSUbNI34LLBBU8Df9LoeA+7rS/P8B8DlaIx7PPCq/QeRqjRjVXn2jzUjHgeRtvqfkROIkQQqm/WVY0zKZD0BaeDK0iA+V1+fKVUEjL//9x3gMQ6kd1qWVI/Se0iaA0XgXlmaIXYc6+RhjtcR4K8JtTyv/HdwLuOA035YpofEuMhIEAw/J62J3WsQAo4o1eaZ5tyALOMz7TBIFS+4of0+9kDLhjIlHI8DW3Nk7z0YSx4pmyOLwHmkfSmJrOtxkAZtvTGgfP6pMajOOPA8DpolLvR9ThKMA/XkXR7rbxDa1fbuvj7X58P9mi7jIDUG+IV98xxzmTgoUWKWQ6qed0FSNmDim8KFKx8pwHmi4t264r7fh3rs/4NgvJSkQ8aqT/UrjdObRSZgkVNt7G4StFk3UXNkctICiAOHss8I+/zjjAN1c+SEti3zGcg1xWQuUH2KsCRTol/lORqx5AWb9ZYjUeAn8NiMg/h7WBW0dRN3uaCpIvtPLGIYMcLd5zAOtIyRgVDyXBoDvER+DmggvZv0JNNymH+8tVButeHqGgk4zzRmZD2HLvgePH8W4yKT9QLwfM9yTOqlz609DqRq8+kZB+74S3gcKL+PPamiBG7s3pppz7/Tqby9SEyuifEuyh1/gL45cqqAy2tfSl5N0/4ExrSqUknCv20KXAPTvQ/9NVj8+96acMp5yPM4SFX8Kz8DTT0OPHxiyvZzvMbcEOfiiRkHzeTS+n93j1ESB5pREgclSsxYSJOcuzGjG1NGqozczZOWGeJoNNWWVtdXj1R6sZM2QL/aMbZpYpvz5ixY3QWUZh/yqq25oGFsDDLBmvVjhheMMlilPAdEq835iYv0HMBjPuVWe3OrfTOqncnmyLExyE5axBJXUn8AhseB8x5MvIe45ti2gCEgV46P3gemx8GkjAOuObTfvpzEJTEOMhgPms9hjtcQQPQ48JJntqybHNYTICWxiQbhIYNqI7mmcOKgXY8D2ZRVW9+8IWinDFqmqq1d0FYjh9xE45zjcdCkfV3/Pan/0faVpZKa6vsD8JQ0pvJ4EJ6fSRgH0zyGbuIlyThQLihrOgew5cJSjAe3fX2PhQzWiyLrRFrPNmUcaDCfSqxHSRyUKDFjkSNVRJdoiFC0LaSKYhIZgLRR1T5/IXlzzzVgG5IOIrRolGiA2ufvAkYSUMzU2J8Fj4OYOa+FOXJsw2RjTpzPOgIMpGpSBunG4w/gzsM5m0a2ZFlMY9xaJkkCBdjMK18mIf4eVq32zpZJITIOFqX34Po1YHoc5GrbskBbIK/iWKpAZFWc58iVqSZOEomz4eek92HOHADwWCe5zDNvLaTGeBAqnjPZb2qsl8RafP1zC8ZBw2rvKS9BTK5SCu1Evvs6sQYNpWM0uQca7TcbA/5n04CGss9NvlQToOtxkGWOrChXJQ3fiTwOpumD80/TFfe6+1Lf4yA1B3AZB706nrxRl2pSYL1M0w9xHdjQ56EwDnSjJA5KlJixWOhI+uLxalt9xkF4w+TTce0ZB55UEVmqB1jfFLCrXNf7IF8DC5maHF1brkxHhkwLnXXTADQljAF3vTv6DEhjgJ04GZdq8ttnm+N61d5EwDCVtBh+7o1BW3Nkts+An7yyk+vKMUZlgqZAGri19LiYFY+D0XmA6nEgPEs5knm655++B9JcLAG+k0SWx0HLiRNA8DhQYqHmsI4AHusmx+MCENiXWu03qLZkFbTkyEYCrGrz6RgH6tW2Kaki5feBvw6Of9/zGNCQCvLuQT5wzhkD+e1rm1NLbYyGur7/JDIxnjnyxM1PJBMjAeuaPhNNGQ/Texw09BhwQWvlxAUgM1sGwT7/nOSV7Ps02UCUPQ4SPhOEebDEepTEQYkSMxgpbVl/o6QM2nka9yOgJbnaH0hnub3khbJcklxpUo/9fxCsbHZo02RT7T0JYKGYOJgBj4OYQbOFz0cMtJUWb2zWyej5SwCO9iVImeK5gJ3m+c8CaJtD0feqTMnJm3G5LnLiIEeqyTh54XscMD0u3MRZoNLYq67iJa+A8Wd//+p44mDLkmbiIA+08SuteQlsqeJeGpdq+vIZ1d5M9ltutaHbL60ksvcOzk7gajE+8kATlmyezDjIYx6xfDZyvVY0xmET0E4CLLXNgZNSRcrJG0+mJdG+ewlUzIkbVBy77yJ7xoEDGCqDpkD8/GV9f1vGgdsHbcZBWl9+/O9V1ZfenbwPzjVoaI48ffLIOX5Dj4Pp56BmyRttc+RcucDRUJUqEq5fmvlVGAfMKImDEiVmMGKgXf93crW1I1EQ8zhgMA7cY3qMA3eToq7tHa52ZEvkhPoweBmK2Xw2aJxV7duux4H2NXBNtcZAU3LbgLRpWP/ZxGOggVTR0kI11eZACn8OcObAlqWK6roWpGps++DdB7JUz9rYGLA1qJcqDdmSfamKP0uPi9CGlannWlVVlH244ngvbVrSGwO5xpzMudgHzvPMkdUYBxmMB6ZJeWoOHoSfvOAwDnIl47QqDD1z5Mzz10tc5FdbsuaiSf1+ZsHjYHqZjoZSRcrJG1+qKAFaejI1UzUPoBl47YKWGmOw0RhwExfK5thA/B7I+v5TJA68+S9DX14xedPUHBrQNwd2/31TqaDpEwfNGAfucmDaV2FTjX9t6comjJ/1Puh5jUjrwKbzoKbvV4mSOChRYibDXTCsrLmVjlzAxK/0CYMFjMRBiiLsmkWztb37fZgVxoH0UuaCxivdnme6xQVNJ6i2Nqx4tjBHdhc73QjjAeBXW4+dv4FUU9Ic2U1gUqWKpPGnD1TEjiXLdbEZB+FNk5e8Zfsr5CROyAbd7j339GyJ1e5h0NT9d9wE3ophEUHee0AfsFxvP5w8HYS4SWYxDkSpJCLjILPal8VCzTGHlj5nMQ7C1f6ceVhchwalijgFLZPKRWncAz9x1FBfXplxEPK4GIS+vvr4OEqaIysD5/0+5Ff8u39jSCXFGQe6ewKZ9dZsDGqaI+foy3sV54r+AkDzMahtDpzCrbXVGLw1YEODcm3WExBnPWhffy2PA02T7qasF03frxIlcVCixEyGuwF3F6xsKpa7YB9NXFgYw6Yq7djGnBIAMliwspM2g/AXzL2xfoyGPmiXpkcy9dVzNmxMbWtAAg1GADOP8aI/BtzFzjjjwcJjIOZxwGdcpDZNnscFFTBLjz/p3+n2IQ2ca9+HWPLClwojJ68zfFbUGQdNPQ6Iclkh0IzJOACEeWAkae9p27NZT1LyjCqZl96wMueBHI11bUPWsWNlggasceCCPuFnQBcsGkS2OTJpTVxVvt9ZrscALXkVvAb6iYuUXOHY3xzArKr0QcskYKVe7ewcP6Wv7snEaAD3+aAdx+PAaT82BpyhOe39b1rtrG+O3NzjQBM4bjL/DEIbtHX/eQq41zaqbzoHaPtPNtX4107gTuRxoFzY1iR5Kf29SBXpRkkclCgxg5GiiLMBk1j7FlJFqWpT98W0rAyYSZczBNxbMw4sZGpiHg9ufwahWm2bIdFAT55FxqAJ4yCyYHWBiqrizwFty5X5Pi88wCxns2DNOJAW42xz5FjFte8xYeevsP4ZmXWUYH0wZWJyJSLosoXecxgrItD2mcl5Du18JqQNuwSYasm2ZT0DVMm2XKkilsZ/HmDg+3yQEjfBan/eM5ibQGR5HEwqF6VxDZoAp4wq06YeB9oMQPccktXOzp81HsMmoB1jT5DjtxZqnzIGo4kL3TVhU9AakOSqpgSuG0oFeawX6+Sd8hiU2nfZ96PhTs/aHgODPoSCff6TJK+m7UcTg3ZA8nkoULdmlKtZosQMRqziH+BLhXiGaBHQcFnZmBiQstzjbboVbtrnL2k7DxaMTGmE0QhtWixkaqSNv3vNmeBxzoaRbRAeYxxYmC/FgENf257wDLZojAukNwxM5lMeaC09h8Rq3yy5Lm7Fd2wMao+BnMQJm3WU2jRZehyEAAtNaQIp3KT8KDjmSgZasp4GwbwHsaTJIBhg1SAmeQbaGIOrzvpUrdo9WyqIMw/kVlsy1+O5yROWVJFnEJ5pUM1gHETNkZWrzYE8xlHs79M+i54xrLExKyCtASLVzgRz5CYa69rmyFL7TT0ONAHTHI8DH7ieuPl7/n0z4Nj987RDUFrPxEzC9T0OGgL3ZKkmoFnyTN8gPsfjQJlx0FAuyX8XTdx0CSHK5SxRYgYjtWH2K0vIYMHIRO0CyCaMA+dFwZbo6PdBvgcWoCkQ8TggS6QA8vV0z5vJOMiSaHArnsnVxtbmyL7HQbjam9G+m4wYS5yQq837x2zGOtJkfXiGaK14HKTNgSWTas2IJfCs5eLakGpKaaxrS1OMhn//bUHTQSw5hQGjyQIvebzITdzkMH+oclHCe4jJush6BojPYU7iRvpcS6oot+Kb5XeUK1XEnIdypULca6P1LoitQ2Kfa4zDHHPyYfsEff8cj5NB1HXtMwCnvAdN9dXdSmiV5EmDa+BX+tqyPizGQHOPg8mfg4kYB8rAcdsV/9IYjrEetOchseK/QfvT+6ykZYPH/qbMvvMShxN6HOgyDhLJq8I4oEa5miVKzGCkpIroEg0xfXMTj4O4rqp7/trayv0+yAtWTxqBcP5AJHEhLFzVwSLhRevfg9mq+Nb3OAhv2C3MgaMeBwbJKxcEXIlIlFgk7lJzgLm/APk5zOkD2xw5Bpyyx6AP2ud4HGiffxy8ZyYQfbm+PH137WcxVnXP9jjIqbb2x6EmcJ7TPk8qKUemhsm8yq029YpJlFioucAxy6S8bXNkQNgLBK4Bq5DDk2zMvQaUavMYYGfRvh1oDPigaazSGtCXqQHyE9iAsCYnmDM3GQMUqaSGUkXTdKGJTNOwDy1LBWkzIKV/HwPuLTwGYteAbQ4NJJJnXd32PRwiYwxK7+Np5Bun9TgojAPdKJezRIkZDK/SyaGCe8aUZLBgbQw0tGccuC+ClTUuYAaEq+3a9jiQEjdamsrDYwobfxcccBdomqBdlkQDvdo45vNhkDyLLNhtnsF8qSaGQXjK54JZ6ZtTZcZmHHh9yHkGyMmzMakiMmCdMiaWPuOzjlJeQ/YeBwx5ilg/LL1Ocijq/ntI8xlMg7amCfQM5pPm+Xuss8AYZI2DXI17XyKG5bGQaY5MTR6F7gHnfZgq4hkERd++SbU5Qaoo198h9LepQctpPQ4UhmGTe8BgHOSwrgbhjgGKOXN0DOj63bjXvq7TySOXdTI1cN+UcWAAnMfUcrQLypoC99prctnjIJ95ZW0OLX1Hm3WRmget5KTnNcrVLFFiBsNdLPmgLRcw8jwWRtpnVxkC6SoPC6mYkEwF25h62H5g0+Ju0hnV7tJ48u4BEbTM0RZmLw58mYLRin8Lc+TwNfDGAEOqKOZx4MlE8RMX7jn790Bx/OUAlmSvkVS1WV3XAmip7HEQAQ08sFD7+cvyOeGBxtLxkowD5v3PlCjRXgu4HkYr3VgClTsGRLkuy3uQkbzSNWlPvwfdeVDzOcyt+Gcl0nP1lVlrMp95G3gGiUUMKfbxIFhzYQ54zpDpAZpWm+uPgRzJwuHfpMTBlNdg2mpvHcZBPuvCwueiyRjQMUd29gHRxMn479OD1gLzu6FU0LRFZVNLFU3ZvvTPo4wDC4+DmFyXMuOj06m8a9AkeTdt4sYvXsjxONB9F3ljsKHXC6u4c16jJA5KlJjBSNGT2eB1rH2WEd7YMVOAjfPiYCQv3GsQ8hhgvZRC18DipSgBQL5cFm8c+IBNCx4HMXNkg3vQxJzYgnEQkyujzAEJxoElYJdjzt3/d5qVps1kcrTbl/ow+syxJXJyQEt2AjlV8c2VqckDDLU3im7EdO5d5p+bZJg23OspmhMT2U85+t7MMZADnDNl49z2e0LFa69Xe3OBmsfBhMkzrXuQ43HRb59XSJB9DUiFHDlyWRKOpQPa+u9ht6J6vQ/6oHkTbW0JzJp2TdI4cWDgcdDIY8CcdaJ//s0SJ867QNmYtt9+02pra9YLv+LfMoEoegw08DhgzENNEpjajJMcuSx3DGizLpomz7TXxPMeJXFQosQMhrtZ8MyBiaBZ/3gNKk0pjANXV2+9zbquTcxhfdCi36YVDS5E07fQl1/oVJ4254orl8Ws9MwALNjJs1ilkc/60L8H7oJzdMNiYk7smqJGzJEZjIsUaOfPQ7zxJ1b6EqQJYsdy25P6pC2Z5Ul1jLFuuMmzPNCWOxc39jhQlYnJ2yxZsw+j5sjqyaOMinsi68Zvf/Y8BpjvQWled/sgeW+wpIpCFf+stUiuVM0sSBX5SVSSXFSGXBigMxeLMiUBzIgxD+YUsAxCeg6sGQeeXJPCMGyf9ZEP3FPMkafwOGBUu8fGICDIVU35GDa5/v2/j/8+7TQg3cOYXJP2eqBx4oKQPGv0DKqD9vlSYcPvKEtpu8B/ah5ke4DOe5TEQYkSMxhuxZa7KGWDpp48QRQs4IOGo+fb7dVwE/4UuZ7AptHqpeTT82RzZAZoKx03bdDN8zjot+cCx+SKZxc07I6PwfG2bX0+vHNnsE4ioDETKBlEcvx5959X5SmBAnzGQXzD5s7DgP44dBf8Y3JZ5HkoB7Rls6+aJm+o9z8AWGhX+LkR05hmyxbG/BUGQdX4TxRwSO2rzkPOuUga1+5zyPR6Afx5WLomLHPkEGjF8rnIBU181omiOfLEPg+c5EnOM6DVfs74GwRDXz+ngGUQjGvgFo+4c70bjHfBNMA5hXEQbZ9gjjxN4mTKPYkG42Daind/HRr/vrZUkVQtHnsOtMdAU48DhlxYE/Be2xxZw+NAn3GQSF55ybOSONCMkjgoUWIGwwOunGpvNngde1F5YIGyPAEQZ1xIL02GOa27YQszDjgvpWDiwgC0lY7rsV6IBt0S+OFedzbzI1ZtZmGO7I6r0cWyScV/I48HQuIgsWD1ADNitb8E2Gkb4aX64M570gaabQ48yrqxZhzI+vKz5XGgW+0+WaWxehFBxG+JXUSQkisDyB4HGXJRzLVYDmjBfA6l++kxv9b8a6L1PswxhwZ8MIsFmncDUjlMg+xcuSQWCzeVwO9/JoDmBI8DIAxc+fIUUzffSGOekchvKhPiAqoa65Fcc2ApoaLxHDYxJ2aYIzcCbckyMan2Af3kkb8OTzEelIFr4RpaehyIyZsGUkE6z8DkjINpx2DuO3A03Gugn7xKJc90JcNKjEdJHJQoMYMR0xUGLDwOwpV+FqCpb44bBiv6fbAzaGYDZoMIvSx9Y1zONB6TqgG4gI00nt2NsbdZpz8DEeDegvESq/ineAyEAQO2KS+Qlqph+ixI99Oy2lw6XipxAhCq/iPzMNtfIFVt3uvVHi1fXSonUenENGfO9Tiw9jsaLWJwCxq0Ks0HkWNMaeoxIAAGTObbJAl0zfZF4Mq53tJ6TIt54j4D0pwH8J5DaT4VJdOI0pk5yZOeyMLVYl2k25eANEa1OxBhXDBkaqZIXIT+fZPwikeagsYMffXMBDZA0ndvUO3NkImJVTtrJ/FFff2GY2Dae+DLxMS/b8I4iPRB+x6IycsIcG7BfIqNQa99Zbm0fvvNWC/2HgfOvyfsj+c5FtvugHUcd9xxePWrX912N0qUiEZKqohvChnWNXU3jhagYQw0BUgVzwHgVJuOGmw/8LK0MEfuHzeubev3g1dtC/ibUyZoB8SrTS3MgX2PA7tqb0CYgyLJQ445dNwg3mc9sKWyelgeqbVga8s3TZwAhGcgAlp511+d8ROvNJQ2b+oeBylzZOIYyPU40N6oe/2IJJDpHgeeXJytQXYO64P5HIQ1rheGv/t+O4oyOdJ72LkGLgMV0JuLc2VCWGMgJJWzjPjaiDkGpDEoJVS05sIc1o2YxFZoXwROQ5JtHuOAk7hY7fWwZeT5G34umiPrVlunjGkZHgf+XiwgFSW+j+/dwD3QUKpJWV9e2ls2NoZVNmhOeywoJy6Ef97EnHhqg3KJ8dDAZ4Nj0J3PeJjeoFtOXi35U+DY38f6YO71Mn5/NBKYJdZj7hIHxx57bEkclJj5iEkVMauLBuEmAyzlCQB/47k6BtoKjANCxXdIqocNGA4iyDggJ40G4VXcJzTWrSu+2eB9jHHABGvWjxkGDCxYJzHgmgnah9r3TTl5jJOcSke6OXcicWJhjhwDrZjyHEA6ccLS1Y4dbxY9DpgV54D0Hlwfh3SPgwzgnpvAjj+DUp+YJu1AhkG3auJEqLh352FJMk1Nqsg3R67r2pNgYckW5la8MxmAOVJBzLkwBzhl+f3IiZvM5BEBsAPC87BsEK0LmMVAawCehAgjedKEcdA2cK+RRG8kE6OsL99UJqeufRbmtPdgWp8NbY19IGWOrLsv7XQqVBXGMJe4XNX475asH4AgVTVB8sqfi6d7Hzc1aLbCaOY1ZjJxcNNNN+Fzn/scrrjiCtx66624/fbb0ev18IpXvAInnXRS290rUYIeMakieYFG3rCPgQXj7WuDBYBQaTYK2kqAmYHPwmDByNbWH7YfeFmyK30H4UtUxIFLvrZznHWjXm3sMS7W22eDdf32wwt2dqUvEAfNvOQVhXEQXywzkxc5lY50jf/E+YuaysrPQMyYk508SwFm0vnry0XFWQ9Uff1MwMZaqsiyiCCn2prp8eAlTWaCcZCYBzUTJxNKFWkVcoQ07lPPhp5Mj1DAkCVVxLsHcvtC4oDkMyE/A5zEhVSpGtTYV650BuRxHDbI9sfgtB4DLuiaAm21q82BfI8BVvKoGXCvz0LONSeX/qYtVdVvIyJTI3Rt2qmoSeIGkHwmpmtfGsOh50CSr9QyaR8vnMoH7lW8VlwswtCgPGcNwO6DX0STYL2Q18TzHjOVOPjQhz6Et7zlLfinf/on8e9nn322mDh45StfiUsvvRQAcMwxx+Dd7343tZ8lSrDDkwrqhUFLgM84GKu2XrMALcObFcmMjwFchpI3bGPqQfgL5nvaN9C3B3KAW16lp3ROaakkLnDbHQNN+fcgKhPjVbkSGDeRZ9ClgjIYB+45DUy5BptxrseBfyyXccNOIMZMaQF5A8tmHHQj7yFtybaUtnc7jIO4XJbmGMiVaNCmpruxtBhhHDjv4mV1j4N0xb83F6kmsJszDtjMO1PGgTQPOs+hOwYWO5VKpTMQWAf0aiw6MgkMwDTYvjQG3PWAagIxw5yYKFuX9wxyEhchqSgpGAnUJokLxnOYK9U1CO1qc6kPIeBcqgJntB83htVvv0niQrvaW5bJyQeNAQ2poIaMA+X1SBODdBbrZcFJHMSuASOR36Ti3sLjIV3xr7smyy2iCf29JA50YyYSB7fccgue97zn4WMf+xiAdbpdVVVjP4fiUY96FH7/939/+L2XvexlePCDH0zudYkSvHA3LCsjUkUMSmyq/ZiuMQM0jC3WpPNnAKehakd2hecgQgt2f4NCYhy4xoQecMk0Bs2otCQaEgLtmyPHPQ747ccYJ0ygZBChMTC4L75UkSJomwEYsBOIKcDGfR4XFCocvT40MehWZ/wkEpekTeJoxJKH0u9M0Dhc6clLXgBhc+SuUN2n/R7OAa3cuUgzgeUlrzJkalQTF5LGuuf1QpwHM0AbJutEWtu496Cua9pzmCPVBEhzsWIRRRbrhsf6yPL5EJO407cvm3PbMa/kxFmeQbfG+fugbfz7LqCpsRyIFQ+Mhvg+JjAerM2RvSK2SLWzNmDZ6VToVOP3vYlMjUYfGhvTaksVNWAcyMUkCvNQlX8N/OTd1M03Sp5pPwPSOzDtMaCbyG/ucVASB8zgIE4N4uabb8ajH/1ofOxjH/P0+SQtSynOOussHHXUUcPf3//+96v3s0QJy2ibceC+bGOJA4ZUUUyqyd2odyrOiyEE3LXmcTD0WOCaAg/CrzQdqbgQQSN2peX6ebMoqbE+WJsjx9pvhfEQYVwwzl+UCYj6LHArbd17rl1d5kbs+ZP6Q5GLimza2Ym7VOJEqnBUl0tqmLzQHAM5EiWAvjSAG55J+j33XQJQ6B4HGTItVLkoUd/dTqam3148gak5BquqihaR9H/nvYtyNL5ZEimh9nMq7jXnwhyde/EaqBlET8Y40LgFOV5XoT7oyPTkVzsz1kRNjIEBATAz1FdnmSM3AU0Z7+NGUkmEJH5uAQEg34OpGQeuXFZT0HbK9qV/HsrdiEWVhOewCeuDMQ/F5gGPdaNsjg3Ek2eAPvuqcfLKWxO2DnVvqGj1atZ1jZ/4iZ/At7/97eFn27dvx0tf+lJ8/OMfx7/+6796yQQpqqrCs571rOHvn/jEJyj9LVHCKpp7HOiCNssOaNWr1ydj1+PABbg0IrZYtGA8AOGKczPGQQC4tQCNgfiGkT0G+9XT45/FjFn7/0a70jZWbc2v+Pc9Dkb6YiEVFEkeWrQvLfjjyROux4G5OXdDxg8jcRDbMLkAnvY8lKr2FucAdamm+Kad6vOS7XFgzDjoDtYBQpWz8logZ8PIlAyLJW8HQWUcJJh37AS+1IeUx4KmXFWOZJxc7c5LHEhm0B77TZX1kiGXJRlUGzIO/PWQDvtNuo1B5lWt/xw28ThgvAvcJU0ib0DxecgFTZkyMePtxDT+9c+/iUyM+2gyDLrj7QuJA2PGgbY5clVV3jzQxGdDgw3t7m/icll81kuT5BXDnDopmUaWS2rMeCh5A9VoVarofe97Hy655JLhAuMxj3kM/vqv/xqHHnro2PdyFiBPf/rT8Yd/+Ieo6xpf+cpXcMcdd2DHjh2UfpcowY6YVBGLjpc63mq3h4XOAt0QUWo/LpHBAu5l0MCi0hcIvyztzJGdxEnPegyGDalaYd30wokTDuMgvGGykApqJlPDYBzEq/6ZwLlc6ZvyOOAC5ymJEkbyxr0OY8wvMmCdqrQVq2y1pZoSfWC+C3JNGV3MkO53dI9kmeQ1pC5VlAOaOuNQVV/eG/8S46E9xoH7DGq3D/TH4d0YZbyOt+kmkOhSRQnmF6A3F+eCJpYG2blSQVrXICbZOAjWu7CqKix2qijTbRAuWKXhs9G5p4BldIiF2mcUk+QaEw9CG7QF7l0eB4z3cSOPBWXQFrhnHb66/nvMmFYamtoeA41lYpSSV70MjwGr5FUTqSCGQXmT5NG0z4D0Pm/qMTC1x0GD8wekJHLJHGhGq1dz4EtQ1zWOP/54fOxjH/OSBrlx6qmnDn+u6xqXX365Sh9LlGgjYlJFFpWWS0LV2FoAuKYkDrwqp1HQ1IhxEACNfFNQTvuhl6VvjMtJXMQ07mXAwq7SUdq8qbfvVnnEzIkNGAfdCHBPkQqKsZ4MnkFZXzomF6XXhwFgMBqpind9c+5w8lRq30Kuatxng3v+sXeg25dBaCdvUhtG5rsgV1uaAVaMRkjjWQIQ2/A4YJp051Qa+u8Cvfarqoom0EwS6AngmMv8irPO+r/zihhypJoAIZGvOgYzEgdCn7TGwUQG4UTWTW61sVYSOV8yTj954p6DC4i54b4iNG6Dl7wInL8d48C22juX+Sf9jZG4aHL+wPTV1rOgL59r0Cw9m9YeB22bpGtff+mfh+ZAVh9y18LDv7u+VyVvoBqtXc7vfe97uOKKK1BVfUrj61//euzcuXPi4+3evRuHH3748PdvfvObGt0sUaKVcDeso5sVaeGmDtpIFO01GTBgeBy459Or1zP5PmBGAu4DC0YLiRBAqriVGQ88qaSIz4bJGHRBmzBoDBAqvj3GwShoytV3B5olTihSRRHGiQXjIlXt6TOfuPc/VfGuXXHvacsnzJEZVTWh5GVd1/R5uKm/gPRvtPvgy6TYsV4koB7gyiUB/jhcGSYOWvA4MJYKmgQ0ZifQx+dA4Rkgy3W558uch6Vz8eZh8logp9rRnReYrJMcn49OpZdAzDFn9j0eiOefybzS87nIq/pnSIi6r/QkaOsC5wrJE38dGEpgC8+hhlRQpIDHDYo5cmAfZtV+E9aJyL5S1ri3lioCmshlWXkc5LGeAD3GxWg0YRxMy3gYsL7G22/mcWBt0O23XzIHmtHa1bz00ksB9Degmzdvxk/8xE9MfcyDDjpo+PMPfvCDqY9XokRbsewu1kakisSXI7naE1hfMDKp6YMQKer3vAz89o2A83vaNfM4CEkVGYDGgL9hHJMNkkA75X64C75k+9pSSZ5UT/+6W+hKA1LyLAKaM6SKIpWGkqaxdkjXdC0yBrTvf1Lbm844iAPHFgbdoeSlWOmsbY6cMKZl6Pm6kdqwMs2RPcZTbqWtkWSW6HFANsiWrgHX4yADtHWug/YmNS5ZJ1Wac71+XOCQKV0pa8zbeRwA4XXA+Ge8d0GsgGMQTDPInPaZCdR8xgHHJDwXNGOsy5sY4wLwPCEtQVuWZFgTmZa2zZG99g3NqQGOXJRX7Z9MHLj/fqrmAfjXMcQ4YDHwfOat/D2Z8UFgHESSVwzpyuasE901UYx9L7ZP8LspsR6tJQ5uvPFGAP1s1nHHHYfl5eWpj7l9+/bhz3fdddfUxytRoq3wZEJGq71JWe3RkECgAXDFrvQF4hR1C8BM6sPqELi3eSllmyOT2o8bdPOTV7FNkwVwGTJHFmWaDKSKRscdUx5ieMxFN3EQvv4W1e6Aw7ogsz78xJ0rlcMBKgYRe/4AG+ZTyKDYptq/mVQR4/xTyYtZ8DhgJi8Afx4IrQOqivEOSLMuqKBlBmjKNMYFEgblLUgVuZv2lTVe4iBHMk5cD2uyHjLGoJdIJ7afZU5MbF8CbZjJy5Rk33ofxn9X87lIvAPW29d/F/jmyCnATrfaGMgHrt3r0qny/Cmbtt+k4l7j/HPfw4DEvLGrdgdk4Hrae5AjlTbWB0LyxD1ECDdnrUvzZSNngXGgL13py4Y2rPifsgvTjkGNeaDEerSWOLjzzjuHP48C/tPEHXfcMfx527ZtKscsUaKNiEkVMWnJgxANcQYSBWv6lTVuxBIXFh4LQLji2opxEKKoWnk8xEAzWUuSCxolPQ7IwOVqIHEFcMZArMrCYgz4jJNRxgEXLAMCycORPqyQ+5Cs+CcD1yHQPtg+YQyEQEtJskW7/aaMA+13IJCWCWC+CybdrNK9JgaMA2cdsLzQUQGKRiOHdcEAawaRJdPiJY/sJLvcpAVA8LtKJPDY74KUZJxYxKA4DnN8LqgV/xkeA1zgXi6gGe8Tbw6atOJdCyyaVKpIYx5yzyHpccCo9s70OHCvP8ugPCaTwhiHucw/6W8qUkmZiSupfY0+5PoLDP9OWJdN6nMi/duJ2s/0OGCxbhr5XFASmPljEPDHwLR7gyaMh7quqWvCEi0mDvbs2TP8+dZbb1U55rXXXjv8ee/evSrHLFGijQhVOwM21b6iVFHAFJHhcRDTN/ekikj6daF7wJZIWT+uvGBuzRw5YdBNN0ceM+flg/ehxZJ07ozkVZRxYDAGvOTl2P3nJy46ncrb+K5Gkifa96BN0Bjwz8cFatnmxFIfhs+AZIxLZxzUY1IMJoyLpFwVz2cilbgaBLu6yvc4kJNHjHWA5zNjbMyaU+3sMtD0GQcR5pf4HHIl23xzZO48HDLnHgTbJN1LoItSPbz3cSqBLH1mDdx7FabU5F1eAlVrGIaYx377+pJlTSqNAQ54n1vty2K+ueO/V4eZFwx9/Sb67gypoiagqdQ1a48Dhs+Gew1cSa5BuO+GhU6lUsyQ77FASlw08blwDdKNn4H+33XHQI7P0CCkP7GKO+c1WkscHHbYYQD6E8BVV12Fffv2TXW8r33ta7j99tuHvx977LFTHa9EiTYjZEgI8KUJBseUQLu6rn3gfpEB2IQZD2ZSRYFKKzvGgbxYcV/arPY9beMRnw2p+pWtrTzOOJAYD9rty8ClqCtNqbh3FoujoKmFMW4DxglNriuyYGYn8JLmvOR5KKUtzQbsgHC1n4XHiXQ9R+8/q8Ixdkxfroo3BnIrXdnVVSHJrJW18XZdSSONyKm2dD/T9BiYxByZLdc0Og/ImsqqzScr7r0EkvI4aOozArSQPCK+j3OqPf13keYzkE7eufOi6vm37PWSy/xiSIi6baf15cf/zgFNMxM3SglsaT4PMS/arrY2MWeOVZsT3gcu8Jwcg4RrkMu8Yc0BvsdBIHFFShzkeC0N/+biAwyD8qZjYMo1aRO5LjYDsUSLiYNHPepRqKp+NrDb7eKjH/3oVMd797vfPfx527ZtOO2006btYokSrUVMqshfpLOAc78PVtXWEvixFgDOraWKLCpdpeMOz58sjTA8bgS4dMcBQ986tmB3Fy4Ufe0AcCk+AwYeB2OguUHyzE1ejksVGT2DEWNOtteKv1iOg8bapqg+aBkHzDjJK7naz8LjRDZGDT8DjMRBqtqSWu2eCRiwGQehim8Lr6Mc0JJ7D9KVbn7ixg44t/C7SiVPvEIS5fP3x0Cc+QVwpXqyzJGZHgNixX+75sRtP4NSv7TexzH2d7x9AmifkInxwfupu5D9HmIl8qWxlFvxbQ3cM9ZkjarNJamclhkHllJFHvNLLXk42RwE6KzH/OSprTmyj4XEx4A+46BB8oy8HijRYuLg4IMPxqmnnjqkHL3+9a9Ht9ud6Fj/9m//hne9613DRMSTnvQkLCwsaHa3RAnTiC1WPcCEVHHvA4e1+MJgSBSIxqj3tM3WNg8dd/CycuUBWNc/rC9udP4RiQKLivOYOaqNTIkMXMr67hbVzutSLSZSRbH7b6QhGau0YVZZSm1bexzEEjeAINVEYZ3Iz4AoVaQt0SL63Iwm0Plz0Cx5HEiAJdDCOFwLJQ4Ykolu4lAC7nkMvJRMjvSZtmRXjHlnsUluyrxim0OnTNK15CkG4cllZQD3ms9CinkGcJOoKY8JwNrrJQDaeRIpnPZDoBVjPnQBt7qOV3y7fzIFbUljUDpOMHlBSKLneJyE/mZpTg3IY2PaPjSRSur/3fn3CsMg12eBxjpyDpM7B2n1YZoxwJgDmiaPpl2TNhmD0t+Kx4FutJY4AIBf/dVfHf78ta99Deeee27jY/zHf/wHfvInfxL79u0bgiovf/nL1fpYokQbEau0swBMAHnT7FaXAZaMg4FUEV+mpd+HEOPA6PoHQFMLfXkgPgYt5LJi9Mg2qo2Be1g3LZkjAxGDbAPQeNxjwsZnJAaasAG71GKVCVgCcdZZ/3eDZyAwBk2kwhKVhh5QZHD+acYBz+Mg1xSU7rVh6XEQSFqMBlNf3j0nUSZGmZbvRhPGQafSkScZjZQ5LzuBlPIZYUtH5iTwPGPcliv+Ne9BjjmtJeMiGzRWq3iflPEwffvSOcRYBxTgfBYZB4GKZ0ZByzRSQQyppHi1uZA4MARtAY7PhLusCtRQ0IqJJp0DAHufC39vPnXzSfa1G+7zOe0YmJpxUKSKVKPVxME555yDhz70oQD6XgfvfOc78cxnPhPf+ta3kv92ZWUF73znO/GIRzwC3/zmN4dsg6c85Sl47GMfy+56iRLUiBljWoC2Uh/WunK1tUW1MxCW6mFoK0t9GDIOjK7/QqDShUXHdCMGHLsLB0q1c6zanAjYDY8pJa+6skwLJXkW2TSyqzylY45WWlqA1kB8DHiAlfI8IHlcxH7XTiCmJBLY2vaAfF9Xez3Z54OcOAHirBfG5iAFGrq/q1a7Z25W2UnUkFSNz/wzSF4Kcy9TMmwyxoE28yk8Dix8PlJyXW4xiXYCKeUxYD4PS8C9m8gnAueSSTpzTZpjTuv7bjE9Hqw19vNAM0YCs4lMDyCAtiqgZTxxOPycVe0t7gXlPnDOP2/8AZx30TSgqYpcVqa/QLAPGvfA7UNQqoizHsv1GhFBa+Pkle8xoT8GpXfQaGi/kz3mb6T9IlXEj8U2G6+qCn/5l3+Jxz72sbjlllsAAB/72MfwsY99DKeddhoe8YhHAOgnFaqqwp/8yZ/gAx/4AL797W/j85//PO66667h3+q6xtFHH40//dM/bfOUSpRQiSb0dFbFvSdV0+vJiQMCcF9VFRY6lVhl7mnqGoGWq0HGgVXiQmZcaGurD6IRcMxIHkWAWwvQVJTLEqqtGf4KQJxx4D4DDNZJI9YTTS6siTmybaUpO4EYMuceVBSvGsh1iT4f3dp7/juVXoXnIFKAgYVkXMjjYXCuTMmu3CozOuNgUQaO3Or/pUX967/sXE83WdHvD28emMzjgM04sGb+xYH7VdckmywZ58/DtsyvHNYJ0xy5bY+Dfns1lkc+nwWvF9ZcnOtxwPAek4DvkEwL4Oubc6qN8xgfWokb6TrmGmTr6Lvng7Z+En/q5htVm7v5FJ1q93zQFrBh3tSBZ4A1D6WS54OQ8lmUexBlHOibIzdpH9Bfk+Zef6AkDiyi1cQBAJx44on4yEc+grPOOgs33njjMAlw6aWX4tJLLx1+r65rXHjhhWO/Axh+/6ijjsL/+3//D3v27DE/hxIltKNtmRjABwxW13reJhHgSBQA8BMHQ+DcBrQMbRjNGAeBBaPV+fuMk5hcloU5sK3HQUguy6v2JyVuYtquFgbh7oa5rvv3faFTeaA1yxzZvQZj8yC54rm5TA03cQD0E3bL9wC07gaOkTwKJ88sElcy42cQviwAfw4atNvBPckbokxLKHHtBns9IHkdSf2x8DoSjWmJwLGXPJekktheKxHgklVlPda+UEAy9rvH/OLOg67HANtvKVTAMf4Zb03mJ5BtpYKkOa1Nr5fcBKqWSXyuvrc3D6kY44bXgFK4gKqGbNmkiRutRL50nFypGB1998nNiVWqvTMTV1L7Gksi9/FPMQ7cPmiMwVzWg78m1hmD7lwSYh3JUlHTt5/zDhqEOzytPRakv0/bhyZyXVLfSuJAN1qVKhrE6aefjq9+9at4ylOeIr74Bv+5nwP9F+VTnvIUfOlLX8LJJ59s1ucSJZjhJw7WjVHdSdNMY79Xix4HrPZD5rx2Gv9yxb0FaC0dd/BCtDDGBSSZhlHGgQFwH6FHWngciObIglyXlTEwsL4wtpAqkoDYIevGwBwbCFea1HXtV9wrX4OUKR5TIgWQr2ksgcwxBw4kzwzk0kJJi0FI+u4WfRhtl2lU7wImllWWo+F7HPRQ1/5agJK8dIsXhPUH8/x90FqQKiKvB2LAqYlUUUQuDpDWAsqScU4iwk3eWDO/3Ge+rmuvD1SPgSypIl77gD/mmeuRNj0GmrTvvQtUQGuBcdBEqsZQX52VxGwi18ToQ45U2frf9N8FTRIXvkH4LFSbT92FfINuUkFbLnA+Cx4HjHmwqceBL5c0JeNgCrmu/r+fCah7w8TMXM1DDz0UH//4x/GFL3wBz3nOc7Bz507UdR38b8uWLXjGM56Biy++GB//+Mdx8MEHt30KJUqohVhtOQSujRgHAuvB3SSyZFqA8MvSXaCzGA+hase2GQd+4oglVZUvVWMhkRAzhbTyOFjt+qApCzQPVTsP+jHeByOPhyHrxYZxEPMZcYt7tK9BWt+eOw6WBQm4aLUxI3kW8vloyZh5LZo4sX0Guj0fMNR8F7nzbz5gpu31IV+DFQfAlcbr1G1ngKZ+tTfP40Bs37jifbRwwCSBnvB68TwO6F4zzjxMngdT7wFJ79laqsdjAGq2H5CrG/vdMHHRDTCvWIwDDzQLeizoS4jG5CqlcP+kU+2c9x5iJTHFxFUm+06jmKSROTEDtG0AmjLMsT3GQSJx4N4aDeDcLRwOyXWx1sRTeRwwxkADjX8VubJIEZ8U2v5j0yROAJ15sMR6tC5V5Mbpp5+OP//zP0dd1/j617+OK664Arfccgtuu+02bN26FXv37sWxxx6L0047DUtLS213t0QJSsgyFT0sLXTMgGup0kqSZtCgIua0P9RWNqh2B8Lankxa+thxAwt296XNkyoKL1YYRnBuxBbMJtrOAZq4zziwSVwBtmNQAkFX13rAJp/1YvYMBHxGAIIpZ2LD5gEF2owHYfytzADjoNurTRJHnU6FTjUOhowZw7Y0BwxAM9Hvh1ppnGkKqnwrQmsRn23B91mRGI+e1wWRceD6jAw+i/2baSMGnLZijpwAzrXXAv4YiIPW6oyHRMWxJBuhKlmWYL5JnzFN2gGBcUB8F+XqW1uBhtmMAw3QWthbxaRiOMDxZNXeatdfugaGclVNQFOKOfEUiQtrqSZAGIMqfRj/PeRPzVIDmHQO6lRKUk2Z7FPpb4wEZtMxMO3eqJHPSGEc0GPmEgeDqKoKD33oQ/HQhz607a6UKGEeIX1rwFLj310w+WABq9pfaj9U7cyTKvIr7ntipbMt48A7f5Y5c8xnw6DSMQaceawLwjNQVRUWO9XYQmS126NLgwxCuq3rz4BB4kaagwIG3TTWS2AOkEBba6kiuseBxDjohZ8Bhkm6LBfUs0scLXTGKttjyUsrg/LBPRATB4rV1pMDZtyKb6BviOsXEViA1hmMA2K196C90XP11yNc4Nw6gZ4CTj2TbOX1WMpngn0N3DnQfd5ExoGqVI+/DneDmcQTGQfuu7Drvov0zn9ymRIl0HBCmRKGKazUzmgwEom5+uqMpAWQLiAY75v+GGhmTKvffiOZFsL99/wFUowDhlxSJuOAtS/1PQ5sWTdTjQEVua481lHo79MzDib3GQE4MqbzHCUNU6LEDIa0CR9sGNhAwXof/GpfC7BgEH7F/T2AjScPYQPc901BJSqijUzLaqDa2opxMCaRYCCXFKv081gXhskbtinvIETGQaDa2UymxdBjAQjrO0sAonriwGnbrXb2q4uUAUOp0nNt9Bm0YRy4p7XWq83k0mLGrH7ihME4CLN+JMBQM5Hunnt2paf2OBSeqxVxLaA/BnxjZmtz5LDPy3r73Ocw6nFAvveAIJmV8DjQTxzExwA7ke9WS3qMA2FMWgPnzLlQloyzS6JnS+UQKp2BPMZHv1/6z0FTqSIXNFRhHHhSTZmgPdHnIgjcEsbANPrqOtX2+cC9i5mqMC4aeDwAHCaoex1zpYK0igonTR7qGbQ38LnwxqBG++Eivpw+TPs+aMQ4EJJHLFWMeY2SOChRYgZDrPYNAcc0qSIXOJOlilgRqjZ0K86szJHXur6mNUAErQP0RLY0wPpxZZmY/s/85IW7WBqvtm4neSbJdbESNzGPg7akiobPoAFoC/jPdrTamy1R4QFm3OcwBNgOwnsGjEy6+wbhRoyDyKbZHQKUxEnE40Aag7qJg1yPA+6zGGK+eNr2hPdwjPW23hfeWIwxP9fb5ybRYptmBlDlte8BR+Pnyx4HTRMH+oyDOGgirQk130Xue0BqzxK4l9pjAXb99vOAUxfPZpnzBvX1CdXO0n2M+ZJSgONM0I6ZxMyVi/LNkadvu4kxLCOJOZ1U0tTNe2MoVO0/7IObvGKwHkKMA9I86O4vg4kLM8ZBkzE4/SBoAtxLfZh2DDSR67KQb5z3KImDEiVmMGKgnUWlJZDLOOBNIaHFYlseA31jXG512WiEzDHNqn0jG3YLuZ4mHgdWPhdrhubIor76ADgny0OE2h+ARO79Z80DIfDeZR0BfKkiHzDiSgXFZHL6P7fDulkTWDe85HVsDhq//hTQNFJt65oDA8DSIhEsyfQ40H4OZK+Teoz9ArA8DuKgCVs6UGZdJUzSla9/rOLUYg5IAVds9pk7/lyPAybjRDqeJ1VEfhf5BRRC4oA4BlMm9VKfNMdhivExCBbjYGKpJIV7IAH/MY8DSWN92sgG7YmAnZ88yvT7IbA+mhjT6nhMuNXmEdDYwOOhKWiskUDykheZrB9rqSArn5VmHgfTt5/L+BmE9vsgR7Iy1DaDhTnv0arHwfXXX4/f/u3fHv7+S7/0SzjttNMaH+ef//mf8c53vnP4+5vf/GYcdNBBKn0sUaKNkBadK8aMAwk4X3HAgmVFTWc3QsC5m7xg+SxIFE2RcWBUcb7ucWAE2kUWzP4miQ9cj1KkLTwO+n3wx6CFTBAgb3yHzwCBFu9GCLiua7uK8xDrRAJR1SUyPJkcF7DiAmZVVWF5oTNW0TsK1jJNYUdjqdPB3RgH7BmyDFLENu1tmUNHWS9EbfFe3d8wu/MCXTJLOCdRqkgxaRJq2x13bCM8qXLc0/j33sfajIMwcOyZgVIYB/EEqj8OyB4HKakibeZXArhnv4tSjAepT5pjsHOPXN3oUPMZB3ZSSdmgsdI8mKvv7a0HCKakgH21rTf/hBgXROaPlzwKAIcMffdc5p/0N401ScqcfTQYPhO5MkHDvxPeSe6jFEzekfbGqTVX6PNWPA4YySuhgC4W/jw03VzYLHHCMcgusR6tJg7++I//GO95z3tQVRX27t2Lt7/97RMd5yEPeQg+8pGP4NZbbwUAPPjBD8Zv/MZvaHa1RAnTkCa7sMcBZ2JcXnQ3bDaGiIMIVVxaAbdStSsbqBg7buBl7YLGZubQY9XOBvriM+BxIIEWVubkADxzZsvkUVVVWFqoxq51WK6LNAYD1a4SXZuurb0WB6xYz8BKd6QPbTAOhE271TPg3oOu8CwMgmIMK1V8BiTjAG2JELnatIPK+4zVB6B/XTvVuDllv4jATeAvqLYLyFJxdV0PNWuluUgVtJQKODxzXm4SO0bTZ4Glo+FLdbiJE1uPg1S1uzrzK3n+5HkgAziky5V1xhPYlh4HuRXvLCZyLvOLYRAtHSKG2TGA49Tzz2x72IdJWR8aMjkNQEtPrklhDE5Xbc5gHDTTt1cxR3aTF4FLYAfc5xmEa72PG40Bbz1oL1Xkv5N1248/A+O/syRc5zlalSq66KKLhj+fffbZ2Lx580TH2bp1K84++2zUdX9T8f73v1+riyVKtBKDatPRGBqDtsg4sALtgXClhRVoJb2s2EBF7LhB0Jh1/i5oPmrMagBch8yxAbvkmUSRZOr5uiGNgbr2Tbp5UkF5yTMrc+ThM+As3KuKoG2dqDS0SF7FkhdsqaRBSJsGP3FowziIyaUx5oDOPaD5aMSYb5ombKK2uABS2iSw0msBBuNAlAoaTSALG3i2x4FXbU2W6mniccC4927ltMu8cqWD1D0OFv3k0WgwdM1HIwUaseUrc0Aja7ks7xoQ2W8x5uloeJXOJI+DEGjG8DyqqqoZcO38ydIcmCkhm5s8YshV+fvQMHDOkElpAtoyGCe51fbrf3f+vcIwyPVZYO2L/GdQ/h7D3wGQWGcNGAcEc+TUGPANsqdlHDRh/Th7kyJVpB6tJQ6uvfZaXHHFFcPfn/WsZ011vGc/+9nDn7/61a/i5ptvnup4JUq0He7CK6QvbuZxIMi0aNPSRyMkU+FuXO3MgX3AFrDTuA95PGibwg6PG5GJ8Kss+VI5o+PeymtDlCpyZVqIVEhRX95QLkvSt5YkWqxYL0PWjauvTngGlgPz7yAsgPsYTb2tBHL/PeBef5vEnbW+e78PMuvhgOczogzWiaB5WqaEsR5wweDVro05suivMJo8EjbQmucv3VNPqofsORST6zJh3SQqrr1iEnWpoPg8zJTpAdIa55LHAzOBmGUQrp5Ej4OXXMZBrkm8bpXr+nHyQDPWesAzhm1QbaxxG3LPn8s4yNNYZ4wB7/wbmRNrVNs75x5p30scKdyCJtXeAFAzzJEnfgZZFf+2cmmuV0cT1onG+9ArHoiMQUAC76drvxnjwAYfm+doLXHwta99bfjz0tISHvGIR0x1vEc84hFYWloC0J+4vvrVr051vKbx2c9+Fs9//vNx0kknYceOHdi9ezdOPvlknHvuubjsssuobd944434gz/4A5x55pk48sgjsXXrVmzevBmHH344nvjEJ+L888/HVVddRe1DCf2QgGvAp8pbGZOurPW8F4YLrmmGX/FrZwwLCNWuvR4dqIgdd51xYKPvL8lEDKJtU0a/usuq2tpWqkgaA1K1iVnySJBq6rdvxPgYVHsbeFyktL3ZHgf9Y7rGoPasG2nTxNYVH0Ss2tmvarJN4NK13SWpIuecJXNgStW5txaQZAsJPjfCuIq9hwBd4Fiq+E2ZA+szn8KbZrZMFZDW2LaWKvIk4wgSMaORqvh1z9/anBmQ1oTaPhvx5InvOUX0eAjJhJAYBxN7HCi9Ez1994g5sgvasjT+3XYGn4//O8XEQabOv78m0pBpya929kFbhevfwOOAkrhokLgCOCbZXh8CzwCLBdy2OfKkUkn9Pkzfvi/X11CuaspOTCPXVTwO9KO1xMEAyK6qCve73/2wvLw81fE2bdqE+93vfsPfv/Od70x1vNy44447cM455+Dxj3883v3ud+Pf/u3fcOedd+L222/HN77xDfzRH/0RTj31VLzsZS/D6uqqevt/+Id/iPvd7354xStegU984hO49tprsX//fhw4cADXX389PvOZz+B1r3sdTjzxRLziFa+g9KEEJySZkNH/h77Han+tJ8gTEGVavA3rUKrJSuN/vP26Bla6Xe97lpW+dS3oixuBtrFKT0riIFJl4W6UWawTHzy2AcyG7QsLJrY8R+y4q8H2jcxxA3JdFqClD5bwgetYH+wq7tOsE5ZkXaza2aLSXjruYNPEngdkY2ZnDAobaE7iQFoL8J9B6ZgxuSpAfy6MbdotZOOaSPa1Yo5MZt74UkUJxoG6TE+82tP9XTuJn2OOymcchMcgu/1c0Ii1Ls73OGCBhpNXG2swX6TzkLrAkMkJHStY8U1InOTKJPX7xWAc5IO2jOSZ134kcQVwqu7dcRwyaGatyT2PhZbbz/X4AJR8Tho8A4D+GJjKHLokDtSjNXPkH/7wh8Ofd+/erXLM+9znPsOfb7/9dpVjxmJtbQ1nnXUWPv3pTw8/27lzJx784AdjZWUFl19+Ofbv34+6rvGWt7wFN910E9773veqtf/KV74Sb3rTm8Y+O+KII3DCCSegqipcddVVuPrqqwEA3W4Xf/AHf4CrrroKf/EXf6FKpS3BCa/KL5A4WCbJBUka95agqU9RHpy/u1GzAe4B4O5Vrp5t6ri92tAc2b3+oxX/BhXHscWCL49gkzySNP6ZVEgJtJAq/q1YJyHGgVnF+T333SJx5MqkpCUy+IBtVOPf0OuFDdYNIgaaMaoLpQhV20oeB7rtpj0OZKNym3HorwUI7SaugVR5p33+SwudMVkq68RFDDQwMUdObNrZiZMY8xHgApb99lOMA3biIg2asJPYqTHAbD9X35tR6Sy2HwTtOGtS9zRC+u79v43/zjDHBfrnutBZGPvMdAwYArd+8UbM40Bfrmoq0JSROEnI1HjJC5XkyfjvoVvAWpPn3gPWu2jS9vv/Vp91k/a50L0PTZJnhXHAj9YYBwNZIQDYt2+fyjH3798//Fmi0mnH7/zO74wlDV71qlfhuuuuw+c//3l86UtfwjXXXIMXvvCFw7+/733vwzve8Q6Vtv/xH/9xLGlw//vfH5/5zGdw7bXX4uKLL8ZnPvMZ/Pu//zu++MUv4uEPf/jwe3/1V3+lmrwowYuQVJGVTIuna2xUZTg8dqja2NWYZ8nUCBvAu1fHGQcLHV0927H2Awt2K8aBa3a52usN51ULffdYpRfbkHEQ0oKNoSEZCve01nq1uHGxkipa7foyNYBdtfugbS9xRTh/r9LXkygx8DiI6Fu36XHgSWOwQPvAOxCwkWkBwhXHK67PRgseB9KzqKktPQi3OGFlrfYkExkFDJLh8tgzYCAd6CePw6wfgFDtHQFu2KC51H6q4l+7D64cZpJxQJcKipsj68sE+fOPu79lr8tT7DvmmtSXyQiAZqRK05hU2GiwxmET4Nb3GdBvHwjIZRHngRTrJ/Q5I3ES95iI/9tJYhqZFgbjIZa4EvtAGIOhPrAk03INohnG0EATjwdhPahwCSTWcSy0k7jTyHUVxoF+tJY4OPjggwH0Af7vf//7Kse89tprhz/v3btX5ZihuOaaa3DBBRcMf3/Vq16F1772tdi6devwsz179uBd73oXzj777OFnv/u7v6uSKPmjP/qj4c+7du3Cpz/9aTz+8Y/3vveIRzwCn/rUp3DMMccMP3vb2942dfsl+CFVOwO+KSPLZ0B6WfhgAbPaOlDp6QA2VtXWgM844FabC8CRYNBsZQxc1yM+Cx49n1HlGl4smEkVicawNm1L7Xd7vikpwDMpzzZHNqr2Xh3OARYeB3HAyqKyxUvejRmjWoH3fgLPwt8BkKptIzItRgncoMcBWVcc8M/ZyihdWouYeBwIYzqWPAv9m6n6EEleWRjFx4BTtr8CEJcM7PeBOw/FWFeAL5vIrrZPeVxor4Wk59mXS2L7PPjrkNFgVFqvt51ZbU6QqQEE5nMANLOSSoozDvRBs5TPzLBt4vs4m3VCWJM18zgYfw5Urn8DxoE7NKzbBwC3GFxjLnLHUugZaJtxwGM9TeazotWHJhX/gP66JDdxCNgVVM1ztJY4uO997zv8+Qc/+MHUBsKXXXYZbr311uHvhx9++FTHS8UFF1yAAwcOAACOPvponHfeedHvDhIKN9xwA9797ndP3f7nPve54c/nnHMOjjjiiOB3d+3ahV/91V8d/v7lL38ZKysrU/ehBDdmzuPACCwItj+sNjZiHAgvnANr3eR31NoXFuxu4gbgJS8kMDCkMc/og79hk+UiAJ5UkQiaetIETMaBu2CTN028in9fLkxanNp5TPSG/RhvX/8e+IyrOGjLkesKPwNWJt3Spsni+QfCPjfuzwCTcSAnL9pIHLhjTjTDo8jVSFJFfNaXNK+MJ88kxoVyH1zgOJK8kr4/bcRACwvGQYxxARjI5CSkinygQNtrJA5asNciOfOA+26yHIOAANgqvotyQSMa4yCSvB7/nFPQ06ji3EDjPtSHWfC5YFQbN/E4YKxJmoCmfvJs6ua9axjS9w/1gXEPcn1O9DwGxu9B2OOAk0DNPX/ZHHn6axBSfwiF9rqkSfLKb7s1mHvDRmtX9NGPfjSWl5eHMh/TSvi8/e1vH/68sLCAxzzmMVMdLxUf/OAHhz8///nPj5o7H3TQQXj2s58t/ttJ46abbhr+fPLJJye/P/qduq5x8803T92HEtwIabt6gAWp2jhH15gr0+KDtv3/G1XczyDj4O4135yZBdrGjCm9KkNjjwMzqSLJHNkFrZnJI6HSQ9q48uTK0owDS7muoVSRNwfwGQfumLcwR/aSFzGPAyPgXDLotmI9jY59b4NgxLwLehwov4dDjLOx30kbRTckg1o3ic1Yh1RVFZXK8ROI+nORB1yP+R1IjA874NrCbyfkNRXqg/Zc7L6DXMZd2/r+fHPmdOLAZ11w56LUPKQJGvugVR5wr1ZtnCtVJKyLNMJNBMfMaT2PA4W5UPSZEe4Bg+0wiDZZJ9L9D0lhMxK5bXsctG2MKx0j9Ay0zjjw2BYqzU+cvAS0DMLzWFehfkzPOMhPnvrJo6maLiFEa5d069ateOxjH4u67k/C7373u/HZz352omNdfPHFeM973oOq6m8aHvWoR2HXrl3KPV6PK6+8Et/97neHv5955pnJf/PUpz51+PPFF1+MO++8c6o+bN++ffhzDntgwI4A+psx5vUpoRMhqQy2KeMgpEozr8qQKFUU1Dc3AK0BedHhehxQGQeZ5sxW1fbASPLKQC4ptmGzkiqSqk2tqq0Bf/PVl0oab7+qeH3wqz3tPDb67bvX/x7Gi4FMT0oig13pCsSlisw8DjIMsnn+CrHzd4AaUvIqtGlhJy8l0Nw9Z5YZnhs+eOsnEFmSiY0MwilSPWHQQNrA86VyIudPeAZirB+An7xoOg/rMx785H2sPwxzbjfcRAE7eRFi/w77w9S3zwTuWX1ISVUNgpVA8/TVG3gcaEwHUkJeugdM6cZcqRQLjX+pnUEw5qImMjGM5E1TxgGjD24xgHXFf67HgdsvNbk0dw4MzAE0c+QGHgOAcB2UGQex5J0/B5TMgXa0ekVf9rKXAehPCt1uF2eddRY++clPNjrGJz/5SfzkT/4keiPGnb/xG7+h3tfR+OpXvzr8edOmTWPmw6F49KMfPfx5bW0Nl19++VR9OO2004Y/5yRcLr744uHPD3vYw7Bt27ap2i/BD0kqCPDlahimhEBInsBOqiiob+5pyhqaI6+55sh2jAvAl0oCeBXvYqXRIHnlVptS9K3DgEV7UkWCObLhM9AVZGJY419qv++xYTkHyNrKFoyDlEQHq8JwNKQ5eBBWC+Qsg3Cj52+0XSvGhft8DSXzvIp7RrV3fMMqbeAYw8ADb9d8rxUe8y8G3POTdzHWj1R5p26SHRkDLHmW0YjpK9e1MBdYexzQ9f3jiRP2+cuMg4RBs/I1CLF/13/ngca51b4eYEnyOAiDxkYyJQ08DhgV74A87zHfx7nAJaMPMuPCrv2UMXm0/RlgHOjIZY3/HuoCK3mXW/HPkGmS288bf/0+6Lef9DhQHodNknfuPSgeB/rRauLgqU99Ks444wzUdY2qqnD77bfjzDPPxC/8wi/gX/7lX6L/9l/+5V/wvOc9D2eeeSZuv/12AP0ExGMe8xicddZZ1H5fccUVw5+POuooLC0tJf/NUUcdNSZndOWVV07Vhxe/+MXDnz/wgQ/gU5/6VPC7X/nKV/DOd75z+PsgYVNitsPdsA4qHN1KR55Ujb9gMU0cCPrqo/9f/54dcO5W/HMZBxLjwY5xIElPDCq+TYwxA/e/3z6f8SD2QUye8cZAjkwMa/wDflJS0jZnth9OHvITRzGZnP7v/AVqrNLTinEgjkFyle3wuIHk+aAfFn0IAbc25sDx5JVUeWbBvlnr2RUReMD9Whi4N2EcRFg/AAM4b5I4sTj/uMeDOuPAfQetJart1UHzeLW9L53JTVxIfWAnUWNjsP+7A5orzgW5wD3rGvjnHpAJIa2LPHPkwPnXde0BqpYeBwzAeL0Pk/lcqFT8ZzIupM91PA7yqt2lv6mcf6Yx8frfnX+vMBVM6nGh53HgPoPy91gMwEnPX/q3Gu03lquaci6U1lS5BtEsJvI8x2LbHbjooovwyEc+Et///vdRVRV6vR7e97734X3vex8OOeQQnHrqqTjkkEOwfft23Hnnnbjxxhvx5S9/GTfeeCMADJMOdV3jqKOOwl/+5V/S+/zv//7vw5+PPvrorH/T6XRw3/veF1dddRUA4Hvf+95UffiJn/gJnHvuuXjrW9+KXq+Hpz3tafj1X/91/MzP/AxOPPFEVFWFq666Cn/913+NN77xjdi3bx8A4BWveAV+5md+ZqI2/+M//qPR96+77rqJ2inRj6BUkUG1t3Tc1Z4PGlLNkQMvK6vz73QqdKrxhZArVWTucbDqMw5oMjXCcQfX3jfGtK229UAro2sgGcMyfT7y2rcD7s3PP2SObHANUoAV0xBy2AdXImZtFLSz8VuRvHbaMmYelUiz0HcHwtWOFsB5asMoVZ+aMA4E2UIrxsH4GOAnsGIJRLfymtGHGGjG1BUfRFwujM+48Hx2nHvetseBn8jXfQ6k46WSF+aMA2LyJsX4GIQVaBhqn3UNcvXdpY81hmIuaGc6BgylgnIZFwDHnLlJxb87BqzNoQGBBacA3LrHCCUvWPNgNuOAJpcWT16H2tfqQ+4cHOrH1IyDBsk7RvKwxHi0njg47LDD8LGPfQxnnXUWvve97w21zOq6xg033ICPf/zj3r8ZSBINPA3qusZxxx2HD3/4wzjssMPofb7jjjuGPzfxCti5c6d4jEnjf/2v/4UTTjgBv/d7v4ebbroJb3jDG/CGN7xB/O5JJ52E3/7t38Y555wzcXtHHXXUxP+2RPMISRWxTRkHIembu/IELF1jQDLkuef8SXREKRYXOmNg3QHX44DYtgTE7BcSB5bmyGs9eQxaV9taGYRLCzbfGJY3BiRtTd/fwQ64X13zzZmZiYtQpaPFHCj5W0h9GYRVpXe4fauK+55ACbd5/tqQKgppDFsYtMfu/2hfRoMi1+PIMK2s9bwEPsvvSJJJGkQrybux95ALkuiD9zHQwoJ1474DYubMgL3HAfsapDTG2aC9dDzf44CbvGjV4yC32pZgjAs0AK09Fh5Jqijz/AFfG36SkG6l1AembFqbYyBHKmz9cwbjII9tAUjnP3XzjRgPYh8MWRcsubBcjwOr5GWTOUDlGYisAcR+KD8HOay70OclcaAfM+Ea8ZCHPASXXXYZfuqnfgrAOosg9NIbTRhUVYWzzz4b//Iv/4IHPehBJv296667hj9v3rw5+99t2bJFPMY08ZKXvAR/9Vd/hQc84AHB7xx66KE499xz8axnPUulzRI2EZIqspIIEKWKjKr9xfbveSGwFuhiH5yXzoE1d2FCBI2FQ7uJC4B3/gv3MC5GIyQVwwDuY4CFVbWrr3MvGMMaSvX0ExeGrB+h2tfy/EPVfjYSHQlTTguPg4jPghVwLrJOjJJH0vM3iDbP3+0LwEkgpqpdhYJ38b0xbUjgrZXHQbPkmUHyJiaXZcw6MTFHjiUuDKSy/OR1CrTWbj/+DLLX49K8lk5ikxkHhnJNudW+7sesat9cY1ytdZFbbR2stCWBhlVVZd0DS8aB+8wNguIxkCnVBHCqnZswDjj+As0SBwyD4FzGAauQYFKfFZZBey7jQasPsTWA2A/l69DI48CIiT3P0TrjYBC7du3ChRdeiNe85jW44IIL8Pd///f4zne+E/z+iSeeiDPPPBPnnnsuTjjhBMOeAqurq8OfFxfzL+Hod1dWVqbux9VXX40XvOAFY4bSRx55JI477jjUdY3vfve7uPbaa3HDDTfgV37lV/Df//t/x4UXXogf/dEfnai9a665ptH3r7vuujET5xLNIiRV5ILXjEpHwN8ArUj67qRKb0AGTbo9X8eTVekIDDat62C9KxXErLYeLNhHFynuvWf3wWVcDOWyDIB7X6bE78d6+yTQUAANWFUtUkj6tm7yzpL1stb1GQdt+Jz414ABGMYBIxZQMBpNjFlpckHeGLCTy4oB5+0xDvrtrrRgEO+bI/ubJI0qU78fktdJOwUMoxX/LnDNSd75438QHvvMQCpoLZI4YEgVudd0XKrIX4+w9fW9BC55Hk4Bx/z206CJ/y5QTp4krgEzeZMrlcJ6FnKNeWkyKQvxd8AgJCxPzyC6is47AFc2rU2N+xypsNDnDMZDzJiWwfqYlnGg0Yfc5BlNLmzC8af5/E3Wvg7rqLHHgfK6TGYchJIn6X9bYrqYmcTBIB7wgAfg7W9/OwDg+uuvx3e+8x3ceuutuOOOO7Bjxw4cdNBBOOGEE3DooYe21setW7cOf7777ruz/93od7dt2zZVH773ve/hcY97HK699loAwGMf+1hccMEFOPXUU8e+98UvfhEveclLcMkll+D73/8+zjzzTHz605/G6aef3rjNI488cqo+l2gWuVJFZpV+hrrGgFxxLlWaWGrMu+bETNC4f/zxBbubuGBII4zGUqfCaIpzcP8tJKsaeRwYSaWs9XzGActfQW7fT1xQn0ERMLQBjaVjD6u9DeTKJF330bCRCWlScc96BgTWi4E5NTAb5tD+M9Ae6yol08JKnrjJ+btXe0IC32gOHk2eGTBfYpJlFubMUcZBbTEH5TMuAIbHgV/AMhrsZyBdbc8dg1VVYaFTjUtEpZLYZLkkP3nDuwYpxscgWFJFKX+HYfsk9tM0jAOtJcFip8KBkd/dtZDUL2uPA8k02ppxwKh4b6IvbyHV1FSmRqcP47+HumDlMZAtlWWcvKSdf+YcPOzHDDEOmPjIvMbMJQ5G47DDDjPxLGga27dvH/68f//+7H83MCh2jzFJ/NzP/dwwafC4xz0On/rUp7C0tOR975GPfCQuvvhiPPGJT8TnP/957N+/H7/wC7+Af/3Xf0WHDHqWmC5CwJUP3ttUW8vyBHag4WrX19YGyFIxzrHvXrNjHAyOP7pgdxMXLMBuEEuLHWBl/ZxDySvriu/2pIpqocKQdw98bU1b4F4+f7sxGNo0WciVpbS125FJsQfOpYo3C215QLr/6/eAqak8GqGKP89ng8E4SGwYLaRqAH8c3rWy5n2Hxnx0TcrHEgcWjANnDhyRyrHwm4lt2i0YByHJSPfnQVh7HFiD5u77z+I94CYO/Ip/rjyDa06ZYl3oehxkgnY00DAPOPVNsknVxiGZFilxYFjxzHwX5YwB1lwkSoVlSyVNPxc0qfZ2/0TxFwiMv2EfCM+h+16TkkSAsC9VYxyM/x6cg0iFBO551HX/GqS8F6wTJ4PQfh+IPiPGJvUl1qMgxxPEnj17hj9fd9112f/u+uuvF4/RND7/+c/jc5/73PD3t771rWLSYBDLy8t461vfOvz9iiuuGJM3KjGb4VP0bc2RfZkMa2NW/6UoVfuwAAvAf2G6Ff9s/Tz3+G77zGp3oEG1LUXbOaxtbSVVJG1YrNoGMvXlDZ/BNSFxwTz/UMW5hTmvD9jZV3tLcnHr7dtoeUrJI4/xwfJZaQBa8hgHch9W1vjPgXtdrY1hh/1wxuG+A77XDi15G5HKsXgGQ3Jp/Z/5CbTYe9AicSSx3oY/G3gcpJlfToWh8jXwQHO32t9AMi4m2yj1QXsuij2DUvvcanM7fft++3Fj6EHbLp6qdQ/cZzoEmtbCZdG6BjGfmUEwk5g5Vfcsj4dpGAcq7WdKVQGcYooQaB0KhlSRex2DyTP3+iutSfx3sDXrKU8uy8og3n3/eP0wSBxY+oyUGI+SOJggRo2Ir7766qx/c9ddd+HWW28Vj9E0RkH/o446Cqecckry3zz84Q8fkxr6x3/8x4nbL2ETuVJFLOBcqvg3lSryXla1x3gAuMCpu/j3Kv7ZwL1zbq7HAZ1x4JnjDjTm+aBZrNKrLX1t0RyZOAZEj4M2gXtDfXsgLBNgkbzxQdv1867r2qTqPsa6aY9x4CdwaUmLyIbNTKopABxazEEpiri/UW6PccCah2IV5z5gqn8PpAKKYfueRAvf5yL+DPAZF32QdJDA5XscuDJZ3V49Bg6w30exOQgQfC5a8TrhzoV+AYVdEj1XKsUHjJTaTxQQAKHnQAu0zDt/CUzVyqHl9IG5HvEZL2lzZunfTRIDqbBUW/3P9ddFklxqKDzQXuEWSInYGOvAfTws5ZJYYzCXdcQCrXOTV6zkXRO5KmlvNL3HwRQ+IyVxoB4lcTBBPPCBDxz+fNNNN2WxDr7yla8Ej9E0BhJFQD9xkBuj3x1lP5SYzfClgvoTogseswyK3eOuiYaIzGprf7MiVrhRpYpmnHFAPPf+8WWpFBOZjshi3SqB5etrC+bIllI9PVvgXqp4t2Q8hGQyfKksAmjvAFarkUpjgATaRSrOrfTtRZ+NluTyYvrqrKkwVHFqkziIgwZWUkWuh82+FYFxwPI4aCDVw3kGw2PQk40zTqC3cf7A+jMgAQj6UkH+uFqNsS6U70EKNLF4H8cMuqU+qSdPAnuRYX+IDMCYVNZo+KApB7ST2peZNxzQLnT+rIp7INNjgGiOnNO+NBexfC6ktuq69qSCGB4HTRgHOowL/1mO9oGQvHANfqWxLvXL3ByZ9AyIUj0ZrB+t849JprohXZpp+yH9c2vJuhLrURIHE8Rpp52G5eXl4e+jskGhGP3OkUceieOOO27i9kfbntRjYdTgucRshl/pZmyOLFTc+qa4djIpq0K1M70PzkvHr/gnMw68xIFNpe+w/YA5q+91YVtt62ncWwGXPd9ngykXJWlYtu0xYJm4CFVb+X1gJK7Gj1nX64tS0RSU0AdXhm41yjiwYZ6tGSaPGlVbk/oQ2jRaSAb6rD8HMCSZ8bnhMQ4O2HkcxMxxPV1xE6mi8Bi0MEgfS5wY3H/p3T70mnErHCt9nwUpIbUauQbqiYsEcO2vRTgeB+N9GG+TnUhPAWdM2bz2PQ4m09fXugeevnsANJXkY9Q8DhJyXQDbHDl9D1jmyP32J0tcaFz/Jh4HjIpzaVkZ91nQ74Mv1yV/jyUbl8844RSz5DIOWIyH1Psn1a9p2VdVVU0sWVc8DvSDYo782te+1vvs/PPPz/qeVkjtacWOHTvwxCc+EZ/4xCcAAP/3//5fPOc5z4n+m/e///3Dn5/5zGdO1f4RRxwx/Pnyyy/Hvn37komAffv24corrxSPUWI2I0TRd8EDnimhX3G74rIdDP0F1gRz5v737CqufcYBN/fqMQ48c2ayVFGg4tmrOKaAZuFq2xWrZyAjeWUK3BtLFUkVz5aJC18mYADa8q+BdMzVbg8LnQUaLd4NSS5uEFaVNZIxphUd2K+0HWV92MjGBT0ODOagWLX7aF8GYXUfRMYBK3kUTSDzK/5DXlNAO14/5owDaR7s9bAFCyYJXHEeXusBm/o/syXLQnJ5w98NgAq3OCFpkq7OOIgzn5jXIAe0BYiJg0DxzFifxH2Jzjj0K87l70mXRSuJl+vzMNa2IvstlbwLfUYDTkW5Kg7rJCSVKIXbhTYYB4zn0DMnDiTPfKkollyY/BD6wD2nfSDvGWCxrprcf0BPripWtDGIIlXED0ri4DWveY1HLZKAfOl7WsFMHADA8573vGHi4KMf/Sguu+wyPOxhDxO/++EPfxhf//rXh7///M///FRtn3HGGcOfDxw4gHe+85146UtfGv03b3/723HgwIHh749//OOn6kMJfkgV992erx/nasCqtS9U3LoV7yx5AkDW1rXQ1I0d22McsCv+25YqWnQXzHK1LaMfsSo3K9ZN2+bIsseBXfLOlShZ7QqJC2biLuAz4M4DjGsgHXO128PmpQVx80YBjAKAjZXHAtBu8irKOCBskqUIbRpXvSS6xf13AMOuzSbJPbd9jsdBp7JjO4zOf24hw/Lignr7UgHD+s/8Z7AR64bwDIigRWAeZowBKSG3Gkne6EslNQPtKQbZCfCQvSbwgVOXdcGbhyaVCWGBxjna4oDeOHTBv6BMi/C51m2Y5BpYj4FZk2oCtEDzdNIm1AcW46CRQbPCPfBYN5mgsbXHgefvoDQNixr/EuuHxL5rxHqRngMlya4DI7/nSraVxIF+0KWK6oiJyr25vec85zk4+eSTAQDdbhfPfe5zRa+DK664Ar/4i784/P3pT386Tj/9dPGY73nPe1BV1fC/z3zmM+L3Hv3oR4+ZK//Wb/0WPvrRjwb7+qEPfQi/8zu/M/z95JNPxiMf+cjo+ZVoPySpIqnahQUcShu2/Q5gwPU4SFd7Ly1UtOTj4Pij0bbHgbU5cqjq30KySkqcDU0ZjaSKRHNkI4mY/rH9BZt37sz2hTnIAiwbRAi0tWB9SOc1TJwZJTC98XePKblMB7ZJIK/1el7FlZ1M0ihoaiPbFqp29MA6BusqUWnJlmkZhCvDdNeBbvTvmuElDsaYZ+57iPAMBpLnAK/CcfyY4WpHi02yJME2OG8bg3i//XHWB7cPSY8DC7mqhEEqm3EgFfHEftd8H6RYV0B/3+9u/bVA45Q5NgCsEqWK3OEf0he3leqx01eX289kHCjdA3d9mStXpWOOPHm1t8ayuDHjgPBOcp/lEOOANQ9mG7SzkpfSXkR4Br2kjRrrKt/jQCqqatMgm1VQNM9BYRwA+QC+dWJBKzqdDt71rnfhCU94Ag4cOIArrrgCD3vYw3DuuefikY98JFZXV/HZz34W//t//2/88Ic/BADs2bMHF1xwwdRtLyws4H/+z/+JZzzjGej1ejhw4ACe+cxn4hnPeAZ+8id/EscddxzqusZ3v/tdfOADH8DHPvax4b9dXFzEBRdcgA5Z4qTE9CFV2klSPVYSAQCwz6t4twMtuz3fY4HZPuAvmtzEAZ9xMN7+AeP2fZmGEOOAL1UE9Km4C5WdXJdsDGvncyEtlkyligTgtlVz5HvO3ZsHjCtdrTwOJHNqgEeLlyLH54JnjhwGzKwSWKFq2zbmQHfuYWgaS+Ge237DdUAoeQZIjAPCM+iynkauuYXfTQw0Y1Z6D9uPJFBNZHoiHgv9n7nPocT6qet6WLDClkoC0sAp+z54RTxe+0yPg8kq/lnGpKJMj8hAJMmkhDwORMYB6RpkVDtrvotypILExIkh44DFQm2kL08wCJeuYZxxkP73TcM9jyBoTFqX5lbcs+S6cj0OWDI9uf4Cob+pJNAykxc+C7dgndpBSRx8+tOfVv3erMajHvUovO9978PP/dzP4cCBA7jhhhtw3nnnid/dtWsXPvCBD+D4449XafupT30q/viP/xgvfvGLsbKygrqu8ZGPfAQf+chHgv9my5YteNe73oUnPelJKn0owQ2p4tqVRwCI5sjCcd21KdfjwN2sCNXObODeYxzYmhN7HgerdqA1EAau2FV+/bb9Y652e+hUHQ84NjNH7vb8czeUyrL2GJCSl5ZSRSFjUgtDSumYA8DEzOMgAJxbMg48n4le7TEuWIvzmDmwR8snVRaF9J0tPA4kj5XRsDKCS73nWYlbIJ48MkneCO+A9Z/578EYcGrBOIjJJPiJCyOPgwjjQDuJKV3TQQEDYJM8ac560L0PvjntCOulV3va6pr3IEdfn5lIl9gWo4kjQGYg6jEOxs8/JNMiehwYapxb+lzkJo94FecC44IkVeSee6/ujwEpMcOQCZLWtaHklfQ3jako1yCclcSdtNqdJRUktQXYmSM3YZxo9WNSyTo2RjKPQUkc5OrnbwSd/ec85zl44AMfiJe85CW4+OKLPQbFwsICnva0p+Gtb30rjjnmGNW2X/CCF+C0007Da1/7WvzN3/wN1tbWxO8tLS3hWc96Fs4//3w88IEPVO1DCV54lU4CaAfwZAJyFv+W1c5dodqbzTjwzJE9c2LrxIWxOfKiOwYDPhsUU0i5ykKs9jY0R/blGZjJM3fDLlTVEMegVG1pAdoPjx2odPEqfa0SV/ckbu08DuRqaxkoIT0DIuvGZnEekwiwAOyAiMeBCWjdTKKElTxJPV9cn5UGHgcGXidxfX0L1sn6PW/THBnwxyPjGayqCoudcWPEmEG1PmguJy4WOn0/DQvJtJhBuIXfTSyBywKKQsfK1bdnV/uOXmOmx4F7K3NlWgCex0EOaKn5LsrR+WeaI8fG/yBYiQtxH1TX6CBdhc6QCQLiBs2cPoz/Hip4Z72PvH1YiPXDkgrKZBx4MlFacm0Jr61UvxgJtBDrwWpNPM9Bkyqap3jIQx6CT3/607jqqqtwySWX4Nprr8XCwgKOPPJInHHGGTjssMOyjvO85z0Pz3ve8xq3/Zd/+Zf44Q9/iC9+8Yv41re+hdtuuw0AcJ/73AcnnngiTjvtNGzfvr3hWZVoO9xN8ErXN0aVvqcVOYAgt9LQ3yy5FGm+VNF4HzwdVTJwn/I4oJsjO+2vGPpsiBIFvRodKXlmJlXkV/wzgXsJtLRge4SOLXk8UJOHAZ8LC9BWHn/3gMZmHgeyvrsp40AYg75Ei1Xibv26W4CmQAOPA4a+e0IiwkuekJ7F1Pzq+gBoRgy0sfCZiLE+LK6/P/5GGA8Ger4x0MLKoH1poYO13nrRROwesI2BASeBacBAjHkcMEHr4fEiCVy5fUWPA2H+dSv+me9DkXHTqzHqw+7OQwsdPe81F3zM1Vcf9EMj/Puf4XGgOBd4kpXZySOd9ieVy9IBTGWPgaUF/7tuF5iJCylYclG5cl0sqR73lVIHWB8s4L6qKix0quh7B7DzeKjrflupd+MgGJJd1qyPEutREgeKceyxx+LYY49tpe2dO3fix37sx/BjP/ZjrbRfQj8kirwLHAM84C6PcWBXbb3W63lSTWwaWur86B4DSY8FcuJESt5IiQMCYCPSM7s9SGsxWsWzUGnlA/e8eyBVerXpMbAqeBww5bpCPhdWEiGdanwzNrj3FmANEK52lqptaB4H0hgwkgqLVTqaJQ4CGxa32t1iDnTnHp+a3k4RAdXjYFF+BgDJHNmg4j8C2nIYB+NjYFSqwpPrMqr4X5+HbDbpSwsV9q+u/x5jfWivh0PA8SAsfEaiPhcG7DM/eRe+/oCubF8InBp950jFp1xjUieBS0weecawDRIHWsmLLI1/KuPAL15wQ/J70Tr/nIprVgItZ/wNgiHfKD9/gWpvKXmj8Cx4UkUhmRrScyitq9Z6NZYT/dJmXqUStqw1sXQd13rrrLtYH7T6kTMHAdx7UKIfxTWiRIkZDVlffPyFXVW8iTGnipQBlgwix5iVzThIXVuGrnmsfdeU0jpxsib4TPS/xwBN5Q2jpc+HZMg0c+bIllJFXclnxG4OAOR5kFXx7t7/IWBG3KSOty9XnIuLc1ryzK82tfKakdqWfgaYjAsZNHDHIAW0TlR6+hXn6l0AkJ7fmczDGOvCLaSgmCNHGAcWrJNYxafVcxgyR7UwZwb8+zq6BvCTyMqgeWAdMmzfIHkSq7a08NuRdP6ln4ffV7wG0rvdPWcRsGRKFaWYX4rnH7v2sc/NDaqJfis5UkGe34t14kKSilKYinLG33q/3MTB9O1LxxByhWL7/X+vkLxwk2eZjAOtd4F0D6REHdMgPEeqh2aOnHgHpj639DiwLGyb1yiJgxIlZjSkDask0cEArID+Sy816XJlSjKMWdnmwInjt23OTGc8eHJZslSRlceBVPEPMBMHPuvHlcti3oO2fT4kY0LLZzC0YLWSa/L11WXgngaYZSYuACZ4L7BujFgvMakitiHo+nGdZ7AbYBxYmCMnADPWNUhKFRkatI/r24+fv0XyZmwMGgDnIakKQKgwpVX8y8kzX1OaNQ/ExgCbcSBXWw6iDZ+JMakmiQGqLVUUSd4xteWBzIp/IgMvdf8B/x5ovg9d4DUEmLk4puYQmIRxoMq6iBQQhD6zTlzQGAcZ42/YB0LyZiCTk9O+hOdrJHDcZyDIOCCNwVxzYmYCMcvrhcY48Mex9AyE+qUxBqS9qNy+03ZJHKhHSRyUKDGjkcM42GSs8e+GpcdBHzC02agOIlXJzH4peR4HHuPA9v6vdWtPHgIgGYNKlWYhqSSWXJfTh9WeYERIHIMy46A9qaKVNd/jwdIcGpCZR6w+SB4PgI0pKCC9AyKMAyOporVujwoSjEao0hmQjOgoXQjKJVkk0HxjXMcc2fmddQ1SzELLAoLRa7CyNv4+5LyH8kFTRvsx4NQDy0hFJNIcILZvlbiIsj74Hgcxg2oLj4NuxOcC0L8PMZN26V2kyQDMqbiWcEw9Y9IMxoMlYJhpjsw0J84B7jXbD/kMxT4zZ1yI1fbTt51rjAvwDKrd8w+ZE8tSRdO370kVyafvFbSwNP4BmfXBNAjPSt6RWDe5XgZSH6pKZy7OYf1In5fEgX7MtMfBgQMHcNttt+HAgQON/+3RRx9N6FGJEnYhJQ5W1pyNKlEqCOgnBiRfhWH7VNDQr7Z0K/w2POPATRxYmyMv+qCNVcW/dO1DlS5WjINVATRl3gN34bfWq9ExbF8CDLxnkMm4EM5tVejDMtGUczSGEh1W+vrBxAWnuk0KCbz3QXObSuOYtrcZ42BgkG1i0B0GrQG7a5A6N4ZE0Hrb4WpPj3FA6IcnkzPGOOAnEGPAqVUCLwRa+IkT23lQ6oO6MXCE8eH+DAALFsmrpFQQN3mS8ljQlErKqfiXAEtLjwOPhap4/rnV1gx9+0HEkqeDYJoj++37+wD//NWaz6p2liRSNNQAcqvdAUGuSesZ8PYhIdCWJVOTbqfXqz3GA5dxkDYI101eTZC8U2pfeq+HxoDHwtSSjEushdf7ZacIMK8xU4mDK6+8Eu95z3vw+c9/Hpdddhn27ds30XGqqsLa2ppy70qUsA1pw+xWe7cOnDNBS+FFaSWRMYgUYMIyo1w/vlPxbc64cNu3q/iXFhzdXi1WmzBNGUfDNacGuGPQ3bRKUkXMMSABl6aMhwBoY/UcuON/MP/4CUwbiZiYxwFrfexeW4lxZGVMPLpZsTJBk0CzXq/2NigM0NoDTJ02WUCBG6n53VKqaMwc2SCRHgONfE1lwnswAlowNZVHw70GMa8XRrjzYFyqyIBxMDYG+MmjGPNKWo9pj8NYAlOqvFXV+M+o+JfAdDXAKqPa2K1y1VyPSHKVUjDfBe46NAc05ZojC8A90evEY79LiQuSREoqcTn+OasPbsV/HuMBIEkVCe0zmVfiHCD0gfkMtikXlmLdxfrAYn20MQ+W6MdMJA5uvvlmvOhFL8KHP/zh4Wd1YGIqUWJeQpQqMtBVbnJ8likpIEsVWQAFY31IvHT4jIP49eV7LPiMA+keMHw2Op0KnWqclrrarb2FAat9wE8MuR4TgL3HgdsaM3knzUEWYNkgpGq/VcmgmVbpKptyWkl0uOe10u2hrgWpJqXqtpw+SMkzq0rjmEyMWfKi6yewAZK+fkKqyOoapM6Nao4cSxy40o0GyZu1CGjNSGDGpCp8oEi9+X4fAgatTMB0NEKSbXXNZz/J19/W4yDGvLKQrfMN4keeAWEutPc44EikAPL9d+cdpudSPmA2/rvmcmAimRTFMRAb/4NgMi5ijJv1zzgJROk6SslCgHcN3IR0EDQWpYr0WRe5UlFa74JcqR7b5Jkd46FR8oo0D+TMQYBdMcM8R+uJg+985zv40R/9UVx//fWo6xpVVQ2TBqMb4dFEgrRBLomGEhstcjwOmBIBUh9GY7FT0SrcBsd3wwVu2YmTVNWKtceBG0zQFpAX7JY+E4sLnbFERbfng6aWcllSMNuX6Knum44qVeRW3Hf9Smtq8jBQ6WI1BrxKy6FERzseB0B/DFglLgD/3CxZN361dxiwo/ksLPjPoCjXRngXx2R6ADvWRbKAwNDraHT+cZPYjPVQ7B4w5TkGIQJHAeCexYAMAfdWiauQSboo06N8D6QChrhkGn8MpDwO2MmTZOKCKJMDSBX/PLmmHJkS5rvI3WPlehwwNf6lynLL9iWpIuY9mKTam8p4CTIOOHJNXgFTy4wDqX2JBcP0OJCSJ8x3QY5Uj1W1PxAzJ26XcWC5N5rXaDVxcPfdd+Oss87CddddN0wGVFWF008/HcceeywuvPDC4WdPfvKTcdBBB+HWW2/FN77xDVx77bXDvwHASSedhNNPP72dEylRghDuZqlXA3c7ZoDMSj+pD+N/Yxvz+sff75oD0yv+22YcpBIHtvd/RfA4YAPXKyO/S/r2ljIZUjAXJu6lXev10KnHP+RKFUkeB3bmU9L1XxOAWztzYmNTUOHeSskb5jzknpsl6ya2WWJWOI71QZBLcpl/AEmuLZI46f/OASvcSIGxTK8lT6ZmLVzxz/GZCDMeLLw+xORhQLKMdf/9ilt5HmQVMoTugZTAYzF/RqvMY+bIjHkoBlxKAJJ2F6IG4V0frNQsKJLeLS7LQZIu0epCVVVYXgjff4DLPHKf6VyJDnNjVuJcNFH7qomL5vryWj4fnU6FqsKYfr+5x0EuaEtiHOT4fEjzIJP1IfosEKUDs1gXJHPkFOsu1i+te5DjMwL416B4HOhHq4mDd73rXbj88suH4P+pp56KCy+8ECeccAIA4MILLxz+7RWveAWe9KQnDf/tt771LbztbW/DO97xDqyuruKb3/wmnvWsZ+F1r3ud/YmUKEEIacO4b6Wb/I5mxIDpNvwV3GpX/vnHz1HTBE48fuKlxzSmBWSpDEvWi7RYcoFrrjlwDuOACNoK1c7uco3ZvlRpamlQLg1vKXnBAi5DlbZmiYtFGTSxrKpxr4GbvAaIiQNhszBgl5rJRQlzkCQVwAAs3WfLPWcWWOFG6tws5yBrxkHc44CfRI1VPLt7Z8tnALCbB937OrjvkkwOjfUxMu1Zm7THJdv4snUhqSr35/53+R4TqXmwU8nKBJPG4kKF0a2XO/8zpRO9av9gtff477oyKc2Bc1VzZGEdnGpf8zGcxBxaO3ESY7oNgpU8mrTaW/q3Gu1LzXM9DoTkvfAc+mNApfl7+pCRPHOTuErnH5INlsKOcZCXuNCcB0v0g4u6JeKCCy4YShMdccQR+OQnPzlMGqTixBNPxB/+4R/in//5n3H00Uej1+vh9a9/PV7xileQe12ihE1IC/B9B1zgnDspxoB5tkySLFVkmzhIHZ/vMdAy42DRXzBbVHmGjr0mGoTbmvO6wbwHImhpKdUkJe8c4Jh5/lVVBQyaneQFiXUR0jdngyXD40qMgzXJ48EueSfhFrTzF8afJNUE2PlMrPX8OQjgPIe+VJidRMZopM6NyXz0DKINjXH7xwy378u2EUBrYeM7uO8WiQsgnEC1kkoKgSZylSn/ObT2OIgBtxZ+PyFzbMBP3mizXqqqSgK37HuQAu2Y83DMGHs0fNBYrQued4q1ObIkmekGM4HnJ87882fKtmVXW7csEyNhuRrzgTv+cj0OtNal0mUUGQckc+r+sTKSZ8Rqe3cMWksF5XocWLEg5zlaSxxcffXV+O53vwugvzB41atehV27djU+zimnnIJPfvKT2LVrF+q6xlve8hb8wz/8g3Z3S5QwDykpcNfKmvOdDSxVJBx//4oLWrIr7hOMA6JMTP/4icQBOXHhArKyVJEdaLnWs20/Z3xZysRI1c5M0FgC5L1nkDwGJWM6F6ygSWQEABMrjwMJkF1r2eNAClYCWxp/a71arPaieRwIGybR44CROBASp25fRoMlVZNi9DDnYPcZGL0GJoyDiFSRy3xizMWDar/RGGyafaBCvfl7jisnUK0k07zExYBxYMT8cZk8qYp/7ZDk0tZ/NmA8RIBDCwZiSCpL6o/0/WkjJlcG+MkTzXkgl3HAlO7LAQ190JJ3DSTgnpk4mcQcmumxEKq29lgnMyFVNH37nlRRpseB1j2oqiorgeeeP1OyTTQI91g3uqyrVPsAb03qjcFMxkNhHOhHa4mDL37xiwDWTY3/y3/5L9Hvx8yPTzjhBJx33nnD31/96lcr9LBEiXZD2gC5UkVtmiO3IRPkehy0bY7M9zhItG8sFyUzDogyFcJiyQdr2gZNiYmTSjp/O6mgWXgGveTVWs+reqcB1w7jZr3S1kgmRzivlbWeWeKi34f2fD4k6Z3Vri/VBPA2CNKGTQIsGWPQq3ZPSRXRgNv4cZnrEPcZGGV7uMwPjr59BDQ2qPbu90EG7nzGAUuyTR6HZh4HizJwKz2HFhX3Y1I9Xf4zGPV6MbgHXgJzLHHAZ/0kK/5J2t7D9hMm9ZbGwCHQ1sVIdKWK0n1gSgV5rNMcqSTVxEW64p8lEwPEE5djfSAlT7IZB6LXiAbjoPn4k/4duw/MRHpO8ozpeZVjUC72Qel9lJu4sEikz3u0dkVvvPHG4c9HHXUU7nOf+0S/v3///ujfn/e852FhYQF1XeMLX/gC/uM//kOlnyVKtBUSYHPXgXHGAdscOfbio3scZEkVkSvuUx4HxtXWbrBfipI5rqVUkbvo6ApSRVyZjPSxmUNA0hZmGvG5Id1b9xm0Tl65iQuANwZ9ivg9lbYtmTP3+zCDjAMWYBnQt5Y2DaxxKG0Y3Ur3pQV9XXFAGH+utrZV4iBxf23l6kYSBwaMA/eYoz4bbiKHx3qRN83u3p1mju0C58aMA88guxuRKqIkDsIJPItnMG6OzE8ix0Aj7xkwSFy47z9mpS0Qn4MAySRdEbBzzZEDNZTuXEDV+Heud11z1yQecJ/hMUCt9s6SSmIyDoyrvb0xGJIqEsB7hT7kMA4kFij1Hgh98OYha4NwQ9aLPeNgfA4Ie73Y7Y3mNVpLHNx2220A+hSggw8+WPzO5s2bhz/fdddd0ePt2bMHxx577PD3Sy65ZPpOlijRYkiLT2tz5NhGnF7tL8mkuKAlGThPVvzTGQfx41snTla6PmhGrTYVgFvPkLFFc2QWYDgI0RzaUMMxZw5iP4PugtGVSgJ4ck2+vvmg0te9Bzbt9/vQMwPsgPTCu1PpAzWDkK7rarembVDFPgg+A1Y+K7FKY8COcdDp+Drjo7FsOAeNzv8W90E673Xg3iaJG5Kq8OQ5SFNxqNrPBVDNGA8RxgEjiRmr9rTwGYl6HBjMAbGKbz9x0b7XC1+qyJ2Hec+B+24NytQQGQd+H5zEjYDhWQPn/hhQaz7L48C9/sxq9xBo678PtEDbzMSFKFXESBwIbZszDtI+H9aMB65U0b3D48CqmGaeo7XEwfLy8vDnxcVF8Ts7d+4cVvZce+21yWPu2bNn+PM111wzZQ9LlGg3pA2QyzhIaQ9PG3HGgX3bs+dx0C7jgO2xIFW8mnoMZEgVtWmOzE9cCYkDU6midPLOOnnlMh4Ajilpv21ZIsMHCjjtS8aQklQPcx5K3V9LY2YgzDigySUJz+CqxzhgAabO+HO1vYkVZm7E3rWWjINxc+Tx82ewz0TWzz3tMiuNR8Nl3g0TmEbss5A5aWseB8PEgT8PMpKYUakgImA4bD8CnPuydfzEyeh9t5CuTIFmdKki7/wTjANNwNA5VNiYlncNmppDA8rV1l7iKge01XsOckBLS3PkXKkglr58UCqJdA3yZIJ85pVmUVfONWAmj1JFJIAt60VK2gM8r5Ps5JVhUdW8RmuJg1Fpottvv138ziGHHDL8+d/+7d+SxxywGIC0tFGJErMenY5vyON5HLSo8c8GDCVTwP2rdjI1QDoxwZdpSUlEkEFbV6ZB8Dho2xy4TXNk9v13N1+SvjpXqsg/P7eoiAkc948/3gdJqojVh5AxqmXFv6SvbKnjmdqAM889xLiQNg080NSXqrFKniYBM6KushtRvyND1tl68s6Xx1he1D9/0WdkMA8YVdyHgCP3MWBNxb5J9/o9GP+eVeJgkLiwWYvEnkP3GeRI9YTbt/DZcK9/d1Suy2Au9CUzbZlXTU3qNe/BgtN2gHDgzQWauRPPoNljHHDfx+5z3av9PvjJI7Xmo4yf9c9474JcxoEnXUeq9g5LFTntqyUu3HZyGCfc5GGWz4dq4iI9BpmMg3zgfnwQaPUhRy5M6ldhHOhHa4mDBzzgAQD62njf//73xe889KEPHX7n4osvjh7vpptuwre+9a1hhnHXrl2KvS1Rop1wgZN9K47HAWGjPHb8Fs2RAX/xecBcXz1+jvyK/wRwTX4pupVTq13f48DSGHO1Ww/1jQdBrbhPSkXZgubmUkUZ49vaIFxiHPAAK3mxalvx74N2VowHoN05SAIfJI8HgCfTkpO8ZEn1hMbfsC+GjIO92zcF/8acB901Tq+W7wEALC8sqLcvjsFQApFmjiwDR0ygYjRCUjV2jAO52tF/DlleK2Hg2q805kv1jLZp8S6Sjrk+BpzkDeEepKp9+VJF48dzJdKYzB8XfJWq7QEu8yVVcS8B2ZqPgfRMpZJHqomLhDl2v33n31ClmgJyVSTgOCVVNfycJJ3nvtekxAX7XeStA4U+MKvdJ/E4sGQdDftAeg5ypKKkfpXEgX60ljg4+eSThyD/HXfcIZoZP+pRjxr+/K1vfQt///d/Hzze7//+76PX6w2rIE444QTlHpcoYR/uhtza4yC2EWYCxqH2rT0OUhtRNmiaNEc2Zpys9uz0vQGp0rJnKlVUVT7rZzT499+vMrECSwCZ9eOGtc+HxDiwAoxWAxIl3Kr78T6sdHsmVaa5x7aUKgP6c4Al48AH74U5kPQuDFXbD4JpCOnGUQdtDf6N6XEg3dfVbg8H1vyN4xKhkEKaW9Y1/o2kigKbZiZYFjvuukm8lcdBnlSRpUG69DNg43EQMydmeDxIxxyct4VcVwo4Zer7A1Lyfrw9pkG0O/2EzJHrFj0O2Pry8jog3gfdxEUatGRVWkvtB0FbbwzotN+6OXOOVJEgW6cZEvPUDT9xwqz4t/VYSLGuQv2iMQ5y5bpK4kA9Wksc7Nq1Cz/yIz8y/F1iFDznOc/BwsICqqpCXdf4+Z//eVx66aVj3+n1eviDP/gD/I//8T+GiYjNmzfjjDPO4J5AiRIG4S5Y73IYB+zEQVSewIBx4E76LmjITl5s3yT7rwyC/VKaNXPkta6xxr6grWwpVST1IfdvjLbXBI8D6+RR079PG+4zdrdkjky6D36lmexxwLwG0jNoyXhIJy95bUuJK0mqCTD2OGjLHDlR6cmcj44+aEvwb1SPA+EdL0m2AZwEojS+1yXLjDwGQswnK3PkQMW3FeMilDiweheG3gOAPwaszYkt2GeuxwYQuQcMj4fEPMiSaBm2n/A4YL6PPWPYTNBW1WNgAo8Dpr47IPj9EO+By7zO8TjQfA5yZWJYPhdexX8maKvGeHDal5SS2Mwn993qStQBvMQJkMk4oPpsZDKfaIyDPJ8Pv5ihJA60o7XEAQA8+clPHv780Y9+1Pv7IYccgnPOOQd1XaOqKlx//fV49KMfjVNPPRU/+7M/i2c/+9k4+uij8cpXvhJ1XQ+/98IXvhBbt4aro0qUuLeEJ1V0wJZxcOjOmDwBf0J2z88zRya/FLZvjicO2mYcsKWSpA27JXAvLZgtpYr6xw+fHxs09xfs/vVnj8EUGGd9/SXGAWtx6Gsrt+BxIFSdt9l+079P3b5Q6cQGKsbaFz0OjCRSIsbAANcQ041jDtoW/BvXoF4AjdZ6WBEZB1aJA5lxYKmxX9f+c2CWuAhIJbHO3y0QWVkbVLs7axFjj4Ner/a05TmMgzBwZ1HIIV3XQR9spIpSHgPcNVHIY2P9d3cc8mRywqDt+O+a70P3+nv+AtL7mGhMC/jALdMceRJ9eWtjXIAH3OeOQRZwnSNVxH4X5TAOmGMgzyC63fb7nzvAvdI8kEoeh/pVEgf60Wri4Kd/+qcB9Cl2f/M3f4Obb77Z+84f/MEf4L73vS8ADJkHl112GS666CJ88IMfxPe///1hwgAATjzxRPze7/2e3UmUKEEM92XlMg7YFffH7d0e/JuNx8H4pO/KE7CB2x2JxMFGZxxIFf+uTAdTKkcyxbOUKgLiVZR8jw2BceBKE7RtEE4HjuOso6WFavj+1w5fW1sGzJjzgDvHrxozDto2CJcqnUSPA1I3RMbBmvMM0qSK4oCBX+3MexajUkXEdYg0v60KCVSA8y6SQMCwx4HROBAAa8DeHHnWPA7MnsNB4kQAsBhzcaza1ELTWTrm4F3oJvAspIpSjANtybYY46TfvnMPFK9BdrW3xzhQ60JjxkX/3+g9i+Ic7I4BojlyjseB9xwaG+MCPI37ScegqVSRsceBZAjOlCrKYRxwk1fpxIn0uVYfshMXhr5f8xpxVIwcp5xyCt761rfi7rvvBtA3ON67d+/Yd/bs2YPPfOYzeNrTnjZmfjyIQTKhrmuccsop+NCHPoQdO3aYnUOJEszY5GyE7l61MWUcxLEHt1NlOIjUpM8+/x0JqSI2aLqQ9FggMw4WfcDAA80MGQdrxowHIH6NGXrCo+Gev6TrzQdu22UcuHOAOwcynwHP48MYMJOOLTMObH0Gmvxdu/1+8syvMGUlj6Tk3QEzc2SZ8TIIjxZOfBaP2RNOHFB9LgIV/xLjgJE46HT6PjejG9V1xoFbyMCqePeBIzl5xmLdOHNQTz5/a48Dq3nY91qSE8jSd1XaDyRuAOka8NsHRhkH/PWgX/HszINEU1BAqDZ2xr3n88Cs9JV0WsCrNpeO5fkLCH1S9RgQ5tW0XJQm4yA+/qT2Nd8F2fruJMkuz+MgOAbHf9dak0lTSq9Xj41Ll4GimbwDJpMK0pWrSieP3HwWVSop6HHAeQ7yzZl5km0l+tFq4gAAfuVXfiX5neOPPx7/+q//ine84x246KKL8MUvfhFra/3K68XFRZx++un4uZ/7OfzCL/wCFhdbP6USJdRiy/JC9O9s0PS4vbHEAX9Cbltffcfmpejf22YcsEFjyRzWr/Lj9UHS9rUw4xuNqMeBcduiPAddrio1Bm0TN65cGfP+h0wRfcDQknXTM9G1zj22tc/OareHXm/8vcg0BZbO/4DHerHSVq/HGLaeER1xkxRnHNg9g0D/+fPYh52KNg4WncTBALSyMKYdtD8afcaBDWgtHXcw/zHBsvHjyvNw214jotcK4RrEpYr4yStpDbTuccBP5EvM19Hwqu2V5wF3fnPb99/HiqB1rscB0Rw5BdpJfdIcB9L48+Wq3MSBWvOt68vnJC6kPmgNgUmrvbXugTSWu3WNDtY/Z/sNSbKxXp8sfUZEjwU7g+7cMah1DXLbt/Jdmue416DsS0tLeMlLXoKXvOQlqOsat9xyC+q6xp49e9AhAyclSrQV25bjjygbtNm9dRkHbVvGrXetmLcNtF/tunmp41UbjrVPfimlQTsycO0CV4JEhLXHgTnjICZVRB5/OYsuevIoyXqxHYO+VJGdvvpKC4wDT6ZjzZerorafWF+xk6fSHCAxDlghHdtPXtkAxkC/qm8wJCzHwfZNi9izbRm3GK8FRKkigXnGlksaTVSEGAdWBt1rAusI4Jkjh8x5rcafy+hZGUoV2bAfpesPyAaZDJ+RGHBpIVsnrTEG7VoUcqSASyZoDEj65uPPPdNnIp9x4Pw7oseAmyhgz0USCJweAzzQNktf3tgYF5CAexZoaytVJCYOejWWRupH2JJtOT4T1ORRgnUlta/5Pg6tAbw+kKSCchInvV7tGWcXqSL9uFci7lVVYe/evTj44INL0qDEho4U44DtcQAAxwZYByaJg8QCnN2HqqqwPSJX1DbjwNocua6Bux3glulxIFU6WicO2jRHzkkKWPssmLfvSRU5BulMxoEg1QXYehx4Ffe9nrdoZrbf6VTRyjX2MyCxPiyvv3Rsq+SVBJiMzn9MeQopjg7IFbGTx+5praz5UkWWckkhqRxWIl/atJsahAdAE6vnMChVZCQVFQLuXAAZYAH3YXNgC88paR4anLuFObLkdTUaTJkaIA0aWpqSBo1xSdXmQI7HBDeBJjIOLKWKMvTdbRkHtsC9NwZzZWJIiQsAHkDMNkfO8TjwknfmrBe3fc0xGH4HjfWhyxoDOVJNdvKN8xwFdS9RYoZj26ZE4sAAvA8lDiySFqnFn0XyImaQzM5mJxkH5PYlIGTfih1wK5oDOwsTa+A692/stgfBngNSFed8c2RHqshNHBjq+1tX2gICaLYmeBwYS5aN/812Dlzt+ubIVHNo4dzdMciS6pHu65gxqjsXshMHAbkiPuvLr/h1K52Z6xE/gV2P/X/4PaOK95DHAY/xIFdcu0l8njmynDjwighI74IQcCcBFYxrEDOntVgPSac0fBcS9f0HEWJ8DIJpjAv448pN1jCTJy7wJgGW0ueWwDV7LpKKF0zNkRPjD7D1OJDMmQFeIYE7/+fKZWmNAek83LbY86CbhJGAe3ce0AStc5JHTAnTSVkvNMZBRvKu/+8KzK0d5YqWKDHDsTUlVUTUFh7EcQGDZAuPg7S+Or8P7TIO2vV4kI5vKRUjLZYsKuxGI3aN2YBZTtVU26yHts2RLT0OBlXOVqaggKxzz9RUliI2z9HnQI+i7YOmVKkiYXxZSRWF9P0HwQSLpDgmkDhgz8Hu8Ve7Pax07ZhvrlTOaqjamuax4Fe8sqt8R8MFg4OMA6PnYHXoceCA1rQEnlxxLN4DY6keCwZmVVU+6+Wea++uxyjmyA0r3q1lSqjmyJ62ema1NxG0TF3/TqVnjDsIN3nj3gOv2p5qjpwGLXWvv1ttnacvryZVlEjaDILGeAhIFY33ibsmzhkD7m1h+nyIwLmhXFm2x4GhXJbV+3jeY+Y9Du644w7cfvvt6PV6OOyww7C8vNx2l0qUMIttLZsjA2GDZIu229b4B4CdEYNkdjY7df58ffs044AqESFU2vhVjmyplAjjgO1xkeNxQGedzFbyav/K2tjvlvrqIcYBcx7yQNOewDhokflClwpzDdp7vscDl3EgJA7MpIr8tkdBKsvrAIQNktkFDFLybGXNkHEQMkk3Yv5Im3ap8pgnVZQ5D7I8DpzxNUzgkg0x148rgyaSXANjLvZ8boylioD+2JLmHgvGg3tfXYDIq7TWBq0FxlOsP5pglTueQowD92NN2TqvD4nrz3gOFzoVMPLadece/12o13YOaMtck+VWe7sf6xnTOoyDwBj0DLrVGAf+ZymfDe15WCpgccM/f732fakgH7hnmsTH3kFj/SLdB199wD9/6blgFVPMc8xc4uBTn/oU/vqv/xqf+9zncOWVV6I7UlX093//93jSk57k/Zsvf/nLuOuuuwAAu3fvxkMf+lCz/pYowYytkWp3wChxcPD21tpOUc8t+rA9IlXUtscBHTQWrr+bOKB6HCy4G0Zf350NWsXuMT1xlLEB5Xs8tD0Gx4/vSRUZapu34XHggaZrtacjal31n/s3jZBkKnxZAl4fRI8DK3NkiXEwsmHyxiF5k3TMnoBsobHPRZ9xYMc8kjwOuqIRnw1wvSYkzwBi4kCQCwPs5sGQOa2FMS8Q1pm3kouK6TtbSTcudTq4G6Nzj5y8YcyF7jrIBc3Ynj8p0IwpmeWCf7kSIZqXwJcqi4O2jGkwlLxb/503BmIeI4Pw2X+aHguTsk6U2ndOJahvb8k4cK43+12UpbFvaNCdI5WkuTfLOX/AzmdDZnzYrYnmOWYmcXDJJZfgl3/5l/G1r30NAFA7k0KM9nbRRRfhLW95CwBg586duO6667B582ZeZ0uUMIoU48DCZ+Dog7aiqvyKFgt/haQxq4F+XaseBy2fv3T993kV33bVvqstSBXFNoFtexxUVftyWXy5pvHzs5UqcipdQ5XGhh4Hay0wDmKbYGvGz1pPSJxQ56AMjwMjU1zAMUZ1DILZ64G2PA4kqZxVw3P3WC/dngcWAnbAdbdbm26SQ1ItLoBKA62DUkU2Btm5Xjf979pK9VhdA3eODclF2Xg8xCve9aWK4tW+M2GMS0ym+6B9ArQlJLBTclGWoO2qVO3sJa/Ump9YX15NqiiTccDyWJCYE25bXkGZusfB+O/eHMQ2CM9IHrnDksk6Co1BFgt2EtaPZvsl1mMmPA4uuOACPP7xj8fXvva1RgmDQbzkJS/BwsIC6rrGD3/4Q/z1X/81q6slSpjGloTHgQV4v3lpAffdvcX73MJfYBakitr0OEgzLsjtC+PLkyoyNKXsilJF81Nt7QbLDHKsjcj9NUlcJM2RDUH7QaWtt0m0k0taMTYHBuLXmP/8+dV+fuLEzmcFAO42kyqSGAf2oOEgDtmxSfycnbBw56AVkXFgyTwyrviXkmem7cvVhlZeK65U0erQa8ZNXLBkekLn798Dxi2I6Uv7rAubuWhw7i6IzrgHKaki9vvQTVy615wJWrqgaciY1v1c02PAZz3YJU7WjxlnPTBZiL45slRtzpsLU+N/EC5+pidVNP67JBPT71f8300aEgDudsEfg9oeB/F7wF4PTMI44CYP8zwOtPbIkzA++v+uJA60o/XEwZ/8yZ/gpS99KVZXV4efLSws4PTTT8d/+S//xZsIpTjyyCPHJIw+/OEPU/paooR1zILHASDLFZlIFSXasOjDjpjHQcvAMVtfXrq+VjIdgAyY+FJFthr7Y22zq+0TCz+L5F1Mt9okceFW/a/xgYrhsYVKY0CgBBuyHmTgfH6SZ2uCvjvz9KVra5U8ldoeBeo89hV5Lux0Kuze6r8P2fOgBNy4SRNmEYXE+nGTh9L3tELaNFvq+XrA6VCmxmYekpKngCQRQ0qcBIBTSRpC2xQWkN8Bg/CThzbXYNDuqoHfj+R1NRps6Tp3jeFec6Yx66T69syKdxcgtkgcJFknROA4VEAyGu4YpHoc5EoFqVV7u+8f+XssrxHpPNzr7bJA1D0OAvPfINieQzkeB+6wUB2DmR4HLJPwrOSdcA/Ye6N5jFYTB9/73vfw4he/GFVVDf97+ctfjuuvvx5f+MIXcNFFFwHIy5w/61nPAtDPuP7DP/wDtd8lSlhF2uPAZlKUDJIt2A5tmwMDcamiNrXFAQuJkgru9HuXI1XEHAcSaGhdZRsDI9qXquKP/9gYtKjmSLXBHH9epWsLUkUSaGFV6TvsQyx5ZOyxYc046AhzoC9VxGm/06m8pMjohm11jQ/auXHYTl8G1Jr5ttrtmco0SRrnklwFDTgXgHtLc+RcjX+rxMEQtLaqtg/IRFgxv2LV1mZyTYFr4EqGWXgcuO8/pikoICUO49XGmvsSd0wFjWlJgJ3Uh7S/AIF1khgDVHNkoYDJDapcVeLcgT725SePdPrgjqVQtbn3HBI9Dty22L5fbnFISioL0H0GcxKIzHkwVzKNlUDLaV8q5iiMA/1oNXFw/vnnY2VlBXVdo6oqvP/978eb3vQmHHTQQY2PdcYZZwx//sEPfoDvfOc7ml0tUaKVmAWPAwA4VkgcsE1pgTQgYcM4iHkc2Oq7e+1bVJw719jdtzDvgadt3auHOvPr7bfH+mAzPlKLLovxHzvHNsafZR9CppyWUkEuKL0qAedtPgPGHhtrPSlxwu7D+PHvdg3imXJtQrX7ILyqe4P1wBGCbCE/eeQDxwfcxIEx80iqeGOtBySPA8kIk1HtDoSBezNjXqf9Xj1gXdgwv0IV71YJ5JjGvJVcU/Y1INwDaR0Y+137PviJw7g5s2b7PmibKVNjKJPia+urNR3sg5s0ZIKm/hpEkIkhAtdZoLEwLLS64Cdt5O+xPBak12pKKkh9Dkj4XEjV7roG3el5gHkNcp4BwAfvtZ7DEOsv9VlJHOhHa4mDlZUVfOADHxgyDf7rf/2veM5znjPx8e5///tj69Z147YrrrhCo5slSrQaW2fA4wAAjjvYTxxYGBOnKlcsgNM2PQ5SL36Le5Ci/zNBS0+ioVt7FE1r0Go0LBgfsbAY/7E5xqL9ZPKM+AyE6LlMoMDrg0CRtvY4iD4D5KSFtGn2tXRtn0OXcUA16I4AJl7VvcHzeNguiXFgyzpZFaSKrD0OJHNkGnCd4XHAfAZCoAVTomU0pHEtGVRbSkWN/n/9ezb3fxS08uTKaGNQvga+XBSBceDJdNiBxkBaJsNPYClKFTn3s1f7SQLABy41q53d6+mOe/f6M9ZkqYpjJmiaShwBXKmirGprYsX7pIwDLckw6Tzc6+1r6+uOQS95vhZ/BgBy8kgoXOAmz9z25THAeg5zngGRhUkqppjnaC1x8E//9E/Yt2/f8AX48pe/fKrjdTodHH744cPfr7322qmOV6LELMS2TbPhcSAxDm7fvyp8UzeSoLVBNjnqcdA6cMw//zYNun3AxF6qaOeWCOOEXek9Ax4HbRrjAuk5gPkM+NX+srb1ApN141Gke+YeB3HGAdtjxN8wWTMOXDDMTxwYMg4iHgcW64EjhMSBtUH6Ws9WqsibB3p+8g7gzcfSppkpTeJGqNrQSqpIuq79xIEN+zBU8cusMo61X9frIJGZVFHI58GAdZKSimnf48AZh0TGARACzcZ/17wNMcYL4J8/Y0mQkouimiN77+A0cG/J+AC4Gvve/ZeLzYVroNK8eC/d5BmdceDJlsbnAIDscSAkb5jPgC+XJQ8Cz+dCawxmyIW5n1WVfhK5RIuJg6uuumr4833ve18ce+yxUx9z9+7dw59/+MMfTn28EiXajq0pc2QjqaIjdvnyBKGMs2bMQsV1m4yDWNsAXyoHaDd5JS2YrcCCQRy31zcGX2+7XamqtqWK2m4/5++aba8nDnhAgRtSxTlbz9WNaPKIzTgQgHPzxIlzjnev2gH2nsfDPede17W5OTIAnHXKfcd+l4oKtMMF7lfW/AQyVy7KT15JG3eWWbwE3Jv6rAisp0E/LPogPV+rAvuQ9S4Iaby7IAmLcSEdN5S8oEkVBQyamdX2w2MmNfbHv6/9PvQThw5oSXwf5xjDAjx9eakPLmjoMW8ISUzfZyXuc8E1qJZkUpiMA5ntMxpS4oBlThxiHLgJBT2pIil5Nv67Ox6054CQbOkgRMaBavKqOetE8xq4a5uQVBGPcZB+BqwKGeY9Wksc3HTTTQD6mpyjTAGt6AUmthIl7k2RkiqyMkfudCqcceLesc+ecvJh9HbToKEF4yDmccBt/4jdW1qv+N6ylEoc8PogbVisGQcnHBJOHLCvf1VVrerLA/H7a/H8tcm6CdGDLWVCJH1xa+C8zeSRlDxkS1Ok+uCGtb4+0B+Dln4zgzjqoK345SccD6AP1v/6j9+f3qZUbeYyDixZH1K1O7O6TQJuWJV9UgTNgY08DsJSRTYJXMmgHWjP46Dfdn/8W0kVhSpeLe6Bl7hypXKIMj2AlDRxPQ54c5FsDOt/jzkfSInL0Ypvi/VQquqeaY7sr8Fqr+LdT1zYMg4kIFWrD37SJlBt3mLyij0Xu4UJK45UkZTMY7JO3HkXIBt0ZyTPAF4Cb5JngMnCnOeIo5LE2LRp0/DnlZUVlWPecsstw5/37NmjcswSJdqMbYnEwaaFOKirGa96xoPw8r/8Kq7/4d148RNOwOECC0E7ZsEcNpY4sNAWP3rPVnz3prvEv1sAx9sSrAcm60WqdJypxIGRxn+IFmrRfpseD/32E3MAUSrH3SwMNsxWpqD9Y8dlEgBepev68cPnx2c7tFttDWQkrxZ57Yc2zC5gCACbjBiIv3nmSXj+Y4/FpqUOdkak/LTC1xfuYcV5BpnnLrJ+PNaRLfOu3eTlPTI5Rh4H0vMlsU6sPA7WpZpsJNOk98s648DmGoQMii3ugeR1NdYXsudQSqrGB615EiGADFK6rwPNSyDd0l69LofEMsUdjZDHxrA/TKkg6R706rHPvTFABc39d7+E47ISBxK7AeCOg4WqQhfrx3f7wH4fpnwumIkb6Vh5jAO15rM8FgBBxpXms5GWKiqMA060ljg45JBDAPTp1hp+BLfddhuuvvpqVPcMrsHxS5S4N8eWpFSR3cR4/0N34EO/+jiz9oA0IGfBuAjJBS10quF8w4zj9m4LJg7YoB2Qlsviehz4mwVrqaIjdm/BpsUODqz5K3OmRM0gYgsvi/EfewZNpIoSYBQVtBfurwQaMoH7kFTNaNAZB5Hjs58BacNmbQ6dGoOWUkVD0HbNHwdWnkcAcPCOTekvKYV3DUTGgV3ybk1IYDPnoRyPA+YcEKo2tOqDLFUkMK/M9P1DMkE2jBNgHTx310NWck1D1sUMeByw2Td+4jCub64qUyN5HEjGqEzQVpTK6mGh098bMGWC1o+ZYH0wzZEDUmGLI1sjb02i+BzkgLZSMklre+rP/4HEATF50ukAGLGWSjEOtNdCaaki/9+oShXleBwQn8NcjwM3gan1PkixvgAu66fEerQmVXTCCScMf77llltw5ZVXTnW8T3ziE+j1ekP62CMf+cipjleixCzE8mInCsxaAgVtROr82MacALA9wDiweikdd7Bc8b60YJO4SLFeLD0OVrv2UkULnSp4DzQ3B6FoW6oqVklr8Qykk4dM0FbeMLuVtlSPA0Hf3Rw4j7FOjH0+JNCUff5teo1IxsCAzDiw8DhoIyS5LkuPA8mYs02PAYlxwKTlZ0v1GJkTA6G1gA1w3w0kTljzUAi4BKSKf5vkzbB9911o4HHggmbMSltAYP057Xv3QHEukpZfoseB85nm3kB6/kYvAVMmKNSHZPKIaAwLpCvOVZNHE+jbA3rAdcocexBM1od7P33GAZf9lZIqkoB8VbmqnDFANEd230GuXNx6v8avA89nI804KIkDTrS2y3jEIx6Bgw46aPhye9e73jXV8d785jcPf77//e9P8U0oUaKN2Boxp93oVKw29c0HsWlxQQQlrK59yHzSImkCxMcfYFvpKXkcWFyH4w+W7wFTnmIQseSEhVRRDAwyaT/FODAE7YEQ48CuDyJoyTYoblGqSJJJMfd4aNXjQAZtpcSBleeRdXjVdt2eqceBxHrxGQeGyaNuz0QeZNi+UO3YEzw2WM9hVVVZ94A1BsLGwDbzkLQGWPcYsJJrkis+2TJBUtueOS8RMAPCibPQ73TGQYY5LlMqBxgHSr1KX0ISMyVVxLwHUmGI2x4zkZuj7+56LgCK5sQZMjGA/xyqymUlEgfseSglVSTJNzF9Ltr2OMg1yNa6D5N4HLAlXOc1WruqnU4HZ511Fuq6rxn8tre9DZdddtlEx3rd616HL3/5ywD6C8xzzjlHs6slSrQaWwPmtMuLHZOK8zYjVsm7aCQVBAA7BdaBGeMgmDiwaX+WGAcraz2464VlA7mukM+BhTlw7D4zActBxO6vhVRT0ueE6bERqDSz9TjwNyyzVHHPBqt94Hy2zh+wZb0MNqyrknTaBmUgunO8VG3OZBxIBtVtSgV1e7UnV0JNHAjAqVt13e+D7XNgNQ+7939oDm0EVIjmyAGpIprHQUAuyMJjwUueu6Ct9yzo9iHk8THsD5F1IRVOSCAl1+MgnrywqPRNAafMRKqUFHbnPyrjIDD/jH1GNOfNqXYH4O3NNO+Bey7ueGePwZRUkFDHQX0G8zwOeIyHkMeBxzgg+WzknP9GL6xtK1rdZZx//vlYXl5GVVVYWVnBmWeeiX/+53/O/vfdbhe/9Vu/hde85jVDAHH37t0499xzWV0uUcI8tgY09i1Aw7YjtgGwAG0HIfkcmDEOAtXuVuefYhwwARt3sbB/tet9xwIsCycO+G3HKpcsxkAMGDZJnCTNkW0ZB2vGHgfuPC9V3LOZL9ExwDZmFjats5c4MARtI+bIG3VNIAH37vkzz12qOHY3zpYJ9LVe3TLjwD///vfs5mJRqsgIuB+C5laMgwhw25Zc0zrzif8chDw2BuE/C7rtx6SS6lry3eJKFeVUnGvKxMiMg/X2LOaiVMVzG+bIsd8XVJNH8fEvtQ/YGtMCwj2gGkTHr78648DZ57oeUz7jRFcuLCQVNxq+xr9a88HkuRss5oe0BnHnPOt9wbxGq7uMY445Bueddx7qukZVVbjpppvwuMc9Dueccw7+7u/+DrfccguA9Rdit9vFzTffjEsuuQSvf/3rcfzxx+P3f//3h6yFqqpwwQUXYMeOHW2eVokSqrEtYE67UWUJRiMGSltWV+7YvOR9ZkWDO3j7JjlxYXT+KcYBFyxIJw4srsPxIZ+JlivuLWSaYm2YmCOnfE4MAUMgYMppWO3br3bm6rm6EZvr2O8hSVvVmpKcGudM1ot7/oMKX1eqZ7FTqZuCzkpI1ebu+Vt6HKwKknnMZ1ACTSyNACXgzL3+oe9phexz4QC2JPZh2BzaZgzIHgcDqSKbBJYPHPXG+jH8HsMcOaVvTwSNAcHjYGTsSwCe5jWQxpR7voCtVI7bB4u5KMR4Cf1ON0dOsE6YUlFS0lZSjtEaA57HgcBukD5XZRykpIq8eUh3Hlx2xp9buMA0J5eOJyWPfNYFL3kV8jhgGdWnWE/S7yVxwIk4ImQQ5513Hr797W/jfe97H6qqQrfbxfvf/368//3vH/teXdc488wzvc+Aflavrmu89KUvxdlnn23W9xIlLGJrALjdqLIEo7F3+3Lwb5bn3ybjoKoqHHfwNnztP24f+9wCtAaArYHE1bAfVMbB+LHvXpEYB/zrcOzebagqeJrOFguTmMeBxbnHq83bTZwAZJkgYeHdTxz4oC0rfJmGHtac9tr1OODOwz5F2k/csB+D1HNO9TgIACaWUj1th1Tx727cuQbV/hj0Khyp85DAeDDQFR+EBJzdvea/i5nvQwm48efhjelx0OlU3vojbI5sdA2GUkVu4oKQOEjo21t7HIyCZhKIq8l8kcBf2eNg/HemvjkwPvYtpIrcdYZ73ZnmyCHJytFgabtLxxL13UWpIp32fZmgPMaB5nPoXk5r0DglVcSXSnLugeRxYOhzEvI4YL0TpeN063oMxC7myDYxEzuNP/mTP8GrXvWqMVrPKItg8N/gs9G/AX1g7Q1veMOYQXKJEhsltgWkYuYhcXD4ri3Bv1nq1+1o0eMAkA2SrRgHocTVICyNQSXGgYU8x+alBRx1n63e5yYV91G5rnY9DmzMkePPGVOmRwJB1gR9cW6lrcs4sJfqibJerD0OerVQ3UVOXqQSB4ZybUOJEENz4LbDPbcViXFg6jNRexV3zHnIlb3ois8AkfEgPON3rwqMA+Zc7ElFCIwDI5mesMeBbfIIaFGqKJC4YIyBpL49+T5IyfthXwQATfOdKPpbZJgja+ZOUtW+PuOAPwY8xgFxTZZzD5jsoxx9d9Gcl8U4CJkjE5k/7jVwz9edE9qWKtJOXrp7rRypIs3HMNfjgMU+kp7nlEF5SRxwYiZ2Gp1OB7/7u7+Lz372s3jyk58susMDGCYQBlHXNZ74xCfis5/9LH7zN3/TqrslSphGCLjdtIErDAdx+O7Nwb+ZMg6ExIGlx8Jxe32pHDNz5ITHgWmlp0gLtxkHks+BxRiI3WYTqaSYObIJ4yEhE0PsQ1VVokE3kxLshiTRYW0Cti3gswMYmCNLjAvyJtGNmTJHNpYomYUQzXldwJRqjuwClz3PFNaUcdDznwHmJll6z+wX2H/UPmR4HNAYBzOROJCBIyuvDV8yLcC6IDwHqWpXfuLABS3XATK2Sb0oVSRgJF4ikVhtDCQYB4THwH8G41IxmowDaR3ozj3M+ThnHyTJV2n1ISdxAXAr3lNSRew5wGW8ufefJdEziJzkjV/tzzNpl8ag9LnWGBD95hLMs2KOzInWpYpG4zGPeQz+9m//FldeeSU+/vGP43Of+xyuuOIK3HLLLbjtttuwdetW7N27F8ceeyye+MQn4swzz8TDH/7wtrtdogQ1QlIxGxkoGMThu2KJA7uXwk7R48CQcSAYJJuZI0cYB53KVttZCqtxcMIh2/GpK28c+6xtj4G2zZEtfD5SY4CdOFpa6GCttw6SrQka+7amoLaJCwB46smH4T2f/574N/YzIBrDOqABW9s/adBtLFMDACvdceB2IxcSZHkcUBPYvkyBZfJKAm5MzZGFa3tAkCoyfQ6Ee8BKHoVAkzYZB91eD3VtJ9nlsk7Wej30hHcho/2Uvj292leSLOz1sKmzIAJoms9Bv2ByXKZKAg25Hgf++Y8xDgzmIt/ryViqZqEaT5YkpJJ0GQeyv8jYZwLjRMucNzdxwPQa8fsw/ne2fKj7DLhMI/b4c4/nti8njnjt57JOtPaoYvLSlQtz9wVE+cZ5jplKHAzipJNOwkknnYSXvvSlbXelRInWI+hxQDKCm6XYuryIXVuWcPv+Ve9vVpXmQLseBwBwnCBVFHpxa0fInBvgJ69yQEmmRMRoHC8kbyySFrEFaNtSRTaMh/ZA22H7I9PParfnLdotpYrWBKki9lx0+nF7cM6jjsGfXvLv3t/YbUvAuXVlUSoxYymTs26ObCPTMgshaYy7wNEycT3kVxv6HgOWJu1rgjkyc5MszW+SVBHV48BJCqys9XzWCal9DzTvDoyBDZNHGe8BgPcucq/tWq8WZXoYa8LG+vYE0NiN1W6NTYt+5XH/+7rXYKGqsDZyjtJ9d0kImtdAOlQ3AqJzPA7iwCV7TbTU6eBujJpixzXuzT0OiMkz91jZjAND4NoHrHWfwZRUEdPfAfDHQH0P62nwnIseF0SDdMmcGeAlMKV9vtsWU66sxHps3BKlEiU2SMyzxwEQZh1YAveSVJFFtfUgJI+Da2/bb9L21ohMCdtfIPXiX+hU9GrjQUhSRRYR24RZ+DvEnrOTDt9h0H78HNkV756++lrP26RbMg4kU1AL9tOrnvEgnHa/g7zP2ckrqdp7ljweAFu5toG2/nyZI/v69gc8xkFcUm+aEOWyDA3SJeDUErSWji2ZI1M9DnKkiljGwAHgzp+HmHJZvs+FmzwDeGsCfwz6jA+AMw5TMh3WHgfASPLI4BrkVPv6gJ1e+5JUz+j8Z8F+SkmluH3QTqS6ibsU44FbbS9JFY3/rnn+XvsBOXE3h8Y0R3aThez3oe81ZmyOnJDqEZPImlJFmR4HrASe5LPk+kxZ+j7Nc2zcnUaJEhskQowDC9BwFuKwQOLAEiiRzJEtExeSxrhU8UdpO8Y4IN+DNGBndw+OP9hPHNzwwwP0dqOMA4MxGAJFzzhxL37+Mfejt59KHrGrStwxdrdg0G0JGFlLJQ1iebGDt5/9cC+Re/J9d1LblYwxLfXdc47P1dcPMQ7mxxxZSh5ZJk6kMWjpMSGBduwq6/H2/XO7W/A4YD6GEnDjgjXW5siWclXeGOz5MkUA0eNAYL1I4BGjfV+mJgHaKYPG0jkNnn+JcaB9DXKAW6a+PODPL62bIyc8BrTXhf572I7xILFO3fDfB2rN+8bomca4WlJJQNrjgL0mlOQSR4OdPJMNukeSd0LiQNUcOdPjwEvgKV0H8fyN3wMl+jGTUkWx2LdvH/70T/8U//iP/4ibb74Z97nPfXDqqafiZ3/2Z3H44Ye33b0SJdQjxDjYyBWGo3H4ri3i56aMAwG4n5dsdoxxQJeJSax8LMGy3VuXvc8eeb/70NuNjXMLqaJDdm7yPnvWw4/EG5/1EJPrn5KiorNenPb3C4kD5lzkSrB0e7UHGlvNRXu3b8KfvfB0/NYHvo7rbt+PX/zR44Pzs1a4Y1zSd7eWS3KDOQ/6gOn8MQ5cqaCVrv8McO+B4DPStXsGRY8Dw02yNP5dxsfSQqUKFLkh3QNPqojGOAh5HDhjgDgGJYNgdwwCvES6BB5KUkU25si2labSOa0FTOoZvl/usy3pmdcG5qwrI7+PSRUZmCO7z1ZqDGgzDny5vLjGvS7jwF8DucFMHLnjWTLnlj7XNYiOJ27YJu0S42002NKBTQ3KAV3GQa7HASuZLidOEnJRc4LRWEeriYMrrrgCF1544fD35z//+bjf/e4X/P4//dM/4dnPfjZuvHHcoPKiiy7Ca17zGvyP//E/8KIXvYjV3RIlWomgx8EGrjAcjaBUkeH5S+bIlomLNmPrUphxQDdGTerb2z4Db/z/HoLf/uDX0auBJ510iIl8UWzxY8G4eNDhO/H4+x+Mi795ExY6FX7lCcfjpT9+fypINBptmyO7gKy1trdY7bvmSnTYMm/+4hcfbdaeVGlsLlWUGGNMnxX33g7O3coUdRZCYl2YMg6kamujancgZBBup+fb6VToVMBoky7ziv0MugniA2s9D7xhXYPQM2gpFyVVHUtSRbTkiZDAFRkHlGrzhEwNW6pIMkdeG4wBvlxWCjSXPmMDlzFzZAb7KaXzb2GOPNZ+Crg29jiwNCbOrTbXvAd+8UDcGFeb9ZKSKrIefwDQHRmDUjJR8xL47x9Z8YCVPJLNkePPYEkccKLVxME73vEOvO1tbwMAHHrooTj//POD3/3Od76Dpz3tabjjjjsAjFOg6rrGXXfdhV/6pV9CVVV44QtfyO14iRKGsTUgFbORzRBHI5Q4sJRqkj0ObK//Lz3+ePzvi78z/P1pDznMpN2tAcYLwK9yTUqEGD8DP33a0Tjt2INw2/5V/MiRu03A87hUEf8ZqKoK/7+ffwQuv+6HuM/WZRx10FZ6m6ORusds0NzdtImMA2a1s/CM+YyDjQsaS4CF9QYhyvoh+6z4oJksVbSRpQvdZ+DAmi9TY21Q7VfW8drPYRwwzZGBPiA6OubcxIF1EcEBYR7mMQ5k0MgygSmBd5JMDus5kK6BbAxMAI0ToJWn724A2q0OGQd8g+4cc1r3I+1uxMBrC8mu0HtwENbJIxeoZlY7S2wjN5jn7zEOAokDZtV9SirIS+STpYrWejXquh7uAemsJyl5GfEZAbisk1DyiLU2H/isjLMsbOeAEv1odafx0Y9+dEivO/vss7G4GM5j/Nqv/RruuOMOVFWfDlvX9fA/AMPPfu3Xfg3XXHONSf9LlLCIcOJg4wIFoxGUKjIEjSWPA/ZG3Y1ffsLxOPQe2ZjlxQ6ee/oxJu0uL3SCGwE2cJ+qXmvjGTju4O14+NH3MVuURBMHRs/A4kIHDz1yt3nSYNB2LJjV3lL7krY31RQ0Y5xtZPaTVG1qTUmOs35sfV4GVcZuxd1Glipyn4H9wjPIPH9JLsozKKcyDgSfE2O5LvceuKwn9jPoPmf7hDHAehcEPQ5MDar9MWAF3EvH7Qbap3gcpKrNyfr+sr72QDLOASwJ85DnLyCAhGzgsgnjwMbjwHgMJMyRmfrqOYwDpjm0ey5hxoHz71Qr3p3EwZpx4ijicwLwq92l442eM90cOdPjgLk2T7F+2vB+m8dobadx44034qqrrhpm6572tKcFv3v55Zfjox/96DA5sGfPHvyf//N/cMUVV+Bzn/sczjrrrGHmb//+/XjTm95kdRolStBDMsYFNjZQMBqH7w5IFRlW2UoeBwfW/I0rM3ZtWcI//MYT8MfnnIpP/NqP4rEn7DVpt6qq1pJXKTBmHpJnscXPPLCOUvMcO3niUqRlc2SmREV6jG/kypocU9Q2PQ7oPi9CtTuwLpVh1Y82w30G7lpZS35HM9y1hmjMa+1x4GqrG8t1+YwDW6mifYbMLwk0qWvBZ8KUdeJLNQG8+yCZM0vgEWMeSulrs98HVVUFpUosmEd5jIPxz7TZsLF74CVRCY9BSq7JnQ/p5siJamfN9nP05T3WjWbiwjmXXMaBZvLE3Qd4iRvy/ZfmtdHEKdtzKJa8lNoHlM2RM+TSAHYCLZ68KFJFNtEa6nL55ZcDwBDwf+QjHxn87v/9v/937Lsf/OAH8fznPx8PeMAD8NjHPhYf/OAH8WM/9mNDBsJFF12EnkDlKlHi3hgh0HYjSxOMRkiqyBIo2SF4HEgVb+zYvmkRT37wYTh27zbTdkPJK+tqW7/9jb8wiIERlsmztmLv9mXE1p70Megc39ocOWcDtJEra7JkWlpkHLAT+L4p46DS1WUchCXl7u3hPgN3HfATB+YeB871Z3qtSFIt7Apbrw8u42DVPX9bxoHEOmG9C6Tnv1cL+vaGHgerXb/in2lQ7a41+okLn3XCaD8kEzIIpr77IEKglWuS20biRPpMuxv+/Q+Dlox1qcsmWnUTB9bmyIlqZ80kou/xk8M4UWveu5ZBxgHxOXTnAJdx6SevtD0O/OON3ge2z4focZBgHKhW+wtzkGvILvVDc12QkqwrUkU20Rrq8L3vfW/485FHHolt28JA2Mc//nEA/Qz64x73ODz2sY/1vvPqV796+POtt946TEyUKHFvj21zbo68dXkRu7b4wL3l+UuMA6nyeKNGW8mr1EZ8HoDz2CVm0OJnLTYtLuDg7ZuCf6dXfCcAM4DscTD3jAO/0syakhxnHLDnQJlx4Jsjb9wx4L5nLE1h5fb9am9rc2SvupPOfIkzr9jv4qXFdPKIdQ+k4671enCVeiw9DiSpICrrRpLrMtC2B5rLdDAug3/+A+YX/x5IiUs3PI8DslTKWvT6WyRPrM1p4+A9s+Lcv/aCxwExkewljQTAmN2H5UX5+Ru2TV4TSs/1yhjjYPxv2tOA9H4dHQfsxIFoTmxs0i4lL2K/zwM+0Ea0dlV/8IMfAOgnAw466KDo97761a8Oqxie/exni9977GMfi+3btw9///rXv67Y2xIl2ouQOe28JA4AmXVg6XEgvTSlyuONGkHGwSIZrEh5HMwBcB67BpvmZA44YrfscwLwF4duJbPMOLAzZpViIy+QfdC0ZyoRkjo+m3EQ0nV1zZE3beC5MKean3n+EmjkVzgyEwd+tTNTEiCnD65Uo7XHgWxSb8c4WOvWHnhpPQb85JWdXFffpN4mcSHKdEQ09hn+YyFzVk8miWEOnSVVw70GMeDeQiKkqb65vjltHLxnvg/cxGWv9u83k3XjLn9CMjXMPniMgzX3+rMTBympIuf+Kz9/0umMJe/I5sjSHiOH+cT0WfBYR8ZM5HmN1nYa+/btG/68ZUsYFLjkkkvGTJCf/OQni9+rqgrHHnvs8PebbrpJqaclSrQbW0OMAzJoO0txmJA4YJuipqINqaK2YlY9Dlz9+Y0YsQ3IiYduD/5tI8V9I4kDe8aB/9wz16cLnSp5fHa1cZvhaatKoC359GNgEHsOdMf3YLPoMw42buIg5xnngqZ+taNldZso10U2Q3XDvQeeVNEsmCMbeRwAcvLGUrKu2+15Ug2mrBdD1o2UELKueA+Z83qsD4oxsJy0GA128sSfg0Z/trj+cX1z9nwoMR8HUde1x/jQlWiJj3+Aew+kpKEoU0O8B6HE3bBtusdBXKqIzT6TfFZSHgdMY2JAnoeYYyDFOrL2PpvXaG2nsWnTuvTAXXfdFfzeZz/72eHPe/fuxQMe8IDgd0flju68884pe1iixGzEliUZtJ2XamMAOHyXDxy2nTiZL6mi2fQ42MiV1oMIXYPtmxbxkPvuMu5NO3FEwCAd4GqLA/4Yl0xBWbrSwzYS57iRF8h+lVHPMwJcYCcwZ0mqqGcnkTErkTq3hU5lalAuV3sbgsaCOTI7ceAe35sH6R4H48cXEwek9UBIKsdSU1mSirFMHkpyOS5wxHoXS++3bgQ0Y7wP/TkgYI7clseB85G+VEq44t7i+ktybYPo9Wq4OLZ2H7znL2KMC3AlWgCf4cBMHEljSSId+DI1al2IJm4A32vEwuNgTKrIIJHfRC6sU+kapItzsNNmXXPfiSmfEd/nY+Pui9qM1nYau3fvBtAfaKN+B2588pOfBLDubxCL0QTE8vLy1H0sUWIWYqFTicmDjQwUuCFKFbUMGks6yxs1ZtXjYB6kikJ0y9OPPYgOms9KxKSK2IyDlESGxeI09Zxt5AWyJFFgaUoKAEsxc2RjbfnVQKUrWzKpzUitdeisI+H4LnDOlMuSnm8XNGZLFaUSqGy5MN8cedzjoFPxpAlCwJ0p40AAjSylinzg1Pc4iM2Tmm0DDnBtIlWUNw8z7kGIdTYabgW4djFDLHnB1DUPtx++/4w+xO6BdD805wK52tsFTcf/rvkoSnO75LPg3gbNe+Cus9z3Hzt5JTF/R599tlQYIBvUr//MBc1zPA6kZBKXcTDeoPs+Yq+J5jVa22mMMgfuuOMOXHbZZd53rrrqKnz5y18evgCf8IQnRI958803D3/etWs+KjFLzEdsE3wO5gE0HYSUONjIZpCzFiGDbnaVYWrRMQ9SRaEF8KOP32Pck/Yinjiw1Zh3ATOLBG7qOZsnxsGaVOlL3iDEQNHZMUfeuOuB1PhnJ7Cl4/vzgB1oDPgaz2w9X38enC2pIipoLtxbmfVh57PR7dWeVBFzPSYxn6wYBxKTxFyqKCCV4upsM+YBKWnjBvudGKt2tkigxTwOpIp/7cKymFyUW+kM8I1pU8awqu0LY0nIG1D74BZGuIxLE6+RiEG2zRyU/wywzcHd9gE5mWQpV+UxDuYAH2gjWttpPOxhD8Py8vIwKfDGN77R+86b3/xmAOuZ9B//8R8PHu/WW2/FddddNzzeMccco93lEiVaC0kqZiMDBW6IUkVzdP5tR1sG3VVVRTchbbNOLCK08JqnxEHM48AasNq/6lKi+YvTHKmWjRrSBvDAmu09aNPjQJIIAYCVtfFN0kY2R04lBqwNqgGfeWTpcQD4zwB7HnRB8buNzZHdMWCZOBCB667gcWCYPFrt9rzkITOBJsllWZ2/BAC5UjWjwUiihTwOvOSNgceBq+0NCBXnyt1wn+9e5PozALuYx4EoFaQt1RQBbSXGgSpgKs4/hlJF4vNnq28fA40tpKoAf35dichVWfisjLF+3GuvnDjMkssSkklM5o3HOCAbVJfoR2s7je3bt+NpT3va0Pj4r/7qr/D85z8fX/ziF/GVr3wFL3vZy/COd7wDVdXXDz7llFNw0kknBY/3xS9+EcB6kiHmhVCixL0tJKmYjSxN4Mbhgsa5ZMxjGXu3b0p/aYNEiHFgkbyJ6ovPwTMgLbx2b13CAw/b2UJv2olo4sDYnPbuFd/jgB0pCYiNnECTNs1utXWbzCf2HBSSyPAZBxt3k9Q240B6vva784BhtTfgPwN0c2TP48B2/PkeB+NSRczrH5JpcAFcS4+DriBVZJu48D0OWB4TKY8DF7hlAEZexXPXzuMglDweDbZUSsxjwOL6R6WSyBX/gOxzM2xfYICwpYpszZHzGAfMMehe/9H1j5y44UuGrbbscbBqmDzNYb1IySTNfrj31J17LT2H5jla3W2ed9556HQ6qKoKdV3jve99Lx71qEfh1FNPxf/8n/8TwHoi4BWveEX0WB/60IeGPx966KGFcVBiQ4WYONjAQIEbklTRzXeumPbhrT/zsLHfX3fWg03bbzNCjAOLMRhLTmxksGwQ0sLrUcfuoUtTzFLs3roUNImn65u3XGkLpMHpjbxAlqrd3Gprhp7saMRAALrHQUCqqJgjrwe7iEKaY1zmEVXffgZZNweM50F3DnSxIqoxsAia2HocSMClW3XMNUeWpJIcmZ5FzvlL13XUDNWttrY057VgfeRIFTErzqU+jIJ0FqakUdBWuB7qUi0xc2Ry4kJKHKdAU837Lx3LmnHgvuNHGZdSXzhyWQ2kiow9DtjvIundkkpeaffDLV5wDbEtTNpLtJw4ePjDH47f+73fQ13XQ4mhAQMBWDf3eeYzn4mf+qmfCh6n2+3iAx/4wJCdkDJRLlHi3hbbNs23VJEk1XTznQdM+/C0hxyO857+QDzppENw/jMehDNPPsy0/TZjZhkHG7jSehDSAvQxJ8yPTBHQXwscIbCOAP4YTJmCWjwDqTY28gJZYlu494Av09KeVFHIlNEDrDYw+yo1z/PlotIeB0zmkzS+zYF75/wOeIkT8nOQGgPE8+90KrivYdFrxZBxsNb1PQYskyeixwFpDKSqXT3Q1NDjwIRxEKn2HwS74jnqceB5fcwA40CbcRFjHJClikRzZFcmxk0ckRkH0jX3JKtUGQfhxBFbKmoQblIwao5s7HHgXXvl9qXDpZJX/X+nyThISRUVxoFFtL7TeOUrX4l3vetduM997jNMGAD9BEKn08GLXvQiXHTRRdFj/Pmf/zluvPHG4b9/+tOfTu1ziRLWITEO5ilxIIW7cWfHQqfCC884Dn/yvEfi+Y87dpjYnIeQxh9gIxUUAwVZFW6zFNfett/77NHHzVfiAAgbJPM9DsaP70qUWCxOQ2wLAKgqvjFqmyEBsubV1i0mDiRTUsCX6tvI64HUPN8K48DT2LeVyrFm3bh9cD0e+IyD+PHZknWSxr0l40ACj12pIkuD7rVebWIMDPQLB2JV9xYJnJBknFvtzBiHPtvDr7B2cVztS+DKhPQiwDmH8REG7l3QVPr+tNEmcC0znsbbdLug+ShK60sJJHaTCZrr0pjHgSgVRZiL3DGwEpMqMpDrWoskz7TnQMlv0J376IwDbwwUqaI2Qi4jNY4XvOAFOOecc/AP//AP+OY3v4n9+/fjiCOOwJOe9CQceeSRyX//b//2bzjrrLOGvz/jGc9gdrdECfOQKr43MlAgxTN/5Ah85KvfH/7+X3/0+BZ7M18hMT4AmzHYpjHpLMRNd/jMmhMO2d5CT9oNyedgsVPRE3g+48DWlBQIJ+6s2m8zZNDUFrSM6eWamyMPPA4c4HgjmyOnQCA660PyODA0R87xOGDPA55km8e8sp2H/b/zz3+1u37OXZFxYGtObMo4EOYhC2Pg9WNXY9d7bUyqaPy7jCRaUDLOTd4YyCS5bQJcqRqpD3HQkpE8CUsFScC9ujlyRF+dnbgYJM5G77H77Ft7HIiJAyefpTkdxRIH0v2nmJQ3kSoyZh5Z+IwsLlRRpo3I/FG8Dj7joEgVtREzkTgAgOXlZTz1qU/FU5/61Mb/9rWvfS2hRyVKzE5IGvMbGSiQ4iVPOgFfueYHuObW/XjSSYfgR++/t+0uzU206XEQWwDOQ+LgrIfdF1/69x8Mf3/8/Q+eK7bLICTGAdsUV2rDlYixqGqRpOos228zJEDQBU7aZBwsk1lP7vwXNkfeuHNhChRmMw46nQqdahyg9BMHLTMOjJlX1qyfdOLAmHHQ65kCFdI8YCtV5DOfLGR61tuvMFpCsRZIIgy+qx0hc1yLe5CS6AD4PgMx0M6XCFFtGkAicWEgVeMxDiLnDzASF1VUnovpcZFjjAtwzZE9j4MIaA+wWEcR1kPLHgcmUkmdDoD1Nt11uOS9wpWrSvh8bPC9UVsxM4mDEiVKhEOq+N7IQIEUJx66A5/89cfj7pUedm5ZnEvwtK1o0+MgzjjY+GPgaScfhvd+/nv49o134qBty3j1Mx/UdpdaCSlxYOFxkRrjJlJFUcbBxn4P5Jwf+xrE5qATDtlh2nZIqohhyjkrMaDJSwANYHPuiwudsSp/r+LfUCam377DujGWKvJBc+49SN1jdhLZrZxc6/qMAyZQIQG3llJFklSQq7POXA9GzXm9SmcLqaKBxwFfqiiUtBgNJmgLpIB7N4lomzyxAI5j+vKSdJT2fOgmzixlWnITB55UkWbiwHkGRt+/7loI4CQP3UK5qFSRgcfB6BiwkM1LrQHc5JX0b5jtF8aBTZTEQYkS94KQPQ7mb1LctLiATYthEK0EJ0JSKWxdYSC+8NjooCkA7Nm+Cf/v3Mfh2zfeiWP3botWn2/kkKSKLDw2UvOsRfJsWyRxsNEZBzmLf/Y0ELrGe7cv4/972H2pbXvmyAGpIotnoc1YWuhgrSf7GlkYQy87iQM3mO/CgTnv6L7crfhnA+dtJ1BnjXHQ7c2Cx4EdcC+B16trdomLaLUvEbAcRMgc2cLnQTLGdsOTa9I2R40C9+PfNWF8jAL3BubIbjJklOUi3A51j4n++Ft//7ljgClVJV1La9ZLk2p/7bYHEZMqYifugFTy1IJxIBexrP9O9vrwrn/iGdjge6O2Yj4RiBIl7mUhehxscKCgxOxECKy2kSqKyYTMxzOweWkBJ993V9vdaDWkxIFrUMqIVHLKArgPeYwAG7+qRpKJcYPOOAgc/3VnnYz7bFs2bXs1pK29wQsJFhcqYFX+m8W5p4B5vsdANXbP3SQG2xw5dX7sxEXq+Gz2mWRM6VdaExMHGR4HzHkwx2uGmTwLgWZ1LXlNEIDrgDmzC14xkjexav9B+MkTbh+6EcYBA7Dzn7+wTIv0/WnDvf/j1d7+PKDNiHffce6Y98yxFc9fSlxLyRomeN7UnJrxHMb6wPR3GEQjnxGSx8FY+wnWi3Y/UvOgZSJ/nmM+UJcSJe7lIWnMb2RpghKzFaGKZxOpoqjHQVkYzEscumuT95mrM86I1Bhr2xx5ozMOgDQgxTdH9o//9Iccjqc+5HBqu4AkVXSPtvYcmSMD8fXOsgELMQXKsucBdwz6XivU5pPPIPv8U2sNeuLC05e2ZRx4Fc/d2kseMv1WpPeg+/5lGAMPIgQaSQllCmgXkAlx7wFjHEpJIzdqMnAYq3a2eA7cY/bqdaDabb9TQR24j1U7WySu3GO6TBcfOFZuv4qDxmIfNBkHzvpmdP0jPQ+MqSjOeuAnkb13kPEYlN6Bsd+rSjeB5fvsxKWSGJJpJUrioESJe0VIwNG8VFuXaD+2BhgHFomDHZtj1dblGZiXaEuirG2JDiBujjwPVTWpc2Tfg2P2bB37fdeWJfzuWQ+mtjkId/x1ezXqusaBOTJHBtr3umlbssytqD+wytcVH430M9i2x4Gtz8lq1zdHpjIOhIprS6ki6dzudsYg8x6EZEJkmRILnwHZa4bBfJGMqd3wQTtl4DxS7etWmlvIxIz2wYRxEkjgS+1zEifNZFr45tgS48D9N3rtex4HEcbHIoHxAUiJg1jyjDAPNBiDFskr95zZz4E3ByXMmUtdISc29k6jRIkNEssLksdBeXxL2MSWpQDjwCB5df9Dw+ajRa6rBDuSlbYGq9PQ8wf4pp0bMZIyKeTEwUmH7cBPPeIoAMDurUt4x9kPx97tPgOGEdK5SfrmG72QILbesWBbJKWKjM15PcYBeRpoW6ppKVFNz5ZNlIAzF6igGmS3LFUkPX93u4wDQ4PwQYWvaMhpCBpajAHJmNoNF8e1BI5dAJEikxIx6LWptg7fA699C5kYt9ra2Bxbkipi+iy465sxqSIXMCa9i6JySW3MA9bJK+8dZJu88p+BRPsFI6NE8TgoUeJeENJLqMi0lLCKhU6FzUsdr8LMwuPgAYeFEwcW7ZeY70hLFRmYIwtSdZbttx2pJDlb372qKrzp2Q/Fbz71JGxdXsDmSCJHO6T7e/dq19M03uiFBLHzszj3tplHMY1xgL9JblsqKNm+MeOi73FgJ43gtr/a9RMXqeTKNCEzDtzEgR3jIVRtDgCM2+Bf/949/TDwOMiQKvKBY90+NDFmZRQzSOOvf+0XjPTdw6wPTyrJOHEB8A3CcxgHVKmiiEyQlWRcrA+rFvNARCrIwhhYegeNBjuBmPI4cMffPLCx24iNvdMoUWKDhETTLh4HJSxDNOg2GIMPPDycOJgH0LTEetxn65J5m2nAir84jZkjz4PHQeocLVgfAHDQtmXTpAEgn9s+wRR8o68HYgk8i3NPSZCw34WpZ4ABlo1G26yftFQRm3EwWx4H3V7tsU6Yz4E0/l2PA+Z6LChVJDEODKRyBlIxKwYm9R5gJyUOXOBYXSYkrC9uwjgQrutgDFhIJfnV5mHQljEGQlJZg7BmnIisF+I4cK/pSsTjgCWZFpMqckF0k3lg1OPAIHkmvYNGw/cY0GYcxOW6LOahEiVxUKLEvSKkRRNb07VEidGQDLotEgdFqqjEIB5z/F7zNtvW1wfi5sjzUFXTdrV3m5GdONjgc2EMlLR4D7Qt1ZMCZenmyG17HCTuMTt5JGmcWxhihtvv+fIYxHsgVZHvX2lPqihkEt//LsPjQAbvXfCK0bYP2AkeB+YV5xHg1kDjH1gfAx5gaOExEGEccMZAHLj3GCfqiYM4aAwIY1CxD+78vtarR8yxfY8DRsSligzmgQjzqI3kmTvu2ZJRKcaBxTUoURIHJUrcK+LwXVu8zzY6UFBitqItxsGOzUu4725//ANFqmje4pVPPWmMgv/ffuxEepspUNKi2r0wDtqttm4zpErffStr/vc2eCHBpqXw+VkwDlKFGq0zDthSPS0zr3ZujrPN+IwDF7jrGTMOfODQM+YlShVJ5+ZKFTHvQQi4dlkXAGdv5FV8D6SKDCqNlybxOCAnDsb01cmVxqFjDoBTG3Pm8D1wQWMTxour7+5VnCu3P4HHAVOqCFiXB7IyqY9KFbUxD8RYPxbmyEmDbt15OPYMAjbXoERJHJQoca+IEw7ZjocdvXv4+5NOOgTbNxWLkhJ2IVU9LxM3qqMRkisqUkXzFUcdtBV/9oLT8RM/cgRe9uT741efdAK9zZREicUYnHfGQQqQ2sgbhMI46McxB20N/s3i3FNJamuPA799avOtP4OblzrRBBGbgStVO1pWOErtu6B56l2l2T4Az/OKa84sS8WsCIwDhll6CLTy7gFhHLqVxi5ABvjguXYu3R3bo+11DcxpJSB23WfCov18jX0LmZqkOTLdHNt/7pg+G1IBT9Cg3CxxMArcO3MhYx5wWS/dMOvHxCA84TGgfQlirB/AH5MbeV/QZhTksUSJe0m89/mn4U+/8O9Y7FT4uUffr+3ulJiz2CYkqqyA+wcctgOfvOJG7/MiVTR/8ZgT9uIxJ9hJFrUtUQLEzZHnYXGcTN5sYOaRBERJiQOmTMgsxAMP34m/+cr3xb+ZMA6SHge2Fe9usA3CU/Mc+/yrqsLOLUu4+c4D4t/ZY0AyB7WQKAkdu9sTzJENK/4B4O41O6mikDmrlDhgjAX3HbQSMEdmAIYpwA4w0BefsWpnYH0MmJgjx87fIHGSNEdmG9Mmqr0Bn/Wi+U4SE0drPWCTMP5I81BMqshjfxnPA37yii+X5Y45F7jXfh82fQbmoaiqjSiJgxIl7iWxc/MSfuWJ/ArbEiWkkKqereQxHnDYTvHzjQ6WlWg/ZkFfPyZVNA+sm3mWKpI2P/sFqaKNbo78wMPldwBgwzhIJxDblgpiV9yn5kH+Pdi1ZTGYOLD2mOh7HLhVvsT2hapzX6qI14GqqrDYqcYAKt/jwC5xMujHgTUXrKrUq62BMHBqkbzxk0bj51zXNRW0BeKgoQvcM+aimMeBx/xh3IOYVBEZMAUkc+R4tbf6/a/ioLHUB8218aYFf/85mP/c54HFvGpbqijmcWAhlxU7/35/xr9PN0f2Ehdc1k2JfmzsnUaJEiVKlFCJzUstShUdJksVbXRd7xLtR2oDYONxMOeMgzmWKpLOzWUcLC1UqDZw8gQATgrI1QE274G2E4htSxUl50GDZ3DXlrDPAVuqKM/jgGhOLLTvJQ7IyRu3D/s9jwNi4sADbmWPA1YSMaQx794DCmgekGkahCA3rz4fuMDxmMeBQQJtoVN58kuDe+BVnFMYBxGpIlcqhwEaJ/Tl3THAlirKkctSZRwIe81B0tBK296bAyI+F5TkUQPGAeN93JRxYG2ObOk5NM9RUJcSJUqUKJEMCTixAu7vt3ebWFFbEgcl2NE2YAgkGAdzwLppu9q6zRhU+o7GXYaVvrMSh+zYjL3bl8W/mTAOklI97Zoj06WKZmAejCUOUh4U04abOJEkciw9Drq92q9yJRdyuGPcNUdmMkBDoJF7H1hzgTu+BtfepNI4BdgJmQPtRLJb7TwAievaZ96w3schqRK2vj8gM34GYSGR4o6rVLW1euLI9biQzJGJjAPRHDlgUM6ah905YCXic8FJHuV7HLQhmcZnHMSTZ5aeQ/McG3+3UaJEiRIlpo42EwdLCx0cf8h27/NSUVCCHelKWwNj1sVOsB/zsDhOgqYbfCXrbphcqaKNbow8iJBckYVkXUoGhp3AS73r2O2nnkGLezBLjANXIgfgrkckqR4LXe3RcK+BC5pbMi5CHgcsybZQxbkLXjHugcsk8YxxBRBXXeM+ABoKhee0NUloDFhUGkdlakyMcRP67mSfh5THQV3XHutBcxxI93RojmwA2gPxMeDOQxTJskjyyOIZ8N5BzhhwJbus5qDQ7/OwN2oj5mO3UaJEiRIlpgqpos+y0vUBh/qJg3kBzEq0FykwxCp5tUWQCrNsv82YheRNm+ECR75U0cY+/0GEEgebDN4DKUDSWibGDTbjIC0Xxr8Hu7fKjBPAInEzfn4H1nyDciZQ4VZ8S1JF7HmwTdk+XybkHqkiI8ZBCDhdNak0TlXa+v9G3+PAN+cGfLCw/10ScOslUPptu4kTxlwoMX6knwGSOXJAKmsQbNZF6P6Hfgd070NVVd47OORxwHoXRaWKDMyJY2PQwuPA91hwxiDboD3wDrBqv0Q/5mO3UaJEiRIlpgppQ2ZpyHmCwDiYF8CsRHuRqjRmGPFJsW2TLFc0D4vjtDHrxr4GLhjlJg42ujHyIE5q0etm26awzwjAnwdSgCTfY6H9BOrOqFTRDDAOjKV63Ip/tudUm6yToFSRkceBV23cs2McuOPKBWklxoE2dure2iFoLyQtWHOBnzzrn7cv08JnHIyCxhZyVTF9e0DwmVA3Rx7/PWXODOi/kzy5uAHrxwXt25AqsvA6ibBObBgHiYp/smRUSrLNwuukREkclChRokSJjBCliozMkQHguIOLVFEJ+0htQqzGYMggeaNX2wM5xrAbex5wK632FamisbA4/52bw6A1wJ8HUlWU7ZsztyxVZHz+B1atPQ78il9rxkHq+MwEXvtSRQHGgQFoLMlUjYYE2qoDx851HSQMJMYBw2MACFdcm5gjux4XI+dtUfEe07cHfMkofWNad/5Js16074P7nl9dGzAObCrNo3JVJl4nYdaJRfJMegfFfmcnjtxr3jUwKS9REgclSpQoUSIj2vQ4AICH3HeX99mWAJhaooRWzIoxb8ggeaOD5kB6A7DRL4GbvJpXxsHxB28XN+QW76FYtbtFH5LAfcvmyBab9DY9Dtzzk6SKmO8CD7js9kzkMWJ98P5OPH9XpmYAGrmJA5Zsmcs8HAC3FsmblFRRLYG26sCxW20sg7bSd/X6ICdQTMyRnbbrev3cPdDYwBzZbZMt1zSJQbf2o+DObyvDZ9AGMI5LFfF9LmLMIwu/Gfe59oB7slRQUi7La38+1sXWUa5qiRIlSpRIhlTVaVnxf9RBW/H4+x88/P1Rxx2Evds3mbVfYj4jra/fNuNgg6PmiG/CFjsVqg1OSXbPf7/rcWDI/Gozlhc7OOEQX65oFhgH7McwtQmna/zPgM9ILHHAlypyPQ5sGQcScLfq6fu3yzphShWF9LUPWEkVdVzQ0s6YNSURIoG22q/EEHAsJQ6szJEHYK2FSbg0ttc19vkV70ng3uuDbvsxY16pfUA/eRGq+LfyOPCTN7aMg9g84F8De48DOuPATVw47RepIpuQS9hKlChRokSJkZAWQtaA3TvOfjguvPQa9Ho1fvb0o03bLjGfkdqEWnkchBIHc8E4iJwjSxZhliLlcTBPXi8PPGwHrrjuh2OfWTAudm4Jb5eWFvjJqxQQQTdHngGfkTjjwFiqSPI4IF4D3xi2BsCvMm1yfCbrI+hx0JY5cq+HXq/2wDLGXDSJx4E2aBa6/mLigDQXhQyq3WeRwTqRxvbgGlj4XHgeCy5o61ZbGzMOagOPA/fZXlkLJO9oHgcy4wGwSV75zKOIx0EbCUzyfWiePNv4e4M2oiQOSpQoUaJEMh5wmKwvbRlblxfxgscd23Y3SsxRpDYAZoyDgDnyPOh4xgCruWBceFJFjsfBHCUOTjp8B3DZ+GdtMw4squ3b9jjYstz+PNimVJFvjuxLFVkzDlyorm2pIpYpKSDI1ASkilhzoZu4W+vWXsUrQJIoCcg0DcKV6gHspGpc8BDgFVOEPA78am++TAuwnjDwKp0tjGkTY0C7oMJNRLTDOJAr/j1te5ZUVkyqyKAPIbkwu/bD5w9YeByE269rP4k7D3ujNmJ+dhslSpQoUWLiOOOEvTj+4G3D389+VKn4L7HxY6FTRWn/Vjqa2+aYcRCrtp6H83c3bJ7HwZyYIwPACYds9z6zGAMxjwOLDWrb5sS7tixH/25xDXZvjUkVGTMOBHNkZvJEkgrxqt3blioizkMhqRQzxoEH3vc84Kz/PQuZmrgxLkAAjhtIFVl5HKwaGmRL5zRIWFgAlm4yJgXcz4LHARs4Xg0kbljvophUkcsAoSSvnGOO3gMftOczn1JjUN/jIJw4EefAIlVEicI4KFGiRIkSyeh0Knzglx+Li750NXZtWcKzTz2q7S6VKGES25YXceeBNfFvTF3n0QiZI1uZM7cZsQ3IPCQO3DE2r+bIAPDgI3Z5n+0IsHE0Y+fmcBsW1fapcc5PHMQ9Htr2OKDL9DjPmLXHQc4Ys74GfvuWjIv+9V/puklUOcE+bfhSMbWYOLDQ18/xONC+FaFqf4tK80GExoAnE2MmVRQw52WYIwuJq9Fwb4O6OXZKLksy6DbyOHBBe1Yxj7vOGrRf13UrrJfVmDlzCwlMtsdASKqs37ZtIn+eoyQOSpQoUaJEVuzauoT/+qPHt92NEiVMY+/25WDiwAq4nmePg9gmbB42By5o4UoVzZPHwaE7N+PHH3Qo/v7yGwAApx97EA7ZuZnebpxxwL/+ScYBuboulTiwmIc2Ly1gebHjVRgD9h4Hd6+OA9adiuv5lJMUYFb8A+l7zJyHfGPMdqWKur0aB7q+XBWjkCCmbQ7IUkX61b6Sx4actGC9kyW5KGBcax7gjAHpvq4NGQcOaDsDPhf6jINwtTsQSF4pXwbP4yBkUG4kVbQaaL//XQvgPsw4YLQfmoNDfVBPXkWSZ2Liag72Bm1ESRyUKFGiRIkSJUoEYs/2TfjeLfvEv1kB19tCHgdzsDiOneM8bA58j4P5lSoCgLf+zMPwF1+6BmvdGj99mg3zbUeEccDUdh9E24yD5cUOti4veGNvEFZ6wru2LOGmOw54n7NZN77HgVvhSW4/4/qyx2EKFGeOAQ+4DHkc0MyR/ePevdKOx0GOObI+cDz+e4xxwJqLfKmS0Bjg67sD68ClC6Ba6Nu7Fe4+aMtt3wXLLZJXnjnxmuxxwBp/IakikXlEeB9IrKf1vvDHYGgOHv7OThxEkmeS38w87A3aiJI4KFGiRIkSJUqUCMTe7WF9byuPgy1L88s4iIFm7ErrWQh3w7jfAW/niXEA9CvPf+7R9zNtc9PiAjYvdXC3pG0/C4wDI3PiYOLAaB4KJQ7Y98DzOHDMkdnXPycpwJ4HUu86ZvIk6HHgVJtvonkc+Nd//6oN48A/9wyPA6OKcxc0ZTJvPHPWwBiwkIsCRpInHmhroW/vjgEu48A9ntt+m+bIbhKDJR8akkqSTdItmEfr7c6Dx4GXPBtpz0o2rkQxRy5RokSJEiVKlAjG3u2bgn+z8jjYtklOHMwD4yBWvZVTiXtvj9SGjW2KWqIfOzfLcj02Hgfx7ZqFEWCbHgOpPrAZD+484zMOyO3nJA7IzKNU8oL5LvQrnvvX370PLMaBdFxXMg4ggcbOuffq8QpvGbTl9mHwDnIBa8vkUXcA3BrIVVVV5T2DgypvFzhmzEWpin+2OXKy/TbMkQeMAzJgHWy/W6Ou7bxOQj4jgGTOzB+DXvLImwu4UkVj59/1kzdWe7N5i5I4KFGiRIkSJUqUCMSeSOLAquJ/S8Ac2Yrx0GbENuLzYA6dOsd5MkduM0I+BxYyPW3KxAwiljiwmgdDfWA/Ax7jwGGesBOYOfNc28kLZoVnSN/byuNAZBwI7BsLjwNgHLitDUDbkDGqCyAzX8dBqSIDc2QgnLzy9OVNpIrijAP1+++Ma1eaSJQq0mYcLMoV/74xsI3PSb/t2rsXoe9OG6HxD/gV94z3cax9QEheqSeO/HfAYO5z5cIAGyboPEa5qiVKlChRokSJEoE4OCJVZOZxEDBHttIWbzNi13gOCBfJMVYo2TaxM+BzYJG8SnocGDAOdm+NGUS3mzjgmyOP3+O7HakiOmif43FAngdSx2feAw+0nQGPA1eqaLFTUWR6pOs+ZowqJA60+xFK3HjGwEzGQQC4dIFbnkF2wBzXQF/elypygfvx72uDtpMwDrT74HkcBK6/FeMA6I89KXHAAK3d9scZB/bJK/e6sxNosQSqxDiYBzZ2G1F2GyVKlChRokSJEoGIMw5sllFbg4yDjb84jm3C5oJxkADk5s0cua1ok3EwKx4HobD0OJDbJzMOnHvs4mTs65+6vp2K34ck44AqU+Pq2/eBIrfanDUXShXEXuKANA9I131UHsdCqiWcOIh/TzNC4Lld8kjWmPcq3g1kajxzZJdxYJQ4GoSXuCAMAzdxMADsLRgfQChxIEsVccyJw6wTG4+DePKKPQ9J139w7WXWR1kXM6Jc1RIlSpQoUaJEiUDEPA6sALOtIcbBHCQOQtrywHwkTlIboLJBsokwaN2+x0H7iYN2PQ7Yesap60tPXMwA6yjVB1PGgblUkcA4MDKpl677qCGvm8RiTAWh6++C5tTEQQA4XXGAW6sxsF7tzE/cNAdtddt3ExFuhTtbKgkAlhwvp8Gz71Xb08yRhQRet+c9A/3vWnsc8A2ifXPi8fNmzwUy4+AenxPBpH0e9gZtRNltlChRokSJEiVKBGJvTKqoZXPkeVgcH7qzfY+JNiMF2BXGgU0EzZENQNvQ8z8IbVkIKXZvDc+DVibl4cRBu8B929X+Fj4nqXfdTHgctMg4oCUOpErbiDkywyg9zDiwkYmJ9cE1R2YlEUOJi1ZA24THgfYYcOf3VOKCMQZ9qaiQOTJpDhDmltVuDytrNqC1z7oKmwNbso7Wf3e+r23QLXlMhOTCSjENLcqVLVGiRIkSJUqUCMQsmCOHpIrmgXFw6M7Nwb/NReIgsQkq5sg2sXOL/Ayyq90BYPsmue1BWMwDIakmq/aB9jwOUmAU+/yrqoq2YZHATl0DZuIgpC9vJVUkXf99KzY+F7FKW4APGkt9WAskDpjPQZB14o2BeJJ14vY9qaIQ64IhE9Os4l97DMSq3QFBKokwDnyPg0G1ueuzQWIcCPd1rVubSFUBwjMYkSri+GykPA64z4HE+hpjh8RnAAB5eUlEQVT6nDhtL83BvqCtKLsNpfjsZz+L5z//+TjppJOwY8cO7N69GyeffDLOPfdcXHbZZSZ9uOGGG/C2t70NP/7jP47jjz8eW7duxZYtW3DMMcfgqU99Kt70pjfh0ksvRU+gVZUoUaJEiRIl/Ni5eTEIzlpJdISkiqw8FtqMeU8cpIBpC+C6RJhxYPEMbg8YMw+CARa6sXuGEwdMfX0g/YxZzEOxNiykikLvIACoyNIQfrXrPTI1TrX5JiL7ygXO2pQqGgXtLGRipD70erVJpfmwD27FdQA4Zr0P3fs7AIxdAJXDOEhJFY1/X18mJmXOzPVYAMLJQyvWi3RfV7o9TyaHBVrHDKp9c2SGVJI8/gfhj0Hl9iXGwUCqaM0meVMCiK9ESyTjjjvuwItf/GL82Z/9mfe322+/Hd/4xjfwtre9Db/+67+ON7zhDVhaCi+8J41ut4sLLrgA559/Pu666y7v71dffTWuvvpq/O3f/i0A4Fvf+hZOOOEE9X6UKFGiRIkSGy2qqsKe7cu47va7vb8VxgE/9mxbxtJC5W3QgPlIHKQ2gawKyxLjEaq4t6huSzEO5sbjYGvgHpDlulLX1+L6L3YqHAj8zSJxcNC2sFQVO3HTtscB0D/Hu7Heni9VRAIMheOOgqUOZggGdi8lR9eExMFM+FywzJEDBsUuaGuRuPGkitwEjnIf/Gvvgsbc9gEhcRDyODBk/qx2e55MkBXjoBuTKjKQy3KvO59xEJEq8uTCSuKAFSVxMEWsra3hrLPOwqc//enhZzt37sSDH/xgrKys4PLLL8f+/ftR1zXe8pa34KabbsJ73/te1T6srq7i2c9+Nj784Q+PfX7CCSfgiCOOQF3X+P73v4/vfve7qF0HpRIlSpQoUaJEMvZu3yQmDqyqvZcXO1jsVCab1FmLTqfCITs249rb9nt/m4fESWEczEaEPQ74139HgnHAqPB0Y3cAtAfa9zhgzwNtexwAA0CqK/7NYg6IJQ7Yz4Bfbd5/Dx4wAo37fYgzDliAoSzREZYpsWIcdIXEQRseB55UkZHXxJBx4IKWBlJFSakgbY+DGZAqcs2RQx4HrOewqiosL3TGxttat/YZB6T2fcZLjbquUVX+voDxPkyPgfHva/chKlVkxDoqUaSKporf+Z3fGUsavOpVr8J1112Hz3/+8/jSl76Ea665Bi984QuHf3/f+96Hd7zjHap9OPvss4dJg6WlJfzmb/4mrr76anzrW9/CxRdfjM9+9rP49re/jVtvvRUXXnghfvzHfxydOZA2KFGiRIkSJbRiT8Ag2RK4l6QirMyZ245DAgbJ85A4SRqjFnNkkwh5HFjQ4rdvCoP2VWVjjhxnHNg8hyG5JHaFYdseB6k2LCos7xMxx7ZO3ARBY+Jc6F5jK48D6bBrY4wDvlyQNL+s9Xp+IQMxgRn0uWjJIHvdmJVvTOuCpi5Y7UkFKV+CkMfFevvj32eMwZDHgecxQJyL3DGw0u35+vqkNbk0rixNyr3ERcLjgM16GW3TN0fe+PuCtqLsNiaMa665BhdccMHw91e96lV47Wtfi61btw4/27NnD971rnfh7LPPHn72u7/7u9i3b59KH/70T/8Uf/EXfwEA2Lp1K/7u7/4Ob3zjG3HUUUd53929ezd++qd/Gn/3d3+H4447TqX9EiVKlChRYh5ib8Ag2UqiAwC2CXIllu23GYcFfA7mIXFQzJFnI4KMAwupogjjwIJtAMQTB1bPYUguit3+LDAOYm1YJK9CyXPAInEjS6WYShU5x77bkyriVTqHQGvABrSVPQ5s/BVCxx6Ahn61sY1UUdAgmiET45kjO1JBzn2oWjdHVm0egJ8QGjz7LmjMHIPuPLu61jMDrUWpnmDFvf4NCM3Bg2AbNHc6lZdEXQ0YlLOl8+Y5ypWdMC644AIcONBXmzz66KNx3nnnRb87SCjccMMNePe73z11+3fccQd+/dd/ffj7H/7hH+IJT3jC1MctUaJEiRIlSoxHKHFgCVxvERgH8wCcA2GD5LmQKkqcY9FztYkQaG2RvIt5HFjNATs2LwX1062ew81L7fh5pMAgizEQe86XDSosY4wD9hzkAafG1eZSH/atrI39zpTHiFV8+4wDfvv9PvigKRW0bdvjINOcmTEXuGOr6zIOWpYqascc2dbjQOrD2v+/vTuPk6Ms9/7/7e7Zt+wrSQgJkIQk7AnBICQSSTAGkINRFAER4cARBBRQQQ+gv+eA6MEoHngePAcEQR8ByYkgeOSBEBDZJIRgAmFJyEIIYcs+M739/him6K66q7tnMvddnenP+/XiRXenuqq6qrp7+r7u67oy2UDGia1B60K9TqIoVxZs0O1iH8xZD+1kHDjDr41uuu+++7zbZ511lmpqwv+g6t+/v0455RTjc7vrrrvu0rvvvitJGj9+fF5JJAAA0HMGhsy2dDlw3WhokFwJA+dSeODAxuzKclM044BSRU60hMz6d1FPtxwCB4l4TM2G/UjEYz0+w7XclENz5ELbcBE8HBBljwP/gFEEpYr837X+5sg2sz78rz+3LIiL+vKl9jiw+fdIWPDIXY15f419d4O2/lJp/vI4/qyTnt6HYo1x/YELG98HYaWqXPbZ8AdoO0oVubn+jDX+Q5oD23gfBnt8ZAvet/I5FJJ5EwjeMJnGGo5sN7z88st64403vPtz5swp+pzjjz/eu/3YY49p+/btu7UP//mf/+ndPu2003r9H+0AAEQltFSRw5ktph4HrpqSRm1on+iPf1SKN0fmT3kXmkNKFbkaNDa9/11tv1Nfw6zzSsh6KjaL2MXnUKHBIBfb71NfHTqb3XWpos5Ba/+gYa3DHgf+5sg2A4hhg+aSlHXQ48CccZB1ErT4eN3+4Ik548DWNRAMXoU0R7ZRqqiLs717ur68f31RzDYPBm7Cjr/NrKNgqaKk7/qz9VkclvUjmcoEOShVFOhxYD/rJCzzKlguir+JbeHIdsOyZcu827W1tTr00EOLPufII4/0bqdSKa1YsaLb2//www/13HPPefdnzpzZ7XUBAIDCwuo7u+wxYGyOXAGDdpI0pDmsx0Hv/zO22Dkm48CNmqq46g2lclwFbsKyDlwO3Jv6HFTCZxAZBx2Dh2HlimxfA6ZBQ/+AsSTVJOyVsgoEDvwZBxa/iwrN+E77exxY2I2wxqwuZhl3Ch6DjLLZbCDrxHXGgYtyTabZ9rkBo0AAx3KPg2IZBzaOQVhzZH9TXpvXYKDXSCYbbM7s6PqTOt6D2WzwfWilz0YXexy4bNAcaFBdAX+TRIVfG92wcuVK7/bIkSNVXR3eMCx3udxyRi+//HK3t//cc8/lfWFMnjxZkrRkyRJ95Stf0ZgxY1RXV6cBAwbo0EMP1aWXXqpXXnml29sDAKCSlUOPg4aQMiGVYEifkMBBBbx8miOXj5b66MqFhTVIdtUcWSqPwEEUn3nFXqOLY1BbXajHgZvPgH4h5Ypsz/A0ZRwYAwdOexy4aY4sdbXHgZuMg3Qmq3Ta3aCtKevCX6ZIsncNhM24djHjPez4d/L3GOjp4JF/goZ/e4HglYXLILTHgX+2ucMeB8l0Jlgqy9L2TddA0pB1FbZsT2+/WNaJjeBFWINmV1kfkMKLZiLUm2++6d0eNWpUSc+Jx+Paa6+9tHr1aknSmjVrur39F1980bvd1NSkmpoaff3rX9evfvWrvOXa2tr0/vvva+nSpbrhhht0ySWX6Nprr1W8m98o69ev79LyGzdu7NZ2AAAoJ6Glipz2ODBlHFTGoHFYj4NKyDgoVvqAjAN3WuqqtWlrW95jrtLiTf0FJMcZBw2GwIHjwFVDTULbWlPFF+xBxQYiXJyDsO8gyd1ASf+QwIHtPh+mHgdt6XRgOZufhf6mp61Jh6WKCvQ4cNGY1lhfPZOVf9zeddaFvzGxZO88BGu8Z/L+38lFmZ6O7WZV9dGfhLaDR8UyDlyUrPK/tzsDhy6zXvyBg/ZUxll9fdN7K50OZhtIdho0h2W9dJZKD5TLstHnIqxUkcNyVZWOwEE3bNu2zbvdp0+fkp/X0tJiXEdXvffee97tpqYmnXXWWbrrrrskSYlEQpMnT1a/fv20fv16vfrqq5KkdDqt66+/Xhs3btQdd9zRre2OHDmy2/sMAMCeqp9hwExy3eOgcjMOmmqr1FRbpe1t+QOGlVEmpfCPIBfNedEhyhn3jeUQODC8ftefQU21Ve4DB8V6HDgIYA5uDg8cuBoo6R9Sqsj29k3fs63t0WYc+HscWG2OHFImR5L844Y2EpBMb/GOHhP556Cna+vnMvU4cJl14h+09JrzBpozu+sx0cl2mZjgbHN/c2YHg8YlNke2+Te5qVSRP+PAdY8DU+DARu8z0/Yz2Y+zfv3BIycNmh03SAelirplx44d3u26OvMsOJP6+nrjOrpqy5Yt3u23337bCxqceuqpWr9+vZYuXapHHnlEq1at0gsvvKDDDz/cW/43v/lNIDMBAACECxsUoMeBO0NaggNnNgcqygXNkctHiylw4ChwE9bjwMYgTZi+ZVCqqD6kSbRN5dDjYFA5BA5Ce/3YzjgIrn9HezB4ZLNkk/9vgJ0OMw4KlQlxMds7FouFNKjOX85umZhgnwtTxoGtayA4aPlRmZRAxoH92d5SfsDCP3bc098JhUplSW7q29dU+c5/ypzxYfNvcmOpIn99fWsZB2HlwoKBAyuD9gWaM3fuSy4bf5sHm4R3lqvyXwO9/3dBVMg46IZkMundrqoq/RDmLtve3t7t7be2tgYe+9KXvqQ777wz8PhBBx2kRx55RNOmTfMaMl999dU644wzSurNkGvdunVdWn7jxo2aOnVql54DAEA5qqmKB2a4Oe1xYBgwq5SMA6mjXNHrm/MnXVTCD4RiP4RrKVXkTIuhz4Cz5sghPQ5cZj0ZMy4cZ7w0GjKvbCv2OePic3hwSIN4yV3WUVQZB6bj6+8x0LEf9o5DjW/dvvF6K+VBwtadO3CbddDjQOo4B2nfLHeXjWlNgYs2lxkHhtnmnfuRy9WgbbLAoK39jAP3pYoCZYK85sjR9TjoKFXkZvvxeEzxWH6QKJkONmeW7Bx/0/d8Kp1V53wGF8chLPPKH0BkMo09BA66oaGhwbttGsQPk7tsY2Njt7fvf259fb1+/vOfhy7f3NysG264QbNnz5bU0avg4Ycf1vHHH9+l7Y4YMaLrOwsAQC/Qt75a72zz1Td3GjgwNGatoDI1Qw19DiohcFLsHPMjyR1TxoGrazC0x4HLjANTjwPHfUa+eex+Ovv257z7x08aan2b5ZBxUBalikKbI9t9/abX5y8VVFMV9+pt21C0XJXDjIPcGbYuaotLHX/r5E55NJVJsflZVHqPAzc15lOZjLJZN6VqjD0m0gWyTiz3OPBfc9GUKvoo4yNtP2jx8T4Er0FXPQ6kjuug3ffeNzVHthHEDOtz0snfZ8NOg+ZguTKpo0l0rkr6XeQavza6oampybu9a9eukp+3c+dO4zp2Z/uSdPzxx2vAgAEFn/PpT39agwcP9u4vWbKk29sHAKDSmAbNXJbKMZXoqIQZ952G9KnMwAHNkctHS110pXrCMg5cfgaVQ4+DmeMH69jxHb9nBjbV6NxjxlrfZrGBCBfXQFmUKgoLHFgOHpmuMX+potoI+izksjpgGDLbXTKUqbG0G6ZZ54HGzA4bRKcymbxB1I+Xs9Uc2R+8yQaOfcf2LQzaGpsjf/za/VknPT1uX44ZB5mseeDcbo8DX/AilVG7gx4XnYKfA5nAoLnkrsdB7rF30aTaVK5MCpYqYjKNPWQcdEPuIP3GjRtLft7bb79tXEdXDRw4MO/+oYceWvQ5sVhMhxxyiP785z9LklavXt3t7QMAUGn6hpRpcMVUu9dGPd1yNcQwcFYJgZNiAxH8SHKnpT7CUkW1IQ3aHb4HjD0eHL8HE/GYfnXG4Xp7a6v61FcbM7F6WrH3YMWUKgoJHPjrj/c00zVmyjiwqdj73OqAYYGB28DgvcVSRf59cJpxYBi4T6byt28z68TUnNeU8WDj89DYGDc348BxqSL/eQ9mHPTo5iWZSzK2pzKR9zgI1Ne3+PeA6Ty46nFg+nzLPfb+a8DF+8DLOHAYvKl0BA66Ydy4cd7ttWvXlvScHTt26P333zeuo6vGjx+fd7/UIETucrn7AgAACutnyDhwqbY6+IOkEgbOOw2t0IyD4jNde/8xKBfGjANXzZHDMg6cNkcODhy73H6nWCymYX3qnW2v2OcsGQe2Z/sH1+/vcWA7cFD0GrBcoiRX7mClv0SIrQwkU/DCZX1506Bhe9p3DVg9B8HZ3qYyMTa+D0zv787B+2w2mPnguseB7ebMkvkYtKeD58BlqaKkIXjmMoCYCulxEEXwyn8crFwDvs/BpBc4cBc8qnQc2W6YMGGCd3vz5s0lZR288MILoevoqokTJ+bdb2trC1kyX26Phfp6d39wAwCwpzMNmrlUW1XZzZEHG3ocRDFo6VqhH0E1Cbt1vZEvyhn3YT0OnDZHNgRPW5PBJrW9TbHSDy4yv+prEgWugd7d48D0HtvpK1VkPeOgyPqrHQ6a5w7S+cvE2GyO7N8Hl4O2wVJFWbUbMg6sbT/hD95kAw1hJTuDlol4LFB+qHPA2FQuqaevgUKBK8l+xoNkHpBPpoN9NlyXKnI5aG2q8e9//R3Luemz4W+Wnre8g3JJaa9UET0OXCFw0A1Tp05VTc3Hfzw9/vjjRZ+Tu8yIESM0ZsyYbm9/1KhRGj16tHe/1LJDa9as8W4PGTKk29sHAKDSDGyOuFSR4UdxRWUcGAIH21qTEeyJW4V+BJFt4Ja5x4GrUkXlkHEQfP3b21KGJXuX4rPN3ZyDQS3mrIOaiEsV2WjGmcs0EBbIOLAcPCkWGLCaceA7v3mlivyzza01Ry4+aGk3cBCc8e/vceBytnfHoLVhtrelfTDNNpeCA7aS/YwD/yZdNMY1Be5ak2n5Nm31b2L/e7yjVJE/48BmqSR/xkNw+x1BJguBA2OpovDAgY2/S8J6vSR970Pb3wWVjCPbDc3NzZo5c6Z3/8477yz6nLvuusu7PW/evN3eh8997nPe7b/85S9Fl9+0aZNefPFF7/60adN2ex8AAKgUX5k2Ou8H0RH79He6fVON10piKtXx7vb2CPbErUKDcjRGdsvU4yDqUkUus44aDA3ad1RA4KDYMXZ1DgY1mQMHrjIO6qoTxmsgmowDx6WKivY4cFcmJ7emt7+2uK04ov9ryFSqyOb7wJ/1k05nlUz5BgytZhwEBy1Ns72tNWc2ZFxIwUF7qeeDR6agTS4Xg8amwWBTtpvN7C9/gDaZCfa5sBm8Cs64d/ceNF1TuZkn/swnK03CQz4HyThwh18c3XTmmWd6tx944AEtXbo0dNlFixZp+fLl3v0zzjhjt7f/1a9+VfGP3pQrVqzQokWLCi7/k5/8RKlUxx/3NTU1mjNnzm7vAwAAlWJonzp9f+4E9W2o1thBjbpy7gFOtz/AMNuzkkoVmQZmNm8vrVTjnqxwxgF/xrtkyjgwzfi0ISzjwOVngGkm44723l+qqNiMeleZX6ZybZLbz4F+DcHvIdvbj8VigevcdamiKHvNBEuUhPc4sPV5YBq4Dg4WWiwTY6hvHsw4sDjb2799Q5kcyV4QL5hx0FmqKLgPPT1uX6zHgf86sFOqKHhcd7W7qe8ftg/JVMars+9t32WPg0w2MNveVsm0eDwWaHpdMOPAwtvA/97q/Bx02SC70nFku2n+/PmaNGmSJCmdTuvLX/6ysdfBypUrde6553r3586dqyOOOMK4zttuu02xWMz7b/HixaHbnzx5sr70pS95988+++y8jIJcv/vd73TDDTd498844wwNHz684OsDAAD5zpy+j174wXH6f9+aockj+jjd9r6DmzRuSLN3/6CRfTUgZAZqpdje2vtnO/ct0JSbjAO3TD0OXA2cN4dlHNDjwrq4ocZ4rqgzDlyVKpKkAU2mwIH97QcDB25LFRVbv90BywI9DhzM9pbMg8fptH+w0G1zZP9sb6vNkf3nIJ0N1PqXLGYchFwDUZQq8gdM/FkvNq7BhGHg2h88lCwP3BtLFbkbtA4OnEfbZyR32y6OQ1jGgb/XCSU87TH/FYqi4vG4brnlFs2YMUNtbW1auXKlDjnkEF1wwQWaMmWKksmklixZoptvvllbt26VJA0YMEALFizosX24/vrrtWTJEq1du1abN2/W1KlTdfbZZ+u4445Tv379tG7dOt19991auHCh95yxY8fqxz/+cY/tAwAAsC8Wi+nWr07RLx55TYm4dOGx+0W9S84dd8AQ/c+KTd79f5m5b4R748awPvWavFcfLd+wJfBv1HJ1yzR4v8sweGFDYxlkHFSyqngsr0SM/99cGBzS48BVqSLJnHHgYvvV8ZhyC9M5zzgolnVi8RgEBm5zrkP/hHNbg/emcjUuMw6CA/cZtTktVeTPuAjJOLAWOAg2Z5YkQ5uFHv9O8L+mbLYjWNB5rfnjJ7beCjVVcbUmP97YLmOpInvXoLlUkcMG3Yb3YLBMj93gWW68NjdwF+i14iTj4KNSRf6MA/4utobAwW6YNm2abr/9dp1++ulqa2vTpk2bdOWVVxqX7dOnj/7whz9o7NixPbb9oUOH6oEHHtCcOXO0YcMGtbW16Ze//KV++ctfGpcfN26c7r//fvXt27fH9gEAALgxvG+9/u3kyVHvRmS+ddw4Ld+wRRu3tGramP6aOX5Q1LvkxPkzxuq8O58PPE6pIrdMx9s/89mWcihVVMlqqxJKps1BIpt1tXOFZRy4/BwwlcyzVR4jV7GMA9s9gIrNZLY6273AjG//4L2tU+GfRZ7JBmc728w4MJZpcZhx4L/Gk+lsYNBWslkqKtgYVwqef6nnZ/ybXlM6m1VcMeM+2DoG1Qlf4MDw3Wtzxr+xVFFgpr27rJuUoceBy+3nZRz4Bu9tfCeGvQdcNqiudBzZ3TR//nw9++yzmjFjhrH2ZyKR0Lx587Rs2TIdffTRPb79SZMmafny5Tr77LPV0NBgXKapqUmXX365nn76ae27b++fnQcAAHqfcUOb9ci3Zuhv3/2U7jx7mhpqKmP+y+yJQzV2UGPgcUoVudfiyzqYM2mok+3WVsWNKfgEDtwoVDLM1ThFWMaBy9IM/QyBAxczPP3bcN0cudgxdlkipWCPA0ulioylehwOWpp6LLSn3PU4MM12DtZWjxnHgnpm+8HGuJ374dfzGQfB45q7XReliqRgYMh1xoGxVJHD2e6ma9Df48DuezA8gOnPfLGxH/51dr4HXDaornSV8YvLssmTJ+vRRx/V6tWr9dRTT2nDhg1KJBIaMWKEPvnJT2ro0NJ+VJx55pl5TZdL1a9fP91yyy264YYbtHjxYq1du1Yffvih+vfvr3Hjxmn69OmqqQn+oQcAALAnqa9JqL6mPurdcCoej+mfjxmrS+/J72VlKl8Eu/7t5AN1ye9fUFsqo88eOEzjh7Y42W4sFlNTbZU+2JnMe9zWIA3y9W+s0foPdhn/zVXGweDm6Jsj9zcGDuxfg/5Bo0CpIsvHIMpSRWG1vaXgoK2tgWvTbGP/tm2+D0rqcWAxeOQfjOyob++uvry/OXPngLWpOXJP74bptBbOerGXcZDLFDiwOWhs6jXiL1Vkc/umGff+PiMJhwHM3OvfH0CxcQ2E9fkIZn0wocYWAgc9aJ999tE+++wT2fabmpr02c9+NrLtAwAAoOeddMhegcDBvoObItqbyjX3wGGaMrqftrWlNGZgMAvEpqa6YODAVX39TlfNO0BX/XGFd/8bFdBnRDLX9u/k6hwMao6+VJEpcOAf1LQhGDhwnHFQZP02G1QXKhHiora4ZJ5tHChPYjGI6R+QTWeyaks6zDgwZDz4My5sbj+sQbF/0NTGfhgzDnKDV65KFVXlr9dUqshqjwPfZ0B7Ktgc2eU1kDZcg1abMxt6LEhSNpsNfA7ZCCYH34MflSryHwMyDqwhJAMAAACUsepEXFefMDHvsaP2HRjR3lS2wS11Gjuoydrs3jBNtcFyOa5LFZ182AhNHd1fkjRuSLNOPWKU0+1HpV/BUkVuzkHf+mrjjFaXAyXGwIGD7ftn0voHDa0HDoqcY5e11fNmezsqE1NKjwOb16HpPeafcW6zz4WpObP/9bssk5PyyrQEMw56+r1gel25QSNXpYr874NWQ8aB3YHzYKki//F3WioobS6XZUtYANNULsvGNRDWJD7QoJoeB9aQcQAAAACUudOm7a1/vLVFC5e+pfHDmnXW9OiyXOFes6FBss2GpCYtddX63TnTtLU1qabaKif17cuBqbZ/J1cZB/F4TAObarVxS2ve4y4HSkzNkV1cA/6shh1t/lJFCavbL/YaXQ6a585yzvrLxNhqzmvoceB04NwwIOzPOnFZpqajObK72urBclUd2/b3eTAt29PblvLLE/mTHmx9HPg/5/znX7LXHFwKK1UUXZ+NVMZt8CosgOmf8S/Z+U40HX9JgfchGQf2EDgAAAAAylwiHtOPTzlI1558oCT3g8aIVlNd8Geb61JFUsd117dA6Z7eqH+B1+sy62NwczBw4LJUkSmA4h+8tsF/jP2zzaNujmy3TE54qSJX9eX9/QtMZVJslioyDQa6zDrxv/5UJhN8/VYzDszXQKDPQyLe45lwprr5+eWy3BwH//n1Bw5sNqc2bb89FbwGrDZJN5UL82c8OA1gdmzb1GfDxjUQzLrpuPbpceAORxYAAADYQ8TjMYIGFajJlHFAc2QnCmYcOJzhOMjQINnl9k0ZB1tbU4Yle5Z/ICpQnsJy4KDYYJTdmcbmmbaSoceBpUvBNGjpNuMguO6dSX/GgcVyUSWVibG5fV+ZnI+OfVvKfoNoU0Aod8DaVbmsYqWKbH8OmkoVRdrjwPE1GNbjwJRxYCVwENrnw12D6kpHxgEAAAAAlLFyyTioRKba/p38s5FtMjVIdlmqqKUu2Otha2vSsGTPKjYgZ7O+fcf2i/Q4sDrT19wUVHJXXz5Y3zxYJsV5jwOHGQf+2c4dg8bRvf50yGxrG4OmpmNfKOvFWnNkf58Tf+DA8uewqVSO/xpwWS7L1KA7ih4H/s8gW/sRaI6c7iyV5C54U+kIHAAAAABAGSuHHgeVql+BUkUugzemwIHLgRLT9bY9gowDP9vBk7rqwj0U/DPCe5KpKWonf5kQW58H/lnn6Yy7meaSucfErqS/z4XbrI8oSxV1btvf48BG8MT0+ZaX9RJRxoE/cGS7ZFy179gmTaWKLH4OmAKI5dCg25RxYONzKOw94DKAV+kIyQAAAABAGWs0BA6YXOdGv8bgTPtOLnsc9G8I7ofrgZL9Bjfl3f/ClJHWt1ksOGO7VNHApmDAJpfV2uYh9e07bucva+tS9Ne5T2cygZnmNgNoxlJFDjMO/IGhjlJF2YLL9KRgc2RzjwMbQUTT51smG16qyFqPA3/gIJBxYDlw4Du/7YZroDf3OAgrFeQu48BcKsllg+pKx5EFAAAAgDJm6nFAI0A3CjVHdplxYOq14LJUkST9YN4BXvbL8ZOGavJefaxvs9iAmO3AgSnTI5fL5sjJTHjGga1B21J6HNjMfiqlVJHLPhPJTLC+vcvZ3umQQVMbnwWxWCy0Ma7kslRR4ebI1jMOAjPeM04HraPucWAqVya5yzgIuwb9PQ4o32gPpYoAAAAAoIyZehzQHNmNvgUCBy4zDkwlk1xuX5I+ud8gPX75TG1rTWlEv3rFHFyDxQbEbAdP+jfWKB4LNiPuZLO2ub9ESTq3x4Fv0NbWuTDVNw/MdrZ4HZoGZP0Dx1abI/vObzbrpr9A2Lo7B0tdNEeWOkpVpWXOMvDPOLf1ceB/bS4DR5K5VJH/88DlNei6x0HYNegPINraD/+x/bg5MxkHrnBkAQAAAKCMmXoc8BvZjZqquPH4S24H7of1qQs8FsUMy74NNRrZv8FJ0EAqoceB5YyDRDymAQXKFZlq8PeUwIBhgR4H/l4EPSXY4yDrLNtBMpdgclmqyBS4ak26yzgIBo/Ms61tDZoGZnvnBa98yzrqcdCadJxx4DsHyXQ2EDxy2Zw4lckonXb3Hgy7Bk2BAxsTGkwZB9ls1tl7AAQOAAAAAKCsmTIO/D/mYY+pTJDkNnCw7+AmTRjW4t2fMKxFg1uCwYTepthsbtuBA0kaVCBwYDfjwFxbXHLX4yDq5sCxWCwwKOsfOK5x2GdCMtTYtxk8CpSr6jjxLpojS8EB8bw+G44CSDVV+ev1B46s9zjwbb89HWyObLdkWXDgPul0+yHNiZ1lHBQvlybRHNkmShUBAAAAQBkz9Thgcp07/RprtPb9nYHHXfaZiMViuuX0w/SL//eaYjHpm7P2c7btKEWdcSB91Odgo/nfXDbGzR2oy/oGbW31GTCVKvIP2tkeuK1KxPJe+872VN6/W22ObPig9QcunM42D22ObOn8F2jQ7S9VZKt8nv8c+AM39nscFL++nDYnTmfzypZJlvtshPQ48Gce2doP/ySJjh4TwW3b/CyudAQOAAAAAKCMNRsyDgy/2WFJ/4Zq4+OuewyM6Neg60450Ok2o1YsOFPrIIJWqEGy3QHD8B4HgQbFlgZt/ftgmu1rO/upYx/CS+S4nG0tuc04CDZHDgscRJBx4CjzJPLAQQnXt81eK/7gjeseB4EG4R8N2vt7ncRjdnqtmEq2JX2BE4mMA5sIyQAAAABAGWuqDQ5c++tswx5TY2Ipmh4DlabYYJCzjIMQVgetC/Y4yF/W1uCpPyCRMQYOrGw6Z/3RXQOmwFVb0l19+2Bj2o5t+5sj11o6Bv7znztg7arXhf895i/TZL85cvHX5TTjIJMtix4Hrs6/qWSbP2gh0ePAJo4sAAAAAJQxU4+DXcmUYUnYUA49DipVWZQqKtjjwOJM4wKlivyDdrZ6VZt7HPjLpFgeuC0yKOsyeCNJuxzW2DeVipLKM+PAVtZLsfd4WZQqslqyLJh5FMg4iKDHQbuzazAYuEj5m7zIbr+ZSkfgAAAAAADKWEN1IvCYf/AK9vQPCRxQGsG+YoOyUWYcxGK2a4ubZ/pKhtm+lgZtgwPXmUBjZtuZN5FmHBje460pf6kimxkH+a+ts0yMq+bIpjI5nfyTvm2NXRdrfm29OXIJQQGbg9b+15dMB4N3VksVBXosdGw7GVGD7mQ6EwhaSHaDJ5WOIwsAAAAAZczU+HQngQNnKFUUnWKDQTZri3cKCxzYbsZpGjDr5K7HgaFMim/Q0ta2P96H6K4B0zkOZhy4zDr5aNA2wtnenaJqjuxnPeOghFJFVjOPDA2qXfWXkMxZR5ICDYqtXYOG128qVcT3sT0EDgAAAABgD+NvEAl7+jeGNUfm57Rt5ZxxYDvjxDRg2MnfHN0UXOwJgR4H2eCgpe3jEGWfi3g8Jv+hbU057HEQUibG1aBtWKkk/23Tsj2l2Guzff2VVKrIcY+D4Pl3Xy6rPZ3/N4itAJ4/eGXKuJDocWATRxYAAAAA9jCUKnKHjIPolEWPg7CMA9tNWX0DZqmC9eXt7EOwTEkwcGA746DYNWD7PPizXlr9GQc2B4192045bo7sL4GVO2CbzjrKOCjy2mxmfHSsv4SMA4c9DlLpjCFo43D7H10D7Sk3wYtgxkEmEDiJWy4bV+kIHAAAAADAHqZvyGA2el5YjwMGKuwrNihcmwj2/+hpzbVVxoFZ2804A2VqcsrTOOtxYCoT4s84sPw+KJp1Yj2Ak799f48Dm4O2pTdHdtXjIjfrxTd4a+k6iLrHQSwWK3h84zF7r10Ka1Du7j1oCh5K7spl+Y99Kh0sVUR/A7s4ugAAAABQ5s45ekze/Ytm7RfRnlSesCANGQf2lUPGQSwW0+CWYNaB9ZnOBRrT+gMHtgYuTWVSAkEL64GDIj0OSqhBv1vb92cc+MrE2Qwg+dftujlyoWswMOu9l/Y4KLYPtjNeTMGblG/Q3mbWS1jJNFeBA39gLpXJBpoj+4N76FlVUe8AAAAAAKCw844Zq3e2tmrVpu2af/gITRzeEvUuVYy+DeYeBzZnmaJDOfQ4kKRBTbVa9/6uvMes1/bvQn15W2ViTD0O/LOdrQcOivU4sJx14h+8b03mD1pabUwbUibG3aCt7/znXoNZ/7JWdqHoe9z2+1CSGmoS2hlSHjCKkmUuMw7820+GBA6sBa8MDcKDgRPmxNtE4AAAAAAAyly/xhr97IuHRL0bFSlsYIiMA/sKzTZPxGPOykWZ+hzYLpETrG2em3GQv6yrHgftqUygMbPt90HRHge2Mw7ixTIOLNaXN5RpkdwFDkwZJ50yjoJXxTMO7A8aN9VW6d3t7cZ/s94k3VCyzGWPg2DGw0c9DnyRI2vNkQ1ZN/7ACY2R7eLoAgAAAABQgGk2JT0O7Cs0KGd74D6XKXDgfMAwU6DHgaVrMeE7xv4SITa33amuqnBGgfUAju8870r6exy4zDjoOO+umiP7gwGFsl5sHYdi59dFmZrmOnPWmeS+ZJnrPiNhPQ785bJsBfBMx7ct5a5cGAgcAAAAAABQUIth4Mj2gBEKD0a6KlMkSYOa6gKP2T7//sGwTPbjWd7+wEHM0mxvU8aBn+3AQVipsE7Vlq8D/zFoS7qrrx42499ZxkEX+mzYug7KocdBU214sRbnTdId9zjwlwFy3ePAFBTZ1e7u9YPAAQAAAAAABbXUBweOyDiwr9BglNPAgSHjwPaAten66hy4DTamdbMP5Rg4sJ9xUDjrwmaZmGCpoo/KxDhqjux/bemcrBdXfTaKDcy7GDRuqisUOHBdsiwTacaB1+PAn3HgKHglBbN+/H0Y0LM4ugAAAAAAFGDOOCBwYNtefetD/y3qUkW2S6SYMhrSXsZB/uO2GnUnfIPB/hI5kv3Miz71NQX/3X6viegGrv1Bi497HLip8R5s0J1z21XGQZGgiIsAbnOBjAPXTdJTmWxZ9DgINEe2dg0G1+vvM0LGgV0EDgAAAAAAKKClPhg4sDVYi4/tP6Qp9N9s1XU3MQUObA9YmgbDOvscuGpM698Hf21xSbI92bdfgYyDqnjM+vuw2KC80/ryIYO2tsrlhA0aS+6uwWID0i5KxhXMOLC8/YSpx4HTUkUhPQ78zZEtfR6bXpvLBuUgcAAAAAAAQEEtBQaOYM/eAxpDB6SiLlXkL5fR00wD0p2Ddv768rYGbUspVWR74LZQqSIXA4bFBmX9WQE9uu2QHgf+82AriObPOMktkePPOLAVPyn2PneR+VWox4Ht2e7+wEQy7bo5srlBt6vglbnHgT/jgKFtmzi6AAAAAAAUYMo4gH2JeEz7DTZnHbgMHAxsCpbL+WBnu9VtFupxEBg4dDRoZ+xxYClo0alvQ3ipIhfXQLEZ5VYHbUNne7upL2+a7d4p47sUImuO3Mt7HJiyPoKlitw36PZ/FtjrcRBcb7DHAdl/NhE4AAAAAACgAFOPA7gxbkiz8XGXPQ5qqxKBxz7ckbS6TdOAWdrxjHN/JoOpx4Htgdu+BYJ25ZFx4HK2t7k5sqseB7kBq1TGXy7Hzj4UbY4ccY8DWzPtOwWCR5lsYLa/zayfUnscuLoGJak16a5UEwgcAAAAAABQ0JTR/aLehYq1/9CQwIHDjAOTbW0pq+s3DZh1Dta5mnFuGrQMLGN54LZfY4GMAwcDhsUGxKPIOAg0prVVqsj32nL7Gvhnvdua9V0sQGizMXCn5gKBY9uluoINqoPNkaPpceDmGjSWKqLHgVMcXQAAAAAACpg5brDG5wxgnz9jbIR7U1nCGiRHHTiwzVR+JB1aX9zWwHHx9drqr9CpUMaBm1JFhV+fzYHrsPry5ZFx4KZcTqEyQVLv73EQuAbKpseBL3DkqEG3RHNk1+jwBAAAAABAAfF4TPee9wktWvaW+jXUaPbEIVHvUsXYvwxKFUXBNBgWNnDscrZvd5bZHX3KvDmyzVI1wdnenWVi8gdtrTVHNsx2926n3cx6r69OqDoRC7xm29vNVSh4YftzyH8OUo57HIRdA0lHwatYLKaqeCwvWBJojkyPA6t69zctAAAAAAA9oLG2SqdOHaU5k4YqZnmWNT62V996NdYEewy4zjj47IHD8u5/4fCRVrdnGgtLZcwDx7YGr4tlE8RiHUE1m2qrEmownH/JzTVQrBSN68a02WzWXXNkw6B17r7kL2tv4LhQj5len3HgW38m6y7jqGPd5mvAVbksKXgdtqbIOHCJowsAAAAAAMpSLBYz9jlwHTi4dPY49fmobE5zXZW+etRoq9vrnGmby6tx7884cNTjwC/hKIAWVq6oHDIObNa4N5WJMc28txU48m8/XaDHgc0B/D4FylW56XFQKHDgtseBFGwO7DLjILTHgdXgRf66AxkHNEe2ilJFAAAAAACgbI0b0qylaz/Me8xWeZYwew9o1MOXHKNl6z7UAcNbNLxvvfVtViXyS3R0Dta2RdQct6v/3lP6NtTorS2tgced9DiIsDmyPyCQzgSzDSR35z+d1+PA3eB1c4HAQdQZB7aaQncyBabaUu5K9UTdZ0MyZBzQ48ApAgcAAAAAAKBsmfocRNHjYFBzrWYd4K6/RcegXW55mIyy2ayzUiXFBiRd1RbvG9LnwMU1EFYmqZPN2c6mwfid7anAY9YyTkKaI2cyWfkSDqxeCy0FZvy7CF4V6nFge9A6Ybi+/FknkfQ4iLBc0q5A4ICMA5sIywAAAAAAgLJlChzYLhFSDkxlQtKZrLK+QVtbg3bFehzY7m/QqV9DjfFxFxkHDTWF59vaLFVkOq/+Mi2SvePgP7+dg8b+/gaS3cHrQqWKXAwa11YlQo+x7c+hUjIaXA7aJ0MadFttEu57j/kDBzbfgyBwAAAAAAAAytj+Q5sCj72zrS2CPXHLVKrGVOPeVtmm4vX93QQO+oRkHLgYNDY15s5lM+PAtG7/oKnkLuOkM2Dg72/Qsay94cWWiHscSFJzSLki29dgKQGZcsg4cNoc2dfjgR4HdhE4AAAAAAAAZWtQU23gsTXv7ohgT9zyD5glM9lAbXEpulJFrnoc9AsrVVRVeFC/JzQUqG8v2Q2emEsVuQscBAaN050ZB8Fr0ObgbaGMA1fBq7ByRbZnu5ey/kh6HDhtjuwLHPjeA1GUraskHF0AAAAAAFC2YoaSOZ8YOyCCPXHLP2iXzmSMzXFtzXouNpvbWXPkenOpovLIOLA4YGo4/jvbTIEDO8fBPyCdzhbKOLDZ46BQxoGjwEFUGQclrN/mNegPCKW8UkXRNUcOlCoi48AqAgcAAAAAAKCsXXvyZO92Ih7TKYeNiHBv3AgO2gUbI0v2yoQkivQ4cFVbPKxUka0STbkizTgwDIj6myPXJOLGwFqPbD8QuKrMHgdSocCB7YyDEgIHVjMO8tedyXY0x/ZnPlVbfC/6j7H/+qPHgV2FPwEBAAAAAAAiNv/wkaqpiuulDVt1/OSh2s/QMLm3CTRHdlyqqNhsZ1fjdWHNkW0P2krR9jgwZRz4Z1vbrS2ffz+6HgfhQ5fOehyElSqyHLgoJSjgsseB1JF54rI5crHX5yp4VKkIHAAAAAAAgLIWj8d08qEjdPKhUe+JO6bmtMaMg4h6HLia6ds3rMeBg8BBQ010GQemQWl/jwO7A7bBUllSSMZBb+9xEFHGQSlBAZvHwPT6Uumskil3PQ6KlWKyWaoJlCoCAAAAAAAoO6X0OKiKxxS3NHBYbNAy6ubINsujdGqsLZJxYDF4YhoQDgYO3G0/9dEs83S6AnschDZHtrv9WCxWPIDnsL+A1NEc2/855PI69HOReVTJOLoAAAAAAABlxj/jPJk21BaPcMCuWA+EntInpDlyOWQc2By4jsViwcaw/h4HVksV+evbdwQMkplg1ovN49BSBhkHzSHBCxeD1lEG8EzHN23IfLJ5HRYPHFCqyCYCBwAAAAAAAGXGPyDYMWDnrrZ4sUwGV7O9Q0sVuWiOXKTHgetSNf6MA6slYgylsiRzjwObQaSCpYoczTYPL1Vk/z1QvGSY2/4C7amM/JeA1QBmkWNMc2S7OLoAAAAAAABlxt8c19TjoKaq8MD27iheIsVN4KA6ETcO3LrIOGiMMONAkqqLBQ4sBk/8gaPOgEHKF7yKx4oHmXZHWGNiyV3wKrw5sv1rsHiNf5t9NoLb9l+Dku0AVnSvHwQOAAAAAAAAyo5/UDSVzgRKFdVYbY5beN1xR6WKJPOscxezveuLZhzY3Qf/wO2ucuhx4JtubnvwvDoRV2PIeYi6ObKL7UfZpLyUPhuSVF3ltlxSLhcBxErG0QUAAAAAACgz/pm06Uw22JTUam3xIjN9HQ3aSlK/xmDgwGa2xcfbiBccmLQ9491/jHcm/YEDd4EjL+MgE2zQbVtYnwNnzZFDAgcuymUVD+C53faupCFwEGWpIjIOrCJwAAAAAAAAUGZMNeYDpYosDtgVG5C0WZ7Gr6+hQbKrpqgNteEBCts9DvyDoi6bI/sDR+msOePAxeB9WJ8DV4PGTWGlihzU1y8UmKmKxxSzmPljur79WS9hy/WU4gFMhrZt4ugCAAAAAACUmYS/x4GhVJHNAbtYLFZwUNhlxoGpQbKL2d5S4T4H9jMO8l+jv0yMzfMfnnHgK1XkIuOgLiRw4GjQuLk2usBFoVJQtrdvOrWmjINamwGsIq/RVQCxUhE4AAAAAAAAKDOlZBzYLFUkFR4Yd1UmRgoJHDiqbd5QoM+B7UFz/6CpP3Bgc8A20GPjoxJFwYwD++chrFSRsx4HIRkHLgatC2cc2D32sVgssH3XpYqKfc7YzvqpdBxdAAAAAACAMmPucZA/aGuzObJUeNDSZeCgX4OpVJGjwEFIffuE5TIxUvD4R9kcOZ2OMOOgPvwcuNAcGjiItseBi9dfrFxWPGZ3P6qLlSoi48AqAgcAAAAAAABlxj8gm0xnA6WKbJfrSRQYGHdZqshU495dqSJzxoGL1x8oVZTMH7R1OdO7M2CQ8mW9VESPg5DgkZMeBwXOsZuMh+jKZUmllCpiaNsmji4AAAAAAECZ8ZeASWcywVJFlgfNEgUG7Som4yCkx4GTwEFgtnf+oK3d5sj5285kQzIOHAxeh/U4cHUN1lbFjYP0LgbuC5WjcvH6/dvwlyqyXTKs2PvMZQCzEhE4AAAAAAAAKDP+QclUJqukw+bIxdYfeY8DVxkHtSEZBw4CF/5tRNkcuTNgEOxx4KJUkTlwUKyMTU+JxWLGrAMX10BYmSTJTcaD/3Oo1X8NWn4fFjvGZBzYxdEFAAAAAAAoM4GB23RW7Wm3pYqaQ0q0SG6a4naKtjlyhBkHvm1E2Rw5rMeBi8H7sFJFhTJiepqpQbKLayCsTJIUTcZBMHgVXZ+Vju0ztG0TRxcAAAAAAKDM+AfMUhlD4MDyoJlpsLST2x4HwVJFroT2OHBSX77YoKm9fQjPOHDf46Al5Dp0eQ02GgJILrJeCmYcRNDjIFCqyHrGQZFSRTRHtorAAQAAAAAAQJnxl+hIZzJKpnyzvS0PmhUatIwXaJzc00yzrltTacOSPa8h0sa40c229r++tNcc2X2Pg9CMA4eBgwZDAMlF4KI5pL+Dq+0Hehw4bo5cLLPJVbmqSsXRBQAAAAAAKDOBjIN0Vu1pt7N9C5VJcTnbe1BzrQY313r366sTmji8xcm2wzIOXAxaFwtO2Dz/gVJF2fLrceAieNOprjp4Hbgok1O4VJH74JW/VJHtrKfqYs2RyTiwisABAAAAAABAmTGViglmHFjucVBgtnPcYeAgEY/pys8eoIaahKriMX3n+PGhvQd6WmjGgYMBy2IZJVYzDnzbTmeyymazgR4HLgJI5ZBxYOon4eIaKJT1YzvjSAqeX3+pIusZBxG+ByC5+ZQFAAAAAABAyYKlirJKOu5xULC+usNBW0k64aDhOu6AIZLMs79tCe1xEEGZGD+bzZFNpajSmWxZZRy4FFXGQaH3oJvmyIV7HNgOXhQrReQieFLJCBwAAAAAAACUGf/AdDKdkXxjZLZLFTUXLJPifsDOZcCgU1hmg5seB8UGTW32OAie35QheOXiOIQFb1wyBg4cvPaoexz4B+bd9zgoVqqIjAObCBwAAAAAAACUmUCN+UxWSuUP2kZZqiiKwEEUGmtDMg4iKBPjZ/P8m85vVBkHMYeNuMPUVUdTqqhwnxH7g+aB5shJt31Wwt5/nVxnPlUaAgcAAAAAAABlxj/TN5XJKpN12+OgqYxKFUUlPOOgdzdHNg2KpyPqcVAOaquCA9hR9ziIInjlzziwXS5tcHNdwX+nx4FdBA4AAAAAAADKjL+2eCqTUcxXq8h6qaKI66uXg9CMAwezvYs3R7Z3DowZB+lgxoGLwetyUGvIOHBTqija96D/OnfdHHlwS23ov8VjlfM5FBUCBwAAAAAAAGXGP9M3lc4q68s4qLE8aFuoTEqlDNg1hmUcOBgwj7I5csJQHiiVMWUcVMaM73pDj4O4g/dA1D0O/Nf5zvZU3v1qy8HLQhkH9DewjyMMAAAAAABQZvwDdulMVu1pehy41hDSmNfF6y92fu02Rw6uu6PHQf416Oo6MA3cuxRFY26pSKmiCHoctCb9n0F2z/+AxprQa6y6Qj6DokTgAAAAAAAAoMz4ZxMnM1klfYGDSEsVlUHDWhcaQ7IuXNRWLzYob7U5smFAOJXJRNbjoFiTXNtmjBuUd992bf9O9dWJ0OvAdI56WrHza/s4xOMxDWoylysi48A+jjAAAAAAAECZ8fc4SGcyak+5zjgoEDiolNr2VXGZxk6d1JcvcoytNkc2vL5MpqPPQS5XGQdhARxXxg9t0QkHDZfUUVv/qhMmOtluLBYLLRnW2xt0dwrrc0BjZPvocQAAAAAAAFBm/CVAUulgxoHtgbNCPQ5czTSPWiwWU2NNlba1+Wq7OwicFGu+azXjwHB+jRkHjgJIDSG9Jlxa8MWDdc7RY9RcV6W9BzQ6225TbZW27EoGHndSqqhog24HgYPmsMBBZXwGRSn6dx0AAAAAAADy+AduU5mskr7Z3jab40odjYFjMcnXk1mSFK+QUkWS1FCbCAQO/BkhNpRbc+R0JqtURD0OmiIuVSR1BJEm7dXH+XbDMn/cZByUQeCgxdwg2VXQqpKR0wEAAAAAAFBm/AN26UxWbY5LFcXj0ZZJKReNhtnuLhqzFptRbfP8x+Mx+WMHqUxW6UCPAzdDixfP2j/v/vGThjrZbjkICxy46XFQpFSRg30IzThwdO1VMo4wAAAAAABAmfEP2CXTGUOpIvuDds0hgYNEBdUXbzDMdncx075QqSjJ/vk3Ba9SEfU4OHLsAJ14cEePgSEttTp/xr5OtlsOmuuqjY9XTMZBMxkHUaFUEQAAAAAAQJnxzyZOZ4I9Dlw0Jm2uq5a2tAYeN5Wy6a1M9fWrHAyYDgoZMO1k+/wn4rG88lhpU8aBo8HbWCymBV88RNecOEn11Qkn1365CM/6KYMeBw7OwxCaI0eGwAEAAAAAAECZ8c/0TWWyandcqkiSmiKsr14uGmuCGQcuXv+gkBItnWosn/+OgemPr7lUJhtsjuz4OuhTb55935uF9jhw0qC78DZsX4NSoYwDAge2cYQBAAAAAADKjKlUkX/Q1k3GQUipogoKHDQYZny7GLQd2FRT8N9tn3//KTZlHLhoEl3pwkoVuXgP1hmCZrlcZBwMDss4qKDPoKjw7gYAAAAAACgz/oHpXe3pwDJOMg7CehxU0KBduWYc2D7//hndqUxGqUx+1kslZZ5EJSx452LgvCUkaNHJRXPkAY01gSCWRI8DFwgcAAAAAAAAlBn/wHybr0yR5LDHgUElBQ6i6nHQVFuluurw7dgOHPjPsTnjoHKug6iEZ/3YvwZbQrbdyUXwsioR14CmYBCNHgf2cYQBAAAAAADKTHUJg4LVDmbcUqpIaqyNJuMgFotpoGHAtJPt8+9/jeky6HFQiUKbIzt5/xfOOHA1eD/YkH1D4MA+jjAAAAAAAECZKWVg3kVj0mZKFZkzDhzV9g8rV1STiCsWs3sOTBkHqTQZB65FmfXTUh99xoEkDWkJNkgmaGUfgQMAAAAAAIAyU8psYhelippCMg4qadDO2OPAUX31QSEZBy7OvX9gOpXJ0uMgAqEZBw6OfbGMg5oqN+efjINocIQBAAAAAADKTCmDgi4GzsIGDuMVNGDcYBi4dTVgPjAk48BFmaqSehwweGtdWLkwN4GDwhkHNYlgUM0GU+CA5sj28e4GAAAAAAAoM40hs4xzRTlwWEkzzRsNpYpclegJyzhw0pTWmHGQHziorqDrICqhfUYcXAMtRXscOMo4MJQqIuPAPo4wAAAAAABAmSkWOKipsl/jXqLHgSQ1GJojuxq0DO1x4KRUUf42MqaMgwq6DqISlvXjImhTLOOg2sF1KIWVKuLas43AAQAAAAAAQJlpqE6oUFzARWNkqUBjVgdBi3IRZcbBwLAeB1FlHPiaI1Muxr6wHgcursHGmqqy+BwyZRwQtLKPwAEAAAAAAECZicdjajIMWHdyNds2tDlyBQ0YN5iaI7sqVRRhxoG/j0U6kzFkHDC0aFtNVVy1hvPt4j0Yj8dCs44kd5k3Q1qC74MdbWkn265kvLsBAAAAAADKUKFyRS4GjqUC9dUraMDYdB584+fWmEq0SFH2OMgUXAZ2mDJ/XL0Hw7KOJHcBTFPmzfs72p1su5JVzqc8AAAAAADAHiRstr/kbqZvaJmUiipVFMw4aEu5me0cVqrIxYCtvxRMmh4HkTEF8Fw1pi7U58BVANP0effBTgIHthE4AAAAAAAAKENhg/aSu9riddUJ47YqacC4wXAe2lMZw5I9r74mYbwOXAzY+rMJ0pmskv4eBxV0HUTJNHjv6j3YUh+eceDqc8iEjAP7CBwAAAAAAACUoYKBA0czfSVz5kMlBQ7qq00ZB24CB5K5z4GLjBMyDsqH6bPAVZ+RljLIfDI5ZFS/yLZdKQgcAAAAAAAAlKFCgQOXA3am5sCVNGBseq2uMg4kaZChXJGpWW5P87/ujh4H/owDhhZdMGUcuDr2LYV6HDgMYP6vz03Ou3/u0WOcbbtShX8DAQAAAAAAIDKFexy4G7g3BQ4qvUSNy4yPgc01gceiaI7ckXHga47s8DqsZE21wcF7V+/BQj0OXH4OfXHKSGWyWb20YYvmTBqqSXv1cbbtSkXgAAAAAAAAoAyVS6kiU6meSso4kKRjxw/W/3v5HUlSLCZ9cepIZ9s2ZRxEUaoolTZlHFTWdRCVKHscNBfKOHCYcRKPx3TatL2dbQ8EDgAAAAAAAMpSuZQqqq/wUkWSdMXcCdrWmtKmba06f8ZYDW6uc7ZtU48DN82R87eRztLjICrGUkWuehzUmz+HqhMxxTn/vRqBAwAAAAAAgDJUqFRRjdMeB6b66pU1YDhmUJN+/89HRrLtgWWScZDOZOhxEJEoexyEZRxE2RgZbnCGAQAAAAAAylBjuZQqMmQcMNPYHVPGQVTNkck4iIZp8N5dqaKwjAOGlXs7zjAAAAAAAEAZai6TUkUNhh4HlZZxECVT4MDFoLGpx4E/cEBzZDdMZcuclSoi46BicYYBAAAAAADKULn0OGigx0GkTKWKdiXT1rfrDw61pzKBZbgO3GisNQXvXJUqMn8O1RA06vUIHAAAAAAAAJSh8ilVFNwPBozdGdBUE3hsy66k9e36z3FbKhisIPPEjboIs35Cexw4/AxCNDjDAAAAAAAAZShspq/kdrYvGQfRqq0KHv8tO+0HDvwD021kHESm3hA4iDk69C319DioVJxhAAAAAACAMlQupYpMg5YJV6OWMHKRceBvgN2WDAYOGDx2w9Sg3BTIsSGsx0EN577X4wwDAAAAAACUoUKlilyWCWkw1Fdnprlb/RryB29POmQv69sMZhwESxVxHbgxekBj3v2aRFyj+jc42XZtVVzVhgwnShX1fpzhHrBkyRKdddZZGj9+vJqbm9W3b19NmjRJF1xwgZYuXep8f9asWaOmpibFYjHvv6uuusr5fgAAAAAAgO4rXKrI3ZDOQSP6Bh6LkXHg1PWnHOQN0g9pqdXJDgIHCV/zXdMMd3ocuFFXndBV8w5QVTymeEy6dPY4Y98DG2KxmDHrgObIvV/4NxCK2rZtm84//3z95je/Cfzbli1b9I9//EO//OUvdckll+jf/u3fVF1tTu3paeedd5527NjhZFsAAAAAAMCO2qq4quIxpTLZwL+5bI48aa8+Onr/QVqyarMk6bwZY51tGx1mHTBE919wlF57Z7um7ztQ/RqDDZN7mj8o0E6Pg0idOX0fzTtouCRpQFOt020311XpvR3teY9Rpqr3I3DQTalUSieeeKIeffRR77GWlhZNnDhR7e3tWrFihXbt2qVsNquf/vSn2rx5s379619b36+77rpLDz30kPXtAAAAAAAAu2KxmBprq4z17E2lQ2z6rzMO18Mr31FjbUJH7TvQ6bbRYcKwFk0Y1uJse/6ggDnjgMFjl1wHDDo1GzIOCBz0fpzhbrriiivyggbf//73tXHjRj355JN67rnntG7dOp199tnev99+++266aabrO7T+++/r4suukiSNH78eA0fPtzq9gAAAAAAgF1hDZJdNyatSsQ1Z9JQfXK/QZQpqhDBwAE9DipVS33wc4jAQe/HGe6GdevWacGCBd7973//+7rmmmvU0PBxU5IBAwbolltu0WmnneY9dvXVV2vnzp3W9utb3/qWNm/uSBu8+eabnZVGAgAAAAAAdoT1OaAxKWzzBwVak/Q4qFTNtcExxlo+g3o9znA3LFiwQG1tbZKkUaNG6corryy4bGdAYdOmTbr11lut7NMjjzyi2267TZJ0xhln6JhjjrGyHQAAAAAA4E5jSMYBs31hmz8o4M84iMWkOIGDimAKYLoulwb3+Jbphvvuu8+7fdZZZ6mmJrwhTf/+/XXKKacYn9tTWltbde6553rb+8lPftLj2wAAAAAAAO6FlSpiti9s82cc+Jsjk21QOVrq6XFQiTjDXfTyyy/rjTfe8O7PmTOn6HOOP/547/Zjjz2m7du39+g+XXPNNXrttdckST/+8Y81cCBNigAAAAAA6A2awkoVMWgHy4IZB/7AAddgpTBmHBC87PU4w120bNky73Ztba0OPfTQos858sgjvdupVEorVqzosf1Zvny5l2Fw1FFH6ayzzuqxdQMAAAAAgGg11RA4QDSCzZHJOKhULXXBjAPXDdrhHme4i1auXOndHjlyZEkNiEeOHJlXzujll1/ukX3JZDL6+te/rmQyqaqqKt10002KxfjQBgAAAACgtwjLOKhhti8sS/gyCtKZbP6/U+O+YtDjoDKZv30Q6s033/Rujxo1qqTnxONx7bXXXlq9erUkac2aNT2yL7/85S/19NNPS5K+9a1vadKkST2y3jDr16/v0vIbN260tCcAAAAAAFSGsB4HDNrBtmIZBWQcVI5mU8YBwctej8BBF23bts273adPn5Kf19LSYlxHd61fv15XXHGFJGn06NH6wQ9+sNvrLGbkyJHWtwEAAAAAAD5mmukrUSYE9vlLFXX139F7tNSbMg74DOrtOMNdtGPHDu92XV1dyc+rr683rqO7/uVf/sULQPziF79QQ0PDbq8TAAAAAACUl8aQjANm+8K2qiJZLTRHrhymHgcEDno/Mg66KJlMererqko/fLnLtre379Y+3HPPPVq0aJEk6eSTT9ZnP/vZ3VpfqdatW9el5Tdu3KipU6da2hsAAAAAAHq/8FJFDNrBrniRPppkHFQOU+ZTKp01LInehMBBF+XO7G9tbS35ebnLNjY2dnv7W7Zs0YUXXihJampq0oIFC7q9rq4aMWKEs20BAAAAAIDw5sgEDmAbPQ7QyZRx0JpKR7AncIlvmS5qamrybu/atavk5+3cudO4jq667LLLvKbD11xzDYP5AAAAAAD0YmEZB7WUKoJl9DhAJ1MAszVJ4KC341umiwYMGODd7hzAL8Xbb79tXEdXrFixQrfccosk6eCDD/YyDwAAAAAAQO9EqSJEpWiPA67BimH6vGlNZiLYE7jEO7yLxo0b591eu3ZtSc/ZsWOH3n//feM6uuKdd95RNttRP+yFF15QVVWVYrFY6H9vvvmm99yrr74679/WrFnTrX0AAAAAAADuhAcOmO0NuxJFmh9TqqiytZFx0OsROOiiCRMmeLc3b95cUtbBCy+8ELoOAAAAAACAMGGBgxpKFcGyBM2RUcBR+w2MehdgGc2Ru2jq1KmqqalRe3u7JOnxxx/X/PnzCz7n8ccf926PGDFCY8aM6da2q6uru1Tm6IMPPlAm05E2VF9fn9fYOZFIdGsfAAAAAACAO42UKkJEigUGyDioLP/f5ybpivtekiSN7F+vz0weFvEewTYCB13U3NysmTNn6s9//rMk6c477ywaOLjrrru82/Pmzev2tqdPn65333235OVHjx7tlSu67LLLdNVVV3V72wAAAAAAwL2wzIIaAgewrFhWCxkHleXLR+yt/QY3a/0HO3XshCGqq2ZScm/Ht0w3nHnmmd7tBx54QEuXLg1ddtGiRVq+fLl3/4wzzrC5awAAAAAAoALEGbSFZfVFBoaLNU9G7zN1n/46+dAR6lNfHfWuwAECB90wf/58TZo0SZKUTqf15S9/2djrYOXKlTr33HO9+3PnztURRxxhXOdtt92W17x48eLFVvYdAAAAAAAAKKa+pnDgoFjzZAB7NkoVdUM8Htctt9yiGTNmqK2tTStXrtQhhxyiCy64QFOmTFEymdSSJUt08803a+vWrZKkAQMGaMGCBRHvOQAAAAAAAFBc0YwDsl6AXo3AQTdNmzZNt99+u04//XS1tbVp06ZNuvLKK43L9unTR3/4wx80duxYx3sJAAAAAAAAdF2xwAE9DoDejZyi3TB//nw9++yzmjFjhmKx4IdlIpHQvHnztGzZMh199NER7CEAAAAAANjTMT6LKBQrVUTGAdC7kXGwmyZPnqxHH31Uq1ev1lNPPaUNGzYokUhoxIgR+uQnP6mhQ4eWtJ4zzzwzr+lyT1izZk2Prg8AAAAAALhXW5XQrmQ66t1AhalOxJSIx5TOZI3/XpVgPjLQmxE46CH77LOP9tlnn6h3AwAAAAAA9DI1VXECB3AuFoupvjqh7W0p47+TcQD0boQGAQAAAAAAylhNFcM3iEZdgT4H9DgAeje+eQAAAAAAAMpYLYEDRKShQJ8DMg6A3o1vHgAAAAAAgDI2dlBT1LuAClVPxgFQsQgcAAAAAAAAlLHvHD8+7/43Zu4b0Z6g0tSRcQBULJojAwAAAAAAlLEJw1r07/MP0u+fW6fxQ1t0/syxUe8SKkR9dfic40Sc+chAb0bgAAAAAAAAoMydfOgInXzoiKh3AxWmUKmiqgQZB0BvRmgQAAAAAAAAQEBDTficY3ocAL0bgQMAAAAAAAAAAXUFMg6qCRwAvRqBAwAAAAAAAAAB9TX0OAAqFe9wAAAAAAAAAAH0OAAqF4EDAAAAAAAAAAGFAgf0OAB6NwIHAAAAAAAAAALqCzRHriJwAPRqBA4AAAAAAAAABNRXF+pxQOAA6M0IHAAAAAAAAAAIqK8p0OOAwAHQqxE4AAAAAAAAABBQV7DHAcOKQG/GOxwAAAAAAABAQKHmyGQcAL0bgQMAAAAAAAAAAQ2FmiMnCBwAvRmBAwAAAAAAAAAB9TU0RwYqFYEDAAAAAAAAAAGFehxU0eMA6NV4hwMAAAAAAAAIKNTjgIwDoHcjcAAAAAAAAAAgoGCPAwIHQK9G4AAAAAAAAABAQMGMA5ojA70agQMAAAAAAAAAAXUFmiOTcQD0bgQOAAAAAAAAAATUJOIKiw/Q4wDo3QgcAAAAAAAAAAiIxWKh5Yqq4gwrAr0Z73AAAAAAAAAARvUhDZKr6HEA9GoEDgAAAAAAAAAY1Yf0OaDHAdC7ETgAAAAAAAAAYBRWqogeB0DvRuAAAAAAAAAAgBE9DoDKxDscAAAAAAAAgFEdGQdARSJwAAAAAAAAAMCooSYs44DAAdCbETgAAAAAAAAAYFQfEjgg4wDo3QgcAAAAAAAAADAKK1VUlSBwAPRmBA4AAAAAAAAAGIU1RybjAOjdCBwAAAAAAAAAMAoLHFTHGVYEejPe4QAAAAAAAACMwpojJyhVBPRqBA4AAAAAAAAAGNWFBA6qKFUE9GoEDgAAAAAAAAAY0eMAqEwEDgAAAAAAAAAYhQUOquhxAPRqvMMBAAAAAAAAGNWHlCoi4QDo3QgcAAAAAAAAADAyZRxUxWOKxYgcAL0ZgQMAAAAAAAAARqaMA/obAL0fgQMAAAAAAAAARmEZBwB6NwIHAAAAAAAAAIzqTIGDBEOKQG/HuxwAAAAAAACAUYOhVFEmm41gTwC4ROAAAAAAAAAAgJGpx0EynYlgTwC4ROAAAAAAAAAAgJGpx0EyTcYB0NsROAAAAAAAAABgZOpxkM4QOAB6OwIHAAAAAAAAAIxqqxg+BCoR73wAAAAAAAAARrFYLOpdABABAgcAAAAAAAAAAMBD4AAAAAAAAAAAAHgIHAAAAAAAAAAAAA+BAwAAAAAAAAAA4CFwAAAAAAAAAAAAPAQOAAAAAAAAAACAh8ABAAAAAAAAAADwEDgAAAAAAAAAAAAeAgcAAAAAAAAAAMBD4AAAAAAAAAAAAHgIHAAAAAAAAAAINWvC4Lz7I/vXR7QnAFwhcAAAAAAAAAAg1HeOn6Caqo5hxFhM+uGJkyLeIwC2VUW9AwAAAAAAAADK176Dm3T/BUdpyarNOmhkX00Z3T/qXQJgGYEDAAAAAAAAAAXtP6RZ+w9pjno3ADhCqSIAAAAAAAAAAOAhcAAAAAAAAAAAADwEDgAAAAAAAAAAgIfAAQAAAAAAAAAA8BA4AAAAAAAAAAAAHgIHAAAAAAAAAADAQ+AAAAAAAAAAAAB4CBwAAAAAAAAAAAAPgQMAAAAAAAAAAOAhcAAAAAAAAAAAADwEDgAAAAAAAAAAgIfAAQAAAAAAAAAA8BA4AAAAAAAAAAAAHgIHAAAAAAAAAADAQ+AAAAAAAAAAAAB4CBwAAAAAAAAAAAAPgQMAAAAAAAAAAOAhcAAAAAAAAAAAADwEDgAAAAAAAAAAgIfAAQAAAAAAAAAA8BA4AAAAAAAAAAAAHgIHAAAAAAAAAADAQ+AAAAAAAAAAAAB4CBwAAAAAAAAAAAAPgQMAAAAAAAAAAOAhcAAAAAAAAAAAADwEDgAAAAAAAAAAgIfAAQAAAAAAAAAA8BA4AAAAAAAAAAAAHgIHAAAAAAAAAADAQ+AAAAAAAAAAAAB4CBwAAAAAAAAAAAAPgQMAAAAAAAAAAOAhcAAAAAAAAAAAADwEDgAAAAAAAAAAgIfAAQAAAAAAAAAA8BA4AAAAAAAAAAAAHgIHAAAAAAAAAADAUxX1DqD3SqVS3u2NGzdGuCcAAAAAAAAA0LsNHTpUVVU9M+RP4ADWbN682bs9derUCPcEAAAAAAAAAHq3devWacSIET2yLkoVAQAAAAAAAAAATyybzWaj3gn0Tq2trVq+fLkkadCgQT2WJoNwGzdu9LI7nnnmGQ0bNiziPQIAoLLwXQwAQLT4LgZQyShVhD1CXV2dpkyZEvVuVKxhw4b1WGoSAADoOr6LAQCIFt/FANB9lCoCAAAAAAAAAAAeAgcAAAAAAAAAAMBD4AAAAAAAAAAAAHgIHAAAAAAAAAAAAA+BAwAAAAAAAAAA4CFwAAAAAAAAAAAAPAQOAAAAAAAAAACAh8ABAAAAAAAAAADwEDgAAAAAAAAAAAAeAgcAAAAAAAAAAMBD4AAAAAAAAAAAAHhi2Ww2G/VOAAAAAAAAAACA8kDGAQAAAAAAAAAA8BA4AAAAAAAAAAAAHgIHAAAAAAAAAADAQ+AAAAAAAAAAAAB4CBwAAAAAAAAAAAAPgQMAAAAAAAAAAOAhcAAAAAAAAAAAADwEDgAAAAAAAAAAgIfAAQAAAAAAAAAA8BA4AAAAAAAAAAAAHgIHwG7YsGGDFi5cqCuvvFKzZ8/WgAEDFIvFvP8WL17crfWuXr1aV1xxhaZNm6YhQ4aotrZWe+21l6ZPn67rr79eb7/9drfW++abb+qqq67SzJkzNWzYMNXV1amhoUEjRozQ7Nmzdd1112nTpk1dXm82m9UDDzygL3zhC9pvv/3U0NCggQMH6pBDDtF3v/tdrVq1qlv7CwBAMXvad/GLL76oSy65RIcccogGDhyo2tpajRo1Sp/61Kd000036cMPPyx5XVdddVXeay3lv6FDh3ZrvwEA8Pvwww9177336hvf+IaOOuooDRkyRDU1NWpubtbo0aP1uc99TjfddJO2b9/erfUvWbJEZ511lsaPH6/m5mb17dtXkyZN0gUXXKClS5d2eX1vvPGGfv/73+vSSy/VzJkz1dLSkvcduWbNmm7tp8RvYgC9VBZAlz3//PPZoUOHZiUV/O/RRx/t0npTqVT2sssuy1ZXVxdcb58+fbK33357yetNJpPZ7373u9lEIlF0n+vq6rLXX399yet+++23s7Nnzy64zurq6uyPf/zjbCaT6dLxAAAgzJ72Xbxz587smWeemY3FYgXXO2zYsOxDDz1U0jr/9V//tejr9/83ZMiQLh0PAAD8Vq5cmZ07d27R78rc78xbb7215PVv3bo1e9pppxVcZywWy37rW9/Ktre3F13f/fffn+3fv3/R/Vy9enW3jge/iQH0VlUlxBYA+GzZsqXbMw3DZDIZnXLKKVq4cKH3WCwW08SJEzVo0CC9++67eumll5TNZrVlyxadfvrp2rFjh/75n/+56Lq/8pWv6He/+13eY6NHj9bo0aOVTqf16quveq+ntbVVl156qTZu3Kif/vSnBde7detWfepTn9KKFSu8xwYOHKjx48dr27ZtWrFihZLJpJLJpC677DJt27ZN11xzTReOCgAAZnvSd/GuXbs0c+ZMPf30095jiURCBx54oPr27au33npLr7zyiiRp48aNmjt3rv77v/9bc+fOLXnfhw8frsmTJxddrn///iWvEwAAk5deekkPPPBA3mOJREL77ruvhgwZonQ6rZUrV+r999+X1PGd/dWvflWvv/66fvjDHxZcdyqV0oknnqhHH33Ue6ylpUUTJ05Ue3u7VqxYoV27dimbzeqnP/2pNm/erF//+tcF17l582ZvX3oav4kB9GoRBy6APdKjjz7qzRwYPnx49sQTT8z+8Ic/zP7Xf/1Xt2c5XnPNNXnPPemkk7Jvvvlm3jLr1q3L/tM//ZO3TFVVVfbJJ58suN7f/OY3eeudOnVqdunSpYHlHn744eyYMWPyln3kkUcKrnv+/Pl5MyhuvPHGvBkf69aty86bNy9vnQ888EDJxwQAgDB70nfxWWedlbfer3/969nNmzfnLbNy5crsMccc4y3T1NSUff311wuuNzfj4Iwzzij5dQIAsDvuvvtu7zvwpJNOyi5cuDC7ZcuWvGUymUx24cKF2b322ivvO3DRokUF133ZZZflLf/9738/u2PHDu/f33333ezZZ5+dt8x//Md/FFznrbfe6i27zz77ZD//+c9nr7vuuux111232xkH/CYG0JsROAC6Yf369dlFixZlN27cmPf46tWruzVYsXnz5mxjY2PeQEU6nTYum8lk8gYspk+fXnDdRxxxhLfsmDFjslu3bg1ddu3atdnm5mZv+VNOOSV02WeeeSbvtf7nf/6ncblUKpU3EDJ58mTSMwEAu21P+S5+6aWX8soTXXjhhaHLtrW1ZY888khv2S996UsF95nAAQAgCgsXLsyeffbZgeC6ydq1a/NKC06aNKngsrW1tXlBgzC5pYyGDBmSF1zwe/nll7MPPfRQ9r333st7PHcSQncCB/wmBtDb0RwZ6Ia99tpL8+bN67EGg7/73e+0Y8cOSVJVVZVuvPFGxePmt2csFtONN96ompoaSdJf//rX0MaP7e3teuaZZ7z7559/vpqbm0P3Y+TIkTr99NO9+08++WTostddd513e9q0aTrrrLOMyyUSCd10003e/eXLl+tPf/pT6HoBACjFnvJdfOuttyqbzUrqKBN07bXXhu5DTU2NbrzxRu/+b3/7W73xxhvdeTkAAFhz4okn6pZbbtGoUaOKLjty5EhdffXV3v2XXnpJr7/+unHZBQsWqK2tTZI0atQoXXnllaHrXbBggRoaGiRJmzZt0q233hq67Lhx4zR79uweL9fHb2IAvR2BA6AM5NZvPOqoo7TXXnsVXH7o0KGaOXOmd/+ee+4xLvfuu+96gxWSNGnSpKL7krvM5s2bjcu0trbqwQcf9O4Xq+08YcIEHX300d79++67r+h+AADgkq3v4tz1nnDCCaqvry+43kMPPVTjxo2TJGWzWf3hD38ouu8AAJSzefPm5d1/+eWXjcvl/k4866yzvAC9Sf/+/XXKKacYn+sCv4kBVAICB0AZePPNN73bBx54YEnPyV1u0aJFxmWampry7re3txddb+cMD0nq16+fcZnFixdr586d3v05c+YUXe/xxx/v3fY30gIAIGq2vottrRcAgD2Ff6b/1q1bA8u8/PLLeVl2Xf2N+dhjj2n79u27sZddw29iAJWAwAFQBrZs2eLdLlRKKFdLS4t3e926dXr//feNy3TOWpSkJUuWFF3vY4895t0+6qijjMssW7bMu73PPvtoyJAhRdd75JFHerfffvttvfPOO0WfAwCAK7a+i3d3vbnfuQAA7Ilyg+iSNGjQoMAyud93tbW1OvTQQ4uuN/c3ZiqV0ooVK3ZjL7uG38QAKgGBA6AM5A4kbNu2raTn+GdphP2RdP7553u3b775Zr300kuh6/zzn/+shQsXSuqo33zJJZcYl1u5cqV3e+zYsSXtr3+5sPRUAACiYOu7eHfXu3XrVq1fv77oc5599lkdd9xxGjp0qGpqatS/f39NmDBBZ555pu6++26l0+mStg0AQE/LLbtXVVWlww47LLBM7m/MkSNHqrq6uuh6R44cmVfOyOVvTH4TA6gEBA6AMjBixAjv9vLly0t6jn+51atXG5f7l3/5F33uc5+TJG3fvl3Tp0/Xddddp1WrVqm9vV27du3SsmXLdNlll2nevHnKZrOKx+P6+c9/runTpxvXmTtjpJSGWJI0fPhwVVVVeffXrFlT0vMAAHDB1nexze/4XCtWrNBf/vIXbdq0SclkUh988IFefvll/frXv9b8+fO1//77hzZwBgDAlh07dujGG2/07s+ePdtYErc7vzHj8XheTyKXvzH5TQygEhA4AMpAbkmgJ554Qm+99VbB5d955528ZotS+CzGRCKhe+65R1dccYWam5u1detWfec739G4ceNUW1urhoYGHXzwwbr++uuVTCZ1+OGH6/7779c3vvGN0O3nbqtPnz6lvETF43E1NjYW3V8AAKJg67s4d72LFi1Sa2trwfW+8MILgRmIpXxnVlVVacKECTrmmGN09NFHa99998379zfeeEOzZs3SrbfeWnRdAAD0lG9/+9vasGGDpI6s9muuuca4XHd+Y0r55f1c/sbkNzGASkDgACgD8+fPVyKRkCQlk0ldeOGFymazxmWz2awuvPDCvCbGkgo2gorH4/rRj36kO+64Q8OGDQtdbt9999WFF16oT3/60wX3d8eOHd7turq6gsvmqq+vN64DAICo2fou/tKXvuTdfu+99/S9730vdB/a29uNgfuw7/j6+nqdccYZeuihh7Rt2zatWLFCixcv1mOPPaZXX31VGzZs0GWXXebNbkyn0zr33HP1xBNPhO4DAAA95c4779TNN9/s3b/kkktCexfsab8x97T9BYDuIHAAlIHRo0frrLPO8u7fe++9OuWUU7Ru3bq85TZs2KAvfOEL+r//9/8G1pFMJkPX/9JLL+mwww7TSSedpI0bN0rqqK84Y8YMTZ8+3WtO9dprr+n000/X5MmTC/ZCyN1WbqplMbnLtre3l/w8AABss/VdfNRRR+UF5G+44Qadd955eu+99/KWe+WVVzRnzhz99a9/LWm9knT55Zfrtttu0+zZs42DFsOHD9d1112nBx980KsBnUwmddFFFxnXBwBAT3n88cf1ta99zbt/2GGH6X/9r/8Vuvye9htzT9tfAOgOAgdAmfjZz36mgw8+2Lv/hz/8QXvvvbcOPPBAHXvssTrooIM0atQo3X333ZKkb37zm3nPD0uP/Pvf/67p06fr+eeflySdcMIJeuWVV/Taa6/p0Ucf1RNPPKF33nlHDz/8sMaNGyepo0nTzJkz9cYbbxjX2dDQ4N0uVnIhV+6yuSmaAACUA1vfxXfccYdGjhzp3b/55ps1dOhQHXbYYTr22GM1YcIEjR8/3it9VOp6SzVr1iz98Ic/9O7//e9/15NPPrlb6wQAIMyyZcs0b948LzNvzJgx+uMf/5jXyNhvT/uNuaftLwB0B4EDoEw0NDToscce00knneQ9ls1mtXz5cj3yyCN68cUXlclkFI/Hdfnll+uKK67Ie37fvn0D62xvb9cXvvAFbd26VZL0hS98Qf/93/+t/fffP7Dsscceq7/97W9eTeR3331X5513nnFfm5qavNu7du0q+TXu3LnTuA4AAMqBje9iSRoyZIieeuqpvH4HqVRKzz//vB555BGvp0Ftba1+9rOf6bTTTitpvV1xwQUX5JVH+Mtf/rLb6wQAwO+VV17Rcccdpy1btkjqyH77y1/+UrBkrrTn/cbc0/YXALqDwAFQRlpaWnTffffpiSee0DnnnKPx48erpaVFdXV1Gjt2rM4++2w988wzuvbaawMlDkaNGhVY3z333KPXX39dklRTU6MFCxYU3H6/fv103XXXeff/53/+R6tWrQosN2DAAO92Z+mjYrZt25b3R1LuOgAAKBc9/V3cafjw4Xr88cd1//336ytf+YrGjh2rxsZGNTY2avz48brooou0bNkyffOb39S7775b8npLVV9fryOOOMK7b/p+BwBgd6xevVqzZs3SO++8I0kaOHCg/vKXv2jMmDFFn9ud35iS9PbbbxvXYRu/iQFUgtILsQFwZvr06Zo+fXrBZVasWOHdjsfjxiZTDz/8sHf7iCOO0JAhQ4pu+zOf+Yyqq6u9mo1PPPFEIENh3Lhxuv/++yVJa9euLbpOSYEa0Z1lkQAAKEc99V3sN3fuXM2dO7fk9Q4ePLhHAgeS8mZ7+oMTAADsjvXr1+vYY4/V+vXrJXUE4h966CEdcMABJT0/9/dhqb8xd+zYoffff9+4Dtv4TQygEpBxAOyhnn32We/2xIkTjWmOGzZs8G7n1lYupK6uTgMHDvTu587g6DRhwgTv9j/+8Q+lUqmi6126dKl3O5FIaL/99itpfwAAKFelfBfv7npzswR2V+4sx9zazAAA7I5NmzZp1qxZWr16taSO75gHHnhAhx12WMnryP2NuXnz5pJm8b/wwguh67CN38QAKgGBA2APdc8993i3v/jFLxqXyW0+1d26i6aBhU9+8pN5y3Y2Xi7k8ccf925PmzatYGMsAAD2BKV8F3dVa2urN4OxJ9crBTMZAADYXe+//74+/elP65VXXpHU0a9n4cKFeX19SjF16tS834i5vx/D5C4zYsSIkkoi9RR+EwOoBAQOgD3Qfffdp9dee02SVFVVpa9+9avG5YYPH+7d/vvf/17Sul9//XWvkZV/HZ3233//vLTKO++8s+A629vb8wZXTjjhhJL2BQCAclXqd3FX3XTTTdq+fbskqX///jr55JN7ZL3PP/+8Xn31Ve/+Jz7xiR5ZLwCgcm3dulWzZ8/W8uXLJXV8H/7+97/Xpz/96S6vq7m5WTNnzvTuF/uNKUl33XWXd3vevHld3ubu4DcxgEpA4ADYw2zatEkXX3yxd/8b3/hGXs3iXLmzINauXav77ruv6PpvuOGGvPtHH320cbkzzzzTu33rrbfmlUXyu/nmm70GkjU1NTr11FOL7gcAAOWqK9/FXfHKK6/o6quv9u7/4Ac/UF1d3W6vt729XRdccIF3v7a2VnPmzNnt9QIAKtfOnTs1d+5cPffcc5I6ev3ccccduzUgnvsb84EHHsgr7eO3aNEiL2AhSWeccUa3t9td/CYG0NsROADKxKpVq7RkyZKCy/zjH//QrFmz9Oabb0qSRo0apR/96Eehy59wwgnq37+/d//ss8/WM888E7r8TTfdpP/4j//w7n/mM5/R0KFDjctecMEFXpmDbdu26Utf+pK2bdsWWO6JJ57Q9773Pe/+17/+9ZL7LQAA4JKN72JJeu655wJ1mP3++te/atasWV7W35QpU/IG+/2uv/56/fznP/eyE8Js3rxZJ5xwgp588knvsfPPP19Dhgwp+DwAAMK0tbXpxBNP1BNPPCFJisVi+tWvfrXb5fXmz5+vSZMmSZLS6bS+/OUvG3sdrFy5Uueee653f+7cuT3aE6hU/CYG0NvFstlsNuqdAPZExx13XGBwIZvNqr293btfXV2teDw/Pnf00Ufrf/7nfwLre+ihh3T88cdrv/3207x583T44Ydr2LBhSqVSWrdunR588EEtXLhQyWRSkjRw4EAtXrxYEydOLLif/+f//J+8P6qqqqo0f/58feYzn9HIkSOVTCb1yiuv6Le//a33h58kNTU16emnn9YBBxwQuu777rtP//RP/6TOj5ExY8boggsu0OTJk7V9+3b9+c9/1n/913+pra1NkjR27Fg9/fTTGjBgQMF9BgCgFHvKd/HNN9+s8847TwcddJDmzp2rQw45RIMHD9auXbu0Zs0aLVq0SA8++KD3fTp27FgtWbLEWC6w00UXXaQFCxaovr5es2fP1rRp0zRu3Dj169dP2WxWGzZs0GOPPaa77rpLO3bs8J43ZcoULV68mObIAIBu+/GPf6zLL7/cu9+vXz9NnTq15OefdtppOu2004z/9tRTT2nGjBneb8ghQ4boggsu0JQpU5RMJrVkyRLdfPPN2rp1qyRpwIABevrppzV27NiC2xw3bpwX9O+UyWS873SpIxMgFovlLfOVr3xFt9xyS+h6+U0MoDerinoHgD1Ve3u79+UfJvePkNznFfLqq6/q3//93wsus//+++vuu+8uOlAhSeecc47efvttXX311cpkMkqlUrrrrrvy6kH69evXT7///e8LBg0k6XOf+5x++tOf6tvf/rYymYzeeOONvNINuYYPH64//vGP/IEEAOgxe8p3cadly5Zp2bJlBZeZMmWK7r333oJBg1y7du3SwoULtXDhwqLLzpkzR3fccQdBAwDAbtm5c2fe/Q8++EB//vOfS37+tGnTCv7b7bffrtNPP11tbW3atGmTrrzySuOyffr00R/+8IeiQQOpI0ui2N8Mpr8PTH9H5OI3MYDejFJFQJkYNWqUpk6dGpjhkGvkyJG65ppr9OKLL+rAAw8sed0/+MEPtHjxYs2ePbvg+hsaGnTOOedo+fLlmjVrVknrvvjii/Xoo4/q0EMPNf57bW2tTj/9dL344ouaMGFCyfsMAIBrtr6LJ0yYoMmTJxdcZty4cfrFL36hp556qqTyBZ/61Kd0zDHHqLa2tuiy06ZN029/+1v96U9/0sCBA0vaZwAAojJ//nw9++yzmjFjhvE7OZFIaN68eVq2bFloTz6X+E0MoLeiVBFQZj788EMtXbpUGzZs0KZNm5TJZDRs2DCNGzdOhx9+eMHBjFK89957evrpp7V69Wpt2bJFVVVV6tevnw444AAddthhu9WEccWKFXr++ef11ltvqb6+XiNGjNDMmTPVt2/f3dpnAABcsvVdvHnzZi1dulQbN27Upk2bVFVVpWHDhmny5MleTeeuSiaTWrFihV599VW99dZb2rZtm+LxuPr27auRI0dq2rRpBAsAAHus1atX66mnntKGDRuUSCQ0YsQIffKTnwztxRc1fhMD6E0IHAAAAAAAAAAAAA+ligAAAAAAAAAAgIfAAQAAAAAAAAAA8BA4AAAAAAAAAAAAHgIHAAAAAAAAAADAQ+AAAAAAAAAAAAB4CBwAAAAAAAAAAAAPgQMAAAAAAAAAAOAhcAAAAAAAAAAAADwEDgAAAAAAAAAAgIfAAQAAAAAAAAAA8BA4AAAAAAAAAAAAHgIHAAAAAAAAAADAQ+AAAAAAAAAAAAB4CBwAAAAAAAAAAAAPgQMAAAAAAAAAAOAhcAAAAAAAAAAAADwEDgAAAAAAAAAAgIfAAQAAAICyN2PGDMViMe8/AAAAAPYQOAAAAAAAAAAAAB4CBwAAAAAAAAAAwEPgAAAAAIB1a9asySs1dOaZZ0a9SwAAAABCEDgAAAAAAAAAAACeqqh3AAAAAACKWbx4cdS7AAAAAFQMMg4AAAAAAAAAAICHwAEAAAAAAAAAAPAQOAAAAAAAAAAAAB56HAAAAACoKOl0Wn/729/0xhtv6K233lJtba3Gjx+vGTNmqL6+vuBzt27dqieeeEKrVq3Szp07NXDgQB144IE64ogjFIvFdnvfPvzwQz355JPauHGjNm/erLq6Og0aNEiHHHKIDjjggN1ePwAAAFCKWDabzUa9EwAAAAB6p9GjR+vNN9/s8vNuvfVWnXnmmd79GTNm6LHHHvPuF/oZc9ttt+mrX/1qYF2tra267rrrdMstt2jDhg2B5/Xt21ff/e539e1vf1vxeH5y9qZNm/T9739fd9xxh1pbWwPPHT16tH72s5/pxBNP7MrL9Pzxj3/UT37yEz355JNKpVLGZUaNGqWLLrpI559/vmpra7u1HQAAAKAUlCoCAAAA0Ott2rRJn/jEJ3TVVVcZgwZSx2z/yy+/XKeeeqoymYz3+LPPPquDDjpIt9xyizFoIElr1qzRSSedpAULFnRpv9555x3NnDlTJ5xwgpYsWRIaNJCktWvX6pJLLtGBBx6o119/vUvbAQAAALqCwAEAAACAXq21tVVz587V0qVLvcf23ntvTZkyRfvtt1+gxNDvf/97XXvttZKkl19+WZ/+9Ke1adMmSVIikdD++++vKVOmaMSIEYFtXXzxxXriiSdK2q9XX31V06ZN0+LFi/Mej8ViGj16tA4//HBNnjxZTU1Nef++atUqHXnkkVq1alVJ2wEAAAC6ilJFAAAAAKz561//ql27dmnTpk067bTTvMePO+44XXrppaHPmzhxooYNG+bd351SRaNHj9aaNWsUj8d1/vnn69vf/rb23ntv79/Xr1+viy66SPfee6/3WENDg1atWqU5c+bopZdeUt++ffWv//qvOuOMM9SvXz9vuWeeeUZf+9rX9NJLL3mPHXroofr73/9e6LBo586dOvzww7Vy5UrvsX322Uff+c539PnPfz5vG6lUSg8//LCuuOIKPf/8897jBx98sJ566inKFgEAAKDHETgAAAAAYN2aNWu0zz77ePfPOOMM3XbbbSU/f3cCB5IUj8f1u9/9Tp///OeNz8lkMpo9e7Yefvhh77EJEyZo5cqVGjp0qB555BFNmDDB+NzNmzdr4sSJ2rx5s/fY0qVLdfDBB4fu43nnnaebb77Zuz9v3jzdddddgeyCXG1tbTr11FN13333eY/9+7//uy6++OLQ5wAAAADdQakiAAAAAL3epZdeGho0kDoCCz/60Y/yHuvMBvj1r38dGjSQpEGDBgUG7x988MHQ5detW6df/epX3v0DDzxQd999d8GggSTV1tbqN7/5jUaPHu09tmDBAqXT6YLPAwAAALqKwAEAAACAXq2xsVHf+c53ii53xBFHaMiQIXmPHXXUUTruuOOKPvfEE0/Mu5/bT8Hvl7/8ZV4T5Ouvv77kckMNDQ15QYo333xTzz33XEnPBQAAAEpF4AAAAABArzZr1iz17du3pGUnTpyYd/+UU04p6Xnjxo1TdXW1d3/t2rWhy/7pT3/ybg8dOlSzZs0qaRud/IGMxx9/vEvPBwAAAIohcAAAAACgVzvssMNKXnbAgAF59w899NCSnpdIJPKCE1u3bjUu98EHHwQaKcfjXftZNmrUqLz7uQ2WAQAAgJ5QFfUOAAAAAIBNgwYNKnnZhoaGHnnurl27jMu88soreY2d//SnPykWi5W8DZP3339/t54PAAAA+JFxAAAAAKBXq6urc/7c3OBArvfee6/b+xJmy5YtPb5OAAAAVDYCBwAAAADgyIcfftjj68xkMj2+TgAAAFQ2ShUBAAAAgCP+UkgzZ87U9773vd1aZ79+/Xbr+QAAAIAfgQMAAAAAcGTgwIF59+vq6jRr1qyI9gYAAAAwo1QRAAAAADiyzz775N1/7bXXItoTAAAAIByBAwAAAADWxeP5Pz3Cmgf3diNGjNC+++7r3X/11Ve1bt26CPcIAAAACCJwAAAAAMC6xsbGvPs7d+6MaE+iN2fOnLz7N954Y0R7AgAAAJgROAAAAABgXUtLixKJhHd/9erVEe5NtC6++GJVVX3cbu4Xv/iFnn/++Qj3CAAAAMhH4AAAAACAddXV1dp///29+y+88IJef/31CPcoOmPGjNHXvvY17/6uXbv02c9+Vn/729+6tJ5HHnlE55xzTk/vHgAAAKCq4osAAAAAwO477rjjtHLlSklSOp3W0UcfrXPOOUcHHnigmpqaFIvFvGUnTpyoYcOGRbWr1t1www165plntHTpUknSxo0bdfTRR+u0007Tueeeq8MPPzwvK0GStm/frhdeeEEPPvig7r33Xr3yyivae++9o9h9AAAA9HIEDgAAAAA4cf755+t//+//rdbWVknSW2+9pauuusq47K233qozzzzT3c45Vl9fr0WLFukzn/mMli9fLklKpVK67bbbdNttt6mxsVEjR45Unz59tHPnTn3wwQfasGFDxTaVBgAAgFuUKgIAAADgxP7776877rhDTU1NUe9KWRgxYoT+9re/6bTTTsvLtpCkHTt26OWXX9bTTz+t5cuXa/369cagwahRo1ztLgAAACoIgQMAAAAAzpxyyilatWqVrr32Ws2ePVsjR44MlCmqJI2Njbrjjjv0wgsv6NRTT1Xfvn2LPmf8+PH65je/qSeffFJLliyxv5MAAACoOLEsua4AAAAAUBYymYyef/55rVq1Su+++662bt2qhoYG9e3bV2PHjtUBBxygQYMGRb2bAAAA6OUIHAAAAAAAAAAAAA+ligAAAAAAAAAAgIfAAQAAAAAAAAAA8BA4AAAAAAAAAAAAHgIHAAAAAAAAAADAQ+AAAAAAAAAAAAB4CBwAAAAAAAAAAAAPgQMAAAAAAAAAAOAhcAAAAAAAAAAAADwEDgAAAAAAAAAAgIfAAQAAAAAAAAAA8BA4AAAAAAAAAAAAHgIHAAAAAAAAAADAQ+AAAAAAAAAAAAB4CBwAAAAAAAAAAAAPgQMAAAAAAAAAAOAhcAAAAAAAAAAAADwEDgAAAAAAAAAAgIfAAQAAAAAAAAAA8BA4AAAAAAAAAAAAHgIHAAAAAAAAAADAQ+AAAAAAAAAAAAB4CBwAAAAAAAAAAAAPgQMAAAAAAAAAAOAhcAAAAAAAAAAAADwEDgAAAAAAAAAAgIfAAQAAAAAAAAAA8Pz/Zd7zDHUOvbwAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "image/png": { + "height": 575, + "width": 775 + } + }, + "output_type": "display_data" + } + ], + "source": [ + "# select only the ocean regions by ignoring any percentages over 100:\n", + "SI_obs_ds = SI_obs_ds.where(SI_obs_ds['seaice_conc'] < 101)\n", + "\n", + "# then multiply the ice fraction in each grid cell by the cell area:\n", + "# factor of 0.01 servees to convert from percentage to fraction\n", + "SI_obs_ds['seaice_area_km2'] = 0.01 * SI_obs_ds['seaice_conc'] * SI_obs_ds['Gridcell_Area']\n", + "\n", + "# finally, we can sum this sea ice area variable over the spatial dimensions to get\n", + "# a time series of total Arctic sea ice area:\n", + "SI_total_area_obs = SI_obs_ds['seaice_area_km2'].sum(dim=['latitude', 'longitude'])\n", + "SI_total_area_obs.plot()" + ] + }, + { + "cell_type": "markdown", + "id": "9fc76012-d7b8-4b5e-aa41-0facc05c0fa8", + "metadata": { + "execution": {} + }, + "source": [ + "Now you can add the observational decline of sea ice to your analysis if you wish!" + ] + } + ], + "metadata": { + "colab": { + "collapsed_sections": [], + "include_colab_link": true, + "name": "Arctic_sea_ice_change_2024", + "toc_visible": true + }, + "kernel": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.19" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/projects/project-notebooks/Heatwaves_2024.ipynb b/projects/project-notebooks/Heatwaves_2024.ipynb new file mode 100644 index 000000000..aa2d88b30 --- /dev/null +++ b/projects/project-notebooks/Heatwaves_2024.ipynb @@ -0,0 +1,2367 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "execution": {} + }, + "source": [ + "\"Open   \"Open" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "execution": {} + }, + "source": [ + "# Heatwaves\n", + "\n", + "**Content creators:** Wil Laura\n", + "\n", + "**Content reviewers:** Will Gregory, Paul Heubel, Laura Paccini, Jenna Pearson\n", + "\n", + "**Content editors:** Paul Heubel\n", + "\n", + "**Production editors:** Paul Heubel, Konstantine Tsafatinos\n", + "\n", + "**Our 2024 Sponsors:** CMIP, NFDI4Earth" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "cellView": "form", + "execution": {} + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "bd6d4f947c0e4138b8069f6bd309e3b8", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Tab(children=(Output(), Output(), Output()), selected_index=0, titles=('Youtube', 'Bilibili', 'Osf'))" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# @title Project Background\n", + "\n", + "from ipywidgets import widgets\n", + "from IPython.display import YouTubeVideo\n", + "from IPython.display import IFrame\n", + "from IPython.display import display\n", + "\n", + "\n", + "class PlayVideo(IFrame):\n", + " def __init__(self, id, source, page=1, width=400, height=300, **kwargs):\n", + " self.id = id\n", + " if source == 'Bilibili':\n", + " src = f'https://player.bilibili.com/player.html?bvid={id}&page={page}'\n", + " elif source == 'Osf':\n", + " src = f'https://mfr.ca-1.osf.io/render?url=https://osf.io/download/{id}/?direct%26mode=render'\n", + " super(PlayVideo, self).__init__(src, width, height, **kwargs)\n", + "\n", + "\n", + "def display_videos(video_ids, W=400, H=300, fs=1):\n", + " tab_contents = []\n", + " for i, video_id in enumerate(video_ids):\n", + " out = widgets.Output()\n", + " with out:\n", + " if video_ids[i][0] == 'Youtube':\n", + " video = YouTubeVideo(id=video_ids[i][1], width=W,\n", + " height=H, fs=fs, rel=0)\n", + " print(f'Video available at https://youtube.com/watch?v={video.id}')\n", + " else:\n", + " video = PlayVideo(id=video_ids[i][1], source=video_ids[i][0], width=W,\n", + " height=H, fs=fs, autoplay=False)\n", + " if video_ids[i][0] == 'Bilibili':\n", + " print(f'Video available at https://www.bilibili.com/video/{video.id}')\n", + " elif video_ids[i][0] == 'Osf':\n", + " print(f'Video available at https://osf.io/{video.id}')\n", + " display(video)\n", + " tab_contents.append(out)\n", + " return tab_contents\n", + "\n", + "video_ids = [('Youtube', 'aXBq-A8JsPE'), ('Bilibili', ''), ('Osf', '')]\n", + "tab_contents = display_videos(video_ids, W=854, H=480)\n", + "tabs = widgets.Tab()\n", + "tabs.children = tab_contents\n", + "for i in range(len(tab_contents)):\n", + " tabs.set_title(i, video_ids[i][0])\n", + "display(tabs)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "cellView": "form", + "execution": {} + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "If you want to download the slides: https://osf.io/download/zeyxn/\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# @title Slides\n", + "# @markdown These are the slides for the video introduction to the project\n", + "from IPython.display import IFrame\n", + "link_id = \"zeyxn\"\n", + "print(f\"If you want to download the slides: https://osf.io/download/{link_id}/\")\n", + "IFrame(src=f\"https://mfr.ca-1.osf.io/render?url=https://osf.io/{link_id}/?direct%26mode=render%26action=download%26mode=render\", width=854, height=480)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "execution": {} + }, + "source": [ + "**In this project**, you will look into the characterization of heatwaves using near-surface air temperature reanalysis data. Since we are talking about extreme events when the temperature exceeds a certain threshold for a continuous number of days, we will first analyze the global spatial and temporal distribution of air temperature. Next, we will calculate the number and timing of heatwaves for a local area, then focus on determining the percentage of a region under heat waves. Additionally, you will be able to explore its relationship with other climate drivers. Also, you are encouraged to analyze the health impact of heatwaves using an available mortality dataset. Finally, enjoy exploring the heatwaves!\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "execution": {} + }, + "source": [ + "# Project Template" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "execution": {} + }, + "source": [ + " " + ] + }, + { + "cell_type": "markdown", + "metadata": { + "execution": {} + }, + "source": [ + "# Data Exploration Notebook" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "execution": {} + }, + "source": [ + "## Project Setup" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": {} + }, + "outputs": [], + "source": [ + "# google colab installs\n", + "#!pip install pandas==1.5.3\n", + "\n", + "# !pip install cartopy --quiet" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": {} + }, + "outputs": [], + "source": [ + "# import packages\n", + "#import xclim\n", + "import numpy as np\n", + "import pandas as pd\n", + "import xarray as xr\n", + "import matplotlib.pyplot as plt\n", + "#import matplotlib.dates as mdates\n", + "import cartopy.feature as cfeature\n", + "import cartopy.crs as ccrs\n", + "\n", + "#from xclim.core.calendar import percentile_doy" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "cellView": "form", + "execution": {} + }, + "outputs": [], + "source": [ + "# @title Helper functions\n", + "import os\n", + "import pooch\n", + "import tempfile\n", + "\n", + "def pooch_load(filelocation=None, filename=None, processor=None):\n", + " shared_location = \"/home/jovyan/shared/Data/projects/Heatwaves\" # this is different for each day\n", + " user_temp_cache = tempfile.gettempdir()\n", + "\n", + " if os.path.exists(os.path.join(shared_location, filename)):\n", + " file = os.path.join(shared_location, filename)\n", + " else:\n", + " file = pooch.retrieve(\n", + " filelocation,\n", + " known_hash=None,\n", + " fname=os.path.join(user_temp_cache, filename),\n", + " processor=processor,\n", + " )\n", + "\n", + " return file" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "cellView": "form", + "execution": {} + }, + "outputs": [], + "source": [ + "# @title Figure settings\n", + "\n", + "import ipywidgets as widgets # interactive display\n", + "\n", + "%config InlineBackend.figure_format = 'retina'\n", + "plt.style.use(\"https://raw.githubusercontent.com/neuromatch/climate-course-content/main/cma.mplstyle\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "execution": {} + }, + "source": [ + "## ECMWF Reanalysis v5 (ERA5): Air Temperature at 2m\n", + "\n", + "You will utilize the ERA5 dataset to examine temperature trends and heatwaves, applying the loading methods introduced in W1D1. Please, see the W1D2 course material for more information on reanalysis data. Besides, you can read more about ERA5 here: [Climate reanalysis](https://climate.copernicus.eu/climate-reanalysis).\n", + "\n", + "Specifically, in this project, you will focus on near-surface temperature, which refers to the temperature of air at $2 \\text{m}$ above the surface of land, sea, or inland waters, temperature with units of Kelvin $\\left(\\text{K}\\right)$.\n", + "\n", + "You will access the following subsampled data through the OSF cloud storage to simplify downloading. For the project, it is necessary to download data yourself when you are interested in exploring other regional subsets or variables. Please have a look at the [`get_ERA5_reanalysis_data.ipynb`](https://github.com/neuromatch/climate-course-content/blob/main/tutorials/W1D2_StateoftheClimateOceanandAtmosphereReanalysis/get_ERA5_reanalysis_data.ipynb) notebook, where we show how to use the Climate Data Store (CDS) API to get a subset of the huge ECMWF ERA5 Reanalysis data set." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "execution": {} + }, + "source": [ + "In the following, along with a small subsample file that was downloaded beforehand, we show how to load, explore, and visualize ERA5 data." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": {} + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'https://osf.io/download/z9xfv/' to file '/tmp/file_sample.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: 2236e254419e163ed9ae6ad44b61bfe39d5fb2bd943dbd912093e703c5fa1485\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.Dataset> Size: 25MB\n",
+       "Dimensions:    (longitude: 41, latitude: 41, time: 3653)\n",
+       "Coordinates:\n",
+       "  * longitude  (longitude) float32 164B 143.0 143.2 143.5 ... 152.5 152.8 153.0\n",
+       "  * latitude   (latitude) float32 164B 5.0 4.75 4.5 4.25 ... -4.5 -4.75 -5.0\n",
+       "  * time       (time) datetime64[ns] 29kB 1991-01-01 1991-01-02 ... 2000-12-31\n",
+       "Data variables:\n",
+       "    t2m        (time, latitude, longitude) float32 25MB ...\n",
+       "Attributes:\n",
+       "    Conventions:  CF-1.6\n",
+       "    history:      2024-02-14 07:40:23 GMT by grib_to_netcdf-2.25.1: /opt/ecmw...
" + ], + "text/plain": [ + " Size: 25MB\n", + "Dimensions: (longitude: 41, latitude: 41, time: 3653)\n", + "Coordinates:\n", + " * longitude (longitude) float32 164B 143.0 143.2 143.5 ... 152.5 152.8 153.0\n", + " * latitude (latitude) float32 164B 5.0 4.75 4.5 4.25 ... -4.5 -4.75 -5.0\n", + " * time (time) datetime64[ns] 29kB 1991-01-01 1991-01-02 ... 2000-12-31\n", + "Data variables:\n", + " t2m (time, latitude, longitude) float32 25MB ...\n", + "Attributes:\n", + " Conventions: CF-1.6\n", + " history: 2024-02-14 07:40:23 GMT by grib_to_netcdf-2.25.1: /opt/ecmw..." + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# loading a subsample of the ERA5 reanalysis dataset, daily from 1991 to 2000\n", + "link_id = \"z9xfv\"\n", + "url_ERA5 = f\"https://osf.io/download/{link_id}/\"\n", + "#filepath = \"/content/file_sample.nc\"\n", + "fname_ERA5 = \"file_sample.nc\"\n", + "\n", + "ds = xr.open_dataset(pooch_load(url_ERA5, fname_ERA5))\n", + "ds" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "execution": {} + }, + "source": [ + "Let's visualize the distribution of the annual mean near-surface temperature for the year 2000 in the given area around the equator. After calculating the anomaly according to the hints included in the template, you should be able to visualize the answer to **Question 1** similarly." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": {} + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.DataArray 't2m' (latitude: 41, longitude: 41)> Size: 7kB\n",
+       "array([[300.1665 , 300.18317, 300.19998, ..., 300.12216, 300.10117,\n",
+       "        300.07745],\n",
+       "       [300.17957, 300.1994 , 300.21912, ..., 300.12817, 300.12216,\n",
+       "        300.105  ],\n",
+       "       [300.19885, 300.2193 , 300.23114, ..., 300.14175, 300.13776,\n",
+       "        300.13687],\n",
+       "       ...,\n",
+       "       [299.88504, 300.1443 , 300.40536, ..., 300.0386 , 299.20694,\n",
+       "        299.89627],\n",
+       "       [298.28378, 298.61932, 298.86646, ..., 299.7144 , 299.8679 ,\n",
+       "        300.66873],\n",
+       "       [294.1361 , 294.42368, 295.4092 , ..., 299.97037, 300.18015,\n",
+       "        300.3619 ]], dtype=float32)\n",
+       "Coordinates:\n",
+       "  * longitude  (longitude) float32 164B 143.0 143.2 143.5 ... 152.5 152.8 153.0\n",
+       "  * latitude   (latitude) float32 164B 5.0 4.75 4.5 4.25 ... -4.5 -4.75 -5.0
" + ], + "text/plain": [ + " Size: 7kB\n", + "array([[300.1665 , 300.18317, 300.19998, ..., 300.12216, 300.10117,\n", + " 300.07745],\n", + " [300.17957, 300.1994 , 300.21912, ..., 300.12817, 300.12216,\n", + " 300.105 ],\n", + " [300.19885, 300.2193 , 300.23114, ..., 300.14175, 300.13776,\n", + " 300.13687],\n", + " ...,\n", + " [299.88504, 300.1443 , 300.40536, ..., 300.0386 , 299.20694,\n", + " 299.89627],\n", + " [298.28378, 298.61932, 298.86646, ..., 299.7144 , 299.8679 ,\n", + " 300.66873],\n", + " [294.1361 , 294.42368, 295.4092 , ..., 299.97037, 300.18015,\n", + " 300.3619 ]], dtype=float32)\n", + "Coordinates:\n", + " * longitude (longitude) float32 164B 143.0 143.2 143.5 ... 152.5 152.8 153.0\n", + " * latitude (latitude) float32 164B 5.0 4.75 4.5 4.25 ... -4.5 -4.75 -5.0" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# calculate the annual average of the year selected\n", + "year_to_use = ds.t2m.loc[\"2000-01-01\":\"2000-12-31\",:,:].mean(dim=\"time\")\n", + "year_to_use" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": {} + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/cartopy/io/__init__.py:241: DownloadWarning: Downloading: https://naturalearth.s3.amazonaws.com/10m_physical/ne_10m_coastline.zip\n", + " warnings.warn(f'Downloading: {url}', DownloadWarning)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/opt/hostedtoolcache/Python/3.9.19/x64/lib/python3.9/site-packages/cartopy/io/__init__.py:241: DownloadWarning: Downloading: https://naturalearth.s3.amazonaws.com/10m_cultural/ne_10m_admin_0_boundary_lines_land.zip\n", + " warnings.warn(f'Downloading: {url}', DownloadWarning)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABkgAAATHCAYAAACm8fsaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd3iT1f//8VfSUqBlVMqGspUlIFuQPVRkioioLBVUVOTjxz0AWSrqR0FREQcqSwREpiIIiIAIyN5779VFoSP37w9+5Ns0aZukbebzcV25rtyn9znnneTcd9K8c59jMgzDEAAAAAAAAAAAQBAxezsAAAAAAAAAAAAATyNBAgAAAAAAAAAAgg4JEgAAAAAAAAAAEHRIkAAAAAAAAAAAgKBDggQAAAAAAAAAAAQdEiQAAAAAAAAAACDokCABAAAAAAAAAABBhwQJAAAAAAAAAAAIOiRIAAAAAAAAAABA0CFBAgAAAAAAAAAAgg4JEgAAAAAAAAAAEHRIkAAAAAAAAAAAgKBDggQAAAAAAAAAAAQdEiQAAAAAAAAAACDokCABAAAAAAAAAABBhwQJAAAAAAAAAAAIOiRIAAAAAAAAAABA0CFBAgAAAAAAAAAAgg4JEgAAAAAAAAAAEHRIkAAAvO7tt9+WyWSyuQEAgODE5wIAAAB4Sqi3AwAAAAAAAPYuXbqknTt36uDBg7py5YoSEhJUsGBB3XLLLSpfvrwaNGig8PDwXI/j/Pnz2rBhgw4ePKjY2FjlyZNHUVFRqlGjhho0aKA8efLkav8HDhzQli1bdPz4cSUkJCh//vwqXbq0ateurZo1a+Zq3xaLRZs3b9aOHTt07tw5Xb9+XQUKFFDFihVVv359lS1bNlf7BwAAuYsECQCnGYahSpUq6ciRIzblZrNZx44dU5kyZbwTGAAAABAAzp07p19//VXLly/XypUrdezYsUz3Dw0NVb169fTEE0/o0UcfVURERI7GM3v2bI0fP15r1qyRYRgO9ylYsKB69uypV155RbfddluO9Z2YmKgvvvhCEydO1P79+zPcr2zZsnriiSf0n//8R5GRkTnW/8mTJ/Xhhx9qypQpunjxYob71a1bV88++6z69++vkJCQHOsfAAB4BlNsAXDaH3/8YZcckW78quq7777zeDwA4G+OHDliN20M50/AfRxTCBTff/+92rRpo9KlS6t///764YcfskyOSFJKSorWr1+vp556SuXKldO0adNyJJ6TJ0+qVatWevDBB7V69eoMkyOSFBcXp2+++Ua1atXSqFGjMt3XWWvWrFH16tX14osvZpockaQTJ05oxIgRuu222zR//vxs9y1JX375papVq6Zx48ZlmhyRpM2bN2vAgAGqX7++9u7dmyP9AwAAzyFBAsBp33zzTYZ/+/bbb3PknyEAAAAg2AwfPlwrVqxQamqq221cunRJvXv3Vu/evbPVzr59+9SwYUP9+eefLtVLSkrSsGHD9Oijj2ar/59//lmtW7fW0aNHXap3/vx5devWTZ9//rnbfUvSiy++qKefflrx8fEu1du6dasaNWqkf/75J1v9AwAAz2KKLQBOuXTpkubOnZvh3w8dOqSVK1eqdevWHowKAAAACFzFixdX8+bNdccdd6hYsWIqUqSIYmNjtX//fv3+++/avHmzXZ2bV5FMmTLF5QXuL168qPbt2+v06dN2f6tfv766du2qihUrKjExUfv27dP06dN16tQpm/1mzJih4sWLa9y4cS71LUlr165Vr169lJycbFNuNpvVqVMnNWvWTNHR0Tp//ry2bt2qGTNm6OrVq9b9DMPQc889p1KlSun+++93uf8PPvhAH330kV15RESEHn74YdWuXVtFixbV8ePH9ddff2nRokU2PxKLjY1Vhw4d9O+//6pixYou9w8AADzPZPCTbwBO+PTTT/X888/blJlMJpt/CB599FFNnTrV06EhALz99tsaMWKETRlvTwhER44csfvCZPLkyerfv793AgL8HMcUAkWFChWsV0wUL15cvXv3Vr9+/VS7du1M661cuVIDBgzQwYMH7f7mzrHwwAMP6Oeff7YpK1iwoKZOnaouXbrY7Z+cnKx33nlHb7/9tt3fFi9erA4dOjjdd0JCgmrUqGE3tVjVqlU1d+5cVa9e3a7OpUuX9Nhjj9lNrVW4cGHt2bNHJUuWdLr/TZs2qXHjxkpJSbEp79q1qyZPnqxbbrnFrs6uXbt0//33a9++fTbld955p9auXetyggoAAHgeU2wBcEr66bVuvfVWde/e3abs559/VkxMjCfDAgAAAALCrbfeqh9++EEnT57U//73vyyTI5LUqlUr/fvvv6pbt67d31599VWbqyuysnTpUrvkSFhYmJYvX+4wOSJJefLk0fDhwx1eLfL888/bJRsy884779glR6pUqaK1a9c6TI5IUpEiRfTzzz/rgQcesCmPiYnRa6+95nTfkjR48GC7eHv06KGff/7ZYXJEkmrUqKG1a9eqSpUqNuXr1q3T999/71L/AADAO0iQAMjSv//+q61bt9qU9e3bV/369bMpS0xM1PTp0z0ZGgAAAOD3JkyYoN27d6tPnz4KDXVtJuzChQtr3rx5Cg8Ptyk/d+6clixZ4nQ7o0aNsisbPny4GjRokGXdIUOGqH379jZlBw4ccPp/gytXrmjChAk2ZWazWZMnT1aRIkUyrRsSEqIvv/xSJUqUsCmfOnWqDh065FT/y5cv19q1a23KSpYsqS+//FJmc+Zfm0RFRenbb7+122/MmDGyWCxO9Q8AALyHBAmALKW/esRkMqlPnz7q0KGDihcvnum+AAAAADLXqVMnhYSEuF0/OjpaTzzxhF35woULnaq/c+dO/fXXXzZlRYsW1UsvveR0DO+++65d2RdffOFU3WnTpik2NtamrGPHjmrWrJlT9aOiovTyyy/blKWmpuqrr75yqr6jOF9++eUskzM3NW/eXPfdd59N2YEDB7R06VKn6gMAAO9hkXYAmXJ0VUiLFi1Uvnx5SdIjjzxic0n9zatN6tSpk6txWSwWbdq0Sdu3b9e5c+dkMplUtGhRVapUSU2bNlVYWFiu9h8TE6N169Zp//79iomJUYECBVSsWDHVq1dP1apVy9W+Pe3kyZPas2ePjhw5opiYGCUmJqpQoUIqUqSIypUrp4YNGypfvnzeDjNX7d+/X5s2bdKJEyd07do1FSpUSNWrV1eTJk0UERHhVBuGYWjr1q3aunWrzp07p9TUVJUoUUI1atRQo0aNcmWO6tTUVG3atElHjx7V+fPndfnyZRUqVEjFihXTrbfeqrp16+Z4v740Xs6fP69169bp0KFDio+PV+HChVW8eHE1btzYeg4LdFeuXNGGDRt09uxZnT9/XtevX1fRokVVvHhxNWzYUKVKlcr1GI4dO6aNGzfq6NGjSkhIUMGCBVWlShU1bdo0wylLHNm9e7c2b96s06dPKykpScWLF1flypXVrFkzl39t7QrDMLRlyxZt27bNeuyWKlVK5cqVU9OmTZU3b95c6TcpKUkbNmzQyZMnde7cOcXGxuqWW25RsWLFVKNGDdWoUSNX+k3r6tWrWr9+vfbv369Lly4pJSVFhQsXVuvWrVWzZs0s699cxHnPnj26cOGCYmNjFRoaqltuuUVFixbVHXfcoQoVKuT64whEx44d0+bNm3X06FHFxcUpJCREJUqU0EMPPWR3FUFGrl69qn/++UdnzpzR+fPnlZCQoKioKBUrVkx33HFHQC8wHajvD/fdd58+/fRTmzJnr6D48ccf7coee+wxlz5T169fX/Xr19e///5rLVu3bp0OHz6c5Xhy1P/TTz/tdN+S1K9fP7355pu6fv26tWzGjBkOEzdpJSQkaMGCBTZl+fLlc3n9lqeeesouITVjxgzdc889LrUDAAA8zACATEyZMsWQZHP79ttvrX/fvHmz3d8HDx7sdn8rVqywa2/FihXWv8fExBjDhg0zSpQoYbffzVtERITRv39/49ixYy73369fP5u2ypcvb/P3zZs3Gw888ICRJ0+eDPsvX7688emnnxpJSUk5+thdUb58eZt2+vXr53Td8+fPG5MmTTJ69uyZ6fN88xYWFma0aNHC+Omnn4zU1FS34h0+fLhdu56Q2fOUkpJiTJw40ahWrVqGj71AgQLG4MGDjYsXL2bYR2xsrDFixAijTJkyGbZTokQJ48MPPzSSk5Nz5HEtXbrU6NGjhxEZGZnpaxcVFWX07dvX2L17t9t9eWO8tGzZ0qbNli1b2vx9xYoVRvv27Q2z2ZxhHDVq1DCmTp1qWCwWtx+7syZPnpzl85LVLf1jzMzVq1eN//3vf0aTJk2MkJCQTNutWbOm8d577xnx8fEuP66sXoeZM2caDRo0yLDvvHnzGn369DGOHz+eYR/Xrl0zxo8fb1SpUiXDdiIjI43XX3/dSEhIcPkxpG9r+PDh1r/FxsYaw4cPN0qWLJlh34ULFzb69etnHD582OW+HbFYLMasWbOMjh07GhEREZm+dqVLlzaeffbZTJ+/jGR1zl27dq1x//33G3nz5nXYd9rnKX38q1evNl555RWjUaNGRmhoaJZju2zZssaQIUOMo0ePOh1/bh5TWY3r7MTozDjJ7H0pKSnJ+Pzzz41atWpl+Liy6iM5Odn46quvjDZt2hhhYWGZPkeVK1c2Xn/99Uzf43KLu58L/O39Iaft3LnT7vFUq1bNqbqOztf//POPyzG8++67du18/vnnmda5cuWK3ftVwYIFjZSUFJf7v+eee+z637VrV6Z1Fi5caFenQ4cOLvednJxsFChQwKadkiVL+uVYAgAgmJAgAZCpVq1a2XzIDw8PN2JjY232qV27ts0+RYoUMa5du+ZWf5klCVatWpXpl8zpb/nz5zfmzZvnUv8ZJUgsFovx1ltvZfllY9pb3bp1jbNnz+bIY3eVuwmShx9+2KkvtDK6Va9e3dixY4fL8fpaguTkyZNG48aNnX7cZcuWNbZu3WrX/po1a4xy5co53U7jxo2Ny5cvu/14tm3bZrRp08bl1y0kJMR46qmnXD5uvTVeMvoC7Nq1a8aAAQNciuHuu+92KzngCk8mSL766iujVKlSLrdfokQJY9asWS49roxeh5iYGKNjx45O9124cGHjjz/+sGt/165dxu233+50O1WqVHE5MZ6+jZtf/K9fv96Ijo52uu/w8HBj3LhxLvWd3qpVq4x69eq5/NrlzZvXGDp0qEsJx4zOuUlJScazzz5rmEymTPt0lCBZuXKlS89Z+ltoaKjx1ltvOfU4gjFBsm/fPqeOh8z6mDt3bqbJxoxuhQoVMiZMmODW8+CunE6Q+Or7Q07bsGGD3eOoW7dulvXi4+Ptkkbh4eFu/XBj9erVdjE8/PDDmdb59ddf7eq0b9/e5b4NwzBGjx5t19aXX36ZaZ1XX33Vrs6YMWPc6r9du3Z2be3du9ettgAAgGewBgmADB08eFB//vmnTVm3bt1UsGBBm7L0i7VfunRJv/zyS47GsnDhQrVr104nT550uk5iYqIeeOAB/fbbb9nq22KxqE+fPho9erRSU1Odrrd582a1aNFC8fHx2erfk9auXauUlBS36+/evVt33nmnli1bloNRedapU6fUtGlT/fPPP07XOXHihO6++24dP37cWvb777+rXbt2OnbsmNPt/PPPP7r33nvdeg0WLFigJk2aaPny5S7XTU1N1ZdffqlWrVrp3LlzTtfzpfFy7do1dejQQV9//bVL9X7//Xfdd999Lh3bvig5OVkDBgzQwIEDdfr0aZfrnz17Vj179nS4QK8r4uLi1Lp1ay1atMjpOjExMercubO2bNliLduyZYuaN2+uHTt2ON3OgQMH1KpVK8XExLgSsp2NGzeqdevWNsdzVq5evar//Oc/euutt9zqc9KkSWrTpo02bdrkct3r169r1KhRuv/++5WQkOBW/9KN80CPHj302WefyTAMl+sfPnzYpecsvZSUFI0ePVpdu3bN1nklEO3Zs0dNmjRx6XhIyzAMDR8+XPfff78OHDjgcv3Y2Fg999xzeuqpp/zyXBlM7w+OXl9nplLcsmWL3WLiDRo0cGv6woYNGypPnjw2ZWmn3HLE0d+bNGnict+S1LRpU6fa96X+AQCAd7EGCYAMffvtt3ZfkqRPhkjSo48+qldeecXmH8hvvvlGDz30UI7EsWXLFr3++utKSkqSJOXPn19t27ZVixYtVLJkSYWGhur48eP6/fff9ccff9jUTUlJ0YABA7Rz504VLlzYrf7ffPNNTZs2zbodHR2tjh07qlatWipatKji4+O1e/duzZkzR4cPH7apu3fvXr322muaMGGCW317U0hIiOrVq6eaNWuqWrVqioqKUqFChWQYhmJjY7V//36tW7dOa9assfmnOj4+Xr169dLmzZsVHR3txUfguuTkZHXr1k1Hjx6VJJlMJjVv3lzt27dXdHS08ubNqxMnTui3336zG2tnz57VoEGDtHDhQu3evVs9evRQYmKipBtj9u6777aO2dTUVB08eFCzZ8/Wzp07bdr5559/9NFHH+mVV15xOu7p06erT58+dl9uhIWFqU2bNmrcuLGio6NVuHBhxcfH68iRI/rjjz+0evVqm/3XrVun7t27a8WKFXZfbmTF2+Pl8ccf14oVK6zbVatWVYcOHVStWjUVKVJEMTEx2rx5s+bMmaOzZ8/a1F21apU+/vhjlxaidUWRIkWs6zIlJSVp9+7dNn+Pjo7OchHYKlWqZPg3i8Wibt26afHixXZ/K126tNq2bau6deuqaNGiypcvny5duqTNmzfr119/tUngGYahYcOGqWjRoho0aJArD9Gqb9++Nl/y169fXx06dFDFihVVoEABnTlzRsuXL9eCBQtsxsHVq1fVr18/bdq0SRcuXFCnTp108eJFSVKePHnUunVrtWnTRqVLl1ZoaKiOHDmiefPm2SUyDx06pNdff12ff/65W/FfuXJF3bp1s0k01K1bV126dFH58uWVN29enTx5Un/88Yf++OMPuy/yx4wZo6ioKL3wwgtO9/nee+/p9ddftyuPiIhQ+/btrWvFFCxYUDExMdq/f7+WLl1ql0yZP3++nnjiCYfz+Dtj2LBhmj9/vnW7SJEi6tChgxo2bKjixYsrMTFRJ06c0K+//urU2kUlS5ZU/fr1Vb16dVWoUEGFChVSeHi4EhISdO7cOW3fvl2//fabXVJ24cKFeuONN/T+++9n2HZuH1O+5OrVq+rSpYv1eJCk22+/XR06dFDlypV1yy236Ny5c9q3b59mzZrlsI1Bgwbpyy+/tCsvUqSI2rdvr/r166t48eIKDw/XlStXtHPnTv3222/au3evzf6TJk1SZGSkxo4dm7MPMpf58vtDTps9e7ZdWcOGDbOst2fPHrsyd4+RsLAwlS1b1uYz8cGDB5WSkpJhwiUn+69cubJdWfqx7Gv9AwAAL/Pm5SsAfFdKSopRunRpm8vDS5cuneHUF/fdd5/Nvmaz2aX5xG9yNM1Uvnz5rPf79OljnDp1KtP6RYoUsWvj3Xffdar/9FNshYWFWacaKViwoDFp0qQM50O+fv26w0v0Q0JCjBMnTrj12D09xdatt95qdO/e3fj555+NK1euOFXnyJEjxsMPP2wXe8eOHZ2O11em2Eo7337dunWNjRs3Zlj3t99+c7hGwKpVq4y6detat3v16pXhmE1NTXU4FUThwoWNq1evOvUYduzYYYSHh9vUDw0NNV5++WXj3LlzmdbdvHmzUb9+fbv+X3rpJaf69tZ4ST+FStpzRMmSJY3Zs2dnWDcuLs7o27evXf+RkZFOP+fZcfjwYbu+J0+enK02hw0bZtdm2bJljZ9++inT+dtvrkWQfr70sLAw499//82y3/SvQ9rjp2LFisbSpUszrLtx40aHa9ZMnz7d6Ny5s3W7Xbt2xr59+zJs59tvv7Wb+tBsNju9Lkdm7zdlypQxFi1alGHdPXv2GE2aNHHYxp49e5zqf9myZXbT2uTPn9949913jZiYmEzrrlixwqhcubJd/85MheTonHvzeQwJCTGGDh2a6dRCiYmJdmWTJ082KlWqZIwePdrhlIOOpKSkGFOnTrVb58VkMhnr1693qo2cPqZ8bYqttOO7QoUKxsKFCzOsm5KSYjcl0rfffmsXR5EiRYwvv/zS4et4k8ViMX7++WejePHidvUXLFjg9PPgrpyaYsuf3h+y6/Tp0w7Xldm0aVOWdd966y27eiNGjHA7lvSvgyTj4MGDGe7frFkzu/3//PNPt/pOSUmxe1+Ijo7OcP/r16/bnYdDQ0PdWv/EMBx/nu/Tp49bbQEAAM8gQQLAIUeLFb7yyisZ7j9z5ky7/d9++22X+3X0T8XN26hRo5xq46+//rKbP71KlSpO1U2fIEn7ZcKWLVucamPgwIFuxe4LCRJnv+R25O2337b7gsvZLwl9JUFy89aiRQsjLi4uy/rTp0+3q5v2y6SXX37ZqTgczYs+bdq0LOulpqbazUkfERFhLF++3Kl+DePGFwPt27e3aSMsLMypL5i9NV4cffEiyahUqZJx5MiRLOtbLBaHi7hOmTLF7cfjrJz+Mnft2rV2X+w0adLEpddmy5YtRqFChWzacGZx2oxeh+rVqxunT5/Osv6aNWvsztVpj5+HH37YqfnvHSUZnZ07PqP3m9KlS2f6Zd5NiYmJdmt1STLatGmTZd3Y2Fi7JFHx4sWNbdu2ORW7Ydw4BtOvA1a0aNEsF6x3dM6VbiSXfvrpJ6f7T/943F2I+OjRo3brNWW1ZsFNgZ4guXmrWrWqcfLkSZdiOHz4sF0C/bbbbnM6gWgYhnHs2DGjbNmyNm3UrFkz1xedzqkEiT+9P2SXo+RO/fr1narr6HPIt99+63YsvXv3tmtv7dq1Ge7vaG2cQ4cOud1/+jEbFhaW4b4nTpyw67tcuXJu933gwAG79u6++2632wMAALmPNUgAOPTNN9/YlfXt2zfD/bt06aLIyEibssmTJ7s1j7kj3bt3d3pu92bNmunBBx+0KTtw4IAOHjzodv+TJ0+2TueRlffee0/58uWzKVuyZInbfXuSu9OQSTemZ0k7jYNhGA7Hka+LiorSjz/+qAIFCmS578MPP6waNWrYlN2cLqZly5Z67733nOpzxIgRMptt35J//fXXLOvNmTPHbk76yZMnq3Xr1k71K92YCmPWrFkqWrSotSwpKUkfffRRlnV9abzkyZNHP/30k8qXL5/lviaTyeHj85fjNK3Ro0fbTFVVunRpLV682KXXpk6dOnZTUv3666/aunWry/HkzZtXM2fOVMmSJbPct2nTpurQoYNN2c3jp2rVqvr666+dmv/+xRdftHv/ceb4ycy0adNUqVKlLPfLly+fZs+eraioKJvy5cuXZ7lexMSJE22m8zGbzZo3b55q1arldJyFCxfW3LlzFRYWZi27cOGCy2st3PTCCy/YvX86q2DBgk5NveVIuXLl7MbgrFmzsr2eTKAIDQ3VjBkzVLp0aZfqffDBB7p69ap1OyIiQr/99pvKli3rdBvR0dF207bt3LlTCxYscCkWbwqG94d58+bphx9+sCt39nPIpUuX7Mqc+RyUEUd1004T5+n+k5KSMlwT0NuPHQAAeB8JEgB2zp07p4ULF9qU3VxbICP58uWzW3Pk6NGjObL4stlsznQuckd69+5tV+buAoktW7ZUly5dnN6/SJEiuu+++2zKHC1+GWhMJpP69OljU5Z+jQt/8MILLzi1oOlNDzzwgMPyd955xy7pkZHSpUvbLerpzGLN6eeBb9WqlVtfbhYuXFhDhgyxKZs7d67L7bgip8fLI488ovr16zu9f40aNVSvXj2bMn9bRHXHjh1264688847dskCZzzyyCO69dZbbcp++eUXl9vp06ePS1/wZ3T8DBs2TOHh4U61kS9fPnXq1MmmbOvWrW4n6B944AG1atXK6f2joqL09ttv25VPnDgxwzpJSUkaN26cTVnfvn115513Ot3vTZUqVbI7ltw5fgsWLOjwcXhKhw4dbBK1KSkpdmvMBKs+ffqobt26LtU5f/68Jk+ebFP28ssvq2LFii73f9ddd6lt27Y2Zbn9HpGTAv394eDBg+rfv79deZ8+fdSuXTun2ki77tJN+fPndzsmR3XTJut8qX9vP3YAAOB9JEgA2Pnhhx+UnJxsU+Zocfb0HF1hkhNXELRp08bhgoeZadSokV2ZuwskDhw40OU66fuPj4/XyZMn3erfn6T/gnXTpk12Y8nXPfHEEy7t7+hLq2rVqtklPFxtZ9++fZnuf+TIEbsvbAYMGOBSn2l17NjRrv2bi9XnlpwcLzlxnGb1nPua9IvxFixY0C5R7SyTyWR3NcfKlStdbicnjp+CBQu6nOhL305cXJzb51x3xlKfPn3srhzM7CqWtWvX6tSpUzZlOXn8rlu3TtevX3epjYceeihbv5rOLrPZbPdev27dOi9F41tcPa4kadGiRUpMTLQpy8kx5s75wVsC+f3hypUr6tSpk65cuWJTXqlSJU2YMMHpdhy996Y/p7nCUZIgKSnJJ/v39mMHAADel/W8BQCCTvqkRp48efTwww9nWa9p06a69dZbtX//fmvZL7/8okuXLqlIkSJux9OyZUuX65QoUUIRERE2vwpzd6oOd/p3lNCJiYlRdHS0WzF4S3x8vFatWqVt27Zp165dunjxomJjY5WQkODwipj00xdcv35dZ8+edWk6D2+69dZbnZoaKC1HU3Y0b97c5b4rVKhgs52SkqL4+PgMv7D8888/7cruuusul/u9ydGvijdv3uzUlCQ3eWu85M+f32FSNCvpj9PU1NRMn3Nfk34M1KtXL1tf6qQfA5s3b3apfnh4uBo0aOBSHUfj684771SePHlcaif98SPd+OLQ1bFUoEABp39xnVbhwoXVtm1bLVq0yFp26NAhnT9/XsWKFbPbP/1rlydPHpsp51yV/rW7du2adu/erTvuuMPpNlyZms9ZO3bs0IYNG7Rt2zYdPXpUsbGxiouLyzB5c+DAAZvtY8eO5XhM/iZ//vxuXVmUfoyVL19eZcqUcTuO9GPsyJEjunLliltXrHlSIL8/XLt2TV27dtWePXtsysPDw/Xzzz+rUKFC2Wrf3SnzMqrr6lV93uzf248dAAB4FgkSADbWrl1r94/Wvffe6/ALHkf69u2roUOHWrevX7+uadOmafDgwW7HlP5X5s4qXLhwthMk+fLlc+vLfUfz//vTXOr//vuvPvjgA82fP9/uF6iucudLSm+pUqWKy3UKFiyYa+3ExMRk+GXMmjVr7Mq6devmcr+ZuXDhglP7eXu8lC9f3uUv1KWMj1Nf+gIsI6mpqXa/rt+2bZtLX4inl34e9piYGCUnJzv93JYvX96pNUPSyu3jx1V16tRRSEiIy/WkGwmqtAkS6caxce+999rt6+j4dedL3Jsc/TrZ2eP3pvRTCrnr+vXr+vTTTzV58mTt2rUrW22l/1V8MKpdu7ZbYzL9GLtw4UK2zg+O1m+4cOGCzydIAvX9ITk5WT169NCqVatsysPCwjRnzhyn1827ydFzlJ33c0d1066V5Kj/9InTxMREt59vV/r39mMHAADeR4IEgA1HU2I5M73WTX369NGwYcNsfin1zTffZCtB4u7VJ+n/4XFn6p6c6tvd/j0tOTlZL7zwgr744oscWzPFnxJDt9xyi8t1HL3WOdVOZmPmxIkTdmXuLKqdmawWFfWV8RJsx6l047W5du2aTdnly5d1+fLlHO3n0qVLKlGihFP7+tPxk5GqVau6XOematWq2ZXdXHQ+vfTHb3JysseP3/SKFy+e7T7XrFmjfv366eDBg9luS/Kv94/c4u7rkn6MJSQk5MoYcyeh6UmB+P6QmpqqRx991C4hGxoaqhkzZjhMymbF0ZpPOZ0kiIiIyLT/3E6QZNS/tx87AADwPtYgAWAVHx+vn376yabslltuUefOnZ1uo3z58naL227dujVbi1u688u/nOLNvj0tOTlZDz74oD777LMcXVDeV75QcEZOvd6eGDeufvnpjsy+IPCl8RJMx+lNnnj9Jde+JPKn4ycjjn41np26GV0B4e3j15HsTsezYsUK3X333TmWHJH86/0jt7jzuiQmJmb7aj5n+/F1gfb+YLFY1K9fP82aNcum3Gw26/vvv1f37t3dajcqKsquzNFVQ85yVNdRH57qPywsLMNki7cfOwAA8D4SJACsZs6cafeh/qGHHnL5snBHV5zkxGLtyF1jx47VvHnz7MrLlCmjZ555RlOnTtXff/+t48eP68qVK7p27ZoMw7C5rVixwguRB6ecvlLAVYwX7/L26x+osvMrX0d14+LiHO7ri6+fq9OjpXX58mU99NBDunr1qk252WzW3XffrXfffVe//fabdu7cqQsXLig+Pl6pqal25wR31vwKdO68Lr44vpB9hmFowIABmjZtmk25yWTSt99+q0ceecTtth1dKejoSlVnHT9+3Kk+cqP/1NRUnT592um+ixUrJrPZ9muR06dPu/3jD1cfOwAA8D6m2AJg5SiJMXHiRE2cODHbbc+YMUMfffRRthYQRu45d+6c3n33XZuy0NBQffDBB3ruueec/oLGH35NGijy589vV5aYmOiRY4zx4n2OXv+HHnpIP/74oxeiCRxp163KibqO1kaRbrx+aa+OKFGihM6cOeN23972zjvv6Pz58zZlDRo00PTp011aR4xzQs5wdH5o3Lix3bpF8B+GYeipp57S5MmTbcpNJpMmTZrk0nS4jlSsWNGu7OjRo263d+zYMZvtkJAQlStXLtP+06+bc/ToUTVv3tzlvk+dOqWUlBS79jMSFham0qVL2yRkkpOTderUKbfW0Ev/2LPqHwAAeB9XkACQJO3evVt///13rrV/5coVzZkzJ9fahy1XpyWZP3++3S9/x44dq//85z8u/Xo1/SLPyD1Fixa1K/PU88948T5vvv6BLDtrXjiqm9EC1ulfP3//xX/6xFx0dLSWLVvmUnJECqwx7M3pwSIjI+3OxYH03AYbwzD07LPP6quvvrIpN5lM+vzzzzVgwIBs9+Fo/aUDBw641VZSUpLdVRSVK1fO9PNBTvbvaJo/R2tE+VL/AADAu0iQAJDkmSmwmGYrczm5IKirX4QsXbrUZvuWW27R4MGDXe730KFDLteBexxN15CdX3u6gvHifcWKFZPJZLIp89TrH8j27dvndt29e/falWW0wHb64zcpKcluShh/sXv3brupcJ5//nmX13NJTk7O1pQ+OSX9e7G778OeWifIEZPJpGLFitmUnTx50u5X9fAPgwcP1hdffGFX/umnn+rpp5/OkT7q1q1rN83Uxo0b3RozGzdutDtu6tWrl2md+vXr25W5+8OttWvX2pX5ev8AAMC7SJAAUHJysqZMmWJTFhYWpjp16mTrVqRIEZs2V65cyReimXC0EGtsbKzL7Zw4cULXrl1zqU76X/o1btzYrYVNc/MqJNhq3LixXdmqVas80jfjxfvy5cunOnXq2JTt27dPZ8+e9VJEgWHLli1KTU11q+6///5rV+boSzfJu8dvTnM037470+Js3rzZ5feu3JD+vdid92HJ/V+f55T0Y+zq1asOxyh825AhQ/TZZ5/ZlY8fP17PPvtsjvUTERGhunXr2pQlJCRo8+bNLre1evVqu7IWLVpkWqdJkyYKCQmxKfv777/dOh+707+jc5ajdrKSmppq99mmRIkSuu2221xuCwAAeA4JEgBasGCBzp07Z1N2//33a8uWLdm6jR492qZNwzD07bffevKh+RVHU7G4k1D6888/Xa5z4cIFm+30yS1n22DRbc9p3769XdnPP//skb4ZL+5zNMWIu1/Ie3MMBKr4+Hj98ccfLteLjY21q1epUiW7X/HfFEivXfrzgeTeOWHmzJlu9Z+Tx5Rk/1585MgRGYbhcjvuvBfnpEAaY8HqxRdf1CeffGJX/tFHH+n555/P8f7uvfdeu7LZs2e73I6jOo7aTisyMlJ33nmnTVlcXJx+//13l/q+dOmS3WeLcuXKqXr16pnWa9WqlfLmzWtTtnz5cpenP1yyZIni4+Ntyu655x67Kz4BAIBvIUECwOHUV7179852uz179rT7Vfn3338vi8WS7bYDUZkyZRQREWFTtn79epfbmTRpkst10vfr6AuvrHz22Wc+8evfYFGjRg27+f3Xr1+v5cuX53rfjBf3OVq0O/2XKc7q2rWrXdmHH37INDrZlH6ef2dMmTLFbjx36NAhw/1btmxpNwXVnDlztH//fpf79rb05wPJ9XPClStX3P4BRU4eU5L9WgTx8fHatWuXS22sWLHC61eQdOzY0e4X+RMnTtSVK1e8ExBc8uqrr+qjjz6yK//ggw/0wgsv5EqfvXr1siubPHmykpKSnG5j8+bN2rBhg01Z48aNnVqk3FH/X375pdN9Szf+z0h/Ln744YezrFegQAF16tTJpuzatWv6/vvvXerfUbzO9A8AALyLBAkQ5E6ePKklS5bYlBUrVizLX3o5IyoqSvfdd59N2YkTJ+z6ww1ms9lueoPFixe7tGjw/Pnz3ZqmpVSpUjbba9euVUJCgtP1d+7cqXfffdflfpE9b775pl3ZgAEDcn0xXsaL+woWLGj3i3d3px6866671KpVK7u2XnzxRXfDg278+vmvv/5yev9Lly7p7bfftivPbG2AiIgIuy85U1NT1bt3b12/ft3pvn1B+vOBJJd/9f3cc8+5/cV9Th5TkuNp0aZPn+50/eTkZL322mtu959Typcvrz59+tiUxcbG6rHHHnPrihh4ztChQ/X+++/blb/77rt66aWXcq3f22+/Xc2aNbMpO3/+vD7++GOn23j99dftygYNGuRU3d69e9slPBcsWOBwTQ9HLl26pA8++MCmLCQkRAMHDnSqvqM433//faevIlmzZo0WLlxoU1a5cmWHV3MBAADfQoIECHLfffed3VQUDz30kMMpK9zh6EoUFmvPWPpfHF+9elVvvfWWU3W3bdumxx57zK1+08+9HB8frxEjRjhV98iRI+rSpYvffakXCHr37q1q1arZlB0+fFj33XefTp065VabsbGxev/99zV16tQM92G8uM9sNqtGjRo2ZUuWLHH7yrrRo0fbTd3xySefaPjw4W5/Cbpjxw717dvX5alFAskjjzyiI0eOZLnf9evX1bNnT7srJlq3bq3bb78907ovvPCCihYtalO2fv169ejRw6XEeFrnzp3TW2+9paVLl7pV3x1169ZVgQIFbMrGjx/v9ILrI0eO1LRp09zuP6ePqaZNm9pd3fPJJ5/o6NGjWda1WCx67rnn3Lr6MzcMGzbMbtqgX375RU8++aTb5+AjR45o8ODB2rFjR06EiHRGjRplN0WtJI0ZM8YjiTdHnzmHDx+uTZs2ZVl3woQJdj+CqlSpkh555BGn+o6MjLRbV8Viseixxx7L8v3IYrHo6aef1unTp23KH3nkEVWuXNmp/tu2bWs3zdfp06c1aNCgLM8nly5d0mOPPWa33xtvvGF3JRcAAPA9JEiAIJbRmiA5Mb3WTZ07d7b7omH+/PluTckTDPr372/3j9SECRM0fPjwDKfNSU1N1ddff61mzZrp0qVLMplMCgsLc6nfBx54QGaz7VvCBx98oKFDh2Y6Xc+MGTPUpEkT6691HS00j9wTEhKiWbNm2f3i8p9//lHdunX1+eefOzWNVUpKipYtW6Ynn3xS5cqV06uvvqozZ85kuD/jJXuaNm1qs713714NGDDAqS9g07vrrrs0fPhwu/KRI0eqTZs2Tl8JcfHiRX399ddq3769ateurSlTpmRrHQd/lS9fPkk3rnZs3rx5plc87tu3T23btrVbeyRfvnz64osvsuyrUKFC+vHHH+1+kLBw4ULVr19f06ZNc2q6tGvXrmnevHnq3bu3ypcvrzFjxridYHFHnjx51K1bN5uyy5cvq23bttq2bVuG9U6dOqVHHnnEZvy6e07IyWMqf/78dl/oxsfHq127dplOtXXgwAF17tzZOs3lzbHkTRUrVnQ45c/XX3+tO++8UwsXLnQqkRoXF6fp06erW7duqlKliiZMmBCUUyTmtg8++EDDhg2zKx85cqTeeOMNj8Rwzz332E3feP36dbVu3VoLFixwWCc5OVmjRo3S4MGD7f72ySef2E23m5k333xTZcuWtSnbt2+fmjZtqj179jisc/nyZXXv3l2zZs2yKS9UqJDee+89p/uWbnzmTv85fObMmerRo0eGV7nt3r1bTZs2tZsisVGjRurfv79L/QMAAO/ImZ+IA/BLK1eutJuG4tZbb1Xjxo1zrI+8efPqwQcf1Ndff20tS05O1pQpU3JtDmV/Vrp0aQ0ePFjjxo2zKb/5C9sHHnhA1atXV3h4uC5evKjt27dr0aJFOnbsmHXfV199VTNmzHDpi6HbbrtNvXv31g8//GBTPnr0aH333Xfq0aOHateurQIFCujSpUvau3ev5s+fr4MHD1r3DQ8P19ixY52eSgE54/bbb9e0adPUvXt3my9Tz507p2effVZvvvmmWrZsqcaNG6t48eIqXLiwEhISdOXKFR07dkz//vuvNm/erNjYWKf7ZLxkz+OPP66JEyfalE2ePFmTJ09WsWLFVKxYMbsvlBo0aGBzHk1r2LBh2rNnj3788Ueb8pUrV6pFixa67bbb1KpVK9WsWVNFihRR3rx5deXKFV2+fFm7du3Sv//+q927dwdlQiS9p556SrNmzdKpU6d04sQJ3Xvvvapfv746d+6sChUqKCwsTCdPntTy5cu1bNkyJScn27Xxzjvv2K1jkZG2bdvqk08+0TPPPGNTfvDgQfXu3VsvvviiWrVqpfr166tYsWIqUKCA4uLidOXKFR06dEj//vuvtmzZosTExBx5/O4aOnSoZs6cafN87Nu3T3Xr1tW9996rNm3aqGzZskpJSdHp06e1cuVKLVu2zOYqhscff1wHDx50a3HznD6mXnvtNU2dOlVxcXHWsgMHDqhOnTrq3LmzWrVqpZIlS+ratWs6efKkVqxYoRUrVljPwUWLFtWQIUM0dOhQlx9LTuvXr592796tsWPH2pRv2bJFnTt3Vrly5dS6dWvVqVNHUVFRCg8PV0xMjK5cuaJ9+/bp33//1fbt211ahwKuO3HihF555RW78tDQUM2ZM0dz5szJVvtbtmxxet+vvvpK//77r81VYLGxserSpYsaNGigrl27qmLFikpMTNT+/fs1bdo0nTx50q6d5557Th07dnQpzgIFCmj69Olq06aNzWeaPXv2qGbNmurcubOaN2+uMmXK6MKFC9q6datmzJjhcJrPb775RqVLl3ap//r162v06NF2U4XNnTtXS5cu1SOPPKLatWsrKipKJ06c0KpVq7Ro0SK7K0cKFy6s6dOn2/2YBAAA+CgDQNB69NFHDUk2txEjRuR4PytXrrTrp2bNmg73XbFihd2+K1ascKvf8uXL27TTr1+/LOv069fPpk758uXd6js7jyMhIcGoWbOmXX1nbg899JCRmprq1mO/cuWKUa1aNbf6zZMnj7Fo0SK3H/fw4cPt6nmCO89TeocPH7aLffLkyS63M3nyZLt2Dh8+7HT9P//80yhZsqRbr5+j2wcffJBpf94cLy1btrSp07JlS6efp7Sy+5xnR//+/V16zrJ6jKmpqcabb75pmEymHBsD58+fz7TPnHod0vc7fPhwl9twdyw56nv9+vVGRESEW8/ZG2+84foTYBjG7NmzjYIFC+bYazdr1qxM+8uNc+7EiRPdjrdNmzbGtWvXsjWmcvqY+u6779x6LAUKFDDWrVvn9vklJ96XHJkwYYIRFhaWY2Nsw4YNORJXRtwdo/76/uDos0RO3ly1a9eubH2m6Nmzp5GSkuL28/HTTz8ZoaGhbvVtMpmM8ePHu923YRjGkCFD3H7sBQsWNNasWZOt/gEAgGfxkwYgSF25csXhr9Fycnqtm1q0aKFy5crZlO3cuVP//PNPjvcVCMLDw/Xnn3+qUaNGTtcxmUx66aWXsvVrtcKFC2vZsmV28y9npXTp0lq2bJnuu+8+t/pFzmjRooU2bdqk3r17Z2u+a5PJpNatW9utM5Ie4yV7Jk6cqCFDhuTYr0vNZrNGjx6txYsXq06dOtlqq3DhwhowYIDduhLBomHDhvrjjz9UpkwZp+uEh4fr448/1pgxY9zq84EHHtDGjRvVqVMnt+rfFBoaqk6dOql27drZascdTz31lD7//HOXp3h8/PHHtXjxYru1MlyV08dUv3799O2337q0JlulSpW0evXqHL0SN6c8++yz+uuvv+wW4XZV/vz51atXL7vPdQgs1atX1/r1610eL3ny5NHw4cM1Y8aMbH0WefDBB/XHH38oOjrapXpRUVGaM2eOnn/+ebf7lqRx48ZpwoQJCg8Pd6lerVq1tG7dOrtp/wAAgG8jQQIEqenTp9vNH92kSRNVqlQpx/symUx69NFH7cpZrD1jUVFRWrNmjb744otMF5cMCQlRhw4dtGbNGn3wwQfZ/mKoTJkyWrVqlSZMmJDlWChfvrxGjRqlPXv2qEWLFtnqFzmjVKlSmjJlivbv36///Oc/ql69ulP1ChYsqE6dOmncuHE6fPiwli9f7tQXfIwX9+XNm1fjxo3TkSNH9P7776t79+6qWrWqoqKiXP6COa17771XW7Zs0YIFC9S9e3cVKVLEqXqVKlXSwIEDNXv2bJ0+fVpfffWVT6yh4C2NGzfWzp079cYbb6hYsWIZ7leoUCH169dPO3bs0H/+859s9XnbbbdpwYIF2rp1qwYOHKiKFSs6VS8qKko9evTQl19+qZMnT2rBggW67bbbshWLuwYNGqRNmzbpoYceynTdgbCwMHXu3FmrVq3SN998k+3kiJQ7x9Rjjz2mnTt36sEHH8w0xtKlS2v06NHavn17thOUualRo0b666+/9Ndff+nRRx91evqh0qVLq0+fPvrhhx90+vRpzZgxQ8WLF8/laOFt0dHRWrVqlWbOnKmmTZvKZDJluG+BAgX02GOPadu2bXr77bdzJFHZokUL7dmzRx988IGqVKmS6b5lypTR0KFDtX//ft1///3Z7lu6kVTcu3evnn/++SzfS+vUqaNJkyZp06ZNqlGjRo70DwAAPMdkGE6szAcA8Kqb84CfO3dOcXFxKliwoCpXrqymTZs6/QWoO/bu3asNGzbo/PnzSkhIUEREhMqWLavatWs7Pcc+vOvs2bPatGmTLly4oIsXLyo+Pl4REREqVKiQypQpo2rVqql8+fKZfvHhLMaL7zEMQ9u3b9fBgwd18eJFXbx4URaLRQULFlRkZKQqV66s6tWrKzIy0tuhekX6cT98+HC9/fbbNmUWi0WbN2/W9u3bdfbsWRmGoRIlSqhcuXJq1qxZjny5n5Fjx45p27Zt1uP32rVrKlCggAoVKqRy5cqpWrVqLl3p4kkJCQlau3atDh06pEuXLslkMqlIkSK69dZb1bBhQ7+7Qunq1atas2aNjh49qgsXLshkMqlEiRKqU6eO7rjjjhw5h3rDvn37tHv3buv5ITk5WQULFlShQoVUsWJFVatWjWQIJN1Y22z9+vU6dOiQYmNjFRoaqqJFi6p69epq2LBhtpL7zti3b5+2bNmi48eP6+rVq8qXL59Kly6t2rVrq1atWrnad2pqqjZv3qwdO3bo7NmzSk5OVkREhCpUqKAGDRq4fKULAADwLSRIAAAAEJScSZAAAAAAAAIXU2wBAAAAAAAAAICgQ4IEAAAAAAAAAAAEHRIkAAAAAAAAAAAg6JAgAQAAAAAAAAAAQYcECQAAAAAAAAAACDokSAAAAAAAAAAAQNAhQQIAAAAAAAAAAIIOCRIAAAAAAAAAABB0Qr0dAAAAAOANhmF4OwQAAAAAgBdxBQkAAAAAAAAAAAg6JEgAAAAAAAAAAEDQIUECAAAAAAAAAACCDmuQIFekpKTozJkz3g4DAAAAAADAaSVLllRoKF+XAUCw4IyPXHHmzBlFR0d7OwwAAAAAAACnHT9+XGXLlvV2GAAAD2GKLQAAAAAAAAAAEHS4ggS57seWDVQsX1iu9mFYjFxt/yZLqmf68VWp4RE62e1hSVKZX2Yo5GqClyOyZw4xeTsE5KDU/BE63qWXJCl6/o8KSfS9MQf3mcy+d7ym5I/Q8U4PSZKiF85UKGMu15lMwf17nZT84TrWsackqdyinxSaeNXLEdkzDIu3Q0AO8ofzXKCdF3zx/c6TkvOH61iHByVJ5X6dpTy+eJ7z0P+TgchT49uVfpLzhevovT0kSeV/m60817Iec+evXdeDy/5xOz4AgP8iQYJcVyxfmErmz5erfZAg8YyU8Py6XrSoJKlEeH6FGqlejsgeCZLAkhKeX4lpx5x8b8zBfb74hVFyujGXhzGX60zmwPoi1FXJ4fl19eaYi8ivPCbfS0YYFt+LCe7zh/NcoJ0XfPH9zpPSnudK+ux5Lrj/z8sOn0yQ5M+vhLRjzux7Yw4A4DsC65MnAAAAAAAAAACAE0iQAAAAAAAAAACAoEOCBAAAAAAAAAAABB0SJAAAAAAAAAAAIOiQIAEAAAAAAAAAAEGHBAkAAAAAAAAAAAg6JEgAAAAAAAAAAEDQIUECAAAAAAAAAACCDgkSAAAAAAAAAAAQdEiQAAAAAAAAAACAoEOCBAAAAAAAAAAABB0SJAAAAAAAAAAAIOiQIAEAAAAAAAAAAEGHBAkAAAAAAAAAAAg6JEgAAAAAAAAAAEDQIUECAAAAAAAAAACCDgkSAAAAAAAAAAAQdEiQAAAAAAAAAACAoEOCBAAAAAAAAAAABB0SJAAAAAAAAAAAIOiQIAEAAAAAAAAAAEGHBAkAAAAAAAAAAAg6JEgAAAAAAAAAAEDQCfV2AAh8hsWQYTFytQ9Lau627w25/Zy5I21Mrr6uJrMpN0ICMhRo5wVzSOAdQ754nlPamDzw/uXLPHXeNiwWj/TjSSYzv0GCZ7l0rsrGeS7Qzgscq0D2+eJnJcMwbO47E6MvPg4AgGfwiRAAAAAAAAAAAAQdEiQAAAAAAAAAACDokCABAAAAAAAAAABBhwQJAAAAAAAAAAAIOiRIAAAAAAAAAABA0CFBAgAAAAAAAAAAgg4JEgAAAAAAAAAAEHRIkAAAAAAAAAAAgKBDggQAAAAAAAAAAAQdEiQAAAAAAAAAACDokCABAAAAAAAAAABBhwQJAAAAAAAAAAAIOiRIAAAAAAAAAABA0CFBAgAAAAAAAAAAgg4JEgAAAAAAAAAAEHRIkAAAAAAAAAAAgKBDggQAAAAAAAAAAAQdEiQAAAAAAAAAACDokCABAAAAAAAAAABBhwQJAAAAAAAAAAAIOiRIPGz37t0aMGCAKlasqHz58ql48eLq3Lmz5s2b5+3QAAAAAAAAAAAIGj6TIHn44YdlMplsbhUqVMjVPlu1amXXpyu37777zqX+PvvsM9WuXVvffPONjhw5ouvXr+v8+fNauHChunXrpq5duyohIcHt2CMjI3X58uVsPw9btmxxuQ0AAAAAAAAAAPyJTyRIFixYoB9//NHbYeSq7777Ts8995xSUlIy3Gf+/Pl66KGHZLFY3OojJiZG77//vrshAgAAAAAAAAAQNLyeIImJidGgQYO8HUauunjxooYMGWLdLl++vN577z3NnTtXX375pe677z7r3xYtWqQpU6a43dcnn3yis2fPZiteAAAAAAAAAAACXai3A3j55Zd18uRJSVJERITTU0zlhqVLl7q0f82aNZ3ab/r06YqNjZUkdenSRTNnzlS+fPmsf3/yySf1/fffq3///pJuTMXVr18/l2K56erVq3rnnXc0fvx4t+oDAAAAAAAAABAMvJogWblypb7++mtJktls1vDhw/XKK694LZ527drlSrtr166VJIWEhGjSpEk2yZGb+vXrp5kzZ+rXX3/Vxo0bde3aNYf7OePLL7/Uiy++qHLlymUrbgAAAAAAAAC+IyUlRWfOnPF2GDmmZMmSCg31+m/4EcS8NvoSExM1YMAAGYYhSRo8eLAaNmzorXBy1cWLFyVJxYsXV4kSJTLcr06dOvr1119lGIYuX76sUqVKOd1H06ZNrYmY69eva+TIkdbkk7dZUg1ZUg1vh5EjDEtgPA5v8NRz594KPq4zh5g81FPgceV8YEkzbiyWwDmXuCMQHzvHEQD4F099njOZA+v9IRD/hwi01wi+z5XjKO2+hsVwqm4gHqcIXGfOnFF0dLS3w8gxx48fV9myZb0dBoKY19YgGTp0qA4ePChJKleunEaPHu2tUHJd4cKFJUnnz5/XhQsXMtxv165d1vuRkZEu9fHWW28pf/781u3vv/9e+/fvdy1QAAAAAAAAAACChFeuINmwYYPGjRtn3f7ss89UoEABb4TiEY0aNdLs2bOVkpKiQYMGadq0aQoLC7PZ56efftKCBQsk3biSJG2ywxmlSpXSs88+qw8//FDSjcvthg8frunTp+fMgwAAAAAAAADgMz4KKaciCvF2GC67pFT9N/WYt8MAJHkhQZKcnKwnnnhCqampkqQHH3xQnTp18nQYHvXII49o2LBhunbtmmbPnq1Nmzbp6aef1m233abz589r4cKFmjdvnnX/p59+2q1+XnvtNX355ZeKi4uTJP344496/fXXVatWrRx5HAAAAAAAAAB8QxGFqKgpj7fDcB2z2sGHeHyKrXfffVfbt2+XdGMaqU8++cTTIXhcmTJlbKYQO3TokF555RV169ZNAwcOtEmOtGrVSgMGDHCrn6ioKP33v/+1bhuGobfeesv9wAEAAAAAAAAACFAevYJk165dGjNmjHV77NixKlmypCdDyFJMTIyOHj2qK1euqECBAoqKilLZsmUVEpK9y9VefPFFxcbGauTIkRnu0759e/30008KDXX/Zfnvf/+rCRMmWBeGnz9/vtavX69GjRq53SYAAAAAAAAA32LKY5LJZPJ2GC4zGSYp1dtRADd47AoSi8WiJ554QklJSZKk5s2ba+DAgZ7q3il169ZVkSJFVKdOHbVs2VL169dXhQoVFBkZqXvvvVdfffWVrl+/7nb7I0aM0Pr16/XII4+oTJkyypMnj6KionT33XdrxowZWrJkicuLs6dXqFAhvfrqqzZlb775ZrbaBAAAAAAAAAAg0HgsQfLJJ59o3bp1kqSwsDBNmjTJ5zKcW7ZskcVisSuPj4/XkiVL9OSTT6pChQqaNWuW2300bNhQ06ZN04kTJ5SUlKQLFy5oyZIl6tWrV449H88995xKlSpl3V62bJlWrlyZI20DAAAAAAAAABAIPJIgOXz4sM1aGK+//rqqVavmia5z3JkzZ9SzZ0+9/PLL3g4lQ/nz57e7auSNN97wUjQAAAAAAAAAAPgejyRInnzySSUkJEiSqlWr5lNf1ufLl0+dO3fW559/rrVr1+rcuXNKSkpSXFycDh48qKlTp6pjx452V3d8+OGHeu+997wUddYGDhyoChUqWLf//vtvLVq0yHsBAQAAAAAAAMgxphCTzKH+dzOF+NasQghuuZ4g+eabb7Rs2TJJkslk0qRJkxQWFpbb3Trlv//9r06cOKH58+dr0KBBatKkiYoVK6Y8efKoQIECqlSpkh599FEtXLhQq1atUpkyZWzqv/HGG9q6dauXos9cWFiYhg8fblP21ltvyTAML0UEAAAAAAAAAIDvCM3Nxk+fPq2XXnrJuj1gwAA1b948N7t0SZcuXZzet1mzZlq5cqWaNGmiCxcuSJIMw9Bbb72lBQsW5FaI2dKnTx+NHTtWe/bskXRjjZVZs2apZ8+eHo0jNTxCKeH5PdpnbjEswZ1gSgmPcHjfl5jMnvkVgtlD/QQiiwvHUUr+cIf3ERh88ThizKXhg6+Pv3Dlvcgfxlywf/7xC4H23uqh84+nPjcGIs5z8GXujLkUw2NL9AIAfEyuJkieffZZXblyRZJUsmRJvf/++7nZXa6rUqWKPvjgAz322GPWssWLF+vSpUsqUqSIFyNzLCQkRCNHjrRJiAwfPlwPPPCAQkJCPBbHyW4P63rRoh7rD55xuvsj3g4BQebU/Yw5eNaJrg97OwQEmeMdH/J2CAgynOfgacc6ePbHeoCz760XLlyQ5v6ey9EAOc+UxyyT2f8SfCaL/8WMwJVro3HWrFmaO3eudXv8+PGKjIzMre48pm/fvipWrJh122KxWKcQ80U9evRQ3bp1rdt79uzRlClTvBgRAAAAAAAAAADel2tXkLz88svW+x07dvT4tE65xWw2q1WrVpo1a5a1bO/evV6MKHMmk0mjR49Wx44drWUjRozQo48+qjx58ngkhjK/zFAJptgKCCnhEdYrR0r9PF2hVxO8HJE9ptjyfa5OsXXzypHSc6crNPFqboUFL/DF4yglf7j1F9Vl580I7jHng6+Pv3B16pmbv26NXjTTJ8dcsH/+8Qsuvrf6/HmOKbZ8nqvnuZtXjpT79SefHHOc5wKLO++t4QmJuR0WAMBH5VqC5ObUWpK0aNEimUyuf/g8evSoXb3NmzfrjjvuyGZ02RMdHW2zff78eS9F4pz77rtPd911l9asWSNJOnLkiCZNmqRnn33WI/2HXE1QqJHqkb5yGx+c/0/o1QSFJsR7Oww7HkuQhPAPtbssqe4dR6GJV31yzMF9vn4chSZeVejV4B1zfHHoPnenOQhNvKo8PvjjA8Ni8XYIyIK7n1F99TznqfOPP05J4ivcfY189zzH/3mBytkxF5p4zQPRAAB8EZ8I3ZD+yovk5GQvReK8MWPG2G0nJvILCQAAAAAAAMAfmUNMMof64c3HfyyH4EKCxA1nzpyx2U67Jomvatmypdq3b2/dPn36tCZMmODFiAAAAAAAAAAA8J5cm2Jr3rx5Ll9ZsXXrVr300kvW7RIlSmjq1Kk2+1SpUiVH4suO1atX22ynn3LLV40ZM0ZLly61bo8dO1ZPP/20FyMCAAAAAAAAAMA7ci1B0rJlS5frhIbahpMvXz61a9cup0LKEX/++acOHjxoU9a2bVsvReOahg0bqlu3bvrll18kSRcvXtT//vc/7wYFAAAAAAAAAIAX5FqCJBAlJCTo+eeftymrVauWKlWq5KWIXDdq1CjNnz9flv+/2ObHH3+scuXKeTkqAAAAAAAAAK4w5THJ5IfreZjM/hczAlfArEFiMplsbitXrsx0/yFDhujUqVNOt3/hwgV16dJF27ZtsykfMWKEO+F6ze23366HH37Yuh0bG6sdO3Z4MSIAAAAAAAAAADwvYBIkrvrkk09UqVIl3X///Zo2bZqOHDnicL/jx4/rgw8+UK1atbR8+XKbv3Xr1k3333+/B6LNWW+//bbddGYAAAAAAAAAAASToP6W/Pr16/rll1+sa3IUKlRIpUqVUuHChZWcnKyzZ89meJVJ8+bNNX36dA9Gm3OqVKmixx57TF999ZW3QwEAAAAAAAAAwCuCOkGSXmxsrGJjYzPdx2w266WXXtLo0aOVJ08eD0WW84YNG6YffvhB169f93YoAAAAAAAAAFxkDjHJHOp/63mY5X8xI3AF7RRbkyZNUq9evRQdHe3U/iVLltSQIUO0d+9ejR071q+TI5JUtmxZDRo0yNthAAAAAAAAAADgFT51BUmrVq1kGIZbdV2tN3DgQA0cOFCSdPHiRe3evVtHjx7V+fPnlZCQoJCQEN1yyy0qWrSo6tatq0qVKrkVV27JahF6Z3z88cf6+OOPsx+MDzAs7o0bwF2WVMacr+O84Pss3g7AAUuacWOxGD55rJtDPPNrK08dQyZz4P16zLA4P7rTPs+GxXCpLnCTS8dR2n3NpoA8Bp3F8ZYdzv/W0v4853vvrZ7CmPMMd95bDYPXBgCClU8lSLwlKipKzZo1U7NmzbwdCgAAAAAAAABkyZRHMvnhFFsm/wsZASxop9gCAAAAAAAAAADBiwQJAAAAAAAAAAAIOiRIAAAAAAAAAABA0GENEgAAAAAAAADwM6YQk8z+uAaJ4X8xI3BxBQkAAAAAAAAAAAg6JEgAAAAAAAAAAEDQIUECAAAAAAAAAACCDmuQAAAAAAAAAICfMYWYZArxv/U8TBb/ixmBiytIAAAAAAAAAABA0CFBAgAAAAAAAAAAgg4JEgAAAAAAAAAAEHRYgwQAAAAAAAAA/IzZbJLZD9cgMaf6X8wIXFxBAgAAAAAAAAAAgg4JEgAAAAAAAAAAEHSYYgsAAAAAAAAA/IzJbJLJ7H/TVfljzAhcXEECAAAAAAAAAACCDgkSAAAAAAAAAAAQdEiQAAAAAAAAAACAoMMaJAAAAAAAAADgZ0whZplC/O/37/4YMwIXoxEAAAAAAAAAAAQdEiQAAAAAAAAAACDokCABAAAAAAAAAABBhzVIAAAAAAAAAMDPmENMMoeYvB2Gy/wxZgQuriABAAAAAAAAAABBhytIEBBMZs9kng2L4ZF+bvRl8Vhfzkobk2GxuBSjyeyZfKynXqNAHHO+KO3jNyxG0D8fAAAg5/C5Ijuc/z/A/vOc7/2fAwAAghdXkAAAAAAAAAAAgKDDFSQAAAAAAAAA4GdMJpPHZrjISSaT/8WMwMUVJAAAAAAAAAAAIOiQIAEAAAAAAAAAAEGHBAkAAAAAAAAAAAg6rEECAAAAAAAAAH7GFCKZQ/xvPQ9TiLcjAP4PV5AAAAAAAAAAAICgQ4IEAAAAAAAAAAAEHabYAgAAAAAAAAA/YwoxyeSXU2z5X8wIXFxBAgAAAAAAAAAAgg4JEgAAAAAAAAAAEHRIkAAAAAAAAAAAgKDDGiQAAAAAAAAA4GdMJrNMZv/7/bvJ5H8xI3AxGgEAAAAAAAAAQNAhQQIAAAAAAAAAAIIOCRIAAAAAAAAAABB0WIMEAAAAAAAAAPyMyWySyWzydhgu88eYEbi4ggQAAAAAAAAAAAQdEiQAAAAAAAAAACDokCABAAAAAAAAAABBhzVIAAAAAAAAAMDPmENMMof433oe/hgzAhdXkAAAAAAAAAAAgKBDggQAAAAAAAAAAAQdptgCAAAAAAAAAD9jMptkMvvfdFX+GDMCF1eQAAAAAAAAAACAoMMVJMh9FsmwGN6OIkcYFou3Q/BbgfbcGYH1cCRJJjM5c18WaMfQDb435tK+XxkWwyffvzw1Ejy1cKInn2N+qQYAOcOlc3fafX31vTXVMzGxKLGHuDHmfHFcAgA8w/e+mQAAAAAAAAAAAMhlXEECAAAAAAAAAH7GZDL75WwQJpP/xYzAxWgEAAAAAAAAAABBhwQJAAAAAAAAAAAIOiRIAAAAAAAAAABA0GENEgAAAAAAAADwN2bJZDZ5OwrX8ZN9+BCGIwAAAAAAAAAACDokSAAAAAAAAAAAQNAhQQIAAAAAAAAAAIIOa5AAAAAAAAAAgJ8xh5hkDvG/NUj8MWYELq4gAQAAAAAAAAAAQYcECQAAAAAAAAAACDpMsQUAAAAAAAAAfsZkNslk9r/pqvwxZgQuriABAAAAAAAAAABBhwQJAAAAAAAAAAAIOiRIAAAAAAAAAABA0GENEgAAAAAAAADwMyaTWSaz//3+3WTyv5gRuBiNAAAAAAAAAAAg6JAgAQAAAAAAAAAAQYcECQAAAAAAAAAACDqsQQIAAAAAAAAAfsZkNslkNnk7DJf5Y8wIXFxBAgAAAAAAAAAAgg4JEgAAAAAAAAAAEHRIkAAAAAAAAAAAgKDDGiQAAAAAAAAA4GdYgwTIPhIkyHWGYZFhsXg7DL9jWAxvh2AnbUyGxfDJGJEdvnecpj13GBbOJYHGU6+nycwFs+6wpAbeOd4nR0La91IffW/lH1h4mi8eB9kRiOdTV1jSvJ4Wi+GTz4enxlwgfpI1h/AeAcA/JCUlacOGDfr777+1detW7d27V8eOHVNMTIxSU1NVuHBhVahQQY0bN9bDDz+su+66y+U+Vq1ape+++05r167VyZMnFRISorJly6p169Z6/PHHVbduXZfbNAxDixcv1g8//KBNmzbp5MmTCg8PV3R0tO6991499thjuu2221xuF/+HBAkAAAAAAAAAIGA9++yz+vrrrzP8+4ULF3ThwgVt3LhRn332mVq1aqVvvvlGlSpVyrLtuLg4PfPMM5o6dard32JiYrRz50599tln+u9//6t3331XefLkcSrms2fPql+/flqyZIlNeWJioi5evKgtW7bof//7n8aMGaOXXnpJJhNJa3eQIAEAAAAAAAAABCzDsL1asFChQqpcubIiIyOVmpqqkydP6tChQ9b9Vq5cqbvuuksrV65U1apVM2w3JSVFXbt21YoVK2zarlmzppKSkrRr1y4lJibKMAz973//0/nz5/X9999nGW9sbKzatGmjXbt2WcuKFi2qatWqKS4uTrt27VJycrKSk5P1yiuvKC4uTiNHjnT1aYF8dKYBAAAAAAAAAEDGbq5B4o83T4uIiFD37t01efJkHTx4UDExMdq0aZOWL1+uP//8UwcOHNDRo0f1zDPPWOucOXNGffr0kSWT6aHffPNNm+TI0KFDdfr0aa1du1YbN27U8ePHNWDAAOvff/jhB33xxRdZxjtw4EBrciRPnjyaMGGCTp06pb/++ktbtmzRoUOH1LlzZ+v+o0aN0uLFi116TnADCRIAAAAAAAAAQMAaP3685syZo/79+2c4bVZ0dLQ+++wzDRs2zFq2YcMG/fnnnw73P378uMaPH2/dHjp0qEaOHKnw8HBrWVRUlL766iv17t3bWjZixAhdvXo1w1g3bNign376ybo9ceJEPfvsszZTc5UtW1Zz585Vy5YtrWWvvfaa3ZUyyBoJEgAAAAAAAAAAJL3++usqUKCAdXvlypUO9xs/fryuX78uSSpXrpzeeuutDNscP368NXFy9uxZTZ48OcN9x44da71/55136vHHH3e4X0hIiM3VKNu3b+cqEjeQIAEAAAAAAAAAP3NjuiqzH958ezHxfPnyqXr16tbtM2fOONxv7ty51vuPP/64wsLCMmyzSJEi6tGjh8O6aV27dk2//vqrdfvpp5/ONNbq1aurRYsWWbaLjJEgAQAAAAAAAADg/0tJSbHeL1SokN3f9+zZo0OHDlm377333izb7NChg/X+n3/+qfj4eLt9Vq5caTP9lqvtLlq0KMv9YYsECQAAAAAAAAAAki5evKgdO3ZYt5s0aWK3z9atW6338+bNq3r16mXZbtp2UlJSrIuwZ9RuxYoVVaJECZfaPXPmjM6dO5dlHfwfEiQAAAAAAAAAgKBnsVj07LPPKjk5WZJ06623qnPnznb77d6923o/OjraZgH1jERHR9tMw7Vnz55M261cubJTMaffz1G7yFiotwMAAAAAAAAAALjGZDbJHOLb63k4knYNktOnT7tcv2zZsjkZjpKTk3XmzBmtXr1a48aN0/r16639zJkzx2Hy4+jRo9b75cqVc6ofs9msMmXK6PDhw5KkI0eO5Ei7pUuXVmhoqHVasCNHjtisS4LMkSABAAAAAAAAAHhco0aNXK5jGEa2+kxJScn0io98+fLpwQcf1HvvvafSpUs73CcuLs56v3Dhwk73nXY9k7RtZKdds9msiIgIxcTEZNguMsYUWwAAAAAAAAAASLr77rvVr1+/DJMjkpSQkGC9ny9fPqfbzp8/v8M2crtdZIwrSAAAAAAAAAAAHrd+/XqVKlXKo32azWbdc8891u3ExESdOnVKBw8elGEYmj9/vubPn6+7775b06ZNU9GiRe3auLlGiSSFhjr/FXvafZOSkjzWLjJGggQAAAAAAAAA/IzJbLJZz8NfpI25VKlSOb6mSFbMZrN+++03u/LTp0/r008/1Ycffqjk5GT9/vvvatu2rdatW2dzhYYkhYeHW+9fu3bN6b7T7hsREWH399xqFxljii0AAAAAAAAAQFArVaqU3nnnHS1YsEAhISGSpG3btmn06NF2+xYoUMB6PzEx0ek+rl696rCN3G4XGSNBAgAAAAAAAACApHvuuUdPPPGEdfvLL7+UxWKx2ScqKsp6//Tp0063febMGYdtZKfduLg4mwSJo3aRMRIkAAAAAAAAAAD8fz179rTev3jxovbv32/z96pVq1rvHzt2zKk2ExISdOnSJYdtZKfd48ePZ9gGssYaJAAAAAAAAADgZ0xms0xm//v9uz/EHB0dbbN98eJFm+3q1atb758/f16nT5/OcrH5LVu2ZNiGo7KdO3cqJSUly8XaN2/ebL0fEhKiW2+9NdP9Ycv3RyMAAAAAAAAAAB4SGxtrsx0ZGWmz3ahRI4WFhVm3//rrryzbTLtP2bJlValSJbt9mjdvbr1/9epVbdq0yaV277zzTpu4kDUSJAAAAAAAAAAA/H9pkw6hoaEqV66czd8LFiyo1q1bW7enTZuWZZvTp0+33u/cubPDfW677TabKbKyajcpKUmzZ8+2bnfp0iXLOGCLBAkAAAAAAAAA+BmT2eS3N18WExOjjz76yLrdsmVLFShQwG6//v37W+8vWrTIZqqr9ObPn6/t27dbt/v165fhvmnbnTx5sk6ePJnhvhMnTrRO/xUWFqaHH344w33hGAkSAAAAAAAAAEBA+vnnnzVs2DCdP38+y30PHDig9u3b68SJE9ay1157zeG+PXv21O233y5JSk1N1aOPPqrTp0/b7bd792499dRT1u2OHTuqcePGGcYwePBgFS9eXJIUFxenRx55RHFxcXb7rV69Wm+88YZ1e+DAgXZrpyBrLNIOAAAAAAAAAAhIsbGxGjVqlN555x21bNlSd911l26//XZFRUUpX758io2N1f79+7VixQotWrRIycnJ1rrPPfec2rVr57Bds9msr776Sq1atdL169e1e/du1a1bV4MHD1bDhg2VnJysVatWaeLEidY1TaKiojR+/PhM442IiNDEiRP1wAMPyDAMrVq1SnfccYcGDx6sWrVqKT4+XkuWLNG3336r69evS5IqV66sESNG5NAzFlxIkAAAAAAAAAAAAlpqaqqWL1+u5cuXZ7lvSEiIXn75Zb3zzjuZ7nfnnXfqhx9+UN++fXX9+nWdPXtWb731lsN9CxcurJ9//lmVK1fOsv/7779f//vf//TSSy/JYrHo0KFDeuGFFxzuW7p0aS1YsEBRUVFZtgt7TLEFAAAAAAAAAH7GZPL+WiJu3UyeXYOkefPmGjx4sG699dYs942IiFDfvn21ceNGvfvuu07F2rNnT23YsEGtWrVyuH9ISIg6d+6srVu3qkWLFk7H/cILL2jFihWqV6+ew7/nzZtXffv21bZt21S9enWn24UtriBBrjMshgyL4e0wECQsqZ4Za+YQ315QzB2+eJymjcnVc4mnFn3z1PPG2HafYUl1el9LSqrN/bTbWfHcQoP8vsVdFm8H4IAlzTnEYjFcOtY9dbxynvN9gfaeB/d56jUyLM6fUbPz3hp4Au89PNUHzwupKRab+6bkrMerJdn3HgeAnFO5cmV98sknkqSLFy9q69atOnz4sC5evKikpCQVLFhQRYoUUc2aNXX77bcrLCzM5T5q1aqlFStW6PDhw1q3bp1OnjypkJAQlS1bVs2bN1fJkiXdir1Fixb6999/tWvXLm3atEmnTp1S/vz5VbZsWbVu3VqRkZFutYv/Q4IEAAAAAAAAABDwoqKi1KZNm1xrv2LFiqpYsWKOt1ujRg3VqFEjx9tFIP58AQAAAAAAAAAAIAtcQQIAAAAAAAAAfsZkNstk9r/fv/tjzAhcjEYAAAAAAAAAABB0SJAAAAAAAAAAAICgQ4IEAAAAAAAAAAAEHdYgAQAAAAAAAAA/YzJLJrPJ22G4zMRP9uFDGI4AAAAAAAAAACDokCABAAAAAAAAAABBhwQJAAAAAAAAAAAIOqxBAgAAAAAAAAB+xmQ2y2T2v9+/+2PMCFyMRgAAAAAAAAAAEHRIkAAAAAAAAAAAgKDDFFsAAAAAAAAA4G9Mphs3f+OPMSNgcQUJAAAAAAAAAAAIOiRIAAAAAAAAAABA0CFBAgAAAAAAAAAAgg5rkAAAAAAAAACAvzGZZDL74XoerEECH8IVJAAAAAAAAAAAIOiQIAEAAAAAAAAAAEGHKbbSSEpK0p49e3TkyBGdPHlScXFxSk5OVqFChRQVFaXatWurevXqCgkJcbuPq1evasKECZo1a5b27t0ri8Wi2267TQ888IAGDx6sQoUK5eAjAgAAAAAAAAAAjgR9gmT27NlatmyZ1qxZoz179iglJSXT/QsXLqyHH35YQ4YMUbVq1Vzqa/fu3erUqZMOHTpkU75582Zt3rxZEyZM0Pz589WwYcMs2/ruu+/02GOP2ZV/8803evzxx12KK31bQ4YM0bhx41xqAwAAAAAAAIDnmMxmmcz+N0GQP8aMwBX0o/E///mPvvzyS+3YsSPL5IgkxcTEaOLEiapdu7befvttGYbhVD+nT59W27Zt7ZIjaZ05c0Z333239u7d63T86Y0cOVJJSUlu1wcAAAAAAAAAIBgEfYLEkXz58um2225Tw4YNVb9+fZUvX14mk8lmn+TkZI0YMUIDBgxwqs2XXnpJp0+fliTlyZNHgwYN0tSpUzVz5ky99NJLioiIkCRduXJFTz/9tNuxHz16VJMmTXK7PgAAAAAAAAAAwSDop9iSpNKlS6tjx45q0aKFmjRpoooVK8qc7lKvy5cva/bs2Ro5cqROnDhhLf/222/VrFkzh9Ndpa07c+ZMSVKRIkW0cuVK1apVy/r3nj176rnnnlOrVq105MgRrVy5Urt27VKNGjXcejxjxozR448/rvDwcLfqAwAAAAAAAAAQ6IL+CpLFixfrxIkTmjRpknr37q3KlSvbJUck6ZZbbtHAgQO1bds21atXz+Zvb775piwWS4Z9rF+/XqmpqZKk119/3SY5clP58uU1duxY6/bq1avdfUg6c+aMPv30U7frAwAAAAAAAPBtJrPJb2+Arwj6K0hq167t0v633HKLpk6dqpo1a1rXHzl9+rTWrFmj5s2bO6xz8eJFp/qrU6eOwzrOaNKkif7++2/r9vvvv69BgwapUKFCLrXjryypzq0Fk13mEM+dwD31mFxhsRg2930xRuAmw8L4dIcnj2tPnlM9wXNjLuMfZSBzhoeeOlcWnUw7bgyL4dI4SvXQmPPUP7CeOoYC8ghy4dxtSbHY3E9NDshnxKd48jOJkckP9+B9nnp9PLn4sS+OubQxGRaLUzEanvqQAADwOUF/BYk7qlevrvr169uU7d69O8P9CxcubL2/a9euDPdL+7fIyEiXYmrUqJG6du1q3b506ZL+97//udQGAAAAAAAAAADBggSJmypXrmyzfeHChQz3bdCggXWR93feeUd79+612+fUqVN69dVXrdtNmjRxOaZRo0bZLCb/8ccfu3wlCgAAAAAAAADfZzKb/fYG+ApGo5uuXbtms53ZFR8lSpRQp06dJEnnz59XnTp1NHjwYE2fPl2zZs3Sa6+9pmrVqmn//v2SpDvvvFN33HGHyzHVqlVLvXr1sm7HxcXp3XffdbkdAAAAAAAAAAACHQkSNxiGoQ0bNtiUpZ9yK72PPvrImkS5fv26JkyYoEcffVQ9e/bU2LFjFRcXJ0mKiIjQxIkT3Y5t5MiRCg39v6VlPv/8c506dcrt9gAAAAAAAAAACEQkSNzw7bff2iQdqlWrpkaNGmVap0qVKvr1119VokSJDPcpWrSoFi1aZLNYu6uqVKmi/v37W7cTExM1evRot9sDAAAAAAAAACAQkSBx0ffff69nnnnGum02mzVhwgSbtT8ycuedd2r37t0aNmyYateurfDwcIWHh6tWrVp68803tWfPHrVs2TLbMQ4bNkx58+a1bn/99dc6fPhwttsFAAAAAAAA4BtMZslkNvnhzdvPHPB/QrPeJbjs27dPx44ds24nJyfr8uXL2rFjh+bNm6ddu3ZZ/xYWFqZJkyapbdu2Trd/yy23aMSIERoxYkSOxp1WdHS0nn76aY0fP17Sjcfw9ttv6/vvv8+1PgEAAAAAAAAA8CckSNL5/PPPrYmFjJhMJt1777169913szUdVm5644039PXXXyshIUGSNHXqVL322muqXr26lyMDAAAAAAAAAMD7uKDJDQ8++KDefPNNn02OSFLx4sU1ZMgQ67bFYtGwYcO8GBEAAAAAAAAAAL6DBIkbfvrpJzVr1kwtWrTQgQMHvB1Ohl5++WVFRkZat+fMmaPNmzd7LyAAAAAAAAAAOcJk8vZaIm7enFjLGfAUpthKZ9y4cRo3bpx1OzExURcvXtTWrVs1d+5cTZ8+XYmJiZKkv/76Sw0bNtTSpUvVoEEDL0WcscjISL388st68803JUmGYejNN9/U4sWLPRpHSniEUvLny9U+LBYjV9u/yWz23AncU4/JFanhEQ7vByNPjoVgxpj7P754TsguXzyO/GHMmXzweYMtk9n53yClpBlnKUE+5gwPneeC/RhKyR/u8D5yj6fG9o2+LB7ry1n+cJ4LNK68D2VXoIy5FFNIboUDAPBxJEiykD9/fpUtW1Zly5ZVx44d9dprr+nBBx/Uli1bJElXrlxRt27dtGPHDpurNXzFkCFDNH78eJ07d06S9Ouvv2rNmjW66667PBbDmQd7K6VoUY/1B88416uvt0NAkDnTs4+3Q0CQYczB0053f8TbISDInLqfMQfPOtOjt7dDQJBxdsxduHBB+m1l7gYDAPBJTLHloipVqmjp0qWKjo62lp08eVIffPCBF6PKWEREhF5//XWbsptXlAAAAAAAAAAAEKy4gsQNRYsW1YgRI/T4449by7777juNGTPGi1FlbNCgQfroo490/PhxSdKff/6ppUuXqn379h7pv+SsqSrBFFsu88XpdFLDI6xXjhT/8QeFXE3wckTe44tTAwWi1PAI66/4S/40JajHnC+eE7LLF48jfxhzwT49kD9wdYqtm1eOlPp5ukKDeMwxxZZnpOQPt145UnrudIUmXvVyRIGPKbYirL/iLzl7qk+e5wINU2y5PubyXE3M7bCA3GE237j5G3+MGQGLBImb7r//fj3xxBMyjBsfdk+dOqWjR4+qfPnyXo7MXt68eTV06FA9+eST1rI333zTYwmS0KsJCrWk5GofllQPJUhCPJgg8dBjclfI1QSFxsd7Owyv8eRYwA0hVxMUmhC8Y87Xzwnu8PXjyFfHXLB/uesP3P1iKjTIxxwJEs8LTbzqk2Mu0AR7giQtXz3PBZpgT5Ck5eyYC7123QPRAAB8Eek6N0VGRqpIkSI2ZWfOnPFSNFl77LHHVKVKFev2hg0b9Msvv3gvIAAAAAAAAAAAvIgESQ7KkyePt0PIUGhoqEaMGGFTNnToUFl8/NceAAAAAAAAAOyZTCa/vQG+ggSJm+Li4nTp0iWbshIlSngpGuf06tVLtWrVsm7v2LFDP/74oxcjAgAAAAAAAADAO0iQuGnRokXW9UckqVixYipVqpQXI8qa2WzWqFGjbMqGDx+ulJTcXR8EAAAAAAAAAABfQ4LEDYmJiRo+fLhNWadOnWT24EJo7uratasaNWpk3T5w4IAmT57sxYgAAAAAAAAAAPA83/9GPxe98sor2rBhg0t1Ll26pC5dumjfvn3WspCQEL3wwgs5HV6uGTNmjM322rVrvRQJAAAAAAAAAHeYzGa/vQG+IqhH4++//65GjRqpcePG+uijj7RlyxYlJyfb7WcYhvbs2aNRo0apatWqWrZsmc3fX3jhBZu1PXxdu3bt1KpVK2+HAQAAAAAAAACA14R6OwBfsH79eq1fv16SFBYWpjJlyigyMlJhYWGKi4vT8ePHFRcX57Buv379NHbsWE+GmyPGjBmju+66y9thAAAAAAAAAADgFSRI0klKStLhw4ez3K9QoUJ677339PTTT8tkMnkgspzVtGlTdezYUYsWLfJ2KAAAAAAAAAAAeFxQJ0hmzJihBQsWaOnSpVq/fr1iY2Mz3d9kMqlWrVrq06eP+vXrp2LFinko0twxevRoLV68WIZheDsUAAAAAAAAAC4wmU0ymf3vh9v+GDMCV1AnSKpXr67q1avrlVdekcVi0f79+3XgwAEdO3ZMsbGxSk5OVsGCBVW4cGFVqFBB9erVU6FChbwdtiSpf//+6t+/f7bauOOOO2SxWHImoEykJluUGpL7/XhCYDwK5ARLauAlFs0hgfUBJRBfo0CTmuyZs6orH74tFsPmvk+OIw/F5KlzQiD+c2S48Pkq7b6GxeJSXU8xfC+kbPHk4/HUAqSBeBx5gmHxwXM8kAM8+V7ii8dR2pgMi+FUjL74OAAAnhHUCZK0zGazqlatqqpVq3o7FAAAAAAAAAAAkMs885MmAAAAAAAAAAAAH8IVJAAAAAAAAADgb0wmyUNTeuYoE9ODwnf44REEAAAAAAAAAACQPSRIAAAAAAAAAABA0CFBAgAAAAAAAAAAgg5rkAAAAAAAAACAvzGbZDL74Xoe/hgzAhZXkAAAAAAAAAAAgKBDggQAAAAAAAAAAAQdptgCAAAAAAAAAD9jMpllMvnf79/9MWYELkYjAAAAAAAAAAAIOiRIAAAAAAAAAABA0CFBAgAAAAAAAAAAgg5rkAAAAAAAAACAvzGbbtz8jT/GjIDFFSQAAAAAAAAAACDokCABAAAAAAAAAABBhwQJAAAAAAAAAAAIOqxBAgAAAAAAAAB+xmQ2y2T2v9+/+2PMCFyMRgAAAAAAAAAAEHRIkAAAAAAAAAAAgKBDggQAAAAAAAAAAAQd1iABAAAAAAAAAD9jMplkMpu8HYbLTCb/ixmBiytIAAAAAAAAAABA0CFBAgAAAAAAAAAAgg5TbAEAAAAAAACAvzGZJJMf/v6dKbbgQ0iQAPAIw2J4pB9Pzb3pqcfjSRZvB+CAJc3zbLEYsqQ6/7wH4msE97gyFtLua1gMl+r649y/mXHleMsWT/Xjo1JTLDb3TcnOn43NIYE15gKTp95dnf9iJDvnObjHsPjip6zs8dR7q6cE2ns4AABwnh+mGAEAAAAAAAAAALKHBAkAAAAAAAAAAAg6TLEFAAAAAAAAAH7GZDb55TSB/hgzAhdXkAAAAAAAAAAAgKBDggQAAAAAAAAAAAQdEiQAAAAAAAAAACDosAYJAAAAAAAAAPgbs/nGzd/4Y8wIWIxGAAAAAAAAAAAQdLiCBAAAAAAAAAAAZMkwDG3fvl0bN27U1q1bdeTIER0/flwxMTFKSEiQJEVERKhw4cIqV66cKlSooNq1a6tBgwaqVauWTCaTlx+BLRIkAAAAAAAAAADAoYSEBM2dO1cLFy7UsmXLdPnyZZu/G4bhsN7WrVtttiMjI9WuXTt17NhR3bt3V4ECBXItZmeRIAEAAAAAAAAAP2MymXzu1/jO8MeYg9Vff/2lL774QvPnz1diYqIk22TIzdcyq9f0Zp3Lly9r9uzZmj17tgYNGqQuXbpo0KBBatGiRS49gqyxBgkAAAAAAAAAAJAk/fjjj6pXr55atWqlmTNn6urVq9YkR9pkiGEYTt1uulnXMAwlJibqp59+UuvWrVW3bl3NmDHDsw/y/+MKEgAAAAAAAAAAgtzPP/+s4cOHa9euXZJuJDLSJ0Rq1Kih+vXrq1atWqpWrZpKly6tUqVKqUCBAgoPD7cmP+Lj43Xq1CmdOnVKe/bs0fbt2/Xvv/9q9+7dNn0ahqGtW7eqd+/eGjNmjEaOHKnu3bt77DGTIAEAAAAAAAAAf2MyS2Y/nCDI5IcxB7ht27ZpyJAhWrVqlbXs5pUfhQoVUqdOndS1a1e1atVKRYsWzbK9ggULqmDBgipVqpTq16+vzp07W/924cIFrVy5UvPmzdOiRYt05coV69927dqlBx98UM2bN9cnn3yi2rVr59yDzAAJEgAAAAAAAAAAglS9evVspsMym8265557NGDAAHXp0kWhoTmXRihatKh69OihHj16KCUlRfPnz9c333yjJUuWWPtftWqVGjRooKSkpBzrNyOk6wAAAAAAAAAACFIWi0WGYSh//vx65plntH//fi1evFjdu3fP0eRIeqGhoerevbsWLVqkAwcO6JlnnlH+/PklSampqbnWb1okSAAAAAAAAAAACFJhYWEaMmSIjhw5ogkTJqhixYoej6FChQqaMGGCjhw5oueff15hYWEe6ZcptgAAAAAAAADAz5jMJpnMpqx39DH+GHOg27dvn8qVK+ftMCTdmIJr3Lhx+u9//+uR/riCBAAAAAAAAACAIOUryZG0PBUTCRIAAAAAAAAAABB0SJAAAAAAAAAAAACPMwxDAwcO9Fr/JEgAAAAAAAAAwN+YTJLJ7Ic31iDxVcOHD/dof4ZhqH///vr222892m9aJEgAAAAAAAAAAAhyo0aN0gcffOCRviwWi3r37q0pU6Z4pL+MkCABAAAAAAAAAAB67bXX9Nlnn+VqH6mpqXrooYf0448/5mo/ziBBAgAAAAAAAAAAZBiGhgwZosmTJ+dK+ykpKXrggQc0Z86cXGnfVaHeDgDwJ4bF8HYIXpX28RsWwyefD1+MyV/44nPnH2PO4pF+TGbP/KbBU4/HZ6UdYxbDxeeD353Addk5z6V66JxoMntmjmhPneM99Xgkz50VDEuq0/taUlJt7qfdzoonnztP8NR7qyf54mclf8DzBsBvmU03bv7GH2MOIiaTSRaLRU8++aTy58+vXr165VjbSUlJ6t69uxYvXixTmrVoWrVqlWN9uCrwPhECAAAAAAAAAACXtGvXToZhyGQyKTU1VX379tW8efNypO3r16+rc+fONskRwzDUvn17LVy4MEf6cAcJEgAAAAAAAAAAgty8efPUrFkza5IkJSVFvXr10pIlS7LV7tWrV9WhQwctXbrUJjnSoUMHzZ8/X/nz58+J8N1CggQAAAAAAAAAgCCXP39+LV68WI0aNbImSa5fv67u3bvrzz//dKvN+Ph43XvvvVq5cqVNcqRLly6aO3eu8ubNm5MPwWUkSAAAAAAAAADAz5hMZr+9wXcVKFBAS5YsUZ06daxJksTERHXu3Fn//POPS23Fxsbq7rvv1urVq22SIw888IBmz56tsLCw3HgILmE0AgAAAAAAAAAASVLhwoW1bNky1ahRw5okiY+PV4cOHbRlyxan2rh8+bLatm2rdevW2SRHevXqpR9//FGhoaG5+AicR4IEAAAAAAAAAABYRUVFadmyZapSpYokyWQy6cqVK2rfvr127dqVad0LFy6oTZs2+vfff22SI3369NHUqVMVEhKS6/E7iwQJAAAAAAAAAPgbs8l/b/ALJUuW1B9//KFy5cpJupEkuXjxotq1a6cDBw44rHPu3Dm1adNGW7dutUmOPP744/ruu+9kNvtWSsK3ogEAAAAAAAAAAD4hOjpaf/zxh0qVKiXpRpLkzJkzatu2rY4dO2az7+nTp9WqVSvt2LHDJjny1FNP6euvv7aW+RISJAAAAAAAAAAAwKFKlSrpjz/+UPHixSXdSJIcP35cbdq00enTpyVJJ06cUKtWrbRnzx6b5Mhzzz2nL774wmuxZ4UECQAAAAAAAAAAyFDVqlX1+++/q0iRIpJuJEkOHTqktm3bav369WrRooX2799vkxx54YUX9Mknn3gz7Cz5xlLxAAAAAAAAAACnmUxmmXxsPQdnmEz+FzNuqFWrlpYsWaK2bdsqNjZWJpNJe/bsUZMmTWQYhk1y5NVXX9W7777r5YizxmgEAAAAAAAAAABZqlevnhYvXqyIiAhJN64kuZkcMQxDhmHorbfe8ovkiESCBAAAAAAAAAAAOKlJkyaaP3++8uXLJ+n/kiSSNHLkSI0cOdKb4bmEKbYAAAAAAAAAAAHtypUr+uOPP7RixQpt2bJF+/fv1+XLl5U3b15FRUWpbt26uvvuu9WnTx8VKFDApbYPHz6sr7/+Wn/88YcOHz6sK1euqGjRoqpQoYK6deumPn36qGTJki7HvG3bNn333XdasWKFjh8/rri4OJUoUUJVqlTRgw8+qIcffliRkZEut5uRY8eOOb1vpUqV9PHHH2vQoEGSbiRJBg0apL59+7rUzk3lypVzuU5OIEECAAAAAAAAAP7GZLpx8zcejnnPnj166aWX9Pvvvys5Odnu78nJyYqPj9fRo0f1yy+/6PXXX9e4cePUv3//LNtOTU3VG2+8oY8//tiu7VOnTunUqVNau3atxowZo08//VR9+vRxKubExEQ988wz+v77761XZtx0/PhxHT9+XCtWrNCoUaM0efJk3XPPPU61m5UKFSpY1xFxxc0Yv/jiC33xxRcu1zeZTEpJSXG5Xk4gQQIAAAAAAAAACEg7duzQokWLbMpCQkJUpUoVlShRQqmpqdq9e7cuXbokSYqJidFjjz2mgwcPatSoURm2a7FY1KNHD/3yyy/WMpPJpJo1a6pYsWK6cOGCduzYIcMwFBMTo759+yohIUFPP/10pvEmJiaqdevW+ueff2zirV27tiIjI3Xq1Cnt3btXknT69Gl17NhR8+bNU8eOHV19ahxKn5DxVF1vYQ0SAAAAAAAAAEBACw0NVbdu3fTLL7/o0qVL2rNnj/7880+tXr1aFy5c0C+//KIyZcpY9x89erQWLFiQYXtjxoyxSY5069ZNR44c0fbt27V8+XJt27ZNx44d0wMPPGDdZ/Dgwfr7778zjfO5556zSY4MHDhQZ86c0aZNm7R8+XLt2bNHu3fvVsuWLSXduIqlV69eOnTokKtPiUMmk8mjN28jQQIAAAAAAAAACEh58uTRgAEDdPDgQc2dO1ddu3ZVoUKFbPYxmUzq2rWr/v77b5u1Qt544w2HbV64cEFjx461bnfr1k1z5syxW0ejbNmymjVrljVJkpKSopdffjnDWHfu3KnJkydbt59//nlNmjRJRYsWtdmvWrVq+v3339WkSRNJUnx8vIYOHZrZ0+A0wzA8evM2EiQAAAAAAAAA4G/MJsls9sObZ68a6Nq1q7766iunFgGPjo7WiBEjrNs7duzQwYMH7fb78ccflZCQIOnGlSkTJkyQ2ez4q3aTyaQJEyYoLCxMkrRmzRqtXLnS4b6TJ0+2Jg2KFCmi9957L8NYw8LCNGHCBOv2jBkzsn0VicVi8cotNTU1W3FnBwkSAAAAAAAAAAAkde7c2WZ7z549dvusWLHCer9Zs2Y2U3M5UrJkSbVu3dq6PXv2bIf7pW23S5cuyp8/f6bt1qtXT1WrVpV048qPn3/+OdP9YY8ECQAAAAAAAAAAunHlRlqxsbF2+xw9etR6v3bt2k61m3a/+fPnO9wnt9pFxkK9HQAAAAAAAAAAwEUm042bv/HxmNMmKSSpWLFidvvExMRY7xcsWNCpdtOue3L8+HFdunTJLhmT3Xa3bt3qVB38H64gAQAAAAAAAABAspmmKjQ0VPXr17fbJ23yIi4uzql201+JsmvXrhxvNzY2VidOnHCqHm7gChIAAAAAAAAAgMedPn3a5Tply5bNhUhuSEhIsFn4/J577tEtt9ziMIbNmzdLkrZv3+5U2+n3O3z4sJo1a2bX7uXLl7Pdbm4+R4GGBAkAAAAAAAAAwOMaNWrkch3DMHIhkhteeuklnTx5UpJkMpk0cuRIh/s1a9ZMCxYskCStXr1ap06dUunSpTNs99y5czYLsEuOrxBp1qyZNeExf/58Xbt2Tfny5cuw3S1bttgtIu/slSe4gQQJgIBiWCzeDsFvmcyBNetioI2FQHs8gYjXyD2Bdu4JRIYl9/4Bte3HU8eQ58acL54VLGleT4vFkCXV+dc30I5Ww5Lq7RCQBVfGJwKbOcS31ysAvMZs9s/P0z4a87Rp0zRx4kTr9n//+1/Vq1fP4b49e/bUG2+8odTUVCUnJ+v555/XrFmzZHKwvophGHr++ed1/fp1m/L4+Hi7fR955BF98cUXkqSLFy/qjTfe0EcffeQwhqSkJD333HN25Y7azcqvv/6qDh06uFwvN3kqJt8cjQAAAAAAAACAgLZ+/XodP37cpVtu+Ouvv/TEE09Yt+vXr6933nknw/0rVKigxx9/3Lo9Z84c9ejRwy6+kydP6qGHHtLMmTPt2khOTrYra9asmdq3b2/d/vjjjzVo0CBdvHjRZr+9e/fq3nvv1Zo1a5xqNysdO3ZU69attXbtWpfr5rQ1a9aoVatW6tSpk0f64woSAAAAAAAAAIDHlSpVyuvrZWzdulWdO3e2XuFRqVIlLViwQGFhYZnWGzdunDZs2KAtW7ZIurG4+9y5c3X77berWLFiunDhgnbs2CHL/79SesiQIRo/fry1fuHChR22O2XKFDVs2NCabJk4caK+/vpr1a5dW5GRkTp16pTNtFrOtpuVVatWqXnz5mratKleeeUVderUyeEVMbnBMAzNnz9fH374odauXSvDMDzWN1eQAAAAAAAAAACCzt69e3X33XcrJiZGklS6dGktXbpUpUqVyrJueHi4/vzzT3Xr1s1aZhiGtm/fruXLl2vbtm2yWCwym8169dVX9eabb9rUj4yMdNhuiRIltG7dOpsF3FNSUrRp0yYtX77cmhzJmzevxo0bp969ezvVbmaKFi0qwzBkGIbWrl2rbt26qUKFChoxYoQOHjzocnvOOnDggIYPH67y5cure/fu1uSIJBUrVizX+k2LBAkAAAAAAAAA+BuT2X9vPuDw4cNq166dzp07J+lGkmDp0qWqVKmS020UKlRIc+fO1erVq/Xkk0+qWrVqKlSokPLly6fKlStrwIABWr9+vd577z27abLKlSuXYbulS5fWX3/9pYULF6pPnz6qXLmyIiIiFBERoWrVquk///mPtm7dqiFDhujChQtOt5uR/fv367nnnlNoaKg1UXL8+HGNHDlSt912m+rUqaNhw4ZpxYoVdmupuOLatWtasWKFhg0bptq1a6tq1aoaPXq0Tpw4IelGgik0NFSDBw/W3r173e7HFUyxBQAAAAAAAAAIGidOnFDbtm2tX8wXKlRIv/32m2rUqOFWe3fddZfuuuuuTPfZtWuX9b7ZbM5wAfi0OnbsqI4dOzrdbvHixd1KkBQuXFiffPKJnnnmGQ0bNkxz5syxXslx86qYHTt2aMyYMcqTJ49q1Kih22+/XVWrVlXZsmVVqlQpFShQQPnz55dhGLp27Zri4uJ0+vRpnThxQnv37tX27du1Z88e6xopN9tPO5XWgw8+qBEjRqhatWouPwZ3kSABAAAAAAAAAASFs2fPql27djp8+LCkG1NlLVq0SPXr18/Vfjds2GC9X7NmTRUoUCDH223cuHG22qpWrZp++uknbd++XWPHjtWsWbOUnJxsTWIYhqGkpCRt2bJFW7dudantmwkR6UZSxGQyWa8Y6dmzp1555RXVqlUrW/G7wzeuZwIAAAAAAAAAIBddunRJ7du3t07flDdvXv3yyy82633kltmzZ1vv9+rVK0favHbtmhYuXJjj7daqVUtTp07V0aNHNWLECN166612CY6bbk7JldEtozpVqlTRyJEjdfToUU2ZMsUryRGJK0gAAAAAAAAAwP+YTJLZlPV+vsbknZhjY2N1zz33aPv27ZKk0NBQ/fTTT2rfvn2u9z137lwdOHDA2u9jjz2WI+1+8cUXio+PlyQVKVJE3bt3z5F2bypZsqSGDh2qoUOHatOmTVq4cKGWLFmiDRs2KCUlxak2biZJQkND1bBhQ91zzz3q2LFjrl+x4ywSJAAAAAAAAACAgHX16lV17NhRGzdulHRjDZApU6aoS5cuud732bNn9cILL1i3n3vuOZUqVSrb7e7du1cjRoywbg8bNkz58uXLdrsZqVevnurVq6dhw4bp+vXr2rZtm7Zt26bDhw/r+PHjiomJ0dWrVyXdmLYsMjJS0dHRqlChgmrXrq3atWsrb968uRafu0iQAAAAAAAAAAAC0vXr19W1a1etXr1a0o2pnr7++utsT0e1b98+nTlzRi1atMhwn507d6pXr146evSoJKlcuXIaPXp0pu1u3LhRoaGhuuOOOzLcZ82aNerVq5diYmIkSQ0bNtTgwYNdfxBuyps3rxo2bKiGDRt6rM/cQoIEAAAAAAAAABCQxo8fr2XLllm3IyMjNXPmTM2cOdOp+r1791bv3r3tyg8dOqQOHTro1ltvVefOndWgQQOVKlVKKSkpOn78uH799Vf98ssvSk5OliQVLVpUixcvVkRERKb9bdy4UYMGDVKdOnXUsWNH1a1bV8WLF1diYqKOHDmi+fPn69dff7VOXVW5cmX98ssvMptZbtwdJEgAAAAAAAAAwM+YTGaZTP73pbinY7457dNNly9f1pIlS5yuf+edd2b69/379+ujjz7KdJ/bbrtNs2bNUs2aNZ3ud+vWrdq6dWum+zRs2FBz5sxR6dKlnW4XtvzvCAIAAAAAAAAAwIvKlSunRo0ayZTJovPR0dEaOXKktm3bptq1azvVbvXq1VWrVq1M96latao+/fRTrVu3TtHR0S7FDVtcQQIAAAAAAAAACEhvv/223n777Rxvt0aNGvrnn3905coVbd68WSdPntTZs2dlsVhUqlQpVa1aVQ0aNMg0geJIy5YttW3bNp0/f16bN2/W6dOndfbsWYWGhqpUqVKqVauWbr/99hx/PMGKBAkAAAAAAAAA+BuzJLNrX777hACb0ygyMlKtW7fO8XaLFSumu+++O8fbha0AG44AAAAAAAAAAABZI0ECAAAAAAAAAACCDgkSAAAAAAAAAAAQdFiDBAAAAAAAAAD8jcl84+Zv/DFmBCxGIwAAAAAAAAAACDokSAAAAAAAAAAAQNAhQQIAAAAAAAAAAIIOa5AAAAAAAAAAgL8xmW7c/I0/xoyAxRUkAAAAAAAAAAAg6JAgAQAAAAAAAAAAQYcptgAXGBaLx/oymQMrf+nJ584TjFTD2yHkAh98jSyGzf1AG0e+KDDHtvPSPn4j1Qjq58MUEniXvXvqHOKp9/BAOyd67njz5PPme5/njDTvrYbFsNnOSqoL+2aHyeyZ848rjz07PPV4fJUlzfNssRiyuHCse+o18pRgHwvZ4cq4cWfMudI+ACCwkCABAAAAAAAAAH9jNt+4+Rt/jBkBi9EIAAAAAAAAAACCDgkSAPh/7N15eBPV/sfxzyQtlFLWsu8URAREpIBsKrsri1dEryKiFxXE/SqoKO4KIoqK+y6KIiCLIiIgBaECekEBoYBYylq6QAstS5fM74/+OjZ0S9I0adr363nmYWZy5sx30pNJyDfnHAAAAAAAAAAVDkNsAQAAAAAAAECgMWw5S6AJxJhRoC1btmjp0qXavHmz9u3bp+PHj+vUqVMyTffmdjIMQ3v27CmlKItGggQAAAAAAAAAALgkOjpa9913nzZt2uS0393ESC7DMLwRlkdIkAAAAAAAAAAAgGK9/vrrevDBB2WappUQyU1weJLo8DSp4i0kSAAAAAAAAAAAQJEWL16s+++/X1JOMsQwDCtREhwcrJo1ayo0NNS/QbqJBAkAAAAAAAAABBrDkGz+G5rIY34cTgklkzc5Ypqm6tatqwceeEBDhw7VueeeK5st8OaXIUECAAAAAAAAAAAKtWHDBu3du9dKjpx//vlauXKl6tSp4+/QSiTwUjoAAAAAAAAAAMBntmzZIilnzhDDMPThhx8GfHJEIkECAAAAAAAAAACKkJSUZK03adJEXbp08WM03sMQWwAAAAAAAAAQaAxDMgLw9+/MQRKQcidfNwxDDRs29HM03hOAryAAAAAAAAAAAOArbdq0sdZTU1P9GIl3kSABAAAAAAAAAACF6t27t0JCQmSapvbs2VNukiQkSAAAAAAAAAAAQKGqVaumkSNHSpKys7P12Wef+Tki7yBBAgAAAAAAAACBxjACd0FAeu6551S/fn1J0lNPPaVdu3b5OaKSI0ECAAAAAAAAAACKVK9ePS1evFjVq1fXsWPH1LdvX61cudLfYZVIkL8DAAAAAAAAAAAAZV/Xrl31yy+/6LrrrtOff/6pQYMGqXfv3ho+fLg6d+6sunXrKiQkxO16mzVrVgrRFo8ECQAAAAAAAAAEGpstZwk0gRgznLRt21bLli3TwIEDtWPHDq1du1Zr1671uD7DMJSVleXFCF1HawQAAAAAAAAAAC6ZMmWKzj33XMXExMgwDJmmWeLFX0iQ+MGOHTs0ZswYtWzZUiEhIapXr54GDx6sRYsW+Ts0AAAAAAAAAADyMU1T//73vzVp0iSlp6db+w3D8GNUJePzIbYOHjyojRs3asOGDdq4caN+++03nThxwnq8efPm2rt3r8/i6dOnj1avXu3x8R9//LFGjx7tcvk333xT999/v1OXocTERH333Xf67rvvNGTIEM2ePVtVq1Yttq6CYq9Ro4ZiY2NVq1Ytl2MqqK7NmzerU6dObtUBAAAAAAAAACifXn75Zc2ZM0eSrJ4jklS/fn21b99e4eHhCg0N9WeIbvNJgmTdunWaPn26NmzYoEOHDvnilGXSJ598orvvvrvIMosXL9b111+vxYsXy+bBeHypqal66aWX9OKLL3oaJgAAAAAAAICyzjBylkATiDFDp0+f1osvvug0pNaAAQP03HPPqVu3bv4Oz2M+GWLr119/1YIFCyp0ciQ5OVn33Xeftd28eXNNmTJFCxYs0Lvvvqsrr7zSemzJkiWaNWuWx+d6/fXXdeTIkRLFCwAAAAAAAACAJEVFRSklJUVSTu+R4cOHa9myZQGdHJH8MMTW2cLCwpSWlubvMCzLly93q3z79u1dKjd79mwdP35ckjRkyBDNmTNHISEh1uN33HGHPv30U2u4rjfffFO33HKLW7HkOnnypF544QW99tprHh0PAAAAAAAAAECumJgYSTnzkNhsNs2YMSOg5x7J5dMESbVq1RQZGamuXbuqW7du6tq1q2JjY9W3b19fhlGkAQMGlEq90dHRkiS73a733nvPKTmS65ZbbtGcOXO0dOlS/fbbbzp9+nSB5Vzx7rvv6r///a+aNWtWorgBAAAAAAAAABXbmTNnJOX0HmndurUaNWrk54i8wycJksGDB2vQoEFq27Ztvnk1YmNjfRGC3yUnJ0uS6tWrp/r16xda7oILLtDSpUtlmqaOHTumhg0bunyOnj17WomYM2fO6JlnntEHH3xQssADhGHzVbbSJ6PS+ZTpcLhe2GE6rbt1LMo8M9ssvpCP5Y3JzDbditGwB/6vGPIqi3+fQOFw47lz5LnPORymjAr8vPvuHY/3krKuvN1/fHs9ZbB9B8TnufL1mdt0lK/XkLvyXr/pMMvk8+Gr14Hpo5eb4cF8puWJJ22uLLZLwCWGLWcJNIEYM5wSIjVr1vRfIF7mk9bYqlUrtWvXzqNJx8uLGjVqSJISExOVlJRUaLnt27db6+42tMcff1xVqlSxtj/99FPt3r3bvUABAAAAAAAAAMgjIiLCWk9ISPBjJN5VcTMWPpY7WU1WVpbGjRunjIyMfGW+/vprffvtt5JyepLkTXa4omHDhho/fry1nZWVpSeffLIEUQMAAAAAAAAAKroePXqocePGMk1TcXFx2r9/v79D8goSJD5y4403WvOJzJs3T+edd56mTZumRYsW6YMPPtCwYcN0/fXXyzRzunWOHTvWo/M88sgjqlatmrX91VdfaevWrSW/AAAAAAAAAABAhWSz2TRmzBhre/r06X6MxntIkPhI48aN9dxzz1nbf//9tyZMmKBhw4bp9ttv16JFi6zH+vTp49TY3BEeHq4HH3zQ2jZNU48//rjngQMAAAAAAAAoewxDstkCbzHK15yhFckjjzyiTp06yTRNvfnmm/rmm2/8HVKJkSApQGpqqrZs2aI1a9Zo06ZNiouLU3Z2donr/e9//6vJkycXWWbgwIFasGCBgoKCPD7Pgw8+qPDwcGt78eLF2rhxo8f1AQAAAAAAAAAqtsqVK+uHH35QZGSksrOzdf3112vSpEk6fvy4v0PzmOffwpdTF154obZs2SKHw+G0PywsTL169dK1116rUaNGqXLlyh7V//TTT+vqq6/WjBkztHr1aiUkJKh69eqKjIzUrbfequuvv15GCbOo1atX18SJEzVhwgRr36RJk7R8+fIS1QsAAAAAAAAAqJg+++wzSdKYMWOUnJysvXv3asqUKXrjjTc0YMAARUZGqm7dutZUE+4YNWqUt8N1CQmSs/z+++8F7k9LS9OyZcu0bNkyTZ48Wa+//rquu+46j87RtWtXffHFFyWIsnh33323Xn31VR0+fFiStGLFCkVFRalPnz6lel4AAAAAAAAAQPkzevRopx/3G4Yh0zSVlpamRYsWOU0j4S5/JUgYYssD8fHxGjFihB5++GF/h1KoKlWqaNKkSU77HnvsMT9FAwAAAAAAAMCrDCNwFwQ00zStdcMwnJImpmm6vJxdlz+QIJEUEhKiwYMH66233lJ0dLQSEhKUkZGhEydOaM+ePfr888911VVX5Rv66uWXX9aUKVP8FHXxbr/9drVo0cLa/uWXX7RkyRL/BQQAAAAAAAAACFh5ExuFJT3crcufKvwQWw8++KB69erlNKl5ruDgYIWFhSkiIkI33XST1q5dqxtuuEEHDx60yjz22GO64oordMEFF/gybJdUqlRJTz75pG699VZr3+OPP64rr7yyxPOcAAAAAAAAAAAqjo8//tjfIXhdhU+QDBkyxOWyvXv3VlRUlHr06KGkpCRJOVmuxx9/XN9++21phVgiN998s6ZOnaqYmBhJOXOszJ07VyNGjPBZDNlVqyqrivsT87jDsPkm4WM6/J/V9Do3rim7atUC1ysiM7sctoUyqCRtzrCXr0Qwbc5zDu5zHjF99N5a3l6rkiQ3nrvs0KoFrrvER59LuP94riy274C4z/no/gPfKNF9zlfK2//zKvhryJM2l22v8F+PIVAZtpwl0ARizJAk3XLLLf4Owet4B3BT69atNW3aNKdeGd9//72OHj2q2rVr+zGygtntdj3zzDNOCZEnn3xS1157rex2u09iSPj3KDnq1PHJueA7iTeN9ncIqGCSRt1afCHAi46Ovs3fIaCCSbyx/P1nA2Ubn+fga9zn4GuutrmkpCRp5ZpSjgYAUBaRrvPAqFGjVLduXWvb4XBoxYoVfoyoaMOHD9eFF15obcfExGjWrFl+jAgAAAAAAAAAAP+iB4kHbDab+vTpo7lz51r7du7c6ceIimYYhp577jldddVV1r6nn35aN910k4KDg0v9/PW+/Ez1GGKr7HJz6JncXxrW/eIT2dPTSymoso/hRnwju2pVq+dInc8+dqvNlcVhTUqCNuc5d4fYyu05UvuTjyr0fc7GEFuec3OIrdxft9ad/ansJ91ocwyxVeaVxfYdEJ/nKvjwQOVNie5zvlLe/p9XwV9DnrQ526nTpR0WAKCMIkHioaZNmzptJyYm+ikS11x55ZXq1auX1q1bJ0nau3ev3nvvPY0fP77Uz21PT1dQdlapnoMEiedMh8Oj4+zp6bKnnfByNIGDL4t8z902Vxa/lCoJ2pznDA+fO3t6uuwnKu59zuaj11B5e61KkmHzrJO2/WS6gtLSXC7v6Xu4u7j/eK6st++y+nnO09cQyj5373O+4qv7qa/wGvqHq23OfvqMD6IBSoFh5CyBJhBjRrnFu6aHzu55kZmZ6adIXPf888/n2z516pSfogEAAAAAAAAAwH9IkHgoPj7eaTvvnCRl1aWXXqqBAwda24cPH9bMmTP9GBEAAAAAAAAAAP7BEFseWrt2rdP22UNulVXPP/+8li9fbm1PnTpVY8eO9WNEAAAAAAAAAICy6O+//9YPP/ygffv2KTU1VeHh4WrTpo0uv/xy1atXz+N6N23apIceekhSzhzaK1eu9FbIbiFB4oHVq1drz549Tvv69+/vp2jc07VrVw0bNkwLFy6UJCUnJ2v69On+DQoAAAAAAACAe2y2nCXQBGLMFdAff/yh+++/X2vWrCnwccMwdMUVV+j5559Xx44d3a7/2LFjioqKsuryF1qjm9LT03Xvvfc67Tv//PMVERHhp4jc9+yzz8qW50b06quvKjk52Y8RAQAAAAAAAADKgq+//loXXXSR1qxZI9M0rUWSte5wOPT9998rMjJSEyZMCIg5ugtSrhIkhmE4LbkZqMLcd999OnTokMv1JyUlaciQIdqyZYvT/qefftqTcP2mQ4cO+ve//21tHz9+XNu2bfNjRAAAAAAAAAAAf1u2bJluvPFGZWRkyDRN67t2SVaSJO++7OxsTZ8+XT169NC+ffv8FrenfDbE1rp163Tq1Kl8+//44w+n7dOnT2vFihUF1tGoUSO1a9fOazG9/vrrevfdd3XFFVdo+PDh6tWrl1q0aJGv3P79+/XVV1/plVdeyTc5+7Bhw3TNNdd4LSZfeeqppzRnzhxlZWX5OxQAAAAAAAAAgJ+lpKTo1ltvlcPhcEqKtGvXThdffLFq1aqlgwcPau3atYqNjZWUkywxTVObNm1Sjx49tGzZMnXo0MGfl+EWnyVIbrrpJsXFxRVb7siRIxo4cGCBj91yyy365JNPvBrXmTNntHDhQmtOjurVq6thw4aqUaOGMjMzdeTIkUJ7mVx88cWaPXu2V+PxldatW+vWW2/V+++/7+9QAAAAAAAAALjJNAyZfpy7wVOBGHNF8e677yo+Pt5KetSuXVsff/yxBg8enK/sqlWr9Oijj2rjxo1WMuXw4cO65JJL9P3336t79+6+Dt8j5WqILW84fvy4du7cqY0bN2rz5s0FJkdsNpsmTJiglStXqkqVKn6I0jsmT56sypUr+zsMAAAAAAAAAICfvfPOO1ZypGrVqoqKiiowOSJJffv21S+//KIpU6bIbrdLyulNkpKSooEDBxY6SlRZU6ETJO+9955uuOEGNW3a1KXyDRo00H333aedO3dq6tSpCg4OLuUIS1eTJk00btw4f4cBAAAAAAAAAPCjuLg4awQowzA0adKkYofKMgzD6kgQHh5u7UtPT9fgwYOtUZvKMp8NsbV3795SP0fuJDGuuv3223X77bdLkpKTk7Vjxw7FxcUpMTFR6enpstvtqlWrlurUqaMLL7xQERERpRG2x4qbhN4Vr776ql599dWSB1MEw2bIsJWPrnPl5TryMmx2l8s6gv7JqRpBNtmCXD/WdLj3+vSU6XD45Dwo+8xs37Q5XzHsvrn/lLfnDZ5z+Kgt+PLXOj57HbnzXpT3/dFh8j5Wzvjqnuqrtu0rjsxsn5ynvD1vZRb3OZ8rj8+xO/dTM9PhtO7KPcWR5Zv7DuB1hiEZAfj7d4bYKpN+++03STnfsdtsNut7c1dcfPHFWr9+va644grt3r1bhmHozJkzGjFihD788EPdfPPNpRV2ifksQVLWhYeHq3fv3urdu7e/QwEAAAAAAAAAwGcSEhIk5fQAadmypdUjxFURERGKjo7W5Zdfrv/9738yDENZWVm69dZblZaWVmZHMgrAFCMAAAAAAAAAAPCWlJQUa71OnToe1REeHq5Vq1bp0ksvlWmaMgxDDodDd999t1566SUvRepdJEgAAAAAAAAAAKjAQkJCrPXU1FSP6wkLC9MPP/ygq6++2kqSmKapRx99VE888YQ3QvUqEiQAAAAAAAAAEGgMW+AuKHNyh9QyTVPx8fElqqty5cr65ptvdP311zslSV544QXdf//9XojWe2iNAAAAAAAAAABUYG3btrXWU1NTFRMTU6L6goKCNHv2bN12221OSZI33nhDt99+uxwOR0lD9gomaQcAAAAAAAAAoAJr3769bDabTNOUJK1atcopaeIJwzD0wQcfKCwsTK+//rqVJPnoo48UHR3tjbBLjB4kAAAAAAAAAABUYFWrVlVkZKSVIPn888+9VveMGTM0adIkp54kMTExMgzDa+fwFAkSAAAAAAAAAAg4hkwj8BbJ/1+Ko2D9+/eXlDMPyfr167Vjxw6v1f3ss89q6tSpTkmSsoAECQAAAAAAAAAAFdywYcMkyerZMXXqVK/W//DDD+vtt9+WYRhloveIRIIEAAAAAAAAAIAKr1u3bmrZsqVM05Rpmvriiy+82otEku6880599tlnstvtZaIXCZO0AwAAAAAAAAAAffPNNzpw4IC1HRwc7PVz3Hjjjapfv77Wrl3r9brdRYIEAAAAAAAAAAKNYctZAk0gxlyBXHDBBbrgggtK/Tz9+/e35jzxJ1ojAAAAAAAAAACocEiQAAAAAAAAAACACochtgAAAAAAAAAg0BhGzhJoAjFmlFv0IAEAAAAAAAAAABUOCRIAAAAAAAAAAFDhkCABAAAAAAAAAAAVDnOQAAAAAAAAAECgsdlylkATiDGj3KI1AgAAAAAAAACACocECQAAAAAAAAAAqHBIkAAAAAAAAAAAgAqHOUgAAAAAAAAAIMCYhiHTMPwdhtsCMWaUX/QgAQAAAAAAAAAAFQ4JEgAAAAAAAAAAUOEwxBZKnc1uyGYv3a5zho2ueZ4yHabLZW15nmebzb2/a7Yb5ykJw+arvK/DR+fxHTPbN38jXzFK+b7ja+Xt7+NL7tyrzBLc5xzl7G9U2u/d5Zk7r9e8Zc1sk9c6PFLe2hzv4eVLILQ5AABQcZEgAQAAAAAAAIBAYxiSEYADBDEHCcoQEiQAAAAAAAAAAKBIa9assdYvuOAC1ahRw+O6UlNT9ccff1jbl1xySYli8xQJEgAAAAAAAAAAUKQ+ffrI+P8eQMuXL1e/fv08ruu3337ToEGDJEmGYSgrK8srMbqLBAkAAAAAAAAAACiWaZpWksQbdfkbCRIAAAAAAAAACDCmYZMZgHOQBGLM+Ie3kiNlBa0RAAAAAAAAAAD4hT+TLiRIAAAAAAAAAACAz6Snp1vrVapU8VscDLEFAAAAAAAAAIHGMHKWQBOIMcPrYmJirPWaNWv6LQ56kAAAAAAAAAAAAJ9ITU3VRx99JClneK22bdv6LRZ6kAAAAAAAAAAAAD3zzDMulfvss8+0du1al+s1TVMnT55UbGysVq5cqZSUFOux3r17uxum15AgAQAAAAAAAAAAeuqpp4qcNN00TUnSrFmzPD6HaZrWOYKDgzVq1CiP6yopEiQAAAAAAAAAEGBM2WQagTeDgsmsDxWeYRhWkmT69Olq2bKl32IhQQIAAAAAAAAAACT900ukpGUKExYWpv79++uBBx7QJZdc4nE93kCCBAAAAAAAAAAAaNWqVQXuN01T/fr1s4bGmjZtmiIjI12u12azqWrVqqpdu7aaN29e5DBevkSCBAAAAAAAAAAA6NJLL3WpXKdOnVwuW5aRIAEAAAAAAACAQGMYOUugCcSYYSnJ0FplEQkSAAAAAAAAAABQJIfD4e8QvM7m7wAAAAAAAAAAAAB8jQQJAAAAAAAAAACocBhiCwAAAAAAAAACjWFIRgD+/p05SFCGkCABAAAAAAAAAAAlcubMGaWkpOjMmTNuH9usWbNSiKh4JEgAAAAAAAAAAIBbYmJi9Mknnyg6OlqbN2/WyZMnParHMAxlZWV5OTrXkCABAAAAAAAAgABjGobMAByuKhBjhrOkpCTdfvvtWrx4sbXPNE0/RuQ5EiQAAAAAAAAAAKBYe/bs0SWXXKL4+HiZpinDMKzkiJEn+ZU3YWIUkBQrKwkVEiQAAAAAAAAAAKBIp0+f1tChQ3X48GEr6WEYhi666CK1bNlSX375pbVv0KBBql27to4ePao///xTBw8etB6TpLZt2+qiiy7yz4XkQYIEpc6wGTJs5aPrnGGz+TuEUuBwuWTev6O7f1d7sG+eO0e2r7LPFbst+IphN5zW824Xx/RRW3AnpkA4T0VXkjZXHu8K5Y2v7gsASsZXr1XffW4sf2x8LoGPufN6dThMp3XDhWPNbI/CAoAK5/3339f27dutJEdkZKS+/PJLtW7dWpL05ZdfWo9NmDBB/fr1s47dvXu33nzzTb399tvKzMzUrl27dO211+rZZ5/1/YXkwf/lAQAAAAAAACDQGLbAXRCQXnvtNWtIrUaNGmnFihVWcqQ455xzjmbMmKENGzaoWbNmcjgceuGFFzRhwoRSjrpotEYAAAAAAAAAQLmWkpKi+fPn6+6771bv3r1Vv359VapUSdWqVVOLFi10zTXX6O2331ZaWprbdcfGxmrSpEnq3r276tevr8qVK6tx48bq1auXpk2bpvj4eI9ijouL01NPPaW+ffuqYcOGCgkJUWhoqJo0aaLLLrtMU6dO1ZEjRzyq21379u3T33//LSlnmKwnnnhCNWrUcLueTp06acWKFapRo4ZM09T06dO1cuVKb4frMhIkAAAAAAAAAIByKSYmRldffbXq1aun4cOH680339S6deuUkJCgzMxMpaWlKS4uTgsXLtRdd92lJk2a6JNPPnGp7uzsbE2cOFHnnnuuXnjhBW3YsEEJCQnKyMjQoUOHFB0drQkTJqht27aaNWuWyzFnZWXpscceU6tWrfT0008rKipK8fHxOnPmjE6dOqWDBw/qxx9/1COPPKIWLVro5Zdf9vDZcd2vv/4q6Z/J1a+77roiyxc1CXvr1q31+OOPW9tPPvmkFyL0DHOQAAAAAAAAAADKpW3btmnJkiVO++x2u1q3bq369esrOztbO3bs0NGjRyVJqampuvXWW7Vnz54i58dwOBwaPny4Fi5caO0zDEPt27dX3bp1lZSUpG3btsk0TaWmpmrUqFFKT0/X2LFji4355ptv1ldffeW0r0WLFmrRooWys7O1e/duq1fK6dOn9fDDD+vw4cOaPn26q0+L2xISEqz1pk2bqlatWkWWP3XqVJGPjx49Wo888oiys7P1yy+/6MCBA2rSpIlXYnUHPUgAAAAAAAAAIMCYMgJ28YegoCANGzZMCxcu1NGjRxUTE6PVq1dr7dq1SkpK0sKFC9W4cWOr/HPPPadvv/220Pqef/55p+TIsGHDtHfvXm3dulU//fSTtmzZon379unaa6+1ytxzzz365Zdfiozziy++cEqOdOvWTZs3b1ZsbKxWrVqlNWvW6PDhw1qxYoUiIiKscq+88opWrVrlzlPilpSUFEk5SaC6desWWCYkJMRaT09PL7K+8PBwtWzZ0tpev359yYP0AAkSAAAAAAAAAEC5FBwcrDFjxmjPnj1asGCBhg4dqurVqzuVMQxDQ4cO1S+//KIGDRpY+x977LEC60xKStLUqVOt7WHDhmn+/Plq1qyZU7kmTZpo7ty5VpIkKytLDz/8cJHxvvHGG9Z6RESEVqxYoU6dOuUr179/f0VFRalatWrWvrfeeqvIukuiUqVK1npQUMEDU1WvXt0aWuvgwYPF1hkeHm6t79+/v4QReoYECQAAAAAAAACgXBo6dKjef//9fMmLgjRt2lRPP/20tb1t2zbt2bMnX7mvvvrK6iERFBSkmTNnymYr+Kt2wzA0c+ZMK8Gwbt06RUVFFVg2IyNDGzdutLbvuusupwRIQfGOGjXK2o6Oji784koo75BaqampBZapV6+etb5z585i68ztlSIVPyRXaSFBAgAAAAAAAACApMGDBzttx8TE5CuTdyir3r17Ow3NVZAGDRqob9++1va8efMKLJeUlOQ0uXmHDh2KjTdvmcTExGLLe+rcc8+VlDP5+qFDhwos07FjR6vM6tWri6wvMTFRu3fvlmHkDLlWo0YNL0brOhIkAAAAAAAAABBgTMMWsEtZVrt2baft48eP5ysTFxdnrecmBYqTt9zixYsLLBMWFua0nZGRUWy9Z86csdaLmzi9JDp06GAlM06cOKEDBw7kK9O9e3drfffu3Vq+fHmh9b300ktyOBxWQqh169Zejtg1Zbs1AgAAAAAAAADgI3mTH5IKnJA87xBTRQ2BlVfeeU/279+vo0ePFlgmt6eGJK1Zs6bYevP21Ojdu7dLsXiiRo0auuCCCwo8b64RI0bIbrfLMAyZpqlbbrnFacgwSXI4HJo2bZpeeeUVK+ESEhKiiy++uNRiLwoJEgAAAAAAAAAAJH3zzTfWelBQkCIjI/OVyZsUOXHihEv1nt0TZfv27QWWu+uuu6z1d955R9u2bSu0zmXLlmnhwoWScuY6efDBB12KxVODBg2y1pcsWZLv8Xr16unmm2+WaZoyDEPx8fHq0aOHIiMjdeONN2r48OFq1qyZHnnkEZmmaZUbM2aMQkNDSzX2whQ83TwAAAAAAAAAAKXo8OHDbh/TpEmTUogkR3p6umbOnGltX3bZZQUOW9WkSRNt3rxZkrR161aX6j67XGxsbIE9PsaPH6+oqCgtWLBAaWlp6tWrlx577DFdc801atGihbKzs7Vr1y598cUXmjFjhkzTlM1m02uvvaZevXq5c7luu+GGG/TSSy/JNE0tXLhQSUlJqlOnjlOZadOmafny5Tp06JDVk2Tz5s36/fffJckaUiv3sXPOOUfPPfdcqcZdFBIkAAAAAAAAABBoDFvOEmjyxNytWze3D887ibm3PfTQQzp48KCknC/wn3nmmQLL9e7dW99++60kae3atTp06JAaNWpUaL0JCQlOE7tLhfc8sdvtmjdvniZPnqzXX39dx48f1yOPPKJHHnmkwPJdunTRM888oyuuuKLY6yupTp066Y033tDp06cl5Uy0fnaCJDw8XFFRUbryyiudJmHPlZsYMU1TnTp10qJFi1wepqw0BOArCAAAAAAAAAAA7/niiy/0zjvvWNsPPvigOnfuXGDZ3Lk2JCkzM1P33ntvoYkb0zR17733Ok2mLklpaWmFxmKz2fTcc89p1qxZatiwYaHlWrdurXvvvVcDBw4stIy3jR8/Xv/973/13//+V+edd16BZVq1aqVt27ZpxowZ6t69u+x2u5UUsdvt6tWrl959911t3LhRTZs29VnsBaEHCQAAAAAAAADA5zZu3FhkAsBXfv75Z/3nP/+xtiMjI/XCCy8UWr5Fixa67bbb9P7770uS5s+fr+HDh2vGjBlOX/gfPHhQDzzwgObOnZuvjszMzELr37Ztm2655RZt2rTJ2teqVSs1bdpUmZmZ2rVrlxITE/XXX39p1KhReuGFFzR37lx16NDBresuTcHBwbr33nut5FFycrJM01R4eLhstrLTb4MECQAAAAAAAAAEGNOQzLOGLwoEZp6QGzZsWKpzirjijz/+0ODBg60eHhEREfr2229VqVKlIo+bMWOGfv31V2tujW+++UYLFixQhw4dVLduXSUlJWnbtm1yOBySpPvuu0+vvfaadXyNGjUKrPd///uf+vXrZ03qPmTIEE2bNk1t2rRxKrdy5UqNHz9eO3fuVExMjPr27asNGzYoIiLCo+ehNBmGkW8orrKi7KRqAAAAAAAAAADwkZ07d2rQoEFKTU2VJDVq1EjLly93qVdLaGioVq9erWHDhln7TNPU1q1b9dNPP2nLli1yOByy2WyaOHGiJk2a5HR8zZo189WZkZGh66+/3kqOXH/99Vq0aFG+5Igk9e/fX7/88otat24tSUpKStK4ceNcvXT8PxIkAAAAAAAAAIAKJTY2VgMGDFBCQoIkqU6dOlq+fLlbPTCqV6+uBQsWaO3atbrjjjvUtm1bVa9eXSEhIWrVqpXGjBmjjRs3asqUKUpOTnY6tlmzZvnqmzdvnvbs2SNJqlSpklOPk4LUqlVLU6dOtbZ//PFH7dq1y+X4wRBbAAAAAAAAAIAK5MCBA+rfv78OHDggKSfR8cMPP6hdu3Ye1derVy/16tWryDLbt2+31m02W4ETwK9YscJav+iii1S/fv1iz33llVcqODjYmtNk7dq1BfY4QcFIkAAAAAAAAABAgDENm0wj8AYI8nfMR44c0YABAxQbGyspZ6isJUuWKDIyslTP++uvv1rr7du3V1hYWL4yBw8etNbzTvZelJCQENWpU0eHDx+WJMXHx5cw0ool8F5BAAAAAAAAAAC46ejRoxo4cKB27twpSapcubIWLlyo3r17l/q5582bZ63fcMMNBZbJOzH8qVOnXK775MmT1npoaKgH0VVcJEgAAAAAAAAAAOXa8ePHddlll2nr1q2SpKCgIH399dcaOHBgqZ97wYIF+uuvv6zz3nrrrQWWa9SokbX+v//9z6W69+zZY00yf3YdKB4JEgAAAAAAAABAuXXy5EldddVV+u233yTlzAEya9YsDRkypNTPfeTIET3wwAPW9t13362GDRsWWPbiiy+21vft26cFCxYUW/+rr77qtH3JJZd4GGnFRIIEAAAAAAAAAAKOIRkBuMjw6bN05swZDR06VGvXrs151gxDH3zwQaHDXLlq165dWrNmTZFl/vzzTw0YMEBxcXGSpGbNmum5554rtPyQIUNUu3Zta3vMmDHauHFjoeXffvttvfXWW9b2lVdeqQYNGrh6CRCTtAMAAAAAAAAAyqnXXntNK1assLZr1qypOXPmaM6cOS4dP3LkSI0cOTLf/r///ltXXHGFzjnnHA0ePFhdunRRw4YNlZWVpf3792vp0qVauHChMjMzJUl16tTR999/r6pVqxZ6rurVq+vFF1/UnXfeKSlnzpRevXppxIgRuvLKK9W0aVNlZmZq586d+vLLL62kjySFhYVp2rRpLl0T/kGCBKXOMGwybHRWKqvc+dvkLWvY3P27Otwo6zmftTS7b37t4Mg2fXKeHL559kyHb9qC4aO/UXnjy/u1r9qC6cbrKG9ZM9t061gAJeOr+zavawAIPDY33iNM2z9lbTbDpWMNu0dhAQgQeScwl6Rjx45p2bJlLh/fvXv3Ih/fvXu3XnnllSLLtGnTRnPnzlX79u2LPd8dd9yh+Ph4Pf3003I4HMrKytLs2bM1e/bsQo+pVauWvv76a7Vr167Y+uGMb60BAAAAAAAAAHBDs2bN1K1bNxlG4YnYpk2b6plnntGWLVvUsWNHl+uePHmyoqKidNlllxVZf2hoqO644w5t3bpVAwYMcCt+5KAHCQAAAAAAAAAEGsMm0wjA37/7OOannnpKTz31lNfrbdeunTZs2KCUlBRt3rxZBw8e1JEjR+RwONSwYUOde+656tKlS5EJjqJcfPHF+uGHH5ScnKwNGzYoNjZWqampCgoKUq1atdSuXTtFRkYqJCTEy1dWsZAgAQAAAAAAAADAAzVr1lTfvn1Lrf7w8HBdeeWVpVZ/RReAKUYAAAAAAAAAAICSoQcJAAAAAAAAAAQYU4ZMeTZ8kz8FYswov+hBAgAAAAAAAAAAKhx6kAAAAAAAAAAAALcdP35cy5Yt088//6wdO3bo6NGjSk1NlWma+vzzz9WjRw9/h1gkEiQAAAAAAAAAAMBlx44d0zPPPKOPPvpIaWlpTo+ZpinDMHTq1KkCj73hhhs0d+5cSVKzZs0UGxtb6vEWhiG2AAAAAAAAACDAmIYtYBcEtujoaHXq1Emvv/66Tpw4IdM03Tr+4YcflmmaMk1T+/bt08qVK0sp0uLRGgEAAAAAAAAAQLF+++03DRo0SAcOHHDabxiG6tSp41KyJDIyUp07d7a2582b5/U4XUWCBAAAAAAAAAAAFCktLU1DhgzRyZMnJeUMpdW9e3ctWrRIx48f15EjRyTlJEuKc+2111p1/Pjjj6UXdDFIkAAAAAAAAAAAgCJNmzZN8fHxVgLknnvu0dq1azV48GCFhoa6VdeAAQOs9b179yo+Pt6rsbqKSdoBAAAAAAAAINAYklz4pX6ZE4AhI8e7775rJUf69eun1157zeO6OnbsKLvdruzsbEnS9u3b1aBBA6/E6Q56kAAAAAAAAAAAgEJt2rRJCQkJ1hwjzzzzTInqq1y5spo0aWJtx8bGlqg+T5EgAQAAAAAAAAAAhdq+fbu1XqtWLfXo0aPEddasWdNaT01NLXF9niBBAgAAAAAAAAAACpWQkCApZwL25s2be6XOkJAQa/3MmTNeqdNdzEECAAAAAAAAAAHGlE1mAP7+PRBjhqy5QiTJbrd7pc5jx45Z63l7k/gSrREAAAAAAAAAABSqXr16kiTTNHXkyJES15eRkaG4uDhru06dOiWu0xMkSAAAAAAAAAAAQKEaN25srR84cMAacstT69atcxpWq3379iWqz1MkSAAAAAAAAAAgwJiGEbALAk+vXr1UuXJlGf//9/viiy9KVN/MmTOt9Xr16qldu3Ylqs9TJEgAAAAAAAAAAEChqlSpor59+8o0TZmmqalTpyo5Odmjur799lstXLhQhmHIMAwNGzbMu8G6gQQJAAAAAAAAAAAo0qRJkyRJhmEoMTFRQ4YMUUpKilt1LF26VCNHjpSUM59JUFCQJk6c6O1QXUaCBAAAAAAAAAAAFKlXr14aPny4TNOUJK1fv14dOnTQhx9+qLS0tEKPy87OVnR0tP79739ryJAhOnHihEzTlGEYuvfee9WiRQsfXUF+QX47MwAAAAAAAADAI6Zhk2kE3u/fAzFm/OOTTz7R33//rU2bNskwDB06dEh33HGH7rrrLrVp00aSrOTHfffdJ9M0FRcXp5MnTzo9Zpqm+vTpo6lTp/rzcuhBAgAAAAAAAAAAihcaGqqlS5eqT58+TsmOzMxM/fnnn1Y50zS1fft2bd++Xenp6Vavk9zyV155pRYsWCCbzb8pCnqQAEAZZrMbPjuXw2dncuONz2Y4rRt+ftNEYDLceB3lLWvYDbeOLW/MbNPfIaCCoc2VfQ7+RkCJ+OpzRXm8n7pz/3E4TKd1w4VjzWyPwgKACqtu3bpauXKlXnrpJU2bNk1Hjx6VlJP8OFvuvtzJ3WvWrKmJEydqwoQJBZb3Nb5pAgAAAAAAAAAALjMMQxMnTtT+/fv19ttva/DgwapVq5aVCMm7hISEaMCAAXr55Ze1d+9eTZw4sUwkRyR6kAAAAAAAAABAwDFlyFTZ+JLZHYEYMwpXpUoV3XnnnbrzzjslSUeOHFFycrJSUlIUGhqqOnXqqEGDBgoKKpupiLIZFQAAAAAAAAAAKBPi4+O1ceNGa7tjx45q0aJFvnL169dX/fr1fRhZyZAgAQAAAAAAAAAAhfrmm290zz33WNtbt271YzTewxwkAAAAAAAAAACgUCkpKdacIg0aNFC7du38HZJX0IMEAAAAAAAAAAKMadhkGoH3+/dAjBlSeHi4pJzJ2Rs3buznaLyH1ggAAAAAAAAAAArVqFEjaz09Pd2PkXgXCRIAAAAAAAAAAFCoyMhI2Ww2maapuLg4ZWRk+DskryBBAgAAAAAAAAAACtWoUSP16dNHknTq1CktWbLEvwF5CQkSAAAAAAAAAAgwpiGZhhGAi7+fOXjqgQcesNYfffRRnTx50o/ReAcJEgAAAAAAAAAAUKSrrrpK48ePl2ma2r17t6666iolJCT4O6wSIUECAAAAAAAAAACK9cYbb+iRRx6RYRhas2aN2rVrp6eeekoxMTH+Ds0jQf4OAAAAAAAAAADgLkOmAnG8qkCMGZLUr18/az08PFyJiYk6evSonn32WT377LOqVq2amjdvrurVqys4ONjleg3D0MqVK0sj5GKRIAEAAAAAAAAAAEWKioqSYfyT4MpdN01TknT8+HFt3brVqUxxTNN0q7y3kSABAAAAAAAAAAAe8WeCo6RIkAAAAAAAAAAAgGLl9hYpL0iQAAAAAAAAAECAMQ2bTMPm7zDcFogxI4fD4fB3CF5HawQAAAAAAAAAABUOCRIAAAAAAAAAAFDhkCABAAAAAAAAAAAVDnOQlFF79uzRxo0bdeDAAWVkZKhWrVpq27atevbsqZCQEI/rPXr0qF555RUtXrxYe/bsUVBQkNq3b69///vfuuOOO1S5cmUvXgUAAAAAAACA0mDKkCnD32G4LRBjRvlFgqSMWbhwoZ599llt2rSpwMfDwsI0evRoPfnkk6pTp45bda9du1bXXHONkpKSnPb/8ssv+uWXX/Tmm29qyZIlatWqlcfxAwAAAAAAAAAQCBhiq4w4c+aMRo4cqWuuuabQ5IgkpaWlaebMmWrXrp3WrFnjcv3btm3TFVdckS85ktfOnTvVr18/JSQkuBU7AAAAAAAAAACBhh4kZYDD4dD111+vRYsWOe232+1q1qyZatSoodjYWKWmplqPJSYm6oorrtCKFSvUo0ePYs8xduxYpaWlScrphTJu3Dh16dJFGRkZWrdunT788ENlZmZq3759mjhxoj7++GPvXiQAAAAAAAAAIGA988wzpVb35MmTS63uopAgKQOmTZuWLzkyduxYPfHEE2rUqJGknCTKokWLdP/992vfvn2SpJMnT2rEiBHatm2batSoUWj9W7du1bp16yRJERERioqKUtOmTa3HR44cqbFjx6pv3746duyYPv/8c82YMaPIOgEAAAAAAAD4jymbTCPwBggyGdQoYD311FMyjNKZQ8ZfCRJao58lJyfr+eefd9r34osv6u2337aSI5Jks9l0zTXXKDo6Wi1atLD2HzhwQK+88kqR54iOjrbWp06d6pQcyXXBBRfokUcekSRlZWVpw4YNnlwOAAAAAAAAAABOTNPMt+Tu9yd6kPjZSy+9pBMnTljbl1xyiSZOnFho+caNG+uDDz7QgAEDrH2vvvqq7r33XoWHhxd4THJysrXesWPHQuu+4IILCjwG/mHYSicbezbT4ZubkGHzVT7W4ZOz+Op5A3zNdPjmNQTPlbv7aTb3U5RfjjLYvh15PsM4HKaMMhgjPGez++b/EPAM73kAgPKgJAmNvL1P8iZJ/IkEiR85HI58c3240k2pf//+uvjii/Xzzz9Lkk6cOKGvv/5a48aNK7B83qGytm/frjZt2hRYbvv27dZ6zZo1XbkEAAAAAAAAAH5gypCpwEuOB2LMyLFq1Sq3jzl58qQSExP166+/asGCBTp06JAMw1Dr1q318ssv+32aBxIkfhQdHa3ExERrOyIiQn369HHp2P/85z9WgkSSFi5cWGiCpFu3btb6xIkT1b17dzVo0MCpzI4dO/TCCy9IypkcPu8xAAAAAAAAAICK7dJLL/X42FGjRunVV1/V66+/rkmTJmnPnj167LHHtHz5cjVs2NCLUbqHOUj8aMmSJU7bAwcOdHmSm4EDBzptR0VFKT09vcCyXbp0sYbP2rVrl84991w9+uijmjt3rmbPnq177rlHnTp1UlJSkiRp+PDhhQ7XBQAAAAAAAACAu4KCgvTggw9q/vz5stls2rFjh66++mplZGT4LSYSJH70+++/O2337NnT5WMbNWrkNFl7RkaG0xBZeRmGobfeekuVKlWSJB0/flxTpkzRiBEjdNNNN2nmzJlWI2zQoIGmT5/u3oUAAAAAAAAAAOCCK6+8UuPGjZNpmvr99981ZcoUv8VCgsSPduzY4bTdrl07t44/u/zZ9eXVs2dPzZs3T2FhYYWWadmypZYvX67GjRu7FQcAAAAAAAAA3zINQ6ZhC8CFOUgg3X///ZJyJmt/7bXXlJmZ6Zc4SJD4yalTp7Rv3z6nfU2bNnWrjrPL79y5s8jygwcPVkxMjB544AGde+65CgkJUbVq1dSlSxdNnTpVW7duVYcOHdyKAQAAAAAAAAAAd0RERKhJkyaSpJSUFK1bt84vcTBJu58kJSXJNE1rOzg4WPXq1XOrjrN7eiQkJLh0zCuvvKJXXnnFrXMBAAAAAAAAAOAtDRo00IEDByRJf/75p/r06ePzGOhB4idpaWlO26GhoS5P0J6ratWqRdYJAAAAAAAAAEBZdPr0aWs9NTXVLzHQg8RPzk5mhISEuF1HlSpViqwTAAAAAAAAQPlkypCpwJvPIxBjhvedPHlSu3fvtjoN1KhRwy9x0IPET/JmxySpUqVKbtdRuXJlp+1Tp06VKCYAAAAAAAAAAErbO++8ozNnzljTULg7P7e30IPET87uMZKRkeF2HWfOnCmyzrIiKzRUWaFVii8IJ4bNN9l002EWX+j/ZYVWLXC9LDEdDh+dx/XnLVA4fHRN7jx32XnaWXYZbXPlTjls2+7IzjN8ZXbVMtrmfPT+4Ku2YGbT5gpaR/ngq/dWd9DmyjfTV+8RbqDNwRvcuZ960uayg08XXwgA4DVfffWVHnvsMRmGIdM0Zbfb/TL/iESCxG/CwsKcts/uUeKKs3uMnF1nWXHoXzcqo04df4cBLzv8rxv9HQIqmMQbb/F3CKhgEm8a7e8QUMEkjbrV3yGggjk6+jZ/h4AKhvscfM3V+1xyUpL087pSjgYAAt++ffs8Ou7UqVM6cuSINm/erK+//lrr16+3eo4YhqERI0aoevXq3gzVZSRI/OTsZMbJkydlmqZbE7Wnp6cXWScAAAAAAACA8sk0DJlufJdYVgRizMjRokULt76/Lkzu9+CmaapOnTqaMmWKF6LzDAkSP6lTp47VCCQpMzNTCQkJql+/vst1HDx40Gm7Xr16Xo3RWxp9M1v1GWLLbWV1iK3cniMNv5mtoJPpxRzhewyx5bmyOsRWbs+RurM/lb0Mtrlypxy2bXdkV61q9Ryp+8UnsqeXwTbHEFvlSnbVqtYvqut89nHZbHPwWFkdYiv3F9W1P/mINlfO2MroEFvc51BS7g6x5e59zvRgVA8AqMhyv9P2hGEY1vfijRs31uLFi9WkSRMvRuceEiR+UqVKFTVr1kxxcXHWvn379rmVIDm7S1Pbtm29Fp83BZ08qSAz299hBJyymCDJK+hkuoLS07wcTcmRIPGcw0dfUnr63NlPpisorey1ufLGV6+hQGBPT5c97YS/w8jHsNl8ch6f3U8reIIkr7La5uA5o4y3b3t6uuwnaHPlic1e9hIkeXGfg6c8vZ+6ep+zn3F/XlgAgGdM01S9evU0evRoTZo0SdWqVfNrPCRI/Kht27ZOCZLt27era9euLh+/Y8eOfPUBAAAAAAAAKP9M05Bplu3keEECMWbkuOUW9+eHNQxDISEhql69upo3b67OnTsrMjJSQUFlIzVRNqKooDp16qRly5ZZ29HR0S43ssOHD2vv3r3WdnBwsNq1a+ftEAEAAAAAAAAA0Mcff+zvELzON2M0oEBXX3210/aKFStcHr/txx9/dNru27cvk7QDAAAAAAAAAOAiEiR+1LNnT9WpU8fa/vvvvxUVFeXSsR9++KHT9tChQ70ZGgAAAAAAAAAA5RoJEj+y2WwaPXq0076nn3662F4kK1eu1M8//2xtV6tWTSNGjCiNEAEAAAAAAACUSTaZAbjwlTTKElqjn02cONFpaKzVq1dr6tSphZY/ePCgxowZ47Tvvvvuc+qJAgAAAAAAAACAN0VERCgiIkKtWrXSL7/8UqK6oqOjnerzFxIkflanTh099thjTvseffRR3XXXXTp06JC1z+FwaOHCherZs6fT5OyNGjXSf//7X1+FCwAAAAAAAACogPbu3Wstp06dKlFdp06dcqrPX0iQlAETJ07MN2H722+/rWbNmqlVq1bq3LmzwsPDdc0112jfvn1WmSpVqujrr79WzZo1fRwxAAAAAAAAAKCiMQzD3yF4FQmSMsBms2nu3Lm64YYbnPZnZ2fr77//1ubNm5WSkuL0WHh4uL7//nv16tXLh5ECAAAAAAAAKAtMGQG7AGUFCZIyIiQkRF9++aXmzZunTp06FVquatWquuuuu7R9+3b16dPHZ/EBAAAAAAAAAOANmZmZ1npwcLDf4gjy25lRoGuvvVbXXnut/vrrL23YsEEHDx5URkaGatasqfPOO0+9evVSSEiIv8OssAxb+ctwu3NNecsaNqOMPh++yvs6fHIW02H65DySZLP75u/pzjMXCG3Ol38jwJcMW/m6n/qSmc19wRMOnjeUU776jOVLhhvXlLesYTfcOtZXuG97jns3AMBThw8fttarVavmtzhIkJRRrVu3VuvWrf0dBgAAAAAAAAAAXvXdd99JypnTpFmzZn6LgwQJAAAAAAAAAASYQJ3PIxBjrkj27dvnUrkjR464XFaSTNPUyZMnFRsbq3nz5mnBggXWY507d3Y7Tm8hQQIAAAAAAAAAANSiRQsZRuFJLNPMGV5x5MiRXjvniBEjvFaXu0iQAAAAAAAAAAAAS24ixNPHi2IYhgzDkGmaGjhwoAYOHOhxXSXlq9k3AQAAAAAAAABABWeapoKCgnTbbbdp3rx5fo2FHiQAAAAAAAAAEGCYgwSl4ZZbbin0sU8//dQafmvgwIFq2LChy/XabDZVrVpVtWvXVvv27dWnTx/VrVu3xPGWFAkSAAAAAAAAAACgjz/+uNDHPv30U2t9woQJ6tevny9CKlUMsQUAAAAAAAAAAIpVkrlHyiJ6kAAAAAAAAABAgDEVmMNVla+v1yuWvL1L2rdv78dIvIcECQAAAAAAAAAAKFJR85MEKobYAgAAAAAAAAAAFQ4JEgAAAAAAAAAAUOEwxBYAAAAAAAAABBjTNGSaATgHSQDGjPKLBAkAAAAAAAAAAHBbTEyMoqOjtXnzZiUlJSklJUVnzpxxqw7DMLRy5cpSirBoJEgAAAAAAAAAAIDLFi1apClTpmjjxo0lqsc0TRmG/3oVkSABAAAAAAAAAADFys7O1p133qmPP/5YknOCwzRNq1xBSY/iHvcHEiQAAAAAAAAAEGBMGTJVNr5kdkcgxox/3H///froo48kKV9iJG/SI28yJFdxj/uDzd8BAAAAAAAAAACAsm316tV68803ZRiGDMNQpUqV9PjjjysmJkanT592SnqsWLFCp0+f1qFDh7R8+XI9+uijqlevnlWmXbt22rx5sxwOh7Kzs/11SSRIAAAAAAAAAABA0V588UVJOb0/7Ha7vv32Wz3zzDNq06aNKlWqlK98pUqV1KBBA/Xv31/PP/+84uLi9NBDD0mSduzYoUsuuUQ///yzT6/hbCRIAAAAAAAAAABAodLT07Vy5Uqr98gdd9yhAQMGuFVHpUqV9NJLL+mtt96SaZo6ceKErrnmGh05cqSUoi4eCRIAAAAAAAAACDC5c5AE4oLAs379emVnZ1tDZI0dO9bjuu68805dd911kqRjx47piSee8EqMniBBAgAAAAAAAAAAChUXF2et16hRQx06dCiy/JkzZ4p8fNKkSZJyhuv64osvdPr06ZIH6QESJAAAAAAAAAAAoFBHjx6VJBmGoWbNmhVYJigoyFovLuHRsWNH1a9f3yobHR3tpUjdQ4IEAAAAAAAAAAKMv4fJYoitiiUrK8tar1q1aoFlqlWrZg3BlZCQUGydTZo0sdZ37txZwgg9Q4IEAAAAAAAAAAAUqkaNGtZ6WlpagWVq1qxprecdkqswDofDWk9JSfE4tpIIKr4IUEI2ybCRGXaXzV72njNbnr+jzWa4FaMj2yyNkPzGsPkmv2z4MI1t5nlTKk12N+4HZtA/T4A9yCZ7sOtPiOnwTZvzzbPmu+vxVduWfNfm3LqmvO3TZvj0+aioyudz7HrbNvK8lxp2w2m7rDDL2Xs4yr6y+Dk4UJTFewh8r7z930ty77Nw3rKmw3Tp2NxfOwMACpc7rJZpmtZwW2dr27atYmNjJUkbNmwosr7s7Gzt3r1bhpHz+aVy5cpejNZ15fF/pAAAAAAAAAAAwEvat29vrR86dKjAXiSdOnWSlJNEWbt2rQ4dOlRofQsWLFBaWpqVpG7YsKF3A3YRCRIAAAAAAAAACDiGTDPwFjEHSUBq0aKFGjRoYG3/9ttv+coMGzZMUs5E7llZWRo3bpzT3CW5/v77b913331W7xFJ6tWrl/eDdgEJEgAAAAAAAAAAUKR+/fpZ699//32+x7t27arzzz/f2v7uu+8UGRmpN954Qz/++KO+++47PfLII+rcubPi4+NlmqYMw9All1xiDeHla8xBAgAAAAAAAAAAivSvf/1Ls2fPliTNnTtXU6dOdeoFIkkzZ85Unz59JOUMtbV161bdf//9TmVyEyOSFBwcrKlTp5Z67IWhBwkAAAAAAAAAACjSVVddpc6dO6tdu3YKCwtTdHR0vjIXX3yx3nrrLUk5Q20ZhiHTNK0ld79pmgoODtZ7772nbt26+fQ68qIHCQAAAAAAAAAEGIcMOQJwPo9AjBk5KleuXODcI2e788471aZNG/33v//V77//7vRYbpKkR48eevnll9WjR4/SCNVlJEgAAAAAAAAAAIDX9O3bV5s2bdLu3bu1fv16HTlyRKZpqkGDBurZs6datWrl7xAlkSABAAAAAAAAAACl4JxzztE555zj7zAKxRwkAAAAAAAAAACgwiFBAgAAAAAAAAABxpQRsAsCz5dffqnatWtby7Jly/wdklcwxBYAAAAAAAAAAChUXFycUlJSJElhYWEaMGCAfwPyEnqQAAAAAAAAAACAQoWEhEiSDMNQ8+bNZbfb/RyRd5AgAQAAAAAAAAAAhWrYsKG1XrlyZT9G4l0MsQUAAAAAAAAAAcY0DZlm4M3nEYgxQ2rdurUkyTRNHTx40M/ReA89SAAAAAAAAAAAQKEiIyPVsmVLSVJCQoK2bdvm54i8gwQJAAAAAAAAAKBcS0lJ0fz583X33Xerd+/eql+/vipVqqRq1aqpRYsWuuaaa/T2228rLS3N7bpjY2M1adIkde/eXfXr11flypXVuHFj9erVS9OmTVN8fLxL9URFRckwjBItpWn06NHW+osvvliq5/IVEiQAAAAAAAAAEGBMSaaMAFx8KyYmRldffbXq1aun4cOH680339S6deuUkJCgzMxMpaWlKS4uTgsXLtRdd92lJk2a6JNPPnGp7uzsbE2cOFHnnnuuXnjhBW3YsEEJCQnKyMjQoUOHFB0drQkTJqht27aaNWtW6V6opNq1a5dq/Q8//LDOO+88maapr776SjNnzizV8/kCc5AAAAAAAAAAAMqlbdu2acmSJU777Ha7Wrdurfr16ys7O1s7duzQ0aNHJUmpqam69dZbtWfPHj377LOF1utwODR8+HAtXLjQ2mcYhtq3b6+6desqKSlJ27Ztk2maSk1N1ahRo5Senq6xY8cWWmft2rV12WWXuXxt6enpWrt2rbX973//2+VjPRESEqKlS5dq0KBB2rVrl+677z6tX79ezzzzjCIiIkr13KWFBAkAAAAAAAAAoFwLCgrS1VdfrdGjR6tv376qXr269Zhpmlq8eLHGjx9vTUD+3HPPqVu3bho8eHCB9T3//PNOyZFhw4bptddeU7Nmzax9Bw4c0P3336/58+dLku655x5dcMEF6tGjR4F1duzYUT/88IPL1/Tee+85JUhuueUWl4/1xGeffSZJGj9+vF544QUdOXJEX375pb788kt17dpV3bp1U8uWLVW9enUFBwe7VfeoUaNKI+RikSABAAAAAAAAAJRLwcHBGjNmjJ544gmn5EVehmFo6NCh6ty5s7p162bNGfLYY48VmCBJSkrS1KlTre1hw4Zp/vz5stmcZ7Ro0qSJ5s6dq+uuu07z589XVlaWHn74YaekRkl8+umn1nq7du3UtWtXr9RbmNGjRzvNc2IYhkwzZ9C0jRs36tdff/W4bn8lSJiDBAAAAAAAAAACjGkaAbv40tChQ/X+++8XmhzJq2nTpnr66aet7W3btmnPnj35yn311VdKT0+XlNMzZebMmfmSI7kMw9DMmTNVqVIlSdK6desUFRXlwZU42717t6Kjo63t0u49klduUkRSvgniTdN0eTm7Ln8gQQIAAAAAAAAAgJSvx0hMTEy+MqtWrbLWe/furcaNGxdZZ4MGDdS3b19re968eSWM8p/hrqScOVVGjhxZ4jpdkTexUVjSw926/IkhtgAAAAAAAAAAUM5E6XkdP348X5m4uDhrvWPHji7V27FjRy1btkyStHjxYs2cOdPjGE3T1KxZs6ztgQMHqlGjRh7X56qPP/641M/hayRIAAAAAAAAAACQc/JDkurWrZuvTGpqqrVerVo1l+rNOyn8/v37dfTo0XzJGFdFRUU5xemr4bV8OYyXrzDEFgAAAAAAAAAEGFNGwC5l2TfffGOtBwUFKTIyMl+ZvEmREydOuFTv2T1Rtm/f7mGEzpOz16hRQ8OGDfO4roqOHiQodTa7IZu9dG98hs03N1bT4btx8RzZvjlXaf9tfH0eh0/OUj4ZNrtPzuPIyvbJecqb8nifMwqZwM7753H9uctb1rAZPnve3eGr+2l55Kv3Vrd+g5S3jdkMt14XpsM373qGrz4r+OQsMPO0OZut9D+nl2W+atumz+49vuPONeUta2ab5fL5QOkr7c9zuRMLA/C9w4cPu31MkyZNSiGSHOnp6U5DX1122WWqVatWgTFs3rxZkrR161aX6j67XGxsrHr37u1RjPPnz7e2r7/+eoWEhLhdD3KQIAEAAAAAAAAA+Fy3bt3cPqY0J/Z+6KGHdPDgQUk5ydNnnnmmwHK9e/fWt99+K0lau3atDh06VOQcIAkJCU4Tu0uu9zw52/z585WWlmZtl8dhr3yJH2oBAAAAAAAAACq0L774Qu+88461/eCDD6pz584Flh0xYoTs9pyRODIzM3XvvfcWmrgxTVP33nuvzpw547Q/b5LDHXmH12rTpo169uzpUT3IQQ8SAAAAAAAAAAgwpmnINANviLi8MW/cuFENGzb0YzQ5fv75Z/3nP/+xtiMjI/XCCy8UWr5Fixa67bbb9P7770vK6dUxfPhwzZgxQ02bNrXKHTx4UA888IDmzp2br47MzEy349y3b59TT5RRo0a5XUdpSExM1M8//6wdO3bo6NGjSk1NlcPh0IQJE9S2bVt/h1ckEiQAAAAAAAAAAJ9r2LBhqc4p4oo//vhDgwcPtnp4RERE6Ntvv1WlSpWKPG7GjBn69ddf9fvvv0vKmdx9wYIF6tChg+rWraukpCRt27ZNjv+fO/C+++7Ta6+9Zh1fo0YNt2OdNWuW1VPFZrPp5ptvdrsOb1q0aJGmT5+udevWFfj4yJEjC0yQPPLII9q4caMkqXnz5vr4449LNc6iMMQWAAAAAAAAAKDC2blzpwYNGqTU1FRJUqNGjbR8+XKXerWEhoZq9erVGjZsmLXPNE1t3bpVP/30k7Zs2SKHwyGbzaaJEydq0qRJTsfXrFnT7Xg/++wza71v375q1qyZ23V4Q3JysgYPHqx//etfWrdunUzTtBI3edcL0717d0VFRSkqKkqfffaZ/vzzT1+EXSASJAAAAAAAAAAQYExJjgBcSm+KdffExsZqwIABSkhIkCTVqVNHy5cvV0REhMt1VK9eXQsWLNDatWt1xx13qG3btqpevbpCQkLUqlUrjRkzRhs3btSUKVOUnJzsdKy7yY1ffvlFu3btsrb9NTl7UlKSevTooe+//z5fIsQ0TRlG8cO+DR061GkostmzZ3s9TlcxxBYAAAAAAAAAoMI4cOCA+vfvrwMHDkjKSXT88MMPateunUf19erVS7169SqyzPbt2611m81W6ATwhck7OXtYWJj+9a9/uRekF5imqSFDhuivv/6yEiFhYWEaM2aMBg0apKZNm6pDhw7F1mMYhq699lrNmDFDkrRs2TI9//zzpRl6oUiQAAAAAAAAAAAqhCNHjmjAgAGKjY2VlDNU1pIlSxQZGVmq5/3111+t9fbt2yssLMzlY8+cOaM5c+ZY29ddd52qVq3q1fhc8dlnn2n9+vVWcqRnz56aP3++6tev71TOlV4kV111lWbMmCHTNPX777/rxIkTqlatWqnEXRSG2AIAAAAAAAAAlHtHjx7VwIEDtXPnTklS5cqVtXDhQvXu3bvUzz1v3jxr/YYbbnDr2EWLFiklJcXa9tfwWi+99JKknJ4krVq10vfff58vOeKqvAkp0zSdetj4EgkSAAAAAAAAAAgwpmkE7OIPx48f12WXXaatW7dKkoKCgvT1119r4MCBpX7uBQsW6K+//rLOe+utt7p1fN7htVq2bKlLLrnEq/G5Yu/evdqxY4cMw5BhGHrhhRdUvXp1j+urWbOmGjZsaG3nnV/Fl0iQAAAAAAAAAADKrZMnT+qqq67Sb7/9JilnDpBZs2ZpyJAhpX7uI0eO6IEHHrC27777bqfEQHHi4+O1bNkya3vUqFEuDWHlbRs3bpSU09sjJCTEK89d7dq1rfVjx46VuD5PkCABAAAAAAAAAJRLZ86c0dChQ7V27VpJOfNjfPDBB24Pc3W2Xbt2ac2aNUWW+fPPPzVgwADFxcVJkpo1a6bnnnvOrfN88cUXys7OlpQT+6hRozwLuIQSEhKsGCIiIlSpUqUS15l3Hpb09PQS1+cJJmkHAAAAAAAAAJRLr732mlasWGFt16xZU3PmzHGa9LwoI0eO1MiRI/Pt//vvv3XFFVfonHPO0eDBg9WlSxc1bNhQWVlZ2r9/v5YuXaqFCxcqMzNTklSnTh19//33bk+unnd4rd69eysiIsKt470lLS3NWndngvminDhxwlr3x6TzEgkSAAAAAAAAAAg4pgyZ8s98HiXh65hPnjzptH3s2DGnIauK07179yIf3717t1555ZUiy7Rp00Zz585V+/btXT6vJG3evNmaM0WSRo8e7dbx3hQeHm6tHz161Ct1Hjx40FqvU6eOV+p0F0NsAQAAAAAAAADghmbNmqlbt25FzgfStGlTPfPMM9qyZYs6duzo9jny9h4JDQ3Vdddd51Gs3tCgQQNJOXOQxMbG5ks8uWvLli1KTU21tlu2bFmi+jxFDxIAAAAAAAAAQLn01FNP6amnnvJ6ve3atdOGDRuUkpKizZs36+DBgzpy5IgcDocaNmyoc889V126dCnRhOozZszQjBkzvBd0CXTv3t26luzsbC1ZsqRECZuPP/7YWq9ataq6detW4hg9QYIEAAAAAAAAAAAP1KxZU3379vV3GKWubt26ioyM1G+//SbDMPTCCy/oX//6l+x2u9t17dy5U++//76VcOnXr59H9XgDQ2wBAAAAAAAAQIAxTSNgFwSmu+++21rfsmWL7rnnHrfrOHDggIYNG6aTJ0/KNE1J0sMPP+y1GN1FggQAAAAAAAAAABTp5ptvtuZSMU1T7777rgYPHqzdu3cXe2xGRobeffdddenSRbt27ZJhGDIMQ5dddpl69epV2qEXiiG2AAAAAAAAAABAkQzD0Ny5c9WrVy8lJydLkr7//nt9//336tatm7p06SIpJ3liGIY++ugjffPNN/rrr78UHR2t9PR06zHTNNWsWTPNmjXLn5dEggQAAAAAAAAAAo0pQ6YCb7iqQIwZ/zjnnHP07bffaujQoUpISLCSHRs3btTGjRutcqZp6ssvv3TalmSVb9q0qb777juFh4f7/BryYogtAAAAAAAAAADgkosuukh//PGHLrvsMivxkSt36KzcCdjz7pdyEiWXXXaZfvvtN3Xo0MFnMReGBAkAAAAAAAAAAHBZ/fr1tXTpUv3yyy8aMWKEqlevLtM0C12qVKmiq6++WqtXr9bSpUtVt25df1+CJIbYAgAAAAAAAAAAHrjooov01VdfyTRNbd26VTt27FBycrJSUlIUGhqqOnXqqGXLlurWrZuCg4P9HW4+JEgAAAAAAAAAIMA4zJwl0ARizCieYRjq2LGjOnbs6O9Q3EKCBKXOsBkybKU7+ZJh881ocYYPB6WzV/LNhFWmG+9KRpDNad0WZHfjPA634vKUvZTbmq+58/cJHK63m7xtzBZkd7PN+ea5M2y+adu+uh7fXE0Om73svV5tee4hNptRJmP0ldJ+7/YHX71HZGe6/krK+zy7+5nJsLl+TywJ370X+fIO5Btmdvl6Hzd8dE/01fOWneGbNufL9xJfPXfutIW8ZQ274bN25I7y9lr1ZZtzlLPnDgBQ8TAHCQAAAAAAAAAAqHBIkAAAAAAAAAAAgAqHIbYAAAAAAAAAIMCYMmSq7A1dWJxAjBmFM01Ty5cvV1RUlDZu3KjY2FilpKQoLS1NYWFhqlmzpjVJ+6WXXqpBgwbJMMpOGyBBAgAAAAAAAAAAXJadna0ZM2bojTfe0P79+639pvnP/FTHjh3TsWPHtHfvXq1atUpTp05VkyZNdM899+iBBx6Q3e6beRWLwhBbAAAAAAAAAADAJdu3b1dkZKQmTJigffv2yTRNKzFiGEa+RZJVZv/+/Zo4caIiIyP1559/+vMyJJEgAQAAAAAAAAAALti0aZP69OmjrVu3yjTNApMghmEoNDRUhmEUmDwxTVNbtmzRpZdeqk2bNvnzchhiCwAAAAAAAAACjimZZtmZy8FlZvFFUDalpqZq8ODBSkpKckp2nHPOORo5cqT69OmjDh06qFatWtYxx44d09atW7V69Wp9/vnn2r17t5VQOXr0qAYPHqw///xTNWvW9Ms10YMEAAAAAAAAAAAU6dFHH9Xhw4etxEiVKlX0zjvvKCYmRk888YQuvvhip+SIJNWqVUuXXHKJnnjiCcXExOjtt99WlSpVrMfj4+P12GOP+fpSLCRIAAAAAAAAAABAoU6dOqXPP//cKTmyYsUK3XHHHVaPkOIYhqE777xTK1asUOXKla26Pv/8c50+fbqUr6BgJEgAAAAAAAAAAEChoqKilJaWJikn0fHUU0+pe/fuHtXVvXt3PfXUU9bcJOnp6Vq1apXXYnUHCRIAAAAAAAAACDCmGbgLAk9cXJyknInYg4ODdfvtt5eovjvuuEPBwcFW75Pc+n2NBAkAAAAAAAAAACjU0aNHJeX0HmnZsmWJJ1WvWbOmIiIirF4kx44dK2mIHiFBAgAAAAAAAAAAClWjRg1rvVq1al6pM2891atX90qd7gryy1kBAAAAAAAAAB5zyJBDrk2OXZYEYsyQzjvvPEk5Q2wdOHDAK3XmrSe3fl+jBwkAAAAAAAAAAChUr169rB4fR44c0e+//16i+jZv3qz4+HhJUlhYmHr37l3SED1CggQAAAAAAAAAABSqcuXKGjt2rLX9yCOPlKi+3OMNw9C4ceNUqVKlEtXnKRIkAAAAAAAAAACgSE8++aTOPfdcmaap5cuXa9y4cdYk664yTVPjxo3T8uXLJeUMrfXkk0+WRrguIUECAAAAAAAAAAHGlCHTDMCFOUgCVmhoqJYvX64OHTrINE2999576tKli5YtW1ZsosQ0Tf3www+KjIzUe++9J0nq2LGjfvzxR1WpUsUX4ReISdoBAAAAAAAAAECRPvvsM0nSuHHj9NJLLykuLk6bN2/WlVdeqfr166t3797q0KGDwsPDFRoaqpMnTyopKUnbtm3T2rVrlZCQYCVSWrRoobFjx2rFihUun3/UqFFevyYSJAAAAAAAAAAAoEijR4+WYfzTA8gwDJmmKdM0FR8fr/nz52v+/PkFHpu3h4lhGIqLi9P48ePdOj8JEgAAAAAAAAAA4DemaVqJkrwJk7yP53K1XGFykzAFHe8NJEgAAAAAAAAAIMCYZs4SaAIxZvwjN6nh6uTs7k7i7u3ji0OCBAAAAAAAAAAAFOnjjz/2dwheR4IEAAAAAAAAAAAU6ZZbbvF3CF5n83cAAAAAAAAAAAAAvkYPEpQ6m90uW5Dd32EEHMNWOhMPlUTemAyb4VaMtiDf3G5MR/kayNKX12M6HD45jzuZeVueNmazGbLZXW9zvrkayVe/NbAF+eaeYCtnryF35X2/sgWVzfevsvj+UBLl7b4tSfZg18uaQf/cQ+xBNtmDXb+n+Oq5K2/3U3ee45Ly1es160y2y2Udea7fCLbJFuz6fc5XnxUMN97vS8Luo/OUR2a26/efvGXNbNOtY+EZX72GJN+9jrIzfPduBAQSU4ZMBd77WSDGjPKLHiQAAAAAAAAAAKDCIUECAAAAAAAAAAAqHIbYAgAAAAAAAIAA4zBzlkATiDGj/CJBAgAAAAAAAAAA3Gaapnbu3Kl9+/bp+PHjOnXqlEzT/SzYqFGjSiG64pEgAQAAAAAAAAAALluyZIk+/PBD/fjjjzp16lSJ6yNBAgAAAAAAAAAAyqzExESNHDlSK1askCSPeovkMgxDpmnKMAxvhec2EiQAAAAAAAAAEGhMQ6bpvy+WPRaIMUOSdPToUV166aXauXOnldjITXJ4oiTJFW8hQQIAAAAAAAAAAIr00EMPKSYmxikxUqNGDQ0aNEjnn3++wsPDFRoa6u8w3UKCBAAAAAAAAAAAFOro0aOaNWuW07BYTz75pB555BFVrlzZ3+F5jAQJAAAAAAAAAAAo1E8//aTs7Gyr98hTTz2lJ554wt9hlRgJEgAAAAAAAAAIMKaZswSaQIwZ0v79+yXlzBtSpUoVPfTQQ36OyDts/g4AAAAAAAAAAACUXRkZGZIkwzB0zjnnqEqVKn6OyDtIkAAAAAAAAAAAgELVr1/fWg8KKj8DU5EgAQAAAAAAAAAAheratauknCG2cofbKg9IkAAAAAAAAABAgHHICNgFgad9+/Zq166dJCkpKUm//fabnyPyDhIkAAAAAAAAAACgSE8//bS1PnnyZD9G4j0kSAAAAAAAAAAAQJGuvfZajRkzRqZpatmyZXrooYf8HVKJkSABAAAAAAAAgABjmoG7IHC9++67uuOOO2Sapl599VX16dNHUVFR/g7LY+VnunkAAAAAAAAAAFBqDMPQO++8o759++qBBx7Qzz//rP79+6tWrVq68MILVbduXYWEhLhd54cfflhKEReNBAkAAAAAAAAAAHBJSkqK/ve//+n06dMy/79L0NGjR/XTTz+5XZdpmiRIKrodO3Zo+vTpWrlypQ4fPqzq1avroosu0pgxYzR06NAS1Z2RkaEtW7Zo+/btOnbsmE6cOKGQkBCFhYWpadOmioiI0DnnnKOgIJoCAAAAAAAAAKBw69ev17/+9S8dOXJEUk7vj0Dm92/FDx48qI0bN2rDhg3auHGjfvvtN504ccJ6vHnz5tq7d6/P4unTp49Wr17t8fEff/yxRo8e7XL5N998U/fff7+ysrKsfYmJifruu+/03XffaciQIZo9e7aqVq3qVhxRUVF66623tHjxYp05c6bIslWqVNGFF16o3r1764orrlCvXr0UHBzs1vkAAACAiig9K0szdu+V3TA0vlVzVQv2+3+xAABABWGahkwz8L6cDsSYkSMmJkaXX365jh8/LiknOWIG+KQyfvn0vm7dOk2fPl0bNmzQoUOH/BFCmfDJJ5/o7rvvLrLM4sWLdf3112vx4sWy2WzF1pmcnKzx48drzpw5Lsdx6tQpRUdHKzo6Wi+99JJmzJih++67z+XjAQAAgIpqSszf+u5wgiTp6/2HVcVuV6bDoUZVQnR9s4b6d7NGAf+rOgAAAECSxo8fr+PHj1ufb03T1OWXX64hQ4aoQ4cOCg8PV2hoqJ+jdI9fEiS//vqrFixY4I9TlxnJyclOSYjmzZtr3LhxOvfcc5WQkKBFixbp+++/lyQtWbJEs2bN0i233FJsnX379tXWrVvzPRYUFKQWLVqoZs2acjgcOnr0qA4cOODUcyVXoGf9AAAAAF/YkJxiJUckyZR0MjtbkhR38pReivlbSWcydW+bFv4JEAAAAPCSXbt2adWqVVavkdq1a+ubb77RJZdc4u/QSqTM9f8OCwtTWlqav8OwLF++3K3y7du3d6nc7Nmzra5IQ4YM0Zw5cxQSEmI9fscdd+jTTz+1hut68803i02Q/Pvf/86XHLn66qs1fvx49e3bV5UrV3Z67PTp09q8ebNWrFihuXPnFphYAQAAAFCw92P3OW1HVM35tVy2aSru5ClJ0kex+1WrUrBubtHY5/EBAAAA3rJu3TpJ/0yq/s477wR8ckTyc4KkWrVqioyMVNeuXdWtWzd17dpVsbGx6tu3rz/DcjJgwIBSqTc6OlqSZLfb9d577zklR3LdcsstmjNnjpYuXarffvtNp0+fLrCcJH377bdOyRzDMPT+++/rP//5T6ExhISEqEePHurRo4eeeOIJbd68Wa+++mq+RAoAAAAAZ5uOpep/x3J+8NQ8tIrm9+wse56htObsP6QpMX9Lkqbv/Fv7Tp7UuFbNVbtyJb/ECwAAyh+HmbMEmkCMGbImZZekmjVr6tprr/VjNN7jlwTJ4MGDNWjQILVt2zbfvBqxsbH+CMnnkpOTJUn16tVT/fr1Cy13wQUXaOnSpTJNU8eOHVPDhg0LLPfpp586bd9xxx1FJkcKcuGFF+qzzz5z6xhX2IJssgUVP39KIDBcmAcm0JgOh8tlbXab03p5+bt6wvTRu7lh8+WY5b76e7re5pT3+m2GW8+Hz1qnvXyNK+/GX6fEfPU68hXfvl7Lj/L5vLl+B8r72cKw2dz8rOGbV2x5u58GVwn2Sj0f/n7AWr+jTXOFhDonPka2aa7jpkNv7dwrSZq7P17fH07Uf1o3080RTVUlyO6VOCT37qdmns9v9iCb7MGu/4WzzvimzZW3z9zufN4OFIYbr9e8ZQ274dax5Y2Z7ZvPPr46DwCgYqlWrZqknB/mR0RElJt59vzyybNVq1Zq166dS5OOl1c1atSQJCUmJiopKanQctu3b7fWa9asWWi5s4cCu/POO0sWIAAAAIACbT12XNGJxyRJTUJDdGWTgn/wNK5NCz3UrpVC7TnJkPSsbL0eE6urf9qgRfvj5WDuPwAAAASIJk2aWOsZGRl+jMS7Km6Gws+6desmScrKytK4ceMKbFRff/21vv32W0k5PUmqVKlSYF0nTpyw5jPJ1bZtWy9HDAAAAECS3tsdZ63/p3VzBRfywy/DMDS6dTN93/8iXde8kfWfryOnz2jS5h26fs1v+uNoqg8iBgAAAEqma9eustvtMk1Te/fuVVZWlr9D8goSJH5y4403WvOJzJs3T+edd56mTZumRYsW6YMPPtCwYcN0/fXXy/z/X5WNHTu20LpOnDiRb192dnbpBA4AAABUYDGpaVoVn9MDvH5IZQ1t2qDYY+qEVNaTF5yrBX276ZL64db+Halpui36d0UnHC21eAEAQPllmoG7IPA0atRIAwcOlCSlpaVp6dKlfo7IO0iQ+Enjxo313HPPWdt///23JkyYoGHDhun222/XokWLrMf69OmjMWPGFFpXQUNvrV+/3qvxAgAAAJDm7D1ord/Wupkq2V3/L1WralX11kUd9WGPTjqvRpgk6YzDobs3btXfJ9K9HisAAADgTZMnT5b9/4ePnTBhgtLS0vwcUcmRIHFBamqqtmzZojVr1mjTpk2Ki4vzSg+N//73v5o8eXKRZQYOHKgFCxYoKCio0DKhoaFq0aKF074nnnhCZ86cKXGMAAAAAP6RfOafoXEHNKzrUR0X1a2l2RdH6uJ6tSVJGQ6Hvj94xCvxAQAAAKWle/fuev311yVJu3bt0lVXXaUjRwL7cywJkmJceOGFql27ti644AJdeumlioyMVIsWLVSzZk1dfvnlev/990uUiHj66ae1ceNG3XjjjWrcuLGCg4MVHh6uQYMG6csvv9SyZcuKnJw911VXXeW0vX79enXv3l1Lly6Vw+HwOD4AAAAA/6iUZ76R7BKMDxFss+mBdq2s7di0UyWKCwAAAPCFcePG6auvvlL16tW1du1atW/fXpMnT9aWLVus6SICSeHdEiBJ+v333wvcn5aWpmXLlmnZsmWaPHmyXn/9dV133XUenaNr16764osvShBlTm+U999/32my999//11XXnml6tevr0GDBqlnz57q1q2bzj//fAUHB5fofAAAAEBFVDnPkFpnSvhDpIw8x1cP5r9mAADAXYZMGf4OwgOBGDMkKSIiwlo3DEOmaero0aN6/vnn9fzzzys4OFi1a9e25t52lWEY2rNnj7fDdQmfwr0gPj5eI0aM0EMPPaRp06b5JYaWLVvq7bff1n/+8598jx05ckSzZs3SrFmzJEkhISHq3Lmz+vTpo0GDBumSSy6RYXBjAgAAAIqTtwfJqaySDbsbbPxT1+9HU5VtmrLzuRwAAABl1N69e63EiGEY1nfKuT1HMjIyFB8f73a9/vxumiG2ChASEqLBgwfrrbfeUnR0tBISEpSRkaETJ05oz549+vzzz3XVVVfl+8O9/PLLmjJlip+ilm677TZ9/fXXqlGjRpHlTp8+rejoaL3wwgvq06ePIiIiNH36dKfeJwAAAADyaxT6z6/hfktOKVFdEdVCVT+ksiQp8UyG5scdKlF9AAAAgC+c/b14brLEk8Xf6EFylgcffFC9evVSeHh4vseCg4MVFhamiIgI3XTTTVq7dq1uuOEGHTx40Crz2GOP6YorrtAFF1zgy7At1113nfr3769p06bp448/dmmSnL179+qhhx7SO++8o3nz5vktdgAAAKCs69+gjl7b8bckadbf+3Vl4/qqE1LJo7qCbTZN6Xyebo3+XSkZmZqx428NbtJAVYLs3gwZAACUUw5JjsCb8kHMlhy4mjVrViaSGt5EguQsQ4YMcbls7969FRUVpR49eigpKUlSTneixx9/XN9++21phVis2rVr68UXX9Rzzz2nVatW6aefftKaNWu0adMmnTpV+OSPf/31l3r16qUVK1aoe/fuXosnM6SKMquEeq0+fzJs5a/TlenG2NlZIaEFrpclpo8+GQTipFPF8dlz58Z5svLcO7LcvY8E4qfEMsDhw+fNV23OHVmhVQtcd4VhK18fEuE5t+5zJWhz7ryHl0RZfK2WhBFSsrn4moWGqU+rFtqackIZkkb9vlsNqoTo3BpV9Z/WzVSzknvJkgubhen646e04nDO/yeWnzitKxvXd6uOLFumy2Wz87SzbDfbXHZwyYYUc1l5u5+Ws9eQu7KrVi1wvSIysyt2WygJdz6jetLmsoNPux0TAFREe/fu9XcIXmeYZexbvqioKPXt29fabt68eZl/4j/55BPdeuut1rbNZlNiYqJq167tx6jyy87O1vbt27V+/XqtXLlS3333ndLT0/OVa9y4sf78889ih+oqyoEDB9S0aVNJ0gcffKA6dep4XBcAAAAAAEBpSUpK0pgxYyRJ+/fvV5MmTfwcEVC4vN+5vbM4TuH1Aq+9Jicc0NghzSXxmoP/lb+fw/vBqFGjVLduXWvb4XBoxYoVfoyoYHa7Xeeff75uv/12ffXVV4qPj9eLL76oKlWqOJU7ePCgZs6c6acoAQAAAAAAAAAofQyx5QU2m019+vTR3LlzrX07d+70Y0SuCQsL0yOPPKL+/furb9++Tr1JPv/8c02aNMkr52nx4zw1qFo2h2NyF0NshWrvZcMlSS2WzVPQ6ZOlFZbHGGLLc2V1iK0Dg2+QJDX59isFnXKjzVXw4Sw8xRBbVXX4XzdKkhp+M1tBJ/P3tCwMQ2whl7tDbHna5hhiyzPBJRxi62yZDoc2HU3VY5t3SMr5BdojHc5R/4Z1iz7wLCsOJ+jFbX9Jks6pVlVvXdRRNhfHd8487d4QW/EjbpYkNfh6luxutLnsDIbY8kg5ew25K7tqVSXeNFqSVPeLT2QvYBSDioIhtjzn7hBbR0ffJkmq/clHLrU58zRDbCEwmWbOEmgCMWaUXyRIvCS3a1uuxMREP0Xivq5du2rixImaPHmytS8mJkaJiYlOPWM8FXz6lIJt5ePOV9ETJHkFnT6p4FNl7z83ZfFL/kDhu+fOwzZ36qSCT6a5cZ7y9zfyBYcP/+Ne1v9GQSfTFZTuepsjQYJcnrZtd9scCRLPBDm8myAJktSzSpAGVQvRl3sPSpIeXp2sSR3baETzRi5PYjmwehV9kHlGMcfTlJycrLlhlXVThGvDTZinXE+Q5GV3s83pTJZH53FXefvM7avXaiCwp6fLnnbC32H4DQkSzxkePnf29HTZTxTf5uxnMjyqHwAQ+MrXJ08/Cg52/o9WZqZn/0nxlxEjRuTbd+jQIT9EAgAAAAQWwzD06PnnaETzRpIkh6Rnt+zSlSs3KCo+yals8pkMnczKn2iwG4YmdGhtbU/fvkcxqW4kLwAAAIAy4MSJEzpw4ID27dunjIyyn4AmQeIl8fHxTtve6HnhSy1atMi37+TJsjd8EgAAAFAW2QxDj3dso1F5en3sP3lK92zcqk/+2ifTNLX6SJL6/Rit3j+s0+Obdyjx9BmnOrrVqaWb///4DIdDD//vT53M8tGwVgAAAIAHfvrpJ40fP14dO3ZUpUqVVLNmTTVv3lwtW7bU2rVrCzzmf//7n9asWaM1a9Zoy5YtPo7YGUNsecnZf+yzh9wq69ILGJOzTp06fogEAAAACEw2w9CEDueoc3hNffTXPm05dlympJe371Fc+ik5TFPZ/78s3B+vqCPJmtq5nXrVq23V8cB5rfRrUopijqcpNu2k3tm1Vw+2a+W/iwIAAGUWc5DAn9avX69x48ZZCY6z5+staqjZOXPmaPr06ZKk6tWr6/DhwwoJCSm9YItADxIvWL16tfbs2eO0r3///n6KxjO//vqr03ZQUJAaNWrkp2gAAACAwDWgYV190buz7jq3hbVvbtwhzd932KlcSkamxq7/Q1/FHrT2VbLb9FJkO2t7zt6DSi9gSC4AAADAX1577TVdeuml2rJli1uJkVz33nuv7Ha7TNPU8ePHNX/+/NIKtVgkSEooPT1d9957r9O+888/XxERET6N46233irRmG65GbtcvXr1UtWqVUsaFgAAAFAhGYahu85tqSmdz1OwLf9/Es+plvNZ25T0/NZd2pScItM09dPhRD30vz+tculZ2Vp6MMFXYQMAAABF+uijj/TAAw84zcFtt9t10UUX6brrrsuXMClIkyZN1K9fP2t78eLFpRKrK8p1gsQwDKclKiqqyPL33XefWxOTJyUlaciQIfnGSXv66ac9CbdExo8fr3POOUdvvfWWUlNTXT4uOztb999/v5YvX+60f9SoUd4OEQAAAKhwrm7SQB/26KR6IZWsfZVtNn1xcWeN/P/5RkxJo9ZtVr8fo3Xvr9u067jz8Lensx2+DBkAAAAo0N69e3XXXXc5fef+8MMPKz4+Xr/88ovmzJkjybVeJNdee62knKG5Vq5cWapxF8Vvc5CsW7dOp06dyrf/jz/+cNo+ffq0VqxYUWAdjRo1Urt27Qp8zBOvv/663n33XV1xxRUaPny4evXqVeDk5fv379dXX32lV155Jd/k7MOGDdM111zjtZjcsW/fPo0fP14PPfSQhg0bpiuvvFK9evVSy5Yt85VNTk7WkiVL9PLLL2vr1q1Oj3Xp0kWjR4/2UdQAAABA+dY5vKaWDeih9YnH9GtyirrVqanQoCA9cF6EfjqcpEOnTkuSEs/80yO8XY1q6hxeQy3DQnVN04b+Ch0AAJRhDtOQwyz+i+iyJhBjRo7JkydboxjZbDbNnj1bI0aM8Kiuiy++2Fo/duyY9uzZo1atfD/3nt8SJDfddJPi4uKKLXfkyBENHDiwwMduueUWffLJJ16N68yZM1q4cKEWLlwoKWeSmIYNG6pGjRrKzMzUkSNHCu1lcvHFF2v27NlejccTp06d0pdffqkvv/xSklSjRg3Vq1dPtWvXVkZGhhISEnTw4MECj23durUWLlwom61cdy4CAAAAfCrYZtPF9cN1cf1wa19lu10f9eyk12L+1obEY5Kk5mGhuq11M/WpH+7SL+8AAAAAX8jIyNA333xjfUa94447PE6OSFKbNm0UGhqqkydPSpJ27NhRsRIkgeL48eM6fvx4kWVsNpseeughPffccwoODvZRZM569uypX375pcAx3lJTU10admv48OF644031KBBg9IIEQAAAMBZmlStommR7Uv9PKZpknABAACAx9atW2clM3KH1ioJm82mhg0bas+ePZJU6A/6SxsJkjzee+89/fTTT1q3bp32799fbPkGDRro+uuv1913363WrVv7IMLCrVu3TocOHdLixYv1008/6eeff843/FdBatWqpX/961+67bbb1LNnTx9ECgAAAMBXvjkQr/dj9yvbNPVSx7bqUDXM3yEBAAAvMc2cJdAEYsyQYmNjrfXGjRsXOK2Du2rWrGmtF9dJobT4LUGyd+/eUj9HQb0pinL77bfr9ttvl5QzR8eOHTsUFxenxMREpaeny263q1atWqpTp44uvPBCRURElEbYHmvUqJHGjh2rsWPHSpIOHTqknTt3KjY2VqmpqUpPT1dISIiqV6+uevXqqWPHjmrZsiW/JKvgDDeGU8tb1rDZ3DrWd3wzialh883rxnSUx08N7rQ5w2ndvTbnm7bgq7+RI7v8tQV7sG/uIe68Xs1KdmvdXsmuoCx7EaX9o7zdF8pj23anzeW/z7lzrG/apyMr2yfnKY/3U19dU3Zmwe95iWcy9PyOv6x3xHs3/6mPqtVUbp/37CyHjEKOLYgtqOzdE0vCV3+fsvmZ2Yfy3tfc/jznG6bDR/+HsPN/b4+Vw88LABBoEhMTJeX0HmnY0Ptz5Dl89H58NnqQFCI8PFy9e/dW7969/R2Kxxo1aqRGjRqpb9++/g4FAAAAQClLzsjQ+3v3a2daulpXrarDp884/VzgRFa23o/br7v8FiEAAAACVeXKla313InaSyo5OdlaDw8PL6Jk6SFBAgAAAADlwGt74vT9kZxf9m09nlZgmU0p/hm6AAAAAIGtXr16knJGbfLGfCEpKSnat2+fNbpRbv2+Vvb6tgIAAAAA3JZ4puBf8hmSxrdsJknKO0jNlF1/a9a+g8ry03AGAACgZHLnIAnEBYEn7xzcycnJiomJKVF9y5Ytk8PhsKbJ6Nq1a4nq8xQJEgAAAAAoB5qHhhS435S0LCEp3/6fk4/ptb/j9H7cgVKODAAAAIGuS5cuql27ttXj4/333y9RfS+//LK13qZNm1KZ18QVJEgAAAAAoBwY1rB+oY/9lX6y0Mey+RknAAAAimGz2TR06FCZpinTNPXmm29q8+bNHtX17LPP6n//+5+knEnfb775Zm+G6hYSJAAAAABQDrStFqYHW7WQkWdf3zq11bxKlUKP6Varhv7TvEnpBwcAAICAN3nyZFWqVEmGYSgjI0OXX365NmzY4PLx2dnZevTRR/XUU09ZPVFq1qype+65p7RCLhaTtAMAAABAOXFj00bqWKOaYk6kq1ONamodVlWmaWr7iTTtTEtXRtUwq+ybHduplSPL+s8pAAAILKYpOQKwIyidVwNX8+bN9fjjj2vy5MkyDEOJiYnq3bu3brjhBt18882KjIyUlDORu2EYys7OVlJSkv766y/99NNPeu+997R//35r3hHDMPTaa6+pWrVqfrsmEiQAAAAAUI50qF5NHar/859MwzDUvno1ta9eTVlhYYr///0tqlaRkZbmnyABAAAQkB5//HH99ddf+uyzz6wkyOzZszV79myncqZp6vLLL8+3T8r5fGqaph544AGNHDnSZ7EXhCG2AAAAAAAAAACASz766CM98cQTTj2Rc+cmMQzDWnL35X1MykmQvPjii04TtfsLCRIAAAAAAAAAAOASm82mp59+WmvWrNGgQYOsniFny02U5DJNU3379tWaNWs0ceJEX4VbJIbYAgAAAAAAAIAAY5qGTDPw5hILxJhRsJ49e+qHH35QTEyMli5dqp9//lk7duxQcnKyUlJSFBoaqjp16qhly5bq27evLr/8cnXu3NnfYTshQQIAAAAAAAAAADzStm1btW3bVg888IC/Q3EbQ2wBAAAAAAAAAIAKhwQJAAAAAAAAAACocBhiCwAAAAAAAAACjGnmLIEmEGNGjn79+lnr06dP14UXXuhxXZs2bdJDDz0kKWcy95UrV5Y4Pk+QIAEAAAAAAAAAAEWKioqSYRiSpGPHjpWormPHjikqKkqSrDr9gSG2AAAAAAAAAABAscxy1gWIHiQAAAAAAAAAEGAckhwB+F21w98BoET82dujNNCDBAAAAAAAAAAA+ExWVpa1HhTkv34cJEgAAAAAAAAAAIDPJCYmWuthYWF+i4MECQAAAAAAAAAA8JmffvpJUs6QXY0bN/ZbHMxBAgAAAAAAAAABxjRzlkATiDEjP0/mIjl16pRiY2M1b948ffbZZ1YdF1xwgbfDcxkJEgAAAAAAAAAAILvdXuTj5v9nuAYMGFCi8+TWYxiGrrnmmhLVVRIkSAAAAAAAAAAAgJW48Fa5ghiGIcMwZJqmOnfurKFDh3pcV0kxBwkAAAAAAAAAAJDk2fBZ7jBNU6Zpql+/flq8eHGxvVZKEz1IUOrslewKqkxTc5fp8M2AjIbN9RueI+ifnKo9yCZ7sOs5Vl9dj8NHeV/T4fDJeYBcNnvpfjjJ5c49oaRS9h/3yXkqV6vkctmsrH/er04fP62stNMuHxtWL8ytuDzlq/tpdkaWT87jq7btS45s3/yNfPfc+eY/K46sbJ+cx1dtW/JdW3Dn3p23rGEz3DrWV22uLD5vgcJX7xHljWHj/xCe8tVzZ7O73rbNPK9tm81w6d5l+O97OaBEmIMEpeGSSy4pNEGyevVq67Hzzz9ftWrVcrlem82mqlWrqnbt2mrfvr0GDhyoTp06eSPkEuFbawAAAAAAAAAAoKioqEIfs+VJjL/yyivq16+fDyIqXQyxBQAAAAAAAAAAilWSuUfKInqQAAAAAAAAAACAIj355JPWekREhB8j8R4SJAAAAAAAAAAQYBxmzhJoAjFm5MibICkvSJAAAAAAAAAAAMq1lJQUrVy5UqtWrdLvv/+u3bt369ixY6pcubLCw8N14YUXatCgQbr55psVFhbmVt2xsbH64IMPtHLlSsXGxiolJUV16tRRixYtNGzYMN18881q0KCBx7HHxcVpzpw5WrJkifbu3av4+HgFBQWpYcOG6tChg/r27at+/frp/PPP9/gcFRUJEgAAUC4kZ2ZqTcox/ZKaqmOZWTqRnSVDhtrVCFPHGtXUp05t1atc2Sp/OjtbNsNQsGHIMAw/Rg4AAAAAKC0xMTF66KGH9OOPPyozMzPf45mZmUpLS1NcXJwWLlyoRx99VDNmzNDo0aOLrTs7O1uPPfaYXn311Xx1Hzp0SIcOHVJ0dLSef/55vfHGG7r55pvdiv306dN65pln9PLLL+erPyMjQ3v27NGePXu0aNEi61qCgvjK3x08WwAAwK+SMzNlN6SaQcEeHR+Tnq63Dx7Q/06cUEE9tfclnNYPCUl69a+9uqZRfTUKCdHKxCRtPZ4mSbIbhqra7Qq129Swbl3ldhh+fuceZR8//v+P2RUalFMm1G5XVbtdVf7/31qVgtWsSohnF+8mh2nq+/3xWnkwQWlZWbq6aUNd3ayBbCR4AAAAgIrHlAJyvmwfx7xt2zYtWbLEaZ/dblfr1q1Vv359ZWdna8eOHTp69KgkKTU1Vbfeeqv27NmjZ599ttB6HQ6Hhg8froULF1r7DMNQ+/btVbduXSUlJWnbtm0yTVOpqakaNWqU0tPTNXbsWJfiPnHihAYOHKgNGzZY+2w2m9q0aaMGDRooMzNT+/fv1759+9x4NnA2EiQAAMAvjmdl6bm9sVqXmipJuio8XBOaN5ckbTpxQnGnT8smQ22rhqptaFXZz0oCHM/K0vuHDmpBYmK+z9eGpKp2uzIcDmX8//8YMk1TXx+MzxdHtmnqeFaWjmdJmadOW/ujj6YoOTnZpWvpWL2aXux5vlpVd68btrs+iNmrV7butrZ/jk9WdEKyXujSniQJAAAAABQhKChIV199tUaPHq2+ffuqevXq1mOmaWrx4sUaP368Dh48KEl67rnn1K1bNw0ePLjA+p5//nmn5MiwYcP02muvqVmzZta+AwcO6P7779f8+fMlSffcc48uuOAC9ejRo8hYMzMzdcUVV1jJkbCwMD3++OO67bbbVLduXaeyR44c0ZIlS/Tee+8xOoIHSJAAAACfS8vM0l07YxR7+p+ExJLkZP12/IROOrJ1IjvbqXzd4GBdVjtcfWrVUs2gIG04flzvHzqolKwsq0yjSpU1sHZt9alVS62rVJHNMJTpcCjOyNTKxGTNPRivUw6HVb5V1VDVCApSena2OW03JAABAABJREFUTv7/EmKzeXQ9W46f0MhVv+rTPl3UpkY1ZTocWn04SQfSTqlBaGVd1qS+Vz6oZuaJP9eiuMMKMgw92ulcVaUrNQAAAAA4CQ4O1pgxY/TEE084JS/yMgxDQ4cOVefOndWtWzfFx+f8uO6xxx4rMEGSlJSkqVOnWtvDhg3T/PnzZTvr/5RNmjTR3Llzdd1112n+/PnKysrSww8/rLVr1xYZ85QpU7Ru3TpJUt26dbVq1Sq1b9++wLL169fXbbfdpttuu63IOlEw/hcNAABKlWmaSj6TqfDKwVaSYF7cIafkSK4jmRkF1pGYmanPj8Tr8yP5e4BUsdl0a8NGGlGvnoLP+jAabLOpfbVqal+9mkY1bazvjyQqyzR1SXgttagamq+urLAw5Z5hVmRHnUxJ0cmsnORJena2Tv3/v7n7TmRl6+fkozp4+oyOncnU7Ws26Y2enfTMph3aduy4Ve/9HVprbLsIV5+yQt16bnOtOpToVLckzd97SAmnz6hPw7q6sVXTEp8HAAAAAMqLoUOHaujQoS6Vbdq0qZ5++mndeeedknKG59qzZ49atWrlVO6rr75Senq6pJyeKTNnzsyXHMllGIZmzpypb7/9VhkZGVq3bp2ioqL0f+zdd3xV9f3H8ddd2ZuE7EDYYe8hiCIo7j2wdVat2lqtravaOqut1Vr91bbWujfixg3KRlmyA4FAIHvvdXPH+f0RvCQmQALJzeD9fDzug3PO/Z7z/Zyby12f8/18Tz755Fbb79u3j0cffdSz/uabbx4yOSLHTgkSERER6TTlDQ5uXL2JbeVVDAoO5LLkeOYlx7OqsNTT5p9DhtDgNnh8/z4KHQ6CLRamhoQyKSSEerebtZWVfFdRgauVQrWzwsL5TWIi0T4+R4wlzMfGzxLj2hx7hI+NvgH+R2x3U3Iiv9q8ndSqGgrq7Fz6zZoWbZ7elo7FZCImwI9SewMVDQ6GhgVzSlxUi6TO4QRYrbx20kT+sW03r6dnNbtvRX4JK/JL6Ovny5z4vm0+poiIiIiI9Exud+Otp+nuMZ9zzjmeBAk0TvL+0wTJkiVLPMszZswgPj7+sMeMiYlh1qxZfPXVVwC89957h0yQ/Pe//8VutwMwd+5cTj311KM5DWkjJUhERESk03yZU8C28ioA0qtqeHTLLtIra1hTVAZAX5uNcUHBmEwmPhg1mjq3G3+zuVk5qov69qXM4eCbsjJ219ZS4nDQ39+PE8PCGBMU3CXn1VSQ1cpTI1O4cuMWiuoPjoCJ9vfFx2wmq6YOgL83mTvkR339fblsQAKXDkggyt+3Tf35Wy3cO3YYebV2FucWtrj/m9xCJUhERERERESOUkRERLP1ysrKFm3279/vWR49enSbjjt69GhPguSTTz7h2WefbdHG5XLx6quvetavvPLKNh1bjp4SJCIiItJpcmpbltGavy/Hszw5JNSTDDGZTARYLK0eJ9xm4+K+3fdH/0hfHx6cMJxfr9rk2XbJgASuGdKPc75aTV4rjwNAYZ2df27fw3M79pISFszUvn24akgSkX5HTpbcnJLMN7mFGIDFZMJ1YDL6zOq6jjglERERERGR41LT5AfQYlJ0gIqKCs9ycHDbLtxrOil8VlYWpaWlLZIx27ZtIy8vz7M+a9asNh1bjp4SJCIiIuIVJ8dEsjS/uNm2syL7dFE0He+UuCguH5jAwsx8koMD+NnARIJsVj44dSprCkvJrqnDZjYT4euDzWzis8x8vsktxG2Aw22wpbSSLaWV/G9nBhMiwzgtIZrZ8X2pdjjZU1mDydSYCAmwWBgeFszw8BAuSY7n3YwcT3IEwOcoJ5oXERERERHxtqbJgLZKSEjohEgO+uCDDzzLVquVCRMmtGjTNClSVVXVpuP+dCRKamoqM2bMaLZt3bp1nuU+ffoQF9dYJnrhwoW89NJLbNiwgYKCAkJDQxkwYACnnXYaN9544xFLfMmhKUEiIiIinSbO38+zPCY8hFNiIvkwMw9fi5mTAkIY3Q1KZHUUk8nEAxOG88CE4c22h/v6cHpiTIv2pyfGkFtTxzt7snk/I4cSe2N5LgNYX1zO+uJyHtuUdsj+EgL9MYyW87IE2lofhSMiIiIiIr2LYTTeepqmMU+ePPko9u+8k66pqWlW+mru3LmEh4e3aJeQkMDGjRsB2Lp1a5uO/dN2GRkZLRIkW7Zs8SzHxsZSVlbGNddcwyeffNKsXVFREUVFRaxZs4Ynn3ySRx99lNtvv71NcUhzSpCIiIhIp5kRfXCEyOt7svh49hQu6t94BUx5Vss6rsebuEB/fjd6MLePGsT+6lo+yMhlUU4BGVW1R9w3u6b1UloBVn28ExERERERORp33HEHOTmNZaFNJhMPP/xwq+1mzJjBwoULAVi5ciW5ubme0R6tKSwsbDaxO7Q+8qSkpMSz7OvrywUXXMCyZcsA8PHxYcyYMQQGBrJ3714yMzMBqKur43e/+x0lJSX8+c9/bsfZCoBqMIiIiEinSQz054wDE4aXNji4Y912nG53F0fV/ZhMJvoHB/K70YN55eSJrbYJ97Vx5+ghXDUoifF9wg5ZSmtcn9DODFVERERERKTDrF27lqysrHbdOsubb77Jc88951n/3e9+x/jx41tte+mll2I5MIemw+Hg1ltvPeTIFsMwuPXWW7Hb7c22V1dXt2jbdG6TDRs2eJIjv/3tbyksLGTt2rUsWbKE/fv3s3TpUgYNGuRp/9hjj7Fo0aI2nm37uVwuKisrPTeHw9FpfXmTEiQiIiLSqe4eNZhIXx8A1hSX8c8dGV0cUfe0tbSCv2/ZzZ/WpbZ6v81spqLBQYSvD6cnRHPloKQWbcJ9bJzf79BXLYmIiIiIiHQnsbGxJCQktOvWGVasWMF1113nWZ8wYQKPPfbYIdv379+fX/ziF571999/n4svvrhFAicnJ4fLLruM+fPntzhGawmG+vr6Ftv+8Ic/8I9//IPQ0OYXw5100kksX76cvn0bL0o0DIM//elPh4z5WL366quEh4d7bitWrOi0vrxJNRhERESkU0X5+fLUpJFcu2ojLsPghd37GdcnlLH4dHVo3UZBXT1XL11PrdN1yDaFdXae33n45NKVg5Pwt2oOEhERERGR40FvmIOkO9i8eTPnnHOOZ4THgAEDWLhwIT4+h//O+vTTT7Nu3To2bdoENE7u/uGHHzJy5EiioqIoLi5m27ZtuA9UUbjtttt45plnPPv/NOEBEBgY2Gw9Pj6ehx566JAxxMbG8sgjj3DjjTcCsGbNGnbs2EFKSsqRT7ydCgoKPKNkwsLCOOWUUzq8j66gESQiIiLS6SZEhnHHiINDf5/Ylo6zu30q7kJPbdl92OTIkYTarJyVGMM1g/t1YFQiIiIiIiK9W1paGqeddpqntFVcXByLFi0iNjb2iPsGBASwbNkyzj//fM82wzDYunUr3377LVu2bMHtdmM2m7n77ru57777mu0fFhbW4phBQUHN1i+77DJsNtth47j88ss95b4Ali9ffsTYj8aPsZlMJvr16z3fPTWCRERERLziyoEJfJNXxPqScvZV17KuspJprVwxc7ypaHDwaWZ+i+3PnDAGE1BqbyDYZiXYZsXHbKbG4aTG6aLG4STYx8bI8BCSAv0xmUzeD15ERERERKSHysjIYM6cORQWFgIQGRnJokWLGDBgQJuPERISwocffsiqVat47bXXWL58Obm5uTQ0NBAfH8+sWbO46aabmDBhAjt37my2b1JSy7LJkZGRzdYPNQdKU8HBwQwaNIi0tDTPeXWGtiSNeiIlSERERMQrTCYTF/SLZX1JOQBptTVKkADfFZTgajKaZnhYMBOjwjk1vi/mVpIehlsjb0REREREBNxAT/x64O7qAIDs7Gxmz55NdnY20Jjo+PLLLxk+fPhRHW/69OlMnz79sG1SUw/ON2k2m1tNfgwbNqzZep8+fdrUf9N2paWlbdqnvX4s22UYRou5VnoyJUhERESkQ2VU1bCrsoZpUeGE+NgwDIO91bV8X1TGa+mZnnZBltY/hmTW17OztoZEXz+GBgS0miToTVbkl3iWX5g5nhkxkYdpLSIiIiIiIseioKCAOXPmeEZaBAQE8NlnnzFhwoRO7XfdunWe5REjRrQop/Xj9qZ+nBflSJpO7u7v73+UER7eiBEjGDFiBNu3b6esrIw1a9YwZcqUTunLm5QgERERkQ7zfNo+nt2Zgcsw8DWbSQkLJrumjmJ7Q7N2JmBKSEiL/dNqa7hp504aDoyoiLBaGRscjK/ZTJDFwhl9+jA0ILDFfj3ZltIKz/LEyPAujERERERERKR3Ky0t5dRTT/WUo/L19eWjjz5ixowZnd73e++951meN29eq20mTZpEQEAAtbW1QNvLZe3fv9+zHB0dfQxRHt4vf/lLbrvtNgAeeOABvvzyy07ry1s0SbuIiIh0iHf35fDMjr2eclF2t5tNpRUtkiN+FjN3jxpMop9fi2O8lJvnSY4AlDqdfFtWxhclJSwoLOS6HTt4K7/lfB091ZdZ+eyuqPasW829e7SMiIiIiIhIV6msrGTu3Lls3boVAKvVyrvvvsupp57a6X1/+OGHpKene/q99tprW23n7+/P3LlzPeuLFi064rF/+OEHSkoOViaYOnXqMUZ7aL/61a+YPn06hmGwaNEi7rjjjk7ry1s0gkQ6nclsxmTu3Fyc4fZO9cLOPo/mfXmtq7Zr+sOd2dTOx8M7fyNvPWxuL/Z0PDM1ec6ZzKZm60fe19IZIbXgrfkgvPU6Z7Ye3eO2qaScRzfv8qwnBPpT5XBS0eAgwGJhQlQYU6MimNI3ggHBgfhbLdQU17Q4Tp6zocW2pgzgXznZjI0KY1xYyxEorbH6tuOcfA62tfpY2rVvex+7TcVl3Llmq2d9anQffHxsR9zP7XS1q5+jdbTPhfby1nPbm9rzDmFu8rpmNpswW47fJJn3nnPeK9RtMne/57dhPfgMtVjNWGxtf8Zafb3z9dFpd3qlH5ej+/19eor2fSY7+s9z3uKt1163yzv99Mb5ysy2tr9HuJu8rpls5jbta3Z55z1IpKMZhoFh9Lz/810Rc21tLWeddRbr168HGucAef311zn33HM7ve+CggJuv/12z/ott9xy2AnPr7vuOj788EMAvvzySzZt2sTYsWMP2f4vf/mLZzkyMpITTjjh2IM+BIvFwsKFCzn33HNZuXIl//jHP1i7di0PP/wwJ598cqf125mUIBEREZFj9taeLJwHPuT+bGAifxo3DLdhUOd04W+1tHkekdEhweypqfWs20wmLoqL4aK4aD7KK+DN7DwA7t6exi/6JXBBbDS+lu6YUT68kno7v1mxEceBHzDO7R/HnyeP7OKoREREREREeh+73c55553HypUrATCZTLzwwguHLHPVVrt27SI/P5+ZM2cess327duZN2+epwRWUlISf/7znw973LPOOosZM2awcuVK3G43l1xyCd9++y2JiYkt2j7xxBPNSnfdfvvt+LVSraGjPPzwwwCcdNJJ7N69m4KCAlatWsXs2bOJjo5m4sSJJCcnExISgs125AsAm7r//vs7I+QjUoJEREREjlmp3eFZvmFofwDMJhOBtvZ91LhlQBLpNTVsrWwsO+UwDN7JyePUvn24dWB/NlVUsb2qmlKHgyfTM1haXMLTo1LYV1tHpdPJ6JBg/CzevQLQMAyyauspsNcxNCyImIDDT4jndLu5fdUmCuoaJ9ubGBXOX6aOwubFUYoiIiIiIiLHi2eeeYbFixd71sPCwpg/fz7z589v0/5XXHEFV1xxRYvte/fu5YwzzmDw4MGcc845TJw4kdjYWJxOJ1lZWXzxxRd89NFHOByN35cjIyP5/PPPCQw88ryazz//PNOmTaOiooL09HRGjhzJzTffzMyZMwkMDGTv3r289tprLF261LPPtGnTuPPOO9t0TkfrwQcfxNTkAkiTyeQZEZSfn89nn3121MdWgkRERER6rAHBAawqaKx5uqm0gtMDjnzFSkG9nS8Ki/AzW7g0PgazyUSozcZL40axo6qGN7Jz+bqwGID/ZmTx77Ej+MvwIdy3Y5cngbK+vJIZK9Z4jhnv58tzY0cQ24lXzPwot66e/+3JYmlRCWUNBxNEs+Ki+NXIQYyJDGt1v6c27+L7glIA+vr78syMcUqOiIiIiIiIdJIfJzz/UVlZGV999VWb9z/SnB67d+/mqaeeOmybIUOGsGDBAkaMGNGmPlNSUvjwww+58MILKS8vp7Kykscff5zHH3+81fbTpk3j448/bveojY5gamPFiEMxDOOYj3EslCARERGRY3ZSTBSvp2cBsCyviNMTolttl1Vdy9K8Yr4vLGVZXhE/zqZR53Jxbb8EoPHD1ZCgQH6WEOtJkGTV1QMQ5+/Hy+NHs6a0nN9v20n9T+avyKm3c/m6zYwNDSE50J/kAH8GhQWRHBhAcDtHswBUNDj4prCEVzKy8beY+UPKIBIC/HhxbxYLsvI8ZcWaWpJbxJLcIk6I6cNNIwYyKSoCi9mE3eXibxvTeH1X49Bqq8nE09PHEuXv2+64REREREREDKPx1tP0xJhbk5SUxOTJk1m3bt0h51VJTEzkhhtu4K677sLXt33f/WbNmsXWrVu5/fbb+fjjjz0jUZqKjIzkjjvu4Le//W27j3+0euK8N4ejBImIiIgcs0lR4QRYLNS6XCzPL8ZtGM3mHXG43TyxZTdv7cnC1cqHqRf2Z5NZV0eD22BvTS37autwNGkX49f8g96UiDD+OmIoD+7cTbnDyaDAAIrsDVQ4nVS7XKwsLWNlaVmzfaJ8fRgQGMCAoACSA/0ZEBTAgMAAwn1sOA2DOpeLygNlrwDu2ryD5Xv3N0uCXLN2M34WM/Wug4mZQIuFseEhJIQFsTy3iLzaxmTO6vwSVueXEGi1EBfoT15tPdWOgxMP3zN+GBP7RrT3oRYREREREZF2ePDBB3nwwQc7/LjDhw9nzZo1lJeXs3HjRnJycigoKMDtdhMbG8vQoUOZOHHiMY2OSEhIYMGCBZSWlrJs2TKys7Oprq4mMjKSkSNHMnnyZCxeLDO9ZMkSr/XlLUqQiIiIyDHzsZiZFh3BN7lFlNodbCguZ1JUuOf+53Zk8Hp6ZrN9Imw2Evz92FJZhd3tZmF+UavHDrRYuCoxrsX2GX3C+eqESVQ5nITarOTb7TyxO4P15RXUutwt2hfZGyiyN7CmtLzZdosJXAdyIH369OHFGxuXN5dXtTpC5MfkiJ/FzBX94rmqfwIhNisBfYJocLn5KCOH/6buIau6DoAap4vdFdWe/W1mE/dPHMFlg1pOsCciIiIiIiI9S1hYGLNmzerUPiIiIrjgggs6tY+2OOmkk7o6hA6nBImIiIh0iFPj+/JNbmOS44W0fUyIDMN8YMK2j/bnAmAxmbhhaH9OS4gm3mGi1uniju07+aG8kh9TERaTiX7+fgwIDGBCWAhnRvcl0Nr6FTEWk4kwn8Yaq7F+fjw1KgXDMCiwN7Cvto69NbXst9ezt7qWjJpaypuM4PiR6zCjg2P9fMmrtzfb5mM2cVFCLNcPSKSPr0/z+yxmLh2UyIUD4vl8fx6LsgvYXlpJUb2dUB8bk/pG8IthyYzqE9qWh1REREREREREOpESJCIiItIhzkiI4cktuym2N7A8v5gntuzirtFD2F5WSe6BslPT+kZw28hBANQU1xBss/LfsSOpd7nYV1uH1WSiX4D/MU1abjKZiPHzJcbPl6kRYVh9DyZXShsaDiRL6thbXcvemloqGhz4Wyz4WyxE9jk46uXNqWOJdthxGgabyiuxmkxE+voQ5euD3xGGMFvNZs5Njufc5PijPg8REREREZHDMdzgbjl4vtszemDM0nspQSIiIiIdwsdi5sEJKdy6ejNu4JXdmawuLCXIevDjxmkJfVvd189iYVhwUKfHGOHjQ0SEDxMjwlq93xkYRPaB5UhfH0zOBmwmE5MO0V5EREREREREeq6jvzxTRERE5Cdmx/XlgfEpnvVdFdX8UFIONH7omB3XeoJEei/DMPgyu4Dndmawo7yqq8MRERERERER8dAIEhEREelQlw5IIMrPl+d3ZrCptAJonND85pQBRPxkzg7p/ZbmF/O7tVsByKxuLGn29ymjjlimTERERERERKSzKUEiIiIiHW5WXBSz4qLYU1lNtcNFSngwPscwr4j0XN/kFnmWP8rMA+CBH3bw14kjMJlMXRWWiIiIiEiPZxiNt56mJ8bc22VmZrbYlpSU1KZ2HaW1/rxBCRIRERHpNANDOn9eEemeGlxuHtuSxgf7c1vctzArn5SwYK4Z3K8LIhMREREREZGm+vfv3+wCNpPJhNPpPGK7jnKo/rxBCRIRERER6XBv7Mni3Ywcz/qtwweSHBzA7Wsay239betuGtxurh+UpJEkIiIiIiIi3YDRxuE9bW3XEyhBIiIiIiIdzmo+mPRIDPTnpmHJANw0tJrn0jIAeHr7Hr7OLuT6If2YG9+3S+IUEREREemp3EbjrafpiTFL76UEiYiIiIh0uBnRfTzLcQF+nuXfDB+Av9XCP7anA5BaUcXv1m3jadNITo1TkkRERERERMTbrr766g5t15MoQSIiIiIiHS7YasViMuEyDHaUV3m2m0wmbhjan+SgAG5ds8WzvReN0BYREREREelRXn755Q5t15MoQSIiIiIiR80wDD7LLqDU3sC0qAgGhQSyv7qWRzen4TqQ9WhtZEhuXb1neURYMLPjorwWs4iIiIiIiAgoQSIiIiIix+C19Ewe37rbs97H14cSe4NnPdzHxu9HDmq2T1GdnX+m7gHABPxxzFAsmqhdRERERKRdDKNnjsTuiTFL72Xu6gBEREREpGcyDIMXdu1vtq1pcsTXbObRCcMJ8/XxbCtvcPDbNVuocboAuLBfLKPDQ7wTsIiIiIiIiHQ7Lpery/rWCBIREREROWq1TmeLbXEBfvx8YCLnJsbSx68xOVJcb2d1YSn/S9vHnqoaAMJ8bNw+fKBX4xUREREREZHuYfPmzbz66qu8/fbb5OXldUkMSpCIiIiIyFExmUw8OXkUd6/bRrXz4BU/ubX1PLUtnX9sS/dsc/5kHH0fXx/+e8JYwpuMLhEREREREZHerbi4mDfeeINXX32VLVu2dHU4SpCIiIiIyNGbFRvFB7Oncue6bWwurfBsdx2msPCA4AD+PW0sSUEBGG63N8IUEREREel1DMPAcPe8CT0MTUJy3HE6nSxcuJBXXnmFL7/8EqfT2ex5YOrCOSmVIBERERGRY5IQ6M8bJ01kcW4h3+YWkVdXT52zeQ1ZP4uFCZFhTO/bh7F9QrGZNRWeSG/iNgwqHU5CbFbMXfgFV0RERES6jw0bNnhKaJWWlgIHE2Q/JkW6OmGmBImIiIiIHDOLycTc+Gjmxkd3dSgi4iVuw2B5QQlv7M1mU1kF9S438QF+XJgUy/mJsUT7+3Z1iCIiIiLiZQUFBbz++uu8+uqrpKamAs2TIiaTqXH0k2EQEBDA2WefzeWXX95l8SpBIp3ObDFjtnbuVaKGW1epHS1vDcU0eelKYcPtOnKjHsRbj1uj7lfmpukQS5PJhMl8PP9f985zwZuPcXBMsNf6aiuHv79n2S/UH5tP2/9feKtUlPdet73zXDCZLV7pB8Dt9M57RLseu6Ztzd30dc7lneec2eKdc3d66XngTX6h/kdudIDD38+z7Bvsh83a9sfDJ7Ax4bEyt4g3d+5jS3E5eTX1zdrk1Nbzz50Z/HfXfm4cPYibRw3Cz9q+/+e1JdXtan+0nHa7V/rx5v9rb/XVnv+v5iYxmc2mdu3rcnjnvdVbn4Ktvt75CcZb73cAbi+9R/TEEkIiIseThoYGPv74Y1555RUWLVqEy+VqUULrx6SIj48Pc+fOZd68eZx33nkEBAR0YeRKkIiIiIiIiMgRlNY3sCgzj0/2ZrOhsKzF/bGBfsQG+LOxqAwDaHC7+eemXXy8J5sHp47k5ASNLhMREelobqPx1tP0xJildWvWrOHVV19l/vz5lJeXA4cuoTV79mwuv/xyLrzwQsLCwroi3FYpQSIiIiIiIiLNNLjcuAyDnJo6/rsjg8+z8nG1Uh/6hNhIrh2ezKzEaMwmEznVtbyamsErqRk4DYPMqlp+sWgtc/vF8KfJI4kLavtoFxERERHpfnJzc3nttdd49dVX2bVrF3DoElpNK4MsWrSoS+I9EiVIREREREREhP1VtTyzLZ1NJeXk1tYfst2QsGDOTo7jipT+hPn6NLsvPiiAeyeP4JIhSdz/3VbW5JcA8NX+fJbnFDGqTygGMDA0iF+NHkxCcNeWVBARERGRI6uvr+fDDz/klVde4dtvv8Xtdh8yKRIUFMQFF1zAgAEDeOihh7o48iNTgkREREREROQ4ZhgG8/dk8/jmNOpcrc/GEOpjY97Qfpw7IJ5h4cHNrgZszeCwYN46fRof783h0bXbKalvoM7pYm1BKQDrCkp5b3cW5wyI5/qRA0iJCO3w8xIREen1DGhlgGf31xNjPk6tWrWKV199lQULFlBZWQk0Hy3yY1LEarVy2mmn8fOf/5zzzz8ff39/vvnmm64Mvc2UIBERERERETlOFdTW88f121lxYKQHQKDVwsCQQPytFoKsVgaHBnHl4CRi+4S069gmk4nzByZwSkI0T23cybu7MqlvkoBxGgYf7snmwz3ZDA0P5qJBifxixIAOOzcRERERab+srCxeffVVXnvtNfbs2QMcuoTW5MmTueKKK5g3bx6RkZFdGfZRU4JERERERETkOPRNbiEPLFtDRYPTs23ewATuHD2EQFvHfVUM8bXx4NRR/HHyCFyGQY3DySupGby+Yx8VDQ4A0sqqeGxdKnsqqrlzcH/8LJYO619ERERE2mb27NksW7bMkwCBlkmRgQMH8vOf/5wrrriCQYMGdXHEx04JEhERERERkV6stL6BvLp6hocFN9v+yA87PcmRKD9fHps0ghNjO+/KP6vZjBXwtVj43fhh3DRqEO+lZ/He7iy2lVQAMH9XJh+kZzEqLIQJfcI4I74vQ0KCOi0mERERETloyZIlnuWmSZHIyEguu+wyrrjiCqZMmdKFEXY8JUhERERERER6qYX78/jj+u3YXW4mRIZxZspgJvykzZmJMdw/PoUwX5tXYwuwWbkqJZmrUpL5ZG8Ov1++EZdh4HAb/FBawQ+lFfxv936GhwZxYVIcF/WLxWY2ezVGERGR7sztNnC7e96EHj0x5uPJj4kRgBkzZnDPPfcwd+5cLL10hK8SJCIiIiIiIr3Uv1P3YD8w78eG4nL2pe7lxQP3Bdss3Dt1FGclxXZdgAecOyCepOAA3ty5j3V5JWTW1HnuS62oJnXrLj7IzOPJCcNJCgrowkhFREREer8fkySrV6/m8ccfJzc3l0suuYTQ0NCuDq3D6fIbERERERGRXqrU3nDI+14+aWK3SI78aGxUOE+cOI7PZ09l6Wkn8MdRQxgeerAsWGpFFRcvW8+i3KIujFJERESkd2s694jb7WblypXceOONxMTEcNFFF/Hhhx/icDi6OMqOowSJiIiIiIhILxXt79ds/eQmc4xE+vl6O5w2i/TzZV5yPO+eNJE3Z4ynX6A/ALUuF3f9sJ38uvoujlBERESk9/niiy+49NJL8fX19SRKoDFpYrfb+eijj7j44ouJjo7mxhtvZPny5V0YbcdQgkRERERERKSX+se00UQ1SYRsLav0LDvcbpbkFrFgbza1TmdXhNcmYyJCWXDSRObERgHgcBu8sieri6MSERHpeobRc2/SPc2dO5d33nmH/Px8/vOf/zB16tRmI0qgMVlSXl7OCy+8wKxZs+jfvz/33XcfqampXRn6UVOCREREREREpJcaGBLE67MmEuPfmCQpqT9Ycuv8r7/j5pUb+dP6VC5ZvIb0iuquCvOIAqxW7h89BD9L41fY9/bnUtmLSjuIiIiIdCchISHceOONrF69mrS0NO655x7i4+NbTZZkZmby17/+lVGjRjFu3Dieeuop8vLyujL8dlGCREREREREpBfrHxzIm6dM5pS4qGbba5wuz/KeyhrmfbuW3d04SRLh68MJUREA1Lvc5NXauzgiERERkd5v8ODBPPbYY+zfv5+vv/6ayy+/HD8/v2bJEsMwMAyDzZs3c+edd5KUlMStt97axZG3jRIkIiIiIiIivVx8oD//njGOV06a4NkWYDFzbr9YhoYGAVDtcHLzyo2U1h96YveuZBgGqRVVAPiazSQHBXRxRCIiIiLHD5PJxJw5c3jzzTfJz8/n+eefZ8aMGc0SJT8mS1wuFzt37vSMNAFYuXJlV4V+WEqQiIiIiIiIHCf6Bwd6lheePp2/TRnFW6dMZnhYMADZNXX8ZvUmGlzurgrxkLJq68mvaxw1Yne7+ceOPTjd3S9OERERb+nqeUQ0B8nxKzg4mOuvv57ly5eTnp7OfffdR1JSUosSXD8uG4bBSSedRGJiInfeeSfr16/vqtBbUIJERERERETkOGQ58MU10Gbl3zPGeSZz31Bczp/Wb/d8we0u8uvqm62/vjeb1UVlXRRNc5UOJ/Uu15EbioiIiPQyAwYM4JFHHiEjI4NvvvmGK664goCAAE/ZLTiYJMnJyeGpp55iypQpDBkyhPvvv7/LJ3dXgkREREREROQ4FxPgx79njPVMgv7x/jz+t3Nf1wb1EyPDQjgjvm+zbQV1XT8PyeaKSuauXsepq9bxr737qdDk8SIiInKcmjVrFq+99hr5+fm8+OKLnHTSSUBjqdSmJbgMwyA9PZ1HH32UUaNGMWbMmC6LWQkSERERERERYVREKH+dPNKz/tTW3azML+7CiJoLsFr446ghRPjYADABU6PCuzYo4IPcAhyGQZ3bzcuZOZy/5gd+KK/o6rBEROQ44DaMHnuT3i0wMJBrr72WJUuWsGfPHu6//3769+/f6nwlhmGwbdu2LotVCRIREREREREB4PTEGG4bOciz/uqu/V0YTUtP79hLaUPjCI05sVEkBvp3cURQ4XA2W69yuvj9tp1k/6QkmIiIiMjxqH///jz44IPs2bOHpUuXcs011xAUFNRtyrkqQSIiIiIiIiIeN6UkExfgB8B3BaWU27tHySi7y8Wn2QUABFot3DNycBdH1GhXdU2LbVVOF4+kpeN0d48v/tKxGtxuapzOIzcUERGRZmbOnMlLL71Efn4+r7zyCqecckqzCd27ghIkIiIiIiIi4mEymZibEA2A0zD4JrewiyNq9ENpBXUHJkI/NTaKaH/fLo4ItldWUdjQAEC0rw+Lp08i1vfAZPfllTyUlk6VfkjvFQzDYG1pOQ+k7mb2ijWcsmItj6Xtocje9fPgiIiI9DT+/v5cddVVLF68mIyMDB5++OEui0UJEhEREREREWlmbmK0Z/nLrPwujOSg6ialrAYEBXRhJAf9b1+2Z/kX/RIIs9l4YNggrAeuhPyioIiLvv+BT/IKVG+9h/tH+j5u3rSdT/MLqXW5cRoG7+fkM2/tJrJq67o6PBE5ThnunnsT+VFSUhL33Xdfl/WvBImIiIiIiIg0MyYilNgDZbZW5Jewt7JlGSlvC7BaPcuV3WBUxo6qalaWlgEQaLFwet8oACaGh/JIymB8zY1ft0saHDy0I50r1m1mSVFJl8UrR29taTlvZuV61oOsFgIsjX/fcoeT32/dSa3T1VXhiYiIyDFQgkRERERERESaaVpmC+Dyb9fw8va9NLi67pLPxAMJG4A9VbVdFseP0prMPVLjcnHR2h94JTObrNo65kT1YcGksZwSGdGs/T3b0sirV0mmnqTO5eLPO/d41m9OTuLr6ZP5eNoE+gX4A7Cnppb/ZmR2VYgiIiJyDKxHbiJybMxWM2arpavD6BAms/dyim4vXYFkuNv+JddsNTdbbrp+5H68U1LAe8+13neFmNtrOfO2P+dMZlOz5abrR+zF6Z0fcNoTU0/ox1v/V7urpudvuI12PR697bHz1nPOm7z1Pt6e99aewGzpXa9z3vw8563nQnseu/a8t16fksyinEJyauqoaHDyyNrtvJm2j+dPm8KgsOBjirmtMTaVEBxAqM1KhcPJqsJSihsaiPI7+nlIjvXvM6dPBF+HFbO2vAKA4gYHz+7N5Nm9mViAEJuVJH9/JoSHsqGssY3TMLh183YeGjmUUZ3wGHbH17lj+TxnsXnnfJz2Q49I+q64lJz6egDGhQZzTUIsZsMgzGzhyeFDuOKHLdjdBgty8vh5XAyRvj6HPJbbS6+n3v3+7Z3vRa5e9jlLRES6D40gERERERERkRai/H15/7SpnNsv1rNtb0UNV36+muwuGMFhMZk4N6kxlga3m79vS/d6DE0FWi38a3QKL44dwcl9wmn607cLKHM42VxZxYayimb37a2p48o1m7hx3VY2HkicSPfVtJzb6VGRmE0H/5r9A/yZGh4GgN1tsOJAyTUREW8xMDCMHnhDSU/pPpQgERERERERkVaF+/rwxLTRvH/aVIZFhACQV1PPlZ+vpriu40pF1Tmdh71C3G0Y7K+u9Ux+DrCjorrD+j8Wo0OCeWLEUBZMHMOv+ydyQngYQ4MC6OtzcCSBAUyPDGdAoL9n25rScn6xdgvLCzUvSU/xXVk5xfYGz7rLMChssm7o9z4REZEeRyW2RERERERE5LBGRoTyxpkncOnCFeytqCGjsoarvviOd86eToiPrU3HKK6zs6OkggnREQTYrNQ5nTy3OZ2P0rPZX1lDpL8vC86ZQd8D7Q3DYGtZJR9n5fNVTiFlDY5mx/vZgIQOPstj0y/An2uS4rnmwLrT7ebctRspOhC3v8XCOyeM59PcQl7OyCKrth4DuHdrGm9NHUdSk+SJdB9htoPP76UlZSwtKfMk6pxNMiJ9fGycER3p9fhERETk2ChBIiIiIiIiIkcU6e/L62eewMWfrCCvpp7UkgouW7iS28YPpc7pIr+mnhqHk2qHk1qH07Nc43BSYXeQXl6FAfQPCeSyof14Y0cGOdV1nuMX19m5d8VmbhiQyLriMr7IKWRfdeulvM5NjOHi/nFeOvOj83p2nic5ArC+tJyi+gYuTIjhvPho7t68g8UFJVQ7XfxuUyqvTxmLfy+Zu7E3mR4RxnVJ8byZnUe9242f2Ux9K3Ow3D6gH/4W/f1ERER6GiVIREREREREpE3igwJ4/cwTuHThSkrrG9hRWslNi9e16xj7Kmt4fF1qq/d9l1fMd3nFLbb7WcxMiQxnVHgIkyPDGd8nFJPJOxNeH60aV/PJq8sdTv6Vvo/HRg/DYjLx0Mgh7KneREZNHenVtdyzZSePjxmGn35k71YsJhM39U/k0rgYviwsprihgXXllZ774/x8OS+mLydEhHVdkCJy3DLc0ErOttszemDM0nspQSIiIiIiIiJtNigsmHfOms5Ni9eyt6KmTfv4WMz09fcj+ycjQibH9OEvJ45hWXYhD3+3rcV+kyPDODcxhlPj+hJk6zlfX3Pq6hkaFMityUlsqKpiVXHj5N1VzoNJk0CrlafGDueK7zdR43KxrKiU05etZURoMMmBAfQP9Cc5MICUkCACNLKky0X42PhZQmxXhyEiIiIdrOd8whQREREREZFuYUhECJ9fOItvMvPZVlxBiI+N/qGBBNmsBNqsBNmsBBz4N9DHis1sBsDlNnhjRwavbt/L1NgoHjhhJL4WC/FBAWwrriC1pIL+/n6cFN2HSZHhxAb4dfGZtk+9y8VLmTm8np2H0zBIDvDnkqRYT4LE78Dj8KPkoAD+Pi6F323cQa3LRbnDyariMk97gCCrhV8kJ3JV/wSs5u49aqY3WFVaxrbKamxmM/4WM5PCQhkUGNDVYYmIiEgnUYJERERERERE2s3PauGsAfGcNSC+zftYzCauHjGAq0cMaHGsp04eD0BNUVWHxtlR8urt/Hd/FpsrqjgzOoqrEuPwbZLwWFVaxt/S95Fbb/dsy6it428793rWR4QGtzju1D7hvDJlDP/evY91pRUtSnNVO1383+59fJCdz9PjhzMoKLATzk4AdlXX8NttaS22DwoMYG5UH07r24c4v56VtBMREZHDU4JERERERERE5DAy6+q4ZuM2T4ms5/dn81lBEVcmxBHhY+ODvAK+L6vwtLeaTMT4+pDdJFkyMyqCeUmtl2gaEhzI0+NHYBgGRfYG9tXUkVFTy6bySr7KK8INZNfVc//WXbw5dWy3n3+lp9pZ3XrJuPSaWtJravnXviwmhoVwS3ISI4KDvBydiEhLhmFgGEZXh9FuPTFm6b2UIBERERERERE5jOf2ZTebPwQgp97OX9MzWrSdEBrCPYOTifXz5Z97M/misJjTY6O4c9gAT6mxQzGZTPT186Wvny+T+4RxWVIcP0uK5/ebUim0N5BaWc22impGhbUciSLHrqTB4Vn+RWI84T5Wvi4qYWtltWf7+vJKbti0nQeHDuS0vpFdEaaIiIh0oMN/OhMRERERERE5jlU5nSwuKgEgzGbl+THDmRQW0qJdjK8PDw0dyH9Gp9A/wB9fs5k7BvVn2SlTuXf4oCMmRw5lVFgwvxrUz7P+wt5MXLrytlM0TZBM7xPGvPhYXho7ko8mjeVX/RNJPFBey2EY3LcznZczc3QVtIiISA+nESQiIiIiIiIih1Bkb+DHn8CDLBbGhgTz79HD2VlVw8KCQuxug9mREUwOD8XSSumrjiiHNTcmir+nZVDldLKsqJTZS74nKdCfcWGhnBYT2ercJtJ+JY4Gz3Ifm82zHO/vx7VJ8VyZGMdfd2fwcX4hAP/el0WI1cpFcdFej1VEBMBtNN56mp4Ys/ReSpCIiIiIiIiIHEKcny9+ZjP1bjfZ9XZez87jqsQ4hgUHMiw4uc3HMQyDQnsD+2pq8TVbCPexEu/vj9V85ASKv9XCncMGcP+2XQCUO5yUl1expbyKV/dlMzosmMuT4jg1tu9Rj1QRKG0ygiTCx9bifqvJxH2Dk8msrWNjZRUAuXZ7i3YiIiLScyhBIiIiIiIiInIIfhYL9w0ZwJ92pgPwz4xM9tXWcWKfcCaHhRJotbTYx+l2k1Fbx+6aWtLr69lVVcOuqmrKHM5m7aJ8fbi6fwIXJcbgb2l5nKbOjY8m0teHt/bnsL2ymrImP+ZvKa9iS3kaf0/L4OLEWC5KjKWvn28HnP3xxadJcsnudrf6NzGZTNzYP5GbtqQC4HC7vRafiIiIdDwlSEREREREREQO4/S+keTW2/nPviwAFhYUsbCgCKvJxMBAfywmEybAhAm7282+2jocbZibosjewJNpe3k5I4tTovsQ5+9HUoA/48JDiPDxadH+hMhwTogMB6C0oYElBSW8nZlLenUtAMX2Bp5L388LezKZHRPJ5f3iGRce2nEPRC8X43swqVRgbyDM1nIUCUCiv59nOauuvtPjEhERkc6jBImIiIiIiIjIEVybGIfd7ebN7FzsB4qnOw2DtAPJiSOJ8LExNDiQQUGBuAyD/bV1rCouAxonB1+Qle9pa6Jx3pHfDU0+5EiQCB8fLkqM5cKEGDaUVfBOZh5LCotxGY1xfZVXxFd5RfysXzx3pQzskLlQersY34NJqbx6O0ODAlttZ23yWKqOvoh0JcNtYPTAF6KeGLP0XkqQiIiIiIiIiByByWTi5v6JXJsYz4aKClaVlrOqtJy8ejtNf+YxA/0C/BkcGMCQoABSwkMYGhJEpG/LESG7q2r4395MFuUXNzuGAXyZX8T3JWU8M34EY8JCDhvXxIgwJkaEUWBv4L2sPN7LyvOU4Hprfw7+FjO3Dh3QIY9DbxbTJBmVd4i5RTZVVPLUnv2e9ehW/q4iIiLScyhBIiIiIiIiItJGfhYz0yPCmR4R3uI+40BZraajNWz+rZdpAhgcHMjfxqRQnuIgq7aO3Do7qZXVfJKTT5nDSbnDyY3rt/LPcSOY1CfsiLHF+Ptxy5BkbhjYj/eycvnbjj0AvLg3i0hfX37WP76dZ3t8iW1SYiuvvvUEyX070ilsaPCsjw4J7vS4REREpPOYj9xERERERERERI7EZDIdVSmrMB8bo8JCmBsbxe1Dk/loxkQmRzTOHVLvcnP7plR2V9W0+Xi+FjM/75/AvcMHebY9n77fk8CR1sU1GUGSe4gESdP5RwBO7NMyUSYiIiI9hxIkIiIiIiIiIt1IqI+NZyeMZPqBCdmrnS4uWf0DF6xcz683bOPR1HTez8qjyN5w2ONc1i/eM6l7mcNBjiYUP6w+PgdH+1Q4nC3ur3e5CLZamm17MTO70+MSETkUw+i5N5HuQiW2DqOhoYGdO3eyb98+cnJyqKqqwuFwEBISQp8+fRg9ejQpKSlYLJYjH+wQamtrefbZZ1mwYAFpaWm43W6GDBnCRRddxG9+8xtCQg5da7Yt9u3bxw8//EBBQQHl5eUABAUFERUVxYABAxg6dCihoaHH1IeIiIiIiIh0LB+zmb+NGcZ1a7ew88DokYyaOjJq6jxtrDv28IsBifxyQBJWc+sjV0aHhbD6wGTw2yqqSAjw7/zge4EfH027282qkjIWFZWwsrScere7WburEuO8H5yIiIh0GCVIfuK9995j8eLFrFq1ip07d+J0trxqpKnQ0FAuv/xybrvtNoYNG9auvnbs2MHZZ5/N3r17m23fuHEjGzdu5Nlnn+WTTz5h0qRJ7TpuTk4O//nPf3jllVfIyck5bFuTycTgwYOZMmUKc+fOZe7cuURGRrarPxEREREREel4gVYrL00ew3/3ZLKiqITcOnuzH+idhsHzezJZnF/MfcMHMTGyZbmnkaEH58jYWl7J6bF9vRJ7T9T0guaNlVX8aWc6K0vKqHa5WrSdFRnBbclJRPpoknYREZGeTAmSn/jtb397xKRCUxUVFTz33HO8+OKL3HvvvTzwwANtqjmbl5fH7NmzycvLO2Sb/Px8TjvtNL7//nuGDh3apniee+457rzzTqqrq9vU3jAMdu3axa5du3j99dcZO3YsGzdubNO+IiIiIiIi0rkCrBZuH5rM7UOTMQyD0gYHmbV1fFtQwtuZuTgNg701tdy8YSsLZ04m5idzZIwIDcZE44//H2Xnc3m/eI0iOQSzyYTNZMJxoPbLl4XFh2x7YkQY8T95rEVERKTn0RwkbeDn58eQIUOYNGkSEyZMoF+/fi2SIA6Hg4ceeojrr7++Tce84447PMkRm83GzTffzBtvvMH8+fO54447CAwMBKC8vJybbrqpTce89957ufnmm1tNjsTExDB69GimTJnCkCFDDlm6S5P2iYiIiIiIdE8mk4k+vj6MCw/l98MG8PLkMQwOCgCgwW3wr937cP3kO12Erw/nxEcDjXOZ3LdlJzm19fru1wqrycRtA/phbfJ9P8BiJrLJ3CQ/emrPfsoaHN4MT0SkBbdh4Hb3wJveg6Qb0QiSVsTFxXHWWWcxc+ZMpk2bRnJyMmZz81xSWVkZ7733Hg8//DDZ2QcnZXvppZeYMWMG11577SGPX1ZWxvz58wGIiIhg6dKljBo1ynP/pZdeyi233MLJJ5/Mvn37WLp0KampqQwfPvyQx3zrrbf4y1/+0mxbUlISd999NxdeeCExMTHN7jMMg/T0dFavXs3777/P119/jd1uP/KDIyIiIiIiIt3CqLBgnho3nPNXrsdlwCc5BRTWN3D/yCHEBxwc3XB3yiDWl1aQW1fPprJKzly2hnCbjRFhwQwKCgQM7G6DBrcbu8vd+O+BZZvZxMjQYC5NiiPCt/eXk7osPoaJYSF8WVjM4MAARgUHc+66xioLNpOJWZERfF1UQrXLxXP7s/jD4AFdHLGIiIgcCyVIfuLzzz9n1KhRRyyTFR4ezg033MDFF1/MnDlz+OGHHzz33XfffVx99dUtkio/Wrt2La4DNUz/8Ic/NEuO/Khfv348/vjjXHbZZQCsXLnykAmS+vp67rzzzmbbTj/9dN5//30CAgJa3efHuUcGDx7M1VdfTVlZGf/9739ZuXLlYc9bREREREREuo/EAH/+NGIwf96ejtMw+L6kjAtXruOZ8SOZemBOkiCblcfGDOP6NZtxHrhqt8zhYGVRKSuLSo/Yx4qiUj7OKeD1aeOIPA6SJAMDA/h1chIAr2flerY7DIPbB/RjZWkZtS43H+QVMi40hNP7ah5PERGRnkoJkp8YPXp0u9qHh4fzxhtvMGLECM8Q5by8PFatWsWJJ57Y6j4lJSVt6m/MmDGt7vNTixcvJjf34Ie2vn378s477xwyOXKo87jnnnva3L49GmrsNHRyNTeT+cjzvnQEW4CvV/oBsPi2HMbdGQx324c1WpoMLbf42LAYbf9y5HY42xXX0XI7W06g2BnMVotX+jGaTMLZ2bxVc9Hdjp5MTRLNJrO52fqRmL30Dud2eu9v1Nu05/XnWHjrPcJb/XiLt/4+3uoHwGz1ziudux1veU2fNyazqV2vc95i6n4hHRObv/dOyFufS+or6tvc1uk8+AZpr7Ljqmn7vvYq74w4d9T1rrJF3vh/fUFiHHEB/vxxSxqF9XbqXW5uXLeFawYnEeJj48L+cUxJiOLDkKl8npXPttJKtpZVUt6OElG5dfU8nZ7B3yaPYld1DSvyijEMg5TwEEZEhBxydInD/+B8J36h/th82v7ZyebvnWRMQ82hn9tTrS7+LyPTs/6H9D1EB/iRUVULwENpe4iMDGZWXNQR+6kprjn2YNvA5fDe/yGbv3e+t7pdbf+80PK99cif0Xrb5zg5jhhGzyyZ2BNjll5LCZIOkJKSwoQJE1i/fr1n244dOw6ZIAkNDfUsp6amctppp7XaLjU11bMcFhZ2yP4XLVrUbH3evHnN+hARERERERHvq3O5eGL7bvZU1TA9KoLTYqJIDOycCdKn9Ann07nTmPzxUs+2V3Y3/rD/1p4sXp45gUEhQdw6YhDQWHY5p7aezOpabGYzvhYzvmYzPpbGZT+LBV+zmf3VtVy7fAOVDicLM/NZnldMxU8ufjIBJ8dFcfXQfkztG3HEigw9yfjIcH4xtB8vpe0HYFNJBQBmE7gNcBoGN6/cyCUD4vn9qCGEeelCNxEREekYvex6sK4zcODAZuvFxcWHbDtx4kTPB8bHHnuMtLS0Fm1yc3O5++67PevTpk075PGazoECMGzYsDbFLCIiIiIiIp2jwG7nhs3beTczlw1lFfzfrgzOXr6Wy1dt4OW9mWTX1nV4n8E2G9cP7d9ie3F9A1ctXc/O8irPNpPJREKgPydE92FSVDijI0IZGhZMcnAgcQH+RPj6EGizMjw8hLtGD/Hs99PkCIABLMkt4pol6/nNqk2U2hs6/Ny60p2jh/D45JH09T9YUWByVASnJ0R71hfszeHEhUu5Ysk6nkvd2zOv6BYRETkOaQRJB6mvbz40/XAjPqKjozn77LNZuHAhRUVFjBkzhhtuuIFp06Zhs9nYsGED//73v6mqavzwOnXqVMaOHXvI4/3Y7kc/zm8iIiIiIiIi3retsoo7UndR0koJq9TKalIrq3k6LYORocFclZzAaTFRHTbq4vejBnPloERyautxuQ3+uiWN7WVVlDU4uGb5Bj6aM5WYJhO4t8WF/eNwGQbP78ygoM7OsPBgzu0XR6iPldSyKr7KKiC/rvE78aLsQjYVl/PsjHGMjQzrkHPqaiaTifP6x3Fuv1hGvbcYp2GQWV3Li2eeyPj0TJ7elk6t04XDbbC+qIzKBgf+VgsXJccTZNPPLiIiIt2Z3qk7gGEYrFu3rtm2CRMmHHafp556ihUrVlBeXo7dbufZZ5/l2WefbdEuMDCQ55577rDH+mky5vvvv+eWW25pW/AiIiIiIiLSYb4sLOaRtD00HBhBEO/vx/0jh7Cjsoqv84pIraz2tN1WUcVdm3awICKPPwwfxMDgwA6Joa+/H339G5MgL504gV+u3Mjm0goqGhy8vSeL20cNbtfxTCYTlw5I4NIBCbgNA6vt4Hx85yfDnWOH8Nn+fP6ycSflDQ6K6hu4Zsl6npk+hhMGdsw5dQcmk4kAq4VKhxMfixmL2cRVQ/oxNyGa53dmsCK/mMzqOnZVVPOXTWnUu1zcmDKgq8MWkV7McDfeepqeGLP0Xiqx1QFeeumlZpOkDxs2jMmTJx92n0GDBvHFF18QHR19yDaRkZF89tlnzSZrb82IESOarb/77rvN5kMRERERERGRzlXtdPLYrr38aWe6JzkyLjSYN08Yz9TIcK4dkMTb0yewcOZkbh2SzNAmyZB1peVcvvoHFucXdXhcIT42/nnCGM+X//+l7eOGFT/w9LZ0vsktpMbZsmTW4ZhbGeliM5s5PzmOhWdMZ3LfcKBx/pVfrdjIxuLyYzyD7qXe1firnp/lYJIoOsCPP41P4eszT+R/M8d7tq8rKvN6fCIiItI+SpAco1dffZVf/epXnnWz2cyzzz7bpuHRU6dOZceOHdx///2MHj2agIAAAgICGDVqFPfddx87d+7kpJNOOuJxzjrrrGbrDoeDWbNm8be//Y3y8vJ2n5OIiIiIiIgc2eKiEi7fsIWbNqdy2fotfJhf6LnvvJi+/GtUCuE+zSftTgr057qBScyfPoFnxo8g/sBID7vbzR0bU3lxTyb1LleHzmER5efLef3igMb5QlYWlPDfnRncsnoz0z5Zyh/WbaO6lblF2quvvy8vnjSRuYmNFwI6DYP7120/5uN2F4Zh0OBuTJA43O5W/0ZToiI8y/VOlb8WERHp7lRi6wh27dpFZmamZ93hcFBWVsa2bdv4+OOPSU1N9dzn4+PD888/z+zZs9t8/PDwcB566CEeeuiho45x4sSJzJkzh8WLF3u2VVdXc/fdd/OnP/2Jk046iRNPPJEpU6YwceJEIiIiDnM0ERERERERORyXYfCvjExez847ZJtVpWXcuq2ecX3CGB0WwuiwEMKaJEtMJhMnR0cyLTKC+7fu5Mu8Igzg/3Zl8H+7MrCaTATbrFzZP4HrBiYdc8wPjk9hcGggL+/aT1H9wUnUHW6Dj/bnsaW0khdOHE9sO+cn+Skfi5l/TBvDjc4fWJFXTGUHJF66C5PJxIDgQPZW1bCnsoalecXMiotq1qa2SVLE7lYNGRERke5OCZIj+Pe//80zzzxz2DYmk4nTTz+dv/zlL0csh9VZXn75ZSZPnkxeXvMP6A0NDSxatIhFixZ5tg0aNIiZM2cya9YszjnnHEJDQ70droiIiIiISI/kNAzu2r6LFaWHL59U3OCguMHB+vJKz7Z+gf708fFp1q7K6SSjurbVfsoaHPzfrgwmRYQxOjzkmOL2sZi5dkh/rh7cj9zaenaWV7GqoIRPMvOodbrYW1XDVcvW88rMCcQH+h9TXxaziaemjeaSRd9T1WT7jrIqfOqqCfaxERvg12q5ru7u1pED+e13WwD466Y0pvWNwM/aWG6r3O7gF8sOlrsOttlaPYaISEdxG+DuwBGH3uLueSFLL6YSWx3gkksu4b777uuy5AhAQkIC33//PVOnTj1i2/T0dF566SWuvPJKYmNjufrqq8nIyPBClCIiIiIiIj3bS/uzD5scMQF9fXyIaOXH8f01dfxQVtHstruqBucRftz6Iq/wsPe3h9lkIiHQnznxfXlgfAofzplKUlBjQiS7po4rl65nYWYe9a5jKw8V4mPj3yeOI9B6cK6Om1b8wHlffccpC5dz0ifL+Can487LW+YmRDMxMgyA/dW1PLV1t+e+xzbtJLW8MSXUx9eH+8YN7YoQRUREpB2UIOkA7777LjNmzGDmzJmkp6d3WRxJSUmsXr2at99++4iTxP+orq6O1157jZSUFJ566qlOjlBERERERKRn+7yw+LD339w/kc+mjueraRNYOHkcfxubwhX94xkVGoy1lRETFhMMDApgRlTrpZCDrBZOju7TIbG3JikogNdPmkhycAAAeXX13LV2Gyd9upyHN+4gtazyCEc4tIEhQdw/IaXV+wrr7PxqxUb+/MMOGlw9pxSVyWTiwQnD8bU0/pzy2u5Mvsou4PvCUhbub6zoEOpj5bVZExkYEtSVoYqIiEgbqMTWETz99NM8/fTTnvW6ujpKSkrYvHkzH374IW+99RZ1dXUArFixgkmTJrFo0SImTpzYJfGaTCbmzZvHvHnz2L17N59//jnLly/nu+++a1F+qym73c7vf/97cnNzefLJJzs0JqdfAA7/gA495k+ZvDQ02/D1OXKjDmK2WY7cqAMY7RjX6PDxb3W5LdwW70xQ6PbSRIjtedyOiRfHnXbkRKCH43a14znnF9DqclsYXqr57O5BX+iPV+15j3A2eZ452/mc62289ZrgtddTwGzxzrVB7XldcDb5jOTs5M9L4n2G0zvvEa529OMMCGx1uS1MZu985nZaHF7p52j/PpcOHcJr2bme9RMiwhgRHEhadS1Jfn5cFh+D68B7T1RQMHEBPvw4S6XLMFqUQjGbTFgOtH86bS+f5zaOqjgxKoIz4/oyIjQYP4uFtszkYQo4upJO4QGBvHzGyfxx/XZ2VFR7tn9dXsfXm9JJCQ3i18MHMiKiscxXe15PJ4ZHse/A8rxRw6iuqGBPZTU7Doy0+Lykht0b0nhgwnASg5q/Dhp+3ilR5XC376eRfv6B3DN9Is9u3wPAw2nZAET0aUxk3ZSSTFJ0ND99JjuDvPS91YvvrSYv/Y2ctrbPZeNq8trmauPrnNOin8dERI5XJsNb3357qfT0dC655BI2bdrk2RYfH8+2bdsICwvrsrhak5uby/r161m2bBkfffQRe/fubbXdggULuPjii4+pr+zsbBITEwF44YUXiIyMPKbjiYiIiIiIiIh0huLiYq6//noAsrKySEhI6OKIRA6t6W9uN/w5jeDw+C6OqP2qynL43x8byxDq/5x0NZXYOkaDBg1i0aJFnhcmgJycHJ544okujKp1cXFxnHvuufz9739nz549fPXVV4wcObJFuz/+8Y+4vXTltYiIiIiIiIiIiIhIV9AYwg4QGRnJQw89xC9+8QvPtldeeYVHH320C6M6stNOO421a9dy5plnsnTpUs/2tLQ01q1bx5QpUzqkn4HffkhMUO8osWX1V4mtnVPOAGDYmi+wNdS1eV9vlb5Sia2j111LbO079UIA+i/6AFt9bZv3VYkt+VF7S2ztP+MSAPp9sQBrO55zvY1KbB299pbYyjrrMgASP5uPte74fc71Rt21xFbehT8DIPaDt7DW1rR5X2+V2HLUd+8SW+1lC/DedwjbUZbYOhy3YfBS2j7e3JPt2WY1m7gwOY4rB/cjxOfwfTr9Atg3t7FCQf+v3mvx3lrncvJ/W/bweVZ+i33PHRDPr0YPIvgIfRwrR21Dpx7/R7Vl3nmN9+Z7q81bJbYa2ldiq3DeVQD0fec1LG14nTPX1R91bCIi0rMpQdJBLrjgAq677jrPjwm5ubns37+ffv36dXFkh+fv789LL73E4MGDcbkO/rC8YsWKDkuQWOtrsVk69wOat76s2cxt/1B2rMztrIN7tI72w7OtoQ4fezsSJA7vPHa9LUHirR/5G/vqfgmSpmz1tdjq2v4jjtcSJF76cUWO3tG+R1jb+Zzrbbz3OufFBInVSwmSo3xdsNbVYmvHj9XS/Xnrc4nJcZTPudoarDXVR274Yz9e+sxt1HknQeKtv4/V8PVKPwA2OicZc3NSXwaaDR7auINSe+Pf5z9Fxby1KZWbhw/k54OT8GlDErq191Yb8MdhCYz1t/DwhlQqmvwQ/nJJCZ9s3ckfJ4/g3AHxnXdhXJ29c477E9Zq77zGd/R7686qapYUl5Jfb6fAbqfQ3oDDbTA2NJjpMZGcEBlOn86er9N+dN8nLbU1WKuP/DpnrffOc0BERLofJUg6SFhYGBEREZSUlHi25efnd/sECUBycjKTJk3i+++/92zLycnpwohERERERESkOzktIZoTovvwQto+Xtm9H7vLTUWDk79uSuON3Zn8fswQzkiMPuokxtn9Yjk9MZqCOjtfZxXwf9vSqXW6KKlv4PblG3k/PYtHpo2mX0jbJt2WY+c2DF7NzOE/GZm0lobNK7TzRWExAKNCg3l49FAGBOnvI+JNbreB24sXHHWUnhiz9F6ag6QT2WzeGWraEfr3799svbZW5R1ERERERETkoCCbld+OHMRXZ87ggv5x/JgKya6p4/bVm7lx+Q/UOo9+5LjVbCY+0J9rh/XnizNnMLdfjOe+lbnFnP7RUv61eTcNKnHa6aocTn67dQf/aiU5EmAx42du/nPS1ooq3tynCy1FRKTnUYKkg1RVVVFaWtpsW3R0dBdF0341Nc2H+kZGRnZRJCIiIiIiItKdxQb689epo/hg7jSmRUd4ti/LK+baJeupajj2MmkxAX7855RJPD97ErGBfgDYXW7+/sNOzvlkGTtKK465D2ldfr2d6zZuZXVpOQAm4Lp+CcyfNJalMyaz/MSpLJkxmf+OHcFlSXGe/Rq8WB5YRESkoyhB0kE+++yzZpOZRkVFERsb24URtZ1hGGzYsKHZtqSkpC6KRkRERERERHqC4eEhvHzyRP5z4jiCbY0VvDeVVPDE5l0d1secpBi+vmAW140YwI/T4Owur+bKL79nb0Xb59CRtsmrr+faH7ayt7Zxvskwm5V/jh7OzclJDAwMIMja+He2mc1MCAvlgoSDo3x8zPqJScTbDKPn3kS6C717dYC6ujoeeOCBZtvOPvtszF76cPDhhx+yf//+o97/7bffJjc3t9m2uXPnHmtYIiIiIiIi0suZTCZOie/LG6dMwt9iAeCjfbk4OnA0QaDNyn2TR/DxOTMZERECQKm9gWu+/p7C2voO60fgtcxcihoaAEjw8+PlcaOYGhF2yPZNR434WfQTk4iI9Dx692rirrvuYt26de3ap7S0lHPPPZdduw5eIWOxWLj99ts7OrxD+vjjjxkyZAi/+tWvSE1Nbde+S5Ys4eabb2627cQTT2wxJ4mIiIiIiIjIoQwLD+GU+CigsRTW7k4Y3TGiTyhvnn4Cw8IbkyTZ1XXcsWJjs2oOcmy2V1UBjWW1Xhg3ksQA/8O2r2+SIPHVCBIREemB9O7VxNdff83kyZOZMmUKTz31FJs2bcLhaFk71TAMdu7cySOPPMLQoUNZvHhxs/tvv/12Ro0a5a2wAWhoaOA///kPI0aMYPLkyTz55JOsWbOm1fgdDgfLly/n6quvZvbs2VRWVnrus1gsPPPMM94MXURERERERHqBkRGhnuUXd2R0SuIixNfGK6dNITagcV6SlbnFLM4s6PB+jkeGYZBeXQtAvJ8fkb4+R9zH7jqYIFGJLRER6YmsXR1Ad7R27VrWrl0LgI+PD/Hx8YSFheHj40NVVRVZWVlUHbiq4qeuvvpqHn/8cW+G28K6des8I2F8fHyIjo4mMjISq9VKRUUFGRkZrSZOLBYLr732GuPGjfN2yCIiIiIiItLDnZkUwz+3pVPrdPFpZj5JwQH8cuLoDu+nb4Aff5wygl8vaZxL80/fbWFs33Ci/H07vK/jiclkItzHRoG9gbz6egrq7UT7tf0xtWuSdhGvMwwDw93zRtFp5J90J0rvH0FDQwMZGRls3LiRNWvWkJqa2mpyJCQkhH//+9+8/PLLXpt75EdjxowhODi41fsaGhrIyspi48aNrFu3jl27drWaHBk4cCBffPEFP/vZzzo7XBEREREREemFYgL8eHDicM/6v7fv5dJF33dKX6f3i2XmgZJehXV2bl/2A64e+CNhd3NuTF8AXMCb2bmHbwwkBvgzKCgQgJf2ZvGHzTuobOU3BxERke5KCZIm3n77bR5//HHmzJlDSEjIEdubTCZGjx7NE088QXp6OjfffDMmk8kLkTZ3++23U1RUxMKFC7nlllsYPXp0m5I0FouFk08+mRdffJFt27Zx6qmneiFaERERERER6a3O7RfLDSnJnvUS+8Efy/+wZhtLcgo7JJFhMpl44sRxnlEjq/OKmffFKtLKKtldXsVHe7L5PCNXSZN2ujAuBtuB3zXeyc5jY3nlYdsnBwUwNTLMs/55biH/3LWvEyMUERHpWCqx1URKSgopKSncdddduN1udu/eTXp6OpmZmVRWVuJwOAgODiY0NJT+/fszfvz4NiVSvMHX15ezzz6bs88+G4Dq6mrS0tJIT0+nqKjIM+olJCSEsLAwhg4dysiRI/Hz8+v02AKiwggMDuj0frzBUVPntb68NUTSZG57Uq9pW5PZ1K59zVZLu+Lq7gyvDR/3Xh7ba8NyG5xtbmq2mJotN10/Ikvves65nb2vZEF7XkOORXue202Herd3uHpPHNp+ON76+3iTt/4feeu9Vbo/b33+cbva/vpzLM85Vzvew3sCq693vg5X5bVenrkz+ATavNJPn0GRh73/nsnDmd0vhld2ZLCh5uDzZnVBCQtTdxEb6MeJcVFMiApnfN9wkkMCW73YMCAqtMW2pvoB/z1vJpfMX4zLMNhQWMYZHy1r1uaRUyZyw8Rhhz1OYLR3Xntt/qVe6adsf9lR7xvl68Mv+yfyr4xM3MDvtu3g+bEjGXxglMhPmcwmrhyQSLG9gS/zigDYUFre4e9n7fr/6nOwrdXH2qZ9rW7X0YQlIiK9gBIkh2A2mxk6dChDhw7t6lCOSlBQEBMmTGDChAldHYqIiIiIiIgcZyZFRzApOoJcw0LJT+7Lq6nn3d1ZvLs7C4BwXxvjDiRLToqPYnjE4RMjTZ2QFM2Cy+bw+y+/J6O8ZTLqs12ZR0yQSHNXJsazobyS78vKqXK6uGVLKi+OG0WCf+sXWMb6+/HA6KF8nVeEG7Aq2S/iNYZh4O6B83loDhLpTlRiS0REREREREQ6RVSTH9WfmD6aWQl9sf5ktEiZ3cG32YU8+UMa5yxcyT2rNlNub2hzHyckRfPttWfxuxNGMSEukrOGJBEZ0Njvxrxi6p0aHdAeVrOJv40YysjgIABKGhz8evN2ig/zN1laUMKP4zTHhrc9wSUiItLVlCARERERERERkU53QmwUL8yexKafzeXtuVO5c/xQZif0Jdy3eWmwBenZXPDpKrIra9p8bH+blbtmjOGzK07nxfNnMntAHAB2l5tn12zv0PM4HgRYLTw9OoUBAf4A5NTb+c2WVKocrZfaW5iT71meG9vXKzGKiIh0BCVIRERERERERMRr/K0WJsf04aZRg3h+9iTWXXYqi88/iT9MTCHI1lgJPLO6lgve/prMiuqj6uOacUOwHBip8tTqrTy/fgcur80j2DuE2Ww8O2Y4sb6+AOyuqeX2bTuodzUfkZNZU8vqosZ5T+L8/RjfjhJpIiIiXU1zkIhIh8qtquWd1Aw+2ZVJdKA/z54+laiA1mvVioiIiIiImEwmkkODuD40iDP7x3LV12vIqKwhq6KGC99exAeXn0pSaFC7jjkuNpLfTx/F31ZuwW0Y3P/tBp5avZX+YcHUOZ3UNDipaXDgZ7WS0jeMGyelcHJynGd/wzBanTj+eNPX15dnxwzn+o1bKXM42VRRxR9Sd/HEiGGeuUbe3Z/raX9pvzjMetxEvMZwGxjunjefR0+MWXovjSARkQ7z0ubdTH3lM55as530sipWZRfys4+WUV7f9vrBIiIiIiJy/IoL9OetuVMZEBIIQHZlDRe8vYj95e0fSXLb1JFcP2EoP/5cX17fwKb8EtKKK8iurKGsvoG86lq+3ZvLZfO/4bL5i/nL8o2c8tKnDPrHfB5Z+gM1DY4OPLueqV+AP/8cPZxAiwWAFSVl3L09jRqnC6fbzUfZjeW1fMwmLkiM6cpQRURE2k0JEhHpEJsLSnlo+SbcRvOrAHYUV3Dlx8up1hcLERERERFpg74Bfrx1+lQGR4QAkFNZw4Vvf82+sqp2HcdiNvPn2ZP45OdzOX1Qgmfi9gCblahAP/qHBRHq6+NpvzQjj6dXb2N7YRnVDQ6e/X47F769iNI6e8edXA81LDiIJ0cOw3pgdMiyklKu/WELOyurqTwwL8mosBDCfXwOdxgREZFuRyW2RKRDfLIrE9eB5Mhlw5O5eFg/bv7iO4rr7GwsKOX6z1fz6jkz8D1w1ZGIiIiIiMihRPn78cHlp3LRO4vZVVJBTlUtF76ziPfnnUpyeHC7jjUpPopXLjwZALdhNCsB5TYMPty5j8eWbSSnsrbFvpvySjj/za94+cKTGXggYXO8mhQeyj9GDePe1F1UOV3sra3juu83ee7PVyJJxOtUYkvk2GkEiYh0iMtHDPAsz0jsy7SEvrx1wUmE+toAWJVTxG8Xr8Mw9CYoIiIiIiJHFhXoz/vz5jA0snHS79yqWi58exF7SyuP+pg/nR/DbDJx8YgBfPfL83lv3hz+NncKn115OkuvO5voIH8A0oormP3yp/xl+Ube2LybNzbv5q3N6WzKK2kxgr63mxYRzqvjR5Mc0PjY1LkOTnx/fD0SIiLSWyhBIiIdYnlWgWf5rm/W8/Lm3fhazDx3xgme7Z+mZ7OpoLQrwhMRERERkR4oKtCf9y47lZSoMADyqhtHkuw5hiRJa3ytFk7sH8vV44YwMT6KlKhwPvn5XM+okTqHi6dXb+P3X3zP77/4ntu/+I65r37Oma990e7SXz1dUoA/L48fxcmREZ5tvmYzD4wa0oVRiYiIHB2V2BKRDnHt6EFsLSxjwY591Dld/GnZRoBmJbUCrBYSD0y2KCIiIiIi0hZRgX4suGwOl85fTGpROfnVdVz49iLemzeHwX1CO63f/uHBLLrmTB74dgOvb9rdapuNeSVM+e9H+FkthPv7cs24Ifz2hFGdFlN3EWS18sSIoWyx17K6qIxTY6MYHtq+0mciIiLdgRIkItIhTCYTf5k1gcKaOpZlHhxNYne5AAj1tfHq2TM8EyOKiIiIiIi0VWTAgSTJu9+wvbCMgpo6LnpnEe/NO5UhnZgkCfSx8eTpU7ly7GC2F5RhHCgkVd3g5KUNaewrbxw9Uu90kVdVy1+Wb+KqcUOI8PfttJi6C5PJxKQ+4UzqE97VoYgct9xG462n6YkxS++lBImIdBg/q4U3zpvJ1qIyVmUVsjKrkLW5RUQH+vO/M6YxrBO/uIiIiIiISO/WJ+DgSJJthWUU1tQ3Jkkum8PQyLBO7XtMTB/GxPRptu3nowfxxMrNrMosYGuTUsJb8ks4OTmuU+MRERGRjqEEiYh0KJPJxOi+EYzuG8HNE4YBNE7MrssDRERERETkGEX4+7Lgsjlc9u43bCkopaimnoveWcx78+YwrJOTJD8V5GvjodkTAfjH6q38dfkmAAqr67wah4iIiBw9TdIuIp3OZDJ1dQgiIiIiItJLhPv78u5lsxkd3ThJeHFt40iSHUVlXRZTtd3hWb7rqzWkl1R0WSwiIiLSdkqQiIiIiIiIiEiPEubXOJJk7IGyVyW1di56ZzGphV2TJBkZfXAejjqni58vWEJhjUaSiEjnMgwDw90Db4aqjEj3oQSJiIiIiIiIiPQ4oX4+zL90NuNjIwEorbNz8fzFbO+CJMn5Kf359zkz6B8WDMC+8ioufOtrCqprvR6LiIiItJ0SJNLpfvXpSm79fDV3L1rLs2u2sym/pKtD8rr8mjp+9fUa5n2ygruWbOD1bXupdTi7OiwREREREZEeLdTPh3cuPYUJcU2SJO8sajZpujeYTCYuGpHM+5efSnxIAAC7Syo5/82vya2s8WosIiIi0nZKkEinW5NTxILUDF7bvJtHV2zijDe+5FefriSv6vi4ksbpdvOzhSv5dE8Oq3OKeGfnfu5bsYkT3/yKF7ekU+90dXWIIiIiIiIiPVaIrw/vXHIKEw8kScrqG7hk/mK2dMHFeQmhgXz4s9NIDA0EYG9ZFee/9TXZFUqSiIh0tfLyct5//31uueUWZsyYQXR0ND4+PgQHB9O/f38uuOAC/vOf/1BdXd3uY2dkZHDfffcxdepUoqOj8fX1JT4+nunTp/PEE0+Qn5/f5mO98sormEymdt/q6+vbHbcoQSJd5MOd+5nx0kIeXb6R1ZkFvTpJsDqniPSyqhbbi+rsPLRqC3PmL2ZzoXevbhIREREREelNgn19eOeS2UyOjwKgvL6BS+Z/w+YuSJL0Cwvmo5/NpV9YEAD7y6u54K2vqWxwHGFPEZH2MQyjx968aefOnZx99tn07duXiy++mH/961+sWrWKwsJCHA4H1dXV7N+/n48++ohf/epXJCQk8Morr7Tp2C6Xi7vvvpuhQ4fy2GOPsWbNGgoLC2loaCA3N5fVq1dz1113MWzYMF5//fXOPVE5KtauDkB6v0VXnoGfzUqVvYH1ucX84/ttlNXZqXU4eXZtKs+uTcXPamFiXCQnJEYzIymGsTF9sFnalr+rczjJKK9iSJ9QrObul/P776bdnuWbxw3h1P6xvLglnc/25ACQWVnDhR8u4w9TR3Hd6IGYTKauClVERERERKTHCvK18dbFp/Dz979lTXYRFfYGLp3/De9cegrjDsxT4i0JoYF8/PO5XPjW1+wtqyKzopqH1mzn7yeO9WocIiIC27Zt47PPPmu2zWKxMGjQIKKjo3G5XOzYsYPS0sYLmCsqKrj22mvZs2cPjzzyyCGP63a7ufjii/noo48820wmEyNGjCAqKori4mK2bduGYRhUVFRw1VVXUVNTw0033dTm2MPDw5k8eXKb2losljYfVw5SgkQ6XUSAH3HBjTVYx8VGcvHwZJ5cvYVXNu3GfSBjXO90sTKzgJWZBfxt1RYCbFYmx0cxMS6SQB8bVrOJ8roGimrrKT5wK6mzYwZ2l1YCEBccwPnD+pEUGkTfQH9igvzpG9h4a2uypaPZXS5W5RR61n8+PJmkkEAmxvQhtbicPyzbyMbCMhxug4dXb6GqwcHtk1K6JFYREREREZGezpMkeW8J32cXUmFv4LJ3v+GdS2YzPs67SZLY4AAWzDuVWS8tpNLu4KO9OZyWFMPcfjFejUNERBpZrVbOPvtsrrnmGmbNmkVISIjnPsMw+OSTT/j1r39NTk7jRc1//vOfmTx5Muecc06rx3v00UebJUfOP/98nnnmGZKSkjzbsrOz+e1vf8v7778PwG9+8xvGjBnDtGnT2hTz6NGj+fLLL9t7qtIOSpCI14X7+/Lo7En8ZsoIlu/PZ3VmASsz88lpMidJrcPJ0n15LN2X1+bj5lbV8u91O1q9r4+/LwkhgcwZEM9144cS7u97zOfRFmZMBNlsnqHUV3+2ilvGD2NO/xiGR4bx3vkn8be12z2jTF7ams4t44d2WUJHRERERESkpwv0sfHmxadw5ftLWJ1VQKXdwWXvfsPfT5/KOUOTvDpqPyE0kEfnTOI3n60G4I/fb2VC33AivfSdVER6N8MNbrd3y1V1BMPt3f5sNhvXX389f/rTn5olL5oymUycd955jB8/nsmTJ3vmDLn33ntbTZAUFxfz+OOPe9bPP/983n//fcw/qW6TkJDAggULuOSSS3j//fdxOp3ceeedrFy5sgPPUI6FfoWVLhMTFMClIwbw9BnTWPfL8/n++nP5+9wpXJjSn+hA/yPuH+TT9vxeSZ2dzQWl/P27rcx57XM25BYfS+htZrOYefGMaYT5+gCwp7ya279dz8RXP+f2b9azqbCM305MYUJ0BAAVdgff5RZ5JTYREREREZHeKtDHyusXzWJ6UjQAVQ0OfvnJCi5f8C17D1Qh8JZLRg7gjMGJAJTWN/DH77Z6vf6+iMjx7LzzzuN///vfIZMjTSUmJvLQQw951rdt28aePXtatHvnnXeoqakBGkemPPvssy2SIz8ymUw8++yz+Pg0/j64atUqli5dehRnIp1BI0ikWzCZTPQLC6ZfWDA/GzUIwzDYU1bF7pIKHC43TsNNqK8PfQL8iArwIzLAD1+rhZLaetKKKxjRN5w6p5PthWUU1NRRUF1HYU0d+Qf+LaiuI7eqFoPGkSZnv/UVUxP6khgSSFxIACmRYQyLDGdgRHCHz2MyJS6Sjy88mVu/WcfmwjIA7C437+/K5P1dmS3a1/XiCetFRERERES85cckyS2fruLz3VkALN2Xx8kvf8otU0bwmykj8Ld1/s8iJpOJJ06fwpqsAkrrG1iUVcCHe3O4cGBCp/ctIiLtd84553DjjTd61nfu3MnAgQObtVmyZIlnecaMGcTHxx/2mDExMcyaNYuvvvoKgPfee4+TTz6544KWo6YEiXS64JSBhEaEtnu/CQduhxMKDACMhgYAhhymbUZRGb986WNWH/hg/H12Id//pI2P1cLQ2EhGxPdtvCX0ZWR8X+LCgzGZTNgLj27kyajEaL4dOYDv9uXx8dY9LNi8m/I6u+f++NAgciqq+eW0UVwwYyxmswlnTd1R9dVe9oqaNrc1mgzbNNxGs/UjMXmpbJjZS8PlXfYG7/TT4PRKP0C7/p7Hwu1qez9N27pdRvv29VKy0WT2znPObPXO/yFXg/eStN76G5mt3pmozlt/I2/9X/UWbz1uAG6nd8byt+d1oWmZF5PJ1K59vfVc8NbrnLf0tv9DAGZL2/9G5iZ/T7PZ1L59/W3tiutouRze+b/qtHvnc5ZPoHceN4CGGodX+inNKGlzW1fQwc/N5VllWKqr2r5vBz0X/jFxBGfFRPHnDank1dbT4HLz1OqtvLdlD3+aOJy5KUe+ovhYhQAPjU/hN6s3A/DQmu1MDAslNsCvw/sy3N6rXWOvqvdKP+35POe0Hfy/7WxwQhv+rzu9+L1LRLq/iIiIZuuVlS1HHu7fv9+zPHr06DYdd/To0Z4EySeffMKzzz57DFFKR1GCRI4byVHhfHHHVTz5+UpeX7WZfcXlLdo0OF1szSpga1ZBs+3hAX6MSOjLsIgQhkdHkBLTh5ToCEL8fNrcv8lk4oTkOE5IjuPBM6axcNtePt62hxq7gysmDqNfRAiTkjRZn4iIiIiISEcymUycmhjN9Ng+/GvbHl7ekYHTMMisruWGpes5IzOXB6aPJi4ooFPjODUhmvP6xfLx/jyqHU7uW7eNF2ZO8NpFXiLS+xiG0SNL9nX3mJsmPwCioqJatKmoqPAsBwcHt+m4TSeFz8rKorS0tEUyRrxPCRI5rlgtZu45Zyb3nDOToqoaiqtq2VtYyrbsQrZnF7I9p5DdBSW4fnJlYVltPSt3ZfLT6ZMSw4IZHhPBiAMJk+ExfRgUGYrNcvirW/xtVi4dN4RLxx1uzIuIiIiIiIh0lACrlTvHDuWC5DgeXJfK2sJSAL7Ym8uyzAJun5TCL0YNwtaJo9/vGzeMNYWl5NfZWV1QypNbdnHXmKGd1p+ISHeXl5fX7n0SEjq3ROEHH3zgWbZarUyY0LLGTdOkSFVV20ZH/nQkSmpqKjNmzDjsPnv37uXcc8/lhx9+oKioCH9/fyIjI5k4cSJz587l8ssvx8+v40cjHk+UIJHjVlRwIFHBgaTERXHW2IMfSOsdTtLyitmeczBpsj2nkNyyli92WeVVZJVX8dXOg5llH4uZwVHhjI6L5MzhycwenIifF+raioiIiIiIyJENCg3m9dmT+XhfLo9v3ElJfQO1ThePfreNBTszeXTmWKbERXZK3yE+Nh6bPJLrl2/AbcBLafuJ8vPl2qH9O6U/EZHubvLkye3epzNHoNTU1DQrfTV37lzCw8NbtEtISGDjxo0AbN26tU3H/mm7jIyMIyZIsrKyyMrK8qw3NDRQUVHBnj17mD9/Pvfeey/PPPMMl156aZtikJb0q63IT/jZrIxJimHMT8pdlVbXsXn7brbnl5CaX0pqQQk7Ckqptjev89vgcrM9v4Tt+SW8/UMawb4+nDm8PxeOHsRJAxPw8VItfBEREREREWmdyWTi/OR4ZsX35Z879vL69r0YwK6ySi75eDkXD03i3qkjieyEOUJOiO7DA+OH88CGVAAe37yLPn4+nNsvrsP7EhGR9rnjjjvIyckBGt8rHn744VbbzZgxg4ULFwKwcuVKcnNziYs79Ot4YWFhs4ndoW0jT8xmMwMHDiQmJgar1Up+fj5paWm4D8w3lZ+fz2WXXcbOnTu5//7723SO0pwSJCJtFBHk75lD5EeGYZBVXuVJmKTml5KaX0J6cQXOAy9UVfYG5m/cxfyNu4gNCeTv583k9JT+XXQWIiIiIiIi8qNQHxt/njmWS4b1497lG9laVA7Ae2mZfJ2Rx91TR/CzlGQs5o6dJ+SygQkU1dt5dvseAO5es42iugZ+MbQfJs1JIiJtZLgNDHf3ns+jNU1jXrt2LbGxsV0YzUFvvvkmzz33nGf9d7/7HePHj2+17aWXXsq9996Ly+XC4XBw6623smDBglZfww3D4NZbb8VutzfbXl1d3eqxrVYrF1xwAVdddRVz5swhKCio2f2lpaU8//zzPPLII9TW1gLwwAMPMGTIEObNm9eucxYlSESOiclkIik8hKTwkGZJD7vTxYq9OXy4JZ1Pt2dQZW8AIK+yhp+9/gVXTBzG38+becS5SkRERERERKTzjekbzicXzuLN1L38bU0qlQ0OKhsc3Ld8E89uSOPioUlcMqwf/UODjnywNvr18AGU1Nt5e082BvDEll3srqzm4QnD8enEeVBERLqT2NjYTp9TpC1WrFjBdddd51mfMGECjz322CHb9+/fn1/84hf873//A+D999/n4osv5umnnyYxMdHTLicnh9tvv50FCxa0OIbD4WixDeCKK67giiuuOGTfERER3HPPPZx55pmcdNJJlJeXA42jX84//3zNSdJOescV6QS+VgtzhiTxr4tPYdd91/Dmlacza/DBF8c31u/khvmLcbhcXRiliIiIiIiI/MhiNnHVyIEsufxULhyS5NmeV1PHP39IY+ZbX3PJR8t5Zv0OFu/LI7+m7pjq4JtMJv40PoVbRgz0bPtoXy5XLlnH7orWryoWEZGOt3nzZs455xzPCI8BAwawcOFCfHx8Drvf008/zdixYz3rH3zwAf369WP06NHMnj2bMWPGkJSU5EmO3Hbbbc32Dw0NPaa4R48ezX//+1/Pek5OTrMJ5qVtlCAR6WS+VgtnpCTz3jVn8c+LZuF7YA6ST7bt5fp3lCQRERERERHpTqIC/Hh69kQWnDeTU/rF0LS61pq8Yv6+bge/+OI7Jr/2BRNe/ZyrPl3F499v49M92eyrqG5X0sRsMnHLiIE8PW00fgdGjWwureD8r7/jr5vSqHY4O/r0RESkibS0NE477TQqKioAiIuLY9GiRW0q+xUQEMCyZcs4//zzPdsMw2Dr1q18++23bNmyBbfbjdls5u677+a+++5rtn9YWNgxx3/JJZeQnJzsWV+0aNExH/N4oxJbIl5iMpn4+YRhRAcHcOUbX2J3uli4vTFJ8sK8OSq3JSIiIiIi0o1MiYtkSlwk+TV1fLArkwU797OnvPnIjuI6O0uzCliaVeDZFuxjZURk2IFbKKMiwxgYHnzYvk5PjCExKIDfrt5MVk0dLsPglV37+Swzj9tGDuLcfnEquyUiLfSGOUi6UkZGBnPmzKGwsBCAyMhIFi1axIABA9p8jJCQED788ENWrVrFa6+9xvLly8nNzaWhoYH4+HhmzZrFTTfdxIQJE9i5c2ezfZOSkg5x1LYzmUycdNJJZGRkALBr165jPubxRgkSES+bMySJN644nSuUJBEREREREen2YgL9+dW4odw8dggZFdVsKypna3E524sr2F5cTll9Q7P2VQ1Ovs8t5vvcYs82X4uZoaFBxAT44TbAz2ImOTiQcZFhTOsbgclkYkR4CJ+efgIv7NzH8zszsLvcFNU38Mf1qTyzbQ9XD0nisgEJBPvYvP0QiIj0OtnZ2cyePZvs7GygMdHx5ZdfMnz48KM63vTp05k+ffph26SmpnqWzWbzISeAb6+mo12Ki4sP01JaowSJSBeY3UqS5Lp3FvHivFOVJOmmfhwmv7WonJFRYV0bjIiIiIiIeJ3JZGJAWDADwoI598Ack4ZhkFtdx/bicrYVl7OtqDFxkldT12xfu8vNltJKtpRWtjjuGYnRPDJxBEE2K74WC78eMZDz+sfx101pLM5pvKq5qN7Ok1t285/UvVw2MIGrB/cjOkCT8IqIHI2CggLmzJnjGXUREBDAZ599xoQJEzq133Xr1nmWR4wYQVBQUIcct7a21rMcEBDQIcc8nihBItJFfpok+XR7BjfMX8zLl5+GyWQ68gHEa+wuFz//eDlzB8Tz8MrNDOsTyj9njWdweEhXhyYiIiIiIl3IZDIRHxxAfHAApyXHebaX1NlbJE0yDjHx+hdZBaSWVfHMCWMYFtZYiish0J9np49lY3E5L6XtY3FOIQZQ43TxUtp+Xt+dydlJsVw3tD+DQjvmBzYRkeNBaWkpp556KmlpaQD4+vry0UcfMWPGjE7v+7333vMsz5s3r8OO23RkSt++fTvsuMcLJUhEutDsIUm8eeUZXPH6F9Q7XXyybS+rMnKZMSC+q0OTJj5Ky2RNbjFrDgyR31lSwU2L17Ho4lMwK5klIiIiIiI/0cffl5mJ0cxMjPZsK8wvp8rhxGIyUdng4Ificp7Ysosqh5P91bVcuOg7zkiM4aaUAQw+kPQYFxnGPyPHklFVw8tp+/loXy4NbjcOt8GH+3L5ZH8ef540nAv66zukyPHIjYHb6B7zebSHm66JubKykrlz57J161YArFYr7777Lqeeemqn9/3hhx+Snp7u6ffaa6/tkOPm5uayfPlyz/oJJ5zQIcc9nmiGL5EudsrgRJ44b6ZnfcGm3V0YjbSmsLa+xbY95dWU/qTWsIiIiIiIyKEE2azEBvjR19+XQaFBXDowgfdPncrwAxO4uw34LDOfC77+jld37W+2b3JwIA9PHM63Z5/ITSnJhNgar3d1GQb3rdvO55n5Xj8fEZGepLa2lrPOOov169cDjXOAvP7665x77rmd3ndBQQG33367Z/2WW25pNm/I0TIMg9tuuw273e7Zdt555x3zcY83SpCIdAMXjBpI0IGJ9j7etod6h7OLI5KmLhzaj5hA/2bbRkaGEu7r00URiYiIiIhIb5AUFMDbp0zm9lGDCPdt/E7oNAz+simN7wtKWrSP9PPlt6MG8+3ZM7lsQALQmFj53fdbuH75BnZVVHk1fhGRnsBut3PeeeexcuVKoLE84gsvvHDMZa527drVbPRGa7Zv386cOXPYv78x8Z2UlMSf//znQ7Z/7bXXeOSRRygpafke0FR1dTVXX311s7JdF1xwAWPHjm37CQigElsi3UKAj42zRyTzzsZdVNY3cNOCb7j3xLEMiNAcF91BfHAAS34+lzW5xZTV2/G3Wjk5tg8Ws8priYiIiIjIsfG1WLgxZQBXDe7HU1t38/ruTACe37mPqdF9Wt0nyGblgQkp2N1uPtqXC8DK/BJ+KF7Lq2NH0j/Av9X9RKR3MdwGhrvnldjydszPPPMMixcv9qyHhYUxf/585s+f36b9r7jiCq644ooW2/fu3csZZ5zB4MGDOeecc5g4cSKxsbE4nU6ysrL44osv+Oijj3A4HABERkby+eefExgYeMi+SktLuf/++3nkkUc45ZRTmD59OsOHDyciIgKLxUJBQQGrVq3ijTfeaJZESU5O5rnnnmvrQyJNKEEi0k38esZYFmzejctt8Mm2vXyybS/npfTnwTmTiA9p+cJZVmcnxNeGxayBYN4Q5GNjdv+Dwx9ddpXXEhERERGRjuNvtXDPmKEszS0iq6aO1QUlvLAzg4uS41sdvW42mXhs0gim9A3nma3p5NfZqXW6eDc3n7sGJXfBGYiIdE+1tbXN1svKyvjqq6/avP/UqVMPe//u3bt56qmnDttmyJAhLFiwgBEjRrSpT4fDwVdffdWmOCdNmsT8+fM1QftR0i+rIt3EiNg+PH/pHE+pLYCPd+xj8r/e54r5i3ln825Ka+tJLSzj1BcXMvSpt0n5xzu8tH5nF0YtIiIiIiIiHcViNnHl4CTP+pNbdjPt46XM/Xwlj27cyf6q5j/ymU0mLugfz/zZUzzb0muatxERkc6RlJTE5MmTMZkOXWEkMTGRhx9+mC1btjB69OgjHnPSpEmcfvrpBAUFHbHtyJEjee6551i1ahXJyUqMHy2NIBHpRi4YPYiTBiXwxvodPLt8E8W19Tjcbr5Oz+br9OwW7cvrG/jjojVcOCKZMH/fLohYREREREREOtK8gYmsKihhWV6xZ9v+6lpe353JG7szeXzKSM7tF9dsn+gAP6L8fCiqb2BfbZ23QxYR6dYefPBBHnzwwQ4/7vDhw1mzZg3l5eVs3LiRnJwcCgoKcLvdxMbGMnToUCZOnHjYBMpPTZ8+nS+++AK3201aWhppaWnk5ORQWVmJYRiEhoYSGxvL1KlTiYuLO/IB5YiUIBHpZiIC/Lh15jguH57Mf77fzttbdlNQfegPuE63QYW9QQkSERERERGRXsDHYua5GePYXlbFZ5l5/FBcTmp5JQ63gQH8ZVMapyfE4GNpXhRkYEgQRfWllDmcrC2rYHJ4aNecgIh4jWEYGEYPnIOkB8Z8OGFhYcyaNatDj2k2m0lJSSElJaVDjystqcSWSDcV7u/LvbPGs/nWS/ns6jP5+ZjBWEwm/K0WhkaGNWvb2hwlIiIiIiIi0jOZTCZGRoRw99ihzJ8zhRXnnMyMmMYJ28vsDhblFLTYZ0jowXIsv966g8d3Z/S6HyFFREQ6mhIkIt2c2WRiUkJf/nH2dDbdegnbb5/Hp1efQUxQgKfN5e8sZk1WAZX1DfoALCIiIiIi0suE+dq4YdjB+vKv7NqP0+1u1uZngxIJ9TlYKOS9vAIWFhR5LUYREZGeSCW2RHqQ6CZJkefOn8klb32Nw+1mWUYuyzJyAbCaTUT4+xEbHMD4+CimJUVzxpAkfK2WrgpbREREREREjtHkqHAGhQSSXlnD1tJKntyym3vGDvXc3z84kE/nTue1zen8LzMHgOf3Z3NKZARBVv38IyIi0hqNIBHpoU7oF8O7PzuVyAC/ZtudboPCmjo255fw8oad/PLDZUz813u8uWlXF0UqIiIiIiIix8pkMvHwxBFYD0z2+8qu/fxzW3qzKgJR/r78sn8i0yPCACiwN/BA2h7cqjQg0isZbgN3D7wZbr0mSfehBIlIDza9Xyxrf30R/3fODC4aOYCZybGMjI4gLjgAU5N2BdV13P7Zaj5P299lsYqIiIiIiMixGR8Zxh/HD/Os/yt1L//cvqdFqeU7BvYn5EAVgeUlZawoLfNqnCIiIj2FxlhKpytdtw3fIP+uDqNDOGrt3uurztHmtqf6+nPqsIHNtlU7nGwqKeedvdl8k9tYd/auT1czwgFBtoP/9dvTjzPw4KR/FVmlWGuq27xveP/INrc9FlZ/X6/0Y/ZSyTKztcEr/QC4Gpxe6cfkdLW5rdt6MI9vsZqx2LpfXt/djvM5Fiaz6ciNOoDFx3vl+Ay3d/6e3ro6qbddBdXbzgfAbO1+ryHifd56PfWm9nwuMTX5f2Cymtu1r7fe87zFW69ztgCbV/oBMNu88z5ur2r7Z1SX+eBnzIZaJ5aatn/mzP0ht11xHS2/MO98hwhNCO2Q41yWnIDd6eYvm9MA+HfqXjKrarl37FDCfX2ISO5DBPBYgJlblv0AwFeVFVwwcXCLY7kNg2+zChkYFkRySGC7Y2mo8c73lerCqja3NZzuZsttee1yu3rX65uIiLSdviWK9FJBNiszYiL557QxnBjTB4DCejv/2JbexZGJiIiIiIjIsbhqcBL3NZl/5NOsfM5d9B2bSso9205NiqbvgQvIlmQXkl9T3+I493+/jRuXrOesT5azrqC00+MWERHpbpQgEenlTCYTD4xLwd/S+N/97T1ZbGzyoVlERERERER6nisGJfHE5JGEHKgQUFzfwE2rNlHV0FglwGo2c8HABACchsHvVm6koLYxSeI2DF7fuY+3d2UCYHe5ueGbdewqa/tIDRHpesaB+Tx64k2ku1CCROQ4EB/oz60jBgFgAPdvSKXB7T78TiIiIiIiItKtnZ0Uy8LTTiDmwEiRigYHW0oqPPffMGIAEX4+AKzJL+W0j5Zx47frOXfhSh5cs73ZsaocTn67YiN2lZsSEZHjiBIkIseJKwcnMTI8BID0yhpe2LmvawMSERERERGRY9bX35cTovt41gObzC0U7ufD/80cR4RvY5Kk2uFkcVYBO8oqPW0uGBjP0PBgANLKqvj7D2leilxERKTrKUEicpywmEw8PGE4FlPjxKT/TN3DXzenUd7Q9knaRUREREREpPtJr6j2LA8OC25237TYSL4+/yQuHpSA2XRw++DQIF6eM5knZ4zlHyeOw8fc+BPRKzv2kVlV65W4ReTYGAYYhtEDb139yIkcZO3qAETEe1LCgrl+aH/+uzMDgFd3ZzJ/TzbnJcZwZXICSYEBXRyhiIiIiIiItFelw+lZrne5CLQ1/7kn3M+Hx6eP4Y+ThlPndOFvtRBks2I6cAHd0PBgbh41kGc278ZlGDy7eTd/mzHGq+cgIiLSFTSCROQ4c+uIgdwzZgi2A5cO1bvdzN+fyzlL13Lb+q18mJVHfl19F0cpIiIiIiIibTUtOsKz/Lvlm3AeYs7JYB8bfQP8CPaxeZIjP7p2eDIhPo2JlU8ycqhtknQRERHprZQgETnOmE0mrh7cjy/mTufKQUn4WxpfBgxgSUEJD2xJ44wl33Pvph3sqarp2mBFRERERETkiH45NJkIXxsAK/OKeeIo5hEJ9rFxRr9YABxuo9lk7yIiIr2VEiQix6n4QH/uHTuURbOn8dthA+h7YNI+AJcBn+YUcMHydby9L7sLoxQREREREZEjiQnw4+mpY7AeGBXywva9fLI3p93HmdD34EiUo9lfRLzLMNwY7h54M1of5SbSFZQgETnOhdhs/GJgEl+cMpWXp43ll4P6EdqkXu0TqXvYUVHVhRGKiIiIiIjIkUyKCueeMUM96/es3sK2do4CmZMYjb/VAsD83Vm8syuzQ2MUERHpbpQgEREAbGYzEyLCuGVoMl+dMpVLkuIAcBoG927agd3l6uIIRURERERE5HB+NjCBSwYlAGB3ubl5yQZK6u1t3j/U18ZtYwZ71v/43Va+3J/X4XGKiIh0F0qQiEgLAVYr94wYxNCQQAD2VNfy7K59XRuUiIiIiIiIHJbJZOKhqSMZGxkGQG5NHb9Z9gOOQ0za3prrRwzguuHJQONclQ+t2X7ISd9FRER6OiVIRKRVNrOZR8ekYDM31rB9bW8Wm8squzgqERERERERORxfi4V/nTyBKH9fANbkl/KX9TvavL/JZOIPE1OYdGA+ksI6O1uKNWG7SHfkdhs99ibSXShBIiKHNCQkiFuGHLxy6InU9K4NSERERERERI4oJtCPf5083nPB26s79vFeelab9zeZTMQF+XnWrQeOIyIi0tsoQSIih3XVgETGR4QCUNCO2rUiIiIiIiLSdSb0jeDBKSM963/6bhubi8rbtG+908U3WYUA+FnMDA4L7owQRUREupwSJCJyWBaTiT+PGUaAxdJse52zayZtd7rd5FTVkllZQ0Z5NXvLq0gvqyS3qhaXhmiKiIiIiIh4zBuSxM+GJAHQ4Hbzq6UbKKqrP+J+G4rKqHY4AZiTGIO/1XKEPURERHoma1cHICLdX0KAP3cOH8izuSWebfNWrmeE1USEj41gq5UAq4U6l4tKh5NKh5OKBodnud7tok+gP4W19dhdLirsDlL6hPLwzLFMjYs6Yv8Z5dUszcxnRVYB3+cWUdXgbLWdj9lMQmggSaFB9AsNYmxMH+YMiCcy0K/V9iIiIiIiIr3dnyaPIK28ig2FZeTX1nPd4nX86+QJJAYHHHIfh+vgpOwFtfW4DQOzSWW2RLobwzAwjJ53sWhPjFl6LyVIRKRNLkyMZaf74AfiWpebLwtLDrNHc3l1zctz7Sip4I1te4+YIPl2Xx7XfbEaZxtGhzS43ewtq2JvWRUAr27ejQkYHxtJSlQYRTWNV0oF2Cz426z4W6342yxEB/kzNaEvI6LCMelDv4iIiIiI9CI+FjP/Onk853+6ivzaeraXVnL2whU8PXMssxKiW91nWmwfwn1tlNkdrCss5d7VW/jLCaP1fUlERHodJUhEpE1MJhN3DR/Ej9P6+ZuPvULfpSn9j9hmfX5Js+RIhJ8PE2L6EGCzYjaZsJhMmExQYXeQWVlDZmUNtY6DI0wMYENeMRvyio/Y18x+Mbx43kyCfGxHczoiIiIiIiLdUpS/Hy/OnsRNS9aTVV1HtcPJ7cs3sfziUwhp5fuPr8XCI1NHcdvyjbgMgwXp2aRXVPPnqaMI9/MhwGoh0KaflEREpOfTu5mItFnTq4UWzJxIflEx1U4nVQ4ntS4X/hYLITYroTYbITYrwTYrpQ0O5n7zHe4mxwnz9eEfcyYyM7H1q5WacrgP7nnd6EHcP2PMYYd2W/x8KKmzs7ukgiX78li0J5udxRVtOr/l+/P5+ftLePviUwjQh30REREREelFhkWEsPCcE7lt+UaW5RRR5XDy6o59/GbM4Fbbn9E/FpdhcNvyjQBsLCrnrIUrPPf7Wy0MCQlieHgw5ybFMrZPmDdOQ0SaMNwGRg+cj7Unxiy9l34BFJGj4muxMDA48Ijtov18uSI5gdcysj3bTCYIsDa+/CzLzOfJNdvJqqrlspT+/HLsEPr4+wJQaXfw4a7/Z+++w6Mo1zaA39vSe68kJIGEEiD0KiCgIkVRBAUVPYCCDf3AriBHPYqKhYOI7aCCFSygiEiv0jsJJYH03ttm63x/JGyyqZtka3L/risXM7Mz8z67GSaz7/OWVN1x8/t1b3HcW5FIBB8nB/g4OWBYqD9eGtUPqcXlSCstR5iHK+wkYshValSq1JCrNahQqnG5oBgrD59HcZUSxzLy8MKOY/ho4jB2HyciIiIiog7F1U6G14b0xvhf90IjCPj0QhK8HewQ5uqMYBdHhLvpf8eb3DUI+zPy8HNSeoNzydUanC0swdnCEvyQlI6Hu4fhqV6RsJdwQnciIrIdTJAQkcktiomAzM0B/zubCAFAUZUSMzfvRxc3Z6SWVuj2W3PqMv5ITMdfM8fDWSbF83tPIqdm3pDx4YEIbmYSweZ08XBBFw+XJl8fFRaAwcF+uOuHHahQqbEx/jpuCg/E9J5d21QeERERERGRteri6oR7uoXihyupkKs1ePXIBd1ro4J8sWp0nN6wW++M7It/9eyKfRl5uFpShnJldWOz1LJKpJZXAqge2vh/V1JwuqAYn46Mg6uMwxYTEZFtYIKEiExOJhbjtZH9cF+Prlh+8CwOpOcCgF5y5IbU0gp8fuYKVFoBfyRWt1Jykkrw+qh+Jo2xj78X3rt1CBb+cQgAsOLgWUyN7gI7tn4iIiIiIqIO5qWBPXCpsBRn8ov1th/IzMOLh8/h4zED9LbHeLkhxsutwXnyiyqw8XoGPrqYCJVWwOmCEszdfwqfjoyDp72dKd8CERGRUbR/lmUiIgNFe7tj/ZRReHtMf3TzdAUAdHFzxn8nDMau+26BVFw9pNUHxxOw+uQlAIBYBKy+ZQhC3Foezqu97owJx81dgwAA6aUV+C0hxeRlEhERERERmZuzTIofJw7DuvGD8Vz/GMzvFQGXmnkY/0rJxtXiMoPO42Ynw9zocHw/djA8a3qdnC8qxV07j+BUveRLcyrVGuzMyMVP19JRoVK3+v0QdVY35iCxxR8ia8EeJERkVhKxCLN7RWBWz65ILa1AsKsTpOLqXO3DsVH4/OxVvf1nxIRjQk3SwhyeGNwTu69nAgD2pWRhRu8Is5VNRERERERkLlKxGDcF++KmYF8AgK+jPf5zIgEAsDstF908XA0+Vy9PN3w1eiDmHjiJ/ColsuUKPLjvBO6NCMEjMV3hVzPPZGOSSssx98Ap5MgVAID92flYPbxf298YERFRKzBBQiZXmlEMR0e5ScuoLKg06flv0Cg1ZikHACR25hnaSV1leOscjZtWt1yaWQpJqWGtigA02jrAFUBpQe218Yh/ACrDKrElIxtyjRb9vdzxsL8/Cq/lGVyOVt2+31GIVgt7sRgKrRbHkrORfbbxXiQeXbzaVY6hxNKON8SXWmH4NacW1+6rVqohasWx5mqRolVrW97JKOWY7/5jLqKaXmOm1tH+H5nrczNXOR1Ra+4/giDoLbfmWHP9jjpaC7+O9n4AQNAa/reo7vuvbsFp+LFajXk+O3Nd23bO5hn+p6rYtN+F6jLX78jBvenK7vrULrWfs72bHaRiw48VS8xzLZReazj0rymoKlVmKSf8pqg2HXdzt1BdgiS+tBx2BswB6R4eoFv2BbAnNgyP/rwXh1OyoREEfJuUhp9TMnF7TBjujo3EkFB/eNQkS7SCgD1JGXjq8FldcgQAdmXmIcPTCf2CfHTbQsf7G/w+qsQyZNcsR905HA7alj93t6JS4Ohpg8sgIqKOgwkSIrIadhIxnusZhWd7RAIARCLzV87JxGJ0cXLA1fJK5CoULR9ARERERETUAYS4OkMsArQC8GdSOr4+n4gHe0e26ntZoKszfnlwIj48cBb/PXQOFSo1qtQa/HLhGn65cA0AEOTmDHcHO5QrVEgrKW/0PO8fOINvZo43yvsiIiJqDucgISKrIxKJLJIcuUFswbKJiIiIiIgswdlOiju7dwFQnSR5Zd9prDhyodXnkYrFWDI6DicWzcBjw3rDs97wWpmlFUjILdJLjvQL8sH5/7sX/i7VvVb+vJSCvArz9b4islUCtNAKtvcjwDwjMRAZggkSIiIiIiIiIiLC22MH4sHYSN3656evQN7GoV59nR3x71uG4OLi+/DNzHGYP7gnBob4ws/ZEY5SCSQiEUZ1DcTXM8bhr7lTEOjqjLtja+eAPJdV0O73Q0RE1BIOsUVERERERERERHCUSvDm6P4olCvwR2I6lFotLuYVYWCgT8sHN8FOIsHtMeG4PSZcb7sgCA1GDujq5aZbzikzz1yjRETUubEHCRERERERERER6YwI8dMtv3vkAjRawehlNDasso+Tg245mwkSIiIyAyZIiIiIiIiIiIhIZ2q3LghycQQAHM7IwzM7j5kkSVJfNx8P3fK+65kmL4/I1glaQNAKNvhj6U+OqBYTJEREREREREREpONmL8OHE4ZAJq7u5fHrlVSzJEm6+3og3NMVAHAoOQtbE5JNWh4RERETJEREREREREREpGdYsC8+uW2YXpLk09OXTVqmWCTC82P669af/v0gskorTFomERF1bkyQEBE1QakVoNKy3ycREREREXVOt0YE45PbhqEmR4KPTsQju1xu0jKnx0Zico9wAECRXIFVh86ZtDwiIurcmCAhIqonyMFet/zv+EQoNEySEBERERFR53RrRDDu7x0JAKhUafD2P+dNWp5IJMK7k4ZDXDOJ+9ZLKVCo1I3uu/9yCr46eAZKtcakMRFZK8vPJdL2HyJrwQQJEVE98yO6oKaBFP7IysUDx87gaEGxJUMiIiIiIiKymCWDe8HdXgYA+PlyChLyi01anq+zI8ZFhQAAMksr8ODnv2LHxSQk5RaioLwS+eWVePq7v3D7B9/iiQ1/4uEvf4MgsMKViIhaT2rpAIiIrE0PNxe83rs7Xo9PhEKrxdXySiw4dQFxHm6YFuyPXm6u6K3xgJ2EOWYiIiIiIur4PB3t8fSgnlh+8CwA4KtziVhx80CTlvnC2P7YcTUNALD13FVsPXe1yX03n76M9YfP4cERfU0aExERdTxMkBARNWJSoB+iXJyw7OJVXC6rnhTwdHEpTheXAgAkR06ji5sTIt1dEenugkgPF92/7vZ2lgydiIiIiIjI6O7t2RUrj15EuUqN366m4o3R/eFowvL6Bvpg5eQReH3ncRRXKVvc/89zV5kgoU5HEASb7D1lizFTx8UECRFRE6JdXfDdkH7Ylp2HL6+n4XpF7WSEGkHA9ZIKXC+pwM56x3k72CHSozZx0t3TFYMDvGEvkZj3DRARERERERmJi50MN4cHYsvVNFSqNEgoKMEQPw+TljlnQAzu7dsNu3NLcCgxDYXlchRVyiEWieBoJ8NdA3rgwc9/BQDklJabNBYiIuqYmCAhImqGWCTCpEA/3B7gi9PFpTheWILrFZVIUylxraQCVZqGkwEWVClRkF2AY9kFum0e9jJMiQjG3d1C0cfHAyKRqMFxRERERERE1mxAgDe21Ax7dSq7AEN6hJm8THupBNMG9MC0AT0avFZcWaVbdnWwN3ksRETU8TBBQkRkAJFIhP6e7ujv6Q4A8OjiBa0gILNcjqSSclwrLkdSSRmSSsqRVFyOPLlC7/hihQrrE5KxPiEZUR4ueGlwL4wN9Tfre8iXK7AnNRvu9jKMDQ2AjHOoEBERERFRK/QP8NYtb7+WgYVj+1swGkAirm14JleqLBgJERHZKiZIiIjaSCwSIcTVCSGuThgd4qf3WqlCVZMsKcPBzDxsT87W9TZJLC7HvB1HsWxoLB7s2dWkMZYrVahQaXAqpwCL955ChUoNAAhxccK9PcLxYK+unDOFiIiIiIgMEuvriS5uzkgtrcDB9FwcTc3BkC7mbfhVl6uDPYI9XZFRVIYTyZk4k5qNmPBQi8VDZG5arRZardbSYbSaLcZMHRebDxMRmYCbvQxxfp6Y3r0LPhwzAMdm3YK3R/ZFnK8nAEArAMv+OY83j16E1kSTk608Ho9+X2/F4A3bsGDHMV1yBADSyyvx3vF4TP1lLwrr9XYhIiIiIiJqjEQswlMDa4e6WrH3lAWjqTZraCwAQKXR4r61m3A5q6CFI4iIiGoxQUJEZAaudjLMjA7Dpikj8VjfbrrtX1xIwuxth5FeVmnU8grkCvz31GWotPrJl0EB3hgZ7IsbPdGTSyvwzJ6TRi2biIiIiIg6rrtjwhDm7gwA2H89E/+kZFs0nhcnjUJclwAAQFphKWZ+stGi8RARkW1hgoSIyIzEIhGeHdgDb47oo0tSHMkqwLhNu3H/tsNYe+4qrhSVtruc49kFqJsacZJK8OKQXtg4dRS+nTwSO2eMh69j9SSGe9NykFtnckMiIiIiIqKmSMViLBrYU7du6V4kdlIJfnrsHvQPCwQAyOv0nDdRZ30iIupAmCAhIrKAWTHh+HbicAQ5OwIAlFotDmXmY8XxBNz6y148vfck8uRtT1po6vQceWlob5x5aBIW9OsOkag6KxPp4YqpUSG6fa4Utj8pQ0REREREncO06C7o6u4CADiYnIVDyVkWjSfQwxXbF9+Pe4f01tv+9taDEJgloQ5MEAQIWhv84f9LsiJMkBARWcjQQB9su2sM5vaOQLCLo95rm5MyMH7THvxyJbVN53aWSXXLxVVK2EskDfaR1CRLiIiIiIiIWkMqFmPRoNpeJO/sO23BaKo52snw+UNT8PztI3Tbvjp0Bh/vOm7BqIiIyNoxQUJEZEFudjK8MqQ3DswYj13Tb8ZLg3vCw14GAChVqvDMnpP47Wpaq88b5emqWz6bV9ToPleKynTL4TWtv4iIiIiIiAxxR/dQRHi5AQAOJWfhoIV7kQCASCTCv0bF6W17+8+DKJUrLBQRERFZOyZIiIisgEgkQoS7C+bHRmHn3Tfjjshg3WsvHziDEoWyVecLdnFEgLMDAOB4VgGuFZfpvZ5cUo4D6bkAAF9HewTV68FCREREREQdlyAIuFpYCoVG0+ZzSMViLBldm4xYsfeUVQ6bU1xZhS/2W3aeFCIisl5MkBARWRlvR3u8Wmfs3HKVGmdzG+8F0hSRSIS7unUBUD2/yYwtB/DS/tN49eBZPL7jGG7/eQ80NV9e7okOg5jDbRERERERdRrvH4vHzd9tx7jvtiO5pLzN57m7dwSivN0BAP+kZOOAFfQiqevG15xVO4+iUqmybDBEJiAIWpv9IbIW0pZ3IWofezd7ODg5mLQMrbrtrV5aozynwizlAIC6Sm2WcqoKDH9I1GpqY1IUqSEuNvxYscw8n52Ln7NZyjHlNZcvV+COPw7qbesa4A07V6dWnWfxTXH4/VoG0korkCdX4NuE5Ab7hLo5Y+GwWNg5O5jt/5G8qNLgfTXS2pg0Kg3ESsNjFLTmeeCSOdmbpRxB23AeGVPQqs33oGqua07QGt6Sse6+NyYQNPxY83x2IrF52reIpR2vHU1rfp9Uy1yfm0hsnmS9ucoBzPnZGf7/te77F4lFrTpWam+e+4JaYZ7nYHPRqMz3t9XB3TzPJfauhn+/U9X5Lujg5gCZ1PC//+7B7q2Kq60c3EvNUk7GntwG2wRBgBwCHCGCyEiNlkojCpp9PaW8EqtPJFQvl1Rgyo878cPogQh1bn2v8q6D++Dleybg4bWbAACv7T2NvTcNgoOdrPWBN0PkYHhsEtQ+N9/evxe++Xs/8ssq8c2pK3j89lGNHiMWOt5zDxERGYZ/AYiIrMymxDRkV1bp1l8e1Q+RNWP7toaTnRQbZ4zDxG6hkNWr/HCSSTGpWyj+mH0rfJxNm8AkIiIiIiJ9Z7QV+FCTjX9prmOGJhHvabN1PbxNKUeuwNPHLkBdp6xipQpPHT2H4jb2sJg+NBa9QvwAAOdSs7Hk2z+NEqsxLJw4XLf8we97oVB1rAQsERG1H3uQEBFZmbw6Ewi+d8sQzO4T1eZzhXm44n933IQiuQJJRaWQisVwkknR1cMVMglz5ERERERE5nZNqMKr2gzUTYfsE8rgqBXjcbGf0XqS1CUIAjanZePtc1dRpq5OEjhLJQh2csSV0nJcKa3Agn/O4tubBkDSyvIlYjHWLbwHo5d/BrlShf/tOYFh3bpg9si4lg82sZhgf0we2At/nLiIjIISrN1+CIsmj7Z0WERG09pe79bCFmOmjou1Y0REVqarW+0wYX8npUNhhGGIPB3tMTDIF/0CvNHd253JESIiIiIiC9miLdYlR+wg0g0I9ZdQgo+0OVCYYGz+5Wcv4+VTCbrkiJ+DHX4cPRAfDu4NXwc7AMD5olKcKShp0/l7hwZg1UNTdOtPffU7EjIaDilmCc/fNU63vOz7bTifkmnBaIiIyNqwhoyIyMrcEREMF1l1B7+/kzIw+PPfMPvnPXhz/2n8knAdVwpKIJih+z0RERERkbEJgoC/0nPwfVIacuv0nO4s5IIW+4UyAIAzxNggicDT4gDd6zuFUjynSUORYLyhoARBwM/J+kmBH0YPQldXZ4S5OGFBdLhu+5XStk/YPntkHB4eMxAAIFeqsGLz3jafy5gGRnXBk5NuAgAoVGrM+ehbDrVFREQ6TJAQEVkZVzsZVo7sB/uaXh65FVXYfT0Tq4/F4/GthzF63R+Y9uMOHE23jhZZRERERESGWhWfhP87dh6vn72Mm7cdwPTdR/HyyYtYn5iK43lFKK03D4YgCFBrzTfRvaldFaqgrOk/MkLkAieRBGPFbnhWHAB7VA9tlQQFXtNkoNJIPUlEIhEW94qCtM7QWb+m1iZM3GS1E6oXtXEekhveu/92eLs4AQA2n0xAYXllu85nLK/Puh19woIAAAnpOVi7/ZCFIyIiImvBOUiIiKzQ+C7++OG2Yfjw4jWcySpAiUKp9/rR9Dzc+cMOvDCyLxYN7W2hKImIiIiIDPfDtXR8ejlZt64FEF9chvjiMgBZuu0+9nYQAFRpNJBrNNAKQJCzAwb5eeHBmHD09fEAAKi1WqSXyxHg5AAHqQTmUq5WY/HZBCSWVyLIwR5xnu54ICwYvvZ2evsJgoDUyio4SMTwd7AHAJwVahMGPUSOuuXRYjeEiezxmiYD+VAjCQq8r83CK5Jgo8T8ULcuiPN2x6z9JwEAh3MLsSC6KwDgZEGxbr9eHq7tKsfRToY7BvXE//acgEKlxsX0HIyK6dqucxqDvUyKzx6fiWHPfwhBELDs+2149JbhcLCTtXwwkTXT2uh8Hh0n700dABMkRERWqo+PB36YfjMEQUBmWSUS8opxMa8IG+OvI6mwFADw9sGzUGq0WDI81iSTORIRERERGctndZIjk0IDkFBchuSyigb1ZPn1GgcBQGZFFTZfz8Tm65no6eUGbwc7nMsvQYlSBQeJGIv6dke4mzOKqpSo0mjg62iPQCdHBDo7wNfRHmIjPitvSMnAscLquToKlSpcKC3HxrQs3B0SgKlB/uji5ID40nKsTkzB6eLq5/YAB3u4qoGrqB1WrFdNgkQrCBCLRAgX2eN1STCe1aShHFocESpQIKjhLTJO1U1fL3d42slQpFThZEEJPr+SjFhPN/xVM1eIVCTCQG+PdpfjWKdHip3EfImrlvQND0bf8CCcuZ4BhUqNsa+uxicLZqBfV+MkoYiIyDYxQUJEZOVEIhGC3ZwR7OaM8ZHBeHxwT3x8LB5vHzwLAHj/n/NQabV4cWRfJkmIiIiIyOo91TMSC2p6FcjVGlwtLcflknJcLinDpZJypFfIYScWw1EmgWNNz5CkknJUqDUAgPiaxkI3VGm0WHHqUpPlycQidPdwxchAH9wfHYZAZ8cm922JXKPB96m1vV1EQHVvF60W36Zm4tvUxicAz65SILvO+l0iTxRCjZfV6ciDGpGwxxuSEISK7DFJ5IEfhUIAwGmhAuNF7m2Otz5vezvdMFofxl/Te21CkC+cZe2rJlJrNNh25rJu3c/dpV3nM7Zh0V1x5noGAODM9QyMfnkVPpx7Fyb0i7ZwZEREZClMkBAR2RipWIxFQ3vD2U6KV3dXd5H/79GLuF5UhjduHgh/l7Z/4SMiIiIiMqXbgv3xaJ1JwR2lEvTxckcfr4ZJADvn2iGrFBoNNl/LxPrLKUgoqk6QuMqkKDNgsm2VVsDFwlJcLCzF/xKuY2rXIMzvFYmoNlTeXyuvRKm6usxuLk74pH9vrEtOx8b0LCgbGebGTixCtKsLrpZVoKpmLpWRIhc8IPbGQk0K8lB9riQo8IO2APMlfugvdsaPmuoEySmhEuNhvATJM70i8e8zl5FTpWjw2v2Roe0+/+8nE3Attzr2SH8vdPXzavc5jenN+yfB3ckB63YdRU5JGZRqDR77dCPuHRln6dCIiMhCmCAhIrJR8/rHQCYW44WdxwEAf1xJxf6ULLw1fhDu6mH5cX6JiIiIiOp7pndkm3o920skmNEtFDO6hSJProBGEODvaI+pWw/pEib3RIWgj7cH7CVi5FRWIauyClkVVUgrr0RSSTkEVCdLfk7KwM9JGZgaHoTlQ3q1Ko7urs4IdXRAmrwKV8sr8b/kdCzu3hX/6hqKnTn52JWbD7lGi3AnRwzwdMc4f2+4SKVQabU4vbe6d0kgZEiBEtnQnxD9sFCO+fBDNBzgBDEqocUZoQIaQYDESD3FxwT4YPSt3kgur8TJghIcyClAaoUctwT5ol8jSarWSiso0S0n5xVDq9VCLBa3+7zG4mgnw7J7b8MLd4/HC+t/x9q/qidr/+HgaQtHRtQ2WkELrWB7E3rYYszUcTFBQkRkw+b06w4vR3u8sPM4CuUKlCpUePLPfxDh4YZ+gd6WDo+IiIiISI+DuP1zUvg62uuWV47oi9+TMzEuxB/9fD2aPCZfrsD6yynYcDkFJTVDTG1JzsTVkjKsi4uFvcSwSnyZWIxnunfF/51NAAB8l5qJEpUKr/fqjhmhgZgRGtjkccGi2h4xokbmVM6DGh9qshEnckJlzcwspdAiBUpEwL7hAW0kEonQ1dUZXV2dMT08yGjnBYAHb+qPT3cdxfXcImi0Why4lIzRPSOMWoYx2Muk+OBf0zAwMhSPf7YJCgN6IhERUcdkPWl8IiJqkynRYTjwrym4KSwAQPUkj9sS0ywcFRERERFRQ8fzi4x6vu6erlgcF91scgQAfBzt8Uy/7th311i8OCAGLjVzbSQUlWFfXkGryhzr541lPaMgqenUsTUrD5vSs5s/qB7vJtqr7hRK8a5W/1y2VHHj4eyIV+8ap1vffvaKBaNp2ezRA/HVU7MtHQYREVmQLf2dJSKiJng52mPRkN66dU0j4x8TEREREVnanux8i5bvIpNibs8IvD0sVrdtX15hq89zZ3AA3oqN0a2/f+U6suRVBh/vKpLAHzIA1UN7jBW5orFBtKLhgDDYNfKK9QqpM1RXibzhXCfW5s4hsXj5nlssHQYREVkIh9giIuqAjDREMRERERGRUf2dkYMXYrvD28Gylf43h/jDWSpBhVqDk0UlLR/QiAn+Phjl44kD+UWo0mpxrUKOQEcHg4+PFNkjR1BBDWC22Bvz4YfLghzXoYQIQBTsEStyatOcLZb06/GLuuUIP08LRmK4h24ejDc3/m3pMIhaTdAKEGywgaQtxkwdF3uQEBF1EAJqHzCSisogCHzgICIiIiLrotIK2JScYekwYCcRI8bTDQCQo1CirA1zUKi0WiSWVwIApCIR+nq4tup4xzpVMmoAbiIJBoldMEPshXvEXogTO0NqY8kRAEipM4xaQCs/EyIiInNjgoSIqIMIdHXSLW+7moYZG3ehuMr6u7QTERERUedwo6r/j7TWzddhKtGetZX3l8vKW338mqQUZNU8bw/wdIeLtHWDdNRNfdRt7GTrHho9QLe8dudRNtwiIiKrxgQJEVEHEeHphof7ddetH0zNwfM7jvELCRERERFZBQ+76jk30irkFo6kWpyPh275z+y8Vh27P68QX9X0hJGKRHgiKqzV5detkNHWWS4XNCgXNK0+n7WYFBeD2C4BAICT1zJw1cLzzhARETWHCRIiog7kzXED8dWdo+FRM6bzlsup+PVSsmWDIiIiIiICUKRUAQAi6vR8tqRbugTAWVbd62NbVh5+TMtElablxESWvApLL17RrT/dLRy93Vs/lFTdIba+0Obhb20JXtGk4z5NEu7VJGGhOhkntRWtPq+liUQixAT56tbFIlY9EZmKIGghaG3wR9C2/OaIzIR/pYiIOhCRSIRbo0Lw9vhBum0v7TyBzLJKC0ZFRERERFRrdmSopUMAADjLpJgWEQwAqNJq8falaxi15wjuOnwSL52/jG1ZeQ3mJpFrNHj+/GWU1Gy/2c8bs7oEtan8cWJ3SGqWTwuVWKXNwRmhUjfYVhqUWK7NsMkkSXpB7cT3wV5uFoyEiIioea0bIJOIiGzCHTHh2J6Yjl8vpaBEocQzf/2D76ffDLENTvJIRERERGQqz8ZFI7OoHLtzCwAAakHA9Qo5rlfIsS07D1KRCIO83DHUywNlag125ebjes0QYUEO9nitZzeI2viMHSGyx6NiP6zV5uoNseUNKewgQhZU0AJ4T5uFZxGIfiIng57nNYKA80WlOJRTgFKVGp72MswMD4anvV2b4myLtJoEiZ+bMxxrhlazZhWcu5GIqNNigsQKJCQkYOXKldi1axeysrLg5uaGIUOGYN68ebjjjjvadW6lUolz584hPj4eRUVFKCsrg4ODA1xcXBAaGoqIiAh069YN0lZOJkdE1u8/4wfhSHoussrl2J+SjXWnr2Bu/2hLh0VEREREndy7568i3MUZA+rMAWIpzjIpVvbtgYTScvyQlolLpRW4XlEJVc08fmpBwD8FxfinoFjvOEeJGO/0iYGrrH3fpW8Xe2C4yAXHhQpcFqoQIrLDRJE7ZBDhDW0mjgkVKIMWS7UZcIYYvpDCVySDN6TwEUnhCym8IYVUJEKpoMFxoQKn/rqOAoVKr5zE0gq8N6h3u2I1lFqjQWZRKQAg2MvdLGW2V0adHi9EtkTQChC0tjfvqC3GTB2XVdeK33ffffjhhx/0toWFhSE5OdlkZY4ZMwb79u1r8/Hr1q3DQw89ZPD+H3/8MZ5++mmo1bXddvPy8vDHH3/gjz/+wNSpU/Hdd9/B2dm5VXHs3bsXa9aswZYtW6BQNN8SwtHREXFxcRg5ciQmTpyIESNGQCaz/hYeRNQ8Dwd7fHDbMNy7aTcAYPneU0gvrcBTQ3rB09HewtERERERUWcz3NcLvxdU92qYd/AUPh7eF8P9vC0dFgCgh5sLlvfqDgBQabU4W1yKPXmF2JNbgKx6vQt6uDrjP7HRCHc2zlwqHiIpJojcMQH6yYTF4gAs12QiHtU9ViqgRQWUSBaU1Ts0Vb/YSBXAzqw8lCpVcDNDb46sojJoaxJMod62kSCpUCgtHQIREVmI1c5B8vvvvzdIjnQ0X331FZ544gm95Eh9W7ZswcyZM6HVGjZ5UUFBAe69916MHTsWGzdubDE5AgByuRyHDx/GO++8g7Fjx2LNmjUGvwcism6jwwPxr7jaL3prTyRg+Jdb8PbBM7iYWwRBYKsNIiIiIjKPl/tFY4SfFwBAodXi36cvWeXzqEwsxkAvDzwbHYGtIwfih6H9sLRnFFb164nfhg/At0P6GS050hxnkQRvSILxmNgPg0XO8IfUoFaujhIxxgf64o24HrptNwf4QmOmzzqtTm+MUG8Ps5TZXnImSIiIOi2r7EFSUlKChQsXWjoMkyooKMCiRYt062FhYVi4cCGio6ORm5uLzZs3488//wQAbN26FevXr8ecOXNaPOfYsWNx/vz5Bq9JpVKEh4fDw8MDWq0WhYWFSE9PbzQ5Y40PqETUdq+NGQBnOxk+P3kJVWoNiquU+OjIRXx05CLCPVwwqVsXTOoeij4+Hm0eP5mIiIiIqCWOUgk+Ht4P03cfRWJpBVIr5EirkKOLi+mTDW0lEokQ7eqCaFcXi5RvJxLjdpEHbocHAEArCCiBBvlQI19QIx8qFAoaaCBAChF6iBxwx+3dYC+pnv59c1oWjucXY3tmLpb0joKnGWJOqzMcma30IPF1d7V0CEREZCFWmSB59tlnkZGRAQBwdnZGRUWFxWLZsWNHq/bv1auXQft99913KC2tHpNz6tSp+PHHH+Hg4KB7/ZFHHsHXX3+tG67r448/bjFBct999zVIjkyePBmPP/44xo4dC3t7/SF1qqqqcPr0aezcuRMbN25sNLFCRLZPJhHjpVH9MKdvN7xz6Bw2Xrym642fXFyOj4/H4+Pj8QhydcLEyBBM6haCgYE+kIib72SoFQRcKSjB5YJSZJZVILO8EplllcivVKC3nydm945ET18Pk78/IiIiIrIddmIxRvh5I7G0+nt+XpXSqhMk1kYsEsETUnhCim5NtG26kRxJLq/E8fxiAECIkwMCzTTMbnphbQ+SEBtJkHQL8rV0CERtIghaCIJho85YE1uMmTouq0uQ7N27F1988QUAQCwWY9myZXjuuecsFs/48eNNct7Dhw8DACQSCT777DO95MgNc+bMwY8//oht27bhxIkTqKqqanQ/oHpIsrrJHJFIhM8//xxz585tMgYHBwcMGzYMw4YNw6uvvorTp0/jgw8+aJBIIaKOIdjNGR9NHIaXRvXDtqtp+ONKKv5Jz9WND5xZVokvz1zBl2euwM/JAbdGhmBiVDC8HO2hFaoTIlVqDc5kF+BoZh6OZ+SjuImu6Cey8vHV2avoH+CN+2MjMTW6CxylVvcnh4iIiIgswLGmAh8A5BqNBSPp2NYnpemWZ3YNNltv8bpDbNlKgoSIiDovq6qtksvlmDdvnm6IpyeffBKDBg2ycFSmUVBQAADw8/ODv79/k/v17dsX27ZtgyAIKCoqQmBgYKP7ff3113rrjzzySLPJkcbExcXhm2++adUxhrBztoe9S+OJHWNRV6lMev4bZE7mG5dUYmeeKYJcAw3vKq52dkF6zbJ3tDukFZJm969LWW6ez06taHpOH1ssRzBw/qHW8HOyx5y+UZjTNwoFlVX4KykDf15Nw8G0HKg01eXlVlZh/flErD+f2K6yTmUX4FR2AdaeuYo/598BLycHaFoxvq/SvrY1obOPK+wUhl9zxamFrYq1rZR5ZWYpx8nb2SzlqOTmuZ8CgFhini/pgtbwihdBrdVb1qqtr9KmNe+nfeWYp1WXWGr4/2tbIWgNH6607r6CVmjzsR1BR3s/gPn+H7XqurGB+5y5YjLX/Ufq0PHuc635HTV2zfna104UfqmwBMObmKdCqzHPfSEwLtws5ZjreU4kFqNYocTm1OzqcqUS3NejK2QmmKBdU1beYFtqToFuOdhe1ug+rVVw4ITB+yodnIBxXQEAeQeOwa6qssVj1p272ubYiIjItllVguTVV19FUlISAKBLly544403cOKE4X8EbYm7e3Uriry8POTn58PHx6fR/eLj43XLHh4eTZ6v/lBgjz76aPuDJKIOz9vJAbNjIzE7NhIKRwf8dSkFv8dfw66raVC08MXXy8kBQ8MCMDDEH6Gergh2d0aIuyuc7KT49XwivjqegIvZ1V+OruQVYd6PO/HTg7eb420RERERkRUb4lM7E8a31zMwrUsgPO3tLBhRx/NjYpqud85dESFwM0FypCmpNUNsySRi+LmaJynUHtuTs/D20fiWdyQiog7JahIkx48fx4cffqhb//jjj+HiYplJ0Mxh8ODB2LRpE9RqNRYuXIhvv/0Wdnb6D4Q//fQTfv/9dwDVPUkcHR0bPVdZWZluPpMbYmJiTBM4EXVY7o72mBnXHTPjuqNMocSOK6k4mpINjVYLsUgEsVgEiUiMbj4eGBoegO4+nhCLG+8BMHdIb/xrcC8cT8vBA99uR16FHHuT0vH6jqN4NjbSzO+MiIiIiKxJuIsTRvh64VBeIXKqFFh88iI+GhQLV5nVVFHYNJVWiw1XUgAAIgBzosPMVnZeWQUu1zSSivLzavL7gjUQBAFfnk/Cm0cvouP1YaTOQqsFtDbYC9dMnWyJDGIVTx8qlQpz586FpqZ1wz333IPJkydbOCrTmjVrFpYuXYqqqips2rQJp06dwoIFC9C9e3fk5eXhjz/+wObNm3X7L1iwoMlzlZU1HN5Fw3FciagdXO3tcFdsFO6KjWrzOUQiEQZ3CcC6eyfgznV/QK3V4r8HzyLa0R5To0KMGC0RERER2Zp/94vBPfuOo1CpwrH8Yty7/wQ+GhSLKDfr73Fg7f5KzUaOXAEAuDnYD2Fm7MXx3dEL0NRU1t7W23obRik1Wrxy8Cx+upJq6VCIiMjCzDPJQQveeustnD9/HkD1MFKrVq2ycESmFxwcjDfeeEO3fu3aNTz33HO48847MX/+fL3kyJgxYzBv3rwmz9XY0FtHjhwxarxERG01vGsQ3rx9uG792T0nEZ9fbLmAiIiIiMji/B3t8eGg3nCr6TWSUiHHfQdOYntmroUjs22CIGDdpWTd+sMx4WYt++vD53TrDw7vY7ayW6NArsD9fx7WS4483DvCghEREZElWTxBEh8fjzfffFO3vmLFCgQEBFgwooZKSkpw7tw57N+/H6dOnUJKSopRemgsXrwYS5cubXafCRMm4Ndff4VU2nRnHycnJ4SHh+tte/XVV6FQKNodIxGRMcwb0gv3xUUDAORqDeb/dQTZ5XILR0VEREREltTf2wM/3jQQMW7Vw2vLNRosPnERu7LyLByZ7TqZX4wLNXOA9PR0wyA/L7OVfTgpHVdzCgEAo7p1QZQZyzbU5cJS3PHbfhyrGQbMXiLGqpsH4JF29JwnIiLbZtEEiVarxdy5c6FUKgEAo0aNwvz58y0ZUgNxcXHw8vJC3759MXr0aAwYMADh4eHw8PDAbbfdhs8//7xdiYjly5fj2LFjmDVrFoKDgyGTyeDt7Y1bbrkF33//PbZv397s5Ow3TJo0SW/9yJEjGDp0KLZt2wYtB/YjIgsTiURYOXUU4oJ9AQBpZZWY/PMenM0ttHBkRERERGRJoc6OWD+yPyaH+Ou2vXgqAUllFRaMynZ9fTlZt/xQTDhEIvPNAVK398gcK+w9cjgjD3dvOYD08koAgJ+TPX6cPBJTIzn8L9kwrRaCDf5wEhKyJhZNkKxatUo3FJSdnR0+++wzs/7xNsSZM2caTTCUl5dj+/bteOSRRxAeHo6NGze2uYxBgwbh22+/RXp6OpRKJfLz87F9+3bce++9Bn8eixcvbjDJ+5kzZ3D77bcjKCgIDz74INauXYtTp05BpVK1OVYiorZykEnx9X23ItTVCQCQW1mF6b/tx5bEdAtHRkRERESW5CiV4K24Hrg92A8AUKnR4J0LiRaOyvaklVdiZ0b1EGV+jva4vUugWcv/q+Z35mwnwx01vcethUqrxdN7T6JcpQYA9PZxx+Y7RqOfn6eFIyMiIkuzWILk+vXreOWVV3TrL774ImJiYiwVTrtkZ2djxowZePbZZy0WQ9euXfHJJ580+lpOTg7Wr1+PhQsXYsCAAXBzc8OIESPw8ssvY9++fRAEwczRElFnFeLhgs13jcHAAG8AgEKjxRM7jmHlsXhoeS8iIiIi6rREIhGW941BsJMDAOBQXiGuFpdZOCrbsv5KKmrmR8fsbl1gJzFvlY+4poGnl7MjHGRNDxNuCbtTc5BbWT36x+AAb/w0eSQCXRwtHBUREVkDiyVIHnnkEVRUVHeZjYmJwUsvvWSpUBpwcHDAlClTsGbNGhw+fBi5ublQKpUoKytDUlISNmzYgEmTJjXo3fHee+/h7bfftlDUwL/+9S/89NNPcHd3b3a/qqoqHD58GP/5z38wZswYREREYOXKlbqhzoiITMnHyQHfTx2Je6K76LZ9dPISHvv7GOQ1LbqIiIiIqPNxlEpwf9fa4Y6+vZrazN5UlyAI+PV6BoDqeTVmRnVp4QjjC/f2AACkFZUivajU7OU358dLKbrlx/p1g5OVJXCI2koQBAhaG/xhA0myIhZJkHz55ZfYuXMngOpWIp999lmD4aEs5f/+7/+Qnp6OLVu2YOHChRg2bBh8fX0hk8ng4uKCiIgIzJ49G3/88Qf279+P4OBgveNfeuklnD171kLRA/fccw+uXbuGF154Af7+/i0fACA5ORlLlixBr169LBo7EXUe9hIJ3hs7AK8Mi8WNVPOf1zJw92/7OXk7ERERUSc2rUsgJDWNEU/mFVk4GtuRV6VEaU1joyF+3vByMH8dy229I3XLf56zniHSciursDc9BwAQ5OyIUTVDuREREQGA2VPmWVlZWLJkiW593rx5GDVqlLnDaNLUqVMN3nfkyJHYu3cvhg0bhvz8fADVmdtXXnkFv//+u6lCbJGXlxfeeustvPHGG9izZw92796N/fv349SpU5DLm654TExMxIgRI7Bz504MHTrUaPGoHByhdHAy2vkaLcPJPJlnjasZ58iRmSd/KXIw/DagdnJudNkQGphn7hvBXmKWclSOrXv/baW0M1+3b5HU3izlKO1r7wcPDemLyOBALD1wBpVqDbIEYMHBi/jitqFws7eDyr72/dddNoTa2Ty94jQy8/R6UTma9j56g1orM0s5ACAWW9e8YwCgrvM5q830mVstM/1+xFKLTolnEoLW8OcSXnMdW2uuhXbpYNecWmqev61iqXmeGzWC+f62ws4870nkYPh7au015wAgLjQE1ysqUSgSodLOATKJad+XwkzP3Kb8DpEh18Dbu3oY2+7BgWb7vlIlrk3E3DYwFmuPJAAA9iXn4sGxxkvStKZOof53iEytBJ5e1Z/N+IhgaJycoal/DDuyExF1WiLBzH2a7rrrLvz6668AgICAACQkJMDDw6PJ/ffu3YuxY8fq1sPCwpCcnGziKFvnq6++wsMPP6xbF4vFyMvLg5eXlwWjakij0SA+Ph5HjhzBrl278Mcff+iGOasrODgYFy9ebHGoruakp6cjNDQUAPDFF1/Ax8enzeciIiIiIiIiIjKV/Px8zJs3DwCQlpaGkJCQFo4gspy6dW5DbvsV9o621ytKIc/F0b+mAeD/ObI8szbZ27hxoy45AgAfffRRs8kRW/Hggw/C19dXt67VanVDiFkTiUSC2NhYzJ8/Hz/88AOys7Px1ltvwdFRv7VMRkYGVq9ebaEoiYiIiIiIiIiIqCWCoLXZHyJrYdYhtp599lnd8qRJkzBjxgxzFm8yYrEYY8aMwcaNG3XbLl++bMGIDOPi4oIXXngB48aNw9ixY/V6k2zYsAEvv/yyUcrpfuh3BLiYtvt+ZUHDnjCmUJFnnnIAQGKmIbakrRxiK3v6/QCAgE0bIK00/PNQVZhniC2xmYbYcvY2T5d1F38Ps5QDAPYermYppyK7oMnXLuYXY+HfR6HQVD8sPTa8HwbMfRIAEP3PVsgUhs9PUppZ3K44DaVRttwf/2xxKQ4XFMFNJkMfd1f0cHWGVNy6/+OOnuYZBkVZYZ6hyQDrHWIr/Y77AAAhm7+HVF5p4YgsiENstVlrh9hKmzQTABC69cfOfc11QNY6xJa13+fUBvxtNQZzDbGlLFeYpRwAkJhpiC1ZK4fYau019/LpBBzJr55/ZMvEEfCwN+18Gi6BniY9/w1lGU0/B7dXfFEpFh44DQAYF+yHZYN6maysuvwG9tBbf2/7P/iiJo7PH5yEUd3DjFJOUbzhc5qo7B1xdWT18OndDm6BTCHHgfRcPLf/jG6f6d1C8X8DYyCqme8mu9z67oVERGQeZk2QFBcX65a3bt2q+0PUGikpKQ2OO336NPr169fO6NrnRte2G/Ly8iwUSesNGjQIzz//PJYuXarbdunSJeTl5en1jGkrWZUcdia+0lSV5aYtoIakzDzlAIDEzkwJEk3bxkSWVlZAWmH456EtN0+lq0RlntuazExDdtspzTMvCADYq80zkaNK0fSXjzhXO7wWF4FHtx+FAGDN4TP4cm71azKFHHbNHFtfa67P9hA1U4lzvaISbyUk4XhRid72BRFdMMLHE73dDU9KyRzMU8mmrTBfJY5YYn0Jkrqk8kpIzfT3xRqJzJYgMU9lnjm1tVJcKq+ErBWND8j6CVrztI5szzVnlfc5RcdKkGjKq8xSDgBI7c3zLCxt45xlhl5zZcVFKCioTiZIKisg05q2sZW90sGk57+hSm66e3wvOxGqSopRodZgd0UZXu8V1qY6l9Zy0Op/zwtzkel+d1fTMjAhKtAo5dhVtS2BIVPIYVdViXE+LlgQFYA3j14EAHxaUIAIGTAzpjqBI6syvCEWERF1LB2vyZ6FyGT6D4gqlXlayxtLY715MjMzLRAJEXV2t0UE45XhsZYOo92ulVfiX8fPNUiOAMDaa6mYe+IcdufmWyAyIiIiIutWt6JCzWFYDCIVizHQt7onTH6VEvFFpRaJo5t/7VysV3MKLRJDU+b3icI7N/XTrf/7yHmUK22r7oaIiIyPCRIjyc7O1ls3Rs8LcwoPD2+wrbKSXUyJyDLm9YnC6FDbm2juhrRKOR49eQHFquoWsKGODljeqxuW9+qm20epFfD8ucs4mG9dXxyJiIiILC3YqXaezGul7FlnqDFBtfUQ/0u4bpEYuvl565Z3xl9DeZX5hm81xIzoMNwZVT0ZdIVKg8OZbLBEtk3QCjb7Q2QtzDrE1ubNm1vds+Ls2bNYsmSJbt3f3x8bNmzQ2ycqKsoo8bXHwYMH9dbrD7ll7erOP3KDj4+PBSIhIgJEIhFeGhaL+3ef1W07lpWPkV5mGtusHbLkVXj05AXkK6u/DPZwdcanA2LhKqv+kzsxwBfL469ia1Ye1IKAJWcvYXVcLwz0crdk2ERERERWo5tb7Xx/FwtLMNTfu5m96YZpXYOx6kIiihQqbE3NwqI+3dDF1TxzJ97g7eKIHoE+SMjKR3JBCfq89imeGjcY80bFwcXBPEP6tmRi1yD8lpgOADiXV4xbwo0zDBgREdkmsyZIRo8e3epjpFL9EB0cHDB+/HhjhWQU+/btQ1JSkt62cePGWSiatjl+/LjeulQqRVBQkIWiISICeni7Y0G/2h4Xyw6exfqb+8JJJoVKo4Wvk3nGim6NPIUSj568gKyq6nk8Ip2d8HH/3rrkCADIxGIs79UdSq2AHTn5UGi1WHQmHp8O6N2qOUmIiIiIOqo+nm665fWXU3B/9zDYSzrenFXG5iiVYE73MHx4PhFaAfg84TpeH9zb7HGsnDEBM9b+jHKFEnlllXj1t73YcOQ8di95AG6O5ptjsSldXGsbXeVWmm+OICIisk4cYqudKioq8NRTT+lti42NRUREhFnjWLNmDZTKtnddXblypd76iBEj4Oxs3pYmRET1PdCr9l5aWKXE0PV/oe///sDAr//Ec3tOQmNF3XKLlCosOHkBafLqL1ldnBywdkBveNo1nMRUIhLhzd7dMdKnepzoSo0Gj5+6iOsVHNqQiIiIqLubC0b5Vc9lkVlZhS/iLTNclC2a3a0LnKXVyaRfrqUjxwIJgFHdu+DgCw/h7gExuDFP/OXsAnx58IzZY2lM3cnrrefbBBERWUqHTpCIRCK9n7179za7/6JFi1o1MXl+fj6mTp2Kc+fO6W1fvnx5W8Jtl8cffxzdunXDmjVrUFLScELgpmg0Gjz99NPYsWOH3vYHH3zQ2CESEbWauM6XlxuEmp8fLqVg+aGzEATLf63RCAKePhOPazUJjkAHe3w6IBY+9k0PIyATi/FunxgM9KweWqtUrcbHiSlmiZeIiIjI2i3qEQlxzaPg6guJOJVXZNmAbISbnQyzu4cBAFRaAesuJVskjkg/T3z1rzvwxZwpum3J+cUWiaW+rHK5btnHCnq0ELWHoNXa7A+RtejQCZLWWrVqFSIiIjBt2jR8++23SE5ObnS/tLQ0vPvuu4iNjcXu3bv1Xrvzzjsxbdo0M0TbUGpqKh5//HEEBgZi1qxZ2LBhA65fb7ylTUFBAb755hvExcXho48+0ntt4MCBeOihh8wQMRGR4W6PCIa/swO8HWq/xHx14Rp+uZJmwaiq/ZyejXMlZQAAX3s7fDqgNwIcWv6y5SCR4MN+PeBV08vkQH4hytVqk8ZKREREZAti3F3wWK/q+UY1goD/O3QGJcrWzWnaWT0UHQ57SXV1zw+JqShWWG6i9D4hfrplpVpjsTjq2puWo1uO8XJrZk8i66dUFEIhz7W5H6Wi0NIfHZGOWecgsQUKhQK//fYbfvvtNwCAm5sbAgMD4e7uDpVKhZycnCZ7mYwaNQrfffedGaNtnFwux/fff4/vv/8eAODu7g4/Pz94eXlBqVQiNzcXGRkZjR4bFRWF3377DWIxc2dEZF2WjeiDNwdWf0neeCkFi/ecBAB8fOoypnUPbbS3iTlUqjVYnZisW38rNhqhTo4GH+8slWK0rxd+zciBUivgeoUcsZyLhIiIiAiP9Y7EkZwCnMgrQmZlFT46dxVLB/a0dFhWz8fRHtMjQvDt1VRUqjX4Oy0HM6JCLRKLnbR27hhLJ0iq1BqsOXsV6xOqG5KKRcCwIB+LxkTUXucOLrB0CEQ2j7XgLSgtLcXly5dx7NgxnD59utHkiFgsxnPPPYddu3bB0dHwSjFjGj58uN44mnWVlJTg6tWrOHr0KE6fPt1kcmT69Ok4cOAAgoODTRkqEVG73RMThiGB1V9mEovLsDsl22Kx7M4tQFnNl72JAb4YUDNkVmsE1ultUmDBFn5ERERE1kQqFmPl8L663hB7MnItHJHtuLNr7ff6A1l5FotDL0GisVyC5GROIW7/ZQ9WnbqMG9MYzo+Ngp+Tg8ViIiIi68AeJHV89tln2L17Nw4dOoS0tJaHbAkICMDMmTPxxBNPICoqygwRNu3QoUPIzMzEli1bsHv3bhw4cADZ2S1XGHp6euKuu+7Cv/71LwwfPtwMkRIRGccj/brhaFY+AOCzs1cxPjzQInFszar9on5PSECbzuFtVztXSQGHjiAiIiLSCXR2RJyPJ47kFCCjQo708kqEuDhZOiyr19vLHR52MhQrVTiUXQCVVguZBUaKsK+TIFFYqAfJxYIS3P/nYchrypeKRFjQtxv+b2CMReIhaq+AgACD6i1tRUBA275HExmL1SdIxowZ0+YJeFt73Pz58zF//nwA1XN0JCQkICUlBXl5eaioqIBEIoGnpyd8fHwQFxeHiIiINsVlKkFBQViwYAEWLKjuXpeZmYnLly/j+vXrKCkpQUVFBRwcHODm5gY/Pz/06dMHXbt2bbLnibF4zZgOHz9vk5bhX5xv0vPrlJeapxwAqpyclncyAkkrhgKqEsuQXrPcdfIwOGgNr8hVFZpnUsWsY5fNUo7MsenJt41Ja8YvEVoztehy9PEweF+xrLZFl4OXG+xVtZ/7ZG93RB2LR2JBCY5k5uOyUo1+dbrIV5XIYWo5lVU4VlgMAAhxcsDgYJ823VMdHGW6ZZGdGHbODa8vJ2/zDLulqjRfD5aqUoVZypHIDK8MUItr72uqKhUEueH3OVmd32NHoFGZZ+JEQdu257y2EInNMxRfa96ToNbqLZvzvm8oiZ15vjKY81porfwqBXZm5mGorydOFZTg9lB/OEgkLR9oJq35/6qpc81p1FqIWnGsuSZUFZmpErc1fx/aQyw137Virns3YPjfx/b8bXX0rE6EDA30xpGcAgDA8YIihHm6GHwOQ4jM9Dvy6mae0RpUFdXPwaO7BmLz5VSUq9S4ImgwJMDL6GUVnrvS7OuVdRr/5OUVtrh/U65sTjR4X62HGzCuevna9mS8dP2cLjnSQ+qIp92C0DVThsQtSbWxadhIiWyHVCpFSEiIpcMg6jCsPkFiKd7e3hg5ciRGjhxp6VDaLCgoCEFBQRg7dqylQyEiMjqxSISFQ3th8dbDAIBXdxzFptm36bVSM7U/UrJwoxpicmhAmxPO2joJfUvNpUJERA1dLCrFyguJOJpXCAFAhKszrpVV4IOLiXipb3fcFuxv8sZGRAQMDahtcHc8pxDTLTSfhq0ZHVadIAGAU1n5GBLsa/YYXGRShLo6Ia2sEmdyi5BRVolgV/P2AMrU1DYAetczHHYijjZPRES1+FeBiIhs1j2xUQio+YJ1JDUHj2/er5dsMLV9mbXjOU8JbXu3YIWmtrWnlBVtREQWp9RosepiEu7dexxHapIjAHCtrAJA9XxRi49dwHPHL0Blpl4VRJ1ZiEttr/cSBVv6GyqgzudWrlRbJAaRSIRbaobCVWsFzPj9AFJLK8wag3NNQsQeIiZHiIioAf5lICIim+Uok+Lre8bBSVbdIXJz/HUs3XGszUMztoZaq8X5gmIAQICjPcLbMRb2gZohIwDAWcrOnUREllRQpcTMvcew9vJ1aFr4e7I1PQfPH79o1uQ8UWdUVqdy392+Yw1paUqOdXpWy1WWSZAAwMJ+3RHu5gwASC+rxIwtB3Axv9hs5d9ogKSAwPs1ERE1wAQJERHZtP7Bvvji7rGQ1Hzx+fToRaw5csHk5WZVVqGiZizjXh5tnx+kWKnSJUh87O0wws/4Y0MTEZHhPriYiMsl5S3ud6PC7a+MHGxLN8/ccUSdVamqtteImx0TJIZylNU2vJFbcI4rXycH/DT1JkTVPDNnVchxx697sfrUZahN3AsvQVWJa+oqAICfWMbhbImIqAEmSIiIyOZN6BaK9yeP0K2/tvM4tlzPMGmZVXW+ZLrL2v5F/VxhiW4ek0kh/nCRsQcJEZGlpFVUYnNqFgDAVSbFAG+PJvedXGdoxRvHEJFplCmZIGkLe4l19CABAH9nB/w0dRRifTwAACqtgHePx2P65v24VlxmsnLfKs3QPWvf6uhhsnKIiMh2MUFCREQdwqx+3fHCmP669RePnseh7HyTlScV1/4JLW3HF86cKoVuuT3DdBERUfv9lpKlG1art6cbXujTvcl9zxeVwlFS/bfgkgkr94hIf94RNzs2JjHUxbwi3bKfs4MFI6nm7WiPn++8CY/36w5xTUeO07lFuP3nPdiXZpqeeJqaWaT6ypwx08nHJGUQEZFtY4KEiIg6jP8b2RcPDYgBUN0q7Yn9pxBfWGKSsrq4OMG5Zlzn04XFUGraNjzA1TqTVPo42BklNiIiapuwOonqf3IL8czR83qv+znYI6pmHP2ksgrIa+79zuz9R2RSpXXmIGEPEsPtTa7t3TY6LNCCkdSyl0jw3JBe2DT1Jt28JHK1BnP/+gdbrxmnB3i5oD+c2DRHL7zlEcYJ2omIqFH860BERB2GSCTC27cNxe3RXQAAFWoN5u09gbTySqOXJRGLMDyguhVagUKFjcmt+0InCAI2p2bh+2vpAACZWIS+Xu5Gj5OIiAw3JTQAr/SN1s0vkl4p173mbifDR0P74N1BvRscF+Bob7YYiTqjUg6x1WpaQcC+lGwAgJNMikHB1tV7YkCAN7ZNvxkTuwYBqGnctPMYfrqU0u5z/11VrFseae+KBS4Buvs6ERFRfUyQEBFRhyIRi7F22hj0rxnfOL9Kibl7jqOwSmn0shb2jtQtfxB/DSfziw06Lq1CjoVHzuGlUwm6MZHvCguCtz17kBARWZJIJMKsyFB8MTIOnjWVsKHOjniyRwS23TIcfb3cEe3uihh3F73jxgRYV8UjUUdTN0HizgSJQS7mFSGvsnpy8hGh/rCrMx+JtXCSSbF6/CDcU9O4SSsAL+w/rYu7LQRBwMGqUt36DCcfiJgcISKiZjBBQkREHY6jTIq1owcgoqbbfnJZJR7ddwKVauNOTtnbyx13dakerkCu0WD+4TPYk9X0vCdKrRafX0nGHbuO4kBOgW779LAgvBDbzaixERFR2w329cLft47A5vFD8dctw7GwRwQ86lTKvtQ3Gi5SCaQiEe4OC8J9kaEWjJao46tQ1w6Z5Ci1vop+a1R3eK2x4dYxvFZjpGIx3hndH/39vQAAGkGAoo1D1wLAJbUcOdrahJq3mAk1IiJqHgfLJSKiDsnD3g5fjh2EmX//g1y5AmcLSvD0wTNYc1N/vQnW2+ulPt2RU6XAodxCKLRaLDp2Hsv7xWBanXGeMyrk+CU1C7+lZiFbXjspu7+DPV7s0w0TgvyMFg8RERmHs0yKbjKXRl8b6OOJg5NHAwJgJ2GbMyJTc6jz/6w9leedyd7kbN2yNSdIAEAsEkGhqU2CCTUTq7fFzqpiwIn3ZSIiMhwTJERE1GEFOzviizEDMWvnUZSr1NibmYelxy7izSG9jdbV3lEqweqhffDyqQT8mZ4DjSDgldMJOJRbAHc7GU4VFONKnYnYgerum7MiQvBUjwhO7EtEZKPsjJhsJ6LmOUlrn5eM3SO4I6pSa3A8Mw8A0NXDBWEejSd7rUlVnV5CN/+wEw/06orH4qLh04o5nnI0SvwlL4abk5cpQiQiog6KT/VERNShxXi6Yc1N/SETVydENl1Lx4fnrkIQ2t4yrT47sRgrBvTErK4hum3bMnLxw/UMveSIGNXj1P84ZhBe7NOdyREiIiIiA7jUeWaqUGma2ZMAILGwFGpt9bPugEDbmCNp8aCecLWr/j0rtVp8eT4Jo7//G4cy8gw6vlyrwZsl6VC1o/cJERF1TkyQEBFRhzfU3xvvDOurW//kYhJeP5kAjdZ4X6DEIhFe6tMNL8R2003sC1T/oe3p7oqnekRg560j8PHQPujp4Wq0comIiIg6uhsV5wCQXK9nLjV0paBEt9zd292CkRhuUkQwDt53Kxb26waHmnlmylVqzP3rHxzNbHqOPwC4pq7CgsIkXFLLAQAeYs5TQ0REhmPTVSIi6hQmhQWioEqBN04mAAA2XEnBgcw83NstFPdGdTFKbw6RSIQHIkMxIzwIx/KLIRYBfT3d9Vo9mlJmWSW+Op+IPLkCMrEYt0cGY0yXALOUTURERGQqQwO8dcsbLqfgwR7hnKy9GbaYIAEADwc7vDCkNx7uHYUX9p/C7tQcyNUaPPzXP3jTJRQ9ZU4NjsnSKPF8UTJKhOqeRe4iCV5wC2mwHxERUVPYg4SIiDqNB6PD8fbQWEhr5h9JKa/EitOXMeXPgzic3XzLtNawl0gwyt8bI/y8zZYc2XYtA+O+/xufnL6CTZdS8H38dTy89RAu5hWbpXwiIiIiU4lwd8HoYF8AQGaFHJ9eSLJwRNbtfG6RbjnahhIkN/g7O2DtLUMwJtQfAFChUuO14lRUaKuTIOlqBZ4oTMJjhUmYU3BVlxyJljriY69IhEoMn7eEiIiICRIiIupU7ooIwTfjBmOYf21LxPQKOR7afRxLDp/F3oxcvUkibUFuRRUW7TiGcpX+pKVqrYCndx2HQmNb74eIiIiovpcH9dQ1cvn0fBLy5QoLR2SdDlzPxJ7kLACAp4MdQt2dLRxR29hLJPj0liEYFlQ9h0qxoMHPlQXQCALeLk3HFXUVEtVVuv1dRGK86dEFfhJZU6ckIiJqFBMkRETU6Qz088LX4wbjz0mjMNjPS7d9S3ImHtl3EoN+3oklh882SDhYq0/PXIa8JqkzITwQf987AT1qWgteKijBZ6evWDI8IiIionaLdHfBfdFdAFRP4r3i5CWotVoLR2Vd5Co1/m/rId36cyP6QFyTVLJFDlIJ3r4pDlJx9Xv4WV6AX+QFuFInMXLDFEcvuIk5ijwREbUeEyRERNRpRbm74JtxgzG/R1fIxLVfHhUaLbYkZ2LBvpNQ2kDvi2N1Jq5cMXYAeni7Y9nI2knpvzyXCKWGFQhERERk26Z0DdIt/5KUjg/YCETPu/tPI7moDAAwKMgHD/SJsnBE7Rfu7oJ7Y8IBAHJBi8/Lc3SvveQWgv9zDcIi10A86OxnoQiJiMjWMUFCRESdmlgkwrNxMTh693isHhWH6ZEhumTJsdxC3aTu1mxceKBu2UUmRXaFHPdu3q/bViBXILmk3BKhERERERlNf19PPNyjq2598/UMC0ZjXc5lFWDNPxcAAHYSMd6bMNime4/U9VT/6AaVV04iMUbZu+E2R09McvSCpIO8VyIiMj8mSIiIiFCdWLglNAD/GRKL78YPhb2k+k/kD4lp+OVauoWja16xQqlbfuPwebyy73SDfWyhJwwRERFRc0QiEQb4eerWvR04GTcAqLVaPPPHQWgEAQCwaEgvdLPBydmb4u/siGipo962vjJnJkWIiMgomCAhIiKqp6+PB5YP6qVbf+vUJb0khLWZ1TMCN0YI++ZCErZfz9R7PdzdBd283CwQGREREZFxXSws0S3fHx1mwUisx6dHL+JcdgEAoIevJx4f1MPCERnfADsXvfXZzr4WioSIiDoaJkiIiIgacVdECKaEVQ9dVaJUYc2FJAtH1LTuXm54cWgsxI00ont2SC/8fe8E2Esk5g+MiKgNlBot/s7IwXPHL+Cji4mchJmI9JQqVbrlaE9XC0ZiHa4XlmLF3lMAABGAD6aMgF0HfO4b6eCmq8Ca7uiN7jLHZvcnIiIylNTSARAREVmr6ZGh+D0lCwCwNzMXLw2w3tZ4C/pHY2xYAN4+cgG7U7IgCEA3TzdM694FjtKO9yWZiDqe+OJS/JKcia3pOSipUwFqL5FgQUzXZo4kos4kT67QLXvY21kwEssTBAGLtx6CXF09lOr8wT0xINgPqgq5hSMzvgipA95wD0O+VoUJDh6WDoeIiDoQJkiIiIgakVkhx6KDtXN5DPD1bGZv6xDt7Y51k0ZAodFAKhJD0liXEiIiK7Ty/FV8cTm50dfWJFzDxBB/hLk4mTcoIhsmCAKKVCqUqTXwtpPBRdpxvvqfL6geYstJKkGwc+fuRfD92as4kFzdmCfE3Rkvjh1g4YhMa6C9S8s7ERERtVLHeUoiqzV7tQfsHb1NWoard5RJz39D3xHdzVIOAAweYp7WUL29DZ98WqVSApcvAgCyht0HmczwGBWCeSZQDLv5jFnKSfv3CrOUI5hxWBGXED+zlCP1MHzCSJFYplt2CPKDg1bVzN76ipKyWhVXfd9eTUVxTQvmSDdnPNO38f//roEe7SrHUDJnB8P3bUc5Tt7m++KpKLfeeV3aQmymnjoqueH/D9pDW9Ma1dSEDtjDSdSK5KRWK+gtazVCM3vrM9e1YOr6qJTySgia2r939mIxxgf7QaXR4u/MXKgFASfyi4yWIBFLzTfKsEZpnr/jrbnm6u4rEotadaxEZp6vjzIn8zwHl+eWm6Ucexcz9nKwk2BrajY+TbiOa2UVAACZWIT7IkMxuUsg+hhp4m7//t0M3lchtUdGzXLoyJ6wVyua3b8uOx8vvfWknEJkVVQBAAZGhiB4tHESAorcfKOcpyUSI/Z4OZOei1d3HNOtf3jPeHj5VX9epak5RiunJfKiSrOU4xlj+HBqGhcXZNcse0S5QFLe8t9WpUIBFLQxOCIismlMkBAREdUjCAL+Sq1OsIhFwDfjhsDX0TxJPiKizmZLeja+TEwFAPTxdMPnI/vDVSbF4mPndfsEOBqeJCbqrDIq5Xj2YDzOFZbqbVdpBWy8lo5vrqbirvAgvBwXA+c2JrtO5xfjVH4RbvdzRz8zNa6p67t/zumWx/eONHv51mLT6ct45Lvt0NQk2Wf0j8aEHuGWDYqIiMhGcZJ2IiKietIq5Egrrx67ebCfN5MjREQm5FRnMmGtAFSpNdiWnoNt6dUtoJ2lEvT1Mk6rd6KO6kJxKWYdOKWXHOnj5YbbQwMAAPKaXlq/JGdi/oFTKFO2vgdaclkF7t9zHO+eu4qxqzfio32nUKVStyleRRt6KRZXVuHzvScAAGKRCLOG9WlT2bausLIKT2/crUuOdPfzxFt33GThqIiIiGwXe5AQERHVk1ZWO1RArJebBSMhIur47ggNwPpr6chXKHGhuBSjtx3Qe/3lvtFwMdPQTkS2qFKtxmNHzqGwJunRxcURrw/shSE1wy2tGNIb3yemYdXFJJSr1DiVX4x5B07h+5sHQywyfIi1IzmF0Ai1QxW9tu0fvL3jGIZ1DcLoqBCMiQpFbKAPxM0M21YiV+CJDX9g55UU3BoTjpdvGYLegT4Glf/u1oMoqGnAcvegngj0MHzIpY7kswNnUKaoHqZ0Smwkvph9Gxx4jyQiImoz/hUlIiKqJ62iNkESwkmBiYhMysfBHh8N6o2njl9AgUJ/bqJJIf64o0ughSIjsg3nikp1yREA+HHcEHjWmetCJhbjwe5hGOjribn7T6JIocLZghKcLShBnI+HweVcLC5tsK1KrcGeq2nYczUNwD/wcnLA6KgQTOzZFVN6RTSouJ/1zZ84eTUFAPBXQjL+SkjGXX274cXxgxHl23QsyXlFWLOrer4Ne6kE/777ZoPj7kjKqpT45MAZAIBELMIbU0YxOUJERNROHGKLiIionoya1okAEOLsaMFIiIg6h75e7vh9/FDcFRYESU2L9hAnRyyN6wFRK1q4E3VGCq1Wb/14XlGj+3Vzd0E/bw/deoW6dcNjXawZvksEYMMDEzF7QAyC3F309imsrMKv5xLxyA870Outr/H0L3vwvyMXdK8nFzZMsvxy9iqGfvAdXvz9QKNDdmm0WizasA3KmmG5nrxlKLrUeR+dhUKtxvO/7UWxvHqS+xn9YxDuzeEHiYiI2otNDYiIiOpJr6hNkAS7MEFCRGQOHvZ2eGNATzwSHY4T+cUYE+gDV7aMJmrRSD9vjPH3xt6cAgDAU4fP4tYQf/xfbDcEOzsgpbwS8UVl+DYxFWcKSgAAYhEQbEAjEKVGi8slZfg7PQfxxWUAgO7uLpjUKwKTekVAEAQk5hdjb2I69l1Nw/6kDN3wT4WVVfj6WDy8k3Lw5f2154zx98LXs2/DzsspeH/vSRRUVEGjFbD20DkcSMrA/2bdiu5+ngAAQRDwyqZd2HkxCQDg6+qMxRNHGO2zsxX7E9PwzKbdSMwrBgCIRMAzNw+0bFBEREQdBL9xEBER1VNcZ4gXXwdO0E5EZE5dXJzQhcMbEhlMIhLh/YG98dypeOzMygMAbE/Pwfb0HIgACPX2l4lF+M+g3ujq6tzkOcuUKqy7koIfk9IbDH03LTxYtywSidDN1xPdfD0xf1gs1BotjiRn4Zvj8dhyIanBZOz39o/GsyN6wt3BHt39PPHA4J5Ye/As3t9zElVqDS5mF2Dsf3/Ciqmj0DPAG6t+2oXNpy5Vv0+xCF89Mg1ujp3r2WzLuUQ8+M1W3Jj+RSoWY+XdYxHt72XZwIiIiDoIJkiIiIjqcZBIdMvKesNWEBEREVkbO4kYHwzshb/zCrDsZALKa4aqqp8cCXZ2wNuDe2OQb9OV6wez8/HisYvIq1I0eO320ADMigpt8lipRIyRkcEYGRmMd6tuwuWcIqRX1SZJXr11KOzVted1tbfDs+MGYVKvCMz9bjsu5RahUqXGkz/vaXDu9+67DWN6dG2ybHMprVLgXGY+BoT6w9HEvdz+uZaBed/+pUuODA4LxAfTx6J3kK9JyyUiIupMmCAhIiKqx0FamyApVarhzV4kREREZOVEIhEmdQlEHy93/HQtHVdKypEnV6CLixOiPVzR19sdQ3y9IBE3Pq9PuUqNH5LS8MH5RGhqauSlIhFuDvbFAB9PjArwQYRb071O6nN3sMfgsAD0ldrjSAv79gzwxq4n7sFLfxzE18fi9V7zcHLAF3PvwMS+3Q0u21R+v3ANizfvQ35FFQLdnPHcuIGY1T8av1+8jhNpOeji4Yqh4YHoE+gDcROfsyGUag22nE/E4p/36Hrh3DewB9bMnNCu8xIREVFDTJAQERHVU3fIibMFxejaisoAIiIiIksKdXHC4j6GJROKFSpsTsnE7sxcnMovhkpb2+dkVIA3lg3oiRAD5ioxBic7GT68ayzGdgvF2kPnEOzughG9InHHgB4IqDcZvCW8v/ck3vj7mG49q7QCz/y6D8/8uq/Bvt5ODujh74VQT1cMCvXH4LAAxPh5QdJgTyC5oAR/XEhCQlYBkgtLkFxQgoyScl2vEQC4uXsX/HfGOCZHiIiITIAJEiIionqG+Hth9YXq5WM5hbiza3DzBxARERHZmKTScty76xjKaobjukEE4OHoMCyO7d5kbxNTuiM2CnfERgEA7HysY54NhVqDlXtO6da7+Xjgan5xk/sXVFbh4PVM4Drw/anLAAA3BzsMCgvEwC7+cHWwR6VShb/ir+NUWk6zZd/Wsyu+mH0bZJLG0itERETUXkyQEBER1dPPxwN2YjGUWi2O5hZYOhwiIiKzUWu1yJRXIbdKiTyFAnlVShQpVYh0ccKIAG9429tZOkQygnMFJZix66jethBnR9wU6INp4UGI9XK3UGTW6URqDuQ1iaQ7YyPx5b0TcDwtBx8fOIu/L6dAKhZh7tDeCPVwxd7EdBy6noliuf4cLqVVSuy6nIJdl1OaLcvLyQHh3u6I8HHHfQN7YHxMuKneFhEREYEJEiIiogbsJRL08/HAsdxCpJXLkVUhR6CZhpcgIiKyBEEQ8HdWHt6JT0SeQtn4TmeBnu6uGOXvhVF+3ujr6QaRiEP+2JojuYVYcOCU3ra50eFY0qcbf59NOJOZp1se170LRCIRBncJwODZAZCr1NBoBbjYywAAc4f2BgCUKZS4lFOIoynZOJaajWMp2cgtlzc4d59gX0zr2w03R4ehq7c73B059x0REZE5MUFCRETUiL7e7jiWWwgASCwpZ4KEiIg6rNwqBf5z4Sp25+S3uG98SRniS8rw6ZUUxHq4YkF0OG7y82bFuo24VlqBhQdOoUqj1W3zdbDHnO5h/B02Q6gzIYiLnUzvNUdZ49UqrvZ2GNQlAIO6BOjOkVZRhYuZ+VBptRAEAX2DfRHp62m6wImIiKhFTJAQERE1ItTFSbecXtGwtR8REVFHcCivEM+duogytUa3bbC3B2LcXODrYA9fezu4SKU4XVSCg3mFuFxartvvfHEZHj96HgO9PfB6vxiEsjGBVVNrtXj+2HnIa5IjowK88UK/aAQ7OcJByvktmmNXZ/4PlUbTzJ5NE4lE6Ortjq7eHL6MiIjImjBBQkRE1IgIN2fd8sakNEyPDIFMLLZgRERERMal0mrx8pkEXXLEy06Gl3p3wy2Bfg32vcnfG8/0ikRulQIHcgrw7fV0XCmtAACcKCjGfQdO4tuR/RFWp4EBWZcvLiXjfGEpAKCrqxP+O7wfEyMGspPUPgMq6/S+ISIiItvHmh4iIqJGDPD1QpS7CwDgQmEpvmlhQk0iIiJbc7KgGIVKFQAgztMdv40e3GhypC4/B3vcHRaETaMH4cNBvRHs5AAAKFaq8PypeJPHTG1zubgMH8cnAQDEIuDtwb2ZHGkFWZ3PigkSIiKijoUJEiIiokZIxCK8NSRWt/5nSpYFoyEiIjK+ndm1c448HBkKj3pzKzRHLBJhfKAvNo4eiJCaJMmF4jIklVUYPU5qn4wKOZYcPQ+VtnoejbnRXdHX28OyQdmYuj1I2jrEFhEREVknJkiIiIiaEOnujBvTlZbWtLAlIiLqKA7nFwIAPO1kGOHr1aZzuMlkGFCnsv1ySXnTO5PZ7c7IxZTth3G15vfSzd0FT/aKtHBUtkcmYQ8SIiKijopzkBARETVh1blECDXLfTihJhERdTA3ehTcFujX5nm2MiursC0jV7ceXTM8JVleYkk5Fh85p5uUPcDRHu8P7aPXG4IMwx4kREREHRcTJERERI0orFLi+8RUAICjRIJn+na3cERERESmMTnEv83H/pSSAaW2ugJ+akgAIl2djRUWtUO5So2n/zmrS45MCPbDfwb1gmsrhlGjWrK6k7Sr2YOEiIioI2GChIiIqBFJpeVQ1FQqDAvwRoiLk4UjIiIiMj4PmRS93F3bdGxyeSW+u5YBAJCKRHiqR1djhkZtUKRQ4pfrGfjxWjpSy+UAgO7uLnhnSCwcOSl7m9nVGWKLPUiIiIg6FiZIiIiIGlGhUuuWe3q6WTASIiIi0ylWqbH68nU8FRNh0P7Z8iqcKijB7ux8/J2Zixtt6aeHBSHA0cF0gVKLdmTm4tWzl1Fe5xnGSSrBh8P6MjnSTnWH2OIcJERERB0LEyRkckpFocnLkFUoTV4GAJQWma8FeUGOnVnKyVZmGbyvSq1Efn4+AMDFPQsyqeExKgTzvB9pWZ5ZysmWV5mlHAc7Ucs7GUlVsXkmVZUKhr8nhUiKfFRfc5mFJbAX1C0cUSunUt7q2OpKLavQLYtFQHYT57OXCI1uNzYZzFOOvKJ9n1trlFQpzFKOWGL4NacWS3X3Oam8CtJWxGhnprondZXh/w/aQ2umFrJiSQestGvF8P4akUR3zdlXyiFpxd8Xc10LdhLzVAaa61oQS803/4JGZZ7fkUZl+O+o7jWnqfl/vik1EzPCghrdXxCAvTn5OFZYjIvFZchu5L7o52CHu7oEGO35SAbzXHMVZvo7ZI7/Qz+nZOGTK8l62/p5ueOJ3pFwkkqQXWncZ1d1ieHPjUpJ7XeIzOIy2GkM/+5mJzZPlYWihfdTXOdaKaysQkYr3n9dEjMNcVZoxue5KjN9L6pSGP7/VSuR6a45sbwKYgOOzVeq2hwbERHZNpEgCOapcaFOJT09HaGhoZYOg4iIiIiIiIjIYGlpaQgJCbF0GEREZCbmaz5FRERERERERERERERkJdiDhExCrVYjOzvb0mEQERERERERERksICAAUilHpCci6iyYICEiIiIiIiIiIiIiok6HQ2wREREREREREREREVGnwwQJERERERERERERERF1OkyQEBERERERERERERFRp8MECRERERERERERERERdTpMkBARERERERERERERUafDBAkREREREREREREREXU6TJAQEREREREREREREVGnwwQJERERERERERERERF1OkyQEBERERERERERERFRp8MECRERERERERERERERdTpMkBARERERERERERERUafDBAkREREREREREREREXU6TJAQkdUoLCzEK6+8gj59+sDZ2Rnu7u4YPnw4/vvf/0KhUFg6PCKidktPT8fTTz+N6OhoODo6wsvLC+PGjcM333wDrVZr6fCIiIiIiIiIOhWRIAiCpYMg6mgyMjJw7NgxHD16FMeOHcOJEydQVlamez0sLAzJyckmK//8+fMYMGAAVCqV3vZ169bhoYceMmpZ9913H3744Qe9bW15fwcPHsS0adOQn5/f6OvR0dHYunUrIiMjWzzXa6+9huXLl7eq/Kbccccd+O2334xyLur4EhISsHLlSuzatQtZWVlwc3PDkCFDMG/ePNxxxx2WDs+obP0+99BDD+Hrr782SiyGvtdffvkFDzzwACorKxt9fdiwYdi8eTN8fX1bPJcx41+0aBE+/PBDo5yrM1AoFDh9+jQSEhJQVFQEuVwONzc3+Pn5oX///oiKioJIJLJ0mCaTnp6O9957D9u2bUNqaiocHR0RFxeHOXPm4P7774dYzPZXtiApKQnHjh1Deno6lEolPD09ERMTg+HDh8PBwaFd5y4sLMT777+PLVu2ICkpCVKpFL169cJ9992HRx55BPb29kZ6F0Sm0Zme5zoapVKJS5cuITk5GRkZGSgrK4NKpYKbmxu8vb3Rp08f9OjRAxKJpF3lVFZWYvXq1di4cSMuX74MrVaL7t274+6778aTTz4JNzc3I70jIiIyC4GIjOLgwYPCtGnThKCgIAFAsz9hYWEmi0OtVguDBg1qtNx169YZtawtW7YY5f2dP39ecHFxafFz69Kli5CTk9Pi+ZYtW9biuQz9ueOOO9r24bQgPT1d+OWXX4Tnn39eGDt2rODq6mq2a0QQBOHcuXOCTCZr1zXS3s95zpw5Jnt/giAIo0ePbld8rf3/snr1akEqlTZ5vqlTpwrl5eVmib3uzwcffND6D68JHek+N2fOHKN9xt26dWuxvJ07dwoSiaTFc/Xv31+oqKgwa/yLFi0y6DNrrY5wn6vrxIkTwuzZswV7e/tmP8/g4GBh6dKlQkFBgXHfUCPaex0sW7asVeX9/PPPgpOTU5PnGzZsmJCbm2uW2G39Gm7ve75+/Xqbyv3111+F/v37N3leFxcX4YknnhDy8vLadP4DBw4IPj4+TZ4/OjpaSExMNOhcnf15zhLXiKXv243h81z1jzGf5+rqCNfwxo0bhUcffVTo3bt3s7+7Gz/u7u7CggULhISEhDa9r/j4eCEiIqLJ8wcEBAjHjh0z6Fzr1q0z2jXSt2/fNr0fIiISBCmIyCiOHz+OX3/91dJh4IMPPsDx48dNXk5JSQkWLlxolHMtWLAA5eXlAAAXFxcsXLgQAwcOhFKpxKFDh/Dll19CpVIhNTUVzz//PNatW2eUcs3t0KFDWLlyJY4ePYrMzEyLxaHRaDB37twGLe+p7b766is88cQTze6zZcsWzJw5E1u2bLHZFtad7T5nqMmTJzf7ukqlwvz586HRaAAAPj4+eOKJJxAbG4uSkhLs3LkT33//PQRBwKlTp/Duu+9i2bJl5gjd6DrifU6r1eKll17Cu+++a9AwaBkZGfj3v/+NTz/9FF999RVuu+22dsdgDXbt2oUZM2boruPG/PPPP7jttttw4MABODk5mTE647GWa9jYFAoF5s6di2+//bbZ/crLy7F69Wr8+OOP2LRpE2666SaDy7hw4QImTpyoe6ZrzOXLl3HzzTfj+PHj8PPzM/jc1qSjXSMd7f20R2d5nutov/Onn34aGRkZBu9fUlKCtWvX4ssvv8RLL72EZcuWGdzzMysrC+PGjUNWVlaT+2RnZ+OWW27BkSNHEB0dbXBcRERkOUyQEJmBi4tLs18WjSUpKQlLly7VrTs7O6OiosIkZT377LO6B9H2lHP+/HkcOnQIABAREYG9e/ciNDRU9/r999+PBQsWYOzYsSgqKsKGDRvw4Ycfwt3d3eAybrnlFjz77LNtis+YX95ZudwxFRQUYNGiRbr1sLAwLFy4ENHR0cjNzcXmzZvx559/AgC2bt2K9evXY86cOZYK12Rs7T733HPP4f7772/1cVevXsVjjz2mt62lIb3++usvXL9+HQAwePBgbN++HR4eHrrXH374YTz88MOYNGkSlEol1qxZg6VLl7ZqmKYHHngADz74oMH719WlS5c2HdeYjnife/TRR/HFF1802O7k5ITIyEg4OjqioKAA165dg1Bn5NqcnBzdMI0TJ040SiyW0pmSfNZyDRuTVqvFzJkzsXnzZr3tEokEXbp0gbu7O65fv46SkhLda3l5eZg4cSJ27tyJYcOGGVROZ2nw0tGukY72ftqqMz3PdYbfuYODg+7+ptVqkZ+fj9TUVL2/0yqVCsuXL0daWhq+/PJLg867ZMkSXXJEJpNh3rx5GDFiBGQyGY4fP45PPvkEFRUVKC4uxoIFC7Bnzx6TvD8iIjIuJkiIjMzV1RUDBgzAoEGDMHjwYAwaNAjXr1/H2LFjTVquIAiYP38+5HI5AGDKlCkoLS3Fvn37jF7W3r17dZVFYrEYy5Ytw3PPPdemcx0+fFi3vGLFCr3kyA19+/bFCy+8gOeffx5qtRpHjx7FLbfcYnAZgYGBGD9+fJviMxdbq1xuzHvvvYe+ffsavH9QUJBRyjXUjh07WrV/r169DNrvu+++Q2lpKQBg6tSp+PHHH/XGb3/kkUfw9ddf6yrRP/7441Z/oX722Wdbdc3XZYqWax3hPtezZ0/07Nmz1cft3r1bbz0uLg59+vRp9pi697mPP/5YLzlyw/jx4zF37lx88sknyM3NxdWrV9G9e3eD44qIiOB9roYx73ObNm1qkBzp2bMn3n33Xdxyyy2QSmsfpfPy8vDJJ5/gzTffhFKpBFA9FvqcOXNw+fJleHp6timG1tiwYQP8/f0N3j8iIsKg/TpTkq85prqG+/Tpg5UrV7bqmICAAIP3fffddxskRxYsWIBXX31V97dYq9Vi8+bNePrpp5Gamgqgeoz9GTNm4MKFCy02TOlMDV6aY6vXSFPMdd9uDT7PmZatXsNBQUGYNGkSbrrpJgwbNgxdu3Zt0MOnqKgImzZtwr///W+kp6frtv/vf//DyJEj8fDDDzdbRlFREX788UcAgJeXF/bu3YvY2Fjd6zNmzMATTzyBMWPGIDk5GXv37kV8fHyrnjfb8jnd4Orq2qbjiIiICRIio5kyZQpuueUWxMTENHgYu1GpYEqff/65roWKi4sLPv74YzzwwANGL0cul2PevHm61jdPPvkkBg0a1ObzFRQU6Jabq2SsW/Fe9xhb1BEqlxszYMAAjBkzxijnMgVTVR7fqPyWSCT47LPPGp3cds6cOfjxxx+xbds2nDhxAlVVVa2aBLdnz55WUfndWe5zTdFqtVi/fr3eNkMmhOd9znbvc8uXL9dbHzhwIPbu3QtnZ+cG+/r6+mLp0qUYOXIkbr31VqjVagDViZO1a9fixRdfbFMMrTFixAiEh4cb/bydMclnzmvY09PTZO+9oKAAb775pt62t956Cy+88ILeNrFYjGnTpmHw4MEYOXIkkpOTAQDp6el4//33G/xfqK8zNnjpKNfIDZa6b7cWn+eMp6Ncw3/++SdiY2NbTMp7enpi/vz5mD59OsaPH49Tp07pXnv55ZcxZ86cZodNO3bsmK4n5YsvvqiXHLkhLCwMK1aswMyZMwEABw8ebFWCxBz/14mIqCEmSIiMJDIy0mJlZ2Rk6PXgePPNNxv9YmoMr776KpKSkgBUt9h84403cOLEiTafr27Lwfj4+CYrU+Lj43XLjVXM2ILOXrncUd2oyPbz82u25Xbfvn2xbds2CIKAoqIiBAYGmitEo+ks97mm7Ny5U6/FoUwmw6xZs1o8rv59rl+/fo3ux/tc+xnzPnft2jVcuHBBb9uaNWsaTY7UdfPNN2Pu3Ln49NNPddt+//13syRITKUzJfksfQ0b2zvvvIOysjLd+k033YTnn3++yf2Dg4PxxRdf6FXQffDBB3jqqafg7e3d5HG8RqrZ4jXS0d5PW3Wm57mO9jtvqSdvfZ6entiwYQN69eqla/SXlZWFQ4cOYdSoUU0e15nuc0REnY1tzipGRHoee+wx3bjRgwcPbnFywbY6fvw4PvzwQ936xx9/DBcXl3adc/Dgwbrl559/HtnZ2Q32SUhIwH/+8x8A1a266h5jSyIjI9GzZ0+LTOhoDZXLHdWNyu+8vDzk5+c3uV9HqPy2JHPd55rz9ddf661PnjwZPj4+LR5X9571xBNP6FVW3nDgwAF89tlnAABvb+9Wtby3Jh3pPnf58mW99ZCQEIN7TN59991664mJiW2OwxrUT/I1pSPc5yx5DRubVqttMM/Ha6+91mIr63HjxulVEpaVleGnn35q9hheI7aro72ftupMz3P8nQM9evTAgAED9LYlJCQ0e0xnus8REXU2nfcvIlEH8cMPP2DLli0AAKlUis8//9wkD7sqlQpz587VdSu+5557MHny5Hafd+DAgbpWNleuXEF0dDRefPFFbNy4Ed999x2efPJJ9OvXT/dFZfr06c22YKTGWUPlckd1o/JbrVZj4cKFurkH6vrpp5/w+++/A6huVebo6GjWGG2due5zzSktLW0woakhw2sBwKRJk3TjaB86dAjdunXD66+/jl9//RVff/015syZgzFjxqCqqgoAMG/ePEgkEqPG3xkY+z5XWFiot96aZEv9OTGKi4vbFYuldaYkX0dy+PBh5OXl6dYjIiIMHgpz7ty5euu//fZbs/t3pgYv1DHxea7zqd8zurnEGFD9vfVGgvk///lPg4YUAJCZmanXS2/YsGFGiJSIiEyNQ2wR2bCCggI89dRTuvXFixe3uouxod566y2cP38eQHVLmFWrVhnlvCKRCGvWrMHYsWOhVCpRWlqKt99+u9F9AwIC2jxpXWdmDZXLHdmsWbOwdOlSVFVVYdOmTTh16hQWLFiA7t27Iy8vD3/88Yfe5LgLFiywYLS2x5z3ueb89NNPunktgOohOG6//XaDjnVycsJ///tf3HPPPQCAnJwcvUnE6+rZsydefvnl9gfcyZjiPld/8ui6v/+W1N/XkJ5G1uxGki87O1uX5Hv88cfRu3dvlJaWYvfu3diwYQO0Wi0AJvmsxdatW/XWJ0yY0GLvkbr71rV3715UVFQ0OcTcjQYvZ8+e1TV4eeyxx9C/f3+oVCr8888/+Oyzz3SVzmzwQtaGz3Odz42GKTe01NvD398fkydPxu+//468vDz07dsX8+fPx7BhwyCTyXDy5EmsWbNG14hg6NChTQ6rSkRE1oUJEiIbtmjRIl3LwMjISCxbtswk5cTHx+tN8LlixQpda2hjGD58ODZt2oRZs2ahvLy80X26du2KLVu2IDg42GjldgbWUrnckQUHB+ONN97AkiVLAFTPW1B3mJ+6xowZg3nz5pkzPJtnrvtcS7766iu99dmzZ0MqNfwxavr06fj000/x+OOP6ybvri8uLg5btmyBq6tre0LtdEx1n6tfqZGQkNBsBXFdx44d01u39ZbyTPLZpjNnzuitDx8+3OBjg4KCEB4erpusXalUIj4+vslh5tjghWwdn+c6F0EQcPz4cb1t9Yfcasz777+PAwcOoLi4GAqFAqtXr8bq1asb7Ofs7Iy1a9caLV4iIjItNiEmslF//vknvv32W9362rVrTdLNW6vVYu7cuboWf6NGjcL8+fONXs6UKVNw6dIlPPPMM4iOjoaDgwNcXV0xcOBArFixAufPn0fv3r2NXm5HZ+7KZYVCgYSEBBw8eBBHjx5FYmIiKisrTVpma5SUlODcuXPYv38/Tp06hZSUFN2wce2xePHiJisLb5gwYQJ+/fXXVlWqd3bmus+1JDExEYcOHdLb9vDDD7f6PI888gguXLiA+fPnIzw8HHZ2dvDw8MCoUaPwySef4OjRowgJCTFW2J2Gqe5zISEhehXKCoXCoN6TCoVCb74uoOFwRaZUUVGBixcv4sCBAzhx4gSuXbsGhULR7vPeSPI1dw+Li4vD9u3bmeRro6ysLJw8eRL79+/H+fPnkZWV1a7z1R9Pv2fPnq06vv7+LY3Pf6PBS3Pz03Xt2hU7duxgg5c2MvY1Yqv4PGe7rOUa/t///ofMzEzdekxMjEGNGaKiorBt2zb4+/s3uY+Pjw+2bt2qN1k7ERFZN/5VJ7JBZWVlet26H3jgAYwfP94kZa1atQpHjhwBANjZ2eGzzz4zeHiG1goODsb777+P999/36jnzcrKws6dO9t07JgxY2z2C5C5K5cff/xxXLt2rUF3dalUigEDBmDixIl47LHH4Ovra7IYmhMXF4dz587phoC5wcXFBSNGjMDdd9+NBx98EPb29m06//LlyzF58mR8+OGH2LdvH3Jzc+Hm5oYBAwbg4YcfxsyZM032f6cjMud9riX1J2fv378/YmNj23Su6Oho3TwNxnTt2rU23edkMhlGjx5t9HjMxdT3uRUrVmD06NG6+8bSpUsRFBSEOXPmNLp/cXExHnjgAb2K5ClTpmDKlClGi6k5U6dORUJCQoNeSg4ODhgyZAimTp2K+fPntzmB8cgjj2D06NFYuXIlduzYgczMTDg5OSE2NhazZs3C3LlzIZPJjPFWOpXz588jIiIC169fb/BaQEAARo8ejYceegi33XabweeUy+VITU3V29aaeXQa27+x8fbru9HgZeXKlfjzzz+RkpICmUyG6Oho3HPPPXj88ccN6oVF+kxxjdgqPs/ZJmu6hr/++ms89thjunWxWIzVq1cb/HsdOnQoEhIS8OGHH+K3335DYmIigOpGGlOnTsUzzzzDIQSJiGyMbdb6EXVyzz//PNLS0gBUt1AxdkLhhuvXr+OVV17Rrb/44ouIiYkxSVmm9Pfff+Pvv/9u07FFRUUtjkdrjSxRuRwfH9/odrVajaNHj+Lo0aNYsWIFlixZgmXLlpl9fPr6Q43cUF5eju3bt2P79u1YunQpVq1apRtGprUGDRqkV1lrLPHx8W2q/HZ1dcWQIUOMHo85mOs+1xJBEPDNN9/obTN0cnZzWr9+PdavX9/q49zd3W12AnFz3OdGjhyJ1atX4/HHH4cgCFCr1XjooYfw8ccf46677kJ0dDQcHR2Rn5+Po0eP4rvvvtOb3H3ChAn4/vvvjRpTc27MFVZfVVUV9u3bh3379uHf//433njjjTZPYs8kn/EVFhbqXTd1ZWdn48cff8SPP/6IuLg4fP311wYlaPPz8yEIgm5dJpPBz8+vVXHV7+WRm5tr8HFs8GJcprhGbBWf52yTOa/hK1eu6CWIVSoVioqKcOHCBWzevFnvO8uNBoDjxo1rVRmenp5Yvnw5li9f3uY4G1NUVNTm+9zQoUOb7cFHRERNs92nRKJO6sCBA3rjma5cudJkk78+8sgjqKioAFDd7fill14ySTlkfNZSuVyfXC7H66+/jgMHDuD333+3uof47OxszJgxA0uWLMG7775r6XB03n333TbF07dv3yYrEqyZOe9zLdm9e7fel2w7OzvMmjXLIrGQPnPd5xYuXIjo6Gg89dRTuHjxIgDg+PHjDcYurysiIgLPPfcc5s+f3+7J4o2tpKQETz75JA4dOoT169dbTaVxZ0zytdbp06cxZMgQfP311y1W/Naf083JyanVrd7r9/Roap44c+mMDV5aqzXXSEfG5znbZYxreM2aNfjoo4+a3UckEuG2227DW2+9ZVVDYZ07dw4TJkxo07GnT5/mpPBERG1kXd/YiKhZVVVVmDt3rq5F4Pjx4/Hggw+apKwvv/xS13pFJBLhs88+g52dnUnKIuMyZ+WySCTC8OHD8eabb2LHjh1IT09HZWUlqqqqkJGRgd9//x2PPvooHBwc9I7bu3cv7r33XqOMF90cBwcHTJkyBWvWrMHhw4eRm5sLpVKJsrIyJCUlYcOGDZg0aVKDSqP33nuvycllybTMeZ8zRP3htSZPnsxhE6yAuZNoN998M44fP44lS5a02PutS5cuWLJkCWbNmmWW5IhUKsX48ePx/vvvY9++fcjOzkZVVRUqKyuRkpKCTZs2YdasWQ0SIT/88AOefPJJk8dHTfPx8cFDDz2EDRs24Ny5cygsLNS1dD579ixWr17doOJOLpfj/vvvx/79+5s9d/1kRv2/w4aoP1ydpRMknZEprxFbwuc522Wt1/A999yDl19+2aqSI0REZEECEZncnj17BAC6n7CwsDad57nnntOdw9HRUUhMTGx2/9GjR+uVu27dOoPKyczMFDw8PHTHzZ8/v9n9jfX+jGXZsmV68cyZM8ei8RjCWJ+hXC4XunXrpjvP+PHjm92/rdeIIAjCoUOHhMuXLxu0b1pamjBixAi9sgAIq1atMri81tq8ebOQn59v0L4HDhwQgoOD9WITiUTCmTNnTBZfc+r/Xtr607dvX7PFbGv3OUOUlZUJzs7OeuffsmWL0c7fHnPmzNGLa9myZZYOqUW2eJ+74ZNPPhECAwNb9f/Py8tL+PLLL9v0Hg31999/C2lpaQbte+HCBaFnz54N4rTUNV3/Gm7rj7u7u9liNubzzoYNGwSFQmHQvmvXrhXs7e31yg4ODhbkcnmTx+zfv19v/9DQ0FbH+OWXX+qdY9y4ca0+R3vUf55rz09RUZFZYrala8QQ1vCMz+c523yeEwTLXcOLFi0y+LMdNWqUcPXq1VaXYSzr1q0z2n3u9OnTFnsfRES2jj1IiGzEqVOnsHLlSt360qVLERkZaZKyHn/8cd1wFQEBAXjnnXdMUg4Z37Jly3D16lUA1S0/67awNrbhw4eje/fuBu0bEhKCnTt3YtiwYXrb33jjDVRWVpoiPEydOtXglv4jR47E3r179VqgC4KgNwePJa1btw6CILT6x9aGYzDnfc4QGzdu1A0zCAD+/v6YOHGixeKhaua8z6lUKkyfPh0LFy5EVlYWAMDLywtLly7FsWPHUFRUBKVSiczMTGzZsgXTpk3TtWAuLCzE3Llz8eyzz5osvgkTJiAkJMSgfXv16oV9+/YhKipKb/vLL7+sN1eFpSxbtqxN9zlbHV5r9uzZBvfMffTRR/Hdd9/p9UjKyMjAxx9/3OQx9XuMKJXKVseoUCiaPae5zZkzp03XiCAINjm8lqmvEVvB5znbe567wVLX8Icffqj3+VVWViItLQ1//PEH5s6dq9c77sCBAxg0aBBOnDjR6nJMYfTo0W2+z3F4LSKitmOChMgGqNVq/Otf/9INR9SnTx8sWbLEJGVt3LgRv/76q279o48+sskvlZ2RtVUu1+fg4IBvvvlGb5iX3NzcNo8nbmxRUVENxoX+888/m5xQkozLnPc5Q3311Vd667Nnz7aa+Ro6K3Pf5xYuXIiff/5Ztz548GBcvHgRy5cvx6BBg+Dh4QGZTIbAwEBMmTIFv/zyC3777Te9iuT33nsP69atM1mMreHj44PPP/9cb9v58+dx9uxZC0VEhrrrrrvwwAMP6G1rbs6W+nN8VVVVtbpMuVze7DnJurT2Gumo+Dxnu0x1DTs6OiIkJASTJk3CF198gXPnzuklE4qLi3HnnXfabMKdiIjajwkSIhuwYcMGXeWFWCzGZ599ZrJKurotXSdNmoQZM2aYpBwyLmusXG5MVFQUpk6dqrfNWhIkAPDggw/C19dXt67VanVz8ZBpmfM+Z4hr167hwIEDetseeughywRDAMx/n9u7dy++/PJL3bqfnx/++OMPBAQENHvc1KlTG7R4ffbZZxtUNlvKmDFj0L9/f71t1nQfpqYtXrxYb/3cuXPIyclpdN/6yYzKyspW9xSq24OusXOS9WnNNdKR8XnOdpnjGo6KisKOHTsQGhqq25aRkdEgsUZERJ0HEyRENqBuaxatVouhQ4dCJBK1+LNv3z698zz88MN6r995553NlrV161aDyhk7dqzeOVJSUhrsY6tdw22FtVUuN2fcuHF665cvX7ZQJA2JxWKMGTNGb5s1xdeRmfM+Z4hvvvlGrzKxf//+iI2NbdO5yDjMfZ9btWqV3vrTTz+tV+HWnIceekhvCMKCggL88ssvRo2vPaz5PkxNi42NhZ+fn25dEARcuXKl0eQTf9EAAA3xSURBVH19fHz0JqxWqVTIzc1tVXkZGRl663XLJuvUmmukI+PznO0y1zXs4+OD5cuX622r33OYiIg6DyZIiIg6AGurXG5O3dZaAJCXl2f0MtrD2uMj0xMEAd98843etocffthC0dAN5rzPCYKA3bt3622bMmWKwbGKxWJMmjRJb9v+/fsNPt7UeJ+zXfXnnGnqd+fo6IguXbrobUtNTW1VWfX3j4mJadXxZBmGXiMdHe9ztstc13DdecMAIDMzEykpKSYpi4iIrBsTJEREZFYymUxvXaVSWSiSxll7fGR6+/btw/Xr13XrdnZ2mDVrlgUjInMrKipCSUmJ3rauXbu26hz196/fGt+SeJ+zXa353dVPaMTHx7eqrISEhGbPR9aJ/7+r8XOwXeb63Xl4eMDLy0tvW3Z2tknKIiIi62ad468QkZ67774bvXv3bvVxixcvxrlz53Trzz77LG655RbdemNDJWzevLnVD6Fnz57VGwfe398fGzZs0NsnKiqqVeekjqv+Fw9Dh6wxF2uPr6My532uJV9//bXe+pQpUxp8gaaOTaFQNNjW2uG86lfw3Jg7xRrwPme7WvO769evH7Zv365bP3z4MObMmWNQOVlZWUhOTtaty2Qy9OzZs3XBkkXw/3c1fg62y5K/u/p/u4mIqHNggoTIBoSGhjboJm4IT09PvfWePXti/PjxzR4zevToVpdTv9LIwcGhxXLIuKypcrklBw8e1Ftvy7VtStYeX0dlzvtccyoqKrBp0ya9bZyc3TqY8z7n7e3dYFtmZmarepHU7zFiTZVzvM/ZpvT09AbDvzT3u5s8eTJWrFihW9+5cycEQdAbUqYpf//9t9762LFjOUm7DWjtNdKR8T5nm8x5DZeVlaGwsFBvm7+/v0nKIiIi68YECRFRB2AtlcstKS4uxs8//6y3rf5kwZa0b98+JCUl6W2zpvjI9H7++WeUl5fr1gMCAnDbbbdZMCK6wZz3OTs7OwQGBiIrK0u3bffu3Zg7d67B5e7atUtvPTIy0uBjTSkxMbHBvCy8z9mGL7/8Um89NDQU3bp1a3L/4cOHw8fHB/n5+QCAa9euYe/evRg7dmyry7rjjjvaEDGZW2uvkY6Kz3O2y5zX8NatWyEIgm7d19cXgYGBJimLiIisG+cgISIis1myZIneRMt2dnaYOHGi5QKqo6KiAk899ZTettjYWERERFgoIrKEr776Sm999uzZrR5aiTqG+pVpH374IdRqtUHH7tu3D//880+z57MEjUaDxx9/XO99eHt7Y+TIkRaMigyRkJCAlStX6m278847mz1GLBY36AG3fPlyvQrBxuzatQsHDhzQrbu6umLGjBmtipfMry3XSEfE5znbZc5rWC6XY9myZXrbJk+eDLGYVWRERJ0Rv/ETGdGhQ4cgl8sbbD979qzeelVVFXbu3NnoOYKCgjjGs5FlZWU1+XkbYsyYMawgreftt9/GhAkTMGDAAIP2V6vVeP755xu0CluwYIFBLbXqDweyZ88ejBkzpsn9Fy1ahOeffx5BQUEGxZefn4+ZM2fqDcMDVFckkb6OfJ9LSUnB3r179bbZyvBa165da/N9TiaTtWl4xY7u/vvv15tP68KFC3jsscewdu3aZitQEhMTMWvWLL1t3bp1w7Bhw5otLzw8XG9YkXXr1jV7/b388suYM2cOunfv3sI7qVZZWYl58+Y1GDrp5Zdfhp2dnUHnoPY7c+YM9uzZg0cffRROTk4GH3PHHXegrKxMt83R0REvvPBCi8c+//zzWLt2ra5n3L59+7BixYomj83IyMC8efP0ti1atAg+Pj4GxUrtZ+5rxJz4PNc5mPMafu6553DPPfdg0KBBBsdXWFiImTNn4sqVK7ptEokEzzzzjMHnICKijoU1fkRGNHv27AZjpjYmJycHEyZMaPS1OXPmNGjBTO3z999/N6gQao2ioiJ4eHgYJZaOUrn8119/4cUXX8Tw4cMxY8YMjBs3DjExMQ0SSSUlJfjzzz/xzjvv4MyZM3qvRUZGYunSpSaJb9WqVfj0008xceJETJ8+HSNGjEB4eHiD/dLS0vDDDz/g/fffbzAh5J133olp06aZJL7Wio+Pb3Plt6urK4YMGWK0WDryfe6bb77Ra1k9YMCANs15YQnr16/H+vXr23Ssu7u7Xs+u9uoo97lbb70VY8eOxZ49e3TbPv/8cyQkJOC1117D6NGj9e55BQUF+Oqrr/D666+jpKRE71z/+c9/IJFIjBrft99+i7fffhvjxo3DPffcg9GjRyMqKqpB8iYvLw+//PIL3n333QZDzgwZMgSPPfaYUeNqK2tK8pnyGi4uLsb//d//4c0338Rdd92FadOmYdCgQQ0SEIIg4MKFC/j888/x2WefQaFQ6L3+1ltvGVRp7OPjg5deegkvvfSSbtuLL76I1NRUvPLKK7pzaLVabNmyBYsWLUJqaqre+1i8eHGL5ZiDNTV46UjXiKnfT3vwea6WsZ/nOso1/Pfff+Pdd9/F4MGDMXPmTNx8883o1atXg8nWBUHA5cuXsXHjRqxatUo39OANzzzzDGJjY5styxyKioradZ8bOnQo54siImoLgYiMJiwsTADQrp85c+YYLZ7Ro0frnXvdunVGO3dde/bs0SsnLCzMJOUYatmyZe3+PdT9KSoqMlpsHeUaqX8cAMHe3l6IjIwU+vfvLwwaNEiIiIgQxGJxo+8hICBAuHLlisFx1j9+z549rdofgODm5iZER0cLgwcPFuLi4oSgoKAmP+NRo0YJlZWVBsdnbI19vm396du3r1Fj6yjXcGMiIyP1zvXf//7XaHEa25w5c4x2jbi7uxs1to50jWRlZQldu3ZtNEYXFxchNjZWGDx4sBAZGSmIRKJG91u8eLFBZdX/3FqKs7HP2dnZWejWrZswcOBAYcCAAc3+LmJiYoS8vDyDPwtj66zXcP1nphs//v7+Qq9evYShQ4cKvXv3Fjw9PZs8t6HX1A0ajUaYPHlyg/NIJBIhIiJCiIuLEzw8PBq87ujoKBw8eNAIn2jbdNbnOUtcI+a6b9c/hs9zhv/Y0vOcOa/hvn37NjjWzs5O6Nq1qxAXFycMGTJE6Nmzp+Dq6trs+9BoNEb8dA23bt06o10jAITTp09b5H0QEdk69iAhIiKjUCgUDVonN+b222/HunXr4OfnZ4aoapWWlqK0tLTZfcRiMZYsWYI33nijQcsz6tgOHjyod/3a2dk1GCaJOp+AgADs27cPDz74YIPh18rLy3H+/Pkmj5XJZHj99dfx3HPPmTjKWhUVFbh69WqL+82ZMwerV69mK1MrkpOTg5ycnGb3cXNzw5o1azB79uxWnVssFmPjxo14+OGH8cMPP+i2azQaXLt2rdFjvL29sWnTJowYMaJVZZHpmPIasSV8nrNd5rqGlUolrl+/3uJ+bm5uePvtt7FgwYIGw78REVHnwgQJkRElJydbOgQ99StzTGXMmDEtTvhpTq+99hpee+01S4fRob388svo0aMHDhw4gEuXLkGj0TS7v4uLCyZOnIgnnngCN910k8nj++yzz7B7924cOnQIaWlpLe4fEBCAmTNn4oknnkBUVJTJ47NlHfU+N3LkSKu6j7Xkq6++ssphyjqi0NBQ7Nq1Cz///DPWrFmD/fv3Q6vVNrm/u7s7Zs2ahUWLFiE6Otpkcb333nvYunWrLrnX0vXr6emJadOm4cknn0S/fv1MFhc1LzY2FitWrMCePXtw7NgxFBYWtnhMTEwM/vWvf2HevHnw9PRsU7kODg74/vvvMX36dLzxxhsNhr28wdnZGXPmzMGyZcvM3pCBqlnqGrFGfJ6zTea8hr///nv8/vvv2LFjB44dO9Zi8kwkEiE2NhYPPPAA5syZA19fX4PLIiKijksk2FJtABERWZ3KykrEx8cjOTkZWVlZKC8vh1arhYeHBzw9PdGzZ0/ExsYaffx9QxUUFCAhIQEpKSnIy8tDRUUFJBIJPD094ePjg7i4OERERFgkNiKyPWVlZThx4gSuXbuG4uJiVFVVwc3NDd7e3ujTpw969uzZ7CTuplBaWor4+HikpKQgOzsbFRUVEIlE8PDwgJeXF/r06YOYmBi2kLVCKSkpuHr1KlJTU1FUVAS5XA4HBwd4enoiMDAQQ4YMgbe3t9HLTUxMxNGjR5GRkQGlUgkPDw/06NEDI0aMgIODg9HLo7az1DVibfg8Z7vMdQ1rtVpcvXoViYmJSE1NRWlpKVQqFVxdXeHu7o7w8HD0798fbm5uRnhXRETUkTBBQkREREREREREREREnY55m7cRERERERERERERERFZASZIiIiIiIiIiIiIiIio02GChIiIiIiIiIiIiIiIOh0mSIiIiIiIiIiIiIiIqNNhgoSIiIiIiIiIiIiIiDodJkiIiIiIiIiIiIiIiKjTYYKEiIiIiIiIiIiIiIg6HSZIiIiIiIiIiIiIiIio02GChIiIiIiIiIiIiIiIOh0mSIiIiIiIiIiIiIiIqNNhgoSIiIiIiIiIiIiIiDodJkiIiIiIiIiIiIiIiKjTYYKEiIiIiIiIiIiIiIg6HSZIiIiIiIiIiIiIiIio02GChIiIiIiIiIiIiIiIOh0mSIiIiIiIiIiIiIiIqNNhgoSI6P/bswMBAAAAAEH+1oNcGgEAAAAAO4IEAAAAAADYESQAAAAAAMCOIAEAAAAAAHYECQAAAAAAsCNIAAAAAACAHUECAAAAAADsCBIAAAAAAGBHkAAAAAAAADuCBAAAAAAA2AmA6tKscKkk+AAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "image/png": { + "height": 611, + "width": 804 + } + }, + "output_type": "display_data" + } + ], + "source": [ + "# plot temperature\n", + "fig, ax = plt.subplots(1, subplot_kw={'projection':ccrs.PlateCarree()}, layout='constrained')\n", + "\n", + "extent = [year_to_use.longitude.min(), year_to_use.longitude.max(), year_to_use.latitude.min(),\n", + " year_to_use.latitude.max()]\n", + "#im = ax.imshow(year_to_use, extent=extent, transform=ccrs.PlateCarree(),cmap=\"coolwarm\")\n", + "im = year_to_use.plot(ax=ax,\n", + " transform=ccrs.PlateCarree(),\n", + " cmap=\"coolwarm\",\n", + " add_colorbar=False)\n", + "\n", + "# add coastlines, labeled gridlines and continent boundaries\n", + "ax.coastlines()\n", + "ax.gridlines(draw_labels={\"bottom\": \"x\", \"left\": \"y\"})\n", + "ax.add_feature(cfeature.BORDERS, linestyle='-.')\n", + "\n", + "# create colorbar and set cbar label\n", + "cbar = plt.colorbar(im, ax=ax, orientation='vertical', shrink=0.9, pad=0.1)\n", + "cbar.set_label('Air temperature at 2m (K)')\n", + "\n", + "# set title\n", + "plt.title(\"Annual mean temperature in 2000\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "execution": {} + }, + "source": [ + "Additionally, you can calculate the air temperature trend. We choose a longer time period and therefore another subsample from 1991 to 2020, that we load in the next cell:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": {} + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'https://osf.io/download/z9xfv/' to file '/tmp/data_sample_91_20.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: 2236e254419e163ed9ae6ad44b61bfe39d5fb2bd943dbd912093e703c5fa1485\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.Dataset> Size: 25MB\n",
+       "Dimensions:    (longitude: 41, latitude: 41, time: 3653)\n",
+       "Coordinates:\n",
+       "  * longitude  (longitude) float32 164B 143.0 143.2 143.5 ... 152.5 152.8 153.0\n",
+       "  * latitude   (latitude) float32 164B 5.0 4.75 4.5 4.25 ... -4.5 -4.75 -5.0\n",
+       "  * time       (time) datetime64[ns] 29kB 1991-01-01 1991-01-02 ... 2000-12-31\n",
+       "Data variables:\n",
+       "    t2m        (time, latitude, longitude) float32 25MB ...\n",
+       "Attributes:\n",
+       "    Conventions:  CF-1.6\n",
+       "    history:      2024-02-14 07:40:23 GMT by grib_to_netcdf-2.25.1: /opt/ecmw...
" + ], + "text/plain": [ + " Size: 25MB\n", + "Dimensions: (longitude: 41, latitude: 41, time: 3653)\n", + "Coordinates:\n", + " * longitude (longitude) float32 164B 143.0 143.2 143.5 ... 152.5 152.8 153.0\n", + " * latitude (latitude) float32 164B 5.0 4.75 4.5 4.25 ... -4.5 -4.75 -5.0\n", + " * time (time) datetime64[ns] 29kB 1991-01-01 1991-01-02 ... 2000-12-31\n", + "Data variables:\n", + " t2m (time, latitude, longitude) float32 25MB ...\n", + "Attributes:\n", + " Conventions: CF-1.6\n", + " history: 2024-02-14 07:40:23 GMT by grib_to_netcdf-2.25.1: /opt/ecmw..." + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "link_id = \"3xbq8\"\n", + "fname_ERA5 = \"data_sample_91_20.nc\"\n", + "ds_long = xr.open_dataset(pooch_load(url_ERA5, fname_ERA5))\n", + "ds_long" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": {} + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + ":6: FutureWarning: 'Y' is deprecated and will be removed in a future version. Please use 'YE' instead of 'Y'.\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABg4AAAR+CAYAAAAIkM5AAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd3hUZdrH8d8kIYUQaugEkC69QxSkN2kWFF6lqrC66mJdu2JZu66669pFQUUsiCgqUgWUUKT3lkBCDwQCJISU8/4Rc5gzaZNkJmeSfD/XlYs5z5x5zj2TyYSc+zz37TAMwxAAAAAAAAAAAIAkP7sDAAAAAAAAAAAAvoPEAQAAAAAAAAAAMJE4AAAAAAAAAAAAJhIHAAAAAAAAAADAROIAAAAAAAAAAACYSBwAAAAAAAAAAAATiQMAAAAAAAAAAGAicQAAAAAAAAAAAEwkDgAAAAAAAAAAgInEAQAAAAAAAAAAMJE4AAAAAAAAAAAAJhIHAAAAAAAAAADAROIAAAAAAAAAAACYSBwAAAAAAAAAAAATiQMAAAAAAAAAAGAicQAAAAAAAAAAAEwkDgAAAAAAAAAAgCnA7gCAgkhLS9PRo0clSbVq1VJAAG9hAAAAAAAAAPAkVhygRDl69KgiIiIUERFhJhAAAAAAAAAAAJ5D4gAAAAAAAAAAAJhIHAAAAAAAAAAAABOJAwAAAAAAAAAAYCJxAAAAAAAAAAAATCQOAAAAAAAAAACAicQBAAAAAAAAAAAwkTgAAAAAAAAAAAAmEgcAAAAAAAAAAMBE4gAAAAAAAAAAAJhIHAAAAAAAAAAAABOJAwAAAAAAAAAAYCJxAAAAAAAAAAAATCQOAAAAAAAAAACAicQBAAAAAAAAAAAwkTgAAAAAAAAAAAAmEgcAAAAAAAAAAMAUYHcAgC9IS0vT2bNndfbsWaWlpSk9Pd3ukAAAAADYzN/fXwEBAQoLC1NYWJgCAvgTGgAAlA38rwdlWkZGho4cOaLExES7QwEAAADgY9LS0pSSkqLz58/r6NGjqlixomrXri0/PxbvAwCA0o3EAcqsjIwMxcXF6fz585Zxh8Mhf39/m6ICAAAA4CvS09NlGIa5nZiYqPT0dNWrV4/kAQAAKNVIHKDMOnLkiJk08PPzU5UqVVSxYkUFBQXJ4XDYHB0AAAAAuxmGoZSUFCUmJiohIUEZGRk6f/68jhw5orp169odHgAAgNdwiQTKpLS0NLM8kZ+fnyIiIlSjRg0FBweTNAAAAAAgKXM1cnBwsGrUqKGIiAhzlUFiYqLS0tJsjg4AAMB7SBygTDp79qx5u0qVKipfvryN0QAAAADwdeXLl1eVKlXMbee/KQAAAEobEgcok5z/k1+xYkUbIwEAAABQUjj/7UDiAAAAlGYkDlAmZS0rdjgcCgoKsjkaAAAAACWBcz80ShUBAIDSjMQByqT09HRJkr+/Pz0NAAAAALjF4XDI399f0qW/KQAAAEojEgcAAAAAAAAAAMBE4gAAAAAAAAAAAJhIHAAAAAAAAAAAABOJAwAAAAAAAAAAYCJxAAAAAAAAAAAATCQOAAAAAAAAAACAicQBAABl3CeffCKHwyGHw6HevXvbHU6BxcTEmPE7HA67wwFytWzZMvN92rBhw1z3mzhxornftGnTii0+oKBK0nu1pP+uAwAAKG4kDgCUeM5/tBbma+7cuTnO27t37zwfFxISolq1aunKK6/UPffcozVr1hT5uURGRlqO8dJLLxV4DteTqO5+/fLLL0WOP8u0adPyPFZgYKDCw8PVtm1bTZo0SXPnzlVaWprHjg8AAAAAAIDCI3EAAIV04cIFHTt2TH/88YfefPNNdevWTUOGDNGRI0cKNd/u3bsVFRVlGZsxY4YnQvU5qampOnnypLZs2aJPPvlE1157rVq1aqXVq1fbHRoAAAAAAECZF2B3AADgSVWqVFHXrl0L9JiaNWvmu0+dOnXUpk0by9j58+e1f/9+HT582Bz75Zdf1Lt3b/3xxx+qVq1ageL49NNPs41t375d69atU+fOnQs0l7NBgwa5tV/16tULfYy8BAcHq1evXpaxixcv6tChQ9qzZ48Mw5CUmTjp27evlixZom7dunklFgAAAAAAAOSPxAGAUqVt27YeLbmTZcCAAfrkk09yvG/16tW6/fbbtXHjRkmZJ8AfffRRvffee27Pn5GRoZkzZ5rbgwcPNp/Hp59+WqTEgTdej4KoWbNmrjEcOHBADz30kGbPni1JSkpK0qRJk7R161b5+bEoDu5p2LChmYACAAAAAABFx1kZACiibt26aenSpWrQoIE5Nn36dJ05c8btOZYuXarY2FhJUqtWrfTyyy+b982aNUupqameC9iHNGjQQF9++aVGjhxpju3YscP2ZAcAAAAAAEBZRuIAADygcuXKuueee8zt1NRUrVixwu3HO5cpuvnmm9WmTRu1a9dOknTy5EnNnz/fY7H6omnTplm2lyxZYk8gAAAAAAAAIHEAAJ5y5ZVXWrZjYmLcety5c+c0Z84cSZLD4dDNN98sSRo7dqy5T079D0qTdu3aKTQ01Nx297U7duyYXn31VfXr10/169dXcHCwqlatqrZt2+ree+/V5s2b3Y7hzJkz+uqrr3T77bere/fuql69ugIDAxUWFqbLLrtMo0aN0kcffaSLFy+6NV/v3r3lcDjkcDjMMlcZGRn65ptvNHToUNWvX19BQUGqWbOmBgwYoI8//ljp6eluzZ2WlqaFCxfqoYceUt++fVW3bl2FhIQoJCREdevWVf/+/fX888/rxIkTbj//vPTq1ct8Lg899JDbjztz5ozKly9vPvbXX3/Ncb/t27frwQcfVPfu3RUeHq7AwECFhISoZs2a6tq1q2677TZ98sknOnXqVI6Pj4mJMY/hcDjyjWvRokW65ZZb1Lp1a1WuXFkBAQEKDQ1VRESEevfurfvuu08//PCDUlJS3H6udkpOTta8efM0depU9ezZU7Vq1VJQUJBCQ0NVv359DRs2TG+++abOnj3r1nwTJ040X0vnpN6CBQt0ww03qFGjRgoODlZ4eLh69uypN954w63Xylvz5vSzlh/n90tenzeGYej333/XtGnTNGjQIDVo0EChoaEKCgpS7dq11aNHDz3++OM6cOCAW8f1hLNnz6pChQpm/D///LPbj124cKH5uPLlyxdoZZyrnL6fGRkZ+u6773T99derSZMmCg0NlcPh0BtvvJHjHImJiXr77bd19dVXq2HDhipfvrwqVaqkFi1a6Pbbb9fvv//udjwpKSmaOXOmrrvuOjVq1EgVKlRQQECAKlasqKZNm+rqq6/WtGnTFBUVlWdpM09/vk6bNs18nSZOnGiOL1iwQDfeeKMaN26s4OBgValSRf3799e3336b4zzbtm3T3/72NzVr1kzBwcGqVKmSOnfurJdffrnQPyfJycn66KOP1LdvX9WrV0/BwcGqX7++rr/+ev34449uPb/C8OT3PcvixYs1ZswYNWjQQMHBwapbt6569+6tDz74QMnJyV54FgAAAGWAAZQgsbGxhiRDkhEbG1voeXbv3m1s377d2L17twejg10mTJhgvi969erlsXl79eplzjthwoR899+zZ4+5vyTjueeec+s406dPNx/Ts2dPc/zQoUOGn5+fIckoV66cceLECbfmi46OtsRhh6eeeso8foMGDdx6TN26dc3H9O/fP9/9X375ZaNChQqW5+r65efnZ9x9991GWlpannO98sorRlBQUJ5zZX1FREQYq1atyjc+5/fP9OnTjWPHjhl9+/bNc+4rr7zSOH36dJ7zLl261AgPD3cr1tDQUOO9997LN1bn92BOP0MzZ840769Vq5aRmpqa75yGYRjvvPOO5X2Qnp5uuT8jI8N48MEHzfd5fl+XX355jsdx9z2fkJBgDBo0yK1jSTLuuOMOt56nnb744gsjLCzMredTtWpVY968efnO6fyZ+tRTTxlnz541xowZk+fczZs3z/f3srfmdf1Zc4fzMaKjo3PcZ8eOHUa9evXcem3LlStnTJs2zcjIyMjzuEuXLnXrs9H1tXJ16623mvdff/31bj1nwzCM0aNHm48bN26c249zJ8YjR44Yffr0yfH1+fe//53t8Z988olRvXr1fF/b0aNHG+fOncszlo0bNxrNmjVz+2d79uzZOc7jjc9X59+HEyZMMJKSkoxx48blOfff//53yxzPP/+84e/vn+v+bdu2NeLj4/OMw/XnZN++fUbbtm3zjOOaa64xzp49m+e8+b1XXXny+24YhpGSkmJMnDgxz7natGlj7N27N9/fdQXB3xIAAKAsoDkyAHjIyZMnLdthYWFuPc55NYHzKoM6deqoT58+Wrx4sVJTUzVr1izdfffdngnWxxiGoYSEBHM7r9cuIyNDt956q+XKYofDoRYtWqhWrVo6f/68tmzZouTkZGVkZOg///mP4uLi9O233+Z6NfrOnTstV2xGRESobt26Cg0N1blz57Rz507zytzY2Fj16dNHK1euVKdOndx6fufPn9eAAQPMFRANGzZUgwYNlJycrI0bN5qrGH7//XfdfPPNeV7pGRcXp/j4eHO7SpUqaty4sSpWrKiLFy9q3759OnLkiHncv/3tb0pNTdWdd97pVqw5GTVqlKZOnapTp07p6NGjmj9/vqUvRW4++ugj8/Ytt9ySreH1Y489pldeecXcdjgcatq0qerUqSM/Pz8lJCRoz549OnfunKTM731hZWRkaPjw4Vq5cqU5FhwcrBYtWqhatWpKTU1VfHy89uzZY/YUKcrxisu+ffssKwlq1Kihhg0bKiwsTMnJydq9e7f5fjl16pSuueYazZ07V8OHD3dr/vT0dF1//fXmapHatWurSZMmSk9P16ZNm3T+/HlJ0q5duzRs2DCtW7dOAQH5//fSW/N6Unx8vOLi4sztsLAwNWnSRJUrV1Z6eroOHjxorlZITU3VtGnTdO7cOct72lumTJli/nzNmzdPJ06cUPXq1fN8zKlTpzR37lxz+7bbbvNYPCkpKbr66qu1YcMGSZe+nykpKdq1a1e2/Z966ik988wzlrHGjRurXr16unjxorZt26bExERJ0uzZs3XgwAEtWbJEISEh2eY6cuSI+vXrZ/kdXLlyZTVv3lxhYWFKSkrSkSNHFBMTY640yO1nuzg+XydNmqTZs2dLkurVq6fGjRsrKSlJGzduND97/ve//ykiIkIPP/ywXnjhBT366KOSpEqVKqlly5YKCAjQli1bdPr0aUnS5s2bddNNN2nBggVuxZCYmKgBAwZo//79kjL7DTVs2FCnT5/W1q1bzdVvc+fO1TXXXKOffvpJgYGBbj/H3Hjy+y5l/t9h7Nix+vrrr80xh8Oh1q1bq1q1aoqJiVFMTIy2bNmiAQMGWEpKAgAAwA02Jy6AAmHFAXLiKysOXn31VcsVbosXL873MTExMYbD4TAkGYGBgcapU6cs9ztfHde5c2e34na9+nrcuHFGkyZNjPLlyxvly5c3IiIijEGDBhkvvfSScezYMbfmLKiCrjhYt26dJeYnnngi132fe+45cz8/Pz/jwQcfNI4ePWrZJykpyXjhhReMgIAAc9/XXnst1zknT55sDBkyxPjss89yvGozPT3dmD9/vtG8eXNzvssvvzzbFfTOnN8/1apVM6TMFQXr16+37Hfq1CnjxhtvtDz/RYsW5TrvzJkzjbZt2xpvvvmmsW/fvhz32bRpkzFkyBBzvuDgYGP//v25zunOVZhTp0419xk+fHiucznH4Px9OnjwoOX+I0eOGOXKlTP3mTx5snHkyJFs82RkZBgbNmwwHnvsMaNHjx45HsudFQfffPONeX9gYKDxxhtvGOfPn8+2X0pKirFw4UJj0qRJxtSpU/N9nnZ77rnnjCuvvNJ4//33jUOHDuW4z4oVK4xu3bqZzz88PNxITEzMdU7nz9Ss927Lli2NpUuXWvZLSkqyvC8kGR9++GGxz+utFQcrVqwwGjVqZDz//PPGtm3bclxNsHfvXmP8+PHmXA6Hw/j9999zPa6nVhwYhmG0a9fOrc+3LG+++aa5f9OmTfPdPz/OMWatemnWrJmxePFiy2t14cIFIy4uztz+7LPPLK//Lbfcku3z6eLFi8YHH3xghIaGmvvdfffdOcZx1113mfvUqVPH+PHHH3P8bE5ISDBmzZplDBgwwPjyyy9znMsbn6/Ovw+rVq1qSDKaNGmS7f8IR48etaxKq1SpkvHLL78Yfn5+RmhoqPH+++8bFy9eNPe/cOGCcc8991hey4ULF+Yah/PPSdaqiiZNmhjLli2z7Hfo0CHjhhtusMz79NNP5zqvuysOPP19NwzDeO+99yxzDho0KNvP88qVK42mTZtanrcn/r/I3xIAAKAsIHGAEoXEAXLiC4mDkydPWkpaVK9e3fIHfm6eeeYZ8zEjR47Mdn9iYqIREhJi7rNt27Z853Q9iZrXV3BwsPH444/nW8qnoAqSOMjIyDCGDh1qiWvDhg057rtjxw4zGeDn52d8++23ec49a9Ysc86KFSvmerLUnXIIhpH5fW7UqJE5548//pjrvs7vn6z35oULF3LcNy0tzWjfvr25b14lRNyNNT093bjuuuvMOR944IFc93UncbBt2zZzH39/f+Pw4cN5Hv8f//iHuf/gwYOz3T9jxgzz/twSAq5ye5+6kzi45ZZbzPsff/zxIh3Pl7j7fkhOTja6d+9uvgb//e9/c93X+TNVykySJSQk5Lr/8OHDzX2dy60V17zeShwkJSXlmRx05nwCd9SoUbnu58nEwdtvv23u07Jly3xjdC5L8+KLL+a7f35cv58NGjTINxl98uRJo2LFiuZjciph5GzFihWWz/ycTtA7fybnlXR1ltvPtjc+X51/H0oy6tatmy3ZnSUhIcFMLkiZSU5/f/9sJ/ed9e7d29x//Pjxue7n+jupTp06uSYbMzIyLMmDoKCgXD/z3XmveuP7npSUZHmt+vbtm2sZvcOHDxt16tTJ9ju5KPhbAgAAlAU0RwbckJEhnTjBlztfdlf2+O233yxNL/P7at++fZGPGRUVpT59+lhKWrz44osqV65cvo+dMWOGedu5TFGWsLAwjRgxwtwuTJPk2rVrKzIyUv369VPHjh0VHBxs3nfhwgU999xzGjp0qFkioTgdOHBAo0eP1vz5882xcePG5fp9+fe//620tDRJmaU6rrvuujznHzNmjK6++mpJmaUZvvjiixz3c27MnJeqVavqscceM7e///57tx7n7++v6dOnKygoKNf7//GPf5jbeTWGdDdWPz8/vfzyywWONTctW7Y0G4Cnp6fn+V5MSUnRZ599Zm7feuut2fZx/nlxbSyeG39/f3fDtf14xcXd90NwcLD+9a9/mdsFeT+89957qly5cq7333vvvebtNWvWmD+jds3rKSEhIdnKa+Xm2WefNcup/PTTT8US680336zy5ctLymwwHhUVleu+69atM0ulBQQEaMKECR6P5/XXX1eNGjXy3Oe9994zS9EMHjw439IxPXr00JQpUyRllhd6//33s+3jyZ/t4vh8fe2111SzZs0c76tcubJuuOEGc/vixYuaPHmyevXqlet8Wa+PlPfvDlevvPKK6tSpk+N9DodDb7/9tipWrCgp8zPd3cbjOfHG9/2bb77RqVOnJGW+p997771cy5nVrl3b8v0C4NvmzJHuvltatMjuSAAAJA4AN5w8KdWowZc7Xy5l/kuNhQsXavDgwZavXr16qW7duoqMjDRPyEjSSy+9pFtuuSXfOX///Xft3btXUmbd4mHDhuW4n3NC4bPPPjNrD+fG4XCoa9eu+uCDD3T48GEdPnxYf/zxhxYtWqQ///xTp0+f1hdffKGGDRuaj1mwYIHlxLUnHTt2LNtr169fP7Vo0UKXXXaZpTbxyJEjLXXxnaWnp2vWrFnm9tSpU906/k033WTeXrJkSSGfxSXdunUzb69du9atxwwYMECXXXZZnvv06NHDvB0dHW32PSiKxo0bKzw8XJK0d+9esx52YU2ePNm8/fHHH+e639y5c80TOtWrV8+xH4JzAsv558dbivt4vsj5vbtu3Tq3HtOiRQv17Nkzz30iIyPNE+wpKSmKjo62bV67VKhQQa1atZIkJSUladu2bV4/ZqVKlXTjjTea27l9drreN3ToUNWqVcujseT2c+7KOaHoqc9wu362C/P5WqlSJV1//fV57tO1a1fLdk6JV2fOP9f79+9363dH9erVLe+d3PYZPXq0ue3cH6OgvPF9d07WDBw4UE2aNMlzvtGjR5vfLwC+68cfpeuvl/77X2nQIMnN/64AALyE5sgASpUqVapk+6M7L40bN3Zrv6wT8HkZPHiwXnjhBbdXMTivNrj++ustJz9c5w0PD1d8fLwOHz6sRYsWadCgQbnO26BBA61evTrX+4OCgvR///d/Gjx4sAYMGKA///xTUuYVgXfccYfatm3rVvzuunDhQr4NG5s3b66XX35Zw4cPz7WB8ebNm80msLVq1VKLFi3cOn7r1q3N2+vXr893/23btum3337T1q1bdfLkSZ07d86SrElOTjZvHzp0yK0YIiMj892nbt265m3DMHTmzJl8m50eO3ZMCxYs0KZNm3TkyBGdPXs228qRrMbChmHo8OHDeV7hnZ8bb7xR99xzj06fPq09e/Zo+fLluuqqq7Lt55xUGDduXI6rb5wbS//888969NFH9dBDD6lSpUqFji8vnTp10rx58yRJTz/9tOrUqaMxY8YUe8Ndb4qOjtbixYu1efNmnThxQmfPns31yveEhAQlJSWZV6znxp33bnBwsKpVq6YTJ05IklsnUL01r7ecPn1aCxYs0IYNGxQXF6fExMRsJ2j37dtn3j506JDatWvn9bimTJliXgk+e/ZsvfHGG9mumk9OTrYkXfM7EV0YkZGR+a7QOXXqlHbs2CEp84r9vK6id+b8Gb5x40YZhmH5PdGpUyctXbpUUmaiffr06W6vPMiLNz5fO3XqlO9njnNSJygoKN//Uzjv7+7vjr59+7r12TdkyBB98MEHkqRNmzYpNTXVrdWUzrz1fXdO3A8cODDf+QICAtSvXz+zMTUA3/TOO5duZ2RI778vde5sXzwAUNaVnr+WAUBS27Zt9csvv9hy7NWrV2vPnj1uJQ4uXLigr776yty++eabc903ICBAo0eP1ttvvy0pM+GQV+LAXVWqVNGcOXPUvHlzXbhwQYZh6L///W+OJQG8bd++fYqKirKUZXK1detW83ZSUpIGDx7s1tzOJ/rj4+Nz3S8qKkpTp07VmjVr3JpXks6cOePWfu5c3et6AjcpKSnXfQ8dOqT77rtP3377bb4rUJy5G29uQkJCNHbsWP33v/+VlHkVs2vi4ODBg1rktLb8tttuy3Gunj17qmPHjmYy54UXXtC///1v9evXT3379lWPHj3UqVMnj5ULuvXWW/XKK6/o3LlzSkpK0rhx43TvvfdqyJAh6tWrl3r27KlmzZp55FjFbefOnZo6daoWLlwowzDcftyZM2fyTRy4e2W68zx5vXe9Pa+nJSQk6JFHHtEnn3yilJQUtx9X1J81d0VGRqp169baunWrzp49q6+++kqTJk2y7PPtt9+a8dSpU8cs3+ZJjRo1ynefbdu2me9Pf39/XXvttQU+zsWLF5WYmGhJME6dOtVMHOzZs0c9evRQ06ZNNXjwYF111VXq2bNnrqWBcuLNz1d34nB+z1etWjXfE/wF+d2RxfmkfF6yVtFImat+Dh486PYFF1m88X1PTU3VwYMHc4wzL+7uB8AeGRmSa9W9PKrwAQCKAYkDAHDDhAkTLPV9L168qNjYWK1YsUIvvfSSdu7cqYSEBP3f//2fAgMD8y3Z8P3335tXz9atW1e9e/fOc/+xY8eaiYPvvvtOiYmJZu3hoqhfv77GjBljPreFCxcWeU5XDRo0UExMjLmdkZGhw4cPa8uWLXr99de1aNEipaWl6YUXXtDFixf16quv5jjPSac6WImJifmuYshJbid2Zs+erZtvvrlAJ4kkuV1OKDAwsEDzSsr1BPD27dvVu3dv8yrsgijIic/cTJkyxUwcfPPNN3rrrbcsJ/GmT5+ujL+anURGRuryyy/PcR6Hw6Fvv/1WV199tXk16oULFzR//nyz50XFihU1cOBATZw4UUOHDi1S3HXr1tW3336rG2+80XwfxMfHa+bMmZo5c6YkqV69eho5cqQmT57skavFJ0yYoGPHjuW5z8svv1ykVT7Lly/XkCFDCnVS3Z33gyffu8UxrycdOXJEvXr10p49ewr8WE/8rLlrypQpZqm5Dz/8MFviwLlM0YQJE7zSuyMsLCzffZw/w1NTUwv1GS5lfo47f+aMHDlSzz//vB5//HHzs2fPnj3as2eP/vOf/0iS2rRpoxtuuEG33Xabateunevc3v58Lej73ls/J9WqVXNrLtf9CrPqxxvfd9c43H0+VatWLdSxARSP3bulvypdmrZulRITJQ/82QMAKAQSB4AbqlWTjh+3O4qSwc2/3Uq8wMBANW7cWI0bN9aNN96oQYMGaeXKlUpPT9ctt9yizZs3W0rPuHJuLHvs2LEC/TGbnJysr7/+2mPlJnr37m0mDmJiYnTx4sVCnaxwl5+fn+rVq6d69eppyJAhuv/++/X6669Lymwa2a9fPw0ZMiTb486fP1/kY+d0QiUmJkYTJ040kwbVq1fX5MmT1bdvXzVu3FjVq1e3NEmNiYnJt1+Bt6Snp+vGG280T2oFBQVp7NixGjp0qFq2bKnatWsrJCTEUkqiYcOGOnDggMdiaNOmjbp3766oqCglJSVp1qxZuv322yVlvr7Tp083981ttYFzbBs2bND777+vDz/8MFt98sTERH3zzTf65ptv1L17d33xxRdFeu0HDhyoXbt26fXXX9dnn32WrfxYXFyc3n77bf3vf//ThAkT9Pbbb+d7RX5efvvtt3xf+4cffrjQ8ycmJuqGG24wkwZhYWG65ZZbNHDgQDVr1ky1atVSSEiI5URxbqXAkN0tt9xiJg38/Pw0atQoXXvttWrTpo3q1q2r8uXLWz4re/furd9++63Y4xw3bpweeughJScn648//tDOnTvNUm779u0zY3I4HF4pUyTJrSbSnvgMl2QmB5w98sgjuvrqq/Xqq69q7ty5ZgmhLFu2bNGWLVv04osv6plnntH999+fbQ5f+HwtLu7+jg8KCrJsFyYh5o3vu2vSvrDPB4Bv+eOP7GOGIa1dK/XrV/zxAABIHABu8fOT8ikXizKsfPnymj17ti6//HIlJibq1KlTevDBB/XFF1/kuP/Ro0f166+/mttpaWkFLmvx6aefeuwEkOvVlydPnszzikxPe+WVV7Ry5UqzRNDf//537dq1K9uJAOcrTNu1a6eNGzd65PhvvPGGLly4ICmz3MYff/yRZzmJrD4Ldvjhhx/MpqvlypXTkiVLdMUVV+T5GG/EO2XKFEX9tXb8o48+MhMHixYtMk+ihYWFWRpr5iYoKEh333237r77bh0+fFhLly7Vb7/9piVLllhqxkdFRalPnz7asGGDqlSpUujYa9asqZdeekkvvfSStm/frmXLlpnHyyplZRiGPvnkE506dcrSgNPXfPzxxzr+V1a7SpUqWr16tZo2bZrr/na+d32JOyuLNm7caCl7N3v2bI0aNSrPx9j1+lauXFk33HCD2Tfno48+0iuvvCIp8z2SlTDt3bt3gcvMeJLzZ3ilSpU83rOiXbt2mjlzplJTU7V27VrzZ3v58uXmZ3xSUpIeeOAB+fn56d5777U83lc+X4uDu3G77leYlY7e+L67xlHY5wPAt+SUOJCkVatIHACAXfK/PAgAkK86deroscceM7e//PJLbdiwIcd9P/vsswKXxHG1cuVKRUdHF2mOLK4lTopyhXVh+Pn5meUkpMwr+t9x7oz2F+eT+cc9uATIuTzTk08+mW8NancbInuDc6w333xzvie1kpKSvNJQdvTo0eaJm3Xr1pkrBZxLoowePTpbk9b81KlTRzfffLPef/997d27Vxs2bNB1111n3n/gwAGzTJIntGzZUn//+981e/ZsHT16VD/99JOlbNC8efO0YsWKQs8fExMjwzDy/MqvTFlenN8PU6dOzTNpINn73vUm5ySja/PanLjzM+H82vbu3TvfpIFk7+s7efJk8/aMGTOUmpqq9PR0y+o2b602cJfzZ2tiYqJ5Mt/TypUrpyuuuEKPPvqoFixYoPj4eL333nsKDw8393nqqaeyXQnvK5+vxcG5fGBeXP+fUaNGjQIfyxvf97CwMIWEhJjbhX0+AHzLqlU5j9PnAADsQ+IAADzkrrvuMv+oNgxD06ZNy3E/5xM5TzzxRL4nFp2/unTpYs6fdXVpUW3fvt28HRQUZLk6sLh07dpVw4YNM7dfeOEFS1NjSerWrZt5+8iRI5bGiEXhPE/nzp3z3X9Vbn/VFIOCxrp69eocy3oUVfny5S0NvT/66COdOnVKc+fONcfyK1Pkjvbt2+ubb75Rnz59zDHn1Tqe5O/vryFDhmjx4sWWE4zeOp4nlKT3rjc519dPSEjId3/nRuu5KehrGx0dnW8/C2/q0aOHWrZsKSkzsfrjjz9qwYIFZjKjcuXKuv76622LT5Latm2r4OBgSZm/wwrSiL4oQkNDNWXKFH399dfm2NmzZ81VU1l85fO1OLj72jvvV7du3UIlDrz1fXfuQ7N27Vq3HuPufgCKX0KC5PQniUVUVGbJIgBA8SNxAAAeUr58eUvpgx9++CFbzfb169dbTlq5cxWrM+f9Z8yYUeRmoYZhaPbs2eZ2ZGRkkeYrCucVG8eOHdMHH3xgub9+/fpq3ry5ue2cgCkKd65QzpKenm420rVDQWKVZGno7WlTpkwxb3/22Wf6+OOPzfrXrVu3tiR6isLhcGjEiBHmtrdPzoaHh+vKK68stuMVhS+9H+xUv35987brZ25O3Ck/VRJfW+dVBx999JFlBdDNN99snry1S1BQkHr16mVue+oz3F29e/e2JMZdf7ZL4ve8sKKiotxKvn/55Zfm7R49ehTqWN76vvfs2dO8/e233+abxDlw4IBWr17tkWMD8Ly8VhWcPCnt3Vt8sQAALiFxAAAedOedd5r11w3D0HPPPWe53/kP5qZNm1rKorjDOXGwf/9+rVy5sgjRSm+//bblRNs111xTpPmKonv37urnVMD0lVdeydYA0Tkx8+qrr2rXrl1FPq5zP4fff/89z31ff/11W0sdFCTW1atX67PPPvNaLO3btzdXwJw6dUpPPPGEeZ87JVEKkvRyrktdkEbidh6vOBTk/fD1119r+fLl3g7JFh06dDBv//zzz3k2Y42JicmWlMxJQV7b6Ohovfbaa25E6l3jx483kwO//PKLfvjhB/M+T6wA8gTnz/AZM2YUqRSYVLCf65SUFEtywPVn25c+X73NMAzLZ3ZOfvjhB8uJ9okTJxb6eJ7+vkuZTcGzHDhwwJIoy0nWCk8Avim/RZGldNEkAPg8EgcA4EFhYWG6++67ze1vv/1WO3bskJR5NaNzw+SCrjaQMpv3Op8kcy1XtG3bNt166635nlA3DENvvvmm7rnnHnOsTp06lqvI7eC86iAuLk7Tp0+33D9x4kS1adNGUmat5P79++uP3DqpOVmzZo1Gjx5tqWGdxflKyGeffTbXOuWffvqpHnnkEbeeh7c4x/rVV19p8eLFOe63fv16jRgxwutlNJzfL1l1qwMDAy0ndHJz77336tFHH1VsbGye+0VHR+t///ufuX3VVVcVKtZ+/frpnXfeUWJiYp77zZ8/X8uWLSvy8YqD8/vhv//9r7Zs2ZLjfgsWLCjSST9fN3ToULPPQVZz+pwcPnxYI0aM0Llz5/Kd0/m1XbVqVa5XSUdHR2vQoEF5JiuKS9WqVc1yROnp6eZJ8o4dO6p9+/Y2RnbJoEGDNHDgQElSWlqaRowYoXnz5uX7uO3bt2vKlCnZrvI/cOCAevbsqR9++EFpaWl5zvHUU0+ZPX0CAwPVvXt3y/2+9vnqbTNmzNDrr7+e430bN260fGZ07NjR/L4Vhqe/75LUpk0bDRkyxNy+5557ck1IvPHGG7auFgSQv/z+O0/iAADsEWB3AADgSZs3b9bgwYML9JgBAwbo/vvv91gMU6dO1euvv65z584pIyND//rXv/TZZ5/pp59+Unx8vLlfYRIHWY/Larz81Vdf6a233jKbBKampurjjz/Wxx9/rE6dOqlv375q166datSooZCQECUkJGjDhg2aNWuWdu7cac4ZFBSk2bNnW5oN2qFPnz664oorzGTAiy++qFtvvVUBAZm/roKCgjRnzhx169ZNp06dUlxcnK688koNHDhQQ4cOVbNmzVShQgWdPXtWcXFxWr9+vRYsWGCuEpg0aVK2Y959991m2ae4uDi1b99ed999tyIjI1WuXDnt27dPs2bNMk8i3Xbbbfrwww+L6RWxGj16tB555BEdPXpU6enpGjJkiG677TYNHjxYVapU0ZEjR/TTTz/p888/V1pamgYNGqTt27fne3K+sMaMGaP77rvPcoX+Nddco2rVquX72NOnT+vNN9/Uiy++qCuuuEK9evVSu3btVL16dZUrV05Hjx7V8uXL9cknn5jzV6xYUf/4xz8KFev+/fv197//Xffdd58GDhyoyMhIXX755apatarS09MVExOjn376yVLyonPnzho0aFChjlccpkyZopdfflnJyck6e/asrrjiCt1xxx3q06ePQkNDdfDgQX333XeaM2eOJHvfu95UrVo1TZw4Ue+//74k6Z133tGePXs0adIkRUREKCEhQb/99ps++OADnT17VmPHjs33avGs9+OmTZskZX52/Prrr7ruuutUs2ZNxcfHa9GiRZo+fbqSkpLMOu7FVbc/N5MnT9bnn39uGfOV1QZZvvjiC3Xp0kXR0dE6ffq0Ro4cqcjISF1zzTVq3bq1KlasqPPnz+vIkSPasGGDlixZYpb469ixY7b5Vq5cqZUrVyo8PFxDhw5Vly5ddNlll6lSpUpKTk7Wjh07NGvWLEuPjzvvvFOVK1e2zONrn6/edMMNN+jrr7/W/fffr/nz52vcuHG67LLLdPr0af3666/68MMPzRV/gYGBeu+99+TnV7TrzTz9fZcyE6bt27fX2bNnlZSUpD59+mjChAkaNmyYqlatqoMHD2rmzJnmRQNZzxuAb0lLk1wriUVGWpMFNEgGAJsYQAkSGxtrSDIkGbGxsYWeZ/fu3cb27duN3bt3ezA62GXChAnm+6IwXxMmTMhx3l69euW7T24efPBB87H+/v7G3r17jWuvvdYca9SoUaGf765duyzxf/HFF+Z9GzZsKPDzr1WrlrFw4cJCx5OTp556ypy/QYMGBXrs/PnzLfFNnz492z67d+82mjdvXuDn+vPPP+d4zGeffdatx994443G/v37LWO5cX7/5PQccuI8b3R0dI77LF682AgMDMw31pYtWxrHjx83GjRoYI4tXbo0xzmnT59u7tOrVy+3Ys0yZcoUy3EXLFjg1uMK+nMbGhpq/PrrrznOFR0dne/3xPl1cOeradOmxoEDBwr0WthhxowZhsPhyPf59OzZ00hOTnbrPeb8vXnqqafcisOd95m35jUMwzh16pRx+eWXu/U6JCUlufU6bN261ahUqVK+c9atW9fYtWuXWz/zS5cudeuzsTCvVRbnz8aQkBDj9OnTBXq8u4oS49GjR43IyMgCf4a/8847lnlcf/bd+Ro+fLhx4cKFHOPyxuer8+9Dd/4v4e57xJk772fX9+fjjz+e7/P09/c3vvnmmzyPXZD3gae+786WLFliBAcH5zvHI488UqTfda74WwLwnA0bDEOyfn39tXXbz88wzp61O1IAKHsoVQQAXnD//febV++np6frueee0/z58837s8pJFEazZs3Mcj2StW9C7dq19X//93+qVatWvvPUrFlTjz/+uLZs2aL+/fsXOh5Pu/rqqy1XFz7//PNKT0+37NO0aVNt2LBBr7/+uqUxak6qVKmiG2+8UfPmzdOAAQNy3Ofxxx/XRx99pBo1auR4f61atfTGG29o9uzZcjgcBXxGntW3b18tW7bM8h5wVr58ed1+++1as2aNqlev7vV4nPt0NGjQwO330pQpU3TLLbeoXr16ee4XHBysm266SVu3bs31++eOF154Qddcc42lOWpOwsPD9fDDD2v9+vX5vrd8wbhx4/T999/rsssuy/H+KlWq6LHHHtOSJUtsb47rTVWqVNGyZctyXclVoUIFPfTQQ1q8eLHbK6tatWqlqKioXJvClitXTqNHj9bGjRvVrFmzQsfuac6fDaNGjcr3PW+HmjVrasWKFfr44491+eWX57lvaGiohg0bpi+++CJbya2aNWvq5ZdfVs+ePc1yVblp3ry5PvjgA33//fcKCgrKcR9f+3z1pmeffVaffvpprp/BHTt21KpVq4r0/xVXnvq+O+vTp4/WrVtnaWrvrE6dOpo+fbqef/75ooQOwItcyxA1aSINGSL5+18ay8iQ1q0r3rgAAJLDMOgShZIjLi5OERERkqTY2Nh8TzjlZs+ePUpLS1NAQICaNm3qyRABnxEbG6tt27bp4MGDSkhIUGpqqsLCwhQeHq4OHTro8ssvt/0kuKfs3LlTf/75p06cOKFz586pQoUKql27tlq2bKmWLVvK3/kvjzxcuHBBK1as0LZt25ScnKwaNWqoSZMm6tGjh9tzFBfDMLRu3TqtW7dOCQkJqlKliiIiItS7d29VqFCh2OK44oorzBIgTz/9tJ588skCz3Hw4EFt2bJFBw4c0OnTp+VwOFSpUiU1b95cXbp0UcWKFT0Wb0ZGhrZv365du3YpLi5OZ8+eVWBgoKpVq6Y2bdqoQ4cOKleunMeOV1zS0tK0atUqbdq0SYmJiQoPD1fDhg3Vu3fvfE+oljaxsbFaunSpjhw5opCQEDVo0ED9+vUr0s/Ftm3b9Mcffyg+Pl5hYWGqW7euevXq5XPNs8+cOaPatWsrOTlZkvTbb7/5dJ+OLAcOHFBUVJSOHTumxMRElS9fXjVr1lSLFi3Upk0bt97DFy5c0KZNm7Rnzx4dPXpUycnJCg0NVa1atczfee7ylc9XT+rdu7d+++03SdL06dPNk/EZGRlavny5du/erZMnT6p69erq2rWrJSnsLZ74vjvbsWOHVq1apWPHjqlq1apq2rSpevXq5ZXf3/wtAXjOuHGScwXBceOkGTOkTp2k9esvjT//vGRzuzEAKHNIHKBEIXEAAL5j69at5pW5/v7+io6ONj+jARS/t99+W3fddZekzNVpu3btsjki+IrcEgcoHP6WADyncWNp//5L2++8I91+u3TXXdLbb18aHzFC+v774o8PAMoyShUBAIBCeeWVV8zbw4YNI2kA2Cg1NVX//ve/ze077rjDxmgAAMjfsWPWpIEkXXFF5r/du1vHV63K7HgAACg+JA4AAECBff3115o5c6a5/eCDD9oYDVC2paWl6Z///Kf27dsnSapatapuvfVWm6MCACBvrv0NwsKkVq0yb0dGWu87cUKKji6euAAAmQLsDqCkOn36tBYvXqylS5dq48aN2rNnjxISEhQUFKRq1aqpQ4cOGjhwoMaNG5dvLdSYmJhcmxq6Kzo6Wg0bNizSHPlJS0tT586dtWnTJnOsV69eWrZsmVePCwCw39atW/X4448rIyND+/fv17Zt28z7Ro4cmWtjSgDe8eWXX+rLL79USkqKtm7dqri4OPO+J554QmFhYTZGBwBA/v74w7rdrdulpsiNGknh4VJ8/KX7V63KHAcAFA8SBwW0c+dOPfDAA/r111+Vmpqa7f7U1FSdO3dOBw4c0Ny5c/XII4/ojTfe8God0YCAAFWqVMlr82d59dVXLUkDAEDZER8fr+9zKCzbsGFDvfvuuzZEBJRtO3fuzPFn8uqrr9Y//vEPGyICAKBgXBMHWWWKJMnhyFx18MMPl8ZWrZJuvrl4YgMAkDgosK1bt2r+/PmWMX9/fzVp0kQ1a9ZUenq6duzYoVOnTkmSzpw5o0mTJmnfvn169tlnc5wzJCREgwYNcjuGjIwMLVy40NweNGiQqlSpUohn4759+/bpmWee8eoxAAAlQ0BAgCIiIjR8+HA98cQTCg8PtzskoEwLDg5W8+bNNW7cOE2dOlV+flQjBQD4tosXpXXrrGPOiQMps8+Bc+IgKsr7cQEALiFxUEgBAQEaNmyYJk6cqD59+qhixYrmfYZhaN68ebrzzjt16NAhSdJzzz2nrl27avjw4dnmqlmzpn755Re3j/3rr79aEgcTJkwowjNxz9/+9jclJycrKChInTt31u+//+71YwIAfEfv3r1l0JEO8BnTpk3TtGnT7A4DJQSlRQH4mg0bpJSUS9sOR2apImeufQ42bZKSkqTy5b0fHwCA5sgFVq5cOd12223at2+fvvvuO40cOdKSNJAkh8OhkSNHatWqVapVq5Y5/uijj3okhk8//dS8XaVKFY0YMcIj8+Z1vMWLF0vKfA5NmjTx6vEAAAAAAEDp5VqmqGVLqXJl61iXLpLzIrq0NOnPP70eGgDgLyQOCmjkyJH64IMPVL9+/Xz3jYiI0NNPP21ub926Vfv27SvS8RMTE/Xdd9+Z22PGjFFQUFCR5szLiRMndP/990uSmjVrpoceeshrxwIAAAAAAKVfXv0NslSoILVpYx1btcp7MQEArEgceJlraaKdO3cWab6vv/5aycnJ5ra3yxTde++9OnnypCTpnXfe8WqSAgAAAAAAlG6G4V7iQMperog+BwBQfEgceFnVqlUt24mJiUWaz7lMUYsWLdTNtQigB/3666/6/PPPJUljx45V3759vXYsAAAAAABQ+sXGSocPW8dySxx0727dXrUqM/EAAPA+EgdeduDAAct29erVCz3X/v37tXLlSnPbm6sNkpKSdPvtt0vK7KPw2muvee1YAAAAAACgbHBdbVCtmtS0ac77uq44OHpUOnjQO3EBAKxIHHjZnDlzzNsBAQHq1KlToeeaMWOGjL9S635+fho3blyR48vNU089pejoaEnSCy+8oBo1anjtWAAAAAAAoGxwTRxERkoOR877Nm0quRRyoM8BABSTALsDKM3Onz+v//73v+b2oEGDVKVKlULNZRiGZsyYYW73799fdevWLXKMOdm4caPeeOMNSVJkZKSmTJnileNIUlxcXIH2P3LkiJciAQAAAAAA3uZufwMpM6HQvbv000+XxlatksaM8U5sAIBLSBx40QMPPKBDhw5JkhwOh5555plCz7VixQpzBYDkvTJF6enpmjx5stLS0hQQEKB3331XjtxS/x4QERHhtbkBAAAAAIDvOH9e2rjROpZX4kDKnjigQTIAFA9KFXnJ559/rnfffdfcvu+++9SxY8dCz+fcFLlixYq69tprixRfbt58802tW7dOkjR16lS1bdvWK8cBAAAAAABly7p1Unr6pW1/f6lz57wf49rnYMMG6cIFz8cGALBixYEXrFixQrfeequ53alTJz3//POFni8pKUlff/21uX3jjTcqJCSkSDHm5MCBA3ryySclSfXr19fTTz/t8WO4io2NLdD+R44cUdeuXb0UDQAAAAAA8BbXMkXt20uhoXk/pmvXzJJFf7V8VGqqtH59/isVAABFQ+LAwzZt2qThw4crJSVFktSoUSP98MMPCgwMLPSc3333nc6ePWtue6tM0R133KHz589Lkt566y2F5vfb2wPq1avn9WMAAAAAAAD7FaS/QZaKFaVWraStWy+NrVpF4gAAvI1SRR60a9cuDRw4UGfOnJEk1alTRwsXLlTt2rWLNK9zmaImTZqoR48eRZovJ7NmzdLPP/8sSRoxYoRGjhzp8WMAAAAAAICyyTAyT/g7c/fkv2u5IvocAID3kTjwkOjoaPXv31/Hjx+XJIWHh2vhwoVq1KhRkeY9dOiQFi9ebG6PHz++SPPl5p577pEkhYaG6j//+Y9XjgEAAAAAAMqmPXukkyetY64Jgdx0727ddk1AAAA8j8SBB8TFxalfv36Ki4uTlNm8+JdfflHLli2LPPfMmTOVkZEhSXI4HF5LHGQlPM6fP68GDRrI4XDk+uW8AuK3336z3PfJJ594JT4AAAAAAFByuZYpqlNHql/fvce6JhgOHZL+OgUDAPASEgdFdOzYMfXv31/R0dGSpPLly2v+/Pnq1KmTR+Z3Pknfu3dvNWjQwCPzAgAAAAAAFJec+hs4HO49tnlzqXJl6xirDgDAu2iOXASnTp3SgAEDtGvXLklSUFCQ5s6d67EeBGvWrNHOnTvNbW81RZakatWqub3vuXPnzObPAQEBqlSpknlfcHCwx2MDAAAAAAAlW2H7G0iSn5/UrZu0YIF1vhtu8ExsAIDsSBwUUmJiogYNGqQtW7ZIyjyB/tVXX2nAgAEeO4bzaoPQ0FBdf/31HpvbVXx8vNv7Tpw40Yztyiuv1LJly7wUFQAAAAAAKOlOn5a2bbOOudvfIEv37tbEAQ2SAcC7KFVUCElJSRo6dKjWrVsnSfLz89PMmTM1YsQIjx3j4sWL+vLLL83tUaNGqUKFCh6bHwByM3HiRLNvybRp04o8X0xMjKUXSm6mTZtm7jNx4sQiHxcAAACAb1i9WjKMS9tBQVKHDgWbwzXR8Oef0l/FEAAAXkDioIBSUlI0cuRIrVy5UlJmw+IPP/xQY8aM8ehxfvjhB506dcrcLmyZItcTdp44CQjYzfV97akvVs8AAAAAgOe59jfo3DkzeVAQXbtaty9elDZuLFJYAIA8UKqogN58800tWrTI3K5cubJmz56t2bNnu/X4sWPHauzYsfnu51ymqEGDBurdu3eBYwUAAAAAALCba3+DgpYpkqQqVaTLL5d27LDO261b0WIDAOSMxEEBJSUlWbYTEhK0wLnIXj66d++e7z7Hjx/Xzz//bG6PHz8+z/IeQFkTEhKiQYMG5blPcnKyli9fbm536dJFVatWzfMx+d0PAAAAACiY9PTs/QgK0hjZWWSkNXFAnwMA8B4SBz7oiy++UFpamrk9fvx4G6MBfE/NmjX1yy+/5LlPTEyMLrvsMnP75ZdfZuWOj5s2bRrl1AAAAIBSZts26exZ61hhVhxImQ2SP/740rbrSgYAgOeQOCig4jixdc899+iee+7xyFwNGzaU4dyByAM++eQTffLJJx6dEwAAAAAAlD6u/Q0aNZJq1SrcXK4Jh4MHpcOHpTp1CjcfACB3NEcGAAAAAACAV3iiv0GWyy+XwsKsY5QrAgDvIHEAoExr2LChHA6HHA6Hli1bJklKTEzUu+++q759+6p+/foKDAyUw+HQxo0bc5xj//79evbZZ3XllVeqbt26CgoKUvXq1dW5c2c99thjio6OzjeOmJgYMw7nnibHjx/X888/r86dO6tatWoKCQlRo0aNNGnSJK1fv75AzzU9PV2ffPKJ+vfvr1q1aplzXXfddfrxxx8LNJc3TJs2zXz+EydOzHU/59cpJiZGUub37K233tIVV1yhmjVrKjg4WBERERozZoyWLFlS4FhSUlL0ySefaNSoUWrcuLEqVKigChUqqEmTJho/frx++umnQj5LAAAAoGxxXXFQ2P4GkuTvn70ZMuWKAMA7KFUEAE7WrFmj0aNHmyek85KamqrHHntMb775pi5evGi5Lz4+XvHx8frzzz/12muv6cknn9Sjjz5aoFgWLFigsWPHKj4+3jIeHR2t6OhozZgxQ88//7weeuihfOeKi4vTqFGjtHr16hzn+u6773TDDTdo+vTpBYrRF6xbt0433HBDtu9ZXFycZs+erdmzZ+uuu+7SW2+95Vaj+Z9++kl33nlnju+Bffv2ad++fZo5c6b69u2rWbNmqUaNGh56JgAAAEDpcvy4tHevdawoiQMps8/BokWXtllxAADeQeIAAP6yd+9e3X///UpMTJQkNWvWTHXq1FFCQoJ27Nhh2TcpKUnXX3+9pUmzv7+/WrVqpfDwcJ0+fVpbtmxRamqqUlJS9Nhjj+n48eN644033Ipl6dKlGjZsmNLS0hQQEKA2bdqocuXKiouL0549eyRJGRkZevjhh9W4cWONGjUq17ni4+PVv39/7dq1yxwLCQlR69atFRQUpJ07dyo+Pl5ff/21MjIyVKFCBXdfMttt375dY8aM0dmzZ+VwONSqVStVr15dJ06c0LZt28weL//973/VoEEDPfDAA3nO9+GHH+r2229Xenq6ORYREWH2i8l6rSRpyZIl6tGjh1auXEnyAAAAAMiB62qAChWk1q2LNqdrqaN166SLF6XAwKLNCwCwolQRAPzlvvvuU2JiooYMGaLdu3dr165dWrp0qTZu3KhDhw6pcePG5r5Tp041kwbBwcF64YUXdPLkSW3atEmLFy/Wn3/+qePHj+u+++4zH/Pmm29qzpw5bsVyww03KD09XQ8//LBOnDih9evXa8mSJdq9e7eioqJUr149c9/7779fGRkZuc71j3/8w5I0ePDBB3X06FGtWbNGK1as0JEjR/TJJ58oLCxM3377rebPn+/2a2a38ePH6+zZs7r11lt16NAhbdmyRUuWLNGWLVu0fft2tWnTxtx32rRpZlIoJ8uXL9ff/vY3M2kwYsQIbd68WQcPHtTy5cu1YsUKHTt2THPmzDETBXv27NFtt93m3ScJAAAAlFCuiYOuXaWAIl7C6lqq6MIFafPmos0JAMiOFQdAQZ04UfjHVqgghYTkfF98vPTX1dEFVr68FBqa832nTklOV08XSHBw9s5TWU6fllJTL21Xr164Y/iQs2fPatiwYZo7d678/f0t94WHh5u3Fy9erA8//FBS5pX7ixcvVmQOHb4qV66s1157TTVq1NDDDz8sSfrnP/+pa665Rn5+eedtT548qXfffVd/+9vfst3XrVs3fffdd+ratasMw9DBgwe1bNky9e3bN9u+q1ev1qxZs8ztJ554Qs8884xln4CAAE2YMEH169fXgAEDspVG8mUnT57Uww8/rBdeeCHbfS1atND8+fPVokULJSUl6fz58/rmm290yy23ZNs3LS1NEydONBMw99xzj/79739n28/Pz0/XXnutWrVqpS5duigxMVE//PCDli9frquuusrzTxAAAAAowTzZ3yBLtWpSs2bS7t2Xxlatkjp3LvrcAIBLWHEAFFSNGoX/+vjj3Oe9/PLCz/vKK7nP27Nn4ef962R3jq65xrpvKRAUFKT3338/W9LA1csvv2zefuqpp3JMGjj75z//qVatWknKrJG/cOHCfGPp27dvjkmDLJ07d1bPnj3N7d9//z3H/d5//33zdtOmTfXEE0/kOmefPn00adKkfGPzJc2aNdOzzz6b6/0RERGWMk65vU5ff/212cS6VatWevXVV/M97uOPP25uv/POOwUJGwAAACj1Ll6U1q61jnkicSBlL1dEnwMA8DwSBwDwl6FDh6p27dp57nP8+HHzxH9gYKBuv/32fOd1OBz6v//7P3N7yZIl+T5mypQp+e7To0cP8/bOnTtz3GfevHnm7cmTJ6tcuXJ5znnnnXfme1xfcssttyggn7XO7rxOn332mXn7rrvuyjd5JEk33XSTeXvp0qX57g8AAACUJRs3ZpYRcta9u2fmdp3HtSQSAKDoSBwAwF+cTzDn5vfffzcb7nbs2FGVKlVya+7WTh3A1q9fn+/++a1ikKS6deuat0+fPp3t/ujoaEvZoYEDB+Y7Z/v27VWzZs189/MVnnidDMPQH05rqPv06ePWsevWravKlStLko4dO6ZDhw659TgAAACgLHA9mX/55VKVKp6Z2/XPgOho6dgxz8wNAMhEjwMA+EujRo3y3Wfr1q3m7ejoaA0ePNituU+dOmXedqeHQK1atfLdp3z58ubtpKSkbPfv27fPvO3n56fLL7883zmlzFI9x0rI/7o98TrFxcVZEgrurjiQpAtOl1DFx8dbkhQAAABAWeaN/gZZWrXKbPN3/vylsagoaeRIzx0DAMo6EgdAQR0/XvjHVqiQ+307dhStOXJuVqwoWnPk3Myda22OXAqE5dYI2snJkyfN28eOHdOCBQsKfJwzZ87ku09gYGCB5jRyeO8kJCSYtytUqOD2nFWrVi3Qse3kidfJ+XsqSYsWLSpULO58XwEAAICywpuJg4AAqWtXybliKIkDAPAsEgdAQVWv7p15w8O9M6+3TgL/VaKlNPHzy79623nnS1oKKSMjo8hzuOPixYvm7YKcYA8KCvJGOD7LE99Tqfi+rwAAAICvi42V4uKsY55MHEiZfQ6cEwf0OQAAzyJxAAAF4NzTYOTIkZo7d659weSjYsWK5u2zZ8+6/biC7FsauPapSEhIMHsXAAAAACg415P4VapIzZp59hiufQ7WrpXS0jJXIwAAio7myABQAM6Ng48XpWxVMahRo4Z5OyUlRUePHnXrcdHR0d4KySe5NoP29e8rAAAA4OtcyxRFRkpuLPAukG7drNtJSdKWLZ49BgCUZSQOAKAAujn973TDhg2WckC+pk2bNpYmv2vXrs33MefOndPOnTu9GZbPqV69ui677DJzOyoqysZoAAAAgJLPm/0NstSoITVubB2jXBEAeA6JAwAogO7du5slgC5cuKDZs2fbHFHuypcvr44dO5rbX331Vb6PmTNnjlJLWdNrdwwcONC8/emnn9oYCQAAAFCyJSdLGzZYx7yROJCylyviGiAA8BwSBwBQAIGBgfr73/9ubj/66KM6ceKEjRHlbdy4cebtL7/8Utu3b89135SUFD333HPFEZbPmTp1qhwOhyRpyZIlmjVrls0RAQAAACXTunWZvQay+PlJXbp451jdu1u3WXEAAJ5D4gAACuj+++9XnTp1JElxcXHq06ePduzYkedjMjIytHjxYg0ePFi7du0qjjAlSRMmTFCtWrUkSWlpabruuut0+PDhbPulpKRo/Pjx2rNnT7HF5ksuv/xyTZ482dyeNGmSPvzwQxmGkefjYmJi9M9//lPPP/+8t0MEAAAASgTXMkXt2kkVKnjnWK4rDvbuleLjvXMsAChr6DUPAAUUHh6ur7/+Wv369dOFCxe0bds2tWnTRiNHjtTAgQN12WWXqXz58jpz5oxiYmL0559/6pdfftGRI0ckKd+T0Z5UsWJFvfnmmxo9erQkadeuXWrTpo3uuOMOXXnllQoKCtLWrVv17rvvaseOHapatao6dOigxYsXF1uMvuLNN9/Uxo0btWbNGqWkpGjy5Ml68803dcMNN6hDhw6qUqWKkpOTdfz4cW3atEm//fab1qxZI0l66KGHbI4eAAAA8A3F0d8gS5s2UkhIZnmkLFFR0rBh3jsmAJQVJA4AoBCuuOIKLVu2TNdcc42OHj2q9PR0zZkzR3PmzLE7tGxuvPFG7d+/X4888ogk6dSpU/rXv/6Vbb+goCB98skn+vbbb4s7RJ8QHBysxYsX6+abb9a8efMkSVu3btXWrVttjgwAAAAoGQyjeBMH5cpllkFavvzSGIkDAPAMShUBQCF169ZNO3bs0JNPPqkaNWrkuW/NmjU1ceJELVmyRM2bNy+mCC95+OGH9f3336tBgwY53t++fXstX75cw4cPL+bIfEuFChX0/fffa86cOeqSTyHWoKAg9e3bV++//74effTRYooQAAAA8F379mUvFeRaTsjT6HMAAN7hMIqzZgZQRHFxcYqIiJAkxcbGql69eoWaZ8+ePUpLS1NAQICaNm3qyRBRRhmGoY0bN2rLli06ceKELly4oLCwMNWrV08tW7ZU8+bNzea7dse5cuVKbd26VWfOnFGtWrXUvn17tW/f3u7QfNLRo0f1+++/6+jRozp9+rSCg4MVHh6u5s2bq23btipfvrzdIQIAgGLG3xJA7mbMkCZMuLRdq5Z0+LDkzT+F5s6Vrr320naFCtLp05K/v/eOCQBlAaWKAMADHA6HOnTooA4dOtgdSp4cDod69uypnj172h1KiVCrVi1df/31docBAAAAlAg5lSny9vVTrisOzp2Ttm2T2rb17nEBoLSjVBEAAAAAAACKrDj7G2SpVUtq2NA6RrkiACg6EgcAAAAAAAAoksREaetW65i3+xvkdpyoqOI5LgCUZiQOAAAAAAAAUCSrV0vOXTQDA6WOHYvn2DRIBgDPI3EAAAAAAACAInEtU9SpkxQcXDzHdl1xsGuXdOpU8RwbAEorEgcAAAAAAAAoEter/Iujv0GWdu2yJylWry6+4wNAaUTiAAAAAAAAAIWWkZE9cVBc/Q2kzLJInTpZx+hzAABFQ+IAAAAAAAAAhbZ9e2ZzZGfFmTiQ6HMAAJ5G4gAAAAAAAACF5trfoGFDqU6d4o3BNVGxenXmSggAQOGQOAAAAAAAAECh2dnfIIvrioPERGnHjuKPAwBKCxIHAAAAAAAAKDTXFQfFXaZIkurWlSIirGOUKwKAwiNxAAAAAAAAgEKJj5d277aO2bHiQMqesKBBMgAUHokDAAAAAAAAFIrrVf3ly0tt29oTCw2SAcBzSBwAAAAAAOAmwzDsDgHwKa4n57t1kwIC7InFdcXB9u3S6dO2hAIAJR6JA5RJ/v7+kqT09HT+4w8AAADALRkZGcrIyJB06W8KoKzzhf4GWTp0kAIDrWNr1tgTCwCUdCQOUCYFBQVJyrxa6OzZszZHAwAAAKAkOHfunHnhUdbfFEBZlpqa/cS8Xf0NJCkoSOrY0TpGnwMAKBwSByiTKleubN6Oj49XWlqafcEAAAAA8HlpaWmKj483t53/pgDKqk2bpORk65hrn4HiRp8DAPAMEgcok8qXL69y5cpJklJSUhQTE6NTp07p4sWLNkcGAAAAwJdcvHhRp06dUkxMjFJSUiRJ5cqVU/ny5W2ODLCf60n5Fi2katXsiSWLa6mkqCjprwpjAIACsKldDWAvh8OhevXqKTY2VmlpaUpNTdWxY8d07Ngx+fn5yc+PnBoAAABQ1jn3NMgSEBCgevXqyeFw2BQV4Dt8qb9BFtcVB6dPS7t3ZyY1AADuI3GAMis4OFgNGzZUXFycLly4YI7n9McBAAAAAAQHB6tevXrm6mWgrHNNHNjZ3yBLRIRUp450+PClsVWrSBwAQEGROECZVq5cOTVs2FApKSk6f/68zp8/r9TUVBIHAAAAAOTn56dy5copNDRUoaGhCgoKYqUB8JdDh6SDB61jvpA4cDgyVz58++2lsagoadIk+2ICgJKIxAHKPIfDoeDgYAUHB6ua3cUYAQAAAAAoAVz7G1Su7DtX9Xfvbk0c0CAZAAqOQu4AAAAAAAAoENcyRd27S77SLtC118LWrdLZs/bEAgAllY98pAMAAAAAAKCk8MX+Blk6dpQCnGpsGIa0Zo198QBASUTiAAAAAAAAAG67cEFav9465kuJg5AQqUMH61hUlD2xAEBJReIAAAAAAAAAbvvzTyk19dK2n5/Utat98eSke3frNn0OAKBgSBwAAAAAAADAba5litq0kcLC7IklN659DqKiMksWAQDcQ+IAAAAAAAAAbvPl/gZZXFccnDwp7d1rTywAUBKROAAAAAAAAIBbDKNkJA4aNpRq1rSOUa4IANxH4gAAAAAAAABuiY6Wjh+3jrmWBfIFDkfO5YoAAO4hcQAAAAAAAAC3uK42qFFDatTInljyQ4NkACg8EgcAAAAAAABwS05lihwOe2LJj+uKg82bpfPn7YkFAEoaEgcAAAAAAABwS0nob5ClUyfJ3//SdkaGtHatffEAQElC4gAAAAAAAAD5OntW2rLFOuaL/Q2yhIZK7dpZx+hzAADuIXEAAAAAAACAfK1Zk3nVfpZy5TKv6vdl9DkAgMIhcQAAAAAAAIB8uZYp6thRCgmxJxZ3ua6IiIqSDMOeWACgJCFxAAAAAAAAgHyVpP4GWVxXHBw/LkVH2xMLAJQkJA4AAAAAAACQp4yM7P0BfLm/QZbGjaXwcOsY5YoAIH8kDgAAAAAAAJCnnTul06etYyUhceBw5FyuCACQNxIHAAAAAAAAyJNrmaL69aV69eyJpaBokAwABUfiAAAAAAAAAHkqif0NsriuONi0SUpKsicWACgpSBwAAAAAAAAgT65X6ZeEMkVZunSR/JzOgKWlSX/+aV88AFASkDgAAAAAAABArk6ezOxx4KwkrTioUEFq08Y6Rp8DAMgbiQMAAAAAAADkyvUke0iI1K6dPbEUFn0OAKBgSBwAAAAAAAAgV679Dbp2lcqVsyeWwnItrbRqlWQY9sQCACUBiQMAAAAAAADkqiT3N8jiuuLg6FHp4EF7YgGAkoDEAQAAAAAAAHKUliatXm0dK0n9DbI0ayZVrWodo1wRAOSOxAEAAAAAAABytHmzlJRkHSuJKw4cjuyrDmiQDAC5I3EAAAAAAACAHLn2N2jWTAoPtyeWoqJBMgC4j8QBAAAAAAAAclQa+htkcY19wwbpwgV7YgEAX0fiAAAAAAAAADlyXXFQEvsbZOnaNbNkUZbUVGn9evviAQBfRuIAAAAAAAAA2Rw+LMXEWMdKcuKgYkWpVSvrGH0OACBnJA4AAAAAAACQjWuZoooVpZYt7YnFU+hzAADuIXEAAAAAAACAbFxPqnfvLvmV8DNJrn0OWHEAADkr4R/3AAAAAAAA8IbS1N8gi+uKg7i4zC8AgBWJAwAAAAAAAFhcuCD9+ad1rDQkDlq0kCpXto5RrggAsiNxAAAAAAAAAIv166WLFy9tOxxSt272xeMpfn7ZnwfligAgOxIHAAAAAAAAsHC9Cr9168zmyKUBDZIBIH8kDgAAAAAAAGBRGvsbZHFtkLx+vZSSYk8sAOCrSBwAAAAAAADAZBilO3HQtat1OyVF2rjRllAAwGeROAAAAAAAAIApJkY6etQ6VpoSB1WqSJdfbh2jzwEAWJE4AAAAAAAAgMm15n94uNS4sT2xeAt9DgAgbyQOAAAAAAAAYMqpTJHDYU8s3uLa54AVBwBgReIAAAAAAAAAptLc3yCL64qDAwekI0fsiQUAfBGJAwAAAAAAAEiSzp2TNm2yjpXGxEHLllJYmHWMckUAcAmJAwAAAAAAAEiS1q6VMjIubQcESJ072xePt/j7S926WccoVwQAl5A4AAAAAAAAgKTsZYo6dJBCQuyJxdtokAwAuSNxAAAAAAAAAEllo79BFtcGyevWSamp9sQCAL6GxAEAAAAAAACUkZG9XE9pThy4liq6cCF7fwcAKKtIHAAAAAAAAEC7d0unTlnHXK/KL02qVZOaNbOO0ecAADKROAAAAAAAAEC2MkX16kkREfbEUlzocwAAOSNxAAAAAAAAgDLV3yCL64oKVhwAQCYSBwAAAAAAAMh2tX1ZSBy4rjjYv186ftyeWADAl5A4AAAAAAAAKOMSEqTt261jpbm/QZbWraXQUOsY5YoAgMQBAAAAAABAmedaoic4WGrf3pZQilVAgNS1q3WMckUAQOIAAAAAAACgzHPtb9ClixQYaE8sxY0GyQCQHYkDAAAAAACAMs71ZHlZKFOUxfW5rl0rpaXZEwsA+AoSBwAAAAAAAGVYWpq0erV1rCw0Rs7SrZt1OylJ2rLFnlgAwFeQOAAAAAAAACjDtm6Vzp2zjpWlFQc1akiNG1vH6HMAoKwjcQAAAAAAAFCGufY3aNIk82R6WUKfAwCwInEAAAAAAABQhpXl/gZZXJ8zKw4AlHUkDgAAAAAAAMow1xUHZam/QRbXFQd79kjx8fbEAgC+gMQBAAAAAABAGXX0qLR/v3WsLCYO2raVQkKsY6w6AFCWkTgAAAAAAAAoo1zLFIWFSa1a2ROLncqVk7p0sY6ROABQlpE4AAAAAAAAKKNcEwfdukn+/vbEYjcaJAPAJSQOAAAAAAAAyij6G1zi2iB5zRopPd2eWADAbiQOAAAAAAAAyqCUFGndOutYWU4cuK44OHdO2rbNnlgAwG4kDgAAAAAAAMqgDRsykwdZHI7MUkVlVa1aUsOG1jH6HAAoq0gcAAAAAAAAlEGuNfxbtpQqV7YlFJ9BnwMAyETiAAAAAAAAoAyiv0F2rn0OWHEAoKwicQAAAAAAAFDGGAaJg5y4rjjYuVM6dcqeWADATiQOAAAAAAAAypiDB6XDh61jJA6k9u2l4GDr2Jo1toQCALYicQAAAAAAAFDGuNbur1ZNatrUnlh8SWCg1KmTdYw+BwDKIhIHAAAAAAAAZYxrmaLISMnhsCcWX0ODZAAgcQAAAAAAAFDm0N8gd64NklevljIy7IkFAOxC4gAAAAAAAKAMOX9e2rjROkbi4BLXFQeJidKOHfbEAgB2IXEAAAAAAABQhqxbJ6WnX9r295c6d7YvHl9Tt64UEWEdi4qyJxYAsAuJAwAAAAAAgDLEtUxR+/ZSaKgtofgs+hwAKOtIHAAAAAAAAJQh9DfIn2ufA1YcAChrSBwAAAAAAACUEYaR/ep5EgfZua442L5dOnPGnlgAwA4kDgAAAAAAAMqIPXukkyetY65X10Pq2FEKDLy0bRjSmjX2xQMAxY3EAQAAAAAAQBnhWqaoTh2pfn17YvFlQUGZyQNn9DkAUJaQOAAAAAAAACgjcupv4HDYE4uvo0EygLKMxAEAAAAAAEAZQWNk97mWcFq9WsrIsCcWAChuJA4AAAAAAADKgNOnM5v8OqO/Qe5cVxwkJEi7d9sTCwAUNxIHAAAAAAAAZcDq1ZlNfrMEBUkdOtgXj6+LiMjsAeEsKsqeWACguJE4AAAAAAAAKANcyxR17pyZPEDOHA76HAAou0gcAAAAAAAAlAH0Nyg411JOrDgAUFaQOAAAAAAAACjl0tMzSxU5o79B/lxXHGzdKp09a08sAFCcSBwAAAAAAACUctu2ZT/hTeIgf506SQEBl7YzMqS1a+2LBwCKC4kDAAAAAACAUs61TFGjRlKtWvbEUpKEhGRvIE2fAwBlAYkDAAAAAACAUo7+BoVHg2QAZRGJAwAAAAAAgFLO9WQ3ZYrcl1ODZMOwJxYAKC4kDgAAAAAAAEqx48elvXutY6w4cJ/rioOTJ7O/ngBQ2pA4AAAAAAAAKMVcVxtUqCC1bm1PLCVRw4ZSzZrWsagoW0IBgGJD4gAAAAAAAKAUc+1v0K2bFBBgTywlkcNBnwMAZQ+JAwAAAAAAgFKM/gZFl1OfAwAozUgcAAAAAAAAlFIXL0pr11rH6G9QcK4rDjZvls6ftycWACgOJA4AAAAAAABKqY0bpQsXrGOuJ8GRv86dJX//S9vp6dK6dfbFAwDeRuIAAAAAAACglHLtb9CypVSlij2xlGShoVK7dtYx+hwAKM1IHAAAAAAAAJRS9DfwHBokAyhLAuwOoKQ6ffq0Fi9erKVLl2rjxo3as2ePEhISFBQUpGrVqqlDhw4aOHCgxo0bpwoVKuQ5V0xMjC677LIixRMdHa2GDRsWaQ7DMLRt2zatXLlSGzdu1Pbt23XgwAGdPHlSFy5cUFhYmGrXrq2OHTtq5MiRGjlypAIDA4t0TAAAAAAA4D2uKw7ob1B4kZHS//53aTsqSjIMyeGwLyYA8BaHYRiG3UGUJDt37tQDDzygX3/9VampqfnuX6lSJb3xxhuaOHFirvsUNXEQEBCg48ePq0oR1xp+/vnnGjt2rNv7X3bZZfrggw/Ur1+/Ih23IOLi4hQRESFJio2NVb169Yrt2AAAAAAAlCSxsVL9+taxHTukFi3siaek27tXatrUOrZvn9SokT3xAIA32bbiwDAMbdmyRevWrdOmTZsUExOj2NhYnTlzRuf/aksfGhqqSpUqqX79+mrYsKHatm2rzp07q02bNnLYlM7dunWr5s+fbxnz9/dXkyZNVLNmTaWnp2vHjh06deqUJOnMmTOaNGmS9u3bp2effTbHOUNCQjRo0CC3Y8jIyNDChQvN7UGDBhU5aSBlfk+cBQUFqVGjRgoPD1e5cuV04sQJ7dy500yYREdHa/Dgwfryyy91/fXXF/n4AAAAAADAc1xXG1SpIjVrZk8spUHjxlJ4uBQff2ksKorEAYDSqVgTB+fPn9d3332nH3/8UYsWLVJCQoLl/twWP2zatMmyXblyZfXv319Dhw7Vddddl28pIG8ICAjQsGHDNHHiRPXp00cVK1Y07zMMQ/PmzdOdd96pQ4cOSZKee+45de3aVcOHD882V82aNfXLL7+4fexff/3VkjiYMGFCEZ7JJf7+/rrqqqt0zTXXqFevXmrXrp38/f0t+5w9e1YfffSRHn/8cZ0/f15paWm65ZZb1L17d9WtW9cjcQAAAAAAgKLLqb+BH90uC83hyOxz8OOPl8ZWrZJuusm+mADAW4qlVNGKFSv0zjvvaN68eUpOTpZkTRK4u3ogp8cEBwdrxIgRuuOOO3TVVVd5MOqcff/99/rxxx/1xBNPqL7rej8XsbGx6tq1q44ePSpJat26tbZs2VLkGG6++WZ98cUXkqQqVaroyJEjCgoKKvK8BbF48WINGDDA/J48+eSTevrpp71+XEoVAQAAAADgnq5dpbVrL20/95z02GP2xVMaPP+89TXs3Nn6GgNAaeHVPPOXX36pjh07qnfv3po9e7aSkpLME83OyQLDMNz6ypL1WMMwlJycrK+++kp9+vRRhw4dNGvWLG8+JY0cOVIffPBBvkkDSYqIiLCcTN+6dav27dtXpOMnJibqu+++M7fHjBlT7EkDSerXr5/69u1rbi9btqzYYwAAAAAAADlLTpY2bLCO0Ri56Lp3t25v3Jj5WgNAaeOVxMGcOXPUpk0b3Xzzzdq0aVO2EkSGYejyyy/XuHHj9PLLL2vevHlat26dDh06pDNnzig1NVUXL17UmTNndOjQIa1du1bff/+9XnrpJY0dO1YtWrTIcc5NmzZp7Nixat26tebMmeONp1ZgrqWJdu7cWaT5vv76a3PVhuS5MkWF0bFjR/N21qoKAAAAAABgv3XrpLS0S9t+flKXLvbFU1p07Wot95SWJv35p33xAIC3eLTHwebNmzV16lQtX77cHMs6wV+xYkUNGzZMI0eOVO/evRUeHp7vfGFhYQoLC1Pt2rXVqVMny0n4+Ph4LVu2TN9//73mz5+v06dPm/dt375dN9xwg3r27Km33npLbdu29dyTLKCqVatathMTE4s036effmrebtGihbp161ak+Yoizel/IM49HgAAAAAAgL1cGyO3ayfZ0CKy1KlQQWrTRnJux7lqldSjh30xAYA3eDRx0LFjR0tZIT8/Pw0aNEi33XabRowYoYAAzx0uPDxco0aN0qhRo5SWlqZ58+bpo48+0oIFC8zjL1++XJ07d9bFixc9dtyCOnDggGW7evXqhZ5r//79Wrlypblt52oDSZYEUWRkpI2RAAAAAAAAZ66JA8oUeU737tkTBwBQ2ni0VFFGRoYMw1BISIj+/ve/a8+ePfrpp5903XXXeTRp4CogIEDXXXed5s+fr7179+rvf/+7QkJCJEnp6eleO647nEsmBQQEqFOnToWea8aMGZakzLhx44ocX2G9/fbb+vOvtXiBgYG68847bYsFAAAAAABcYhgkDrzJ9drJVasyX3MAKE0chmuzgCIIDg7WHXfcoUcffbRIV9Z7Qnx8vJ577jm99957lp4Axen8+fNq3ry5Dh06JEkaOnSofvzxx0LNZRiGGjdurOjoaEnSwIEDtWDBAo/Fmp/09HQlJCRow4YN+uijjzR79mxJUlBQkD799FONHj26UPPGxcUVaP8jR46oa9eukqTY2FjVq1evUMcFAAAAAKC02rtXatrUOrZ/v3TZZfbEU9rs2iW1aGEdi4mRGjSwJRwA8AqPLgPYvXu36tev78kpCy08PFxvvPGG7rvvPttieOCBB8ykgcPh0DPPPFPouVasWGEmDaTiKVPUo0cP/f777zne53A41LdvXz377LNFKlMUERFR6McCAAAAAIDsXFcb1KolNWxoSyilUrNmUpUqUkLCpbGoKBIHAEoXj5Yq8pWkgTO7Yvr888/17rvvmtv33XefOnbsWOj5nJsiV6xYUddee22R4iuqtm3bavz48UUqvQQAAAAAADwvpzJFDoc9sZRGDkdmnwNn9DkAUNp4r/FAGbZixQrdeuut5nanTp30/PPPF3q+pKQkff311+b2jTfeaPZw8Kbu3burQoUKkqTU1FTFx8drx44dSk1N1aZNmzRhwgQ9++yzmj17dqGTIrGxsQXa37lUEQAAAAAAyI7+Bt4XGSn9/POl7ago+2IBAG8oNYkDwzA0ZcoUffDBB7bGsWnTJg0fPlwpKSmSpEaNGumHH35QYGBgoef87rvvdPbsWXO7OMoUSdKrr76abSwpKUmff/65HnvsMZ04cUJ79+5V37599ccff6hly5YFPgY9CgAAAAAA8JzERGnrVutYESoMIxeuKw7Wr5cuXJCCg+2JBwA8zaOlirI89dRT3pg2V4ZhaOLEifr444+L9biudu3apYEDB+rMmTOSpDp16mjhwoWqXbt2keZ1LlPUpEkT9ejRo0jzFUX58uU1efJkrV27VnXq1JEknTlzRpMnT7YtJgAAAAAAkGn1askwLm0HBkpFqJyMXHTrZi3/lJoqbdhgXzwA4GleSRw8++yzeuWVV7wxdTYZGRkaO3asZs6cWSzHy010dLT69++v48ePS8pszrxw4UI1atSoSPMeOnRIixcvNrfHjx9fpPk8pUGDBpYVCX/88Yc2b95sY0QAAAAAAMC1TFGnTlwF7w0VK0qtWlnH6HMAoDTxSuJAkh5++GG9/fbb3ppekpSenq7Ro0fryy+/9Opx8hMXF6d+/fopLi5OUmbz4l9++aVQpXtczZw5UxkZGZIkh8PhM4kDSbrmmmtUrlw5c3sVvyEBAAAAALAV/Q2Kj2u5IvocAChNvJY4MAxDU6dO1fTp070yf1pamq6//np9++23XpnfXceOHVP//v0VHR0tKbOUz/z589WpUyePzO9cpqh3795q0KCBR+b1hJCQEIWHh5vbJ0+etDEaAAAAAADKtoyM7Cev6W/gPa6vLddTAihNvJY4cDgcysjI0JQpUzy+IuDixYu65pprNG/ePDmcCsr17t3bo8fJz6lTpzRgwADt2rVLkhQUFKS5c+d6rAfBmjVrtHPnTnO7uJoiF0RiYqJ5u3LlyvYFAgAAAABAGbd9e2ZzZGckDrzHdcVBXFzmFwCUBl5JHPTv31+GYcjhcCg9PV3jx4/X999/75G5U1JSNHz4cP30009m0sAwDA0YMEA//vijR47hjsTERA0aNEhbtmyRJAUEBOirr77SgAEDPHYM59UGoaGhuv766z02tyds2LBB58+fN7cbN25sYzQAAAAAAJRtrmWKGjaU6tSxJZQyoUULqVIl6xjligCUFl5JHHz//ffq0aOHmTxIS0vTmDFjtGDBgiLNm5SUpCFDhmjhwoWWpMGQIUM0b948hYSEeCJ8t+IYOnSo1q1bJ0ny8/PTzJkzNWLECI8d4+LFi5aVGqNGjVKFChU8Nn9RGYahp556ytwODQ1Vr169bIwIAAAAAICyjf4GxcvPT+rWzTpGuSIApYVXEgchISH66aef1LVrVzN5kJKSouuuu06//fZboeY8d+6cBg8erGXLllmSBiNGjNB3332noKAgTz6FXKWkpGjkyJFauXKlpMySTB9++KHGjBnj0eP88MMPOnXqlLld2DJFMTExcjgc5te0adNy3C82Nlbjx4/X9u3b850zMTFRkyZN0g8//GCO3XPPPQoODi5UjAAAAAAAoOhcT1pTpsj7XF9jVhwAKC0CvDVxhQoVtGDBAvXu3VubNm2Sw+FQcnKyhg8froULF6qba0o2D4mJiRo8eLCioqIsSYPrr79es2bNUkCA155GNm+++aYWLVpkbleuXFmzZ8/W7Nmz3Xr82LFjNXbs2Hz3cy5T1KBBA6/3b0hPT9fMmTM1c+ZMtW3bVv369VO7du1Uq1YtVahQQUlJSYqNjdWqVav07bffKiEhwXxs165d9eijj3o1PgAAAAAAkLv4eGn3busYKw68z7XPwZ9/ShcvSoGB9sQDAJ7i1TPulSpV0qJFi9SrVy9t375dDodD586d05AhQ7RkyRK1b98+3zkSEhI0cOBA/fnnn5akwZgxYzRz5kz5+/t78ylkk5SUlC2+gpRg6u76GyUHx48f188//2xujx8/3tIE2ts2b96szZs3u7Xv0KFD9dlnn6l8+fJejgoAAAAAAOTGdbVB+fJS27b2xFKWuF4Xm5Iibdwode1qSzgA4DFeKVXkrFq1alq0aJGaNGkiKbO0z+nTpzVgwIB8y+LEx8erb9++2ZIG48aN02effVbsSYPi8sUXXygtLc3cHj9+vNePWaNGDU2bNk1du3bNdwWHn5+fBgwYoLlz5+rHH39U5cqVvR4fAAAAAADInWt/g27dpGIs0FBmVakiXX65dYw+BwBKA4dhGEZxHCg2NlZXXXWVDh48KCkzAVCrVi0tX77cTCo4O378uPr376+tW7dakga33HKLPvjgg2K9Ar+sSU5O1qZNm7R3714dP35cSUlJCgkJUaVKldS0aVN17NhRYWFhtsQWFxeniIgISZnvqXr16tkSBwAAAAAAvqR3b8m5reSjj0r/+pdt4ZQpt9wiTZ9+aXvMGGnWLPviAQBPKLbEgSTt379fV111lY4cOSIpMxEQERGhFStWqH79+uZ+R44cUb9+/bRz505L0uBvf/ub3nnnneIKFz6IxAEAAAAAAFapqVKlSlJy8qWxH3+Uhg61L6ay5IMPpClTLm03aCDFxNgWDgB4hNdLFTlr1KiRFi9erBo1akjKLFsUGxurvn37msmEuLg49e7dO1vS4K677iJpAAAAAAAA4GLTJmvSQMretBfe4/paHzgg/XWaCwBKrGJNHEhS8+bN9euvv6pq1aqSMpMH+/fvV79+/bRmzRpdddVV2rNnjyVpcO+99+qtt94q7lABAAAAAAB8nmt/gxYtpGrV7ImlLGrZUnKt6BwVZU8sAOApxZ44kKQ2bdpowYIFqlixoqTM5MHOnTsVGRmpmJgYS9LgoYce0muvvWZHmAAAAAAAAD7PtRlvZKQ9cZRV/v5S167WMRokAyjpbEkcSFLHjh31008/KTQ0VFJm8sAwDPNfwzD0+OOP64UXXrArRAAAAAAAAJ/nuuLgiivsiaMsc03WsOIAQElnW+JAkiIjIzVv3jwFBwdLupQ8kKRnnnlGzzzzjJ3hAQAAAAAA+LS4OOngQesYiYPi59rnYN26zKbVAFBSBXhj0oOuv7Hy0KhRI/373//WHXfcISkzeXDHHXdo/PjxBZonS/369Qv8GAAAAAAAgJLItSRO5cqZPQ5QvFwTB8nJ0ubNUqdO9sQDAEXllcRBw4YNzT4FBZG12uCdd97RO++8U+DHOxwOpaWlFfhxAAAAAAAAJZFr4qB7d8nP1voSZVO1alKzZtLu3ZfGVq0icQCg5PLar5KsPgUF+SrKY13nAAAAAAAAKO3ob+A7XFcd0OcAQEnmtcSBw+Eo1i8AAAAAAICyJDlZWr/eOkbiwD6uDZJdV4MAQEnilVJFkrj6HwAAAAAAwIv+/NPagNfPT+ra1b54yjrXFQf790vHj0s1atgTDwAUhVcSBxkZGd6YFgAAAAAAAH9xvaK9TRspLMyeWCC1bi2Fhkrnz18ai4qSRoywLyYAKCza5QAAAAAAAJRA9DfwLQEBUpcu1jHKFQEoqUgcAAAAAAAAlDCGQeLAF7n2OaBBMoCSisQBAAAAAABACZNVP98ZiQP7ufY5WLNGSkuzJxYAKAoSBwAAAAAAACWMawmcGjWkyy6zJxZc4po4SEqStm61JxYAKAoSBwAAAAAAACVMTmWKHA57YsElNWpIjRtbx+hzAKAkInEAAAAAAABQwtDfwHe5rjqgzwGAksijiYOff/7Zk9N5hC/GBAAAAAAAUFhnz0pbtljHSBz4DtcGyaw4AFASeTRxMHToUPXp00d/uKa9bfD777+rd+/eGjZsmN2hAAAAAAAAeMyaNVJGxqXtcuWkTp3siwdWrisO9uyR4uPtiQUACsvjpYqWL1+unj17qmfPnvrhhx9kGIanD5ErwzD0/fffq2fPnrrqqqu0fPnyYjs2AAAAAABAcXC9XrNjRyk42J5YkF3btlJIiHVs9Wp7YgGAwvJo4iA8PFyGYcgwDP3xxx+65ppr1LBhQz399NPat2+fJw9lsXfvXj311FNq0KCBrrvuOv3xxx9mwqJ69epeOy4AAAAAAEBxo7+BbytXTurc2TpGuSIAJY1HEwd79uzRXXfdpYCAADOBEBsbq2eeeUbNmjVTu3bt9OSTT2rp0qVKSUkp9HEuXLigpUuX6sknn1Tbtm3VvHlzPffcc4qLi5OUufIgICBAd999t3bt2uWppwcAAAAAAGCrjIzsJ6FJHPge1z4HNEgGUNI4DC/UEtq5c6eefPJJffvttzIMQw6Hw1wB4HA4JEnlypVTy5Yt1bp1azVv3lz16tVT7dq1VaFCBYWEhMgwDF24cEFnz57VkSNHFBcXp127dmnLli3auXOnUlNTJckyb9axRo0apaefflotWrTw9FODzeLi4hQRESFJio2NVb169WyOCAAAAACA4rN9u9SqlXUsLk6qW9eeeJCz776Trrvu0naFCtLp05K/v20hAUCBeCVxkGXLli166aWX9PXXXys1NdVMGjgfMmvMXTk91jAMlStXTjfeeKP++c9/qk2bNh6IHr6IxAEAAAAAoCz78ENp8uRL2/XrSwcO2BcPcnb0qFS7tnVs82aJU1YASgqPN0d21qZNG3322Wc6cOCAnn76aTVt2jTXpEFWaaPcvnJ7TJMmTfTMM8/owIEDmjlzJkkDAAAAAABQatHfoGSoVUtq2NA6Rp8DACWJVxMHWWrVqqUnnnhCO3fu1Lp16zRt2jRFRkbK398/W2IgN1n7+fv7KzIyUtOmTdPatWu1a9cuPf7446pVq1YxPBMAAAAAAAD7uCYOXGvpw3d0727dps8BgJLEq6WK8pOSkqLNmzdr8+bNio6OVmxsrM6cOaOkpCRJUvny5VW5cmVFRESoYcOGatu2rdq2baugoCC7QobNKFUEAAAAACirTp6UwsOtY2vXSp072xMP8vbWW9LUqZe2W7SQduywLx4AKIgAOw8eFBSkLl26qEuXLnaGAQAAAAAA4PNcr1gPCZHatbMnFuTPdcXBzp3SqVNS1ar2xAMABVEspYoAAAAAAABQNK5lirp2lcqVsycW5K99e8m1aMaaNbaEAgAFRuIAAAAAAACgBKC/QckSGCh16mQdo0EygJKCxAEAAAAAAICPS0vLfrX6FVfYEwvc55rcoUEygJKCxAEAAAAAAICP27xZSkqyjrHiwPe59jlYvVrKyLAnFgAoCBIHAAAAAAAAPs61TFGzZlJ4uD2xwH2uyZ0zZzKbJAOAryNxAAAAAAAA4OPob1Ay1a0rRURYx+hzAKAkIHEAAAAAAADg41xPNtPfoORwLVdEnwMAJQGJAwAAAAAAAB92+LAUE2MdI3FQcriuDmHFAYCSgMQBAAAAAACAD3M90VyxotSypT2xoOBcVxxs357Z6wAAfBmJAwAAAAAAAB/m2t+ge3fJjzM6JUbHjlJg4KVtw5DWrLEvHgBwB79mAAAAAAAAfBj9DUq2oCCpQwfrGOWKAPg6EgcAAAAAAAA+6sIF6c8/rWMkDkoe1z4HNEgG4OtIHAAAAAAAAPio9eulixcvbTscUrdu9sWDwnHtcxAVJWVk2BMLALiDxAEAAAAAAICPci1p07p1ZnNklCyuKw4SEqQ9e+yJBQDcQeIAAAAAAADAR7k2RqZMUckUESHVrm0do88BAF9G4gAAAAAAAMAHGQaJg9LC4aDPAYCShcQBAAAAAACAD4qJkY4etY6ROCi5XBMHrDgA4MtIHAAAAAAAAPgg1xPL4eFS48b2xIKic22QvHWrdPasPbEAQH5IHAAAAAAAAPignMoUORz2xIKi69RJCgi4tJ2RIa1da188AJCXgPx38b7Nmzfr559/1oYNG3Tw4EElJiYqOTlZhmEUaB6Hw6F9+/Z5KUoAAAAAAIDiQ3+D0iUkRGrfXlq37tLYqlVS3762hQQAubI1cfDHH39o6tSpWr9+vWW8oAmDLA7S7gAAAAAAoBQ4d07atMk6RuKg5IuMtCYOaJAMwFfZVqrorbfe0lVXXaX169fLMAxLssDhcBT4CwAAAAAAoLRYuzazlE2WgACpc2f74oFnuPY5iIqSCnn9LAB4lS0rDubNm6d77rlH0qUkQVbyoFy5cqpcubLKly9vR2gAAAAAAAC2cy1T1KFDZqkblGyRkdbt+Hhp3z6pSRN74gGA3NiSOHBOGhiGoerVq+vee+/VyJEj1bx5c/n50bMZAAAAAACUXfQ3KJ0aNpRq1JCOH780tmoViQMAvqfYEwerV69WTEyMmTRo06aNFi9erPDw8OIOBQAAAAAAwOdkZGSeTHZG4qB0cDgyVx18//2lsagoadw4+2ICgJwU+6X9mzdvlpTZANnhcOijjz4iaQAAAAAAAPCX3bulhATrmGuJG5Rcrt9L1yQRAPiCYk8cxMfHm7fr1aunznT2AQAAAAAAMLmWKapXT4qIsCcWeJ5rg+TNm6Xz5+2JBQByU+yJg6ymxw6HQ7Vr1y7uwwMAAAAAAPg0+huUbp07S/7+l7bT06V16+yLBwByUuyJg2bNmpm3z5w5U9yHBwAAAAAA8GkkDkq30FCpbVvrGOWKAPiaYk8c9OjRQ8HBwTIMQ/v27SN5AAAAAAAA8JeEBGnHDusY/Q1KH9fvaVSUPXEAQG6KPXEQFhamsWPHSpLS09M1Y8aM4g4BAAAAAADAJ7meQA4Oltq3tyUUeJFrn4NVqyTDsCcWAMhJsScOJOm5555TzZo1JUnTpk3T7t277QgDAAAAAADAp7iWKerSRQoMtCcWeI/rioPjx6WYGFtCAYAc2ZI4qFGjhubNm6eKFSsqISFBffr00eLFi+0IBQAAAAAAwGfQ36BsaNxYCg+3jtHnAIAvCbDrwF26dNGqVat0ww03aNu2bRo4cKB69OihUaNGqWPHjqpevbqCg4MLPG/9+vW9EC0AAAAAAIB3paVJa9ZYx+hvUDo5HJnlin788dJYVJR00032xQQAzmxLHEhSixYttGDBAg0YMEA7duzQypUrtXLlykLP53A4lJaW5sEIAQAAAAAAisfWrdK5c9YxEgelV2SkNXHAigMAvsSWUkVZXnzxRTVv3lw7d+6Uw+GQYRhF/gIAAAAAACiJXMsUNWki1ahhTyzwPtcGyRs3SsnJtoQCANnYsuLAMAzddNNN+uqrr2QYhhwOhySZyQMAAAAAAICyhv4GZUuXLpKfn5SRkbmdlib9+afUo4e9cQGAZFPi4NVXX9Xs2bMlWZMFNWvWVKtWrVStWjWVL1/ejtAAAAAAAABs4VqqhjJFpVtYmNS6tbR586WxVatIHADwDcWeOLhw4YJeeOEFS2mi/v3767nnnlPXrl2LOxwAAAAAAADbHT0q7d9vHWPFQekXGWlNHERF2RcLADgr9h4Hy5Yt0+nTpyVlrjYYNWqUFixYQNIAAAAAAACUWa6rDcLCpFat7IkFxce1z8GqVRJVvAH4gmJPHOzcuVOSzN4Gb7zxhtnjAAAAAAAAoCxy7W/Qvbvk729PLCg+ruWojhyRYmPtiQUAnBV74iAlJUVS5mqDJk2aqE6dOsUdAgAAAAAAgE+hv0HZ1LSpVKWKdcz1vQAAdij2xIFzoqBy5crFfXgAAAAAAACfkpIirVtnHaO/Qdng55e9XBF9DgD4gmJPHDRq1Mi8ffz48eI+PAAAAAAAgE/ZsCEzeZDF4ZC6dbMvHhQv19UlrDgA4AuKPXEQGRmpunXryjAMHThwQLEUbgMAAAAAAGWYa3+DVq0kijSUHa4rDlwTSQBgh2JPHPj5+em2224zt1977bXiDgEAAAAAAMBn0N+gbOvaNXOVSZaLF6X16+2LBwAkGxIHkvTwww+rffv2MgxDb7/9tubMmWNHGAAAAAAAALYyjOwrDuhvULZUqiS1bGkdo1wRALvZkjgICgrSL7/8ok6dOik9PV2jR4/WY489psTERDvCAQAAAAAAsMXBg9Lhw9YxEgdlj+sqExokA7BbgB0HnTFjhiTptttu08mTJxUTE6MXX3xR//nPf9S/f3916tRJ1atXV3BwcIHnHj9+vKfDBQAAAAAA8ArX1QbVqklNm9oTC+zTvbv04YeXtllxAMBuDsMwjOI+qJ+fnxzOxdskZYXhOl5Q6enpRXo8fFtcXJwiIiIkSbGxsapXr57NEQEAAAAAUHj/+If0n/9c2h42TPrhB/vigT22b89siu0sNlbitAcAu9hSqiiLc87C4XBYkgaGYbj95ToXAAAAAABASUB/A0hSixaZvQ6cUa4IgJ1sSxw4n/DPLRlQ0LkAAAAAAABKivPnpY0brWMkDsomPz+pWzfrGIkDAHaypcfB9OnT7TgsAAAAAACAz1i7VnKuuOzvL3XubF88sFdkpPTrr5e26XMAwE62JA4mTJhgx2EBAAAAAAB8huuJ4fbtpdBQW0KBD+je3br955/SxYtSYKA98QAo22ztcQAAAAAAAFBW0d8AzlxLFaWkZC9lBQDFhcQBAAAAAABAMTMMEgewqlIls0myM8oVAbALiQMAAAAAAIBitnu3dOqUdSwy0p5Y4Dtc3wM0SAZgFxIHAAAAAAAAxcz1SvI6daT69e2JBb7Dtc8BKw4A2IXEAQAAAAAAQDHLqUyRw2FPLPAdrisODhyQjhyxJxYAZRuJAwAAAAAAgGJGfwPkpGVLKSzMOka5IgB2CCiuA+3fv1+//PKLDh48qDNnzqhatWpq1qyZBg8erBo1ahR63vXr1+uBBx6QJDkcDi1evNhTIQMAAAAAAHjc6dPStm3WMfobQJL8/aWuXSXn01tRUdK119oXE4CyyeuJg02bNumee+7R8uXLc7zf4XBoyJAh+te//qW2bdsWeP6EhAQtW7bMnAsAAAAAAMCXrV5t3Q4Kkjp0sCcW+J7ISGvigD4HAOzg1VJFX331lbp166bly5fLMAzzS5J5OyMjQz/99JM6deqkf/7zn0pNTfVmSAAAAAAAALZyLVPUuXNm8gCQsjdIXrdO4nQZgOLmtcTBggULdNNNN+nixYsyDEMOh8NcEZCVPHAeS09P12uvvabIyEgdPHjQW2EBAAAAAADYiv4GyItr4iA5Wdq82Z5YAJRdXilVdPr0aU2aNEkZGRmWZEHLli3Vs2dPValSRYcOHdLKlSsVHR0tKTOJYBiG1q9fr8jISC1YsECtW7f2RngAAAAAAAC2SE/P3uyW/gZwVq2a1LSptGfPpbGoKKlTJ/tiAlD2eCVx8N577+no0aNmMqBq1aqaPn26hg8fnm3fpUuX6pFHHtGaNWvMJMORI0d01VVX6aefflJ31zQrAAAAAABACbVtm3TunHWMxAFcRUZaEwerVkl33mlfPADKHq+UKnr33XfNpEFoaKiWLVuWY9JAkvr06aNVq1bpxRdflL+/v6TM1QenT5/WgAEDtGjRIm+ECAAAAAAAUOxcyxQ1aiTVqmVPLPBdrtfR0iAZQHHzeOLgwIEDOnDggKTMBMBjjz2Wb8khh8Ohf/7zn1q8eLGqVatmjp0/f17Dhw/X3LlzPR0mAAAAAABAsaO/Adzhugpl/37p+HF7YgFQNnk8cbBu3TpJMhsiT5482e3H9uzZU1FRUWrSpIn5+JSUFN14442aOXOmp0MFAAAAAAAoVq6JA8oUISetW0uhodYx194YAOBNHk8cHP8r/elwOHTZZZeZKwjc1ahRI/3xxx/q1KmTmTxIS0vTpEmT9M4773g6XAAAAAAAgGJx/Li0b591jBUHyElAgNSli3WMxAGA4uTxxMHp06fN2+Hh4YWao1q1alq6dKl69eplJg8yMjJ011136eWXX/ZQpAAAAAAAAMXHtU59hQqZV5YDOXFdjUKfAwDFyeOJg+DgYPP2mTNnCj1PhQoV9Msvv2jYsGFm8sAwDD3yyCN64oknPBEqAAAAAABAsXEtU9StW+aV5UBOXBskr10rpaXZEwuAssfjiYOs0kSGYejo0aNFmisoKEhz5szR6NGjLcmD559/Xvfcc48HogUAAAAAACge9DdAQbgmDs6fl7ZutScWAGWPxxMHLVq0MG+fOXNGO3fuLNJ8AQEB+uKLL3TLLbdYkgf/+c9/NHnyZGVkZBQ1ZAAAAAAAAK+6eFFat846Rn8D5KVGDalRI+sYfQ4AFBePJw5atWolPz8/ORwOSdLSpUuLPKfD4dCHH36of/zjH5bkwccff8zKAwAAAAAA4PM2bpQuXLCOuV5RDriizwEAu3g8cRAaGqpOnTrJMAxJ0meffeaxud944w099thjluTBzp07zSQFAAAAAACAL3ItU9SypVSlij2xoORwTS6ROABQXDyeOJCkfv36ScrscxAVFaUdO3Z4bO5nn31WL730kiV5AAAAAAAA4MtcT/jS3wDucH2f7NkjnTxpTywAyhavJA6uueYaSTJXArz00ksenf/BBx/UO++8I4fDwWoDAAAAAADg81xXHNDfAO5o21YKCbGO0ecAQHHwSuKga9euuuyyy2QYhgzD0Oeff+7RVQeS9Le//U0zZsyQv78/qw4AAAAAAIDPio2V4uKsYyQO4I5y5aTOna1jJA4AFIcAb008Z84cxTn9VixXrpzHj3HTTTepZs2aWrlypcfnBgAAAAAA8ATX1QZVq0rNmtkTC0qeyEhpxYpL2/Q5AFAcvJY4aNeundq1a+et6U39+vUzeyoAAAAAAAD4GtcTvd27S35eqQGB0si1QfKaNVJ6uuTvb088AMoGfk0BAAAAAAB4Ef0NUBSuiYOzZ6Xt2+2JBUDZQeIAAAAAAADAS5KSpA0brGMkDlAQtWtLDRpYx+hzAMDbSBwAAAAAAAotI0P64Qepf3+pUiXp2mszT5QCyLRunZSWdmnb31/q0sW+eFAyRUZat+lzAMDbSBwAAAAAAArs/HnpnXekFi2kESOkxYulxERp7lzp0Uftjg7wHa4neNu2lSpUsCcWlFyu5YpIHADwNhIHAAAAAAC3HT4sPfaYVL++9Pe/S3v2ZN/nvfeko0eLPzbAF9HfAJ7guuJg504pIcGeWACUDSQOAAAAAAD52rhRmjBBathQev556dSp3Pe9cEF67bXiigzwXYZB4gCe0b69FBRkHVu92pZQAJQRJA4AAAAAADnKyJDmz5f69ZM6dJBmzJBSU3PeNyzMuv2//0knTng/RsCX7d0rxcdbx0gcoDACA6VOnaxjNEgG4E0kDgAAAAAAFsnJ0vvvS61aScOGSUuW5L7v0KGZ/Q02bMhs+polKUn697+9Hyvgy1zr0NeqJTVoYE8sKPlokAygOJE4AAAAAABIyuxL8MQT0v+zd9/hUVRdHMe/m4Tee++IiIhIpCkiIgIqRSB2iu21o2LBjgXsgr0XFAVFQxPpoqgoAVGQjkhN6L0FCEnm/eOazc6mkLK7s+X3eZ487r07O3siISRz5pxTpw7cdpvpoZ2d4sXh1lth9Wr4/nvo3BkaNYL+/e3HvfVW7i2NRMJddm2KXC5nYpHQ5z0geeFCUxkmIuIPShyIiIiIiIhEuOXL4aabzJ3QI0bA3r3ZH1e1Kjz7LGzZYgYgN21qf/6xxyDK47fMI0fgjTf8F7dIsNN8A/El74qDgwdzTvCKiBSWEgciIiIiIiIRyLJg5kzo2hVatIDRoyElJftjmzeHTz+FzZtNRUKVKtkf16QJXHONfe+NN8zFLZFIc/AgrFhh31PiQAqjVi2oXdu+pzkHIuIvShyIiIiIiIhEkOPH4eOPTTLg0kthzpycj+3eHWbPhmXL4MYbTYuiU3n8cXsrloMHTcsikUizaJFJ0GUoWhRatXIuHgkPmnMgIoGixIGIiIiIiEgE2LULnn4a6taF//0PVq3K/rhixeCWW8yd0jNmwCWX5K8ne7NmEBdn33vtNTh8uMChi4Qk7zZFsbHm75dIYXjPOVDiQET8RYkDERERERGRMLZypUkE1K0LzzwDu3dnf1yVKiaxsGULfPQRnHlmwd/ziSfs63374N13C34+kVCk+QbiD94VB6tWqR2ciPiHEgciIiIiIiJhxrJMi6Hu3U1Lok8+gRMnsj+2WTPTumjLFnjqKTMAubBatIDeve17I0fC0aOFP7dIKEhPz9p73vuCr0hBnHMOFCmSubYs0xZLRMTXHEkc/PLLL+6Pg4VMix48eNB2PhERERERkUh1/LgZYtyiBXTrBrNm5XzsJZeY4cgrVsDNN+dtfkF+PPmkfb17N3zwgW/fQyRYrVoFhw7Z95Q4EF8oXjzrrAwNSBYRf4hx4k07deqE678mmXPmzKFz584FPtfixYvp2rUrAC6Xi9TUVJ/EKCIiIiIiEip274b334e33zazDHJStChcfz0MGQJnneXfmGJj4bLLYPr0zL1XXoE77oASJfz73iJO825TVL8+1KzpSCgShtq3h4ULM9eacyAi/uBYqyLLsnx6rowPERERERGRSLF6Ndx2m5lfMGxYzkmDypVNBcDmzaYiwd9JgwzeVQc7dpi2SSLhTvMNxJ+8ByQnJJiWRSIivuRY4iCj4kBERERERETyzrJg7ly4/HIzn+DDD02Louw0bWraA23ZAs8+C9WrBzbWdu1MSyRPL76Y87wFkXDhnThQmyLxJe+vp/374Z9/nIlFRMJXWA1HVjJCRERERETC1YkT8Pnn0LIldOlibwHk7eKLYdo0WLkSbr3V2dZAw4bZ11u3wmefORKKSEDs2QPr1tn3VHEgvlSnDtSoYd/TnAMR8bWQTxwcPXrU/biEGmWKiIiIiEiY2bsXnnvO9Ei/4QZYtiz744oUgUGDYOlS+OEHM18gKgh+4+vQATp1su+98AKcPOlIOCJ+591vvmRJM7BcxFdcrqxVB5pzICK+FgQ/RhbOmjVr3I/Lly/vXCAiIiIiIiI+tHatGSRcpw488YSZD5CdihXh8cfN/ILPPoOzzw5omHniPetg82b44gtnYhHxN+82RW3bQkyMM7FI+PKec6DEgYj4WkgnDg4ePMinn34KmDZFTZs2dTgiERERERGRgrMs+Okn6NnTzCd4/304diz7Y5s0gffeg8REGDEia9uKYHLRRXD++fa9556D1FRn4hHxJ803kEDw/rpasQIOH3YmFhEJT37LeT/77LN5Om7MmDHMnz8/z+e1LIvk5GQ2btzI3LlzOXDggPu5Dh065DdMERERERERx6WkwDffwKhRsGRJ7sd26gT332+GIwdDK6K8cLlM1UH37pl7GzbAV1/BgAHOxSXiaydPwh9/2Pc030D8ITbWVLJkJGDT083XXufOzsYlIuHDZVmW5Y8TR0VF5Tis2PMtCzPQ2LIsXC4XlmVRtGhRVq9eTYMGDQp8Pgl+SUlJ1KlTB4DExERq167tcEQiIiIiIgW3bx98+CG89RZs25bzcTExcO21MGQInHNO4OLzJcsyrTUWLcrca9IEVq2C6Gjn4hLxpcWLoXVr+96ePVCpkjPxSHhr3dp8zWV47jl47DHn4hGR8BIi96dkLyNp4HK5GDlypJIGIiIiIiISEtatg7vvNvMLHn0056RB+fLwyCOwaROMGRO6SQPIrDrw9M8/8O23zsQj4g/ebYqaNlXSQPxHA5JFxJ/8mjiwLCvbj7wck5ePUqVK0bt3b3766Sfuuusuf34qIiIiIiIihWJZ8MsvcMUVcPrp8M47kJyc/bGNG8Pbb5v5BS+8ALVqBTRUv7n88qzJjxEjTIsNkXCg+QYSSN4DkhMSzL81IiK+4LcZBz/99FO2+5Zl0blzZ3eLoldeeYXY2Ng8nzcqKopSpUpRsWJF6tWrV6hWRyIiIiIiIv528qS5q37UKPjzz9yP7djRzC/o0SM82/dkVB307Zu5t3IlTJoE/fo5F5eIr3jf8a35BuJP3ompPXtg/XqTfBYRKSy/JQ4uvPDCPB3XsmXLPB8rIiIiIiISKvbvh48+gjffhK1bcz4uOhquvtrMLzj33MDF55TevaF5c1ixInNv+HCTTNB9YRLKkpJgyxb7nhIH4k/160PVqrBrV+ZeQoISByLiG47NOMiubZGIiIiIiEioW78e7rnHzC94+OGckwblysHQobBxI4wdGxlJA4CoqKyzDv7+G6ZOdSYeEV/xrjYoX97MOBDxF5dLcw5ExH/8VnGQm3Q1sBQRERERkTBiWfDbb6Yd0eTJufeYbtgQ7rsPbrwRSpcOVITBpV8/c0F1zZrMveHDoWdPVR1I6PKeb9CunUmUifhTu3YwZUrmOiHBuVhEJLzonzAREREREZECSk2Fr7+Gtm3hggtMr/6ckgYdOsDEifDPPzB4cOQmDcC0Z3riCfve4sUwc6Yz8Yj4guYbiBO8Kw7+/huOHnUmFhEJL0ociIiIiIiI5NPBgzByJDRqBNdeC3/8kf1xGfMLFi6EX3+FPn3Cc+hxQVx9ddY+3MOH516tIRKsjh2Dv/6y7ylxIIFw7rn2f1fS0kwiVkSksJQ4KKADBw4wYcIE7r77bjp06EC1atUoWrQoZcqUoX79+vTp04f33nuPI0eOnPJcmzZtwuVyFepj06ZNPvm8UlJS+PHHH3n88cfp1q0bdevWpWTJkpQoUYKaNWty8cUX8+yzz5KYmOiT9xMRERERCSUbN5ohxrVrw4MPZh2EmqFsWXjgATPv4OuvoU2bwMYZCmJi4PHH7XsLFsCPPzoTj0hh/PknnDyZuY6K0t97CYxSpaBFC/ue2hWJiC+4rCCcUHzixAkOHDjAiRMn8v3aunXr+iGiTGvWrOHBBx9k9uzZnPT8qSAH5cqV4/XXX+eGG27I8ZhNmzbRoEGDAscUExPDrl27qFChQoHPcfz4ce68804mTZrEgQMHTnl8dHQ09913H8899xzFihUr8PvmV1JSEnXq1AEgMTGR2rVrB+y9RURERCRyLVhg5hdMnAi5jWyrV8/ML7jpJpM8kNydPAlNmoDnfVAdO8LPPzsWkkiBvPyyGYae4eyzYelSx8KRCHPXXfDuu5nr3r3NvB0RkcJwZDiytzVr1vDZZ5/x+++/s2TJEpKTkwt0HpfLRWpqqo+js1uxYgXTpk2z7UVHR9O4cWOqVatGWloaq1evZt++fQAcPHiQG2+8kfXr1zN8+PBsz1miRAm6deuW5xjS09OZM2eOe92tW7dCJQ0Ajhw5wujRo7Ps161bl5o1a1K8eHE2bdrkrmxIS0tj5MiRLF26lGnTpgU0eSAiIiIiEgipqWZmwahRp757s317uP9+uOIKcye95E2RIvDoo3DbbZl7v/xiEgcXXuhcXCL5pfkG4qR27eyJg4QE0/ZNw+ZFpDAc/ZF2z549/O9//+O7775z7wVhAUS2YmJi6NGjBzfccAMXXXQRZT1uJ7Isi++++4677rqLrVu3AjBixAjatGlDz549s5yrWrVqzMzHFLDZs2fbEgeDBg0qxGeSVdu2bbn55pu57LLLqFWrlu25JUuWMHjwYH777TcA5s6dy2OPPcbIkSN9GoOIiIiIiFMOHYJPPoE33oDNm3M+LioK+vUzrYu8h1NK3g0aBCNGgGc31OHDlTiQ0GFZ8Pvv9j0lDiSQvP8N2rnTVHIVormFiIhzrYrWr19Px44d2bFjB5Zl4XK53EkDl0dK1DM8VzapUu/n09LS/Bg1TJkyhe+//54nn3zylG2REhMTadOmDTt27ACgefPmLF++vNAxXH/99YwbNw6AChUqsH379kLf8b93716uvvpqhg8fTvtT/NZz8uRJunXrxk8//QRAkSJF2LJlC9WrVy9UDHmhVkUiIiIi4i+bN8Obb8JHH8HhwzkfV6YM3HIL3HMP1K8fsPDC2jvvwN132/d++00XXyU0rF+fddD3+vXQsKEz8UjksSyoWhX27MncGzcOrr3WuZhEJPQ5kjg4fvw45557LqtWrXInDKKiomjTpg0NGjTgq6++MsG5XFxyySVUrFiRffv2sXLlSvcd/BlJhNNPP522bdu6z51dux0nffjhh9zmUXf777//0qhRowKf79ChQ1SvXp1jx44BcMcdd/CuZz1agPzzzz+cfvrp7vXHH3/MzTff7Pf3VeJARERERHxt4ULTjmjCBMjtPqS6deHee+Hmm6FcucDFFwmOHzcXWbdvz9zr3h1mzHAuJpG8+uILGDgwc121KuzYoTYxElg9e8L332euBw82yXARkYKKcuJNP/roI3fSACA2NpY1a9bw+++/M3bsWCAzMTB06FDGjRvHzJkzSUxMZO3atdxzzz3ExMRgWRb//PMPtWvXZvTo0UGXNACytCZas2ZNoc737bffupMG4Ps2RXnVpEkTmjRp4l4X9vMSEREREQmktDQz6LhDB9Mb+ptvck4atG4NX39t7iC+/34lDfyheHEYOtS+N3Mm/PGHM/GI5Ed28w2UNJBAa9fOvj7VbB4RkVNxJHHwxhtvuCsNatasyQ8//EBj77q+HJx22mm8/vrrLFy4kLp165Kens7zzz/PUO+fMoNExYoVbetDhw4V6nyff/65+3HTpk1t1RaB5vm5FfbzEhEREREJhMOHzR2Yp51m5hP8N7orC5cL+vaF+fNNRcLVV2vosb/dequ5U9vTiBHOxCKSH5pvIMHAu+v0kiXgcd+piEi+BTxxsGXLFjZs2ACYqoInn3yScgW4Zadly5b88MMPlCtXDsuyGDlyJHPnzvV1uIW22WuaWpUqVQp8rg0bNjB//nz32qlqgwyen1thPi8REREREX9LTDR3tNepY9oNbdyY/XGlSpnZBevWmdZF55+vO4cDpWRJePBB+95338HSpY6EI5Inhw6B9yhDJQ7ECa1bQ5THVb7UVPjzT+fiEZHQF/DEwR//1ZpmjFa48sorcz0+txEMjRs35oknnnCvn3rqKR9E6FsTJ050P46JiSE2NrbA5xozZoz7/0dUVBQDBgwodHwFlZCQwHaPBqROVj6IiIiIiORk8WK47jpo0ABeeQUOHsz+uNq14eWXISkJ3ngDCjGWTArhjjugUiX7nqoOJJgtWgTp6ZnrIkWgEL/2ixRYmTLQvLl9T+2KRKQwAp442LVrl/txnTp1qFChQq7HHztFXdUNN9xAdHQ0lmWxYMECkpKSfBKnLxw9epS3337bve7WrdspP9+cWJbFmDFj3OsuXbpQq1atQsdYUC+++KL7ceXKlenSpYtjsYiIiIiIeEpLg8mToWNHcwfmV1/lPL8gNhbGjYMNG+Chh6B8+UBGKt5KlzZzJDxNmAArVjgTj8ipeM83aNXKzOwQcYJ3uyLvr08RkfwIeJfOAwcOAKZNUU7tbYoXL86JEycAc/E9N5UqVaJBgwb8+++/gLkTPi4uzncBF8KDDz7I1q1bAfP5PvvsswU+16+//spGj3pqJ9sUjR8/nilTprjXjz32GCVKlCjQufKb6PGschARERER8XTkCHz2Gbz+uhlknBOXC3r3NheoO3RQK6Jgc/fdpjrkv18dAXjuOZMAEgk2mm8gwaRdO/jgg8z1ggVgWfp3TkQKJuCJg6JFi2a+eQ7TxcqWLcuuXbtwuVzuC++5qVSpkjtxkJiY6JtAC2ns2LG8//777vX9999Pq1atCnw+z6HIZcuWpU+fPoWKr6BWr17Nrbfe6l63bduWwYMHF/h8derU8UVYIiIiIhLBkpLg7bfNxRLPi83eSpaEm24yMw4aNw5YeJJPZcvCfffB009n7o0fD089BU2bOhWVSFbp6Vnv6FbiQJzkXXGwfbuZ8VO3rjPxiEhoC3irIs9WPQdzaDBatWpV9+O1a9ee8pwHPH47OFVro0D49ddfufnmm93r2NhYnn/++QKfLzk5mW+//da9vuqqqwp8h39h7Ny5kx49enDo0CEAypUrx7hx43JMAImIiIiI+NNff8GAAWZ+wUsv5Zw0qFkTXnjBXDx56y0lDULBPfeYft0ZLAsK8SuViF+sXp11bor3hVuRQDrtNPDukK05ByJSUAG/4nv66acDpmf/tm3bsj2mRYsWrFixAsuy+Pnnn3M93+7du1m3bh2u/+quypUr59uA8+nvv/+mZ8+e7lZLDRs2ZOrUqbZKi/yaNGkShw8fdq+daFN08OBBunfvzoYNGwDTTmrKlCk0bNiwUOfNb4XI9u3badOmTaHeU0RERERCV3o6TJsGo0bBvHm5H3vOOaYd0VVXQSF+HBcHVKhgkgfPPZe5N3YsDBumxI8ED+9qg7p1wcFRhCJERZl2RTNmZO4tWGD+HRQRya+AJw6aN2+Oy+XCsiwOHz5MUlIStWvXth3Trl07xo0bB8C6deuYM2cOl1xySbbne/nll0lPTwfMHIHGDv4UuXbtWrp27equpKhZsyZz5syhRo0ahTqvZ5uixo0b06FDh0KdL7+OHj3KZZddxtKlSwHTYuqbb77hwgsvLPS5vf/sRURERESyc/QojBkDr70G69blfmzPniZhcOGF6uscyu67z8yryBh7l55uKkc++cTJqEQyab6BBCPvxIEqDkSkoALeqqhcuXKcffbZ7nV2FQVXXXUV0dHR7gTDoEGDWLRoke2Y9PR0XnnlFUaNGuWuNihevDgXXHCBfz+BHGzcuJEuXbqwa9cuACpXrsycOXMKfUf+1q1bmTt3rns9cODAQp0vv44fP07v3r35/b+fiKKiovjiiy/o2bNnQOMQERERkci0bRs8/ri5k/fOO3NOGpQoAXfcAWvXwnffQadOShqEusqV4a677HtjxsCmTY6EI5KFEgcSjLzbZf31F/zXFENEJF8CnjgA6Nq1q/vxtGnTsjxftWpVBgwYgGVZuFwuduzYQfv27YmNjeW6664jLi6OunXr8sgjj2BZlvu4W265hZIlSwbyUwEgKSmJiy++mKSkJMAML545cybNmjUr9Lm/+OILW0VFIBMHJ0+eJC4uzpa4eP/997nmmmsCFoOIiIiIRKalS2HQIKhf3/S237cv++OqVzftbBIT4d13oUmTQEYp/vbAAyYplCE1FV580bl4RDLs3WsSlZ4030CCQZs29sR5SopJHoiI5JfLsiwr0G+6dOlSWrVqBZgqgS1btlC5cmXbMXv37qVly5buOQgZYWZUF3iuLcuiSZMm/PHHH5TxnKAVADt37uTCCy90D3EuWbIks2bN8lk7oTPOOIM1a9YAcNFFF/Hjjz/65LynkpaWxtVXX82ECRPce6NGjWLIkCEBef+cJCUlUadOHcDMR1CrIxEREZHwkZ5u2iuMGgWn+rG3RQtzUfnqq6FYscDEJ84YMsS0LMpQpAisXw///Vog4ohp06BHj8x1iRJmUHKRIs7FJJKheXNYuTJzPWqU+V4qEtYOHDBlp337QunSTkcTFhypOGjZsiVvvfUWr7zyCsOHD2f37t1ZjqlUqRLz5s2jcePG7ooCl0fK1DOB0LJlS+bMmRPwpMG+ffu45JJL3EmDYsWKMXnyZJ8lDRYtWuROGkDghiKnp6dzww032JIGzzzzjONJAxEREREJT8nJ8MEH0KyZuRCXW9Lg8sth7lxTkTBwoJIGkeChh+x/zidPwssvOxePCGRtU9SmjZIGEjy8q1+8B3mLhI29e+HTT+Gyy6BqVVOuOn2601GFjYAPR85wl3ezymw0atSIFStW8N577zF+/Hj++OMPUlNTATOgt23btgwcOJAbb7yRmJjAfiqHDh2iW7duLF++3B3PN998k+MQ54LwHIpcqlQp+vXr57Nz5+aOO+7gyy+/dK+HDh3KsGHDAvLeIiIiIhI5duyAd96B994zv/flpHhxkyQYMgSaNg1cfBIcataEW24xXysZPvoIHnsMatRwLi6JbJpvIMGsXTv4+OPMtQYkS1jZuRMmT4b4ePjpJ0hLsz8/YQJcdZUjoYUbR1oVFZRlWezduxfLsqhUqRJRUY4UTJCcnEy3bt2YP38+YAYGjx071qe9/1NSUqhRowb7/mvmOmjQID777DOfnT8n999/P6+99pp7fdddd/H222/7/X3zSq2KRERERELfsmXw2mswbpzpvZyTqlXh7rvh9tuhSpXAxSfBJzERGjUy1QYZhgwx7TdEAi01FcqVM9VSGb77Dnr2dC4mEU+rVsGZZ9r3kpKgVi1n4hEptG3bYOJEkxT45RfT3zInpUrB7t32IUlSIM5ceS8gl8tF5cqVqVKlimNJgxMnTtC7d2930sDlcvHxxx/7fGDw1KlT3UkDKHibok2bNrnbPLlcLp5++ukcjx02bJgtaXDjjTfy1ltvFeh9RUREREQ8WRbMnAmXXAJnnw2ffZZz0qB5c1N1vnkzPPmkkgZi5hnceKN97/33YdcuZ+KRyLZsmT1pABqMLMGlaVOT3PKkqgMJOVu2mCFHHTpA7doweDDMm5d70qBYMbj4YtizJ1BRhjXHWhWFqjfeeIMffvjBvS5fvjzjx49n/PjxeXp9//796d+//ymP82xTVK9ePTp16pTvWPNj0aJFDB8+3L2OiooiKSmJSy+9NE+vb9GiBS+r0aiIiIiIeDl2DMaONRUGq1blfmz37nD//dClC3iMNxMB4NFHTULpv+61HDtmKg5efNHZuCTyeLcpatIEKld2JhaR7ERFQdu2MHt25t6CBRCgDtgihffyy/Dww3k7tkQJM+OgXz8zDKtsWf/GFkGUOMinZK/bCvbv38+sWbPy/Pp27dqd8phdu3YxY8YM93rgwIG2wdD+4P15paenM2fOnDy//vjx474OSURERERC2K5d8O675mP37pyPK1YMBgyA++7L2lZBxFP9+uZrZfTozL233zbDkytVciwsiUCabyChoF07e+JAFQcSUtq0yf35UqWgRw+Ii4NLLzVr8bmQalUUKcaNG+ceAg0mcSAiIiIiEgpWrjSDbOvWhWeeyTlpUKUKPP20qUL/6CMlDSRvHnvM3Emb4ehR08VAJJAWLLCv1aZIgpH31+XixbnPFRIJqFWr4Nlnc/5B8YILsvaqLFsW+vc3g5F374avvzaJAyUN/CakhiOLaDiyiIiISPCxLJgzx7SNOVUxbrNmph3R9ddD8eKBiU/Cy4AB8OWXmeuyZc08jPLlHQtJIsi2bVkHzC5fbmaziAST/fuhYkX73sKFp76RW8QvLMsMiImPNwOOV682+x99ZO44yc5tt8E338AVV5gEQZcuplRVAkYVByIiIiIiUiDHj5ue82edBd265Z406NrVDEdesQJuvllJAym4xx+3z8A4dAjefNO5eCSyeFcblC1rEqIiwaZCBTMk2ZPaFUlAWRb8+acZUtSkCbRsCSNGZCYNwCQRcvLCC7Bzp+lRePnlSho4QIkDERERERHJl927TXV5vXomCbByZfbHFS0KN91kbjCbNcskFzT0WAqraVO46ir73muvmQSCiL95zzdo397ePkskmHi3K/JOfIn4XHq6yVA9+CA0bAjnngsvvgj//pv98T/8YMpjslOxovlhUhyj4cgiIiIiIpInq1ebC7RffGGqDXJSuTLccQfceSdUrx64+CRyPP44jB+fuT5wAN55x9zUKOJPmm8goaRdO/tAeVUciF+kpZms6oQJ5iMpKW+vq1UL+vWDEyf8G58UmBIHIiIiIiKSq5QUU1ng2Vc+O02bwpAhpgd9iRKBiU0i01lnQd++MHFi5t6oUTB4MJQu7VxcEt6OHzddNzydd54zsYjkhXdia9Mm2LFDSX3xseeeg6eeytux9eqZZEFcHLRtq5KtIKc/HRERERERydXHH+eeNLj4Ypg2zbQsuvVWJQ0kMJ54wr7eswfef9+ZWCQy/PWXSaRmcLnMdS+RYNWsGZQpY99T1YH43OWX5/58o0bw8MPwxx+wcSOMHKk+byFCf0IiIiIiIpKrTz/NulekCAwaBEuXmva0l12m3/8ksM45B3r0sO+9+iokJzsTj4Q/7/kGzZub4cgiwSo6Gtq0se9pzoHkS0oKTJ9uhlZt3pz9Ma1aQf369r3TTzd9BZcsgXXrzJyDc8/VsKsQox/tRUREREQkR6tXZ23Ncc895nfHzz6Ds892JCwRAJ580r7euRM++siZWCT8eV9wVZsiCQXt2tnXqjiQUzp+HKZMgYEDoWpVU1EwerS9P6Anl8u0HmreHJ5+GlasMD9AjhgBLVsqWRDCXJZlWU4HIZJXSUlJ1KlTB4DExERq167tcEQiIiIi4e3xx+H55zPX1atDYiLEaFqaBInu3WHWrMx1zZqwfj0UL+5cTBJ+LMt8be3Ykbn3+efmuppIMJs2zV6dVaIEHDxoKgdF3JKTYcYMiI+H77+HI0eyHnPeefDbb9m//uRJfVGFIVUciIiIiIhIttLTs842uPZaJQ0kuAwbZl9v25Z9ey2RwsgYKutJFQcSCrzncBw7BsuWOROLBJnDh+Hrr+HKK6FKFVM18PXX2ScNwPRr27o1++eUNAhLShyIiIiIiEi25s+HLVvsewMGOBOLSE7OOw86d7bvvfiifYitSGF5zzeoXNnM+xQJdpUrw2mn2ffUriiCHTxo7gq54gqTLLj2WlNlcKoBQeedB6NGmZIViRhKHIiIiIiISLa++MK+PvNM06pWJNh4Vx0kJpo2MiK+kt18A7XtllDRvr19rQHJEezdd81dIFOmwIkTOR/ncsGFF8Kbb0JSkmlRNGQIVKwYuFjFcUociIiIiIhIFsePw7ff2vf699eFMglOF14IF1xg33vhBdNyWcQXvCsO1KZIQokGJItbv345PxcdDRdfDO+9Z/r+zZsHgwdDrVoBC0+CS9AkDg4dOsS3337LPffcwyWXXEJsbCyNGzemUaNGLFAqVEREREQkoL7/3lSzZ3C54PrrnYtH5FSefNK+3rgRxo1zJhYJL0eOwN9/2/eUOJBQ4l1xsH497NrlTCziR9u3m4qCzp1h5crsj2nSBFq0yFzHxED37vDxx2aQyw8/wO23Q/XqgYlZgprjY83279/Ps88+y6effsoRr+EblmXhcrk4duxYtq+95ppr+Pa/26Dq1q3Lxo0b/R6viIiIiEgk8G5T1KkT1KnjSCgiedKli7mr1vNO2ueeM5Uy0dHOxSWhb9EiMyw+Q0wMnHuuc/GI5Ffz5lCqFBw9mrm3cCH07OlcTOIjiYkwcSJMmGCGU1mW2Y+PNz0ms3P99VC3rhmG3KsXVKgQuHglpDhacfD777/TsmVL3nzzTQ4fPoyV8cWdRw899BCWZWFZFlu2bGHu3Ll+ilREREREJHLs2QPTp9v3+vd3JhaRvHK5slYdrFsH48c7E4+ED+8mCOeco/mgElpiYqB1a/uemnuEsE2bYORIU0pSty7cdx/8+mtm0gBM4iAnQ4fC1KkwaJCSBpIrxxIHixcvpmvXriQlJdn2XS4XlStXzlMSITY2llatWrnX8bn9pRARERERkTz55htITc1cFy9ubkoTCXaXXgqxsfa9ESPsd4uL5JfmG0g40JyDEPfvv/DiiyYD1KABPPhg7n+IK1bAmjWBi0/CkiOJgyNHjtCrVy+Sk5MB05KoXbt2TJkyhUOHDrFz507AJBFOpd9/Qz0sy2L27Nn+C1pEREREJEJ4tynq3RvKlnUmFpH8yK7qYPVq08FBpCDS07Pema3EgYQi7zkHixbZbxKQILRhg8l+t2wJp50Gjz4Kixfn/poyZeC660z7onr1AhKmhC9HEgevvPIKO3bscCcGBg8ezPz58+nZsyclS5bM17m6dOnifrxp0yZ27Njh01hFRERERCLJunVZb2BTmyIJJb16wdln2/eGD1fVgRTM2rWwf799z/sCrEgo8K44OHrU3JQuQWzmTJMN957O7q18edN2aOpUM/V67Fjo00c91aTQHEkcfPDBB+6kQefOnXnjjTeIiipYKC1atCDaY9LVqlWrfBKjiIiIiEgkGjvWvq5cGbp1cyYWkYJwueCJJ+x7y5fDd985E4+ENu9qg9q1NSheQlPVqtCwoX1P7YqCgGXZZxN46tPH/KOWnUqV4JZbYMYM2LkTPvsMevQw/SVFfCTgiYO//vqLXbt2uWcYPPvss4U6X7Fixahdu7Z7vXHjxkKdT0REREQkUlkWfPmlfe+aa6BIEWfiESmovn2hWTP73vDhOV+bEcmJ5htIOPGultGAZIdYlukVNXQoNGqU8x9EjRpw/vmZ62rV4Pbb4YcfYMcO+Ogj6N4dihYNTNwScQKeOPCsCKhQoQLtfVDjV758effjgwcPFvp8IiIiIiKRKCEB1q+37w0Y4EwsIoURFZW16uCvv2D6dGfikdClxIGEEw1IdlB6Ovz2G9x/P9SvD23bwiuvwMaNEB+f8+tuuQUGD4aff4atW+G99+DiiyEmJmChS+QKeOJg165dgBl8XM9HQzqKe5ThnDhxwifnFBERERGJNN5DkZs0gdatnYlFpLCuusp8DXtS1YHkx759Zri2J803kFDm/fX7zz+wd68zsUSEtDRzwX/wYNPjrEMHeO012LLFftyECTn/4zRoELz5JnTsCB6t2kUCIeCJg7S0NPfjaB99we/3mFTkWX0gIiIiIiJ5k5IC48fb9/r3z7m1rkiwi46Gxx+37y1cCHPmOBOPhJ6FC+3r4sWhZUtHQhHxiRYtss7L9f46l0JKTTWthG6/HWrWhE6d4O23Ydu2nF+zZQssWRKwEEXyKuCJg6pVqwJgWRY7d+4s9PlSUlLYvHmze125cuVCn1NEREREJNLMmGHurvXUv78zsYj4ynXXZR0G+uyzqjqQvPFuU9S6tVqJS2grUgTOPde+pzkHPvLnn6atUPXqcMkl8MEH8F/XlRw1aWIy3EuWwDnnBCZOkXwIeOKgVq1a7sdJSUnu1kUF9dtvv9naE5155pmFOp+IiIiISCTyblPUoQM0aOBMLCK+EhMDjz1m3/vtN5g3z5FwJMRovoGEI8058JPVq+GTT07d+6l5c3jqKVi+HNasgREjTCmTSjwlCAU8cXD++edTrFgxXP/9hRg7dmyhzvf222+7H1etWpVmzZoV6nwiIiIiIpFm/36YOtW+p2oDCRcDBkDduva94cOdiUVCR2pq1hYumm8g4cD763jhQtOKX/IgOdl8c8hOz56mpCM7LVuaBMHq1SZh8PTTJoGgZIEEuYAnDkqUKMFFF12EZVlYlsVLL73E3gJOYpk6dSqTJ0/G5XLhcrm44oorfBusiIiIiEgEiI83Mw4yFC1qBsuKhIOiReGRR+x7P/0E8+c7E4+EhhUr4OhR+54SBxIOvCsODh/OOgRcPBw5At98Y34wqlLFzC/ITrly0LVr5rp1a3jpJfj3X9OK6PHHoWnTwMQs4iMBTxwAPP7fhCqXy8Xu3bvp1asXBw4cyNc5ZsyYQf//boOyLIuYmBgefvhhX4cqIiIiIhL2vNsU9egBFSo4E4uIP9x0E3h0zQVUdSC5825T1Lgx/DeyUSSk1agB9erZ9zTnwMvBgzB2LPTta5IFV18N335rKg7i43N+3V13wciRsHEjLFoEQ4dCo0aBi1vExxxJHJx//vnExcVh/TeRKiEhgebNm/PJJ59w5MiRHF+XlpbG77//zrXXXkuvXr04fPgwlmXhcrm45557qF+/foA+AxERERGR8LBpE/z6q31PbYok3BQrZq7feJo9O2srGpEMmm8g4cy7ekaJA0zfxs8/Ny2HqlY1PwxNmgTHj9uPmzQJTp7M/hyXXgr33w+6PilhwmVlXL0PsOTkZDp27Mhff/2Fy+VyJwBiYmJo0qQJK1euNAG6XDRr1gzLsti8eTPJyckA7uMty+Kiiy5izpw5REU5kgeRAEpKSqJOnToAJCYmUrt2bYcjEhEREQltzz0HTzyRua5QAbZvNxdaRcLJsWNm4PfOnZl7l18O33/vXEwSvBo2NDcNZ3jvPbj9dufiEfGlN96A++7LXJ9xBqxa5Vg4ztmzByZPNlUEc+fmPL/AU1SUyTqfe67fwxNxmmNX2kuWLMmMGTPo1KmTLQlw8uRJd9IATIJg1apVrFq1iqNHj7qrFDKOv+yyy5g0aZKSBiIiIiIi+WRZWdsUXXWVkgYSnkqUgIcesu9NmwZ//eVMPBK8duywJw1AFQcSXrwrDlavNjfcR4wff4QuXaB6dfjf/2DWrNyTBjEx0K0bfPSR+QahpIFECEevtlepUoW5c+fywgsvUMGjiWrGsOOMD889MMmEcuXK8cILLzB16lTKli3rSPwiIiIiIqHszz9h7Vr73oABzsQiEgi33w6VK9v3NOtAvHm3bSlTBs4805lYRPyhZcusNwksWuRIKM44csRUGKSl5XxM0aKmLG30aFOqNnMm3HKLmXkgEiEcv03f5XLx8MMPk5iYyHvvvUfPnj2pUKEClmVl+ShevDhdunTh1VdfZdOmTTz88MPuZIKIiIiIiOSPd7VBgwa6q1bCW6lS8MAD9r3Jk2HZMkfCkSDlPd+gXTuIjnYmFhF/KFoUYmPte2E352DzZjPMODtdu0Lp0ln3ixWDK66AL7+EXbtML7sbboCKFf0ZqUjQinE6gAwlSpTgtttu47bbbgNg586d7N27lwMHDlCyZEkqV65M9erViYkJmpBFRERERELWyZPw1Vf2vf79QfflSLi76y54+WV7W44RI+Cbb5yLSYKLd+LAu62LSDho187+tZ6Q4FwsPvPvvzBhgplZsHgxjB9vejB6K17cDEH+6isoWdJUFvTrB5ddZkqMRARwIHGwY8cOFnnUP7Vo0YL62Uwbr1atGtWqVQtgZCIiIiIikWPOHNi9276nNkUSCcqUgSFDYNiwzL34eNPj+4wznItLgsOJE6aNmydVYkk48k6IJSRAerqZ/RtS1qzJTBYsXWp/Lj4++8QBwL33QlwcdO9ukgcikkXAEwcTJ05k8ODB7vXy5csDHYKIiIiISMTzblPUti2cdpozsYgE2uDB8OqrcOiQWVsWPPec6U4hkW3JEpM8yOByme+PIuGmXTv7+uBBM/co6BOolgUrV5qkQHy8eZyTadNMu6LsEgP6iy1ySgHPIx44cMA9s6B69eo0a9Ys0CGIiIiIiES0Q4dMX3dP/fs7EoqII8qXNzebevrqK1i3zpFwJIh4tyk680zz9SISbmrXNh+egnbOgWWZrN4TT5jMxllnwTPP5J40ANOSaM2awMQoEoYCnjioVKkSYIYi16pVK9BvLyIiIiIS8SZOhOPHM9cxMXDNNc7FI+KE++6zz8ZMT4fnn3csHAkSmm8gkcT76zsoEwdTpkDjxtCqlSkNW7s29+OrVIHbbjM9GXfsMK8TkQIJeOKgZs2a7sdHjx4N9NuLiIiIiEQ87zZFl14KlSs7E4uIUypWhLvvtu998QVs2OBMPOI8y8p64VTzDSScebcrCsoByeXKnfobc/XqZvL9Tz/B9u3w/vvQpQsUKRKYGEXCVMATB7GxsURFRWFZFps3byYlJSXQIYiIiIiIRKykJPN7tSe1KZJIdf/99tbXaWnw4ovOxSPO2rIFtm2z7ylxIOHMu+Jg5Uoz6yCg0tLgl19g377sn7/gAlNF4K12bVM69uuvsHUrvP02dOoE0dH+jFYkojhScdCpUycAjh07xrRp0wIdgoiIiIhIxBo3ztxVm6FsWejZ07l4RJxUpQrcfrt977PPzAVkiTzebYoqVdLQeAlv55xjvynfsuCPPwLwxqmpMHcu3HEH1KwJF15o+ihmJzoa+vY1jxs0gAcfNKURmzfDa69Bhw4QFfDLmyIRwZG/WUOGDHE/fvTRR0lOTnYiDBERERGRiGJZWdsUxcVBiRLOxCMSDB580MzPzHDyJLz0knPxiHOym2/gcjkTi0ggFC+edQSA3+YcpKTAzJnwv/+Z1kJdupiWQrt2mefj43N+7f33w59/wvr18Mor0LatkgUiAeDI37LLL7+cu+66C8uyWLduHZdffjm7Mr5RiIiIiIiIXyxbBitW2PcGDHAmFpFgUaOGuY7l6eOPTecLiSyabyCRyK9zDk6cgO+/hxtugGrVzFCljz+GvXuzHjt3Luzfn/15mjQxGQ5l8kQCyrH03FtvvcUjjzyCy+Xil19+oVmzZjz99NOsWbPGqZBERERERMKad7VBnTrQsaMzsYgEk6FDoWjRzHVKirmpVSLH0aOwdKl9T4kDiQTecw4SEuwtDfPt2DGYNAmuv970g+vZEz7/HA4cyP11zZpBYmIh3lhEfM1lWYX6dlAgnTt3dj9euXIlu3fvNsH8lzksU6YM9erVo2zZshTJxwR0l8vF3LlzfRusBJWkpCTq1KkDQGJiIrVr13Y4IhEREZHQkJZmEgXbt2fuPfIIvPCCczGJBJM77jBdMzIULw4bN5qOGhL+5s2Diy7KXEdHw6FD9uHZIuFo82aoX9++t3atuck/3776ypRwHT2at+NjY03PxH79NFBEJAjFOPGm8+bNcycJIDNhkJHDOHToEMuXL7cdcyqWZeXreBERERGRSPLjj/akAahNkYinRx4xHTRSU836+HEYOVKVB5HCe75By5ZKGkhkqFvXtGzz/BlhwYICJg5OP/3USYN27UyyoG9fM+xYRIJWUE0Scblctg8REREREfEN7zZFrVqZrgAiYtSrB4MG2ffefRf+K5CXMKf5BhKpXK6s7YpyHJC8fz+MGQNJSdk/f845WZMBLhd06ACvvw5btpiTP/CAkgYiIcCxxIFlWT79EBERERGR7B09ChMn2vf693cmFpFg9uijpkVNhuRkeO015+KRwLCsrBUHShxIJMl1QPKePfDJJ2awcbVqJsM6fnz2J3K5TNuhqCjT++udd8yk+V9/hXvvNT0TRSRkODLjQKSgNONAREREJP/GjrUnCqKizO/x6t0uktWgQeaG2gxlysCmTVCxomMhiZ+tXQtNm9r3Nm82LVxEIsH8+XDBBZnr6q6dbHxtMsW/j4effjKDkjy1b58125Zhxw7zg0bVqv4LWEQCIqhaFYmIiIiIiO95tynq2lVJA5GcPPaYuWk2w+HD8OabzsUj/ud9/bNmTd0YLZElNhbqRG/jLt7mJzqRZNWk+H23ww8/ZE0agGk3lFO7ourVlTQQCRNKHIiIiIiIhLHt22HOHPue2hSJ5Oz00+Gaa+x7r78OBw86Eo4EQHbzDTR2USLCli3w2muUuKQDW9Jq8TaD6cTPRJOe82uKFYNeveDIkcDFKSKOUOJARERERCSMff01pHv8/l+qFFxxhWPhiISExx+3rw8ehLffdiYW8T/NN5CINHq0mQp///3w22+5H1uihJld8NVXZmL8lClZ+3uJSNhR4kBEREREJIx5tynq188kD0QkZ2eeCXFx9r1Ro0zbIgkvBw7AypX2PSUOJCJ4DjXIxlFKYV1zDcTHm2RBfLwpxypTJkABiojTlDgQEREREQlTK1fCkiX2PbUpEsmbJ56wr/ftg/fecyYW8Z+EBPu6WDE45xxnYhHxqVWr4NlnYc2a7J9v3BjOPtu2dZCyfEF/ejOZyuxmw4ivdMeBSART4kBEREREJEx9+aV9XaMGdO7sTCwioebss6F3b/veq6/C0aPOxCP+4T3f4NxzoWhRZ2IRKRTLgr//hiefhDPOMKVTTz1lehbmJC4OKlSAG2/Emvo9zavsYiBf8B29OU6JLH8/RCSyxDjxps8++6zfzj1s2DC/nVtEREREJFSkp8PYsfa9666D6Ghn4hEJRU8+aVp5Z9i9Gz78EIYMcS4m8S3NN5CQZlnw558wYYJpJfTvv1mPiY+Hp5/O/vX33QcPPwxFiuACYs+DJI/veQsWqFJRJJK5LMuyAv2mUVFRuFwuv5w7LS3NL+eV4JCUlESdOnUASExMpHbt2g5HJCIiIhKc5s2Diy6y7y1dmqUrgYicwmWXwYwZmevq1WHDBjMrVEJbWhqULw9HjmTuTZwIffo4FpLIqaWnw6JFJiEQHw+bN5/6NatWmSqEU3jxRXj00cx1q1YmLyEikSnkWhVZlpXlI2NfREREREQM76HIZ52lpIFIQTz5pH29Ywd88okzsYhvrVxpTxoAtG/vTCwiuUpLg19/hXvvhXr1zBfqyJGnThrUqgX33APFi+fpbby//v/+W+3ZRCKZI62KoHAX+j2rFTyTByIiIiIiAseOmZsQPanVgEjBtG8PXbrADz9k7r30Evzvf2aQroQu7zZFDRuaihKRoPPpp3DrrXk7tl49M7sgLg7atIGovN8zfO65pqVhRjOPtDRTcdCxYwFiFpGQ50ji4Keffsr3a5KTk9m9ezd//PEHkyZNYtu2bbhcLho3bsyrr75KuXLl/BCpiIiIiEjomToVDh3KXLtcZr6BiBTMsGH2xEFSEnz2Gdx2m2MhiQ9ovoGEjB49zD/mOd0426gRXHkl9OsHsbHm2AIoVQpatIAlSzL3FixQ4kAkUjky46CwUlNTefPNN3n88cdJSUnhjDPOYM6cOdSoUcPp0MTPNONARERE5NR69oTvv89cX3yx/aKniORfp07w88+Z63r1YN06KFLEsZCkkBo3hvXrM9fvvAN33ulcPBKhTpww/0hPmAC3326qBLLTsaNpV5ShadPMyoIWLQqcLPB2553w3nuZ6yuugEmTfHJqEQkxITfjACAmJob777+fCRMmEBUVxerVq+nRowcpKSlOhyYiIiIi4qjdu2HmTPue2hSJFN6wYfb15s1ZZ4lI6Ni1y540AFUcSAAdOwZTpsCAAVC1qqkoGD0avv4659fExZmBRc88YwZ0rF4Nw4ebAUY+ShpA1jkHCxbkXOggIuEtJBMHGS677DLuuOMOLMti6dKlvPjii06HJCIiIiLiqPHjITU1c12ihOlcICKFc9FFWS8sP/+8/e+bhI4FC+zr0qWheXNnYpEIcfSoGUB0zTUmWXDFFfDll/begvHxOV+lv/tuWLbMZDGbNfNbmO3a2dc7d556BrOIhKeQThwA3HfffYAZkvzGG29w8uRJZwMSEREREXGQ9x3QV1wBZco4EopIWHG54Mkn7Xvr18NXXzkTjxSO93yDtm0hxpEpkBLWDh82VQRxcVCliplDMH48HDmS/fGJifDHH9k/l48hx4XRuDFUrmzf8060iUhkCPnEQcOGDd197g8cOMBvv/3mcEQiIiIiIs745x9YtMi+pzZFIr7TrRu0bm3fe+45SEtzJh4pOO/EgXd7FpECO3DAZPF79zbJgmuvNfMLjh3L/XXnnw+jRkH9+oGIMkcuV9aqAyUORCJTyCcOAKpXr+5+vHLlSgcjERERERFxzpdf2tdVqkDXrs7EIhKOsqs6WLvWdBeR0JGSAosX2/c030B85vvvYeBA+O47M/g4Jy4XXHghvPUWJCXB/PkwZIhpY+Qw78RBQoIzcYiIs8IicXD8+HH344MHDzoYiYiIiIiIMywra+Lg2mvVekPE13r0gJYt7XvDh0N6uiPhSAEsXQoelxGArBdKRQqsZ08oUiT756Kj4eKL4b33YNs2mDfPzC6oVSugIZ6KdwXOkiWnLpgQkfAT8omD5ORk1q1bh+u/CfLlypVzOCIRERERkcD7/XfYuNG+N2CAM7GIhLPsqg5WroTJkx0JRwrAu01Rs2ZQoYIzsUiI2b4d3nkHOneG2bOzP6ZcOXu5X0wMdO8OH38MO3bADz/A7beDR/eMYNO6tX2kQmoq/PWXc/GIiDNC/v6j999/nxP/lX65XC7q1KnjcEQiIiIiIoHnPRS5aVOIjXUmFpFwd8UV0Lw5rFiRuTd8OPTpYxILEtw030DyJTERJk40Pcl++82U+AE0bJhzP8BrrzVX3vv1g169Qi4zVaaM+R63bFnm3oIFZgyDiESOkK44+Prrr3nsscfc1QbR0dF06tTJ2aBERERERALsxAn45hv7Xv/+uoAp4i9RUfDEE/a9pUtNa3MJft6DXjXfQLLYuBFefdX0sKpbF+67z8wgyEgaAEyaBCdPZv/66683Mw4GDQq5pEEGzTkQEUcqDrZs2VKg1x07doydO3eyZMkSvvnmGxISErD++6btcrm46qqrKFu2rC9DFREREREJetOnw/799r3rr3cmFpFIERcHp59uhiNnePZZMwNBSbvglZho5tB6UuJAAFi3DiZMMJUFf/556uP37YOff4YuXfwfmwPat4cPP8xcL1hg8ib6/iYSORxJHNSvX99dJVAYlmXhcrmwLIvKlSvz4osv+iA6EREREZHQ4t2mqGNHqF/fkVBEIkZ0tKk68JwlsngxzJpl2plLcPJuU1SxIjRp4kwsEgQ2b4YxY0yywLMvT27KlDHth/r1C+usk3fFwbZtJummDuEikcPRVkWWZRX4A3AnDWrVqsXMmTOpXbu2k5+OiIiIiEjA7duXtT1K//7OxCISaa65Bho1su89+6y9m4kEF+/EQbt29iGwEmH+/huGDTt10qB8edN2aOpU2L0bvvzSDDUpWTIgYTqhSZOsXZa823yJSHgL2X8eLcuiSpUqDB06lFWrVnHOOec4HZKIiIiISMB9+629xXKxYnDllc7FIxJJYmLg8cftewsWwI8/OhOPnJrmG0Qgy4K0tOyf69oVSpfO/rlKleCWW2DmTNi5Ez77zPQiK1bMb6EGk6gozTkQiXSOtCoaNGhQvl/jcrkoXrw4ZcuWpV69erRq1YrY2FhiYhz5FEREREREgoJ3m6KePc2NkSISGP37myqDTZsy94YPh4svdiwkyUFyMixZYt9T4iBMWRYsWpQ5s+CFF+Dqq7MeV7y4+Yfzq6/Mulo16NvXDDHp2NFkByNYu3YwY0bmWhUHIpHFke+Ao0ePduJtRURERETCyoYN8Ntv9j21KRIJrCJF4NFH4bbbMvd+/hl++cVcd5TgsXgxpKZmrqOjoXVr5+IRH0tPN1e24+NNwiAxMfO5+PjsEwdgWhBVqWKSBeedZ74wBDADkj399RecOBExRRciES9kWxWJiIiIiES6sWPt64oV4dJLnYlFJJINGgTeI/eGD3cmFsmZ93yDFi1y7lIjISItzWTqBg82fwk7dIDXX7cnDQCmTzclJ9np1g3eeAMuuEBJAy9t2oDLlblOSclatSMi4UuJAxERERGREGRZWdsUXX01FC3qTDwikaxYMXj4YfveDz+orUew0XyDMJGaav6C3X471KwJnTrB22/D9u05vyY5WcNHCqBcOWjWzL6n72sikUOJAxERERGREPTHH7BunX1vwABnYhERM0O1Rg37nqoOgodlZa04UOIgxKxYYf6iVa8Ol1wCH3wAu3bl/prTTzcTzJcsgcsvD0ycYUYDkkUilyOJg4YNG9KwYUMaNWrEgkKmKn///Xfb+UREREREIoF3tUGjRll/uReRwCleHB56yL43Y4ZJ8onz/v0X9uyx7ylxEGL27oVPPjH/zU3z5vD00ybRsHo1jBgBLVvae+5InnnPOVDFgUjkcGQ48qZNmwBwuVwcO3asUOc6duyY7XwiIiIiIuHu5En4+mv7Xv/+uiYi4rTbboMXX7TfBD1iBEyZ4lxMYnhXG1SvDvXqOROL5CJjDkHJklmf69ABqlbNvsrgnHPMcON+/UyVgfiM900JiYmwdSvUquVMPCISOI61KtJFfhERERGRgpk1K+uds/37OxOLiGQqWRIeeMC+9913sHSpI+GIh+zmG+iyRJA4cgTGj4crr4QqVWDs2OyPi46Gvn0z161bw0svmXKSv/6Cxx5T0sAPzjjDzDrwpHZFIpFBMw5EREREREKMd5ui9u2hcWNnYhERuzvvhEqV7HsjRjgTi2TSfIMgc/AgfPkl9OljkgXXXAPx8abiID4+59fddBOMHAmbNsGiRTB0qOnVJ34TFQVt29r3lDgQiQwhnzg4efKk+3GRIkUcjERERERExP8OHjR3MHtStYFI8ChdGoYMse9NmGDarYszDh7M+v9fiQMH7NsHn30GPXqYlkMDBsDkyXD8uP24uXNznmPQujXcf7/6TAWYd7sizTkQiQwhnzjYvn27+3GZMmUcjERERERExP8mTLBfYylSBK6+2rl4RCSru++G8uXte88950goAixcCJaVuS5aFFq1ci6eiLJ7N3z0EXTrBtWqwY03wrRpkJKS82ssy/yhSdDwHpC8eHHuf4QiEh5CPnHw/fffA2ZmQt26dR2ORkRERETEv7zbFF12Wda2KCLirHLl4N577Xvjx8OaNc7EE+m8746OjYVixZyJJWIsXAgXX2ymUN96K8yeDampOR8fE2OSCx99BDt2mH/cJGh4tyo6cQL+/tuZWEQkcGL8deItW7bk6bidO3fm+VgAy7JITk5m48aNxMfHM2nSJPdzrXTLgIiIiIiEsS1bYN48+57aFIkEp3vvhVGj4PBhs7YseP55GDPG2bgikeYbOKBoUfjxx1Mf07Ur9OsHvXpBxYqBiU3yrUIFaNrUnvxcsMB0jhKR8OW3xEH9+vVxuVw5Pm/9VyfY34e/6Vx11VU+O5eIiIiISLAZN86+LlfOtIoWkeBToQIMHmySBRnGjYOnntIs10BKS8s6yFWJAx/ZtAnKlMm+7K1lS2jYEDZssO8XLw7du0NcnPkHrFy5QEQqPtCunT1xkJAA99zjXDwi4n9+b1VkWVaWj1M9n9cPwJ2cuOSSS7jkkkv8/emIiIiIiDjCsrK2KbrySnMNRkSC05AhUKpU5jotDV54wbl4ItGqVXDokH3Pu1+75MO//8JLL5lbzRs0MMOOs+NymeQAQMmS5h+s8ePNzINJk+D665U0CDHef280IFkk/IX0jAPLsoiJieGmm24iPj7e6XBERERERPxm6VJzAczTgAGOhCIieVS5Mtx5p33v88/NjdoSGN4XN+vXhxo1HAkldK1ZAyNGmCqC006DRx4x03EBcrsWc/PNMGGCSRZ88w1cdRWULh2QkMX32rWzrzdtMuMoRCR8+a1V0aBBg3J87vPPP7dVCtTIx7/aUVFRlCpViooVK3LmmWfSqVMnqlSpUuh4RURERESCmXe1Qb160KGDM7GISN498AC8/TYcO2bWqanmhu333nM2rkih+QYFYFmwYoVJCkyYACtX5nxsQgIkJUHt2lmfa9LEfEhYOPNM05kqY24LmD/+K65wLCQR8TO/JQ5Gjx6d43Off/65+/HQoUPp3Lmzv8IQEREREQl5qalZ5xtcfz1EhXT9sEhkqFYNbr0V3ngjc+/TT+Hxx7O/1iq+pcRBHlmWKW2Ljzcf//yTt9dVrGgqEvTFHPaio6FNG5g7N3NPiQOR8ObYrxresw5ERERERCR7c+fCzp32PbUpEgkdQ4dCsWKZ65QUePll5+KJFLt3w7p19j3NN8jGvHnQuDG0amWmeZ8qaVC1Ktx+O8yZY3rVdOkSkDDFed7tijTnQCS8+a3iIDee1QhnnnmmEyGIiIiIiIQM7zZF554LTZs6E4uI5F/Nmqbd+7vvZu59+CE8+qj67ftTQoJ9XbIktGjhTCxBrXZt2LAh92Nq1IB+/czA4w4dzO3nEnG8E29//AEnT0KRIs7EIyL+5UjiILf5ByIiIiIikunIEZg0yb7Xv78zsYhIwT38MHz0kbnIBnDiBLz6Kowc6Wxc4cy7TVHbthDjyFUQh6Wlwfz5ZjJ0vXpZn2/c2Aw+XrrUvl+njkkU9OtnrhirP17Ea9vWvj52DJYvN8UqIhJ+9F1fRERERCSITZoEycmZ6+houPZa5+IRkYKpWxduuMG+9/77sGuXI+FEhIieb5CaCj/8YFoK1awJnTqZ4Ro56dfP/LdBA3joIVi4EDZvhlGj4PzzlTQQACpXhtNOs++pXZFI+NJ3fhERERGRIObdpqhbN9NeWkRCz6OP2ju8JCeb67LieydPmjYqnsJ+vkFKCsycCbfcAtWrwyWXwAcfZGan4uNzfu1NN8Fff8H69WYAR5s24HIFJm4JKd5zDrxbgolI+FDiQEREREQkSG3bZgYje1KbIpHQ1aBB1sHm77wDe/c6E084+/tv00bFk/cFz7Bw/DhMnQqDBkG1anDppfDJJ9l/Ua1aBatXZ3+emjXhnHOULJBT8k7AqeJAJHwFTXe/NWvW8Pvvv7NkyRL27NnDgQMHOHHiRL7O4XK5mOv9m5WIiIiISIj66itIT89cly4NvXs7F4+IFN5jj8GYMZl/t48cgddfh+HDHQ0r7Hi3KWraFCpVciYWn0tOhlmzTAXB1Klw+HDeXnf22bBnj39jk7DnnYBbvx5274YqVZyJR0T8x/HEwZQpU3jxxRdZtGhRoc5jWRYuZcZFREREJIx4tynq1w9KlnQmFhHxjdNOM3NKxo7N3HvzTXjgAShf3rGwwk7YzjeYNQv69rUPv8nNuedmDjhu3Ni/sUlEOOssKFUKjh7N3EtIgJ49nYtJRPzDsVZFaWlp3HLLLfTt25dFixZhWZb7Ocuy3B/ZOdXzIiIiIiKhbvly02rDk3eLExEJTY8/bu8Ic+iQSR6I73gnDsJmvsHZZ2ftweStXTt49VXYuNEMenj4YSUNxGdiYqB1a/ue5hyIhCfHEgf33Xcfn376abYJA5fL5f7wTBLk9ryIiIiISDj58kv7ulYt6NTJkVBExMfOOAOuvNK+9/rrJoEghZeUBImJ9r2QqTjYvx8+/xxWrMj++erVoUMH+57LBRdcAG+8YT7xBQtMCUv9+n4PVyKTd7sizTkQCU+OJA5+/vln3nnnHffF/6JFi/LEE0+wZs0ajh8/bksE/PDDDxw/fpxt27YxZ84cHn30UapWreo+plmzZixZsoT09HTS0tKc+HRERERERHwqLc3exgTguusgOtqZeETE9554wr7evx/efdeZWMKN90XM8uXNjIOgtWcPfPyxGWxctSrccIMZcJyTuDiIioKLLjLTtbduhV9+gXvugdq1Axa2RC7vCp5FiyA11ZlYRMR/XJYDt+t3796d2bNnAxATE8P06dPp0qWL+/moqCj3vII5c+bQuXNn2+tTUlJ44oknGDlyJAClS5fm+++/54ILLgjQZyBOSUpKok6dOgAkJiZSWz8UiYiISBj68Ue4+GL73rJlpq+wiISPvn1h0qTMdeXKsGmT6R8uBTdkiKngyNC9O8yY4Vg42du50/zhx8fDvHkmY+ypTh3YvNne0yrDwYNw4oRJMog4YNcuqFbNvrd0qemkJSLhI+AVB0ePHmXu3LnuaoNbb73VljTIi6JFi/Lyyy/z7rvvYlkWhw8fpk+fPuzcudNPUYuIiIiIBI73UOSzz1bSQCQceVcd7NkD77/vTCzhJGgHI2/dCm+9ZfrO1agBd9wBc+dmTRqAaTn0xx/Zn6dcOSUNxFFVq0LDhvY9tSsSCT8BTxwkJCSQlpbmbjV0++23F/hct912G1f+1xhy//79PPnkkz6JUURERETEKcnJMGGCfa9/f2diERH/atUKLr/cvvfKK6eefSs5O3YMliyx7zmaONiyBV57Dc4/37QRuuce+PlnyK35Q7Fi0Lu3+tNJUPOec6ABySLhJ+CJg82bN7sflytXjubNm+d6/IkTJ3J9/vHHHwfMYOWxY8dy/PjxwgcpIiIiIuKQ776Dw4cz11FRZr6BiIQn7/vfdu6Ejz5yJpZw8OefcPJk5joqCtq0cSiY6dOhXj24//6sZRDeSpQwswu++gp274bJkyE2NiBhihSE95wDVRyIhJ+AJw727dsHgMvlom7dutkeExMT4358qkRAixYtqPZfY7Xjx4/z+6n+MRYRERERCWLebYouvhhq1nQmFhHxv7ZtoWtX+95LL4HuiSsY70sCZ50FZco4EwsdOkDRojk/X7o0XHONmXOwezd8+61ZOxawSN55Vxz88w/s3etMLCLiHwFPHKR6jFkvlcPEpzJlyrhbGe3ateuU5/QckLt27dpCRigiIiIi4oxdu2DWLPue2hSJhL9hw+zrbdtg9GhnYgl1AZtvYFmwciU88wzMn5/9MWXLZs0KlS0LAwbAlCkmWfDVV9CvnyZiS8g5+2xTKONp4UJnYhER/wh44qBcuXLux0eOHMn2mPLly7sfe7Y2ykl6err78YEDBwocm4iIiIiIk77+2j4js2RJ6NvXuXhEJDDOPx8uusi+98ILkJLiTDyhyrKytkvxaeLAsmDpUjPVulkzaN4cnn469yxPXBxUqAA33gjTppkM8Zgx0KsXFC/uw+BEAqtIETj3XPue5hyIhJeAJw4y2hNZluVuW+StadOm7scLT5GuTEtLY926dbhcLgCKFSvmo0hFRERERALLu01Rnz6mk4WIhD/vqoPERHN9WfJuwwZzXd5ToRMHlgWLF8Mjj8Bpp8E558Bzz8GaNZnHTJ5sH6zg6ZprzOCKTz+Fyy4zg49FwoR3uyLNORAJLwFPHJx55pnux9u2bcu26qBly5aASS7Mnz+fbdu25Xi+SZMmceTIEXdroxo1avg2YBERERGRAFizxlyb8qQ2RSKR48ILTUt8T88/n/P1aMnKu01R1arQoEEBTpSebq6APvCAOUHr1mbwxPr12R+/bx/Mm5f9c8WKmVuzRcKQ94DkhQvtlZMiEtoCnjioX78+1atXd68Xe/92BFxxxRWAGaCcmprKHXfcYZuNkGHDhg3ce++97moDgPPPP9/3QYuIiIiI+NmXX9rX1apBly7OxCIigedyZa062LgRxo1zJp5QlN18A4/LBblLS4Nff4V774W6dc2LR42CU7VPrlXLvKZOnQLFLBLKvCsODh+G1audiUVEfC/giQOAzp07ux9Pnz49y/OtW7fmrLPOcq+///57YmNjeeutt5g9ezbff/89jzzyCK1atWLHjh1YloXL5aJjx47uVkgiIiIiIqEiPT1r4uDaayEmxpl4RMQZXbpA27b2veee0x28eVWo+QYzZ0LHjvDmm7B1a+7H1qtnqhEWLIAtW+D118Gj5bJIpKhRw/x18KR2RSLhw2Vl9PgJoIkTJxIXF4fL5aJu3bps2LDBVjUA8Ouvv9KpUycAdxsi72MyEgaWZVG0aFF++eUX2rRpE5DPQZyRlJREnf/u5EhMTKR27doORyQiIiJSeL/+aq5XefrzT2jVypl4RMQ506ZBjx72vbFj4brrnIknVBw6ZGYQp6dn7s2fbwZP58nx46a30eHD2T/fuLEZdBwXZ74557mUQSS8XXMNjB+fub7pJvjkE+fiERHfcaTi4PLLL6dVq1Y0a9aM0qVL87t3PSFwwQUX8O677wImYZCRIMj4yNi3LIsiRYrw4YcfKmkgIiIiIiHJeyhys2Zm/qaIRJ7LLsuaNBwxwn5BXLJatMj+/6hIEYiN/W9x4oTJyNx4I3z3XfYnKF4ceva07zVtCk88AUuXwj//wAsvmJMqaSDi5j3nQBUHIuHDkeLnYsWKZTvbwNttt91GkyZNeOCBB1i6dKntuYzkQfv27Xn11Vdp7/2dSkREREQkBBw/Dt98Y9/r31/XpUQilcsFTz4Jffpk7q1eDRMmwJVXOhdXsPO+H7F9y2MUnzUb4uNNsuDQIfPEkSPQq1f2J4mLg+XLMysLmjXzb9AiYcB7zsHq1XDgAJQv70Q0IuJLjrQqKoh169aRkJDAzp07sSyL6tWrc95559GoUSOnQ5MAUqsiERERCTcTJpjrU542bzazOUUkMqWnm6qjZcsy91q0gCVLIMqRvgHB79JL4ZeZR7mUGcQRT58i31Ps5NGsB5YsCbt2QalSWZ+zLGVtRfIpJQXKljWFPRlmzoRu3ZyLSUR8I2TGrZ122mmcdtppTochIiIiIuJT3m2KOnVS0kAk0kVFmQ45V12VubdsGUydCr17OxdXUDp8mPTvvuf2HyYwgemU5JjZP5nD8cnJ5qpmv35Zn1PSQCTfihY17dU8WxQlJChxIBIOdK+CiIiIiIhD9u6F6dPte/37OxOLiASXfv2ydsp59llzU3zEO3TIZF1794YqVYjqfx29UydkJg1ycv758NprcN55gYlTJEJozoFIeAp44uCrr76iYsWK7o9Zs2YFOgQRERERkaDwzTdw0uOu2OLFs7YtEpHIFBUFjz9u3/vrL5gxw5l4gsqSJTBwoJld4NkfxVtUlCnjeustSEqC+fPhvvugRo1ARSoSEbwTBwkJGuguEg4CnjjYvHkzBw4c4MCBA6SmptKlS5dAhyAiIiIiEhS82xT16gXlyjkTi4gEn6uvBu+Ovao6ADp0gKpVs30qlWiWV+sC778P27bBTz/B3XdDrVoBDlIkcngPSD54ENaudSYWEfGdgCcOihcvDoDL5aJevXpER0cHOgQREREREcetX5+1lF9tikTEU3R01qqDhQvhhx+ciScgtm2Dd96Biy6CTz7J/pjoaOjb171MoQjTuZSb+ITq7GDe43PgttugWrUABS0S2WrXNh+e1K5IJPQFPHFQw6MksFixYoF+exERERGRoPDll/Z1pUrQvbszsYhI8LruOmjQwL4XdlUHiYnw+utwwQXm6uPdd8O8eaafW06uvhp69uTwO59TjZ1cznRGcxN7qZylbYqI+J931UFCgjNxiIjvBDxx0LhxYwAsy2Lr1q2BfnsREREREcdZVtY2RddcA0WKOBOPiASvIkXgscfse/Pnw88/OxOPz2zcCK++aq421q0LQ4aYT8wzIzJ3rpkin51OneC77/il3kAOUMG9XaIEnH22f0MXkaw0IFkk/AQ8cRAbG0uD/26X2LVrFytWrAh0CCIiIiIijlq40LQq8jRggDOxiEjwGzjQXFv3NHy4M7EUyrp18MILEBsLDRvCQw+Zb4g5SUszA5Bz8fvv9nWbNkrCijjBu+Jg5Uo4dMiZWETENwKeOAC44YYb3I9feOEFJ0IQEREREXGMd7XBaaeZi10iItkpWhQeecS+9+OP8NtvzsSTL9u2mSzH2WdDkyamfOKvv3J/TZkycP31MGmSKcfKhXfi4LzzChmviBRIq1b2pJ1lwaJFzsUjIoXnSOLgoYce4owzzsCyLL7++mvefvttJ8IQEREREQm4lBQYP96+178/uFzOxCMioeHGG6FmTfteSFQd7NwJw4bBsmW5H1e+PNxwA0ydCrt3m0EwV1xheg/lIDU164VJzTcQcUbx4nDOOfY9zTkQCW2OJA6KFy/OjBkzaNKkCZZlce+999K/f382bNjgRDgiIiIiIgEzc2bWlt39+zsTi4iEjuLFYehQ+96sWUFyR69lmaxodlq2NG2JslO5Mvzvf+Yb486dMHo09OgBxYrl6W2XLYPkZPueEgciztGcA5Hw4rIsz8lDgTFmzBgADh48yPPPP8/OnTtx/XeLVevWrWnTpg0NGjSgbNmyFMlnc8KBAwf6PF4JHklJSdSpUweAxMREateu7XBEIiIiIvlz5ZUQH5+5Pv98Mw9URORUkpPNNfidOzP3evQwN+kHXEYfkvh483H33fDAA9kf+/DD8PLL5nG1atC3L8TFQceOEBNT4BDefhsGD85cN2kCa9cW+HQiUkjjx9u7i1WsCHv2qKpSJFQ5kjiIiopyJwoyeIbh/Vx+pKWlFfi1EvyUOBAREZFQduAAVK8OJ05k7r33Htx+u2MhiUiIefVVM1PY059/mv7ifpeeboYKxMfDxImQmJj5XLt2Od9evHSpqSaIizNDCKKjfRLOddfBV19lrm+4wbyNiDhj82aoX9++t3atSeqJSOhxpFVRBu9kQcZHxnN5/fA+l4iIiIhIMIqPtycNihaFq65yLh4RCT233246/HgaMcKPb5iWBvPmmYqC2rXhggvgjTfsSQMwzcy99zK0bGlec8EFPksaQNbByGpTJOKsunWhRg37ntoViYQuxxIHnhf8c0oG5PdcIiIiIiLB7Isv7OvLLzdl/CIieVW6NNx/v31v0qRTzx7Ol5MnYc4ck6WoWRMuugjeeQe2b8/9dTNn+jCI3G3bZu5u9nTeeQF7exHJhstlio88aUCySOgqeDPBQhit2kERERERiTCbN8Mvv9j3NBRZRArirrvglVdg//7MveeeM/3FC2X9enj+eZg8Gfbty9trmjY1LYji4qBFi0IGkHfedzGXLQvNmgXs7UUkB+3bm2RmBlUciIQuRxIHgwYNcuJtRUREREQcM3asfV2+vKk4EBHJr7Jl4b774KmnMve+/RaefhrOOKOQJ//001Mfc9ZZmckCh67WZ9emKMrRZswiAlkrDpYvhyNHTLWUiIQW/bMqIiIiIuJnlpW1TdFVV0GxYs7EIyKh7557TAIhg2WZqoNTSk42k9qz06iRmUeQnXPOMW+wZo3pizRsmKO3+Gu+gUhwio2FGI/blNPT4Y8/nItHRApOiQMRERERET/76y9zrc3TgAHOxCIi4aF8eZM88PTVV7BuXTYHHz5s+hhdeSVUqQKjRuV84ri4zMdt2sDLL5sWRn/9BY89Bqef7ovwC+X4cROOJ803EAkOJUvC2Wfb9zTnQCQ0KXEgIiIiIuJn3tUG9evD+ec7EoqIhJH77rO3/0hPNyMKADh4EL78Eq64wiQLrrkG4uNNxUF8fM4nveYak1jYtAkWLoSHHoKGDf33SRTAX39BSkrm2uWCtm2di0dE7LwrgDTnQCQ0KXEgIiIiIuJHqanmLmBP/fubC10iIoVRqZIZlJyhAvuI+nw0yZ17mGTBgAEwZQqcOGF/4erVsGpV9idt1AiGDIF69fwXeCF5tyk66yx72yYRcZZ34iAhwbRTE5HQ4shw5Jzs3r2bX3/9ldWrV7Nv3z4OHjxIeno6Q4cOpWnTpk6HJyIiIiKSb3PmwK5d9j21KRIRX3lg4G4Oj5pMr5PxdOZHilip8NMpXhQdbZqOOzijoDA030AkuHkPSN69GzZsMHlJEQkdQZE4mDJlCiNHjuS3337L9vn+/ftnmzh45JFHWLRoEQD16tVj9OjRfo1TRERERCS/vNsUtWkDTZo4E4uIhJGVK2HwYKr8/DPvpKef+viYGOjSxcww6N0bKlf2f4x+YFlZ255ovoFIcGnQAKpWtd84sWCBEgciocbRxMHevXu54YYbmD59OgDWf3VLLpfL9jgn7dq14+WXX3Yf9+CDD3LmmWf6OWoRERERkbw5fBgmT7bv9e/vSCgiEm4qV4Z583Lv/1G0KHTtapIFvXpBhQoBC89fNm2CHTvse0ociAQXl8tUHXz3XeZeQoJ+BhIJNY7NONizZw/t27dn+vTp7iRBBsuyck0YZOjduzd16tRxr8eNG+fzOEVERERECmriRDh2LHMdE2PmjoqI5MmmTbBlS/bPVasGHTtm2T5GcSbSh0ExY9m+bDdMnQqDBoVF0gCytimqUkV3MYsEIw1IFgl9jiQOLMuiV69e/Pvvv+690qVLM2TIEGbMmMGKFSuyJBOy43K56Nevn3s9a9Ysv8QrIiIiIlIQ3m2Kunc3F7lERHK0bh28+CKce67p9zFqVM7HxsWZ/5YsSXKPK7kuejxV2E0/JjIm9Tpefj/8JgZnN99Aw+ZFgo/3nIO//4bkZGdiEZGCcSRxMGbMGBISEtxVBeeddx7//PMPI0eOpFu3bjT7b0BTXqoOLr/8csAkI5YuXcrhw4f9F7iHAwcOMGHCBO6++246dOhAtWrVKFq0KGXKlKF+/fr06dOH9957jyNHjpzyXJs2bcLlchXqY9OmTT793ObOnctLL71EXFwc9evXt73X008/7bP3EhEREQlXW7fCjz/a91SiLyLZWr0ahg+Hli3NEJRHH4U//zTPTZgAOc0wuPJKU9q0ezclp35D2Vuu4iil3U+//z7s3On/8ANJ8w1EQkPr1hDlcdUxLQ0WL3YuHhHJP0dmHGTMJbAsi8aNGzN9+nTKli3YnRCxsbHux5ZlsWrVKtq2beuTOLOzZs0aHnzwQWbPns3JkyezPH/y5EmOHDnC5s2bmTx5Mo8++iivv/46N9xwg99iiomJoVy5cj45V5MmTfj333/zVPEhIiIiIjkbN87eerxMGdNiXEQEy4IVKyA+3nysWpXzsUlJsGhR1tt3wbQr6tPHvXzkEfjkE0hNNevjx2HkSPjvV/CQd+SIuWvZkxIHIsGpVClo0QKWLs3cS0jItsOaiASpgCcONm3axOrVq93VBM8//3yBkwYA5cuXp0aNGmzfvh2Af/75x6+JgxUrVjBt2jTbXnR0NI0bN6ZatWqkpaWxevVq9u3bB8DBgwe58cYbWb9+PcOHD8/2nCVKlKBbt255jiE9PZ05c+a41926daOCj/pVrlu3zifnEREREYl03m2K4uKgRAlnYhGRIGBZsGRJZrIgr797Vapk5hxklzjwUr8+DBwIn36auffuuzB0qJmlHOoWLbIXX8TEmI5OIhKc2re3Jw4050AktAQ8cbBo0SLAVAeUKFGCXj647apixYruxMH+/fsLfb68iImJoUePHtxwww1cdNFFtuSHZVl899133HXXXWzduhWAESNG0KZNG3r27JnlXNWqVWPmzJl5fu/Zs2fbEgeDBg0qxGeSvXLlyhEbG8u5557Lueeey7333uv+fywiIiIiuVu2DJYvt+8NGOBMLCISBJYuhb59YePGvB1ftao5Pi4OLrzQXCHPo8ceg88/N21BAI4ehddeg+eey3/YwcZ7vsE55yghKxLM2reH997LXCckmByq5pKIhIaAzzjYtWsXYOYXNGzYkKJFixb6nKVLZ/ZwPHr0aKHPl5siRYpwyy23sH79eiZNmkTv3r2zVEy4XC569+7NggULqF69unv/scce80kMn3/+uftxhQoVfJJ8yTB27FjWrl3L/v373XMOrrzySp/8OYmIiIhECu9qg9q1zbU/EYlQDRuawSe5qVkT7r4b5s2DbdvM1baLL85X0gCgUSO47jr73ltvQYDusfMrzTcQCS3ehVI7dsDmzc7EIiL5F/DEgeewYM8L/oXhORC5VKlSPjlnTnr37s1HH31E3bp1T3lsnTp1eOaZZ9zrFStWsH79+kK9/6FDh5g0aZJ7fc0111CsWLFCndPTddddR5MmTfI0mFpEREREskpLM/MNPF1/vX1AoIiEmbQ0c8Hfu9QoQ9mykF172jp1YMgQ+O03SEw0V/gvvBCiowsVzmOP2e/oPXwY3nijUKd0XHq6EgcioaZxY9NtzZPaFYmEjoD/+lLJ4ztGxhyAwtrqcedG5SBr3OjdmmjNmjWFOt+3337LsWPH3Gt/tCkSERERkYL76Sdzs7AntSkSCUMnT8IPP8Dtt5tqgYsuMj2BctKvn/lvw4Zm6MDChebW21GjzBVwH2YXmzaFq6+2773xBhw86LO3CLi1a7NWTShxIBLcXK6sVQcJCc7EIiL5F/DEQUbrHsuy2LhxI8nJyYU637Jlyzjo8dNPgwYNCnU+X6tYsaJtfejQoUKdz7NNUdOmTf06CFpERERE8s+7TdE558CZZzoTi4j4WEoKzJgBN98MNWrAJZfABx/Afy15mTzZJBSy06cP/PUX/PsvvPQStGnj10bfjz9uXx84AG+/7be38zvv+Qa1a5sPEQlu7dvb16o4EAkdAU8ctGvXDpfLhcvlIi0tjWnTphXqfKNHj3Y/LlWqFG3atClsiD612at5W5UqVQp8rg0bNjB//nz3WtUGIiIiIsHl6FGYONG+17+/M7GIiI8cPw5Tp8KgQWZo8WWXwaefwt69WY/dv9+0LMpO2bImkxigtrDNm2cWOWQYNcq0LQpFalMkEpq8Kw6WLAGPRhoiEsQCnjioUqUKsbGxWJYFwPPPP09aWlqBzrV27Vo++ugjdyKic+fORBeyF6SvTfT4zTEmJobY2NgCn2vMmDHu/29RUVEMUM27iIiISFCZMgU8RnoRFQXXXutcPCJSQMnJJgt43XUmWdCrF4wZc+peP2efnXPFgQOeeMK+3rfPzFwORd4VB0ociIQG7+Kq1FRTfCUiwS/GiTe9++67ueGGGwDTamjw4MG8++67+TpHUlISV1xxhbvVkcvl4qGHHvJ1qIVy9OhR3vaoBe3WrRsVKlQo0Lksy2LMmDHudZcuXahVq1ahY3RaUlJSvo7fvn27nyIRERERKTzvNkWXXGK6mYhICPnzT+jY0SQP8uLccyEuztze37ixf2PLp5YtTc7ju+8y9159Fe6+G0qWdCysfNu3D1avtu95tz8RkeBUpoypgPKcHZ+QAOef71xMIpI3jiQOBgwYwKhRo1i+fDmWZfHBBx+QmJjIqFGjOO2003J9bUpKCqNHj+app55i9+7duP5LW3br1o3zg+y7zoMPPuge3OxyuXj22WcLfK5ff/2VjRs3utfh0qaoTp06TocgIiIi4hM7d8Ls2fY9tSkSCUHNm8OpKtnbtzeJgn79oH79gIRVUE8+aU8c7N5txjIMGeJcTPnlPUy1eHGTFBGR0NC+vT1xoDkHIqEh4K2KwFxE//bbb6lUqZL7wv/06dNp2rQp7du3Z/DgwQDutjyffvopd999N927d6dy5crceeed7Ppv+JRlWdSpU4cvvG/vctjYsWN5//333ev777+fVq1aFfh8nkORy5YtS58+fQoVn4iIiIj41ldfQXp65rpUKTMLVUSCzL598Nln8Msv2T9frBj07Gnfc7ngggvgjTcgMdH0zXnggaBPGoApiOje3b73yitmdEOo8L7I2Lo1FC3qTCwikn/eFULeyUARCU6OVBwAnHbaaUydOpXevXuza9cuXC4XlmWxaNEiFi1a5D7Osiy++uor2xpwH1+nTh2+//57KlWqFPDPISe//vorN998s3sdGxvL888/X+DzJScn8+2337rXV111FSVKlChUjMEiMTExX8dv37496AZgi4iIiAB8+aV93bevSR6ISBDYswcmT4b4eJg71zTZ7tfPtCTKTlwcfP01dOpkHvfpA9WrBzJinxo2DGbOzFxv3w6ffAJ33eVcTPmh+QYioc17QPLWrSYHqyYUIsHNscQBQNu2bfn777+54YYbmDVrlu05l+fkFK99y7KwLItu3boxZswYqlSpEohw8+Tvv/+mZ8+enDhxAoCGDRsydepUihbidohJkyZx+PBh9zpc2hQB1K5d2+kQRERERApt9WrTFt2T2hSJOGzHDpg0ySQLfv4Z0tLsz8+YAUePZp/hu+wy8/og+l2zMNq3h4svNjmTDC++CLfcYgosgllqKixcaN/TfAOR0NKkCVSoAPv3Z+4tWKDEgUiwc6RVkadq1aoxY8YMFixYwFVXXUXZsmXdiYHsPkqUKEGPHj34+eefmTFjRlAlDdauXUvXrl05ePAgADVr1mTOnDnUKOREPM82RY0bN6ZDhw6FOp+IiIiI+JZ318zq1c1FOhEJsK1b4a234MILoWZNuPNO+PHHrEkDMMOPPW/D91SsWNgkDTIMG2ZfJyWBx6+aQWv5cpPf8aTEgUhoiYqCtm3te2pXJBL8HK048NS2bVu+/vprLMti+fLlrF69mr1793LgwAFKlixJ5cqVadCgAW3atKFIkSJOh5vFxo0b6dKli3v2QuXKlZkzZw4NGzYs1Hm3bt3KXI/bQgYOHFio84mIiIiIb6Wnw9ix9r3rrjv1bFUR8ZHNm2HCBPPh3dMmJ8WKmcb/Vav6N7Yg0rGj+fAc7fDCC3DjjRCEv2K7ec83aNw4ov7YRMJG+/b2XK0GJIsEv6BJHGRwuVy0aNGCFi1aOB1KniUlJXHxxReTlJQEmOHFM2fOpFmzZoU+9xdffEH6f1P2XC6XEgciIiIiQebXX2HLFvvegAHOxCIScf7800z/zYuSJU0Lorg4898yZfwbWxAaNgy6dMlcb9pk5rPceKNjIZ2S5huIhAfvOQd//QUnTgR/uzSRSOZ4q6JQt3PnTrp06cLGjRsBKFmyJNOmTSM2NtYn5/dsU9SpUyfq1avnk/OKiIiIiG94tylq3hzOPtuZWEQiTsuWUK1azs+XLg3XXmuqEXbvhm+/hauvjsikAUDnzlnb/Dz3nJkjEKy8EwdqUyQSmtq2Bc9xpikpsGSJc/GIyKkpcVAI+/bt45JLLmHt2rUAFCtWjMmTJ/tsBsGiRYtYs2aNex1OQ5FFREREwsHx4+Y6pKf+/e2/GItIAVkWrFwJzzwDEydmf0x0NPTpY98rV86U/UyZYpIF48ZB376m4iDCuVzw5JP2vfXr4euvnYnnVHbsgP/u0XNTxYFIaCpXDs44w76nOQciwU2JgwI6dOgQ3bp1Y/ny5QDExMTwzTffcMkll/jsPTyrDUqVKkW/fv18dm4RERERKbypU+HQocy1ywXXX+9cPCIhz7Jg6VJ44glzhal5c3j6aXj//ZxfExcHFSvCTTfB9OmwaxeMGQO9ekHx4oGKPGR07561u9Nzz2U/P9pp3j3Qy5SBM890JhYRKTzviiHNORAJbkEz48CyLObMmcO8efNYtGgRGzdu5MCBAxw5coTSpUtTvnx593DkCy+8kK5du+Jy6Fau5ORkLr/8chYvXgxAVFQUX3zxBb169fLZe6SkpPC1x20fcXFxlC5d2mfnFxEREZHC825TdNFFULu2M7GIhCzLgsWLTTuh+HhzC7y3H3+EvXuhUqWsz3XqZG5ND+YJv0Eko+qgd+/MvTVrzP/6q692Lq7seLcpatdOg+dFQln79vDJJ5lrVRyIBDfHKw7S0tIYOXIkDRo04NJLL+Wll17ip59+YuPGjezfv5+TJ0+yf/9+Nm7cyE8//cRLL73EZZddRv369Xn11VdJC/BtESdOnKB3797Mnz8fMAOLP/74Y6655hqfvs/UqVPZt2+fe13QNkWbNm3C5XK5P55++mkfRSgiIiIS2fbsgRkz7Hv9+zsTi0jISU83t5o+8AA0aABt2sBLL2WfNABzO/x332X/XHS0kgb51LNn1lksI0aYP5ZgovkGIuHFe0Dyli2wbZszsYjIqTlacbBq1Squu+46li9fjmVZ7v2Mi9zZyTguMTGRhx9+mC+//JKxY8dyZoDqFd944w1++OEH97p8+fKMHz+e8ePH5+n1/fv3p38efqP0bFNUr149OnXqlO9YC2LEiBGMGDEiy/6JEydsx7z44otZjjl+/LhfYxMREREJJuPH2weKFi8O6iwpkou0NPjtN3Nr+8SJsHVr3l5Xu7b5y+XdX0cKLKPqIC4uc2/FCpg82YyDCAYnTphCFE+abyAS2s44A8qWtbd5XLBAPz+JBCvHEgd//fUX3bt3Z+/evViW5U4UWJblTg5ERUVRokQJjh07RrrHrQ+exy5btowLL7yQ2bNn06pVK7/HnZycbFvv37+fWbNm5fn17bzTq9nYtWsXMzxuXxs4cGDA2jKlpqbakgTZSUtLC3ilh4iIiEiw+fJL+/qKK8wvwyKSgxUr4MIL83Zs/frmqnZcHLRuDVGOF8uHnT59zLyAlSsz94YPN/vBMOB9yRJISclcu1zQtq1z8YhI4UVFmb/Hc+Zk7iUkKHEgEqwc+enr4MGD9OzZkz179gAmEWBZFo0bN+aZZ57h559/Zu/evaSmpnL48GFSU1PZu3cv8+bN45lnnqFx48buZIPL5WLfvn307NmTAwcOOPHp+Ny4ceNI9bh9beDAgQ5GIyIiIiLe1q3L2pdXbYpETqFFC2jUKOfnGzeGRx81t5lv2ACvvGKuMClp4BdRUWYGtaelS+H77x0JJwvvNkVnngnlyzsSioj4kAYki4QOl+XZIyhA7rzzTt5//313wqBkyZKMGjWK//3vf3m6s96yLD788EMeeOABjh075k4i3Hbbbbz77rsB+AzEKUlJSdSpUwcw7apqa/qgiIiIOOCpp+DZZzPXVaqYritqsy4R68QJ+OEH04aobVu4/fbsj3vkETPLIMMZZ2RWFpx1VnDc6h5B0tLMBfm1azP3WreGhQud/6OIizPzsjP873/w4YfOxSMivjFjBlx2Wea6eHE4eBCKFnUuJhHJXsATB8eOHaNatWocPXoUy7IoUaIEc+fOzVMLH28JCQl07tyZEydOYFkWpUuXZteuXRQvXtwPkUswUOJAREREnGZZ5sboDRsy9wYPhjffdC4mEUccOwazZplkwdSpmU2r27bNWpKTYfFiuPlmc1W4Xz9o1ixw8Uq2vvgCvIvcZ86Ebt2ciQfM99latWD79sy90aPhhhscC0lEfGTfPqhUyb63aJFJWopIcAl4zee8efM4cuQIYFoUPf300wVKGoCZF/D000+7ZyIcPXqUn376yWexioiIiIh4W7DAnjQAGDDAmVhEAu7oUfj2W7j6alNq06cPjB1rn3S5cCFs2ZL96889F/7+20zmVdIgKFx7bdYOUs8+ay7eO2XLFnvSADQYWSRcVKwIp59u38sp1ywizgp44mDz5s2AaTdUpEgR/ve//xXqfLfeeitFihRxtzjKOL+IiIiIiD988YV9ffrp5lqoSNg6dAi++spUCFSpAlddBd98Y5IIOZk4MXDxSaHExMBjj9n3fv8dnLwnz3u+QaVKcNppzsQiIr6nOQcioSHgiYN9+/YBptqgQYMGlC/kdKPy5cvTsGFDd9XB/v37CxuiiIiIiEi2UlJg/Hj7Xv/+zvcCF/G5I0dgzBjo1QuqVoXrrjPJgGPHcn6NywXnnw+vvWZaEUnIGDAA6tWz73nOcQk078RB+/b6PisSTrwTB6o4EAlOMYF+w3LlyrkflylTxifn9DxP2bJlfXJOERERERFv06eD930q/fs7E4uIX+3cCYMGnfq4qCjo2NEkCvr0gZo1/R+b+FyRIvDoo/aZ1j//DL/8Yv54A807caA2RSLhxbtj+caN5p+datWciUdEshfwioMzzjgDMK2KkpKSfHJOz/NknF9ERERExNe82xRdcAHUr+9IKCK+kVMj+0aN4Jxzsn8uOhouuQQ++MA0ov/pJ7jrLiUNQtwNN0Dt2va94cMDH8fRo2YMhiclDkTCy5lnQunS9j1VHYgEn4AnDs4//3x3hcDOnTtZunRpoc63ZMkSduzYAUDp0qXp0KFDYUMUEREREcli/374/nv7nqoNJCRt2wZvvw0XXZR7PxrPdkNFisCll8Inn5jbQmfPhltvNW2MJCwUKwYPP2zf++GHwPce/+MPSEvLXEdHQ+vWgY1BRPwrOhratLHvac6BSPAJeOKgWLFi3O5R//jII48U6nwZr3e5XNxxxx0ULVq0UOcTEREREcnOt9+aGQcZihaFK690Lh6RfNmyBV5/HTp0MLeVDx4M8+ZlHdrhKS7OzDj4/HOTLJg+HW66yUyqlbB0881Qvbp9L9BVB95tilq2hJIlAxuDiPifBiSLBL+AJw4AnnrqKU4//XQsy2LOnDnccccd7uHGeWVZFnfccQdz5swBTIuip556yh/hioiIiIjw5Zf2dc+eUKGCM7GI5MmGDfDKK9C2rZl8O2QI/PabvT3R6tWwalX2r2/SBKZMgYED9cUeIUqUgIcesu/NmAGLFwcuBu+Lh2pTJBKevOcc/PEHpKY6E4uIZM+RxEHJkiWZM2cOzZs3x7IsPvzwQ84991xmzZp1ygSCZVnMnDmT2NhYPvzwQwBatGjB7NmzKVGiRCDCFxEREZEIs2kT/PqrfU9tiiQo/fMPvPACxMaaOQVDh8KiRbm/ZsKEwMQmIeG226BKFfveiBGBeW/L0mBkkUjhnTg4dgyWLXMmFhHJnsvK763+PjBmzBgAjh49yssvv8zmzZtNMC4X1apVo0OHDjRv3pxKlSpRsmRJkpOT2bNnDytWrGD+/Pns2rXLnWCoX78+Q4cOpWQ+ahcHDhzo+09KAiIpKYk6deoAkJiYSG3v6V0iIiIifjBiBDz5ZOa6YkUzE1ZdMiUo7N4N770H8fGwfHneXlO2rGlDFBcHXbuaW81F/vPSS+DdVXjpUjj7bP++79q10LSpfW/zZqhb17/vKyLOOO00+PffzPU778CddzoXj4jYOZI4iIqKwuVy2fY8w/B+riDH5SbNc9KShBQlDkRERCTQLAvOOMNc0Mpw++3mOq1IUNi5E2rUsLcgyk6FCnDFFSZZcPHFZhquSDYOH4b69WHfvsy9uDgz68WfRo82YzQy1KwJSUlQwF/9RSTIDRwIX3yRue7f374WEWc50qoog3cSIOPD8/mMj7wel9OH9/uJiIiIiOTF4sX2pAHAgAHOxCIRzLIgOTn756pVg44ds3+ucmW49VaYNcskGD79FC67TEkDyVWZMmYkhqf4eFi50r/vm918AyUNRMKX94DkhARn4hCR7DmWOPC8mJ/bxX7P4/Ny3KneT0REREQkP7zvfGvYMOsvuiJ+kZ5urqI8+KD5wnvssZyPjYvLfFy9uun18OOPpqfWBx+YdkRFivg/ZgkbgwdDuXL2veee8+97ar6BSGTxnnPw77+m+56IBIcYJ9509OjRTrytiIiIiEi+nDwJX39t3+vfX3fAih+lp5urp/HxZmhxUlLmcxMmwKhREJXN/V99+5orLnFxJrMVHR24mCUslSsH994Lzz6buff11/DUU3D66b5/vwMHslY0KHEgEt7OOgtKlrQX1C1cCD16OBeTiGRyZMaBSEFpxoGIiIgE0rRpWX95/ecfM8xPxGdSU+HXX02yYNIkUyWQkwULst6iKeIn+/ZBvXpw5Ejm3sCB8Pnnvn+vmTPh0ksz18WKwaFDGkIvEu46dYKff85cP/aY/6ubRCRvHJ1xICIiIiISzLzbFLVrp6SB+MjJkzBnDtx2m5kA27kzvPtu7kkDMK8RCZCKFU3LIk9jx8L69b5/L+/5Bueeq6SBSCTwbv/o/b1ARJyjxIGIiIiISDYOHYIpU+x7/fs7E4uEkW3b4OabzRyCrl3hww9P3dC5aVN44glYutT8VySAhgwxrUQypKXBCy/4/n0030AkMnkX0S1aZL7PiIjzlDgQEREREcnGhAlw/HjmOiYGrr7auXgkTJQubW7Z3rcv9+POOgueecY0fV+9GoYPh7PP1oANCbgqVcysbU+ffw6bN/vuPdLSzBxwT0ociEQG78TB0aOwYoUzsYiInRIHIiIiIiLZ+PJL+/qyy6ByZWdikRBz9GjOLYfKljWVBtlp1Qqefx7WroVly2DYMGjWzH9xiuTRAw9A8eKZ69RUePFF351/xQr7HAXI2r5ERMJTtWrQoIF9zzuRKCLOUOJARERERMRLUhL89JN9T22KJFeHD8PXX0NcnLlF+7HHcj42Li7zcZs28PLLpmn8n3/Co49Ckyb+j1ckH6pXN+M4PH36qfle6QvePc0bNjQXE0UkMmjOgUhwinE6gAyWZbF27Vq2bNnCoUOHOHbsGJZl5fs8AwcO9EN0IiIiIhJJxo4Fzx9Fy5aFnj2di0eC1IEDMHUqxMfDrFlw4kTmc1OmmAHIRYpkfV3PnvDaa9C3L9StG7BwRQrjoYfgvfcgJcWsU1JMzuvNNwt/bs03EIls7dvDuHGZa1UciAQHl1WQq/M+NG3aND755BNmz57NsWPHCn2+NE1QCWtJSUnUqVMHgMTERGrXru1wRCIiIhJuLMu0l1+5MnPv5pvh44+di0mCyN698N13JlkwZ45JDuRk1qyc2xKJhKA77zTJgwzFi8PGjaYioTAaNzZFNxnefRfuuKNw5xSR0LF4MbRubd/buxcqVnQmHhExHGtVtHv3brp160avXr2YMmUKycnJWJZVoA+gQNUJIiIiIiLe/v7bnjQAGDDAmVgkSOzaBR9+aJIA1arBTTfB9Om5Jw2iozXdUcLOI4/Yi2iOH4dXXy3cOXftsicNQPMNRCLN2Wfb56gALFzoTCwiksmRxMG+ffu48MIL+eGHH9wX/F0uV4HPp6SBiIiIiPjKF1/Y13XrwgUXOBOLOGzLFujczaIhfQAArMJJREFUGWrUMA3e58yB3CqcixSBSy+FTz6BHTvg/vsDF6tIANStC4MG2ffeew927y74Ob17mZcuDc2bF/x8IhJ6ihSBc8+172nOgYjzHJlx8OCDD7JmzRpcLhculwvLsihXrhxdu3blrLPOolKlSpQsWdKJ0EREREQkgqWl2XvsAlx/PUQ5VqcrjqpWzQwsTk/P+ZiiRaFbNzPwuGdPqFAhcPGJOODRR2H06MwcWnIyjBoFL7xQsPN5zzdo2xZigmYao4gESvv2MH9+5lqJAxHnBfyf43379vHFF1+4EwYul4unnnqKRx55hGLFigU6HBERERERt7lzzY3intSmKMxt3Gj6rZxxRtbnihWDXr3gyy/t+8WLw2WXQb9+0KOHmZ4tEiEaNoT+/eHzzzP33n4bHnwQKlXK//k0GFlEANq1s68XLjQJyuhoZ+IREQdaFf3444/uAcYul4unn36ap556SkkDEREREXGcd5ui2NjsrydLiFu3Dl580fRFaNgQnngi52Pj4sx/S5WCq66Cb74xfVkmTIDrrlPSQCLSY4/ZK7GOHIE33sj/eVJS4I8/7HuabyASmbwTB4cPw+rVzsQiIkbAKw4SExMBM5egRIkSPPjgg4EOQUREREQkiyNHYOJE+17//s7EIn6wejXEx5uPZcvsz02fbr4ASpfO+rquXc0XRrduoHaqIgA0aQLXXGNv7fbGG2asR/nyeT/P0qVw4oR9z/vioYhEhpo1zRyVLVsy9xISNPNExEkBrzhISUkBTLXBaaedRokSJQIdgoiIiIhIFpMnm17dGaKj4dprHQtHCsuyTIJg2DA480xo1sw89k4agGlVNGNG9ucpUQL69FHSQMTL44+Dy5W5PnQI3norf+fwblPUrJnGhIhEMu+KI805EHFWwBMH1apVcz+O0cQjEREREQkS3m3su3Y1s3ElhFgW/PWX6aNy+ulw9tkwfDisWpX76ypVgv37AxOjSJho1iyzk1eG114zCYS80nwDEfHknThISHAmDhExAp44aN26NWBaFWW0LRIRERERcdL27TBnjn1PbYpCzObN0KiRGUzxwgtmjkFuqlWD22+HH34wE7FvvTUwcYqEEe/xIPv3w7vv5v313okDzTcQiWzercpWrYIDBxwJRURwIHFw5pln0qxZMwD27NnD4sWLAx2CiIiIiIjNV19BenrmunRpuOIKx8KRgqhdG44dy/2YmjVh8GD4+WfYuhXeew8uvhhUCS1SIC1aZP1eOXIkHD166tcmJpq/hp5UcSAS2c45B4oVs+8tWuRMLCLiQOIA4JlnnnE/HjZsmBMhiIiIiIi4ebcp6ttXLe2DTloazJsH8+dn/3x0tPmD81a3rpnY+ttv5krlm29Cx47meBEpNO+qgz174P33T/0672qDihXN0GURiVxFi0KrVvY9zTkQcY4jiYN+/fpxyy23YFkWs2bN4sEHH3QiDBERERERVq6EJUvsewMGOBOLeDl50vSQuv12Uy1w0UXgcRNSFv36mf82bAhDh5rbFDdtMrdAn3ceRDny649IWIuNhcsvt++98sqpC4C8Ewft2umvqIhoQLJIMHHsn+UPPviAW2+9FcuyeO211+jUqRPz5s1zKhwRERERiVBffGFfZ1yfFoekpMCMGXDzzVC9uplS/cEHsGuXef6nn2Dv3uxf27GjGY7877/w0kvQujW4XIGLXSRCPfmkfb1zJ3z0Ue6v0WBkEcmO95yDhQvt7SRFJHBclmVZTgYwfvx4hgwZws6dOwGoUKEC55xzDlWqVKF48eL5OpfL5eKTTz7xR5gSJJKSkqhTpw4AiYmJ1K5d2+GIREREJJSlp0O9epCUlLn34IPmblkJoOPHYfZsiI+H776DgwdzP/6TT+CmmwITm4jkSdeu9iHzNWvC+vWQ3a/1yclQrhykpmbu/fijkrYiYn4m+++yj9uqVXDGGc7EIxLJHJ0CduDAAf7880+OHz9ORv5i3759/Pjjj/k+l2VZShyIiIiISL78/LM9aQBqUxQwyckwc6ZJFkydCkeO5O11LVtCqVJ+DU1E8m/YMHviYNs2GD0a7rgj67GLF9uTBtHRpkBIRKR2bahVyz48PSFBiQMRJziWOEhISKBv377uSgOXSohFREREJMC82xS1aGE+xM+2bDFXAJKT83Z869YQF2dmGDRq5N/YRKRAOnSATp3MDPMML75ouo4VLWo/1rtNUYsWULq0vyMUkVDRvr25ryDDggVw443OxSMSqRyZcbBmzRq6d+/Ojh073JUGlmUV6kNEREREJD+OHbP/UgrQv78zsUScOnVMH5PctG9vhhpv3GiGHA8dqqSBSJAbNsy+3rIla4IWNN9ARHLnPSA5IcGZOEQinSMVB3fddReHDh1yVxlYlkX37t3p1asXzZs3p1KlSpQsWdKJ0EREREQkQnz3HRw+nLl2ueC665yLJ6zs22f+B5crB336ZH3e5TLVAy+9ZN+74AJTWdCnj+lVICIhpVMnOP98+O23zL3nn4dBgyDmv6sPlmXuHvakxIGIePIekLxiBRw6BGXLOhOPSKQKeOLgn3/+4aeffsLlcmFZFhUrVmTixIl07Ngx0KGIiIiISAT78kv7+uKLTU9dKaDdu2HyZFPG8eOPpoF527bZJw7AJAheecVcacxIFlSvHsiIRcTHXC5TddCtW+behg0wbhwMHGjW//4Le/bYX6fEgYh4atUKihSBkyfN2rLgjz/Mz2oiEjgBTxz89t+tBxnDjN9//30lDUREREQkoHbvNnN5PalNUQHs2AGTJplkwbx5kJ5uf37hQtOrpG7drK+NjTWvr1IlIKGKSGBccgm0aWM6jGV47jm4/nozBNm7TVH16lCvXmBjFJHgVrw4nHOO/fvIggVKHIgEWsBnHGQMQwYoX748/fr1C3QIIiIiIhLhvv7a3BCfoUQJ6NvXuXhCSlISvPkmdOxo5hTceaepMPBOGmSYODH7fZdLSQORMORywZNP2vf++Qe++cY8zm6+wX9djEVE3LznHHi3OBMR/wt44qBMmTIAuFwuGjZs6J5zICIiIiISKN5tivr0gf9+TJXsbN4Mo0aZK3x16sC998Kvv5reATkpVgyuuAKaNQtYmCISHC6/3Nwt7GnECJNf1HwDEckL7zkHCQm5/9ghIr4X8FZFtT2GnKWkpAT67UVEREQkwq1day99B7UpytXWrVC/ft6OLVnSXDHs1w8uu0zZGJEIlVF14FnJtWoVfPaZGXLqSYkDEcmOd8XBvn2wbh00aeJMPCKRKOAVB61btyY6OhrLsti0aROpnjXiIiIiIiJ+5l1tULWq6cktOahVy0wpzEnp0nDttTBhghke8c03cPXVShqIRLjeveGss+x799xjv2O4aNHcv72ISOSqW9fMQPGUkOBMLCKRKuCJg5o1a3LJf7+ZHTlyhBkzZgQ6BBERERGJUJaVNXFw7bUQE/A63CBhWeb236efhvfey/k477lk5crBwIEwZYpJFowbZ24tLlnSr+GKSOiIioInnrDvHT1qX8fGmq5mIiLeXC7NORBxWsATBwDDhg0jOjoagKFDh3LkyBEnwhARERGRCPPbb7Bpk31vwABHQnGOZcGSJfD443DGGeaW4GeegTfeyLl5cFwcVKwIN90E06bBrl3w+efQqxcULx7Y+EUkZPTrZ77N5ERtikQkN96JA1UciASWI4mDdu3a8eabbwLwzz//cPnll7Nz504nQhERERGRCPLFF/b1GWdESJsMy4I//oCHH4bGjc0n/fzzZuBDhrVrTRPy7DRpAjt3wiefmNkFRYsGJm4RCWnR0SZHmRMlDkQkN94DkpctA917LBI4jiQOAO644w6+/vprypYty/z58znzzDMZNmwYy5Ytw9KYdBERERHxsRMnTPt9T/37m1L4sJSeDr//Dvffb4Ybt2kDL78MGzbk/JoJE3J+LmL7OYlIYVx9tclXZsf7bmIREU+xsfYfP9LTYfFi5+IRiTSO/PTfsGFD92OXy4VlWezbt4/nnnuO5557jiJFilCxYkWK57Ps2eVysX79el+HKyIiIiJhYNo0OHDAvnf99Y6E4j9paaYfU3y8SQJs25a319WubdoR9ejh3/hEJOLExJiqgxtvtO/Xrw81ajgSkoiEiJIl4eyz4c8/M/cWLIBOnRwLSSSiOJI42LRpkzth4HK5cP13m1dGpUFKSgo7duzI93ldYXu7mIiIiIgUlvdQ5AsvhHr1nInFb/buhYsuMrfknUqDBiZZ0K8ftG5tJpmKiPjB9debUSqeM2bUpkhE8qJ9+6yJAxEJDEd/O/C+0J+RRCjIh4iIiIhITvbtg++/t+/17+9MLH5VtSp07Jjz86edBo8+an4DX7/etC5q21ZJAxHxqyJF4IUX7HveFQgiItnxnnOQkGBGN4mI/zlScVC3bl1d7BcRERGRgPnmGzh5MnNdrJi52T6knDgBc+aYNkR168Kzz2Z/XFwczJuXuW7WzOzFxUHz5mE81EFEgtk115gc5Zw5ZsZ6ly5ORyQiocB7Fsru3WZcU6NGzsQjEklcliYRSwhJSkqiTp06ACQmJlK7dm2HIxIREZFQ0KGDaf2f4corsw5KDkrHjsGsWSZZMHUqHDpk9mvVgi1bsq8U2LbNXJXr1898NGsW2JhFREREfMSyoFo1kzDI8OWXYTinSiQIOVJxICIiIiISKBs22JMGEORtio4ehenTTbJg2jSz9rZ1KyxcmPU2PICaNWHpUr+HKSIiIuJvLpf5cee77zL3FixQ4kAkEJQ4EBEREZGw5j0UuVIl6N7dmVhydOiQGcIwYQLMmGEqDU4lPj77xIGIiIhIGPFOHCQkOBeLSCRR4kBEREREwpZlZU0cXH01FC3qTDw2x47Bt9+aBMCsWZCScurXuFxw/vlmXkHfvv6PUURERMRh3gOS//4bkpOhZEln4hGJFEociIiIiEjYWrQI1q2z7w0Y4EwsWZw8CbfeaoYe5yYqCi680CQL+vSBGjUCE5+IiIhIEGjd2vw4lJ5u1qmp8OefcMEFzsYlEu6CNnFw+PBhDh48SHp6OtWrV6doUNwWJiIiIiKhxLvaoHFjaNs2wEGkp2c/xLhsWejWzV57nyE6Gi6+2Aw3vuIKqFrV72GKiIiIBKNSpaBFC/sIpwULlDgIB2lp5l4az4+UlKx7p3oup/1LLoFzz3X6swxdQZM4+PHHH5kwYQK//vora9asIS0tzf3cnDlz6Ny5c5bX/Pnnnxz9b1hc+fLladGiRcDiFREREZHgdvIkfP21fa9/f9Ptx++2bYOJE00bosaN4eOPsz8uLi4zcVCkiPntJi4OevUywxhEREREhPbt7YmDSJ9zkJ6e88X1glxg98dzeXmNZfn3/1OpUkocFIbjiYOEhATuuOMOli1bBoDl9RXjyuU3u/HjxzNy5EgAypYty/bt2ylevLj/ghURERGRkDFzJuzZY9/r39+Pb7hlixluPGEC/PZb5v7ff8O772Y/WKFnT9N+qG9f6NEDypf3Y4AiIiIioaldO3jvvcz1ggXmonN+bwixLNPqKNAX0X19Md/jfmvJxcmTTkcQ2hxNHLzxxhsMHTqU1NRULMuyJQlcLleWJIK3e+65h9dff53U1FQOHTrEhAkTuP766/0dtoiIiIiEAO82ReedB40a+fhNNmwwiYL4eDNQITsHDsBPP5m2RN7KlzeVCSIiIiKSo/bt7esdO+CiizLvvM/rxffUVGfiF2cocVA4jiUOPv30U4YMGQJkVhVER0cTGxtL3bp1+fbbb095jtq1a9O5c2dmz54NwHfffafEgYiIiIhw8CBMmWLf81m1wT//mERBfDwsWZK310yenH3iQEREREROqXFj08Vx797MvZ9/di4eCZwiRbJ+FC2at32f3zQUYRxJHGzatIk777zTnTBwuVw8+OCDPPzww1SsWBGAb7/9Ntc2RRn69evH7NmzsSyLuXPn+jVuEREREQkN8fFw4kTmukgRuOqqQpzw0CF4/XVz4uXL8/aacuXMrIK4OOjatRBvLiIiIhLZXC5TdfD9905HEjqio3O+wJ7bxff8XJj39/miowM0n0yy5UjiYNiwYaSkpAAQFRXFuHHjuKqAv8ld4DFCff/+/axfv55GSieJiIiIRDTvNkWXX17IWcPFisHIkSaBkJuKFeGKK6BfP7j4YvM6ERERESm0O++E6dNNeyJ/iopy9mK5r86nC+5SWAFPHKSkpDBx4kR3NcGtt95a4KQBQJMmTShZsiTJyckArF69WokDERERkQi2ZQvMm2ffy1ObIssyiYFy5bI+V6yYqR7wzkgAVKliBhzHxUGnTuY3NRERERHxqUsvhYQE+OUX82Obvy7MR0U5/ZmKBIeAJw5+++0390V+l8vFQw89VKjzRUVFUaNGDdavXw/A1q1bCx2jiIiIiISusWPt6/LlTcVBttLTYeHCzAHHsbHmcXbi4jITB9Wrm6qCuDjo0AFiHBsdJiIiIhIxWrc2H/9n777jo6jWP45/NwkJhN57702lCoJIj4ggmIioYAP1p2JHsVdswFWuiqgXCyAoEHpVpCOgqFRpIiAJvfeSMr8/RiaZbMom2d3JJp/365WXM2fOnHmy92ZI5plzHgC+5/e/cHbv3m1tV6xYUdWrV8/2mMWKFbO2T2c0fRwAAAC5lmFI48fb2267TcqfP1lDQoK0apWZKJg6VUr+4smhQ9LZs1KhQu6Dd+0qPf20Obvguut4HQ0AAABAruX3xMGRI0ckmbMNypcv7/XxE3290BkAAAByrHXrpK1b7W39+0uKjzfntUdHS9OnSwcPpj7AxYvS/PlmtiGlAgXMOgcAAAAAkMv5PXEQlqxA3JUCydl17Ngxa7tktqreAQAAIJAlL0EQojjdWXax2o6Nlm6dIR096tkgy5ennjgAAAAAgDzC74mDMmXKSJIMw/BKPYKTJ09q7969VrHlK+MDAAAgb4mPlyZOlIrqpD7UU7pFM1Xi0AnpSw9Orl/frFcQFSU1buzzWAEAAAAgJ/N74qBWrVrW9rFjx7Rt2zbVq1cvy+P98MMP1vJELpdLLaiQAgAAkCf99JNZoiBIhXWjFqiETqR/wlVXmYmCyEipQQP/BAkAAAAAAcDvFd2aN2+uEiVKWDME/ve//2VrvBEjRljbderU8UndBAAAAOQw585Ju3fbmq4sU5SoYE3Tramf17Sp9M470vbt0oYN0iuvkDQAAAAAgBT8njgICgrSLbfcIsMwZBiGRo0apXXr1mVprLfeeku///67JHO2Qf/+/b0ZKgAAAHKS06el774zZwiULi09+KB16OxZs+bxFdGKStq59lpp+HBp1y7p99+lF16Q6tTxY+AAAAAAEFhchmEY/r7oP//8o7p16youLk6GYah06dKaNWuWrr32WqtPUFCQNSth4cKF6tixo3UsISFBL7/8soYNGybJrJdQvHhx7dmzR4ULF/bvNwO/io2NVeXKlSVJMTExqlSpksMRAQAAnzp5Upo1S4qOln78Ubp0KelYcLB08KBUqpTGjZPuuSfpUGhQvI4O/UyF7+opVani97ABAAAAIJD5fcaBJFWtWlUvv/yyDMOQy+XSkSNH1LZtW/Xv318//vijjh07JslMCEhmouDo0aNas2aN3nnnHdWsWVPDhg2zZi24XC7997//JWkAAACQGxw7Jn31lXTTTVKZMmZGYPZse9JAkhISpJkzJSUtU3RFl24hKvzCIJIGAAAAAJAFjsw4uOLee+/VuHHj5HK5rATAFcnDSt6e/NiV855++mlbrQPkXsw4AAAglzp82FxrKDpaWrLETApkJDhYev557X9kqCpXlhITkw59953Ut6/vwgUAAACA3CzEyYt/9dVXqlq1qt5++20rGZA8KXBFytxG8kTDO++8oyFDhvgvaAAAAHjPqVNSr17S8uX2J/9pyZdP6txZioqSbrlFKllSE0fYTy1cWOrZ02cRAwAAAECu58hSRdbFg4L0xhtvaPny5eratatbguAKl8vllkjo0KGDli9fTtIAAAAgkBUpIu3bl37SICzMzASMHSsdOiTNmyfdf79UsqQk92WKIiOl8HAfxgwAAAAAuZyjMw6uuO6667RgwQJt27ZN8+fP14oVK7R161YdO3ZMJ0+eVHh4uEqVKqXq1aurQ4cOuvHGG9W0aVOnwwYAAIAndu+WjhyRWrZ0P+ZymbMH3n3X3l6ggNStm3mse3czwZCKTZukDRvsbf37eyluAAAAAMijHK1xAGQWNQ4AAAgQO3ZIU6eaNQv++ENq0UL69dfU+/7xh9SsmVSwoHTzzWayoFs3cz8DQ4ZIw4Yl7VeqJP3zjxTk6LxaAAAAAAhsOWLGAQAAAHKBLVvMRMHUqdLGjfZja9eaT/SrVnU/r0kTac4cqWNHc6aBhxISpAkT7G133knSAAAAAACyi8QBAAAAssYwzLWCoqPNr61b0+8/bZr01FPu7S6XuRxRJi1dapZHSI5ligAAAAAg+xxJHHTs2NHa/s9//qMmTZpkeaw//vhDgwcPlmQWUV60aFG24wMAAEAaDMNcWuhKsmDnTs/OK1lSio/3aigpiyJfc43UqJFXLwEAAAAAeZIjiYOlS5fK5XJJkk6cOJGtsU6cOKGlS5dKkjUmAAAAfODMGenqq81ix54oW1a69VazZkG7dlKI9371PH/ezFsk16+f14YHAAAAgDzNsaWKDMPgQT8AAEAgKVxYKlEi/cRBxYpJyYI2baTgYJ+EMnOmdPZs0n5QkFnfAAAAAACQfY4lDkgaAAAA5DDx8dKKFeYT+R49Uu8TGSn9/ru9rUoVM1EQFSVde61fqhOnXKaoc2epfHmfXxYAAAAA8oSAL44cn2yt3BAvTn8HAADIE+LizCrD0dHS9OnSkSNS3brSzTebRYtTioyUXnxRqlFDuu02c79589T7+sihQ9IPP9jbWKYIAAAAALwn4J+0HzlyxNouVKiQg5EAAAAEiMuXpZ9+MpMFM2dKx4/bj2/fLm3ZIjVs6H5unTrSn39K9ev7NVmQ3PffSwkJSfvh4VLv3o6EAgAAAAC5UsAnDhYvXizJXPqoYsWKDkcDAACQQ128aL6mP3WqNGuWdOpU+v2jo1NPHEhSgwbejy8TUi5TdOutEu+PAAAAAID3OJ44yEqtgwsXLmj37t2Kjo7WuHHjrDGuvvpqb4cHAAAQuM6fl+bPN5MAc+bYqwmn55prpMqVfRpaVm3bJv32m72NZYoAAAAAwLt8ljgIDg5O97hhGJKkzp07Z+s6V8ZxuVzqzRx1AAAA09mzUoUK0pkznvVv0cIsbhwZKdWs6dvYsiHlbINy5aROnZyJBQAAAAByK58lDq480PdWv9S4XC65XC4ZhqGmTZvqlltuyfJYAAAAuUqhQlKzZmbh47Rcd52ZKIiMlKpW9VtoWZWY6J44uOMOKcTxObQAAAAAkLv49M+sKw/1feXK2B07dtT48eMznOUAAACQaxw/btYqiIuTHngg9T5RUfbEgcslXX+92X7rrVKA1YdauVL65x97W//+zsQCAAAAALmZzxIH7dq1S7N+wbJly6xjjRs3VvHixT0eNygoSAULFlSJEiXUsGFDdenSRddcc403QgYAAMjZjhyRZswwaxYsXizFx5sP/wcMkIKC3Pv37i099ZTUrp2ZLOjVy1zbJ0ClnG3QsKFZjgEAAAAA4F0+SxwsTWdafFCyP2w/+OADdezY0VdhAAAABLYDB6Tp06WpU83ZA4mJ9uP79km//CK1bu1+boUKZrKhaFG/hOpLFy9Kkyfb2/r1MydRAAAAAAC8y7EVYQ3DSHNGAgAAQJ4WGytNm2bOLFi5Uspo6cfo6NQTB1KuSBpI0pw50qlTSfsul3TXXc7FAwAAAAC5mSOJg9dee83arlGjhhMhAAAA5Cx79pizCqKjpTVrPDsnf37pxhul9u19GVmOkHKZovbtpcqVHQkFAAAAAHI9xxMHAAAAed7581L9+uZ6PBkJD5e6dzdrFtx0k1SokO/jc9ixY9K8efa2fv2ciQUAAAAA8gLHlioCAADAv8LDpa5dpVmzUj9euLDUo4eZLIiIMPvnIZMmSXFxSfv585sfBQAAAADAN0gcAAAA+JJhSJs3m0sQuVzS66+n3i8qyp44KFZM6tnTbO/SxXxankelXKbollukIkWciQUAAAAA8gISBwAAAN5mGNL69WayIDpa2rHDbC9WTHrxRSk01P2cHj2k8uXN5YeioqSOHVPvl8fs3CmtXm1vY5kiAAAAAPAtEgdAADAMaf5880XU0aPNF1YBADmMYUhr15qJgqlTpV273PucPCktWWIuN5RSsWJSbKwUFOTrSAPKhAn2/VKlUv/4AAAAAADeQ+IAyOHWr5cGD5YWLTL3e/Qwa2ICAHKAxERpzZqkZMHevRmfEx2d9pNvkgY2hiGNH29v69tXypfPmXgAAAAAIK8gcQDkYPHxUu/e0p49SW3PPms+bwrhpxcAnJGYKK1YYSYKpk6V9u/37LzKlaXISOmOO3wbXy6yZo3099/2tv79nYkFAAAAAPISHj0COVhIiPTWW/aHJFu3Sl9+KT30kHNxAUCeFhdnVuc9dSrjvtWrm/UKoqKkFi1Yay6TUhZFrlPH/BgBAAAAAL7FfHggh7vzTqlpU3vbq69KZ844Ew8A5HlhYVLPnmkfr13bLID8++/m6/LDhkktW5I0yKTLl6Xvv7e39evHxwgAAAAA/kDiAMjhgoKkESPsbYcPm8+hAABedvGiNHu2dO+90v33p90vKsq+36CBmdXduFHavl16+20z68tT7iybP186ftze1q+fM7EAAAAAQF7jMgzDcDoIwFOxsbGqXLmyJCkmJkaVKlVyOCL/6dnTfJZ1RYEC0o4dUh76CADANy5ckBYsMIsWz56dNKUrf37pyBGpUCH3cy5elDp1krp1M+sW1K/v35jzgNtuM/8nuaJtW7O0BAAAAADA96hxAASI99+X5s2TEhLM/QsXpFdekb7+2tm4ACAgnT1r3lSjo83/njvn3ufiRfNYnz7ux/Lnl37+2fdx5lEnT9qT5RKzDQAAAADAn1iqCAgQ9etLDz5obxs7Vlq/3pFwACDwnD4tTZwo3XqrVLq0dPvt0pQpqScNrkj+yjv8ZsoU6dKlpP3Q0NTzNwAAAAAA3/D7jIOEhASdS/YHeoECBZQvXz5/hwEEpNdfl779NmkVDcOQBg+WFi5kGW0ASFVcnJksiI6WfvzRrLibEZdLatPGrGNw662+jxFuvv3Wvn/zzVLx4s7EAgAAAAB5kd9nHIwdO1bFixe3vlawWC3gsTJlpOeft7ctWmQuzQ0ASEVwsPTCC9KcOeknDYKCpA4dpFGjpH37zMX0n3hC+reuDvxnzx5p+XJ7G8sUAQAAAIB/+T1xcOjQIRmGIcMwVLRoUXXs2NHfIQAB7ckn3QsiDx4sxcc7Eg4A5Axp3QSDgtKeNRAcLHXtKn3xhXTwoLR4sfTII1L58r6LExmaONG+X7y4dNNNzsQCAAAAAHmV3xMHhQoVkiS5XC5VrVrV35cHAl54uPT22/a2LVsokgwgD9q3T/r4Y6l9+/SfLEdFJW3nyyd1727eNA8fln74QXrgAbPmARxnGNL48fa2Pn2ksDBn4gEAAACAvMrvNQ7K8xYfkG39+kkffmgvjPzKK9Idd0j/5uYAIHfau1eaOtWsWbBqVVJ7cLB05EjqCYDrrzdvnBERUo8eUtGi/osXmfL779K2bfa2/v2diQUAAAAA8jK/zzioX7++JMkwDMXExPj78kCuEBQk/ec/9rZDh6Thw52JBwB86u+/pWHDpJYtpapVpaefticNJCkhQZo5M/Xzg4PN19j79SNpkMOlLIpcvbp03XXOxAIAAAAAeZnfEwcNGzZUw4YNJUknTpzQL7/84u8QgFyhY0dztY3khg83V+4AgIC3fbv0zjtS06ZSrVrSkCHS2rXpnzN7tn9ig0/Ex0vffWdv69dPcrmciQcAAAAA8jK/Jw4k6cEHH7S2X3vtNSdCAHKFYcPM2QdXXLggvfqqc/EAQLZcviy98YbUuLFUr5700kvSunXpn1O0qLmWzcyZ0qRJ/okTPvHjj2bZieRYpggAAAAAnOFI4uCRRx5RmzZtZBiGFi5cqMGDBzsRBhDwGjQwa3om9/XX0saNzsQDANmSL580YYK0eXP6/UqUkO6/X5o3z3zSPG6c1LOnlD+/f+KET6Rcpujaa6XatZ2JBQAAAADyOkcSB8HBwZo9e7batm0rwzD04Ycfql27dlq6dKkT4QAB7fXX7QWRDUN69lnHwgGA9BmGWcQ4NS6XFBWV+rHSpaWHHjJfSz94UPryS6lbNyk01Hexwm/OnJFmzLC39evnSCgAAAAAAEkuwzAMf1/0zTfflCTFxcVpzJgxOnTokFz/LmBbtmxZNW/eXNWrV1eRIkWUL1++TI39Kuu05GqxsbGqXLmyJCkmJkaVKlVyOKKcYehQ6ZVX7G0LFkgREc7EAwA2iYnSL79I0dHS1KlSmTLSr7+m3vePP6RmzcztcuWkyEgzmXD99WaRY+RK33wj3Xdf0n5IiHTggFSqlGMhAQAAAECe5kjiICgoyEoUXJE8jJTHMiMhISHL5yLnI3GQuvPnzeUc9u9PamvUSFq/nudsABySkCD9/LOZKJg61b1y+549UtWq7ucZhjmVqksX6brr7IVckGt17iwtWpS036OHNGuWc/EAAAAAQF6XY/4ad7lc1ldWOJD/AHKM8HDp7bftbZs3m29wAoDfxMebT38feUSqWFG64Qbpo4/ckwaSmUxIjctlFkhu25akQR4RGystXmxvY5kiAAAAAHCWY3+RG4bh1S8gr+vfX7r6anvbK69IZ886Ew+APCIuTvrhB7NSe7ly5qvjo0dLhw6lf94vv/gnPuR4331nTjS5okgRc8YBAAAAAMA5IU5cdMmSJU5cFsjVgoOlESPM1T2uOHDAbHv9dcfCApBbxcVJDz4ozZwpnTjh2TkNGiTVLGjc2LfxIWCMH2/fj4qSChRwJhYAAAAAgMmRGgdAVlHjIGM33STNn5+0Hx4u/fWXVKGCczEByKWaN5d+/z39PlddZT4Jjow0EwdAMhs2SNdcY29bskRq396JaAAAAAAAV7B4MJDLDBtmXxb8/Hnp1VediwdAADt3Tvrzz7SPR0Wl3t6smfTuu9KOHeaT4VdeIWmAVH37rX2/cmWpXTtnYgEAAAAAJCFxAOQyjRpJAwbY2776Stq40Zl4AASY06eliRPNGQKlS0u33mpfgD65yMik7WuvlYYPl3btkn77TXr+eal2bf/EjICUkGD+Xy25u+6iJjYAAAAA5AQsVYSAwlJFnjlwwHxed+5cUltEhLRggXMxAcjBTpyQZs+WoqPNQseXL9uPb9pkZiVTM3as1LGj+ao4kAkLF0pdu9rb/vyTySkAAAAAkBPwTheQC5UvLz33nL3thx/MLwCQJB09Kn35pdStm1S2rHTPPWbyIGXSQDITCmm55x6SBsiSlMsUNW1K0gAAAAAAcgoSB0Au9cwzZgIhuWefNZeGAJBHHTokff651KWLVK6cNHCgORUpLi7tc4KDpcOH/Rcj8oRz56SpU+1t/fo5EwsAAAAAwF2INwfbu3evW1uVKlU86uctqV0PyIsKFpSGDrXXO9i0yVxV5P77nYsLgAMSEsz1ypYskRITM+6fL5+ZXIiKknr2lEqW9H2MyFNmzrQvpxcUJN1xh3PxAAAAAADsvJo4qFatmlwul7XvcrkUHx+fYT9vSet6QF51zz3SyJFmwuCKl1+Wbr/dTCwAyCOCg82EQXpJg7AwM7kQFSX16CEVK+a38JD3jB9v3+/a1ZwEAwAAAADIGXyyVJFhGNaXp/289QUgSXCwNGKEve3AAek//3EmHgA+tGuX9NNPaR+PinJvK1BAioyUvvtOOnLEfA28f3+SBvCpgwelH3+0t7FMEQAAAADkLNQ4AHK5rl3Nl4iTGzbMTCAACHA7dkjvvis1aybVrCndfXfaswp695ZcLnO60e23S1OmmMmC6Gipb1+pcGH/xo486/vv7f83LVhQ6tXLsXAAAAAAAKnw6lJF99xzj1f7AfCO4cOlhQuTHtScOye99pr0xRfOxgUgC7ZsMR/2R0fb1yGTzIzg6tVSmzbu55Uvb9Y4aNnSnGkAOCTlMkWRkSyfBwAAAAA5jctgfR8EkNjYWFWuXFmSFBMTo0qVKjkcUeAYOFD68suk/aAgacMGqVEj52IC4AHDkDZuNBMFU6dKW7em3/+pp6QPPvBPbEAmbdkiNWxob/vxR7MWNwAAAAAg5/DqjAMAOdebb5rLmJ8/b+4nJkrPPSfNm+dsXABSYRjSH38kzSzYudOz80qV4tVt5GjffmvfL19e6tjRmVgAAAAAAGkjcQDkERUqSM8+K73xRlLb/PnmEka86QnkIAkJUuPGGc8suKJsWenWW83ix+3aSSH8046cKTFRmjDB3nbnnVJwsDPxAAAAAADSlquKIyckJDgdApCjDR4slSvn3saPDpCDBAdLdeum36diRenxx6Xly6V9+6RPPzVf2yZpgBxs+XJp7157W//+zsQCAAAAAEhfrkgcbNiwQU8//bRf17s/efKkpk6dqkGDBqlt27YqW7asQkNDVbhwYVWrVk29e/fW6NGjdfbs2QzH2rNnj1wuV7a+9uzZ4/Xv8a+//tILL7ygJk2aqFSpUgoPD1ft2rV1++23a86cOaI8RuApVEh66y1728aN7oUqAfhQfLxZpHjcuLT7REa6t1WtKj3zjLRqlfn09b//la6/nte1ETBSLlPUuLF09dXOxAIAAAAASF/AFkc+evSovv32W40dO1YbN2602n0962Dbtm0aPHiwfvzxR8XFxWXYv2jRoho5cqTuvffeNPvs2bNH1atXz3JMISEhOnz4sIoXL57lMZIzDEMjRozQSy+9lO73GBERobFjx6ps2bJeua4nKI6cfQkJ0jXXSJs3J7VVqCD99ZcUHu5YWEDuFhdnJgumTpWmT5eOHJGKFpUOH5ZCQ937nzollS4tValiLkEUFSU1aya5XP6PHfCCCxfMGW+nTye1vf++WWsHAAAAAJDzBNSaBvHx8Zo9e7a++eYbLViwQPHx8ba33l1+eKCyefNmzZ0719YWHBysWrVqqWzZskpISNDWrVt1/PhxSdKpU6d033336e+//9ZbKV/1/leBAgUUERHhcQyJiYlauHChtR8REeG1pIEkvfrqqxo6dKi1ny9fPjVs2FAFCxbUtm3bdOzYMUnSDz/8oE6dOmn16tUqXLiw164P3woOloYPl7p1S2rbv1/64APp5ZediwvIdS5dkhYtMosbz5ghnThhP37qlLR4sXTjje7nFi0qbd8uVatGsgC5wpw59qSBy2XWNwAAAAAA5EwBMePg999/19ixY/Xdd99ZD+SvhH0lWWAYhlwul89nHERHR+u2225TSEiIbr75Zt17773q0KGDihQpYvUxDEOzZs3So48+qn379lnts2bNUo8ePbIdw48//mhLNEyePFm33XZbtseVpHnz5ql79+7W/i233KJRo0apYsWKkqTLly/r888/19NPP634+HhJUp8+fTRp0iSvXD8jzDjwDsOQIiLMwshXFCwo7dzpXgMBQCZcuCD9+KOZLJg920wOpGfAAGnMGP/EBjioZ0/zR+KKTp2kn35yLh4AAAAAQPpybOLg0KFDGj9+vMaOHastW7ZISj1ZIEnh4eG6+eabdccdd+iWW27xaVwzZ87UnDlz9Morr6hKlSrp9o2JiVHLli118OBBSVKjRo20adOmbMdw1113aeLEiZKk4sWL68CBAwoLC8v2uImJibr66qu1+d81bNq3b6+ffvpJwamsn/3ll19q4MCB1v7atWvVvHnzbMeQERIH3rNhg9SkiZlEuOKhh6TPPnMuJiAgnTsnLVhgJgvmzJE8qG0jyfwBvP9+adAg38YHOOzIEXNJvH/fN5Akff21lM4qjgAAAAAAh+WoxMHly5c1c+ZMffPNN1q4cKESEhLcliK6sh8aGqqIiAj17dtXt9xyi8Jz6OLsX3zxhR566CFrf+fOnapZs2aWxzt9+rTKlSunCxcuSJIefvhhffrpp9mOU5LmzJljzYhwuVzasmWL6tWrl2b/Vq1a6ZdffpEkRUVFacqUKV6JIz0kDrzr/vvNhzdXBAVJmzZJDRo4FxMQUBITpcqVzfW+PNGypVmvIDJSqlHDt7EBOcSoUfb8WIEC0qFDEqscAgAAAEDOFeR0AJL0yy+/6JFHHlH58uXVt29fW/0Cl8tlq13QqVMnjRkzRgcPHtTMmTN1xx135NikgSS3pYm2bduWrfGmTJliJQ0k6Z577snWeMlNmzbN2r7hhhvSTRpIsiVE5s+fr4sXL3otFvjHW2+ZD3CuSEykUCWQKUFB5por6bnuOrOIyJ490i+/SM8+S9IAecr48fb9Xr1IGgAAAABATudYceT9+/dr3LhxGjt2rHbs2CHJvhTRldkFV5IHVyQvChwISpQoYds/nbwyYBaMHTvW2q5Xr56uvfbabI2X3Lx586ztG1Mr1plCt2TVdc+dO6dly5ZlqsgznFexojR4sJlAuGLuXLOea0bPQoE84fhxaeZM6cAB6cUXU+8TFWV/MupySe3ambMKbr3V/EED8qgdO8x8WXL9+jkTCwAAAADAc35NHFy8eFHTp0/XN998o8WLFysxMTHNZEGhQoXUu3dv1ahRQ2+88YY/w/Sqf/75x7ZfunTpLI+1a9curVy50tr35myDQ4cO6dChQ9Z+69atMzynXLlyqlatmvbs2SNJ2rBhA4mDAPTss9IXX5jLRlwxeLD0++/my9RAnnP4sDRjhlmzYMkSc2H2/Pmlxx+XChVy79+1q1SsmNSsmZlE6NWLKuPAvyZMsO+XLm3+yAAAAAAAcja/JA5+/vlnjR07VlOmTLHeuE+eMLiSLAgJCVHXrl111113qVevXipQoIAWLVrkjxB9JvnyPyEhIWrWrFmWxxo3bpz1uQUFBal///7Zju+KrVu32vY9rcNQs2ZNK3GQ3WWY4IzChaU33zQLI1+xfr307bfS3Xc7FhbgXwcOSNOnm8mCZcvMdbuSu3hRmjdP6tPH/dz8+aV9+6QcvGwe4ATDMP8tSe6OO6QQx+a7AgAAAAA85bM/3WJiYjR27FiNGzdOf//9t6S0lyJq2bKl+vXrp759+6pUqVK+Csnvzp07p08++cTaj4iIUPHixbM0lmEYGjdunLXfuXNnVfTi8hfJZ0aEhISofPnyHp1XpUoVa/tKAiEzYmNjM9X/wIEDmb4GMnb//dJ//ytt2ZLU9tJL5svTPAtFrhUTI02bZiYLfv7ZfMqZnujo1BMHEj8oQCpWrZJ27bK3efGdBwAAAACAD/kkcdCpUyctW7bMSgxI7smCmjVr6q677lK/fv1Uq1YtX4ThuMGDB2vfvn2SzO//zTffzPJYK1as0O7du619by5TJElnzpyxtgsXLqwgD9eoKVKkSKpjeKpy5cqZPgfeFxIiDR8ude+e1BYbK40cmfay7kBA2r1bmjrV/FqzxrNz8ueXunVLO2kAIFUpZxvUq2eu6AUAAAAAyPl8kjhYsmSJtZ08WVCqVCndfvvt6tevn1eL+uZEEyZM0GeffWbtP/3002ratGmWx0teFLlIkSLq3bt3tuJL6dy5c9Z2/vz5PT6vQIECqY6BwNOtm1kQOfnqYO++Kw0YIJUt61xcgNcYhtS2rbR/f8Z9w8PNTFpUlHTTTanXNgCQpkuXpEmT7G39+pm1wwEAAAAAOZ/Pliq6kjCQpLZt2+r5559XRESEgoODfXXJHGPFihUaMGCAtd+sWTO98847WR7v/PnzmjJlirXfp08f2wN7b4iLi7O2QzKx+HDyvpcvX870dWNiYjLV/8CBA2rZsmWmr4OMuVzSiBFS06ZJK7acPSu98Yb06afOxgZ4hcsl9e4tjRqV+vHChaUePcxkQUQEyw8B2TB/vnTihL3trruciQUAAAAAkHk+LU93JXmwatUqvf/++9q/f79uu+02FS1a1JeXddSGDRvUo0cPXbp0SZJUo0YNzZ49W6GhoVkec/r06bZlgLy9TJEkhSd7QHbx4kWPz0vet2DBgpm+bqVKlTJ9DnznmmvMgsjJJrjoiy+kxx6T6td3LCwgY4Yhbd5s1iE4eFD6/PPU+0VF2RMHxYpJt9wiRUZKXbqYyxIByLbx4+377dpJ1ao5EgoAAAAAIAs8W8g+C5LXNkhMTNTKlSv10EMPqVy5coqMjNT06dNtb7nnBtu3b1fXrl116tQpSVKFChW0cOFCjwsNpyX5MkW1atVS27ZtszVeagolW4bjwoULHp93/vz5VMdA4Bo6VEo+oSUhQRoyxLl4gDQZhvTHH2Yhjnr1pKuukt58U/ryS+nIkdTPuf56Mws2YID5SvShQ9I335gzDUgaAF5x4oQ0Z469rV8/Z2IBAAAAAGSNTxIH8+fPV58+fRQWFmYlECQzmXDp0iXNmDFDUVFRKlu2rB566CEtX77cF2H41e7du9W5c2cdPnxYklSqVCktXLhQNWrUyNa4+/bt06Jki87ffffd2RovLSVLlrS2z549q7Nnz3p03sGDB1MdA4GrUiXpmWfsbbNnS8lKlwDOMQzp11+l556TatY0K62++660Y0dSn4QEaebM1M8PDpb+/FMaM0a68UYpG7PBAKRuyhQp+eqFYWHSbbc5Fw8AAAAAIPN8kjiIiIjQ999/r4MHD2r06NFq1aqVbQaCZCYRTp48qTFjxqhDhw6qVq2aXnrpJW3ZssUXIflUbGysOnXqpNjYWElm8eIFCxaoQYMG2R57/PjxSkxMlGR+dr5KHNStW9e2v3fvXo/OS16jIOUYCFzPPSeVKWNvGzxY+vf/ioB/JSZKP/8sPfWUVLWqdO210vDh0u7daZ8THZ32MaqzAj6VcpmiHj3MVcEAAAAAAIHDZ0sVSeYD9IceekirVq3S9u3b9fzzz6tixYqpJhH27t2r9957T40bN1aTJk30wQcf6MCBA74MzysOHTqkzp07a/e/D7DCw8M1d+5cNWvWzCvjJ1+mqH379qpatapXxk2pTp06tsLV69evz/CcuLg4bd682dqvzyL4uUbhwuaKL8n98Yc0caIz8SAPMgxp2TKzwEalSlLbttLIkVJGBdUrVzYTDK+95pcwAdjt3i2tXGlvY5kiAAAAAAg8LiP5WkJ+YBiGFi1apK+//lozZsyw1tO/UkjZCszlUlBQkOrUqaOtW7dabQkJCf4MN13Hjx9X+/bttWnTJklSWFiYZs+erS5dunhl/F9//VXXXnuttf/NN9/4pDDyFdddd51Wr14tSXr44Yf16aefptt/zZo1at26tbX/119/qVatWj6LTzJnd1SuXFmSOduB4sq+Ex9vLhn/74+fJPOZ7Pbt9hoIgE8Yhlm3IPkSRGmpUcMsehwZKbVowYwCwEFDh0qvvJK0X6KEdOAAq4IBAAAAQKDx6YyD1LhcLnXu3FkTJkzQwYMH9cUXX6ht27a2WQhXkggJCQnatm2bNTNBklamfI3NIadPn1ZERISVNAgJCdHkyZO9ljSQ7LMNChYsqMjISK+NnZqePXta21OmTNHl5AsUp2LChAnWdv369X2eNIB/hYSYq8EkFxMj/fe/zsSDPMblMpMBaalTxyyK/Mcf0s6d0vvvSy1bkjQAHGQY7ssU3X47SQMAAAAACER+TxwkV7hwYQ0cOFDLly/Xzp079dJLL6lKlSpuSxld2TYMQzfccIMqV66sZ599Vr/99psjcZ8/f17du3e3rh8UFKTx48fbHrxn1+XLl/X9999b+1FRUSpUqJDXxk/NnXfeqdB//7o/evSoPv/88zT7xsbG2hIbvpwJAefcdJPUsaO97Z13pCNHnIkHucTFi2bF7Xvukbp2TbtfymRpw4bmEkSbNknbtklvvy01aUKyAMgh1q51nyTUv78zsQAAAAAAssfvSxV5YsmSJfr66681ffp0nTt3TpK9HkLy/Zo1a6pv377q27evV4oRZ+TSpUu6+eab9dNPP1lxfPnll7rvvvu8ep2pU6cqKtnbtosXL1aHDh0yPc6ePXtUvXp1a/+1117T66+/nmb/Rx991FqiqFChQlqwYIHatGlj63P69Gl1797dmv1RtmxZ/f333ypYsGCm48ssliryv3XrpGbNzDdJr3j0UemTT5yLCQHo/Hnphx/MosWzZ0tnziQd271bqlbN/RzDkHr2NIshR0ZK1FEBcrTHH5c+/jhpv2ZN6a+/yO0BAAAAQCDKkYmDK86dO6fJkydr3LhxWr58uQzDcEsgSElJhEaNGmnDhg0+jWnYsGEaMmSItV+8eHG1bNnS4/P79eunfh5UCezZs6dmz54tSapatap2795tm4HhqcwmDo4dO6aWLVtq165dksy6DQMHDlTXrl1VsGBBbdiwQZ988olVDNrlcmnq1Knq3bt3pmPLChIHzrjnHmncuKT94GDpzz+lunWdiwkB4OxZad48M1kwd66ZPEjNf/4jPf20f2MD4FVxcVLFivYZaa+9JqXzKwcAAAAAIAcLcTqA9BQsWFD33Xef7rvvPu3Zs0fffPONxo8fb3toLSUlETZv3uzzmM6nePB14sQJ/fDDDx6f36pVqwz7HD58WPPnz7f277777iwlDbKiZMmSmjNnjjp37qz9+/fr0qVLGjVqlEaNGuXWNygoSCNGjPBb0gDOGTpUmjzZXGFGkhISpCFDpBkzHA0LOdGpU9KcOdLUqdL8+Un/p0lPdDSJAyDA/fij+zJ2HrwnAQAAAADIoRytcZAZ1apV0+uvv66///5bS5cu1b333qtChQopB0+YyLKJEycqPj7e2r/77rv9ev369etr06ZNuvvuuxUWFpZqn6ZNm2rx4sV66qmn/BobnFG5svtz3ZkzpWXLnIkHOYxhSGPHSj16SGXKmE8Lp09PP2ngcknt2kkffSRNmeK/WAH4RMqiyK1bS7VqORMLAAAAACD7cvRSRRm5cOGCpkyZonHjxmnJkiWSpISEBIejyl1OnjypJUuWKDY2VhcuXFCFChXUtGlTv9STSA1LFTnn9GnzIVDyN0qbN5d++UUKCpgUJHymRQspo4L1QUFShw5SVJTUq5dUrpxfQgPgW6dOmT/OyXOFo0ZJjzziXEwAAAAAgOwJ6MRBcnv37tX48eP10ksvOR0KfIjEgbNGj3Z/EDRhgnTnnc7EAz+7dElKYxaS3n9fev559/aQEKlTJzNZcMstUunSvo0RgN99/bV0//1J+/nySQcOSCVLOhcTAAAAACB7ck3iAHkDiQNnxcVJV10lbduW1FalirR9u5Q/v3NxwYf27ZOmTTPrEBw+LG3ZYi4zlNLOnVLt2uZ2aKjUtasUGSn17CmVKOHfmAH4VceO0r8TPyWZOUJq4AAAAABAYMvRxZEB5Cz58knDhpnPgq/Yu9dcpv6555yLC172zz9mceOpU6VVq+zHNm+WGjd2P6dWLenJJ831q26+WSpa1C+hAnBWTIy0dKm9jaLIAAAAABD4SBwAyJSbb5bat7c/KHr7bXOZilKlnIoK2fb332aiIDpaWrs27X7R0aknDiTpww99ExuAHGviRLM++hVFi5r/TgAAAAAAAhslTQFkissljRhhbzt9WnrzTWfiQTZs325mfZo0MWcMDBmSftJAkhYs8E9sAHI8w5DGj7e33XYbS9cBAAAAQG5A4gBApjVr5r4UxejR0o4dzsSDTDAMaehQc9ZAvXrSyy9L69enf07RotLdd0uzZknLlvklTAA53/r10p9/2tv693ckFAAAAACAl5E4AJAlb78thYUl7cfHS88/71w88JDLZVYx3bw5/X4lSkgDBkjz5plFkceOlXr04FViAJZvv7XvV60qtW3rTCwAAAAAAO8icQAgS6pUkZ56yt42fbq0YoUz8SAZwzArlqYlKir19tKlpYcekhYulA4elMaMkbp1k0JDfRMngIAVH2/WN0jurrukIH6zBAAAAIBcwWUYyUvaATlbbGysKleuLEmKiYlRpUqVHI4obzt1ylwa/+jRpLYWLaQ1a3h45HeJieYHHx1tFjmOi5NiY1P/H+LgQalCBTPBUL68FBlpJhPatpWCg/0fO4CA8+OPUkSEvW3rVnMFNAAAAABA4AtxOgAAgatoUen116VBg5La1q6VJk+W+vZ1LKy8IyFB+vnnpGTB/v3246tXS23auJ9Xrpw0cqRZrKJ1a7I8ADItZVHk5s1JGgAAAABAbsKMAwQUZhzkPHFxUqNG9sLIVatK27axHL5PxMebBYqjo6Vp08z6A2l58knpww/9FhqAvOHsWalsWen8+aS2kSOlJ55wLCQAAAAAgJfxmimAbMmXTxo2zN72zz/SJ584E0+udPmytGCBNHCgOVugc2fps8/STxpI0saN/okPQJ4yY4Y9aRAcLN1xh2PhAAAAAAB8gMQBgGzr2VNq187eNnSodOyYM/HkKg8/bL7a262b9OWXGX+o9etLr75qJg1++sk/MQLIU1IuUxQRIZUp40wsAAAAAADfoMYBgGxzuaQRI6SWLZPaTp2S3nrLXL4C2XDwoHTyZPp9rr7aLHAcGSk1aOCXsADkTQcOuOck+/VzJhYAAAAAgO8w4wCAV7RoId15p71t1Cjpr7+ciSdgnD0r/fpr2sejolJvb9ZMevdds7jE+vXSK6+QNADgc999JyUmJu0XKiTdcotz8QAAAAAAfIPEAQCvefttKSwsaT8+Xnr+eefiybFOn5YmTpRuvVUqXVrq2tWsY5Cam2+WQkPN7VatzKkdu3ZJv/1mfri1a/svbgB5XspliiIjpfBwZ2IBAAAAAPgOSxUB8Jpq1aQnnrAXS542TVq5Umrb1rGwcoYTJ6RZs6ToaOnHH+2JgosXpUWLzDoGKRUtKk2aZM4wqFzZf/ECQAqbN5sTnJLr39+RUAAAAAAAPsaMAwBe9cILUsmS9rZnnpEMw5l4HHX0qFnQuFs3s3LovfdKc+akPrsgOjrtcXr1ImkAwHHffmvfr1hRat/ekVAAAAAAAD5G4gCAVxUrJr32mr3t11+lyZMdCcf/Dh2SPvtM6txZKldOGjhQWrDAXLcpLcHB0vnz/osRADIpMVGaMMHedued5u0LAAAAAJD7uAwjT74HjAAVGxuryv++eR0TE6NKlSo5HBFSc/my1KiRvTBytWrStm32Ggi5Tu/e0syZnk2vyJdP6tLFLH7cs6f7NA0AyEGWLJE6drS3bdwoNW7sTDwAAAAAAN9ixgEArwsNld5/3962Z4/0ySeOhOM/RYqknzQIC5NuuUUaN046fFiaO1e67z6SBgByvJRFka++mqQBAAAAAORmJA4A+ESvXu4FkYcOlY4dcyQc79i1y6z2nJaoKPe2AgWkyEjpu++kI0ekGTPMaqLFivkqSgDwqvPn3cuw9OvnTCwAAAAAAP8IcToAALmTyyWNGCG1apXUdvKkmTz48EPHwsq8HTvMJ2bR0dK6deasgSNHpMKF3ft26SIVKmRu33yzmUi48UapYEH/xgwAXjR7tnTmTNJ+UJBZ3wAAAAAAkHuROADgM9deK/XtK33/fVLbqFHSo49KtWo5F1e6DEPassVMFEydKm3aZD9+6ZI0b550++3u5+bPby4E3rChOdMAAHKBlMsUdeokVajgTCwAAAAAAP9gqSIAPvXOO2bNgyvi4qQXXnAunlQZhrRhg/TKK1KDBmZl59dfd08aXJFyzY7kmjcnaQAg1zh8WFqwwN7GMkUAAAAAkPuROADgU9WrS48/bm+LjpZWrXImHothSL/9Jj3/vFS7tnTNNeY6Stu2pX9eqVJSpUp+CREAnDZpkpSQkLQfHi7deqtz8QAAAAAA/IOligD43IsvSl99JR0/ntT2zDNm8sDlciio66+Xfv7Zs77lyplPyqKizPNCuHUCyBtSLlPUu3dSKRcAAAAAQO7FjAMAPle8uPTqq/a2NWvSX/HH55o2Tf94xYrSE09IK1ZIsbFmcYYOHUgaAMgztm+X1q61t7FMEQAAAADkDSQOAPjFww9LNWva255/3qw17HXx8dLixdLIkWn3iYx0b6ta1ZwKsXq1tHeveX7btlJwsA+CBICc7dtv7ftly0qdOzsTCwAAAADAv3h1FoBfhIZK779vrvZzxa5d0qefSk895YULxMVJS5aY0ximT5eOHpWCgqS77pJKl3bv37atVKaMVLiwdNttZiKhWTMH104CgJwjMdE9cXDHHUy6AgAAAIC8wmUYhuF0EICnYmNjVblyZUlSTEyMKlGkNqAYhvm8Pnlh5OLFpZ07pRIlsjDgpUvSTz9JU6dKM2ZIJ0649/niC+mBB1I/f/9+qXx5kgUAkMLKlWZJl+R+/z3jVd4AAAAAALkDSxUB8BuXS/rPf+xtJ05Ib7+diUEuXJBmzpT69zdnDNx8s/T116knDaT0CylUqEDSAABSkbIocoMGUpMmzsQCAAAAAPA/EgcA/KpVK6lPH3vbxx+byxal6dw5MwHQt6+ZLOjVy1xD4/Tp9C/WpInUqVN2QwaAPOXiRWnyZHtbv37kWQEAAAAgL2GlWgB+9+67ZhmCuDhzPy5OeuEFadKkNE64/npp3TrPBm/Z0iykEBkp1ajhlXgBIC+ZN086edLedtddjoQCAAAAAHAIMw4A+F2NGtJjj9nbJk+WVq9O44Ru3dIfsE0b6YMPpD17pF9+kZ59lqQBAGRRymWK2reXqlRxJBQAAAAAgENIHABwxEsvmYWRS+iY7tXX+lBPavBgs4Cym6go+77LJd1wg7nGUWysWcXzqaekqlX9EjsA5FbHjklz59rb+vVzJhYAAAAAgHNYqgiA/x0+rBIzZmhd6WhVPLFYIUqQJI1c9aSmTaumyMgU/a+5RqpTx3zlNSrKrHFQtqy/owaAXG/KlKRl5CQpf3733C0AAAAAIPcjcQDAPw4ckKZNk6ZOlZYtkxITlXJ+QKSmasiQZ9SjhxQamuyAyyVt2pSiEQDgbSmXKerZUypa1JlYAAAAAADOYakiAL4TEyP9979mceOKFaVBg6QlS6TExFS7Rylaf/8tjR6dykGSBgDgU7t2SatW2dtYpggAAAAA8iZmHADwrt27zVkF0dFmoWIPXHLl11yjm6boNkmG3nzTpbvvNmsgAAD849tv7fslS0o33uhMLAAAAAAAZ5E4AOBdffpIv/2Wcb+CBaXu3aWoKK0r3k2RXQpZh44fl955Rxo+3IdxAgAshuG+TFHfvlK+fM7EAwAAAABwFksVAfCu9KpoFi4s3XWXNH26dOSINGmSdNttatW5kNtpH31kTl4AAPje+PHSzp32tv79nYkFAAAAAOA8EgcAPGMY0saN0quvSj16mPupiYy07xcrJt1zjzR7tpks+PZbqVcvqUABW7d337W/2Xr5svTii179DgAAKRiGObvrnnvs7bVrSy1bOhMTAAAAAMB5LFUEIG2GIa1bZ9YriI6W/vor6djmzVLjxu7n1Kolde4sVatmzj7o0MGjwsa1akmPPiqNHJnU9v330pNPStdem91vBACQUkKC9MQT0qhR7seefFJyufweEgAAAAAghyBxAMDOMKRff01KFuzZk3q/6OjUEweStHBhli798svSN99IJ08mtQ0eLC1fzgMsAPCm8+elO++UZs50PzZokPR//+f/mAAAAAAAOQdLFQGQEhOllSulp56SqlaVWrWSRoxIO2kgmYkDLytZ0kweJLdypTRjhtcvBQB51pEjUseOqScNhg83a8wE8RsiAAAAAORpLsNIa6FyIOeJjY1V5cqVJUkxMTGqVKmSwxEFuOXLpcmTpWnTpAMHPDunShWzjkFUlNS6tdenAly6JNWrZ89Z1Kol/fmnRyseAQDSsXOn1K2beyHk0FBp3Djp9tudiQsAAAAAkLOwVBGQl73xhrR4ccb9atQwEwVRUVLz5j5dNygsTHrvPalv36S2nTulzz+XHnvMZ5cFgFzvl1+km2+Wjh61txcrZs4+aNfOkbAAAAAAADkQE9GB3C69SUVRUWkfq1tXeuklszjyzp3S++9LLVr4pdhAnz7uBZHfeMNe+wAA4LmZM81a9SmTBlWqSD//TNIAAAAAAGBH4gDIjS5elGbNku65R2rY0KxhkJreve2JgEaNpNdflzZvlrZulYYOla65xu+ViV0us8RCcseOSe++69cwACBX+PRT6dZbpQsX7O3XXCOtXi01aOBIWAAAAACAHIwaBwgo1DhIx/nz0oIFZtHi2bOls2eTjq1YIbVtm/p5Dz1kFkSOjDRnGeQgkZFm+YUrwsKkbdukatUcCwkAAkZiovTii+aEsZQiIqQpU6TChf0fFwAAAAAg5yNxgIBC4iCFs2eluXOlqVPN/54/n3q/J5+UPvzQr6F5w19/mW/Cxscntd15pzRhgnMxAUAguHRJuu8+6bvv3I/dd59ZNyZfPv/HBQAAAAAIDCxVBASaU6fMJ+e9e0ulS5tVhKdMSTtpIJmv7QdgjrB2bemRR+xtEydKa9c6Ew8ABIKTJ6Ubb0w9afD669KXX5I0AAAAAACkjxkHCCh5esbBd9+ZCYOFC6XLlzPu73KZ1S6joswkQ8WKvo/RB44elWrVMvMlV7RrJy1d6vfSCwCQ4+3dK910k/Tnn/b24GDpiy+k++93Ji4AAAAAQGBhxgEQKKZMMZcjSi9pEBwsdeokjR4t7d9vPl0fNChgkwaSVKqU9NJL9rbly83azwCAJOvXS61buycNChUy//kgaQAAAAAA8BSJAyBQREWl3h4SYq5JMWaMdPCg9NNP0v/9n1SunH/j86HHHjPrNyf33HNSXJwz8QBATrNwoTkba/9+e3u5cmayNSLCmbgAAAAAAIGJxAEQKG6+WQoNNbdDQ839b76RDh+W5s+XBgwwX8/PhfLnl9591962Y4e57AYA5HXffGMuT3TmjL29fn1pzRqpSRNHwgIAAAAABDBqHCCg5OkaB5L59LxqVTNpUKSI09H4lWFIrVpJv/6a1FaqlLRzp1S0qHNxAYBTDEMaOlR69VX3Y+3aSTNmSMWL+z0sAAAAAEAuwIwDIJC88IJ05515LmkgmYWQR4ywtx09Kr33njPxAICT4uKkBx9MPWlw++3Sjz+SNAAAAAAAZB2JAwAB4/rrpd697W0ffijt3etMPADghLNnpZ49zdI2KT37rDRxohQW5v+4AAAAAAC5B4kDAAHlvffMetBXXLokvfSSc/EAgD8dPCjdcIO0YIG93eWSPv5YGjZMCuK3OwAAAABANvGnJYCAUqeO9PDD9rZvv5V+/92ZeADAX7ZuNWu9/PGHvT1/fmnqVGnQIGfiAgAAAADkPiQOAAScV191L/MweLBZKBQAcqMVK6Q2baR//rG3lywpLV7svowbAAAAAADZQeIAQMApVcp9eaKlS6U5cxwJBwB8asoUqUsX6cQJe3vNmtLq1VLr1s7EBQAAAADIvUgcAAhIjz8uValib3v2WSkuzpl4AMDbDEP64AOpTx+znktyLVtKq1ZJtWs7ExsAAAAAIHcjcQAgIOXPL737rr1t+3ZpzBhn4gEAb0pIkJ58UnrmGfdjPXqYyxOVKeP3sAAAAAAAeQSJAwABq29fqXlze9trr0mnTzsTDwB4w4UL5iyDjz5yP/bww9L06VLBgv6PCwAAAACQd5A4ABCwgoKkESPsbUeOSO+/70w8AJBdR49KnTtL06a5H3vvPWnUKCk42P9xAQAAAADyFhIHAALaDTdIt9xib/vgAykmxpl4ACCrdu2SrrvOrF2QXL580oQJ0pAhksvlTGwAAAAAgLyFxAGAgPf++/Y3cC9elF5+2bl4ACCz1q6VWreW/vrL3l60qPTDD9KddzoTFwAAAAAgbyJxACDg1a0r/d//2dvGj5f++MOZeAAgM+bMkdq3lw4ftrdXriytXCl16OBIWAAAAACAPIzEAYBc4bXXpMKFk/YNQxo82PwvAORUn39uLrd2/ry9/aqrpNWrpUaNnIkLAAAAAJC3kTgAkCuULi29+KK9bckSae5cZ+IBgPQYhnnP+r//kxIT7cc6d5ZWrJAqVnQmNgAAAAAASBwAyDWeeMJc2iO5Z5+V4uOdiQcAUnP5stS/v/Tuu+7H7r7bTHgWKeL/uAAAAAAAuILEAYBco0AB6Z137G3btkljxjgTDwCkdOqU1K2bNGGC+7FXXpG++UYKDfV7WAAAAAAA2JA4AJCr3Hmn1LSpve2116TTp52JBwCuiImR2raVFi+2twcHS//7n/Tmm5LL5UxsAAAAAAAkR+IAQK4SFCSNGGFvO3xYGjbMmXgAQJI2bpRat5Y2b7a3FywozZ4tDRzoTFwAAAAAAKSGxAGAXKdDB6lHD3vbf/4jxcY6Ew+AvG3RIun666V9++ztZctKy5aZSxcBAAAAAJCTkDgAkCu9/765/McVFy9KL7/sXDwA8qbx46Ubb3RfLq1uXWn1aqlZM2fiAgAAAAAgPSQOAORK9etLDz5obxs3Tlq3zpl4AOQthmEWa7/7bik+3n6sbVtp1SqpenVnYgMAAAAAICMkDgDkWq+/LhUunLRvGNLgweZ/AcBX4uOl//s/6aWX3I9FRUkLF0olSvg/LgAAAAAAPEXiAECuVaaM9Pzz9rbFi6X5852JB0Dud/as1KuX9MUX7seeekqaNEnKn9/vYQEAAAAAkCkkDgDkak8+KVWqZG979ln3pUMAILsOHZLat5fmzrW3u1zSyJHSBx9IQfzmBQAAAAAIAPz5CiBXCw+X3n7b3rZli/TVV87EAyB32r5dat1a+v13e3v+/NKUKdITTzgTFwAAAAAAWUHiAECu16+fdM019rZXX5XOnHEkHAC5zM8/S9ddJ+3ebW8vUUL66ScpMtKZuAAAAAAAyCoSBwByvaAg6T//sbcdOiQNH+5MPAByj6lTpU6dpOPH7e3Vq0urVklt2jgTFwAAAAAA2UHiAECe0LGj1L27vW3ECGnfPmfiARD4Ro6UbrtNunTJ3t68ubR6tVS3riNhAQAAAACQbSQOAOQZw4bZC5NeuCC98opz8QAITImJ0tNPS089JRmG/Vj37tLSpVLZso6EBgAAAACAV5A4AJBnNGggPfCAve2bb6QNGxwJB0AAunhR6ttX+vBD92MPPijNmCEVLOj3sAAAAAAA8CoSBwDylNdflwoVSto3DGnwYPe3hgEgpePHpS5dpClT3I+9/bb02WdSSIj/4wIAAAAAwNtIHADIU8qVk4YMsbf99JP0ww/OxAMgMOzeLV13nbRypb09JEQaN0568UXJ5XImNgAAAAAAvI3EAYA85+mnpQoV7G2DB0vx8c7EAyBn++03qXVraft2e3uRItKCBVL//s7EBQAAAACAr5A4AJDnhIeby4ok9+efZr0DAEhu3jypfXvp0CF7e8WK0ooVUqdOjoQFAAAAAIBPkTgAkCf17y9dfbW97ZVXpLNnnYkHQM7zv/9JPXtK587Z2xs1ktaska66ypm4AAAAAADwNRIHAPKk4GBpxAh728GD7m0A8h7DMBOJDz4oJSTYj3XsaNY5qFTJmdgAAAAAAPAHEgcA8qzOnaVu3extw4dL+/c7Ew8A512+LN17rzR0qPuxfv2k+fOlokX9HhYAAAAAAH5F4gBAnjZsmBSU7E54/rz06qvOxQPAOadPS927S+PGuR978UWzPTTU/3EBAAAAAOBvJA4A5GmNGkkDBtjbvvpK2rjRmXgAOGPfPun666WffrK3BwVJn31mFlR3uZyJDQAAAAAAfyNxACDPe+MNqWDBpH3DkJ57zrl4APjX5s1Sq1buCcPwcGnmTOmhh5yJCwAAAAAAp5A4AJDnlS/vnij44QfzC0DutmSJ1LatFBtrby9TRlq6VLr5ZkfCAgAAAADAUSQOAEDSM8+YCYTknn1WSkhwJh4AvjdxohQRIZ06ZW+vXVtavVpq0cKZuAAAAAAAcBqJAwCQuVTR0KH2tk2bpLFjnYkHgO8YhvTee9Jdd0lxcfZjrVtLq1ZJNWo4ExsAAAAAADkBiQMA+Nc990iNG9vbXn5ZOnfOmXgAeF98vPToo9ILL7gfu/VWadEiqVQp/8cFAAAAAEBOQuIAAP4VHCyNGGFvO3BA+s9/nIkHgHedO2cmB0aPdj/2xBPS5MlSgQL+jwsAAAAAgJyGxAEAJNO1q7nmeXLDhpkJBACB6/BhqUMHafZs92MffCCNHGkmDwEAAAAAAIkDAHAzfLgUlOzueO6c9NprzsUDIHv++susXbB2rb09NFSaNEl66iln4gIAAAAAIKcicQAAKTRuLN13n73tyy+lzZudiQdA1q1ebSYNdu2ytxcvLv30k9SnjzNxAQAAAACQk5E4AIBUvPmmFB6etJ+YKD33nHPxAMi86dOljh2lY8fs7VWrSj//LF1/vTNxAQAAAACQ05E4AIBUVKggPfusvW3+fGnhQmfiAZA5H38sRUZKFy/a25s2ldaskerXdyYuAAAAAAACAYkDAEjD4MFSuXLubQkJzsQDIGOJiWbS7/HHJcOwH7vxRmnZMvefawAAAAAAYEfiAADSUKiQ9NZb9raNG6Xx452JB0D6Ll6U7rxTGjHC/diAAdKsWebPNQAAAAAASB+JAwBIx333SY0a2dteekk6f96ZeACk7vhxKSJCmjTJ/dibb0r/+5+UL5//4wIAAAAAIBCROACAdAQHS8OH29v275c++MCZeAC4++cfqW1baflye3tIiPT119Irr0gulzOxAQAAAAAQiEgcAEAGIiKkLl3sbe+9Jx086Ew8AJKsWye1aiVt3WpvL1xYmjtXuvdeR8ICAAAAACCgkTgAgAy4XOasg+RvLJ87J73+umMhAZD0ww9Su3buSbzy5c3ZB127OhMXAAAAAACBjsQBAHjg6qvd31z+3/+kLVscCQfI8776SureXTp71t7esKG0Zo10zTWOhAUAAAAAQK5A4gAAPPTWW1KBAkn7iYnSc885Fw+QFxmGOdtnwAApIcF+rH17aeVKqUoVJyIDAAAAACD3IHEAAB6qWFEaPNjeNneutGiRM/EAeU1cnJkweOMN92N33CEtWCAVK+b3sAAAAAAAyHVIHABAJjz7rFS2rL1t8GBz9gEA3zlzRurRQ/r6a/djQ4ZI334rhYX5Py4AAAAAAHIjEgcAkAmFC0tvvmlvW7/efGgJwDf27zeLIP/wg709KEgaNUp67z1zGwAAAAAAeAd/ZgNAJt1/v9Sggb3tpZek8+ediQfIzf78U2rd2kzQJVeggDRtmvTII46EBQAAAABArkbiAAAyKSREGj7c3hYbK40c6Ug4QK61dKnUpo20d6+9vVQpackS6ZZbHAkLAAAAAIBcj8QBAGRBt25Sp072tnfflQ4dciYeILf5/nspIkI6dcreXquWtHq1dO21zsQFAAAAAEBeQOIAALLA5ZJGjDD/e8XZs9IbbzgXE5AbGIY5o+eOO6TLl+3HWrWSVq0ykwcAAAAAAMB3SBwAQBZdc4109932ti++kLZudSQcIOAlJEiPPSY995z7sVtukRYtkkqX9n9cAAAAAADkNSQOACAbhg41i7RekZAgDRniXDxAoDp/XoqMlEaNcj/26KPS1KlSeLj/4wIAAAAAIC8icQAA2VCpkvTMM/a22bPNwq0APHPkiNSxozRzpvuxYcOkjz+WgoP9HxcAAAAAAHkViQMAyKbnnpPKlLG3DR4sJSY6Ew8QSHbulK67TvrlF3t7aKj03XfSs8/aa4kAAAAAAADfI3EAANlUuLD05pv2tj/+kCZOdCYeIFD88ovUurWZPEiuWDHpxx+lvn0dCQsAAAAAgDyPxAEAeMGAAVL9+va2F1+ULlxwJh4gp5s5U+rQQTp61N5epYr088/SDTc4ExcAAAAAACBxAABeERIiDR9ub4uJkUaOdCQcIEf79FPp1lvdE2vXXCOtXi01aOBIWAAAAAAA4F8kDgDAS266ySzwmty770qHDzsTD5DTJCZKzz8vPfqoew2Qrl2l5culChWciQ0AAAAAACQhcQAAXuJySSNG2Au5njkjvfGGczEBOcWlS1K/ftL777sfu+8+ac4cs14IAAAAAABwHokDAPCiJk2k/v3tbZ9/Lm3b5kw8QE5w8qR0443Sd9+5H3vtNenLL6V8+fweFgAAAAAASAOJAwDwsqFDpfz5k/YTEqQhQ5yLB3DS3r1SmzbS0qX29uBgacwY6fXX7bN0AAAAAACA80gcAICXVa4sPf20vW3WLPcHp0But3691KqVtGWLvb1QIXNpogEDHAkLAAAAAABkgMQBAPjAkCFS6dL2tsGD3QvCArnVwoVSu3bSgQP29nLlzCLIN97oTFwAAAAAACBjJA4AwAeKFHEvivz776mv8Q7kNt98I910k1kcPLn69aU1a8xaIAAAAAAAIOcicQAAPjJwoFSvnr3txRelCxeciQfwNcOQ3nxTuu8+KT7efqxdO+nnn6WqVZ2JDQAAAAAAeI7EAQD4SL580rBh9ra9e6WPPnImHsCX4uKkBx6QXnvN/VifPtIPP0jFi/s/LgAAAAAAkHkkDgDAh26+WWrf3t72zjvSkSOOhAP4xNmzUs+e0pdfuh8bPNhcoit/fv/HBQAAAAAAsobEAQD4kMsljRhhbzt92lzOBcgNDh6UbrhBWrDA3u5ymbNrhg+XgvhtAwAAAACAgMKf8gDgY82aSf362ds++0zavt2ZeABv2bpVatVK+uMPe3v+/NLUqdJjjzkTFwAAAAAAyB4SBwDgB2+/LYWFJe3Hx0vPP+9cPEB2rVghtWkj/fOPvb1kSWnxYql3b2fiAgAAAAAA2UfiIItOnjypqVOnatCgQWrbtq3Kli2r0NBQFS5cWNWqVVPv3r01evRonT17NsvXOHTokEaNGqUuXbqoZs2aCg8PV4ECBVS1alV169ZN77//vn799VclJiZ68Tsz7d69Wy+99JJatWqlsmXLKiwsTBUrVlSbNm00fPhwHTx40OvXBHKzKlWkp56yt82YIS1f7kg4QLZMmSJ16SKdOGFvr1FDWrVKat3ambgAAAAAAIB3uAzDMJwOIpBs27ZNgwcP1o8//qi4uLgM+xctWlQjR47Uvffe6/E1EhIS9N///levvvqqzp07l2H/v/76S7Vq1fJ4/Iyu/eKLL+rDDz9M9/srWrSoPv74Y/Xv398r1/VUbGysKleuLEmKiYlRpUqV/Hp9IDtOnZJq1ZKOHk1qa9FCWrOGNeARGAxD+vBD6Zln3I+1aCHNmSOVKeP/uAAAAAAAgHeFOB1AoNm8ebPmzp1rawsODlatWrVUtmxZJSQkaOvWrTp+/Lgk6dSpU7rvvvv0999/66233spw/Li4OEVFRWnWrFm29lq1aqlChQoyDEP79+/Xrl275O2cT2JioqKiojRjxgyrzeVyqWHDhipdurSOHj2qzZs3yzAMnTp1SnfffbfOnTun//u///NqHEBuVbSo9Prr0qBBSW1r10qTJkl33OFYWIBHEhKkp582Cx6n1KOH9N13UsGC/o8LAAAAAAB4H++4ZlFISIh69eqlGTNm6Pjx49q2bZuWLVumlStX6ujRo5oxY4YqVqxo9R86dKhmz56d4bj9+vWzkgb58uXTkCFDtHfvXv31119atmyZli9frp07d+r48eP67rvv1KVLFwV56VXlt99+25Y06NWrl/bs2aNNmzZp8eLF2rhxo/bu3avIyEirz2OPPabVq1d75fpAXvDgg1KdOva2F16QLl50Jh7AExcuSH36pJ40ePhhado0kgYAAAAAAOQmLFWUSTNnztScOXP0yiuvqEqVKun2jYmJUcuWLa16AI0aNdKmTZvS7D9+/HjdfffdkqTw8HDNnTtX7du391rs6Tl69KiqVatmLY3Uq1cvTZ06NdWkhGEYuu222zR16lRJUps2bbRy5Uq/xMlSRcgNZs6UevWytw0bJj37rCPhAOk6elS65RazdkFK774rDRkiuVz+jwsAAAAAAPgOiQMf++KLL/TQQw9Z+zt37lTNmjXd+p05c0Y1atTQ0X8XP//iiy/0wAMP+C3OTz75RI899pgkczbFnj17bDMmUjp48KCqVq2qy5cvS5KWLFnilyQHiQPkBoYhtW9vL4xctKi0c6dUqpRjYQFudu2SbrxR+usve3u+fNLXX0t33eVMXAAAAAAAwLdYqsjHevToYdvftm1bqv0mTpxoJQ3q1aungQMH+jy25JYsWWJtt23bNt2kgSSVK1dOHTp0sPajo6N9FhuQ27hc0ogR9rZTpyQPyqAAfrN2rdS6tXvSoEgRacECkgYAAAAAAORmJA58rESJErb906dPp9rvyy+/tLb79esnl5/Xffjnn3+s7auuusqjc5L3S1nMGUD6WrSQ7rzT3vbpp+4PaQEnzJljzoo5fNjeXqmS9PPPUseOjoQFAAAAAAD8hMSBjyV/IC9JpUuXdutz8uRJ/fbbb9Z+8jf5/eXUqVPWduHChT06p0iRItZ2TEyMjh8/7vW4gNzs7belsLCk/fh46fnnnYsHkKTPPzdrGpw/b2+/6ippzRqpUSNn4gIAAAAAAP5D4sDHpk2bZm2HhISoWbNmbn1+++03JS810bhxY0nS8uXL1b9/f9WoUUP58+dXyZIl1bRpUz377LPavn27V+NMniw4c+aMR+eknD2xZcsWr8YE5HbVqklPPGFvmzZN8lOtccDGMKQXX5T+7/+kxET7sc6dpRUrpAxWsQMAAAAAALlEiNMB5Gbnzp3TJ598Yu1HRESoePHibv02btxobRcqVEihoaF64IEHNGbMGFu/S5cu6fjx41q3bp0+/PBDPf3003rvvfcUFJT9/E+lSpW0bt06SdKmTZs8Oidlv927d6tt27aZum5sbGym+h84cCBT/YGc7oUXpC+/lI4dS2p75hnzzW4/r1iGPOzyZen++6UJE9yP3X239L//SaGh/o8LAAAAAAA4g8SBDw0ePFj79u2TJLlcLr355pup9juW7IlhoUKFdP/992vixImSpODgYDVu3FjFixdXbGys/vp3AfSEhAQNHz5cBw4c0Pjx47Mda9u2bTV79mxJ0sqVK7V//35VqFAhzf6HDx+2FVSWPJ+pkFzlypUzfQ6QmxQrJr32mvT440ltv/4qTZ4s3X67Y2EhDzl1Srr1VmnxYvdjL78svfkmSSwAAAAAAPIalirykQkTJuizzz6z9p9++mk1bdo01b7J6wscPHjQShrccccdio2N1bp167R48WLt2LFD69evV/Pmza3+3377rdvMhKzo06ePgoODJUlxcXF6/PHHbcsnJWcYhh5//HFdunTJ1n727NlsxwHkRQ89JNWubW97/nkpxY8Y4HUxMVLbtu5Jg+Bg6YsvpLfeImkAAAAAAEBeROLAB1asWKEBAwZY+82aNdM777yTZv+LFy+6td15552aOHGiypUrZ2u/+uqrtXjxYjVo0MBqe+ONNxQXF5etmKtVq6b777/f2p86daqioqIUExNj67dv3z7dfvvtmjRpktsYWYkhJiYmU1+//vpr5r85IIcLDZXef9/etmePlGylM8DrNm6UWreWNm+2t4eHS7NmSQ884ExcAAAAAADAeS4jrdfKkSUbNmzQDTfcYM0iqFGjhlauXKny5cunec4TTzyhjz76yNovUKCAYmJiVLJkyTTP+fHHHxUREWHtz5s3T926dctW7OfPn1ebNm20fv16q83lcqlRo0YqXbq0jh49qs2bNyvx36qZTzzxhP773/9afT/++GMNGjQoWzFkJDY21lreKCYmRpUqVfLp9QB/MQypXTt7YeRixaSdO6V0bgVAlixaZC5PlKLGvcqUkebOlZJNbAMAAAAAAHkQMw68aPv27eratauVNKhQoYIWLlyYbtJAMusaJNetW7d0kwaS1KVLF5UpU8baX758eRajThIeHq5ly5apV69eVpthGNq0aZMWL16sjRs3KjExUUFBQRoyZIheeukl2/nFihXLdgxAXuVySSNG2NtOnpSGDnUkHORi48dLN97onjSoW9csyk3SAAAAAAAAkDjwkt27d6tz5846fPiwJKlUqVJauHChatSokeG5pUqVsu2nVQshOZfLpSZNmtiu7w1FihTR9OnTtXLlSj344IOqV6+eihQpovz586tmzZoaOHCgfv31V7333nu2os6SVKVKFa/EAORV114r9e1rbxs1ypx1AGSXYUjvvCPdfbcUH28/1qaN9PPPUvXqzsQGAAAAAABylhCnA8gNYmNj1alTJ8XGxkoyH74vWLDAVocgPfXq1bPtZzTbILV+x48f9zBaz7Rp00Zt2rRJt8+WLVus7aCgII8SHgDS98470rRp0uXL5n5cnPTCC9KUKc7GhcBy6ZK0a5e0fbv5tWOHtGmTtHate9/ISOnbb6X8+f0fJwAAAAAAyJlIHGTToUOH1LlzZ+uN//DwcM2dO1fNmjXzeIyGDRva9i9duuTRecmLKhcoUMDj63nL2mRPoBo2bOi25BKAzKteXXr8cfuyRdHR0qpV0nXXORcXch7DkPbvN5MCyRME27dLu3dL/5ajSddTT5n/Xwti/iEAAAAAAEiGxEE2HD9+XF26dNH27dslSWFhYZoxY4batm2bqXGqVKmiatWqac+ePZI8X3boSn9JKlu2bKau6Q3R0dHWdt+U66sAyLIXX5S++kpKPpHomWfM5IHL5VxccMaZM2ZCIGWCYMcO6ezZrI3pckkffCA9+aRXQwUAAAAAALkEiYMsOn36tCIiIrRp0yZJUkhIiCZPnqwuXbpkabzevXvrww8/lCQtXLgww/6HDh3Sxo0brf1WrVpl6bpZNX36dO38d+H1kJAQ3XfffX69PpCbFS8uvfqq/aHumjXmzIPbbnMsLPhQfLy0Z4/7zIEdO8xZBd5UrJj0v/9JUVHeHRcAAAAAAOQeLsMwDKeDCDTnz59XRESEVq5cKclc33/ChAnZeut+06ZNuuaaa5T479oSM2fOVM+ePdPs/+yzz2rEv2uZhIaGavfu3apQoUKWr58Zhw4d0rXXXqt//vlHkvTkk09aSQ9fi42NVeXKlSVJMTExqlSpkl+uC/jb5ctSgwbS338ntdWoIW3ZIoWFORcXss4wpCNHUl9a6O+/zXoW3launFSnjlS3rvlVp47Uvr1UuLD3rwUAAAAAAHIPEgeZdOnSJd1888366aefJEkul0tffvmlV96479+/v7799ltJUunSpfXTTz/pqquucuv3/fffq1+/fkpISJAkPfDAA/riiy9SHfObb76xxbZkyRK1b98+1b47duzQwYMH1a5duzRj/PPPP9W3b19t3rxZkrnM0pYtW1SwYEGPvsfsInGAvGTqVPe3wj/4wFyXHjnXhQvSX3+lniA4edL71wsPNxMCKRMEdepIRYt6/3oAAAAAACD3Y6miTPrvf/9rJQ0kqVixYpo0aZImTZrk0fn9+vVTv379Uj02fPhwLV++XHv37tWRI0fUsmVLDRw4UF27dlXx4sUVExOjKVOmaMaMGdY5NWvW1LBhw7L1PV2xa9cudevWTbVr11aPHj3UvHlzlS9fXvHx8YqJidH8+fM1Y8YMxf37WmypUqU0b948vyUNgLzm1lvNgsirViW1vfWWdM89UokSzsUFs/BwTIw9KXBle+9ec3aBN7lcUrVqSUmB5AmCihUpbgwAAAAAALyLxEEmnT9/3rZ/4sQJ/fDDDx6fn14tgnLlymnu3Lm68cYbtW/fPl26dEmjRo3SqFGjUu1ft25dzZkzR8WKFfP4+p7466+/9MEHH6Tbp06dOpoyZYoaNmzo1WsDSOJySf/5j9S6dVLbiRPS22+b7fC9kyfdZw1s327OKLh40fvXK1HCnhS4sl2zppQ/v/evBwAAAAAAkBoSBzlMo0aNtGnTJj333HOaOHGiW6JCkgoVKqRHH31UL7zwgop6cR2KKlWqqGXLllq7dq3SWsGqcuXKeuCBB/Tcc88pjIXWAZ9r1Urq00eaPDmp7eOPpUcfNWseIPsuX5Z27Uo9QXDkiPevFxoq1aqVeoKgZEnvXw8AAAAAACCzqHGQg509e1ZLly7V3r17dfLkSZUoUUJ169ZVmzZtFBoa6rPrnjx5UuvWrdO+fft06NAhJSYmqnz58qpbt66aN28ul8vls2tnhBoHyIt27ZLq1bMXz+3TR/JwhTTIXDrowIHU6w7s3i39WzLGqypVcl9WqG5dqWpVKTjY+9cDAAAAAADwFhIHCCgkDpBXPfOMWRg5uVWr7MsYQTp7NikhkPy/O3ZIZ854/3qFC6ded6B2balQIe9fDwAAAAAAwB9IHCCgkDhAXnX8uLm8zYkTSW3XXSetXGnWQshL4uOlf/5JfWmh/fu9f73gYHNZqNQSBOXK5b3PHwAAAAAA5H7UOACAAFCihPTKK9LTTye1rVolTZsmRUY6F5evGIZ09GjqSwv9/bdZl8DbypRJve5A9epmXQIAAAAAAIC8ghkHCCjMOEBedumS1KCBWfPgipo1pS1bAvfB9sWL0l9/pZ4gSD67wlsKFDCXEUqZIKhTRypWzPvXAwAAAAAACETMOACAABEWJr33nlkY+Yq//5ZGj5aeeMK5uDKSmCjFxrovK7Rjh7nkkLfT1y6XWYA4tcLElSpJQUHevR4AAAAAAEBuw4wDBBRmHCCvMwyztsGaNUltJUpIO3dKxYs7F5cknTqVet2Bv/6SLlzw/vWKF0+97kCtWubMAgAAAAAAAGQNMw4AIIC4XNJ//iO1aZPUdvy49M470vDhvr9+XJy5VFJqCYLDh71/vXz5zERAagmCUqUoTAwAAAAAAOALzDhAQGHGAWC67TYpOjppPzRU2rbNLOSbXYYhHTyY+tJCu3ZJCQnZv0ZKFSqkXpi4alUphBQ3AAAAAACAX/E4BgAC0LvvSjNnmjMAJOnyZenFF6XvvvN8jHPnkhIDKRMEZ854P+ZChVKvO1CnjnkMAAAAAAAAOQMzDhBQmHEAJHnqKWnkSHvbmjXStdcm7SckmAWIU1taaN8+78cUFCTVqJF6gqB8eZYWAgAAAAAACAQkDhBQSBwASY4dM9f/P3kyqa1pU6lLl6QEwc6d5mwEbytdOvW6AzVrmssmAQAAAAAAIHCxVBEABKiSJaWXX5YGD05q++MP88sb8ueXatdOPUFQvLh3rgEAAAAAAICch8QBAASwQYOkTz6R9uzJ+hhVqqRemLhyZXPpIQAAAAAAAOQtJA4AIICFhUnvvy/dfnv6/YoWTUoIJE8Q1KolhYf7J1YAAAAAAAAEBhIHABDg+vSR9u6VvvxSMozUEwSlS1OYGAAAAAAAAJ6hODICCsWRAQAAAAAAAMC3WL0aAAAAAAAAAABYSBwAAAAAAAAAAAALiQMAAAAAAAAAAGAhcQAAAAAAAAAAACwkDgAAAAAAAAAAgIXEAQAAAAAAAAAAsJA4AAAAAAAAAAAAFhIHAAAAAAAAAADAQuIAAAAAAAAAAABYSBwAAAAAAAAAAAALiQMAAAAAAAAAAGAhcQAAAAAAAAAAACwkDgAAAAAAAAAAgIXEAQAAAAAAAAAAsJA4AAAAAAAAAAAAFhIHAAAAAAAAAADAQuIAAAAAAAAAAABYSBwAAAAAAAAAAAALiQMAAAAAAAAAAGAhcQAAAAAAAAAAACwkDgAAAAAAAAAAgIXEAQAAAAAAAAAAsJA4AAAAAAAAAAAAFhIHAAAAAAAAAADAQuIAAAAAAAAAAABYSBwAAAAAAAAAAAALiQMAAAAAAAAAAGAhcQAAAAAAAAAAACwkDgAAAAAAAAAAgIXEAQAAAAAAAAAAsJA4AAAAAAAAAAAAFhIHAAAAAAAAAADAQuIAAAAAAAAAAABYSBwAAAAAAAAAAAALiQMAAAAAAAAAAGAhcQAAAAAAAAAAACwkDgAAAAAAAAAAgIXEAQAAAAAAAAAAsJA4AAAAAAAAAAAAFhIHAAAAAAAAAADAEuJ0AEBmxMfHW9sHDhxwMBIAAAAAAAAAyDnKlSunkBDvPPIncYCAcuTIEWu7ZcuWDkYCAAAAAAAAADlHTEyMKlWq5JWxWKoIAAAAAAAAAABYXIZhGE4HAXjq4sWL2rRpkySpdOnSXpt6AwS6AwcOWLNwfv31V5UvX97hiAAEGu4jALKL+wiA7OAeAiC7uI+wVBHysPz586tFixZOhwHkaOXLl/fatDQAeRP3EQDZxX0EQHZwDwGQXdxHso+ligAAAAAAAAAAgIXEAQAAAAAAAAAAsJA4AAAAAAAAAAAAFhIHAAAAAAAAAADAQuIAAAAAAAAAAABYSBwAAAAAAAAAAAALiQMAAAAAAAAAAGAhcQAAAAAAAAAAACwkDgAAAAAAAAAAgIXEAQAAAAAAAAAAsJA4AAAAAAAAAAAAFpdhGIbTQQAAAAAAAAAAgJyBGQcAAAAAAAAAAMBC4gAAAAAAAAAAAFhIHAAAAAAAAAAAAAuJAwAAAAAAAAAAYCFxAAAAAAAAAAAALCQOAAAAAAAAAACAhcQBAAAAAAAAAACwkDgAAAAAAAAAAAAWEgcAAAAAAAAAAMBC4gAAAAAAAAAAAFhIHABAFuzbt08zZszQyy+/rIiICJUsWVIul8v6Wrp0aZbG3b17t1566SW1atVKZcuWVVhYmCpWrKg2bdpo+PDhOnjwYJbG3bhxo55++mk1adJEpUqVUlhYmKpUqaKOHTtq9OjROnnyZKbG++effzRmzBjdc889atKkiUqUKKF8+fKpePHiatCgge69917NmDFDCQkJWYoXyO3y+j0kPVOmTLF9Ftn5PIDcjPuI3datW/X666+rdevWqlSpkkJDQ1W4cGHVr19fffv21eeff66dO3dm6xpAbsN9xLRlyxY999xzuu6661SmTBmFhYWpUKFCqlq1qnr27KlPPvlEp06dytLYQG528uRJTZ06VYMGDVLbtm1VtmxZ69/fatWqqXfv3ho9erTOnj2bpfGXL1+u+++/X/Xq1VPhwoVVrFgxNWrUSI899pjWrVuXpTENw9DcuXN1++23q3bt2goPD1epUqXUpEkTvfDCC9qxY0eWxo2Li9P333+vHj16qEaNGipQoIDKli2rli1b6u2339a+ffuyNK7jDACAx/744w+jXLlyhqR0v5YsWZKpcePj443nnnvOyJcvX7rjFi1a1Bg3bpzH454/f9649957DZfLle645cuXNxYsWJDheLNnzzZatGiR4fd/5atu3brG6tWrM/VZALlZXr+HZOTEiROpfj6Z/TyA3Iz7iN2JEyeMBx54IMPxJRkVK1bM9PhAbsR9xHT27FljwIABHv1dU7x48UzFDORmW7duNbp3757hz3ryn/mvv/7a4/FPnz5t9OvXL90xXS6X8cwzzxiXL1/2eNyDBw8aERER6Y6bL18+Y9iwYUZiYqLH4+7YscNo3rx5uuMWLlzYGDt2rMdj5hQkDgAgE5YsWeLRP4yZ+SU7ISHB6NWrl9s/go0aNTI6dOhgNG7c2O2X5NGjR2c47vnz541rr73Wdl5wcLDRpEkTo0OHDkbdunXdjs2ZMyfdMR999FG37zU8PNxo3Lix0aFDB6NFixZG/vz53f7hnTdvnsefB5Cb5fV7SEYeeOABrzy4AHIz7iNJ9u3bZ9SqVcs2RmhoqBX3ddddZ5QtW9Y6RuIAMHEfMYyLFy8aN9xwg1u8derUMTp27Gi0adPGKFGihNtn8tFHH3n8mQC51ZQpU9x+NoKDg426desa7dq1S/Pn5+WXX85w7Li4OKNDhw6284oUKWK0bt3aaNasmVGgQAHbsbvvvtujmE+dOmU0aNDAdm6pUqWMtm3bGldffbVbEuSVV17xaNyYmBi3RGyFChWMdu3aGQ0bNnS773355ZcejZtTkDgAgExI/kt2hQoVjFtuucV46623jK+++irLv2S/+eabtnN79epl/PPPP7Y+MTExRmRkpNUnJCTEWLVqVbrj3n///bZxH3jgAePIkSO2Plu3brX9wlyoUCHj77//TnPMK4mDokWLGg8//LCxYsUK49KlS7Y+586dM0aMGGGEhYXZxt2/f7/HnwmQW+X1e0h6li1bZv1i3alTJxIHQBq4j5iOHz9ue2BYunRp4/PPPzdOnTrl1nfPnj3GRx99ZERERHjwaQC5H/cRwxg6dKht3JtuusnYuXOnrU9CQoIxefJko3Tp0la/0NBQY/v27R5/LkBudCVxEBISYvTq1cuYMWOG27+/iYmJxowZM4yKFSvaftZmzZqV7tjPPfec2wP8c+fOWcePHj1qDBw40Nbn008/zTDmPn36WP3z5ctnfPLJJ7bZCjExMUaPHj1s486dOzfdMRMTE22JzUKFChmTJk2yzVbYtm2b0apVK9s9ZP369RnGm1OQOACATIiNjTVmzZplHDhwwNa+e/fuLP2SfeTIEaNgwYK2X7ATEhJS7ZuYmGj7RbtNmzZpjrt582ZbZvvxxx9Ps++lS5eM1q1bW33vvPPONPu+8sorxttvv22cOXMmw+/thx9+MIKCgqxxBw0alOE5QG6X1+8habl48aJRr149682f3377jcQBkAbuI6bkDxNr1aplxMbGZvzNAjAMg/tIYmKiUb58eatv69atjbi4uDT7//bbb0ZwcLDVf/DgwWn2BfKCGTNmGAMHDnRLDqZm7969tjfyGzVqlG7f5C8gpvfWf/KljMqWLWtLLqT066+/2u5tab31Hx8fb0tCNm7cON0liyZPnmz1dblcxk8//ZRqv3Pnzhl16tSx+nbv3j3NMXMaEgcA4AVZ/SX7448/tr1xk9EfvQcOHDBCQ0MzvM4zzzxj9SlRooRx/vz5dMf9/fffbf/gZfWN4ZTuuOMOa9xKlSp5ZUwgN8rr95BXX33VOv/rr7/O8ucB5GV56T6yatUq62Fivnz5jM2bN2f4fQLIWF65j+zYscP2fUZHR2f4PXbv3t3qf91112XYH0CSzz//3PYzl3J2zxXJf+arVKnitrpBcseOHTPCw8Ot/p988kmafZMnK1u1apVurFu2bLHFmt7SZ82aNbP69e3bN91x58+fbxs3UH53CRIAwDFLliyxttu2bauKFSum279cuXLq0KGDtR8dHZ3huD179lSBAgXSHbdp06aqW7euJMkwDE2bNi3D2D3Ro0cPazs2Nlbnzp3zyrgATLnhHrJlyxa99957kqR27drp3nvv9fhcANkXiPeRjz76SIZhSJLuv/9+NWzYMN2xAfhWoN1Hjhw5Yttv1KhRuuOm7JPyfADpS/5cQJK2bduWar/p06db2/fff79CQ0PTHLNEiRKKiopK9dzkLl68qPnz51v7//d//5durPXr11e7du0yHHfv3r36/fffPR43IiJC1apVy3DcnIbEAQA46J9//rG2r7rqKo/OSd5v1qxZfh03s0qUKGHbP336tFfGBWAK9HuIYRh68MEHdfnyZYWGhuqzzz7z6DwA3hNo95ETJ07Y/tju37+/R2MD8J1Au48UKlTItn/58uUMx7106ZK1Xbx4cY9iAWDy5LnAtm3btGvXLmv/xhtvzHDcbt26WdvLli3T2bNn3fosXbpU58+fz/K4c+fOTbXPvHnzrO1ChQqpbdu26Y7pcrkUERGR4bg5DYkDAHDQqVOnrO3ChQt7dE6RIkWs7ZiYGB0/ftzr427YsMGjczKS/Jd9l8ulUqVKeWVcAKZAv4d8/vnn+vnnnyVJgwcPVv369T06D4D3BNp9ZPny5dYDvAIFCqhVq1YejQ3AdwLtPlK/fn3beMuXL89w3GXLllnbGT0gBGCX/LmAJJUuXdqtT/Kf17CwMDVt2jTDcVu3bm1tx8fHa8uWLemOW716dZUtWzZT4x48eFCHDx9Od9wWLVooODg4U+Nu2rTJmj2Zk5E4AAAHJf+F9cyZMx6dkzI7n9o/jtkd9/Tp04qNjfXovPQknx7cpEkT5cuXL9tjAkgSyPeQ/fv36/nnn5ck1ahRQy+//LJH1wHgXYF2H1m7dq213aBBAwUHByshIUETJkxQRESEKlasqLCwMJUvX17t27fX+++/rxMnTnh0fQBZE2j3kXz58mngwIHW/rvvvqv9+/enOeb//vc/rVu3TpKZsHz00Uc9igWAKflzgZCQEDVr1sytz9atW63typUre/TsoHLlyrbljFJbAin5uDVr1vQo3pT9fDHuuXPnFBMT49F5TiJxAAAOqlSpkrW9adMmj85J2W/37t1+Gzcz/vjjDy1cuNDav+OOO7I1HgB3gXwPeeyxx6w3CUeNGpXhusUAfCPQ7iMbN260tsuXL6+YmBi1a9dO/fr1048//qj9+/fr8uXLOnjwoJYtW6bnn39eNWrU0HfffedRDAAyL9DuI5L0xhtv6LrrrpMk7du3T82bN9fo0aO1Z88excXF6dy5c/rll1/0wAMP6KGHHpIk5c+fX99++61q1KjhUSwAzAfkn3zyibUfERGR6nJfyWclVKlSxaOxg4KCbDVV9uzZ45VxK1SooJCQEK+Pm7JfauPmNCQOAMBByae5rly5Mt03XSTp8OHDtiJhUupv3yQfd9asWbp48WK6465fv94ti+7pWz2puXTpkgYMGKDExERJ5h/2jzzySJbHA5C6QL2HzJw503rz6LbbbvNorVEAvhFo95Fjx45Z2wkJCYqIiNCqVaskSQULFlTr1q3Vrl0721IEJ0+e1F133aX//e9/6cYAIGsC7T4imbMZFi1apIceekhhYWE6cOCAHnnkEVWvXl2hoaEqVKiQWrVqpTFjxsgwDHXo0EFLly7Vrbfemm4MAOwGDx6sffv2STKXL37zzTdT7Zf8Z7Vo0aIej598ebLUft6zMm5QUJAKFizo9XGTx5rWuDkNiQMAcFCfPn2stfDi4uL0+OOPp7nOnWEYevzxx22FuSSlWgDozjvvtLaPHTumF198Mc0YLl++rEGDBrm1pzaupwYNGqT169db+59//rnCw8OzPB6A1AXiPeTMmTNW/yJFimjkyJFpjg3A9wLtPpJ8zfP58+dr69atCg4O1jvvvKOjR49q1apVWrZsmQ4cOKDp06erTJkyVuyPPfaYNm/enGYcALIm0O4jV+TPn1+jRo3Sp59+6vZAL7lmzZrp8ccfV8uWLdPsA8DdhAkT9Nlnn1n7Tz/9dJq1C86dO2dt58+f3+NrJJ+1nHyMnDhuyhnWqY2b05A4AAAHVatWTffff7+1P3XqVEVFRbmtdbdv3z7dfvvtmjRpktsYcXFxbm1t27ZVly5drP0PP/xQDz/8sO0tPUnavn27brzxRqs4aUbjemL48OEaM2aMtf/YY4+pR48eWRoLQPoC8R7ywgsvWOsNDx06VBUqVEjnOwTga4F2H0ntjeNPP/1UL7zwgu0Pd5fLpV69emnRokXWH+qXLl3S0KFD3c4HkD2Bdh+5Yvny5apXr54GDBig06dPy+VyqV69eurYsaNatWplvUX8+++/q3fv3mrTpk1ArEkO5AQrVqzQgAEDrP1mzZrpnXfeSbN/8p/V5MsEZSR538uXL+focVP2S23cnIbEAQA4bOTIkbrmmmus/WnTpqlq1aq66qqr1KlTJ1199dWqUqWKpkyZIkl64oknbOenNS1u/Pjxqly5srX/2WefqVy5cmrWrJk6deqk+vXrq169etY0YU/HTc8333yjIUOGWPs9evTQBx98kOlxAHgukO4ha9as0ejRoyWZfzxQXBDIGQLpPpJ86QBJatmypR588ME0v7dGjRrpySeftPajo6MDYmkAINAE0n1EkubNm6fOnTtr586dkqQBAwYoJiZGW7du1aJFi7R69WodP35c0dHRKl++vCRp9erV6tixIwXXgQxs2LBBPXr0sGYW1ahRQ7Nnz7YVMk4p+QoFGS1Lllzyvil/R8hp46bsl9q4OQ2JAwBwWHh4uJYtW6ZevXpZbYZhaNOmTVq8eLE2btyoxMREBQUFaciQIXrppZds5xcrVizVccuWLas1a9bY1gaNj4/XH3/8ocWLF1vrf4aFhWnkyJHq16+fR+OmJTo6WgMHDrSmJbdv316TJ0/OVFYfQOYFyj0kLi5ODzzwgBXLZ599pqAgfhUFcoJAuY9IUqFChWz7Kc9JTfI+CQkJVk0EAN4TSPeRo0ePqn///tYbw0OGDNGYMWNsRVYlc53zyMhIrVq1SiVLlpQk7dy5U88//7xHnwmQF23fvl1du3a1lhasUKGCFi5caCXg0pL83/cLFy54fL3z58+nOkZOHDf5mGmNm9Pw1xoA5ABFihTR9OnTtXLlSj344IOqV6+eihQpovz586tmzZoaOHCgfv31V7333ntuU3OrVKmS5rgVKlTQihUrNGfOHPXv3181a9ZUwYIFVbBgQdWrV09PPvmkNmzYoCeeeEJHjx71eNyU5s6dqzvvvFMJCQmSzLf/Zs+enak1BAFkXSDcQ8aMGWOtLf7II4+oefPmXvruAXhDINxHJKlUqVK2/bTWSk6ufv36tnWFd+/eneE5ADIvUO4jX3zxhY4fPy7JTEy88cYb6X5f1apVs9VXGDt2LDOXgFTs3r1bnTt31uHDhyWZ/2YvXLhQNWrUyPDcK8k5STpw4IDH1zx48GCqY2Rn3DNnztge8ntr3OSxpjVuTsNroACQg7Rp00Zt2rRJt8+WLVus7aCgII/+YO7evbu6d+/u8bhlypTxOHGwePFiRUVFWW/sNG7cWAsWLAiI7DmQ2+Tke8ihQ4es7U8++USffPJJhte9okOHDtZ21apVtWfPHo/PBZA5Ofk+Ikn16tXTrFmzrH1P/uh2uVwqXry49UbglQeGAHwjp99HfvrpJ2u7a9euCgsLy/Dat9xyi5555hlJZr2UtWvXqmPHjhmeB+QVsbGx6tSpk1XLrEiRIlqwYIEaNGjg0fl169a1tvfu3evROefOnbP9m558jORtc+bMydS4KWuZpDXulZeisjKuy+VSnTp1PDrPScw4AIAAs3btWmu7YcOGXntAn3zca6+91qNzfv75Z/Xs2dNaq6927dpauHChihcv7pWYAHhfTrqHAAhMTt5HGjZsaNu/sn5yRpKvK5x89gEAZzh5H9m3b5+1nbx+QnpS9kv55jCQlx06dEidO3e2ZvSFh4dr7ty5atasmcdj1K9f39o+cuSIR2/xr1+/Ps0xUmv7888/FR8fn+G469ats7aDg4NVu3btdMdNGYcn41aqVCkgXrYkcQAAASY6Otra7tu3r1fGvHjxopWF93Tc3377TTfddJPOnTsnyXwLeNGiRSpbtqxXYgLgG07dQ8LDw1WyZEmPvlImH4sUKWIdK1GihFdiBpB1Tv4u0q5dO9u+J8sOnTp1ylbMlN9VAOc5eR9JXqA1q2uTJy+MCuRlx48fV5cuXbR9+3ZJZr2RGTNm2OqSeKJly5a2n80VK1ZkeE7yPpUqVUp1SaTrr7/e2j5//rz++OOPTI3bqlWrVIs6Jx/3r7/+ss2u9mTclL/P5FQkDgAggEyfPl07d+6UJIWEhOi+++7zyrijR4/W2bNnJUklSpTQrbfemm7/zZs3KyIiQqdPn5Zkrju6aNEij9/YAeAMJ+8hzz33nI4ePerRV8pf6GfOnJnmMQD+5fTvItWqVVOTJk2s/YULF2Y49qJFi2QYhrXfqlWrbEYLIDucvo9UqFDB2v7tt988Gvv3339Pcwwgrzp9+rQiIiK0adMmSebP8+TJk9WlS5dMj1W4cGHb8qQTJkzI8JyJEyda2z169Ei1T506dWxLDWU07uXLl22JzZ49e6bar3379ipSpEiqsaTm0KFDWrRoUYbj5jQkDgAgQBw6dEhPPfWUtT9o0CCVL18+2+Nu377dVhDs1VdfTbeo8Y4dO9S5c2drLcErBY9q1qyZ7VgA+E5OuYcACFw55T4yYMAAa3v8+PG2ZUdSSkxM1LBhw6z9Ro0aeVSkEYBv5IT7SPI3hVeuXOnRSwkffvihtV24cGGPajIAudn58+fVvXt3K/kWFBSk8ePHZ+uB+L333mttz50717a0T0qzZs2yEhaSdM8993g07tdff53u7w2fffaZVbw9NDRUd9xxR6r9Uh4bOXKklbhMzfvvv28tk1SqVKkM67XkGAYAINt2795tSLK+lixZ4vG527dvN5YtW5Zun82bNxuNGjWyxq9SpYpx9uzZdM9Zu3atsW7dunT7rFy50qhUqZI1bosWLYyEhIQ0++/Zs8eoXLmy1b9YsWIZXgNAxvLKPcRT2fk8gLwqL91HLl++bNSoUcM659prrzVOnDjh1i8hIcEYNGiQ7XOZMGFCumMDeVleuY/s2rXLyJcvn9W/evXqxo4dO1Ltm5iYaLzwwgu2z+WRRx5JNx4gt7t48aLRuXNn62fC5XIZX331VbbHTUhIsN0j6tevb+zfv9+t35YtW4xy5cpZ/bp3757uuGfPnjXKlClj9W/Xrp1x+vRpt34rVqwwChYsaPV79NFH0x137969RlhYmNX/tttuMy5fvuzWb8qUKUZQUJDVb/jw4Rl8EjmHyzCSzdkEAGSoa9euWr58ua3NMAxdvnzZ2s+XL5+CguyTutq1a6cff/zRbbwFCxaoW7duql27tnr06KHmzZurfPnyio+PV0xMjObPn68ZM2YoLi5OkpmdXrp0qVtxwJQ+++wzPfzww7r66qvVvXt3NWnSRGXKlNGFCxe0Z88ezZo1S/Pnz7em7tesWVPLly9Pd9rtTTfdpPnz51v7NWvWVK1atdKNI7lhw4bpqquu8rg/kBvl5XuIp/bs2aPq1atb+0uWLFH79u2zPS6QW3AfkZYtW6auXbta33O5cuX06KOPWmskb926VWPGjLG9SRwZGWlbfgDIy/L6feTFF1/Uu+++a+0XKFBA/fv3V+fOnVWuXDldvHhRmzZt0tixY7Vx40arX/ny5bVu3TpqpSBPGzZsmIYMGWLtFy9eXC1btvT4/H79+qlfv36pHluzZo3at2+vS5cuSTLrEj322GNq0aKF4uLitHz5cn322WfWssklS5bUL7/8kuEKCNOnT1dkZKR1r6hRo4Yee+wxNW7cWGfPntUPP/ygr776yrpuzZo19csvv6hkyZLpjjty5EjbLKqrr75aDz/8sOrUqaNjx45p+vTp+v7775WYmCjJXC5x6dKlCgsL8+CTygEcSlgAQMC64YYbbG+cePp1ww03pDre/PnzPR6jTp06xoYNGzyKc/To0R6P26JFC2Pv3r0++96vfPHWMJC37yGeYsYBkD7uI6bvvvvOyJ8/v0fj9+zZM8M3m4G8JK/fRxITE40HHnggU9975cqVjfXr13v6EQO51muvvZal+8eVr9deey3d8SdNmmR7kz+tr6JFi2Y40ym5Dz74wPbmf1pfFSpUMLZs2eLxuE8++aRH33f9+vWNAwcOeDxuTkCNAwBwWJUqVdSyZUu5XK40+1SuXFlvvvmmNm7c6PEb+/Xr11fjxo3T7VO3bl19/PHHWrNmDYWNgQDFPQRAdgXqfaRv3776/fff1aVLF7e3oq+oUqWKPv/8c02fPl0FCxbM1PgAPBdo9xGXy6UvvvhCM2fOVOvWrdPtW7x4cQ0ePFgbN27U1Vdf7dH4ALKuT58+Wrt2rdq3b5/qPSU4OFg9evTQhg0b1K5dO4/Hfeqpp7RkyZI0a5SEhYXp7rvv1saNG1W/fn2Px/3www81depU1alTJ9XjhQsX1hNPPKHffvtN5cqV83jcnICligAghzh58qTWrVunffv26dChQ0pMTFT58uVVt25dNW/ePN1fwtNz5MgRrVu3TgcOHNChQ4cUEhKi8uXLq3HjxmrUqJGXvwsATuEeAiC7Avk+sn//fv3888/at2+fLl26pNKlS6tJkya65pprshw3gMwL1PvIgQMH9MsvvygmJkanT59WWFiYSpYsqcaNG+vqq69Wvnz5sn0NAJm3e/durVmzRvv27VNwcLAqVaqk66+/PtsP4Lds2aI//vhD+/fvV4ECBVSpUiV16NBBxYoVy9a4v/32mzZv3qyDBw+qSJEiqlq1qjp06KDw8PBsjesUEgcAAAAAAAAAAMDCUkUAAAAAAAAAAMBC4gAAAAAAAAAAAFhIHAAAAAAAAAAAAAuJAwAAAAAAAAAAYCFxAAAAAAAAAAAALCQOAAAAAAAAAACAhcQBAAAAAAAAAACwkDgAAAAAAAAAAAAWEgcAAAAAAAAAAMBC4gAAAAAAAAAAAFhIHAAAAAAAAAAAAAuJAwAAAAAAAAAAYCFxAAAAAAAAAAAALCQOAAAAAAAAAACAhcQBAAAAAAAAAACwkDgAAAAAAAAAAAAWEgcA/r+9e4+qqsz/OP45gChIaoYIIqmYooC2SrTMZYXjJbHBFWVZGoYXbM10wdbKGZvKpKyZHCezaRpLxcTUrHQss0anMu8opZaEaIAX8IYIKopX9u+PlvvHBg7sg8gxer/WYq393ef5Pvt7jueP4svzPAAA4BrncDjMn7vvvtvd5fzmjBs3zvz8hw0b5u5yUA/++te/mv/mPXv2lGEY7i4JAACgXtE4AAAAAAAn0tPTNXfuXEmSl5eXpk6d6uaKUB+eeuopBQUFSfrlO5CSkuLmigAAAOoXjQMAAADARXv37rWsArhaPy+99JK73+pvXlJSksrKyiRJ8fHx6ty5s5srQn3w9fXVc889Z8bPPfecTp8+7caKAAAA6heNAwAAAACowsqVK7VhwwZJv2wXNXHiRDdXhPo0ZswY+fv7S5KOHDmit956y80VAQAA1B8aBwAAAABQhRdffNG8jo2NVVhYmBurQX3z8fHRE088YcbTpk3TqVOn3FgRAABA/XEYnPIEAAAAuOTs2bNav369rbGrVq3StGnTzLh79+6aPn26rdzQ0FCFhobWqkZcmf/9738aMGCAGX/55ZcaNGiQGyuCOxw8eFA33nijLl26JEl64403lJSU5N6iAAAA6gGNAwAAAOAqmjdvnhISEsz4rrvu0po1a9xXEGz5/e9/rxUrVkiS2rVrp5ycHHl4sGD7t6j8d6Fjx47avXs33wUAANDg8V87AAAAAFDOvn37tHLlSjMeMWIEvyj+DYuPjzevs7OztWrVKjdWAwAAUD/4r18AAAAAKGfhwoUqKysz47i4ODdWA3cbPHiwGjdubMYLFixwYzUAAAD1w8vdBQAAAACoPyUlJVq/fr0OHDiggoICNW/eXLfeeqtuv/12ORyOanPz8vK0ceNG7d+/X5cuXVJgYKD69Omjm266qU5q279/v9LT03XkyBEVFRWpefPm5jMCAwPr5Bl2LFy40LwODg5Wjx496u3ZtWUYhn744QdlZmbq6NGjOn36tPz9/dW2bVv17dtXfn5+VzR/SUmJMjIytGvXLhUWFqq0tFTNmzeXv7+/br31VnXu3LmO3onVzp07lZmZqUOHDqmkpEStW7dWfHy8GjVqVOX40tJS7dixQz/99JOKiopUWloqHx8fNWvWTO3bt1eXLl0UEhLiUg1+fn763e9+Z65C+c9//qMzZ87I19f3it8fAADANcsAAAAAcNWkpKQYksyfu+66y+U5XMkfNWqUZXxubq5hGIaRl5dnjB492vDz87O8fvmnY8eOxmeffVblnNu2bTMGDhxoOByOKnP79u1r/Pjjjy6/L8MwjHPnzhkzZswwwsPDq5xbkuFwOIyoqChj+fLltXqGK/bu3Wt59siRI2vMWbRokSVn3LhxtXr2hAkTLPP861//qjHn6NGjxoQJE4ygoCCnn5+3t7cRGxtr7Nixw6V6srKyjJdeesm4/fbbDS8vL6fzSzICAwONKVOmGMePH7c9/zfffGOZY/LkyYZhGMaFCxeMmTNnGhEREVU+q6ioqNJce/bsMR599FGjadOm1dYpyWjTpo2RkJBgbNq0yXat06ZNs8zx+eef284FAAD4NWKrIgAAAKCB27Rpk26++WbNnTtXJSUlVY7Jzs5WbGys3nrrLcv9OXPmqFevXlq1apUMw6gyd926derdu7c2bNjgUl1paWnq0qWLkpKS9NNPPzkdZxiG0tPTNXToUMXGxur06dMuPccV//3vfy3xXXfdVWNOXFycWrVqZcaLFy92ucZz585p/vz5Zuzr66sRI0ZUmzNnzhx17NhRb7zxhg4dOuR03Pnz5/Xpp5/qlltuUXJysq16VqxYobCwML300kvavHmzLl68WO34w4cPa/LkyerWrZu2bt1q6xlVKSoqUnR0tJ566illZGTYyklNTVVkZKRSU1Ntfe4HDx5USkqK/vnPf9quq+L34Msvv7SdCwAA8GtE4wAAAABowPbs2aOYmBgVFhZKkry8vBQWFqaePXsqODjYMtYwDCUlJWndunWSpEWLFmncuHG6cOGCJKlp06aKiIhQjx49dP3111tyS0pKdN9996moqMhWXZ999pmio6OVm5true/t7a2wsDD16tVLXbp0kZeXV6W8fv366ezZs/Y/BBdcfu+XRUVF1Zjj7e2thIQEMz516pQWL17s0nOXLVtm/htJ0kMPPaRmzZo5Hf/CCy9o7NixOnXqlOV+s2bNFBERoV69eql9+/aW18rKyjR58mQ9/fTTNdZT1efr4+Ojzp07q0ePHoqKilKHDh0qHRqdn5+vu+++W5mZmTU+o6KLFy8qNjZW69evN+9df/316t69u7p3767mzZtXylm9erVGjRqlc+fOWe77+voqPDxct99+u2655Ra1b9/+ig64vvnmmy3fxbVr19Z6LgAAgF8DGgcAAABAA5aYmKji4mK1aNFCM2bMUEFBgXbt2qUtW7YoLy9PaWlp6tatmzm+rKxMzzzzjLKzszV27FgZhqHOnTtr6dKlOn78uHbu3Kn09HQVFBToww8/VIsWLczcgoICvfLKKzXWlJGRoYceekilpaXmvb59+2rFihU6ceKEdu3apbS0NGVmZur48eN699131bp1a3Psli1bNGHChLr5gCr47rvvzGtPT0917drVVl5iYqLljIj33nvPpedWHD9u3DinY1NSUiyfs8PhUHx8vLZu3aqioiLt3LlTaWlpys3NVX5+viZNmmQ5E2DmzJlasmRJjTV5enpqyJAhmjVrlvbs2aOSkhJlZWUpPT1dW7duVU5OjoqLi7VgwQLLGQdnzpzRI4884nSFijOzZ882mwb9+/fXhg0bdOzYMe3YsUM7duxQUVGRVq9eLR8fHzMnKSnJ8pzo6GitWbNGJ0+eVEZGhjZt2qTvv/9eubm5Kikp0caNG/X8888rNDTUpdq8vb0t7zEjI+OqNa8AAACuCe7cJwkAAABo6Nx9xoEko3Xr1kZGRobTnIKCAiMgIMCS07VrV/P8gpMnTzrN/frrry15rVq1Ms6fP+90/IULF4zIyEhLzpQpU4yysrJq31deXp7RqVMnS973339fbY6rzp49a3h4eJjzh4aGupQ/YMAAS30//PCDrbzs7GzL+RERERHVjvX19TXH+vj4GCtXrqzxGd9++63h4+Nj5gUEBBilpaVOx+fk5Bh79+61Vb9hGEZpaakRExNjef811VXxjIPLP0lJSbaemZGRYcmLjo42Ll26ZCv30qVLRlZWlq2xl8XFxVmel56e7lI+AADArwkrDgAAAIAGbt68eQoPD3f6ur+/v5555hnLvczMTLVs2VJLlizRdddd5zQ3OjpaAwcONOOCggKlp6c7Hf/xxx9r586dZjx+/Hi9+OKLlr/Wr0pwcLA++eQTy3Yz06dPrzbHVfv371dZWZkZt23b1qX88ePHW2K7qw5mz55t+av56lYbvP766zpz5owZz507V4MHD67xGXfeeaf+/ve/m/HRo0e1YMECp+M7dOigdu3a1TjvZU2aNFFqaqplO6GUlBTb+Zfdcccd+sc//mFr7O7duy3x+PHjbW9H5OHhYVlBYEebNm0s8d69e13KBwAA+DWhcQAAAAA0YHfccYfuueeeGsfFxsZWuveHP/xBgYGBNeYOHTrUEm/bts3p2BkzZpjXvr6+eu2112qc/7Ju3bpZnrV8+XJdunTJdn5NDhw4YImDgoJcyh86dKglZ8GCBTVuZ3Px4kXNmzfPjBs3bqxHH320yrHHjx+3HKDcu3dvDR8+3HZ948aNU0BAgBl/8skntnPtaNmypaWJsXHjRpfnSE5OrrGJdFn5ra4kWbZjuhoqfh8qfl8AAAAaEhoHAAAAQAM2bNgwW+M6d+4sb29vy70HHnjAVm75MxKkX/5yvyqFhYXasmWLGd97772VDlmuSfnVDSUlJdU2KVx14sQJS+zn5+dSvpeXl0aPHm3GRUVF+vjjj6vN+fzzz3Xo0CEzvv/++9WyZcsqx65Zs8byy3JnDQZnGjVqpOjoaDPeuHGjZYVFXejQoYN5nZ+fr4KCAtu5rVu3Vr9+/WyPr7gC4IMPPrCdWxsVvw8Vvy8AAAANCY0DAAAAoAHr0aOHrXGenp6WbWYaNWqkyMhIW7k33HCDJT558mSV49avX2/ZkicqKsrW/OXdeOONljgzM9PlOZwpvwWQJMshvHYlJiZatsupabsiVw5FXrdunSW+0s/v5MmTys/PrzGnuLhYc+bMUUJCgm699VYFBQWpadOmcjgclX4qriA5duyY7dqioqJsrzaQpNtuu03NmjUz46VLl+rBBx/Ujz/+aHsOV/j6+lri06dPX5XnAAAAXAtoHAAAAAANWKtWrWyPLf+L0ZYtW8rT09PlPKnyFjKXVfwl/8SJE6v85XN1P0OGDLHMcfz4cVs11kb5JoddN954o2W7nrVr11bai/+yvLw8ffnll2bcqVMn3X333U7nrvj59erVy+XPb9q0aZY5qvv8Tp8+rYkTJyowMFBjx47VvHnztG3bNh0+fLhSk8WZ4uJiW+Mk62oFO5o0aaI//elPlnsfffSRunfvrvDwcCUlJWnZsmU6fPiwS/M6U5vvAwAAwK8VjQMAAACgAWvSpEm95knOf8FaWFhY6zmdqcvtYio2QGo6n8CZiockz549u8pxKSkpljMaxo4dW+289fn5HTt2TL1799a0adN07ty5Ws/vSm751QN2TZo0SYmJiZXuZ2Zm6s0331RcXJyCgoLUpUsXPf3000pLS3P5GZdVbIg1bdq01nMBAABc67zcXQAAAACA3wZX/vrcrrrco79FixaW+NSpU7WaJyYmRiEhIebhue+//76mTp1qOby3rKxMc+bMMeNGjRrpscceq3be+vz8hg0bVmnLn5CQEEVHRys8PFxt27aVn5+ffHx8LFszzZ8/X6mpqbWqpTaHGzscDs2aNUtxcXF65ZVXtH79+irHZWVlKSsrSzNnzlSfPn00Y8YMl7d6KikpscTlt/YCAABoaGgcAAAAAKgXFf+iPykpqdLWQ64KDQ29ovzyQkJCLHH5Q4td4enpqbFjx2ry5MmSpKNHj2r58uWWw6ZXr16tffv2mXFsbKwCAgKqnbfi55eSkqK2bdvWqsbLbr755kr3Pv30U61Zs8aMr7vuOr3zzjt6+OGHLU2Cqnz11VdXVE9tDRo0SIMGDVJubq5WrVqlNWvWaO3atTp48GClsRs2bFCfPn20YMEC24eHS6o0V8XzNgAAABoSGgcAAAAA6oW/v78lDgoKUv/+/d1UTWUhISHy8PAw/wo/Ly+v1nONHTtWL7/8si5evCjpl0OQyzcOKm5fVN2hyJdV/PzCw8PVq1evWtfozOLFiy3xrFmz9PDDD9vKvZpnTtjRoUMHjR8/3twuKicnR1999ZWWLl2qVatWmf+258+fV3x8vG677TbbDYCKjYP27dvXae0AAADXEs44AAAAAFAvKh5++/PPP7upkqo1btxYYWFhZrx///5an3PQpk0b3XvvvWa8evVq7d27V9L/r0C4rH379ho4cGCNc9bX57d582bz+oYbbtCDDz5oOzcjI+NqlFRroaGhGjdunL744gvt2LHDskLl7Nmzevvtt23PtWvXLvPay8tL4eHhdVorAADAtYTGAQAAAIB6ER0dbYm//vprN1XiXI8ePczrS5cu6aeffqr1XI8//rh5bRiGeabB+++/rwsXLpivjRkzRg6Ho8b56uvzO3LkiHl90003ydPT01beyZMn9d13312VmupCZGSk3n33Xcs9Z2ciVHTu3Dnt2bPHjCMiIq7oAHEAAIBrHY0DAAAAAPUiODhYkZGRZpydna0vvvjCjRVV1rdvX0t8Jb8IHzhwoGWVQEpKii5evGg5FNnT01MJCQm25uvfv7+8vP5/t9nFixersLCw1vU5YxiGeX3+/HnbeXPnzq31Co360qdPH0t87NgxW3k7duwwt52SpDvvvLNO6wIAALjW0DgAAAAAUG+effZZS5yUlKQTJ064qZrKBg0aZInXrl1b67kcDocSExPNOD8/X3/+85+VlZVl3ouJiVFwcLCt+Vq3bq1HH33UjE+fPq0//vGPta7PmcDAQPM6IyNDxcXFNebk5+drypQpdV5LXavYKLj++utt5X377beWuOL3BAAAoKGhcQAAAACg3owYMUIRERFmvHv3bg0ePLjSwbPVuXDhgt5//3397W9/q/P62rVrZ6nvm2++uaL5Ro8erUaNGpnx9OnTLa/bORS5vOeff16+vr5m/OGHH2r8+PEurQw4fvy4XnnlFX322WdVvn7HHXeY1+fPn9ekSZOqna+goED33nuvrQZDXXrzzTf19ttv68yZM7Zzpk2bZonLb01VnTVr1pjXvr6+lbaNAgAAaGhoHAAAAACoN56envrkk0/UvHlz896mTZsUGRmpyZMna/fu3VXmHTlyRCtWrND48eMVHBysxx57TJmZmVelxkceecS8zs/PV3p6eq3nCggI0H333Vfla8HBwYqJiXFpvtDQUMtWR5L07rvvqlu3bnrvvfcs5xNcZhiGsrOzlZqaqri4OLVt21YvvPCC022O4uPjLfG///1vjRo1Svv27bPcP3XqlObMmaPu3btr+/btkqSuXbu69H6uRG5urp544gm1adNGo0aN0rJly3To0KEqx27fvl3Dhw/XzJkzzXseHh4aPXp0jc8pKSmxnCcxdOhQS/MGAACgIfKqeQgAAAAA1J2wsDAtW7ZM999/v4qKiiRJRUVFSk5OVnJysvz9/RUYGKimTZvq5MmTOnbsmAoKCuqtvhEjRuj555839/pfunSpoqKiaj3f448/riVLllS6n5CQYPvg4fKGDx+ugwcP6tlnn1VZWZmkX1ZuJCYmKjExUSEhIfL395eXl5eKi4t1+PBhnTp1yvb8AwcOVExMjFauXGnemz9/vubPn6/Q0FC1atVKxcXFys3Ntax0eOSRR9SpU6d637LoxIkTZn2S1KpVKwUEBOi6667T2bNntXfv3ipXQ0ycONHWioMvvvjCcnbDyJEj66x2AACAaxUrDgAAAADUu+joaG3dulU9e/as9NqxY8e0c+dOpaWlKTMzs8qmgcPhUEhIyFWprV27dpaVAAsXLjR/QV8b0dHR6ty5s+Wew+HQmDFjaj3nM888o5UrVyooKKjSawcOHNC2bdu0detW7dmzp8qmQePGjRUQEOB0/g8++EC9evWqdD8nJ0dpaWnKysqyNA2GDx+ulJSUWr6bulVQUKCMjAxt3rxZ27dvr9Q08PT01IsvvqjXXnvN1nypqanmdYcOHXTPPffUZbkAAADXJBoHAAAAANyiY8eO2rJliz799FP169dP3t7e1Y739PRU7969lZycrJ9//lkvv/zyVastKSnJvN63b59Wr159RfMlJCRY4gEDBqh9+/ZXNOegQYOUk5OjmTNnqnv37nI4HNWO9/Pz05AhQ/TOO+/o0KFD1W6T1KJFC61du1YvvPCCZVupiiIiIrRw4UItWrSoxn+/upacnKzFixdr5MiRtppIfn5+GjlypLZt22Z7VcShQ4csKy+efPJJeXjwv9EAAKDhcxiX198CAAAAgBudOXNGmzdv1oEDB1RYWKjS0lL5+fnJ399fYWFh6tq1q5o2bVpv9URFRem7776TJMXGxmr58uW1nis+Pt7yl+sfffSRHnjggSuusbyCggKlpaXp8OHDKiwsVFlZmZo1a6bAwEB17dpVnTp1shzUbNfZs2e1adMmZWZmqqioSN7e3mrTpo169uxZaSWFO+Xn52vXrl3Kzc1VUVGRzp07J19fX91www2KiIhQt27d1LhxY5fmTE5O1uTJkyVJLVu2VG5urpo1a3Y1ygcAALim0DgAAAAAgCqsXLlSQ4YMkfTL1kKZmZkKCwtzeZ7i4mK1adNGpaWlkn45MDkvL69Wv8RH/SktLVW7du3MrbJeffVVTZo0yc1VAQAA1A/WWAIAAABAFWJiYtSnTx9JkmEYev3112s1T2pqqtk0kH7ZtoimwbVv7ty5ZtMgICBATz75pJsrAgAAqD+sOAAAAAAAJ9LT03XbbbeprKxMXl5eysjIcGl7ngsXLigsLEy5ubmSJA8PD2VnZ1/x+Qa4ukpLS3XTTTfp4MGDkqTZs2df0WHWAAAAvzasOAAAAAAAJ6KiojR69GhJ0sWLF/WXv/zFpfypU6eaTQNJiouLo2nwK/Dmm2+aTYMePXpUOtwaAACgoWPFAQAAAADUgZycHOXk5MgwDB08eFDLly/XsmXLzNc9PT21fft2RUZGurFKAAAAoGZe7i4AAAAAABqC+fPna8qUKU5fnzBhAk0DAAAA/CqwVREAAAAAXGWxsbF69dVX3V0GAAAAYAsrDgAAAACgjnl4eKhFixa65ZZb9Nhjj2nEiBFyOBzuLgsAAACwhTMOAAAAAAAAAACAia2KAAAAAAAAAACAicYBAAAAAAAAAAAw0TgAAAAAAAAAAAAmGgcAAAAAAAAAAMBE4wAAAAAAAAAAAJhoHAAAAAAAAAAAABONAwAAAAAAAAAAYKJxAAAAAAAAAAAATDQOAAAAAAAAAACAicYBAAAAAAAAAAAw0TgAAAAAAAAAAAAmGgcAAAAAAAAAAMBE4wAAAAAAAAAAAJhoHAAAAAAAAAAAABONAwAAAAAAAAAAYKJxAAAAAAAAAAAATDQOAAAAAAAAAACAicYBAAAAAAAAAAAw0TgAAAAAAAAAAACm/wO7Wb8tRaBN8AAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "image/png": { + "height": 575, + "width": 775 + } + }, + "output_type": "display_data" + } + ], + "source": [ + "# find the last year of the dataset\n", + "last_year = ds_long['time.year'].max().item()\n", + "\n", + "# filter the last 30 years\n", + "ds_30y = ds_long.sel(time=slice(str(last_year-30+1),str(last_year)))\n", + "\n", + "# calculate the mean temperature for each year\n", + "mean_time_dim = ds_30y['t2m'].resample(time=\"Y\").mean(dim=\"time\")\n", + "\n", + "# apply cosine of latitude as weights to the dataset variables\n", + "weights = np.cos(np.deg2rad(mean_time_dim.latitude))\n", + "weighted_mean_time_dim = mean_time_dim.weighted(weights)\n", + "\n", + "# calculate the global mean in degrees celsius\n", + "weighted_global_mean_temp = weighted_mean_time_dim.mean(dim=[\"longitude\",\"latitude\"])\n", + "weighted_global_mean_temp_c = weighted_global_mean_temp - 273.15\n", + "\n", + "# calculate the trend line\n", + "years = weighted_global_mean_temp_c['time'].dt.year.values\n", + "annual_temperature = weighted_global_mean_temp_c.values\n", + "trend_coefficients = np.polyfit(years, annual_temperature, 1)\n", + "trend_line = np.poly1d(trend_coefficients)\n", + "\n", + "# draw data\n", + "plt.plot(years, annual_temperature, color=\"blue\", label=\"ERA5 Reanalysis - annually resampled\")\n", + "plt.plot(years, trend_line(years), color=\"red\", linestyle=\"--\", label='Trend line')\n", + "\n", + "# aesthetics\n", + "plt.xlabel(\"Time (years)\")\n", + "plt.ylabel(\"Air temperature at 2m (K)\")\n", + "plt.legend()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "execution": {} + }, + "source": [ + "## ERA5-Land hourly data from 1950 to present \n", + "This [ERA5 Reanalysis dataset](https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview) of hourly data has an increased spatial resolution and focuses on the land variable evolution over the last decades. It is updated regularly by ECMWF and accessible via the CDS API (cf. [`get_ERA5_reanalysis_data.ipynb`](https://github.com/neuromatch/climate-course-content/blob/main/tutorials/W1D2_StateoftheClimateOceanandAtmosphereReanalysis/get_ERA5_reanalysis_data.ipynb)). A similar dataset of lower temporal resolution, i.e. monthly averages can be found [here](https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-means?tab=overview).\n", + "\n", + "Depending on your research question it is essential to choose an adequate frequency, however, due to the huge amount of data available, it might become necessary to focus on a regional subset of the ERA5 dataset.\n", + "\n", + "In the following, we show how we downloaded global ERA5-Land data via the CDS API to answer **Q2** by calculating global temperature trends. Please note that the API request serves as an example and the downloading process should not be triggered if not necessary. Please think about an adequate frequency and domain of interest beforehand, to request a subset that is sufficient to answer your questions." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": {} + }, + "outputs": [], + "source": [ + "import cdsapi\n", + "\n", + "c = cdsapi.Client()\n", + "\n", + "# Uncomment the following block after adjusting it according to your research question\n", + "# and after successfully working through the `get_ERA5_reanalysis_data.ipynb` notebook.\n", + "\n", + "#c.retrieve(\n", + "# 'reanalysis-era5-land',\n", + "# {\n", + "# 'variable': '2m_temperature',\n", + "# 'year': ['1974', '1975', '1976', '1977', '1978',\n", + "# '1979', '1980', '1981', '1982', '1983',\n", + "# '1984', '1985', '1986', '1987', '1988',\n", + "# '1989', '1990', '1991', '1992', '1993',\n", + "# '1994', '1995', '1996', '1997', '1998',\n", + "# '1999', '2000', '2001', '2002', '2003',\n", + "# '2004', '2005', '2006', '2007', '2008',\n", + "# '2009', '2010', '2011', '2012', '2013',\n", + "# '2014', '2015', '2016', '2017', '2018',\n", + "# '2019', '2020', '2021', '2022', '2023'],\n", + "# 'month': ['01','02','03','04','05','06','07','08','09','10','11','12'],\n", + "# 'day': '15',\n", + "# 'time': '12:00',\n", + "# 'grid': ['0.4', '0.4'],\n", + "# 'format': 'grib',\n", + "#\n", + "# },\n", + "# 'reanalysis-era5-land_1974_2023_04x04.grib')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "execution": {} + }, + "source": [ + "As you can see in the request code block, we downloaded the 2m_temperature / $\\text{t2m}$ variable from the *reanalysis-era5-land* at noon on every 15th of the month in the last 50 years. In other words, the requested data is not averaged over the whole month but just a sample. To reduce the resolution, we chose a grid of 0.4° in both spatial dimensions. As we want to calculate global trends over the whole time period, this choice should be adequate and save us a few computational-intensive averaging calculations. Furthermore, it helps to emphasize how the downloaded data looks like. \n", + "\n", + "The output is given as a file named `reanalysis-era5-land_1974_2023_04x04.grib` in the [`grib`](https://confluence.ecmwf.int/display/CKB/What+are+GRIB+files+and+how+can+I+read+them) format, which needs a small addition in the known file reading method [`xr.open_dataset(path, engine='cfgrib')`](https://docs.xarray.dev/en/stable/generated/xarray.open_dataset.html#xarray.open_dataset), check out [this resource](https://docs.xarray.dev/en/stable/user-guide/io.html#grib-format-via-cfgrib) for more information. Additionally, we get an `idx` file that is experimental and useful if the file is opened more often but can be ignored or deleted.\n", + "\n", + "Again we uploaded these files to the OSF cloud for simple data retrieval, and we converted the file format to `.nc` (NetCDF) as an additional option. The following lines help to open both file types.\n", + "\n", + "***Note that the frequency of our example file `reanalysis-era5-land_1974_2023_04x04.grib` is monthly and not daily, hence no further question of the template can be answered by using it. Please increase the frequency and spatial resolution, and reduce the domain of interest when downloading the data to allow for investigations of regional heatwaves.***" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": {} + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'https://osf.io/download/6d9mf/' to file '/tmp/reanalysis-era5-land_1974_2023_04x04.grib'.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The file reanalysis-era5-land_1974_2023_04x04.grib does not exist locally and has to be downloaded from OSF.\n", + "Downloading the data ...\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: 91297515da329e89e4035e8e94734046ea2003259a29f10bc13069cce3654cc7\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Size: 974MB\n", + "Dimensions: (time: 600, latitude: 451, longitude: 900)\n", + "Coordinates:\n", + " number int64 8B ...\n", + " * time (time) datetime64[ns] 5kB 1974-01-15 1974-02-15 ... 2023-12-15\n", + " step timedelta64[ns] 8B ...\n", + " surface float64 8B ...\n", + " * latitude (latitude) float64 4kB 90.0 89.6 89.2 88.8 ... -89.2 -89.6 -90.0\n", + " * longitude (longitude) float64 7kB 0.0 0.4 0.8 1.2 ... 358.8 359.2 359.6\n", + " valid_time (time) datetime64[ns] 5kB ...\n", + "Data variables:\n", + " t2m (time, latitude, longitude) float32 974MB ...\n", + "Attributes:\n", + " GRIB_edition: 1\n", + " GRIB_centre: ecmf\n", + " GRIB_centreDescription: European Centre for Medium-Range Weather Forecasts\n", + " GRIB_subCentre: 0\n", + " Conventions: CF-1.7\n", + " institution: European Centre for Medium-Range Weather Forecasts\n", + " history: 2024-06-17T21:46 GRIB to CDM+CF via cfgrib-0.9.1...\n" + ] + } + ], + "source": [ + "# specify filename and filetype\n", + "filetype = 'grib'\n", + "#filetype = 'nc'\n", + "fname_ERA5 = f\"reanalysis-era5-land_1974_2023_04x04.{filetype}\"\n", + "\n", + "# check whether the specified path/file exists or not (locally or in the JupyterHub)\n", + "isExist = os.path.exists(fname_ERA5)\n", + "\n", + "# load data and create data set\n", + "if isExist:\n", + " _ = print(f'The file {fname_ERA5} exists locally.\\n Loading the data ...\\n')\n", + " if filetype == 'grib':\n", + " ds_global = xr.open_dataset(fname_ERA5, engine='cfgrib')\n", + " elif filetype == 'nc':\n", + " ds_global = xr.open_dataset(fname_ERA5)\n", + " else:\n", + " raise (\"Please choose an appropriate file type: 'nc' or 'grib'.\")\n", + "\n", + "else:\n", + " _ = print(f'The file {fname_ERA5} does not exist locally and has to be downloaded from OSF.\\nDownloading the data ...\\n')\n", + "\n", + " # retrieve the grib file from the OSF cloud storage\n", + " if filetype == 'grib':\n", + " link_id = \"6d9mf\"\n", + " elif filetype == 'nc':\n", + " link_id = \"8v63z\"\n", + " else:\n", + " raise (\"Please choose an appropriate file type: 'nc' or 'grib'.\")\n", + "\n", + " url_grib = f\"https://osf.io/download/{link_id}/\"\n", + "\n", + " # The following line is the correct approach, however, it sometimes raises an error that could not be solved by the curriculum team\n", + " # (cf. https://github.com/ecmwf/cfgrib/blob/master/README.rst & https://github.com/pydata/xarray/issues/6512)\n", + " # We, therefore, recommend to download the file separately if this EOFError arises.\n", + "\n", + " fcached = pooch_load(url_grib, fname_ERA5)\n", + "\n", + " try:\n", + " if filetype == 'grib':\n", + " ds_global = xr.open_dataset(fcached, engine='cfgrib')\n", + " elif filetype == 'nc':\n", + " ds_global = xr.open_dataset(fcached)\n", + " except EOFError:\n", + " print(f'The cached .grib file could not be parsed with Xarray.\\nPlease download the file to your local directory via {url_grib} or download its NetCDF equivalent.')\n", + "\n", + "print(ds_global)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": {} + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABgAAAAR+CAYAAAAWWf7zAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOydd3wUxfvHP3uXhN6kIyX00AVFUBGwYf1ZEfWrgg0btiCiIh0VEeHsir13RUWxISBKkSpIJ0DoSO+EJHfz++Nu92Z3Z6/lkrskn/frFbibnbazu7Nzu5/neTQhhAAhhBBCCCGEEEIIIYQQQkoUrkR3gBBCCCGEEEIIIYQQQggh8YcvAAghhBBCCCGEEEIIIYSQEghfABBCCCGEEEIIIYQQQgghJRC+ACCEEEIIIYQQQgghhBBCSiB8AUAIIYQQQgghhBBCCCGElED4AoAQQgghhBBCCCGEEEIIKYHwBQAhhBBCCCGEEEIIIYQQUgLhCwBCCCGEEEIIIYQQQgghpATCFwCEEEIIIYQQQgghhBBCSAmELwAIIYQQQgghhBBCCCGEkBIIXwAQQgghhBBCCCGEEEIIISUQvgAghBBCCCGEEEIIIYQQQkogfAFACCGEEEIIIYQQQgghhJRA+AKAEEIIIYQQQgghhBBCCCmB8AUAIYQQQgghhBBCCCGEEFIC4QsAQgghhBBCCCGEEEIIIaQEwhcAhBBCCCGEEEIIIYQQQkgJhC8ACCGEEEIIIYQQQgghhJASCF8AEEIIIYQQQgghhBBCCCElEL4AICTAyJEjoWma6Y8QokZ1vaj+0tPTE93ViLjyyisj2p9bbrkl0V0lhJRSsrOzbXPSe++9l+huEUIIIQkjPz8fX331FW6//Xa0b98etWrVQlpamu1+eeDAgUR3lRBCEkpKojtACCFEzfLly/Hvv/9i+/btOH78OCpUqIAGDRrglFNOQbNmzRLdPUIISQp8Ph+WLFmC5cuXY9euXThx4gQqVqyIxo0b49RTT0X9+vUT3UVCigVCCGzcuBErVqzAjh07cODAAfh8PlSrVg3VqlVDu3btkJGRUSxEMomeF44dO4b58+djzZo12L9/P4QQqFKlCpo3b47TTz8dVapUKdT248HWrVuxaNEibNy4EUeOHEGZMmVQu3ZttG3bFqeccgpcrsLVEnIdTMIxe/Zs3HTTTcjOzk50VwghJOnhCwBCCEki9u/fj+effx5vv/02tm3b5pivefPmuPvuu3HvvfeibNmyRdjDomPTpk1YuHCh8bdo0SLs37/flKdHjx6YOXNmYjpICEko27Ztw3PPPYcPP/wQe/fudczXsWNHDBgwALfccgvcbncR9pCQ6Dh8+DAWL15suvetX78eQghTvo0bN8bNwm7x4sX49ddfMWPGDMyePRtHjx4Nmb9q1aq48MILce+996J79+5x6UM8SfS8sGDBAowfPx5TpkxBTk6OMk9KSgouuOACPPzwwzjvvPPi1nY88Hq9ePfdd/HKK6/gn3/+ccxXvXp19O3bFw8//DBOPvnkuLXPdTCJlBkzZqBXr17Iz89PdFcIIaRYoAnripKQUsrIkSMxatQoUxovD1KUfPvtt+jfvz/27NkTcZn09HR88sknOOOMMwqxZ3ZU10uHDh1s+erVq4epU6dGVOdvv/2GWbNmGQ89IhmHeL0AyMzMxIwZM2zpK1euRF5envG9X79+dLkR4JZbbsH7779vfG/UqBEVWKTImDRpEgYNGoQjR45EXKZDhw74/PPP0bJly0LsWeGRnZ2Nxo0bm9LeffdduiYrxmRnZ+Pbb7817ntr166NaO1Z0BcAe/bswXPPPYcvv/wSGzZsiLmebt264Z133kHz5s1jriOeJHJeOHHiBDIzM/H6669H9fvh2muvxVtvvYXKlSsXqP14sGrVKlx33XX4999/Iy5TsWJFTJw4Ef379y9w+8VpHUwSy/Hjx9GkSRPs3LnTtq127dqoWbOm7cXen3/+iUqVKhVVFwkhJOmgBQAhhCQBL774Ih566KGoXzplZ2ejZ8+e+OKLL3DFFVcUUu8iI5RSLBIeeeQRLF26ND6diRKPx6NMT09Px6ZNm4q4N4SQUDz88MOYOHFi1OWWLl2K008/Hb/++iu6dOlSCD0jJDq+/fZbZGZmFnm7y5cvx7hx4wpcz19//YVTTjkFH374Ia6++uo49Cx2EjkvHD16FJdccglmzZoVddkvv/wSK1euxIwZM1CzZs2Y2o8Hc+bMwUUXXYTDhw9HVe7IkSO48847kZWVVaBzqiSsg0nR8dFHH9ke/l922WWYOHFi0ryQJISQZIMvAAghJMF8+eWXePDBB23pqamp6N27Nzp37oy6detix44dmD9/Pr7++muTKj03Nxd9+vTBrFmz+FCLEFKiGT9+vPIhX4UKFXDDDTegffv2qFGjBrZs2YI///wTP/74o+mB0qFDh3DxxRdj0aJFNjU9IaUdTdPQpk0bdO/eHY0bN0bNmjVRtmxZ7N69GwsXLsTUqVOxe/duU5ljx47h+uuvx+TJk3HppZcmpN+JnBeEELj++uuVD/9PPvlk3HjjjWjevDnKlCmDjRs34ttvv8WSJUtM+VasWIHLLrsMf/75J9LS0qJqPx5kZWXhkksuUT78P+ecc3DBBRegUaNGOHjwIFauXImPP/7Y5pLx2WefRd26dfHQQw9F3T7XwSRavv32W9P3Bg0a4Msvv6Q7KEIICYUghAghhBgxYoQAYPojpLDZunWrqFSpku3cO+OMM8TWrVuVZbZs2SK6du1qK5Oeni6OHTtWJP0ujOulQ4cOtjoBiMqVK4sePXqI2267zbatR48eBd+ZEDRq1MjUXr9+/Qq1veJEv379TGPTqFGjRHeJlHAWLVokUlJSbPPAFVdcIfbt26css2LFCtGiRQtbma5duwqfz1fEe1AwNm7caNuPd999N9HdIgXA4/Eo73tut1u0bdtW3HLLLSI9Pd22fePGjQVqd8aMGab6Tj/9dPHqq6+KPXv2hCx37Ngx8fTTT4vU1FRbn6pXrx62fGGQ6HnhxRdfVB7D0aNHi9zcXGWZyZMni4oVK9rKDB48OOr9Lyher1ecdtpptr7UqVNHzJ49W1nmyJEj4q677rKVSU1NFUuXLo2q/eK6DiaJpUaNGqZjf9999yW6S4QQkvS4InhHQAghpJAYPHiwTXF15pln4vfff3cMqla/fn1Mnz4dZ555pik9Ozs7Lib9iaRChQo466yz8OCDD+LDDz/EqlWrcODAAcycORPDhg1LdPcIIQnk/vvvtwX76927N7755htUq1ZNWaZ169aYM2cOmjVrZkqfN2+eKYYFIYlC0zS0bNkSN954I55//nn89ddfOHToEP7991+8++67aNSoUaG1e9VVV2HJkiX4+++/cc8996B69eohy5QrVw6PP/44pk6dalOq7927FyNHjiyUvoYikfPCnj17MHToUFv6iy++iGHDhiE1NVVZ7sorr8T06dNtY+jxeLBu3bqI248Hb7/9NhYuXGhKO+mkkzB37lzbOlOnQoUKeP31123uq/Ly8vDAAw9E1T7XwSRajh8/bosTUVxj+xBCSFHCFwCEEJIgsrKy8Nlnn5nSypcvj/fffx/lypULWbZcuXJ47733bPleeOEFHDp0KO59LQq+++47HDx4EH/99Reef/553HTTTcjIyICmaYnuGiEkwUyfPh1z5swxpdWpUweTJk2CyxV6OVu9enW88847tnxPPfUUfD5f3PtKSKTceOONOHjwIFavXo2PPvoIDz74IM466yyUL1++UNtNT0/H4sWL8c033+CUU06Juvz555+Pp59+2pb+ySef2B7GFyaJnhdefPFF25qrV69euP/++8OW7dy5M4YPH25Ky8vLw9ixYyNqOx54vV5ley+99FJEQabHjh2LNm3amNL++OOPiGMhcB1MYuHgwYO2tAoVKiSgJ4QQUrzgCwBCCEkQkyZNsv3IvP32222KNCeaN2+O22+/3ZR24MABfPrpp3HrY1HSqFEjuN3uRHeDEJKEvPbaa7a0Rx55BCeddFJE5c8++2xccsklprSsrCz89ttvcekfIbFQs2ZNVKpUqcjbTU9Pj+nBv8wDDzxgsxjYt28f5s6dW6B6oyGR84LX68Wbb75pS4/mAf6gQYNsY/jpp58qH3AWBj///DM2btxoSmvfvj3+97//RVS+TJkyGDVqlC1ddVxUcB1MYiEnJ8eWRrEQIYSEh0GAE8Dx48cxb948rF69Gvv370e5cuVQs2ZNtG3bFh06dCjRN7C8vDzMnz8fK1euxN69ewEAtWvXRqdOndChQ4eI6zl06BAWLFiANWvW4MCBA6hQoQLq1KmDs846C/Xr1y+s7gPwmzj//fffWL9+PQ4dOoQqVaqgXr166NChA5o2bVpo7W7evBnLli3D7t27sXv3brjdbtSoUQP16tXDGWecgYoVKxZa2zrr1q3D0qVLsXXrVhw5cgRpaWmoU6cO+vbtW+htl0SsqicAuPvuu6Oq46677sLLL79sSvv0009x1113FahvpOTg9Xqxbt06/Pvvv9i9ezcOHToEr9eL8uXLo3LlymjQoAEaN26Mpk2bhlVMJgohBP7991+sX78eu3fvxt69e1GhQgXUrFkT6enp6Ny5M1JSCndJk5OTg7///tu4d6empqJevXpo0aIFOnXqVKLv3Ynm6NGjmDJliimtbNmyuOWWW6Kq56677sIPP/xgSvv0009x4YUXFrSLMbN8+XKsXLkS27dvx7Fjx1C1alW0aNECXbt2LdT7utfrxYYNG7B69Wps27bNmBeqVauGatWqISMjA+3atUvaOSFa9u3bh2XLlhlrt6NHjyItLQ3ly5dHrVq1kJ6ejhYtWqBq1aqJ7mqxITU1Feeffz4+//xzU/qGDRtw9tlnF3r7iZ4XZs6ciZ07d5rSOnfujE6dOkXcdpkyZXDLLbdgwoQJRlpOTg4mT54c9X7EgmodGu368fLLL0edOnVMY/Hdd9/h2LFjYS1ZuA42U5rnqQMHDmDBggVYv349Dhw4AJ/Ph5NOOgkXX3xxoblBU7Ft2zasXr0a2dnZOHjwII4fP47KlSvjpJNOQsOGDdG5c+dCDzS8e/duLFq0CLt378aePXtw7NgxVKpUCTVq1EDLli3RqlWruFmJ5ebmYsGCBdi2bRt27dqFQ4cOoVq1aqhZsyZat26N1q1bx6UdQkiSkOggBCWJcEExs7KyxC233CLKly+vDBYFQNSuXVuMGjVKHDlyJKq24xkYrkePHlEH2bQGEwMgZsyYYWzftm2buPfee5VBnvS/Fi1aiA8++CBkO0uXLhXXXnutKFOmjGM9Z5xxhvjrr7+i3u9wx2/mzJmiV69ewu12O7bdqVMn8eabb8YtsODWrVvFww8/LDIyMhzbRCDo1tlnny0+++yzmNq21jdixAhj25EjR8TYsWNFkyZNHNsn0bN8+XLbOLZq1Sqmulq2bGmqJyUlRRw6dCjOPTaTiKDZqnmOQYCdWbhwobj99ttFlSpVQs4f+l/lypXF+eefLzwej9iyZYuyTut4xPIn3xvCsWDBAnHzzTeL2rVrh6yzUqVK4uqrrxZ///131OMU7v61fv16ceutt4a8dzds2FA88cQTUd+7SWT88MMPtjG/+OKLo64nLy/PFnizTp06RR4MODc3V4wfPz7kvT0tLU307t3bFFCzoGu9NWvWiLFjx4pevXqJChUqhL1Wq1SpInr37i3mzZsX1f6dffbZpnoqVqxY4HvS5MmTbf17/vnnQ5Y5fvy4ePHFF0Xnzp0jmps0TRMZGRnizjvvFL/++qvIy8srUJ/jhXVdDhQ8CHC8eOSRR2x9e+aZZ4qk7UTPC4MGDbK1P27cuKjbnzt3rq2ePn36RF1PtPh8PlGrVi1b2zt37oy6LlVA4KlTp4YsU9zXwfGisOepeK3XY73/9OvXz1SmUaNGpu1Tp04V559/vuPv63fffVe8++67EY2N05+1TZndu3eLN954Q/Tp0yfsWlO/N3fv3l188cUXwuv1xjSWKnbs2CEef/xx0b59e6FpWtg+nHPOOcLj8Yi9e/dG3ZbP5xNffvmluPTSS8OuBerVqycGDBjg+LuAEFK84JO7OBLqBvvyyy+LsmXLRnyjSk9PF2vXro247WR+AfD1119H/AAKgLj22mtFTk6OqX6fzydGjRoV8uG7dXH01FNPRbXfTscvPz9fDBgwIKqFRrdu3cSGDRuial/m2LFjYtCgQVGdM/pf+/btxb///htVe9Y69BcA8+bNEw0bNgzbJome1157zTaO/fv3j6muO+64w1bXL7/8Eucem+ELgOQlJydH3HnnncLlckU9f+h/Xbp0UdZdVC8AsrOzxdVXXx1T/VdffbXYv39/xOMV6v71zjvviHLlykXcdsOGDcW0adMibptExqOPPmob62jv8Trnn3++ra41a9bEucfOLF68WLRt2zbicyolJUU8/fTTQojY13p79uwRHTt2LNB1e8UVV0R8XX322We28q+99loBRk2IXr16meorX758yP7MmDFDNG7cuED7/NNPPxWoz/EimV8AqNbHL7zwQsTlVWuJSO+ziZ4XunTpYisze/bsqNvOzc213Wfq1q0bUVnVnABEth5btWqVrVzz5s2j7r8QQnz00Ue2uh5//PGQZYr7OjgeFMU8lawvAA4fPiyuueaasPtXmC8AbrjhBpGSkhJzva1atRLLly+PaTx1jh49KjIzM6Naa8p/ZcqUEdu2bYu4vVmzZolOnTrF1M6wYcPi+tKDEFL0lAy73iRnyJAhuO+++5T+6pzIzs5Gt27dsG3btkLsWeHz0UcfoXfv3lH5svzyyy9x2223Gd+FEOjfvz9GjBgBr9cbUR1CCDzxxBM2k9BoEULgxhtvxCuvvBJVub/++gs9evTAhg0bom5z586d6NmzJ5577rmozhmdZcuW4cwzz8TUqVOjLisza9Ys9OzZE5s3by5QPUTNokWLbGlnnHFGTHWdeeaZEdVPSj65ubm49NJL8cYbbxTb4Kbz5s3D6aefjm+++Sam8t988w26du2KrKysAvXjtddew2233Ybjx49HXGbz5s245JJL8OOPPxaobWKmpMyXCxYswDnnnIPly5dHXCY/Px9DhgzBY489FnO7hw8fxpIlS2IuD/hdepx++unYunVr2LxXX3016tata0qL1Ce4CpVP9uuvv97RDcbUqVNx0UUX2Xybk/ijmmetx76wSOS84PV6sXTpUlNaamoqTjvttKjbTk1NRefOnU1pO3bswI4dO6KuKxoSPa8muv1EU5rnqaNHj+K8887D119/ndB+zJkzp0BBy1etWoWuXbti2rRpMZXfvHkzzjrrLHg8nqjWmjInTpxAbm5uRHnfeOMNnHvuuVi8eHFM7YwZMwZXXXUVjh49GnV5QkhywBgAhcykSZNMwaBq1qyJiy++GJ07d0bNmjWRk5ODrKwsTJ48GStWrDCV3bVrl9IvZXFh4cKFGDJkCIQQAICqVavikksuQdeuXVGrVi0cP34cq1atwhdffIHs7GxT2U8++QRXXnklrr32Wjz99NN4++23jW2NGjXCZZddhrZt26J69eo4cOAA5s+fjy+++AKHDh0y1fPoo4/isssuQ3p6ekz7MGHCBJNv00qVKuGKK65A586dUbt2bRw4cACrV6/G119/jS1btpjKbtmyBeeeey7++eefiH01/vfff+jatSs2bdpk29a2bVv06NEDbdq0MerbtWsX5s6di6lTp+Lw4cNG3sOHD+Oaa67BnDlz0LFjx6j3e+fOnbj66qtNLyBOP/109OrVC40aNUKlSpWwY8cOrFy5El9++WXU9RNg9erVtrRIg55ZUcWeWLNmTUx1keLN2LFj8fvvv9vSGzRogF69eqF169aoXbs2ypYti2PHjuHQoUPIysrC8uXLMXfu3LCL+tatWxvzz+bNm7F//35jW2pqakS+QkP5NZ85cyYuvvhi28tPl8uFs88+G2eeeSYaN26MqlWr4vjx49i6dSv++OMP/P7776YXxGvWrMEll1yChQsXonLlymH7ZGXevHkYOnSo8T0lJQXnnnsuzj//fJx88sk4ceIENm3ahO+//972YDU3NxfXXHMNZs6cia5du0bdNrFTEubLDRs2oFevXkpBRPv27XHFFVcgPT0d5cqVw/bt2zFz5kz8+uuvxg/7cePGoWbNmnHpS8WKFdG5c2e0atUKzZs3R5UqVVCpUiXk5uZi//79WLlyJWbMmIFVq1aZyq1btw7XXXcd/vjjj5AxN1JTU3HXXXdh5MiRRtqyZcswZ84c5YO6cEyaNMlYS+rcc889yrx79uxBv379cOLECVN6SkoKunfvjjPPPBPp6elG4N1Dhw5h165dWLFiBRYvXqw814iaffv2YebMmbZ068PswiKR80J2drbtPtWgQQOkpaXF3P6sWbNs7Rfmy5R4jl/Dhg2RkpJiepgabl4tCfN6rJT2eerOO+/E/Pnzje/16tXDpZdeinbt2qFWrVo4dOiQscYCgJNOOskUKzA3N9d2f2rQoIFj8O969eqF7ZPb7UanTp3Qpk0bZGRkoHr16qhcuTKEEDh06BDWrVuHefPmYfbs2SaBzZEjR3D99ddjyZIlaNCgQcRjsHnzZpx++un477//bNvKlSuHs88+G927d0ft2rVRpUoVHD58GDt37sSSJUswZ84cbN++PeK2AOCZZ57B448/bkuvUKECLrjgAnTu3Bl169ZFpUqVcPDgQaxbtw6//fab7WXB999/j9tvv10Zv4MQUgxIpPlBSUNlYqe7cElNTRVjx44Vx48fV5b1+XzihRdeULpsmDt3bti2k9EFkOyn//7773c01c7JyVGaELds2VL8/fffxpiUL19evPbaayI/P19Zz44dO8SZZ55pq+fOO++MaL9DHT8A4tZbb3XcB6/XK5577jmly55bbrklova9Xq8499xzbeXPPPPMsP539+/fLwYOHGjzGdi4ceOIfGBa25RdLbVv317MmTPHsazTOV1QVCbvRfUnx0AoLOrXr29rd9OmTTHVpbr+zz777Dj32AxdACUfx48ft/kxLl++vHjnnXciMtnNyckRv/76q7jhhhtE9+7dw+YP59c1Wnbs2KH0v3rrrbeGvTaysrLEhRdeaCvbu3fvsO2q7l/yXH7GGWeI1atXO5afOnWqOPnkk211ZGRk2NzZFRbxcM0U61+sa41IOXHihG1tlJKS4rgWCIfqeN98881x7rUZn88nzjnnHFu7devWFd9//71juezsbJNrEpWLgEjGf+PGjaJq1arivvvuEzNnzhS5ubkR9Xv27NnitNNOs7U5fvz4sGV37NghUlNTCzzOOTk5okaNGqZ6TjvtNMf8Y8aMsfX3ggsuiPj+unHjRjFx4kTRvHlzugAKw4QJE2z9at++fVR1xOoCKNHzwrRp02z5zznnnJjaFkI9Dm+//XbYcgVxAXTTTTfZyr3//vsx74P1PuR2u0PONcV9HVwQinKeSjYXQPJvzHLlyonnn38+5Hmi+p0Zr+cezZs3F1dffbX45ptvxIEDByIqk52dLW644QZb+5deemnE7R4/flx5b01LSxOPPPKI2LdvX8jyPp9PzJkzR9x9992ibNmyYe8H06ZNs82X5cqVE2PHjhUHDx4MWXbGjBmiadOmtr6+/PLLEe8vISR54AuAOKK6wQL+B+GR+gR+6qmnbOVvv/32sOWS8QWA/hepL1DVwxs9OFXFihUjCkK3b98+UbNmTVMdlStXFseOHQtb1un4ARCPPfZYRPswZcoUpS/BP/74I2zZcePG2coNGDAgquCE77zzjq2OSAKSOe33WWedFXZhUFiU9BcA1gcjmqbF/MM1Ly/P9vKnRYsWce6xGb4ASD5UARHfe++9mOo6evRo2DzxfgFw8cUXm+pzu93i448/jri8z+cTt956q20MwgUGDnX/6tmzZ0QvOdevXy/q1atnKz969OiI+18QSvILgK1bt9rabNiwYcz1ZWVl2err1atXHHts5/3337e1WadOHbFu3bqwZfPz80PGw4hk/E+cOBHROkjF8ePHxUUXXWRqs0GDBhEFyL3++utN5cqWLSv27NkTVfsffvihbZ9DPRi1PlSJ9UWcz+eLecziTTK+ANi9e7eoXr26rV8vvfRSVPXE+gIg0fOCyud93759Y27/rbfestWnx/4IRUFeAKjiHkyfPj3mfejWrZutvu3btzvmL+7r4IJQlPNUsr0A0P8qVKgQ0e/jePbFSqQP/VWMHDnSdv6GEovIqOKXVKlSJabr77///gu5Zj906JBNXFOrVi2xbNmyiNs4cOCAaN++vamOGjVqRPRbgRCSXDAGQBEwfvx4nHfeeRHlfeSRR3DyySeb0n755ZfC6FaR8L///Q8PPPBARHnHjBljS9u1axcA4IUXXkCXLl3C1lGtWjU8/PDDprRDhw5hzpw5EfVBRc+ePU1unEJx2WWXmdxG6Lz44oshyx07dgzjx483pV166aV4+eWXoWlaxH299dZbcccdd5jSPB5PxL4BZapUqYLPP/88JvcZJDSHDx9GXl6eKa1cuXJwu90x1ZeSkoIyZcqY0vbu3Rtz/0jxxBpzpFy5crjxxhtjqqt8+fLx6FLELFiwAD/99JMpbezYsfjf//4XcR2apmHSpElo1aqVKf2ZZ56JqU/Vq1fHV199hbJly4bN26RJE3z88ce29FdffdV2rZPo2Ldvny0tlBupcKjKFvZ8+cILL9jSPvroo4jcXbjdbnz00Udo3LhxzO2npaWhXLlyMZUtW7Ys3n//fdOcsGXLFvz6669hyw4YMMD0PScnB++++25U7VtjB1StWhXXX3+9Y37rPHjzzTfb7o+RoGlazGNWGujfv7/tumnatCn69+9fJO0nel5IdPvxIJH7UNrXwZyn/Guz7t27J7QPVapUibns8OHDTe7OhBAml8VO7Nu3zxZbUNM0fPHFFzjnnHOi7ketWrVCrtlff/11k5shl8uF7777Du3atYu4jSpVqmDy5MkmF2d79uzBW2+9FXV/CSGJhTEACpkmTZrYfgCFIjU1Fddddx0mTpxopG3duhW7du1CrVq1CqOLhYbb7Y74wTng9xnasGFDW9DZli1b4tZbb424nt69e9uC5S1evDjilzBWwj28t/Loo4/irbfeMgXK++6777Bjxw5HX57vvPMO9uzZY3x3uVx46aWXYurv8OHD8fbbbxv+cnfu3Im5c+eiR48eUdUzcOBA28uooqRZs2Y4cOBAQtquU6dOodav8rNe0AV8uXLlTP5ojx07VqD6SPFDjgMC+Bfsofx0JxPjxo0zfW/WrBkGDhwYdT2pqakYMmQIbr75ZiPtp59+wokTJ6L+cT1y5EhUr1494vw9e/bENddcYwpqt3PnTnz33Xfo3bt3VG1Hixyboahx8rkbL+I9X6rKFuZ8uWDBApsP3auuuiqqNUm5cuXw3HPP4Zprrol39yKiVq1auOiii0yBuf/66y9ccsklIct169YNp5xyCv755x8jbdKkSXj44YcjEjfocQNk+vbtG/Jhh3UejOYaJpExceJEfPvtt6Y0/QVsLPOsHCsiUhI9LyS6fZ309HRbfIxISeQ+lPZ1cGmfp5o2bRrV85FkRNM03HzzzViwYIGR9tdff4Ut98orr+DIkSOmtDvvvBO9evWKex9zc3Px/PPPm9L69u0bU3yqJk2a4Oabbza95Jg8eXLEQk9CSHJQPJ4MFGNuu+02uFzRGVqcfvrptrQ1a9YUuxcA559/Pho2bBhVmVNOOcX2AuDWW2+NSgXftGlTVK5c2RQQONZAUF27do3qDTngV8vdfPPNppcf+fn5mDZtmumhlMxXX31l+n7uuefGrPZr0KAB2rVrh2XLlhlpM2fOjOoFgKZpuO2222JqP16UZFWBShEcico4FOXKlTMFZI3F6oMUb6w/IP/77z9kZWXFHFSvqMjJybEFu7/llltiVgJaH0rm5ORg3rx5Uc2B+jweLXfeeafpBQDgfwFR2C8Apk6dWqj1J5J4z5eqh0yFOV9aLVsAxKSSvuKKK1CnTh3s3LkzHt2KmubNm5u+z5s3L6JyAwYMMO1vVlYWpk2bhgsuuCBs2ddff92Wdvfdd4csU716ddMY/fXXX7jrrrsi6isJz48//ojBgwfb0gcOHBiz0CYWEj0vJLr9eJDIfSjt6+DSPk9F+9s+WbHeFxcvXoy8vDykpqY6ltEDG+tomoZBgwYVSv9UwYKtngKi4dJLLzW9AJg3b15MAhtCSOLgC4BCJlrVNeB/gG3l4MGD8ehOkRKLWV+jRo1saWeffXZM9fz777/G91iV5FdeeWVM5a6++mqb9cO8efOUD5ROnDiBv//+25R21llnxdSuTuPGjU0vAJYsWRJV+WbNmqF+/foF6gOJjoIuhK3lY1WEkeKL1U2aEALXX389Jk+ejAYNGiSoV+H5+++/ceLECVNaQebAk046CVWqVDHdN5csWRLV/bhnz54xmYaff/75thfQkT4oJZFTkPlSVbYw50vr8a9YsWJMSj+3243LL78cb7zxRlz6tW3bNsyZMwfLli3D2rVrcfDgQRw6dAjHjx9Xjof1xYNVrOHEjTfeiMGDB5sezL322mthXwAcOXIEH330kSmtZ8+eNhdfVrp06YLvvvvO+P7xxx/jjDPOwD333FMiHjglkvnz5+O6666D1+s1pffo0SNmV2vxJNHzQqLbjweJ3IfStA4u7fNULK5uioIjR45g1qxZWLZsGVauXIm9e/fi0KFDOHr0KHw+nzK/zIkTJ/Dff/85/oY+dOiQ7Tf5GWecUWhCnT/++MP0PTU11eS2KFqs4sScnBysWrUKp5xySsx1EkKKFr4AKGSsb4YjQfXQoTi+AIjlZlapUqVCqSfW8Tv11FNjKteuXTukpKQgPz/fSFu0aJEy76JFi0wmq4DfJZDVvDoarD/MZfdCkdCpU6eY2ybhUSlDjh8/XqA6reVlP42kdHDKKaegY8eOph8XixYtQosWLdCnTx/06dMH5557btL5i509e7Yt7d577y3QOWw1/Y92Dox17ne5XOjQoQP+/PNPI23VqlU4duxYkcdVKCnEe75UlS3M+dJ67+/QoUPM1i2xnpcyX331FV599VX88ccfygcakRKpsKJcuXK47bbbMGHCBCNtypQp2LZtW0g3gx999JHNTcY999wTtr1bb73V9GBNCIEBAwbg1Vdfxa233oorrrgi6a2ikpHly5fj4osvtrluad++PSZPnlzk7uYSPS8kuv14kMh9KO3r4NI8T2malnQPjBctWoTx48fj+++/L/B5eODAAccXAPPnz7e9QC2o6C8UqvW1ytNEpKisaqJdXxNCEgtfABQysfjGVS2KimMQwWrVqkVdRrXv8agn1vFr2bJlTOXKlCmDxo0bY926dUaaHtDYihwrQGfLli3YsmVLTG2riDYQVnFzN1XcUD0IjPcPnwoVKhSoPlI8efXVV9GzZ0+Toj4nJwcffPABPvjgA6SlpaFz587o2rUrunTpgu7du6N27doJ7LF6Dly1alVc24h2Dox17geAjIwM0wsAIQT27NkTtUs84ife86WqbGHNl/qxlynouRUr27dvx80334zp06fHXIdMNMKKe++9Fx6Px3jhkJ+fjzfffDOk73er+5/atWvjqquuCtvWFVdcgSuvvNImolixYgUGDRqEQYMGoUGDBujWrRs6d+6MM888E6eeemqxiZeSCNauXYsLLrjAFjQ2IyMDv/32W0zr9IKS6Hkh0e3Hg0TuQ2lfB5fmeapixYpJI4jIy8tDZmYmXnvttQK9EJcJdW+Ug/HqROtqOBqs6+u8vDwsXbo0rm0kc7BtQoid6JzTk6gJ5QOupBOvfU/kGMbiAsKprJNarihunNEuqitXrlxIPSGAf3yt53VOTo5NFRIp+fn5NiuS0hZQjPjp2rUrfvjhB9SoUUO5PTc3F7Nnz8aECRPQp08f1KlTB61bt8bw4cNjjpVSUJJxDozn3A/E7oaOqOcyq9l9NKjKFtZ8eejQIdtDhXifW5Gwbds29OjRI24P/wGYLBzD0aRJE1x00UWmtLfeesvxnjd37lzbQ4o77rgj4vXgxx9/jP/973+O27ds2YJPP/0UAwcORNeuXVGtWjVcffXV+OKLL2zuyEo7GzZswLnnnmtzAdW0aVP8/vvvCROMJHpeSHT78SCR+8B1cOmdp5LlN2ZeXh6uvfZavPLKK3F7+K/X64T1JSoQm9AxUpJxfU0ISSx8AUBICAqiHrGWtZqy68h+cZOFkqAwSXasP5p9Pp8tUFOkbNu2zebrNNGqbpI4zj//fKxZswaPP/6444sAmVWrVmHMmDFo1aoVevfujY0bNxZBL4Mk4xwYz7kfcJ7/SXhq1qwJl8u8XN2xY0fMP9hV1nWFNV+qjnu8z61IuOWWW5CVlWVLP+WUU/D4449j8uTJWLx4MXbu3IlDhw4hNzcXQgjT34gRI2LuNwDcd999pu/btm2zBUPUee2110zfXS4X7rzzzojbKl++PD7++GP88ssv6NmzZ1if2keOHMHkyZNx3XXXoWnTppg0aVJS+w8vKjZt2oRzzz0X27ZtM6Wnp6dj+vTpqFevXoJ6lvh5QbVNZc1WWO3Hg8LeB5fLFXINUtrXwaV1nkqW35jjxo0zuWHSOfnkk3Hvvffio48+wty5c7FlyxYcOHAAOTk5tvvijBkzompTjg+lU7FixZj3IRzJuL4mhCSW5JiBCUlSjh49GrNSweonVRXfAIDSH/drr72Gu+++O6Z2Swp33HEHFi5cmJC277777kIf/8aNG9t+VG/atCmmYK2qYIzWQE2kdHHSSSfh6aefxujRo/H7779j2rRpmDVrFv755x+lD0/A767k66+/xm+//YYvvvgCF154YZH0VTUHrlq1qkDuTgqKdf4uaFmn+T9eXHLJJTE/OCkoo0ePxuWXX15o9aelpaFevXqmB1N5eXnYvn17TMHqi3K+VB33eJ9b4fjxxx8xbdo0U1qtWrXw4YcfRhWMuKAqv4suugjNmjUzvYh47bXXbG599u7diy+//NKUdskll8TkQqtXr17o1asXNm3ahB9++AF//PEHZs+eHfJa2bZtG+6++278+OOP+Oqrr5Laj3hhsmXLFpxzzjnYtGmTKb1hw4aYMWNGwl2aJXpeUG2zjlVhth8P4rkPPp/PtqatX79+SKsdroP9cJ4qenbt2oWxY8ea0lJSUjB+/Hjcd999Eb+kiIeFfUGsbsJRrlw5k0VC7dq1bdZchJDSBV8AEBvFMd5AYXHw4MGYXwBYfQBWrVpVmU+ljlGZCJY2srKy4u6nMFKKYnHUsmVL/PXXX6a0rKwsdOvWLeq61q9fb0tL5MNTkjykpKTgwgsvNB7mnzhxAgsWLMBff/2FX375BX/99ZfNlcehQ4dwzTXXYPHixWjRokWh9zEZ58BYA8c7lXWa/+PFypUrC/TwqSAUxbFq2bKlTZmalZUV04O+opwvK1euDJfLZVIlx/vcCsenn35q+u52uzFlypSoAwEW9DhrmoZ7770XAwcONNKmTZuGrKwsU7DLd9991+bKI5Lgv6Fo1KgRBgwYgAEDBgDwPyz8888/MWvWLEydOlWpep4yZQoGDBiAN998s0BtF0e2bduGc845x2YNdvLJJ2P69OlIT09PTMcsJHJeaNSoEcqWLWs6V7ds2YLc3NyYHsYmYh2nikeishSKhM2bN9t+P4brP9fBZpJ9nipJzwe+//57HDt2zJQ2btw4PPTQQ1HVE+19UeWWqjBV+jVq1DBZHdAigBBCF0AlhHgGDmYwlyBr166NqVxubi6ys7NNaU5+UlUmqol6kEOKjlNPPdWWNnfu3JjqmjNnji2tU6dOMdVFSjZlypRBt27d8Nhjj2HGjBnYuXMnxo0bZ3tAffToUQwbNqxI+pSMc2Cscz8AWywFTdMicsVEnCmu86Xq2Bck1sbq1aujLvPbb7+Zvl900UVRP/wH/L7gC8qtt95qCv4ohMCkSZMcvwN+dzPW+AEFpWHDhrjxxhsxadIkbNmyBTNmzFBaQ7z99ttYsWJFXNtOdrZv345zzjnH9kC1Xr16mDFjBpo2bZqgntlJ5LyQkpKC9u3bm9Jyc3OxaNGiqNvOy8vDggULTGl16tRB3bp1o64rGhI9rya6/WQnXvNUvJ4RlKTnA9b7YrVq1XD//fdHXU+098U6derY0pYtWxZ1u5FiXV/n5uZix44dhdYeIST54QuAEoJKpa7yMxeOvLw8pRllaSWWhTzgv5lbF1eqhS4AnHbaaTY/prNmzYqpXVJ8OPvss21pViVUpFjLpaSk4IwzzoipLlK6qF69OgYPHox58+bZ3JX88MMPRRJorkuXLra0RM+Bsc79Pp8P//zzjymtVatWpoeeJHriNV96vV7bA6batWsXqqWL9d6/dOnSmANdRntenjhxArt27TKlqcYyHF6vF/Pnz4+6nJWqVavixhtvNKW9++67xjyjWwTI3HXXXbY1Urzp2bMnfvnlF1ucASEEJk+eXKhtJxM7d+7Eueeei3Xr1pnS69Spg+nTp6N58+YJ6pmaRM8L8Wp/yZIlNjVy9+7do64nWjIyMlCzZk1T2tq1a21zRiSo9jvcPnAdHB2xzlPxekYQq3VIMmKNV9GlS5eIg8zLRPvCqnPnzjb3QrNnz4663UhJxvU1ISSx8AVACaFixYpwu92mtFjUWvPnz2c0d4lvv/02pnLffPONLa1r167KvCeddJLtAcHq1auxcuXKmNouKcycOdMWbKmo/kaOHFno+9e2bVucfPLJprSVK1di1apVUdWjKnPmmWfG7LqKlE5atmyJ22+/3ZR27NgxpVm9jvVHTKwPNc855xxbXT/88ENCzc1nzJgRk7uVadOm2X5YO8398SQ7Ozth8+Utt9xS6PvXs2dPlClTxpQ2ffr0qM3Zf/nlF5u/3QsvvDBs8MWCYD3+R44csakPI8Hr9ToGzXVCpdg86aSTom576tSpcfNTbA0GvHfvXnzxxRcA7MF/09LScNttt8Wl3Uh4+umnbWvpwlRnJhO7du3Cueeea7NQqV27NqZPn650F5NoEj0vqCxTvvrqq6jadioTb6sXFZqmKRXlX3/9dVT15Ofn234vlS1bFj169AhZjuvg2Ih2nlK5IIzlGcEff/wRdZlkZc+ePabvsdwX9+zZE3UQ4EqVKtksU+bNm1doL1cuuOACW5rqGQUhpPTAFwAlBE3TbEqVWNRab7zxRry6VCKYO3du1ObfJ06cwIcffmhKS0lJwfnnn+9Y5oorrrClPfPMM1G1S4of119/vS3N6v4gHKr8N9xwQ8x9IqUXlb/cUA/BrRYDsT4grFy5Mnr27GlK27p1q20eLUpycnLw0UcfRV1O5Yf34osvjkeXSjUVK1bEZZddZkrLycnB+++/H1U9iZgvVcc/Fn/NU6ZMiTo+TYUKFWxp1gcfkTBx4sSoyzjRvn17m/L39ddfx/bt2zFlyhRT+jXXXOPoPrEwqF69uk0RXZCYDcWF3bt349xzz7U9RK1VqxamT5+OVq1aJahnoUn0vHDOOefYXGzMnz/fZgUWitzcXLz33numtLJly9qCYxcW8ViHTpkyxeZW5IorrojI8o3r4OiJdp5SvbyL9hnBwYMH8fnnn0dVJpmx3htjuS++8sortng1kWC9toUQGD9+fNT1REKPHj1QpUoVU9rXX39ts/IihJQe+AKgBGFVkS9cuDAqP8aLFi2yBYsjwIMPPhhV/meffdYWqOmKK64I6cvzvvvusyk0Pvroo1Jlel4aufPOO22uDd56662IlTnr16/HW2+9ZUqrUqVKif7hQwoPlV9Q649MmWrVqpm+HzhwIOYAY0OHDrWlDRo0KC5+x2Nl5MiRUe3PrFmzbErOOnXqKF/wkuhRBYJ99tlnIz5Gs2fPxg8//GBKa9q0qVIhF086d+5sU/x98803USkHc3JyMGjQoKjbrlKliu0h3K+//hpVHW+99RZmzpwZdduhsFoBzJkzBw888IAtIHlBg/9GS05Oju18CjUHlgT27duH888/3yZ2qVGjBn7//Xe0bt06QT2LjETOC263G/3797elP/744xG1Dfhfru3evduUdv311xd64Hidiy66yBbUeenSpRE/7M3NzcWIESNs6ZFeu1wHR0+081T79u1t7m0++eSTqNocNWoUDh8+HFWZZMb6m3zOnDk4evRoxOVXrFiBsWPHxtT2PffcY7NOefPNN6O+N0dChQoVkJmZaUrzer246aabisTFJyEk+eALgBKESmUW6Q/GzZs3o0+fPgl1uZCs/P7778qHUyp++uknjBkzxpb+wAMPhCxXpUoVPPLII6Y0IQT69u2L7777LvLOKvpT1D+gSeS0aNECffr0MaUdPXoUt9xyS1hVSU5ODvr162fzG/vAAw/Y1B6k6Jk5cyY0TTP9WX9kxxuPxxOTaxHA7w/WqkKsWrUqGjVq5FimXbt2trSpU6fG1H6PHj1sD1z279+Piy66KGp3ADo5OTmYNGlSzOrlPXv24Nprr43oR1J2drbNtzng/6EXi19ZYue8886zudPZsWMH7rnnHvh8vpBl9+3bh1tvvdWWb8iQITZXCoWBSkhw0003RfSQy+v1om/fviHdcYWiW7dupu8zZ86M+Dr9+eefw65fYuHqq69GvXr1TGlWtyNt2rSJOl5BVlYWxowZY3ugGimTJk2yXe8dOnSIqa7iwIEDB3DBBRfY3IdUr14dv//+O9q2bVvofRg5cqTtXhmNW7FEzwsPPPCAzRru559/xiuvvBK27KJFi2wuJ1NSUvDYY49F1Dbgv/dYxy8al2ZO7d13333YtGlT2PJDhgzBv//+a0o7++yzw7r/0UmGdXDPnj1t42ddD8WTop6nypYta7OynDNnTsSunj788EM8//zz0XYzqbHeW44cOYJRo0ZFVDY7OxuXX355zA/Qq1SpYlsTCCFw3XXXxfSyfdeuXbZrQCYzMxM1atQwpc2fPx+9e/eO2cJt165dGDp0aES/OW655Rbb9RWNq92CXp/p6em28vEWNRBSrBAkbowYMUIAMP3FwsaNG231vPvuu2HLHT9+XFSrVs1W9o477hBHjx51LPf111+LunXrGvnLli1rKt+jR4+wbc+YMcPW7owZMyLf6QDxGsMePXpEvQ+qtuWxuOOOO8SBAweUZb1er/B4PLaxAyBuueWWiPqcl5cnzj//fFt5TdNE//79xfr16yOqZ+3ateKpp54Sbdq0EQBEmzZtwpaxtjlixIiI2iIFZ/PmzaJixYq2Y3DWWWeJbdu2Kcts3bpVnHHGGbYyjRo1Cnmtx5N4XavRoJobI7m2C0KjRo1M7fXr1y+icqo5sVGjRoXa1yuuuMK45p966imxatWqiMotX75cdO7c2dbfO++8M2S57du3C5fLZSpTu3Zt8e2334rc3Nyo+79t2zZRr149Wz8qVqwonn76acf5V8bn84nZs2eLhx56SNSuXVsAEAMGDAhZRnWs5Ln8rLPOEmvWrHEs//PPP4sGDRrY6sjIyBDHjx+PehyIMwsXLhRut9s21ldddZXYv3+/sszKlStFy5YtbWVOP/104fV6i6TfPp9P9OzZ09aHk08+Wfzwww+O5TZt2iQuvPBCI3+5cuWiXh++9dZbymvqyy+/dCxz7NgxMWrUKJGWlmaUqVy5clzn/FGjRtnqk/9eeumlqOtcsmSJcf3eeOON4ptvvhHHjh0LW+7EiRNi/PjxIjU11dQHt9stNm/eHMvuxRXrmhaA2LhxY4HqPHTokOjSpYut3pNOOkksWbIkLv2OBNVaItL7rE6i5wWPx6Ncuz/55JMiLy9PWea7774TlSpVspUbNGhQVG2r1kXRXpv5+fmiU6dOtjrq1q0r5syZoyxz9OhRcffdd9vKpKSkiH/++Seq9hO9DlZdX5H87o6VRMxTn3/+uW0fy5cvLyZPnuxYZv/+/WLQoEFC0zTbuiiacerXr5/tGBWUWJ+V6KxZs8a2fgUghg4d6njNCiHEJ598IurUqRPyvhjJ84/c3FzRtWtXW9m0tDTx6KOPin379oWt4++//xb33HOPKFeuXNj7wbRp00RKSoqtvaZNm4qPPvoo5D7rHD9+XHz77bfixhtvNM6FUOsIHevxB6J7zlDQ69P6Oy7SY0RIScUcdY8Ua8qWLYsRI0bgoYceMqW/9dZb+PHHH9G7d2+ccsopqFSpEvbv34/Vq1dj6tSppoBf119/PXbs2FGiAv0UhNGjR2Pw4MEA/OP4xRdf4Morr0Tnzp1Rq1YtHDhwAKtXr8bXX3+NzZs328o3atQIHo8norZSUlLwxRdf4Mwzz8Tq1auNdCEE3nzzTbzzzjs47bTT0L17dzRu3BgnnXQSfD4fDhw4gN27d2PZsmVYtGgRsrOz47LvpGho0KAB3nzzTZu58uzZs9G4cWNce+216Ny5M+rUqYMdO3Zg/vz5+Oqrr2zWOqmpqfj0008j8rmarGzfvh2XXHKJ4/bc3Fxb2sKFC3HKKac4lqlXr17MqvTiyooVK/DEE0/giSeeQHp6Ojp27IgOHTqgdu3aqFq1KlJSUnDo0CFkZWXhzz//xOzZsyGEMNVRvXr1sGqounXr4qKLLjKN73///Ycrr7wSaWlpaNCgASpUqGBTI7711ls47bTTbPXVq1cP3333HXr27GkyxT5y5AiGDBmCp556Ct26dcOZZ56JunXrolq1ajh+/DgOHDiA7du3Y/HixVi0aJEy8Gm0jBgxAkOHDoXX68Xs2bPRpk0bnH/++TjvvPNw8sknIzc3F9nZ2ZgyZQoWLVpkK1+mTBm8++67KFu2bIH7QoKceuqpePLJJ20uNiZPnozffvsN//vf/9C+fXtUr14dW7duxaxZs/Djjz/aFL5VqlTBJ598YnM9UVhomoa3334bp556Kg4cOGCkb9u2DZdddhlOOeUUXH755WjcuDHKlCljrMN++eUXk8pw9OjRNmvBcPTt2xdjx441WRAcOXIE1157LTp16oT/+7//Q7NmzZCamopdu3Zh0aJF+OGHH0zXUZs2bXDZZZdh3LhxsQ+ChTvvvBNPPvmk0vK0QoUK6Nu3b8x15+Tk4OOPP8bHH3+McuXK4ZRTTkHHjh3RvHlzVK1aFZUqVcKJEyewc+dOLF26FD///DN27dplq+exxx5DgwYNYu5HpNxxxx1YuHCh43ZVgMhLLrkEaWlpjmWc5lmdF198EX///bctPSUlpcCBvS+//HKMHj26QHVEQ6LnhQcffBC//vorfvrpJyNNCIGhQ4fi9ddfx4033ojmzZujTJky2LhxI7799lssXrzYcT+KGrfbjU8//RSdO3c2BbHfsWMHzjzzTJx77rno1asXGjZsiIMHD2LVqlX46KOPsG/fPltdzzzzTNRWM6V1HVyU89TVV1+NU0891bReOXbsGK666iqcccYZuOyyywyl9H///Yd58+bh559/NhTimqZh4sSJuPfee+M7CAmiRYsWuOmmm/DBBx+Y0p988km899576N27N9q3b4+KFSti3759WLNmDb7//nvTfbR8+fIYN25cTJb2qamp+PLLL3H66aeb3G/m5uZi3LhxePHFF9GjRw+cffbZqFOnDipXrozDhw/jv//+wz///IM5c+Zgy5YtEbd33nnn4cUXX7Qdv/Xr1+Omm27Cww8/jJ49e+LUU09FzZo1UbFiRRw+fBgHDhzAhg0bsGjRIvzzzz84fvx41PtKCEkyEvwCokSRaAsAIfxK9PPOOy+kqsrpr3v37uLYsWMxqedLqgWAz+cTffr0iWk869evH7FqX2bfvn3i0ksvjalN1R8tAIoHEydOjPkYp6amiq+//rpI+1sYFgBOSraC/BVUaVQcLQAK+le1alXxxx9/RNTmihUrRIUKFaKqP9y94d9//xUtWrSI2zkQiwXAjBkzxMsvvxxTe2lpaWLKlCmRHjYSAw8++GDM50OlSpXE7NmzE9Lv+fPniypVqsTU78GDB8e8Ply8eLEoX758TO2efPLJYuPGjYUy519//fXKNvv37x9TfbqyNh5/1113XUyWTLGgUjgW9C/cPKs6nvH6i0bBHw8LAJ1EzguHDx8WZ511Vsztt2rVSvz3339RtxsPCwCdWbNmKZX4kf4NHDgwpnZ1ErUOTpQFQDz+opmnli9frrQ6ieTv5Zdfjvn+k4wWAEIIceDAAZGRkRHz+fbjjz8W+PnH5s2bRYcOHQp8HkRqEfbVV1/FfA6o/mgBQEjxgzEAShgulwtTpkzBZZddFlW5m266Cb/88gvKlStXSD0rnmiaho8//hh33XVXVOXOOuss/PHHH2jSpEnUbVarVg1TpkzB888/j9q1a0ddXqZRo0a49dZbC1QHKRoyMzPx1VdfoXr16lGVa9SoEaZPn46rr766kHpGYkHl27Ww/SnXqVOnwHV069YNs2fPRvfu3SPK37p1a/z2229o1qxZgdvWadu2LRYsWID77ruvwAr6zp0749JLL42p7IABA/Dmm29G1YcGDRrgxx9/jPoeTKLj+eefx8svvxy10rNdu3aYN28ezjzzzELqWWg6d+6M6dOno02bNhGXcbvdGDNmTIHU9x07dsQvv/xiC3wYjq5du2LevHmFFr/EGgxYJ9bYReXLl7f5Y4+WihUrYuzYsfj0008Zv6OYkch5oWLFipg2bRruvPPOqHzwA3519ty5c1GrVq2Y248HZ599NubOnRvV/AT4LXZee+01TJgwoUDtJ2odrFqvRTsG0ZCoeapNmzaYMWNGVOdZxYoV8cknn2DAgAGxdjVpqVKlCqZNm2aLIRKOevXqYdq0aSEtliOlQYMGmD17Nu6//36UKVMmpjoqV64c8Tr1mmuuwcKFCwu8Rk1JScFll12G9u3bF6geQkjRwxcAJZBy5cphypQp+Pzzz0NOzJqmoVu3bpg6dSo+/PBDuipwICUlBa+//jqmTZuGc889N6RpcMeOHfHmm2/izz//jOnhv46maXjwwQeRnZ2NV199Feecc05Ex8flcqFTp04YPHgwZs6ciY0bN+Lhhx+OuR+kaLnmmmuwdu1aDBs2zBYg0UqzZs0wfvx4rFq1yhbkkSSeGTNm2NKiCXoVC6+//jqys7PxyiuvoHfv3jj55JMjKleuXDn07t0bU6ZMwZ9//onWrVtH1e4ZZ5xhuJS799570a1bN9SrVw8VK1aM2cVK5cqV8dJLLyE7OxtDhw5Fx44dI6qrXLlyOO+88zB27FisXLkS8+fPx8UXXxxTHwC/a45ly5bh5ptvDvmCvEGDBhgyZAhWrlyJ888/P+b2SOQMGDAAa9aswQMPPICTTjopZN4OHTrgjTfewOLFi6M+v+NNp06dsGTJEjz77LNo0aKFY77U1FRcddVVWLBgAYYOHVrgdrt164alS5di8ODBqFq1asi8p512Gt5//33Mnj0b9evXL3DbTnTo0MH28KpLly7o2LFjTPW1aNECe/bswa+//oqBAweiS5cuId3kyLRq1QqjRo3CunXr8Nhjj0X9EJckB4mcF8qWLYtJkyZh3rx5uOaaa0I+0EtJScGFF16IX3/9FV9//XVUQWsLk7Zt2+Kff/7BG2+8EdaVT/Xq1fHggw9i9erVuPvuu+PSflGvg//77z+sXLnSlHbppZeic+fOMdUXCYmcp0499VSsWbMGjzzySMjro0KFCujfvz9Wrlxpc81Ukjj55JMxa9YsvPzyy2F/tzdq1AhjxozB6tWrIxbJREKFChXw4osvYt26dcjMzETz5s3DlilfvjwuvvhivPnmm9i+fXtUAqAWLVpgypQpWLp0Kfr374/GjRtHVK569ero3bs3Jk2ahG3btmHKlCkh1zCEkOREE8Li+JeUOLZs2YK5c+di165dOHDgAMqXL4/GjRuja9euUavBCLBnzx7MmzcP69evx5EjR1C5cmXUrVsXHTt2RNOmTQut3RMnTmDhwoXYtm0b9u7di/379yMlJQWVKlVCjRo10KJFC7Rs2ZIvckoIQggsX74cy5Ytw/bt25GTk4Py5cujQYMGho/QRDJy5Eibj/iSeDtJT0/Hpk2bjO/9+vXDe++9F7ZcRkaGKb7K5Zdfju+++64wuhiSHTt2ICsrC9nZ2di3bx+OHj0Kl8tlzBtt2rRBRkYGUlKSPyTQ/v37sXDhQuzatQt79+7FoUOHDCVd3bp10bJlSzRp0gRutzuqemfOnIlzzjnHlDZjxgz07NnTlHb8+HH8/fffWL16Nfbt24cyZcqgbt26aN68OU477TQ+MEwgXq8XS5YswfLly/Hff/8hLy8PFSpUQHp6Ok477bQi8eMeK//++y9WrlyJ7du34/jx46hSpQqaN2+Orl27onLlyoXSptfrxcKFC7FixQrs2bMH+fn5qFSpEho3bozTTjstLtZEkfDGG2/YLCzfe+899OvXL25tnDhxAllZWVi/fj22b9+Ow4cP48SJEyhfvjyqVKmC9PR0dOjQATVq1IhbmyQ5SPS8cOzYMfz9999Ys2aN4S+/SpUqaNasGbp06RL2RVwysHnzZiO+2NGjR5GamoratWujbdu26NSpU6HGUSmKdfBnn31me8C9aNEidOrUqcB1R0Mi5imfz4cFCxZg9erV2L17N3Jzc1GtWjW0bt0aXbt2jVmRXpxZs2YNFixYgN27d+Po0aOoUKEC6tevj/bt26Nly5ZF1o9NmzZh2bJl2L17N/bs2QOv14tKlSqhdu3aaNmyJTIyMiJ+aRQJmzdvxrJly7Bnzx7s3bsXOTk5qFixIipXroyGDRsiIyMjYlERISS54QsAQgghUcMXAM7s2LHDpFzTNA2LFy8OGayYJI5IXwAQQuLLqaeeagqGWq1aNWzfvp1CBkJIkXDXXXfhjTfeML5feeWVmDx5cgJ7RAghhBQedAFECCGExJHp06ebvl999dV8+E8IIRJz5swxPfwHgNtuu40P/wkhRYa8XtM0zSZsIYQQQkoSyW/zTwghpFigeshdr149TJ06teg7EyWZmZlKv/3bt2+Pui65HpfLVei+/wkhpLjx1FNPmb67XC7HoMCEEBJvtm7diqysLON77969GdSUEEJIiYYvAAghhMSFpUuX2tIOHDhQ9B2JgY0bNyr7HwuyoqxPnz5o27ZtXOolhJCSwJQpU2wvhq+++mqkp6cnpkOEkFKHvFajWIMQQkhpgC6ACCGEkDixadMmbNy4EQDgdrsxYsSIBPeIEEKSg7y8PLzxxhu48cYbTelutxujR49OUK8IIaUR2Vrz+uuvR+vWrRPYG0IIIaTwoQUAIYQQEicaNWpUIoMhE0JItLz++ut4/fXXAQBHjhzB5s2bkZeXZ8t39913o1WrVkXdPUJIKebdd9/Fu+++m+huEEIIIUUGXwAQQgiJmpEjR5Yoc+lvv/020V0ghJASxc6dO8O6VmvVqhXGjRtXRD0ihBBCCCGkdEIXQIQQQgghhJAipVOnTpg2bRoqVKiQ6K4QQgghhBBSoqEFACGEEEIIIaRQSUtLQ40aNdCpUyf06dMHN9xwA1JS+FOEEEIIIYSQwkYTdFZMCCGEEEIIIYQQQgghhJQ46AKIEEIIIYQQQgghhBBCCCmB8AUAIYQQQgghhBBCCCGEEFIC4QsAQgghhBBCCCGEEEIIIaQEwhcAhBBCCCGEEEIIIYQQQkgJJCXRHSAkHPn5+di5cycAoE6dOkhJ4WlLCCGEEEIIIYQQUlKRnwUVZ/gciyQDPANJ0rNz5040aNAAALBlyxbUr18/wT0ihBBCCCGEEEIIIYWF/CyoOMPnWCQZoAsgQgghhBBCCCGEEEIIIaQEQgsAQgghhBBCCCGEEEJIUjLvpwaoW8ud6G5EzI5dXnS9eEuiu0GIAV8AEEIIIYQQQgghhBBCkpK6tdyoXy810d0gpNjCFwCEEEIIIYQQQgghhJCkxAcBH3yJ7kbE+CAS3QVCTDAGACGEEEIIIYQQQgghhBBSAuELAEIIIYQQQgghhBBCCCGkBMIXAIQQQgghhBBCCCGEEEJICYQxAAghhBBCCCGEEEIIIUmJV/jgFcUnBkBx6ispHdACgBBCCCGEEEIIIYQQQggpgfAFACGEEEIIIYQQQgghhBBSAuELAEIIIYQQQgghhBBCCCGkBMIYAIQQQgghhBBCCCGEkKTEBwEfRKK7ETHFqa+kdEALAEIIIYQQQgghhBBCCCGkBMIXAIQQQgghhBBCCCGEEEJICYQugAghhBBCCCGEEEIIIUmJgA8++BLdjYgRxaivpHRACwBCCCGEEEIIIYQQQgghpATCFwCEEEIIIYQQQgghhBBCSAmELwAIIYQQQgghhBBCCCGEkBIIYwAQQgghhBBCCCGEEEKSEq8Q8AqR6G5ETHHqKykd0AKAEEIIIYQQQgghhBBCCCmB8AUAIYQQQgghhBBCCCGEEFIC4QsAQgghhBBCCCGEEEIIIaQEwhgAhBBCCCGEEEIIIYSQpMQHAR+Kj1/94tRXUjqgBQAhhBBCCCGEEEIIIYQQUgLhCwBCCCGEEEIIIYQQQgghpARCF0CEEEIIIYQQQgghhJCkxAfAW4zc6vgS3QFCLNACgBBCCCGEEEIIIYQQQggpgfAFACGEEEIIIYQQQgghhBBSAuELAEIIIYQQQgghhBBCCCGkBMIYAIQQQgghhBBCCCGEkKTEBwFfsYoBUHz6SkoHtAAghBBCCCGEEEIIIYQQQkogfAFACCGEEEIIIYQQQgghhJRA+AKAEEIIIYQQQgghhBBCCCmBMAYAIYQQQgghhBBCCCEkKfEKAa8oPn71i1NfSemAFgCEEEIIIYQQQgghhBBCSAmEFgCEEEIIIYQQQgghCaDDAx7jsyYACAAaICS55tIXMm3l2md6bGn+SgJ1OG2LEFMVmv2zCFWXnEcDVjxj7z8hhJCigxYAhBBCCCGEEEIIIYQQQkgJhBYAhBBCCCGEEEJIMaXtI2YluKEiBxyV4P9ODCqyDSW5rto2VaYoLEJsU+UNqMCFBiwfH2y37WB/u7pK3NrmirHFUzXe5tHg8VgxzrwPHR4KbBNBVb/LG9wuNP/xW/Kyet9Puc9jjI+mj5uu+Lcea+vxkbZrqvPCsl1ogHDDZI1gZNHC1yF3od3DDtYKwnwuEuKEL/BXXChOfSWlA1oAEEIIIYQQQgghhBBCCCElEE0IhqYmyc3WrVvRoEEDAMCWLVtQv379BPeIEEIIIYQQQgoHXS3974TQyuhT7g+qya0+45WIoGpbVt0LFwwVuVXVbVLnKxTkQqHcd2pTVa/Qy1n9yqv8zOuWAQn2J99+YFDNbuyay5wgH7v2Az22/YQv8NUb+AvIhXXlvYnAsbVZSgTa00Kp/63HLNQx1CyfXcE05XFWHFdN7pPcTfl4y5kt+/Pvc7QGIEHkZ0EL5tdCvXruBPcocrZv96Lz6bsA8DkWSQ7oAogQQgghhBBCCCGEEJKU+CDgdYxunXz4ilFfSemALoAIIYQQQgghhBBCCCGEkBIIXQCRpIcugAghhBBCCCHFGd1tjO7qxSQOVQVnFZbverLCFYtTEF09MKxcp+xixuQySFWvg1xQSHnUG6XNsosaa4BYhTsiww2NZmlHi9w9TIcHza6RrO6EjP4o3A4tCxEcGTBvN+WR8tkesGj2/reT3AhZs0L4zxPNa+mvNa9ToGfLeWE6jtLxkM9FVRvCBcAFLH7NedyNsTYVtCctfdFch2r/rZ6FVMGBQwVYJiUP+VnQ3/Nrom4xcgG0Y7sXXU7fDYDPsUhyQAsAQgghhBBCCCGEEEIIIaQEQgsAkvTQAoCUdlo86cHaoVS4EEIIIYQkK20e9wAiGKBWD+Sr+YJ/IZXa1nQnhb0VSc1tshYI9SvfIair0AC4YAvEq9dn1O+z7Bcc9k+qY9Eb/nHpdI9/XEKpysNhBOF1CDBsw8GqwjruhjJeqtNQ0et5rcF4LdYbVmsMY7NDcGN93DRLPVaLCWVwYIe6QxJqHy3yUJNVQKTnI9RjIFuEGHVL3+U2hAYs8wTPj7aDPaa8y8ebzx19u+P4yE2oLGoC+71iLH9vJRvys6A582uibt1iZAGww4szaQFAkghaABBCCCGEEEIIIYQQQgghJRBaAJCkhxYApDjQckxQmbJmeKY5DcCaYZm2/Na0SGjxpL9OWgRET6vhZl+jq0ZHN4athnuiLkMIIYSQ4k/rIR6sfDrTr/KHXync5nFPSMVw20fMFgCufMnnugWhAf+8LPmeH2hWPAMW3/26ehwWdbWp0oDaWbIM+OelTHQc4Amq9aX6hCvo891mAeDkf97J4kCDXentwD8vRba2ajfQY/MJ3+EBj1JJrkn+7WVVu5GmOSjqpX7r320WAJolXUqW91mu26a2t7RlGkvJmsMUL8JpHBXqf1mB7/RZLmNLD4fi3ApZj6ovDn03NeNQl8p6xamf1v1VjcHKJ7m+T1ZoAUBI/KAFACGEEEIIIYQQQgghhBBSAqEFAEl6aAFACkKzZ80KqqxH/QqPFk9LanBpFlz7RHgFSIunPSYlTqT+VvV8q0cELARGe9RlQ6lgpG2xWBAkgoxR/rHW9zvZyBjhsausoPisK5Z0hZykWkrWfSOEEEJI9LQbJK0TfUF1t0ltLqvmEVQlW/2T65xyv8dQdwMw1hFLXvHn7zjA7MfcUOPr9UtlVGp32R8/BLDkVXs/OjzkgS9Qr88d3B/NG9g/1X5K360qeBOB9q1WBLqP9X+fC71W6vCg5NdftpSw7LNwAcJt7o9Lt2iwrqUjjREQATbVuXX/HeIMRJRmSbdaNWjWRzaK9am/j9agBg59t5VzSHNQzJu2iWBR/TwyWZFY91FeT1vatFoKOJ5v1mMaST8DrB7FNXtxQn4W9FcxtADoRgsAkkTQAoAQQgghhBBCCCGEEEIIKYHQAoAkPaXRAqDJ8xMBABseGhg6nyeQLzN0PgI0f8ajVAGtHRJeBdJ8bFAFtu7xYH7ZimDtkEy0eCrgnz9gRSDHAJCRlfu6T3+Afv2LmtZDA2MfUJk5WWOofL7KFgCrR/K4EUIIISUF3Xc/EPTFDqhF1wIwSeocVdMAVjyTaarbyVIg2j7afKLDrCC3Kczlzkvq7VBqeau/e0hrIcPHvlR2xTj1vrV+wuNXiSMYE0HzBX3yG332qn34mywwpe8CkhWApY+2XdctDCxWFMr9j/JJiXL8wlgGGOp+a3+c0hxQ+ssH1Ep/W7qmziutgU2WKbL1i9Wnv9VKRYMyDoNhWQPLMLuktbbcXTnWgMv8v9F3q7UuuE4v7tACgJD4kZLoDhBCCCGEEEIIIYQQQogKHzR4o4pWnVh8xaivpHRACwCS9JQkC4AmL04AAGx44GH19ucnGooU//+yDAMBZYPVB6QsuwhBoKzQgPWDaDGgxwbIGhxUhTQbF1RT6bEC4oluSaAfwkisD0j8aTvY4mM24PN22cTg8Wif6cEyTybaZ3qUyiZhVRnJr9MDx3flUzy+hBBCSKJpPcRjUlSveMb5/tzuYbP1pq4itirG/YmBP+vSXBEryORLX1eC+4B/J/j70m6gx/yoSKUWR3DZv8yTae5vYC1jimfk4CdeVbfup18o9kkTdutH2dJBr2f5s9Gve9oN8hixAfQYAEYsAxFsG5CU55Y1mG3/IK3ZBGzjao1vIO+nbWxC+O63HvdQMcEiUflHYn0QbTwDm1VACGsAaxwA2SpAaQ2gWwHo6a7gd9u5ApjjOsCfx4jBZR1TxfG1Wn8YdQf+fG769y+JyM+CZs2vhTrFyAJg5w4vup++C0Dxf45FSgaMAUAIIYQQQgghhBBCCCGElEBoAUCSnmSzAEh/ZULQF2hAhZA9IKjob/LCRJOKQffP32z8RGj5kmxBA4RbQLiA9Q/bFfl6HAC9Hk3A7yvRpg7RoFT4UO1PioiMUR6sHlFyFDdtHvME1Wc+m9jILsiyKqYkv6ShVIaEEEIISX5kdb7sA19XJTuq7mVkC0Jruo5Udvn4TLQb5DHXp6vZFev+iH/QW1TcRt8VCnCj2cC6prDXNDYLTYuCXMaq4jd8+xdAqW+LlWBtRyqjTEcYpX+ovoTz9R9qH0LgdL7Z1f7B7+bPWmgLAKs1hnWbnl+2LrFeTIrjZv2trdfnFFuClFxoAUBI/GAMAEIIIYQQQgghhBBCSFLiE/6/4kJx6ispHdACgCQ9SWcB8MZ4vwTBC7h0Rb9X8/uo1J1qSb49dTXEhocGotn4gKrfZ8kfkDkURLHf5AV/3RsepOKfkHiiK9I0L+y+ZGGPDWAo5RQqpVbDzL6FV42hkokQQghxos1j0n0zhEo6Fv/z8cbRj7/s49wVXCeoVNRy2eXj/fvUPjM4BlZltOyzP6R1gIMaW1f1tx7iMbYXdQyjdg97bPtv+I2XVfn6eEqfnfIY6WHSorYYMJUVDukh2o0wXdkuAET76EaznlhqSw+lot9Ik6wAAuVktb8pDoPifDatky0xA0z9AdSxNuQ2A+Wt6+eWYzxYMyzxcwCJP/KzoJl/Fz8LgJ5daAFAkgfGACCEEEIIIYQQQgghhBBCSiC0ACBJT7JYADR651kAwKbbBgMA0l99DprPL1nw+woPyBdcwqSQ2Hjfw2jy4gSTr37NB2j5mt9CQBZmaPD77pd9KBrpVPcTksy0HurByifV6qM2j1v82lowqarcgC/goG/1KKqZCCGEECttB3tC3k+Xj89E20c8/ng8Dn7D2zzuAQJ1xOJbvN3DwXu7CYXPegiYVNA6y5/N9KvvtWA9hqI9sGbQvMF6/50Q3C8AhiLaiBUW2B/T2Fja1LfZ1NuBfgo3sPLp2Ncfeiwled81Ye6n3qSw7gMAWYmvVPtb0kKp+R0V/wVV+zu1G2l/LOnqberHNJH4/7f7/tfU28PGAND/1+y+/l32c8jYZuu0vX65Hms8Lb1PKktZqv1LF7QAICR+MAYAIYQQQgghhBBCCCEkKfFCg1f5hjU5KU59JaUDvgAgJEJ05T8QsAYoC2Tr1gCvP+eP8qJLGtx+3UP23YMAABseeNhWX5PnJ5oUOACMWAFWGr80AZqA35IggKpOQkjiUKn/Ww3z+JVaAXWU5vMr66wIF8yWP4H8GaM8WD2CKidCCCHJTesn7L76ZaWyrEiOVl0uW9HpanJIy27ZB7y+ttb98Wte/+d/J9rbdOUFy7Ub6L9fW33sQwOWKcrq20z/S9gU2AF0v/46bQd71D55ZathPc0HtNf3S++nD3CF8ZOvSWNl+GfXDZd164LANmv/rOjH2W/9HOifZcyM/sn74KBa1wL7ZcNBoa/vjy1ftOmhlP+2bcIhPUxdEVsXWNPtOx2J6l+V3zgP9ToVMQH0/KbrCUGjFf//wm8FIG8I1b70WRj/WLYFYuXJbRtlQtQfahshhBBnGAOAEEIIIYQQQgghhBBCCCmBMAYASXqSJQZApKS/+pwhTTCpXwQk+U0gswYIl8DG+yNT8zd+eYJJQeFXDAtk3zsoHl0nhMSRVsOCakiVD1NCCCGkuNF6qMf0XWX91uZxj6HWN6EBK54puvthu0FSPyS/4yqVe9tHAn7rFX3+d0LR3sN16wXD2iGACFgJCrfdp78cJ8D0vxXdikL6quePZj8zRvnjJ7i8CPr09wb64jO3ERFWxb7F2sO0LVS5EPWqvkfs8z8CS4OIt4Xtg3DeFiVKtXxAyW+NQ6eMC2D4+tfM6bL/f0W6qR79syaVQSCvC6ZzGfDv88onM2kFSwCYnwX9+nedYhcDoFeXnQCKx3MsUvKhBQAhhBBCCCGEEEIIIYQQUgLhCwBCCCGEEEIIIYQQQgghpARCF0Ak6SluLoAAIP3N8QCA7P6P+L+/MsEISmYi4AIoEhc+6a8+5/8gR2iSPwc+Zt9Dd0CEFDd0M+eMUWbXCjR9JoQQUhxoPSQQHNbB9Y/Qog/+C0gBgAGsGFs098S2gz02ly82VyoasPxZdX/aDfL3+d/nQve33cMeY7zkcVv6QiY6POixj6PkXkV2s6K7UDG5MJL6K1x+t0GA//+VTxXeOLZ4ymO4ATK5ghH+tNUjg223HOOB5vUHYza5NPKa3QnpbnAM10LSfprGz4kIXAM5u+cJEwDYoc7IA/4q0uMQBNioynbeauptoVwA2dK1YLrF5Y/sNkjP73PB5O5HpATqUbn/0Y+twnXRqtF0C1QaoQsgQuJHSqI7QAghhBBCCCGEEEIIISqEAHzKwBbJCaXWJNmgBUAxITs7G40bNy5QHRs3bkR6enpc6v3pp59w0UUXFag/kVIcLQAavfMsAEDzaoD+Z8XlV+1n303FPiGFgaymTza1UMYID2xBwqFWX60elVx9J4QQUjIwBfR1CLaq35diUe/HC926QKco+tLmMcnyIIrAxe0GeQzlfySWAG0f8ThuAywWFQGDX6u6ftnETLQfaKlHOpbLPEV37DJGeSA0YM1wyapRV3Qr1O+uvICFhSu43VD++wD4pLjGujrcqvgP8zTDUT2vCjysSrelRWAVECJosCpfqEDAyu1R4GQFYLUACJkmW5QYKn/NtE1X/QvdKsBlyQ9LAGtVEGCHZ7tGO5q9j2uGcZ1ckpGfBf0yrw5q1y0+Gub/duTjwq60ACDJA2MAlBJSUlJQpUqVRHeDEEIIIYQQQgghhBBCSBFRfF6flXLKlSuHCy+8MOL8Pp8Pv/32m/H9wgsvRLVq1cKWi7SNmjVrRtyX0sim2wbb0hq9/azfIgDwK/8D8QEIiQctngr43vUFFVKy/83SqI5JNtU/ALQaFjhOge/hVGkagFbDPSblE5Cc+0YIIST5kX3qh3KkICvMVT7jdUu2VaOjvx/JlgcrnwxfvqisD3Tf/5oPcEv353YDPaZ7MOCs6pfTZaVyu4Eef3HLfd+lOAgmN/6SP3QRqFOkmDO3e1hxTKUy7STrAF2BvWJc4Yypz+1f22SM9MCVH+yjsSYVfv/+AODKD362nYy60l+uW6ojHEa5UL73FRYANsW/yjJAaKbvukWAkPom99s4nharGk2yjJDPFX+63oYwlVHuS7QIAWiaObZFqH7DPOT6d80r/CewXIe+0WWpIBAHAN5g/30IpCniDOifud4lhJD4wRcAxYTatWvj559/jjj/r7/+anoB0K9fv4jKRdMGIYQQQgghhBBCCCGFiRcavCFfXScXxamvpHTAGAAllBtvvBGffPIJAKBatWrYsWMHypQpY8tnjQGQjKdDcYwBQEhh0eLJgILcwVcvYPbVqStq1g6lgqaoaDU86PNW5TsWgNrXqgJZnSVbdFjrVPuotdcnnxuxqDYJIYQkP62fsPj2h/2eYPXrDfiV/npZq+q/1TCPrY5I1Pumfg31+H26+6REDVgxNsp6hpj7IpdvOzh4D14+PjOovIeRbPgpl5XHVkW8XI+x5rL4Qdd8/m3G/uj/B8Z26fP2/ZItMITmt25o87gHK8ZmmrZZ9ytSdLW/7lf/3wlFf69vOcbjH5uAut/w3Y8Ifb5bx1m1lnJS70t5je+W9Zgqvy2vNR2WfqiuK6GOD6CsAw5pqrJGun1hF4k1gONaU7NvsPrXl5X5ym0aIPR6tODxNR1nl5TX5bcSMdKtFgBS3atHZRq/ewD+limtyM+Cps6rW+xiAFzSdQcAPsciyQFjAJRADh06hMmTJxvfr7/+euXDf0IIIYQQQgghhBBCCCElF1oAlEDefvtt3HHHHcb3efPmoUuXLsq8tAAgJHE0G+dXsK17zK9oaTnGY1cwAWblkp4kKWmM/wGsfYLqmFjJGGG2rrApzgLqJF3xqPswXvlkJloPkcrqxSxqJuVnK0K93arekpVqEdet6JN+Hq0eyfMmEloP9Rjng1Uda1LcAn6/2VGqYwkhpKDosWYAYNUYu6JfV8/r6nOZ1kM8RpqhRtfviQF1u3I9AthU26F8zLd5TKo7cB+yqt1bP+FRxh4w1WFRaS8fn2nyhw8B/DvRkmbpq5Mv/0hp97DHvGbT653I+V9FyzHBY6HHp2rxpCdmdXfzZ4L1yVYHxjkrgpYapnSF9YZmKQco1oSAfa2usBDQhHC01FRZAZjyKLbZtjv8ZneyCIjUCkC1drVe40Hlv/6/f4MI+PnXVf7CbcnvCuaR0+X5xZfq/7Pui3CVznhmxPwsaMq8k4udBcD/dd0GgM+xSHJAC4ASyPvvv298zsjIcHz4TwghhBBCCCGEEEIIIaTkQguAEsaGDRvQrFkzQ8k/duxYPPbYY475aQFASOHTbPxEaF4NWr7/u6FEsl5umrPKhsr++KCr/AGFD1irv1cntZRqmnTw6W/48I+hrpA4xAKQt9tUmcIcU0D2sUqAjJHBc0O3iJAV/7Ii0IZVDRgY4+XPBpS0utpVP08kv7cA4zEQQhKDya+/CFoJtH3E7GP/3+cyDd/yOgHhrsm/t47+fcUz4ec2w9c+oF4XuSKrxxoXwOrPXWW5IM/Dehu6RZ/VEiISf/xtH/EE7xUWJfW/z2Wi7SMeLB8f2Xzfeqgn6P/eeh9S7Y/lvhLKeqI00eIpj1nR7wv+yfEoZGsBeXzDxREw8kCdz79dmMvBuh2mc9/Rr78iPRarALPKX1OnA7FZAFjiAAAwrAKE9NnIHxhz3VrAWzbYjry/en2MA1D6oAUAIfGDFgAljA8++MB4iO9yuXDzzTdHVb5v375o3rw5KlSogAoVKqBhw4a46KKL8Oyzz2LXrl2F0WVCCCGEEEIIIYQQQgghhQAtAEoQQgg0bdoUGzduBAD06tULv/zyS8gyVguAUJQtWxaDBg3CyJEj4Xa7Y+7n1q1bo8q/Y8cOnH766QD45pQkN01enIANDzyMZuP8ajHNB7jy4ajUAsyqOar840PGCI+zH3/rZ0TuL9VRkWUqpEiSX7UrfCWbylnUZI7WA5LySlYamvI7qMmsSi76/3em1TBPUB0o+RVWHT+n+A8rxmUaFgCGOtMhPoBscWC0JWM5dowxQAgpDFoP8ZiU0YafdIl/n8tEu0GBuU2a85aPD6br/vXbDfSY5q9I7q/6/Uy3pNL7JWONYeC4LwKAJYaBPh/bYg9Y8+v7rtnndp02j3qCdTuptGX1uLRNBOpWjYtRVu+L3h/L8RDuYHlfQBwrUnmP0DGsAHSExRIACFoD6NuElK6XkdOsVqSwH2cdcx55saBepyrXrtZtVkKtbSN93OMUD8B6bmpmCxonCwDZ6tFkMSDVo+fRz1tvGUDo57DiN1LzZzxY91gmmo8NzgXrHud5XpKRLQC+n1sftYqRBcCuHfm4/Az/sy8+xyLJQPG5ekhY/vzzT+PhPwD069cv6jrq1q2L9PR0lC9fHvv378fKlSuRk5MDAMjJycGTTz6JBQsWYMqUKUhNTY2pn/oETgghhBBCCCGEEEIIIaTwoAVACeL222/HO++8AwCoXLkydu7ciXLlyoUss2nTJvTp0wf9+/fHpZdeirp165q2nzhxAt988w2GDBmC7OxsI/3uu+/Ga6+9FlM/NU0hb4kQvjklyUyT5yfCdULzq/5h9iNqKGUAk9KLqpXo0P20y6r1VsM9auWUCiffq6qsEU5VVt+vwQ0wlFAq38ih+hhK/WXLrqrfsbNU/BcE67kGAKvGOI9nq2GekNsjofUTHtv5IrTQ7RJCSFGgWy1Zfaw7Iav5ixN6HAD5/q3ysW9YDzj46fdXovAZb80irROFC4bTXl9KcC3p0q3SfAhaA8r+1d3A6hHFc7wLk2bjPHDlSQp+q6WL1TJAOr8NQbw1FoPFAiCU9and379Qr0dDrVFDrA1VdTjWEwabBYA1BoALEC7N5NPfUP+71OWt9ejjodfhSwtYAAj/OWz8dgr0nzEASh+0ACAkfhSfq4eE5NixY/jyyy+N73369An78B8AGjVqhL///ttxe5kyZXDDDTfgoosuwgUXXIBFixYBACZNmoR77rkH7du3j7qvW7ZsiSq/7AKIEEIIIYQQQgghhBBCSGTQAqCE8PHHH+Omm24yvv/555/o1q1bXNvYvHkzWrZsabgE6t+/P9544424tqFCfutbGt6cNv/ySay7dmiiu0GioIlnIjQv4MrX7L5ZJV+YWY9StRJPMkZ6sHpkpl+VreOkmIpSQWUiUqMlq294q+JJVV84/64OCsJwKn85z+pR5vMuY1RwvIQGrBnO85IQQoozGSPt1klWrPeCeNJ6aPC+Qr/zJNlp9qw/JoCWH1xjaT5/rB/ZCgCAsQ4zWblY1f9O6ZDSYc4r5/d/jiI2gCVdud0hjzIfQqxTAZPiHzAr/4VbijshxQDwuWFYruh1a96AVbTbkl+u2x2wAnBJx0Pvk/7ZBawdwnmmtCA/C5o8t0GxswC46gy/+LU0PMciyY8rfBZSHHj//feNz82aNYv7w38AaNiwIa6//nrj+2+//Rb3NgghhBBCCCGEEEIIIYTEh+Lz+ow4sm3bNvz+++/G9759+xZaWz179sR7770HAMjOzkZubi7S0tIKrb3SCNX/xYemEycCCPhh9Wl+f5UaoMmKFw1Y9xhVKoWB7steVi3pH3Vxk6FykjdY0yyFZZ+lJqRyKgW+VVHlqNKPxu7OoS1rH61+/VuO9sAJ+gQOTcsxHqwZFt0YZYwIxKYoRIUtIYSEI1T8GFmlb/jetiKLkANrmUjijRQ31X80FgttHrPcT+W1ggvKuD7CxXg7yUzW4Ew0G+cB3H4rACB4PCEATVKkawIQ1utKUqXLMS90Q1ARiMmgX2NOy06h1yEAIW3VIJRlBBzWtXC4nqNAj1dmRVfn+9X+/gy+lIDq3yIl1QLxKAT8Y+jTlf66L/80GFYDxj74zH03xj1gLbD2CV5HhBASL/gCoATw4Ycfwufzrz40TSvUFwDWIMF79+61pRFCCCGEEEIIIYQQEg+8wgWvKD5OTIpTX0npgC8ASgCy+5+ePXuiUaNGhdbWsWPHTN/Lly9faG0Rksw0nTARmtevhNG85m0+SdmSNZjKlUhoOSagsFP4TnVi9chMv99jFbpCT/8qJJWepHBSKfdsZgRO0i1LmcJU/Fvb1/M4+e9fMzzT8PVvGyNL/SqLgIxRHntMA3k/pPRYLQpajjH7rNYVYIm2UIhW/Q/4lf+thnmCqlKrtUhgvFaN5nxACClkLPcclV/wSNTCurJZn9eEFpk1QDxoNdxjVlBL95xo+tD6CY9yf2UVdesn/Pu38imHei3lDX/mgF+9bHyRVORhaDXM36buV962n5q6P7q1mbwP+j1GtzjQ90e/h/tSYLuXa6J034+aP+MJHrPAml3zSj7pLTEAEFC2W5X/QsCwGgAkawERsASAlF/Yl1V6/UILpBvHVIMW+GKyaNUcLFz1OhxiBJjTnS9+LSDdN5a/hvIf8Lk1+FID6SmBfcz3fxaS5bMvNdgnl25d4QO8ZfznonAD6x73n3vNx3qCFhNSHfJ4NH/Gfz7TmpoQQgoOX0kVc+bPn4/Vq1cb3/v161eo7a1cudL4XKZMGVSpUqVQ2yOEEEIIIYQQQgghhBASG3wBUMyR1f8VKlTANddcU2htCSHw+eefG9/POOOMQmuLEEIIIYQQQgghhBBCSMHQhAhhB0aSmtzcXNStWxf79u0D4Ff/6wF6C4OXX34Z999/v/H9+eefx4MPPlho7els3boVDRo0AABs2bIF9evXL/Q2CVHR5MUJgE+Dlg9oPs1kHixcAFwCQgPWDxqYyG5GRPOxdrcwRWle23KMxzB9B+DskkBpLy25VYnSvU5Eadb2Y63bqayDKx1jm4NLIpVrHN2Nji3wo3U8Q7UZAlOAZTlAnFbwAIctR3uCffQ5ZLK6Y5LSi1OARd0NU3HqMyEk+dEDvltdySjdADkED3XC6oLG5FpGxxW/AMByYF7AX6/Rpo4WfXuthwbczcluWiSXgE71GcF/LUFWbW76JDdvwh26f6q+yHWufNpc1nAVJB9XYQ48qyNc5vKthnn8gVS9gMtrvn8Lt+7WpfQGr2/2rMcfDHj8RACAlq/5xzkQlNYY44A7IHnNalxv1nTA7MpSPs5hPqvWbZr8mMbh+tZClofh8icSt1/+60IznSs+N+BL0fznS8B5tHD73fto3oBrHynYr+H60AWsGGs5HwO/l/R6ZDeJDPZLnJCfBX0xJx216qYmuEeRs2tHHvqcmQ2Az7FIckALgGLMlClTjIf/QPTuf1asWIHbb78da9asCZlPCIEXXngBDz30kJFWr1493HnnnVG1RwghhBBCCCGEEEIIIaTooAVAMebyyy/HlClTAACNGjXCxo0boWmRSzv/+ecfdOzYEQBw6qmn4txzz0WHDh1Qq1YtlCtXDvv378eSJUvw6aefmuIMlClTBtOmTUO3bt3iu0MO0AKAJJrGL08AEFD5eDW/osoaEM7l/39DZnKr/5s/47GrhCwILRigy1Y+YDngtN1Ki6eDare1Q4NlDPV3GAsAW1AzyzYbYQLoOgbYVRVxUvshMiWVIw4KTSdWj8o0Bf5ToQry6LjNmjWKMXG0xnDYZu2LYz2h+ivs6bpiLJmCGMoWDYkOZEwIKfnIgdTD3k9D3GMNAnOqoVJXlZes1ITmV5zbVPoI5rGq4UMF3DW1K1vDRaD6bzXcbp0gBwvWgwE79VP/rAp03OZxD1aMzUSbxz3GPpv6jOA4hgpQ3GqYx67c19T3MyOvkyWHPD6Bz3qwVrkPLcf4+xdLcPvSQLNnPRCu4CDr1r2aN2gBoH9WWQCYrAAQ+K7/r7omresZq6pfuT20FYBerzo9cvU/oLYAEC6zFQAAwxpAE4FAwAFJqS/N/1nz+svqQYNXjPXPK1aLk1bDPf7AwC7LmtsFrB3Cc5b4oQUAIfEjJXwWkozs2rULP/30k/G9b9++UT38t7Jo0SIsWrQobL46dergww8/LLKH/4QQQgghhBBCCCGEEEJigxYAxZTnn38emZnBN+Pr1q1Ds2bNoqrjv//+Q2ZmJmbMmIGdO3eGzFu7dm30798fDz74IGrUqBFTn2OFFgAk0aS/ErQA0AIWABAwnKgVB+V/s3Ees0rI4icUgEltF8oKQFf1W/11tnjKY1L668ozQK0+U6oXY70jhVH+6yh996qwjomcFiWOvvhV7RmFwlTqUE84/7DqQortDu1b1aJhkVWKkWS3WnwIi4pTVlsGlGmJ8quv+/VXXVNhrVYC15iuhDMsPIpZbANCSGKQ758yyvk+hPpfVuNmjPDY1cRSHbZ6jUbN25T3PC2oEraW1dX9uo9wAMG4MPpcH4HCXt4Pox8iivVFiJgAuvo/1pgHxr453RtcgfuZxR+/1RLAFIvH2v1AHtnveushHv8+PZVpspLQVe5WS4vSGBdAjwEAABBBCwB3jj/JfQK2tYwch8oUL0A/5/TPAeRzUO2nX3HdKNcWIrw1gS3dfNLZrCmNDZp53wKfdcsSn1uDCEhHfakBv/8ajJgJen5fqn2fhAvwlg1aBFh/ExjWwkZfaAFAgsjPgj6b0xg1i5EFwO4debj+zI0A+ByLJAe0ACimPPTQQyaf/LFQu3ZtfPLJJwD8E9KKFSuwefNm7N+/H3l5eahUqRJq1KiBjh07olWrVgWyMCCEEEIIIYQQQgghhBBStNACgCQ9tAAgiSB90nN+NUpA9Q8E/wcASD5DhQZsvP/hIu5hdIS0AABsKjAn5U2Lp/wKMln9b1X+6+gKRauSUGjAmuHq+jNGqVWNYdXrYbZFFS8gznfFqOIFhNh3pWosWpwsDSKpS1KEFRiHdiP2U+tKHv//JtVqAVn5pML/tsJHdMZIv6qTsQYIKX3o99yQ806IudV6D9at9TRviLIRWDiFvY/o6wzLPURW1OtWXk73KpWP/khoNTw4r9r88OttudT3Fn1OFq7o284YFRxb2W+8Cd06wjrHq9ThKuuKULgky4tAfld+oD/68ZbV3gFVt9BgqL2T5V5bWDSdIFsAAK48zWSt4soP/OVJY+bzj4/hu14+twIxAWxqfAdrFNXa3DEugLBYAUj9DhkLALBZApgU/0aaxQLAFVT++1IAb0B47Uvzj4nPDeRXlMYqD0g55t9/XwpMMQO8acFrz5cWrN//J7B+UHJbUpPEQQsAQuKHyhiTEEIIIYQQQgghhBBCCCHFHFoAkKSHFgAkERgWAFa1VkAqo/KPm4xWAM2eDarpHP2MBrD69AeCSkPA7ONTVvu3eNKjVKeF8ncbzCR1JfBZVibqKriwhFH4h1Wtq7YXwd1R5fNVTrf2O6J4AsqGFGkxWBEoYwDEYp0h9cFUxKEuWZFmpEXh/1+3RnGyPAGCSk0gtLI+Y5THtF1lAWCLZaAgnB9nW17F+Vya/DQTQpyxWQVYrIhkVDF5ZDJGeUx+vW31KVDFFrL5GneKA2CtR4FT/JRYaDUsONeHUvQbsQQCqmXdR79+r4jEAsu4r8iqcAeEND7y/pnuMU5rLSnNNsaBsdPV6yZ/9dJ2ow9umCSCstVFy9HBsQt1Py0uNHl+YnD/pbgTGx4aiKYT/ZYBwg1o+QEr4MCYuU8A7tygT3u9rMuL4LGWYzcEPuuxAVTHU2UxYHwOtGG1AjBtD2VF4IQUX8P03cECwJcSTNd8fiW/TxJja77g+ZIxwhO0AAhYSmhefxlvWX+n/HEoAgsmqSNZg4v/uUXih/ws6OPZTYudBcCNZ60HwOdYJDmgBQAhhBBCCCGEEEIIIYQQUgKhBQBJemgBQBJN+qTnAADZdw0Kpr32nKTcMcvrsgckzhKg2fiJwf4oZvdQvnz1YuseNytvdL//Nr+5CmRloezPf/XITENNp7drUjVb/JlnjLRYLoQhYh//hRHLXMRQr34cnFT04eqLxtJCc1Ckx2pZoRfXVYUK9bupClU71jFTKBFt+SyKVt1nsnCFVrS2HO0xj5HDfoc7z1aNzvT7kXYiRPmoz2HVONgqVZeL1CqChMY4bywIizIWmtp6qjTQfGxwjJzixpCipcWT/jnKGpMn2joMBTMQes60qo1D5LepjQNp0aBfc4U5z2WM8KjV2LpvfH0OcCFkTKNY2tJZNUa636ju99FYLWpQWnQYlg16XS5pXSYdK9N6TbFWKWkxApq84Ff+b3jQ75O+6XMTDSW7bkXhztVMMTP0sdS8gXH2Bf8HLBa4PunwWVT7jjED5DTdmkB/hOOk/LfWZ0G2qjG+Wy0ANH88BOEO/gGAT1p/ecuarwkIwJXrb1O3DvCmqeekphMnBtfDEpoAsh5hTADihxYAhMSPlER3gBBCCCGEEEIIIYQQQlT4oMFXKGquwqE49ZWUDmgBQJIeWgBER+tvR8Lnc0HTBFJTvFj2f6ONdABYeeVItPxmtJFfF/RoAFZfPbzI+1vcSH/dbw2gVFopVM3Z9w5SZCw8mj43UfL7qVh0WBX1CoW9CKjAsh71q3V0CwAn/8JhleUhFEhGloBP34yRHpOyL6TiWtVeKL//4dZg0SjqQtWh2H9HdaRDn+S+R6L4C6nuCrQTkTI/TF9iWsda91dW+0dSn8oKQKrD5O9YC1oDtBwjWa6EGkNrH0OwelRmULEZRXmnmA7BDJG1b2pPda5JdTkeN4XSzjG/lBaJv2tScmj2rMfmh7n5M2ZFckQ+phWUVouJ4oAppo8Vxf3GZAmmq50l1XPE1nkRUmQWAE4xEKR7qXABcEU+N8pWkaF8+JsIzPMhLSws93dHqzuH/EayD6HXQfr/gXvuyicz0eZxj3/NGEgLFVOhOND4pQkAzDG9mrww0bAGkGk6cSK0fL8lgBxfQfPCOQaAMKfb4gLI6bIVgJ5mqsduARDTuk7HsHDRTOsIXfnvSwV8uk9/ybc/XIC3jP97fnnhtwDI06D5AFd+MJ+3rLCp+pt4/NYWmgjWCQFo+cD6QbQAIH7kZ0Efzm5W7CwAbj4rCwCfY5HkgDEACCGEEEIIIYQQQgghhJASCC0ASNJDCwBnWn4zGj6v/T2epgm4XAKrrx6OjIDaXxeM+nx+WYfm8l/6wqcZacLngsvtM+rQXAJraBUQN9Jffc74XNiWAaZYADqy1NfiU9ScD1j3mF3FZVIGRqJec1AaO6FS9tn84zqp06zKf4UPdZsaMYQqWoVpPy31Gz725XGR1V+yylqhrlb22dJ/dafs2/X9NNp0Sftt2WelQjMClbqTkj0SS4eYLQoUKsjVIzP9qko5WVakWvuiOuYhrDBCKikV26K19HAirLVGCAscRysDJxTnMhyOkb4tVMwFUrxpNn4ish4ZiGbPStdVOAVygHDK8UjSrXWU1nOt+Vj/+Ftj8hQXnHzbK4lgzrLdN6yWToH/43G+ZIy0xECwti8TSI/WD74tzpFVAS7VbUJx3wp1D5f71XqoB5Ggz/OmGAHSWsMaD8o2Ti5p3REoV9xi06S/MsGYi7R8DVp+YL0U+Mkl3ABcwrAAQOB3lCtfsgLwSvOZFBPA5q/fEhMAMCv95TRrHAB/unC0AJCvD9XaS2iaIk367AJ8KYBI8f/vSwvuj7ecX9UPn2Zab7ryAsc/RRj5Nzw4EI1fmmCyrCAkUmgBQEj8YAwAQgghhBBCCCGEEEJIUuKDC95i5MTEV4z6SkoHtAAgSU9pswDI+GY0NE1g1VUjjLQ2343EiitGIuOb0YZaPz/XDc0FuFO9ED4N+pUshGZYAHjz3cGKNQG3W3fMKjUoqYlcmmAcgEJEtgAAAAgN2QPir4YxxQGIBN0qRCojWwDoMQAMlZdF1W4Qqs0QimVbVs3vax3wqwgjKqNaX8lK/UgsFqTtugLK6lfXUJdb/QNHiFVVblUvqpT6JrVdhGpK4TLXYSprVRgqLBqcfASHVWqGs1QoKBbVnO6T38DlrNy3ja1VyWidF0NZeUhKu5DWG3o9ivPQtj9wGHOEP2cd81ubC6EUNY2PQgmof187tPCVnPqc4+QrvsVTHtvYCq34qqUTgXGfiMZkJMz5F9GcGGoujvL8Vp7Pqjq05Io7YMRSCCDfb5uNC97z9P3T4/EUJS3HeJT3ekfrpDBzmylPBNZkjqjU/5Y6rcRiFaBbAfgbgv3+ILWbCKW7HB9JnrtNFpQjPSZLP31dBQCthklrK/n4umD4fDf2P2ANoccIsK23LPdD4fLnFa5gm8b5FNieTNejTJMXJsLvwx7GwPpSBTZkmv3R62r2xi9P8I9NfmAdnafBlQdTLABAof5XqPqNeACQFP7CUoek/jcsFHxCqf4HzOeGofaXz1nrtWi5tvTzwSgjnytuwFvWbxWgxwAQKcJ//POBlOOa2WJCBLbL7Sr6ooq3QEo38rOg92e3QI1iZAGwZ0ce+p21FkDpeI5Fkh++kiKEEEIIIYQQQgghhBBCSiC0ACBJT2mwAGjx9Rj/BwF4890QPkBzBy9NX74Lmib8/v51xUdgu8stoLl8EBYZlctlvrSFCKRZFL+aJkzCJpfLF8ivGdYEct2rrx6Olt+MZmyAONH45QnBL7KCx3I8o1XENJ0w0agzFMr2hFlxaLMAkPLZ6gnVpiI9pGIJMBRtur9cXd1mUn071Kn7ogUCijUBk19f2Yeq3papD4Frxab0tqgYNZ/ZYkBWRIZTdiuVjNZ9kZSUKsVrWKW+dYytanSrtUO81PoKnCwqTN2LYFWyZlgmWo6WzkuFstRo0yXVK819pv0VfrWeqQ5LPxxjSMjHPUILDXsnpb6pLDLkfOGqV4yrU/yKSFT/pryKc2TtEGmueFKhKrWci2uGq5Wf+vF02i63YVKjWo+j5Tio/FMDMHxUrx2aieZjPaXGeqDpROneoFRpRzABRHgeKssp5qaoLFwsc55NnR5iu5EHwfNk3eOZYS1OIkGPnWBNs2LLI8da0IS670JD1uBM53KAaXvzZzw2iz2nazYSZGsAK8pjJx/nSOfRcDjMW7q6v+UYj03p3+JJT0iLJSN+TKCP4dT7NotEad9WjTGvTWS1fay0Gi6p5vV9lmL6hJsrZayxclaPCLGWUsgDjfuj5bNwm/MJd+B+GJij9e2rR2Qqj1Ey0filCaaxdun76dOAwG+qDQ/4rXabPD8RcPmvV83rjxEAAJpP88cB8MKs3tfvWRZVv37PkrcBgTTZagAW5b8PlrWmMD6brxUtaBEq3eNFIE6DHq9BL6pjskTQ8Ul1uAGf22whYLTpluqX86f4rSnggtF54QI23se4ACQ0tAAgJH4wBgAhhBBCCCGEEEIIISQp8QoXvEq/r8lJceorKR3QAoAkPSXFAqDDD8Ow9LIxxvdWk0cBAFZdNQLNv3wSAPz+/YUGn1eD8GlBOYYkWdOV/5pLQAsoUjRJ4qZp0neLv0bNFVT763mE0AzVv/5dRv+uhZDlCqH5hStCw9prhoUch0ST/sEzlhT/OGf3ezQh/QGA9Ff8VgBBpZB87NVlNmQORNOJE7F+YGjLAEPtqeOkyoSz2rD5WIvqDWYFYcsxQRWdo+rTiVgV06HqsSr19e2SYl9Ps/pjBWBWv0kqK5vPVIVcymdRw0UcJ0ELqrBMfZevX4e6HP0zO1gXWK0SNBFU7cnl4kVIQbFFDRzOd72seFszPNOmajQp6a1KYwHTsdWPp00pa63PojBXWVRY1/dO1g1AULku75e1XCRxMkKeWyHOM+v3uB13WdXosH+quApAQO0oWWDo4xlKLZoxwmMeZ8kCIGSsDalvTnEc9O/J6qc6VppOnBicN4zzXh8Qe/6ILLuMzA7pkZyLqnlOPn6K6wsChq9xwH/+6MpTV35QeayrkSHMSlVlbBXLHOGklFcp+00IDSKwPls/aCCaPhfI73T/gOJ4WCeRMONvszyzfgfCXo8FOd91Cx5TXxDsh2HJF2o/5Gt/uFnZb6wz9Dodzjd5H0Op/3WrBifLLSdrAFNsgACrRmcGffIH+rZqtL18xkhPVDECWg0PtmX25Q6lSl9X9UeKkyI/5H1VhXX8QvSt5RiPab4tznNskxcm+q9zac2meQMxAAJWAcbPMW9wHpKtFuU0XdkPRGkBAKivK/1cCfwJyfrNlxJU5YuUYLrR1/xgHXK7+hpXnoNFir8eOb8vBYaFAQB40wREmoDPjUKJfUZKNvKzoHf+yih2FgC3dVsNoGifY+Xm5mLBggWYO3culi5dijVr1mDz5s04ePAgvF4vqlSpgvT0dHTp0gU33HADzjrrrKjbmDVrFt577z3MmTMH27Ztg9vtRv369XHOOefgtttuQ8eOHaOuUwiBqVOn4oMPPsDixYuxbds2lC9fHg0aNMBFF12EW2+9FS1atIi6XhKEFgCEEEIIIYQQQgghhBBSjBkwYADeeustx+179uzBnj17sHDhQrzyyivo2bMn3n77bTRp0iRs3YcPH8a9996Ljz76yLbt4MGDWLFiBV555RUMHDgQY8eORWpqZC9s/vvvP/Tr1w+//PKLKf348ePYu3cv/vnnH0yYMAFPPfUUBg0aBE1zeitNQsEXAIQQQgghhBBCCCGEkKTEBw0+lZlRkuIrzMBqIbA6ealcuTKaNm2KqlWrwuv1Ytu2bdiwYYORb+bMmTjrrLMwc+ZMtGzZ0rHe/Px8XHHFFZgxY4ap7jZt2iA3NxcrV67E8ePHIYTAhAkTsHv3brz//vth+3vo0CGce+65WLlypZFWo0YNZGRk4PDhw1i5ciXy8vKQl5eHwYMH4/Dhwxg9enS0w0JAF0CkGFCcXQCd8qPfHY4QgM/nMtzoLPu/0Wg1eRS8Xhe8Xpff3Q/8wX7hs/t2MLn70U00A257NM1fvym/Bpt7IJe1zkgibcLuAkgODOyTbK2F0GwmqP5AwsHvWX2GRtRmYZL+wTjT9+y+kbv+SX/3WQgBbLptcPTtTnrOZJKffc+g4LZXnwuka4ZZrSk4rzUtUIfSJDvwXeUayAgMrMLaJmALOqjTfKzH5n7EySWQ0S3Jm0HUboJknFyn+Mx5VG0pXeEEArPZAhzrfbK41FEGSHXYT8P82WqqDUU9Vvcjch8d2jLy+GIcW3ksLa5RrH2KlEjihxq4LH1TuKowxtMVzAP499mVB1OQOWs/rIFvrS5/TMdAcl8jXGo3JDY3Uvq2gGl9VG4+Ix0n69wei2sgaVtUbUdBqCDItnlLC+ZXXpOWeqwBBk1uFEydkOrUFOei07Wru28Q9ny2axnRB1AtSlSuaYLHxup/yf+f7ZpTzIWh5tGYUMzjoVz/aPL1aWnflS/ld8N8vUN9Tsntqa4Z67WszzPW9KzBmY7ugJzctPg3mj+bjo/1gFjvQ5b7jfK7ar0A2M9/ua9yHWFQBduNaEmpyOMYFFxy+SNckbuK0QM6A8EyLZ7yKMub3ACp+hcYF9l9jSqAqxV9Dlo9MtMUaNi4bzi4CFLR+gmPOUFxv9HdK0XjXkhGH2v5uJpcLslI+690o2Xpp3UMSwqNX5oQdDfnDf7+0bz+75ov8Flas5jWm3K6UKQL2O51pt8HquvbivVeJt3PfAG3Pb40wBcQ5xquIF3+9ZWeV++nkNZsrrygqx9fGoIu19wi4FZI+PMH3NZm3x38zUNItMjPgt76qxVq1E1LcI8iZ8+OXNzRbRWAon2O9eCDD2Lr1q34v//7P3Tv3l2p7N+yZQueeeYZvPrqq0Za586dMW/ePLhc6gXMo48+imeffdb4PmzYMDz22GMoX748AGDv3r147LHHTNYHr776Ku65556Q/b3uuuvwxRdfAABSU1Ph8Xhw5513GtYDW7duxb333ospU6YYZX788Udccskl4YaCWCg+r88IIYQQQgghhBBCCCGE2HjhhRfw9ddf45ZbbnF069OgQQO88sorGD58uJG2YMEC/PHHH8r8W7ZswQsvvGB8HzZsGEaPHm08/AeA6tWr480338RNN91kpI0aNQrHjh1z7OuCBQuMh/8A8Prrr2PAgAEm10H169fH5MmT0aNHDyPtscces1k6kPDQAoAkPcXRAqD9FP9EqmkCSy8bg/ZThsPrC75vW3HFSLT4agy8Xhd8eS6Tyl5X2JsCgQYU/X5lv18K4nIJY5tKCa4r9jVLmlF/BOh59XJ6mt6cz6pQs6roAhYARmBhSeHmcgmsu7ZgFgFNPn1aqXzZ8L8hBaoXCFoKZPd9NGg1INTBgtPf9b8JF0oVuWYP7gcg+65BSH/9ObuKR7cCkNIMdaCk+jHlcQhUKzR/sGDAHPzREZuS0BwMuMXTHnM+i2p93eNRqALDKYXDdVXfT1lFpW+TA/HK46VSUkpqKqN9HwCXQqUcxrLASa1uC+prUcbFhLzfDmrXUMpEAwfLAxOKPEqLBmt+xbzkVK+R30Glayvq9ec11OGKc1JW9IcMmqtZtovgsTRUb3pfAio9kQIjWJ/RrpPqPNw4REOoa6SAbYQ7ttEoimWlq/W4yupFQ8VqvWbktixj66h+DHXeyX1xup4t16hTgGQ5YLZ1zks0zcZPVF/IivnAOheY5lCLdY6swLcdG6kum4g9EKRXaX1inUQd1hEur6WvluNtCiTtCwSp1GAKKq3cRw32+4IcxNpy/I39kNNdwlRfsCHps9McJt+zHTBfc/JJKG1XXVvWNCuqeyHM42ObzxzuFaEC7UaKvFaQx1xW8Mv9iLcVjmy16GSRYOQd7bFbADhcE6tHBQIfW/NKY7t6lLq91kM9xn3OZH2iBe9pTmULA9V6Tle16/0y4TDnrB6ViRZPeoz8xSEIsK72lxcKxryT7/9gCvbr1UxBfwEYCn+bBZswp5nWIQqrgLDreAmbRao8ZwasSHxuwFfGn+5L9f/llxPwlQ1YmQesGQxLh8Cc50sRwfFwwUjPvvORyDtISITQAqBwycnJQc2aNXHkyBEAwPDhwzFq1ChbvkGDBmHChAkAgIYNG2LdunVIS1Mfi3379qFBgwbGg/+XX34ZAwYMUObt3bs3vv76awBA165dMXfuXMe+rlq1Cq1btza+//DDD7j00ksj2EuiQwsAQgghhBBCCCGEEEJIUuITGrzF6E92l5yslC1bFq1atTK+79y5U5lv8uTJxufbbrvN8eE/AJx00kno3bu3sqxMTk4OfvrpJ+P73XffHbKvrVq1Qvfu3cPWS5yhBQBJeoqLBUCnqUOx+JInlds6/DAMPp8Lefl+aXLuiRS/338BCJ/LpKDR3D5AA1xuYfLz7/9f2FQ2um9/WRRnVe3LWNOs1gCyr389r88XLOPzaXAFYhIIKd1qxRBMd2hb4XR2/XVP2PobjqafPe2vTlb2BereeOPjEdWR/uEzgYKR5NYlNFJSQBkkJOWOqUTgWAfza0FpjuxLXJiVRKb69XR93GQfrHJ+l6SWdFJTy+o/lZI3oDJaP8geR6D5WI+tj1Y1rMlSQKECi4lQimMHxa+u2Hbqr6HyFopxFH6lr1zO5zaXsVm8uGH2H6/qqkvqg0KZqlonhhw/Yc5j7JtVnW5RHRplFOmmcnJTDueVrKh26p8179ohmca5ZOpPwKLBVJcihgLgV9qZrD1gP7ZymyYlsrUu+fxwwa7wRPDYafnwWwDoZSUrgYIgTwtxuWYsdTsinR+hK4H92AjLuaaq3htdGdmKxqS4luYs0/WnSlcooI06LMrxUHOlSgGtVEUH+pgsFgEmiy99/1TXoobg9aVQmAf3TxhWAf7rNHivks//oErZMoAKhbScz2pxIFdhqsfaN00YfTE2u9UXj76PVisAGy5hvwYlCwX5XiFcgEgR6mtD7qv0Xa3I9zdovS84KvkV42r1E+7YB1UeaxsO849u/RIP1b+KFk95nPdZ74NljAqiINctC1TzveyzvuVoj9q6znL/NfUxBKvGhO9z6yFmxb2pzsA6T7//xer7H1D7+tePcYsng9v0Yy6nhTpfDMtKxdj63MG+C1fhnU8FIf2VCeGvh8B85/IC8AbmRC/gyg9jAeCDzQLAsDBEML9sHWBDtT6D8+8H2YpE9/8vUgP/6/N3CuAtIyBShd+SCgDcgv77ScKRnwW98WdrVC9GFgB7d+TizrP9gW2T+jlWp05YsmQJAL/Sf/z48abtq1evNr0kmDdvHrp06RKyzs8++ww33HADACAlJQX79+9HxYoVTXl+/vlnXHzxxcb3nTt3onbt2iHrfeaZZ/D44/5nPHXq1MGOHTvC7B2RoQUAIYQQQgghhBBCCCGElBL27t2L5cuXG9/POOMMW56lS5can8uUKYNOnTqFrVeuJz8/HytXrgxZb+PGjcM+/LfWu3PnTuzatStsGRIkJXwWQkgkOKn/208ZjnyvG3l5KfDm+d+5CV1NBvhV/rqyNOBDUXP50w3lv8uv6DcJ5ySZh6y696v/5XRzf2SFvxVZ9W8qI/m5dWnA2muGAQCafv5UMN2lrlfvixDqtv3Kff/3Jp88DT3eQSTWAE0/e9qQzGqBMVx/vbP//8Yfjw30yWyloBmSG0BWkwqVelGWytrG1r+fNmWOK9BHI78scbPUbR1/m2ozkODyn0OGWllWpzq82rWKOu1fgmnrH7ar/011Kcrpiu51Fv+8uqqvQKpmRXtWhTcgqc50NVUIZZ6sOnXyeS0rzF35/rY0J9W8MCvPnXw821SeCLQjqTIjHquAutdQ3lrU6sHOS/2T1dV6mVDjqzcl9c+m2HVS/zuo1Jo/47FvA4zrWFbNCencllWuVvW/gStwHVr650uF+jz0WY6JfBm6YPb1H0izqZ6tc4HkA98x3oNlfIxzRzq3TJYhCqW6uVGpzggUg6b0UMply3VmUkdrIY6Dfgz0c1vupgsmSwvNG0hzS5nkLsjnnhYcD/lYKv2hW/dTNfUqrlPbuS+dA5p0DukqXOHyz/+69ZPuozvr0cQoW9cPtM/fTZ+baLvHOar/5TwAAC3oU99yDcnXp8maTV/PWBXzLhE8l+QYENZr1gtoPi2QX1rvGGmBfgYU/6brTLYM0Oc9gcBCRGpDWosFdjO4SZ5DhSWTZjmRFNec6hyF3pycJgL9tYyJfp8x5hFhzq/JxwmA0DTjmKruiY6WW1J/HK2PLPc7k09+Sx22+p3SA/+H8uev6o91LjAU6Yr1QNg+OqVZMK0n5NPR4dxxsjjUy7Qa5lGq91sN95hiVyi7FjgnNADwBssJV/SWACr1v9xXlTJftgww9s2ayXS9B+vU78uapIAXKf5+6GtXY/8BrBmWmPnThuLe57++/V98KYBLss4VWojTUJjPYc3yPdS921gfuMzpUtW2ZDlOg8kCoEzQ578vLbAfaQIizUc//oSUInw+HwYMGIC8vDwAQPPmzfF///d/tnyrVq0yPjdo0MAUoNeJBg0aIC0tDbm5uQD8VgSnn366Y71NmzaNqM/WfKtXr0atWrUiKkv4AoAQQgghhBBCCCGEEJKkeOGCtxg5MZH7GourmsJwGZSXl4edO3fir7/+wvPPP4/58+cbbX399dfKh/ubNm0yPjds2DCidlwuF04++WRs3LgRAJCdnR2XeuvVq4eUlBTk5+cb9cpxAUho+AKAkEKg/ZThAAAhNPiEC16fC948F3z51huW5lf6ywr7FB9cAUWbSeVv+e5ymWUipm2agC/gk14LJUORv1kkj0bQmoDKTK9f0wRafD0GAOC2ziAOSiohNFN/hQCM8CNyB2Un2BGw/vohfiuECOXSmkv41b2yz2ANwfGXVXwaTLEZ9P0I6cvYOt6B/RCB7UEFnxYoIgLKPGmshTArBHXLAeGgzpPVQPI+qFS9xn7IfZTyBdI3ZJrVo82fUavEnDBiAEh12hTzEagRwxKijNAAuKXmFQorky9ok9pTEmVa1Kt6syYlmAt2xb3eB6tCSzNOFcuGiE9jO5rDZ0U+n6KfNvG3Qx0mH+BywVD5FY2oxkVXNAprfnkakn3+W4+dRdWMgJpQbtMWA0BX1rrtY2/yu+uklHU6f4CgRYdmv25law0ndavNSkPvh1VV63CNh7QWsJZ1ymepI9y0bNpPazlJBStbN5isKBxUlsoxktqwtSkrNK19dMO833pfvNJQKuYsw1pBUbessDbmiMA52GycJ2FWAFaE23zO6ueT/xYkrTUCfRcWyw2rBZGcplKYG8fQLcwWSiEUrHKa/1jZT05fmgjUIUz5ActxMV10gY3S3Os/nsJ2HarjAsj1BBsVLtVkLp3zWmBsTfd4c5/l68zwBQ7n68lkLaG8QBRljL4EN5nqtgyV6hrT71tWiwZHws0/AVo85THqWftEptrHvAPWQ2x8iGwJqZyD9SHNGGVZ90jHyaR8V609pP6pxlm+DjNGeLB6VCYyRnoM6ygV4fzRR7xukohVYW/EAwhYgsjWP04WkkaewJwjW3+5TsCYc3yB507CZY4JkdA4AQLQfJrfetiwWgosWlzC8P8PIHif1u/9EdSt/9ny6lOHdB/S67XeMyGvQ+X5xAfDqsInxy7KB5ACUywJkaLqBCEkXljV75EQj3Ct+fn5IRX7ZcuWxbXXXotnnnkG9erVU+Y5fPiw8blKlSoRt125cmVlHQWp1+VyoUKFCjh48KBjvcSZ4vP6jBBCCCGEEEIIIYQQQkiB6NWrF/r16+f48B8Ajh49anwuW7ZsxHWXK1dOWUdh10ucoQUAIXGmxVdj4M33T2DyS1vhC0pBgr7+fXC5zb7+XZowK9cC6L793S5foG7N5vvfaEtocAV8yvocZJuyb36V73+5HZfL7AR75ZUjAQCtJo8y8gAKxU9AcWf1/a+ZnNdK/TY6F/nbbutYNftCHYtB6HECdBmSQgXqr1D66Lao+3SVp7J7mn2XZKsASQqkv80XAQWfZjpREPRdHEgQ0IJKM595kIU78rHaeP/DaPzSBHvPBbDhgYeVZZo9G1TnORw2GzbVsq3BMB1VqPLC5VfWb1Xf6dukc19X9cpqZAT8d0NWnCOojPUFlLQqNT1gUXBa/Msbqjdr30OMicowJtT4hPUXbz697IrXUN81e7WqWAy2bdb6FKpV2cLGJfkB1n0vq3ztA7Ar+2VVHILHVVevysfNZOUhHSOral2u2+cyt6mXFy5zXv2YCbfUF03aPwFHtacSH4KyDQfVs9y2o7WApS82BbesFlYJjIXlmEvlVBYWSnVxiPNXFUdD3g/buW+9xl3m4+fckKWf1nRVW4H6jaYtymqr6loTQLPxE5H1SNCqqulzE+11C79f+/WDQsdeKQhWy64mz0/EhocGosnzE01jYLKS0FX2Pi0YW0O+foXm32XrMTUuZT2ftM0SB8BAAJpFSStSEFT6yygUxoDD8ZI36vdiuc/SOWqzVJDOQ/0WLtwCmn4fDnWeGfWa9ylUfpslkXRu22IJuAIbLMprm6Jfvx5kK0z5+vJpwfuSbv1hUSRHaJSpvq4Vx1lOl+dba2wB5TzggGlesoxVVH3Vj7XTPKNZksKdh6q+WOaYjJEe2/GX1ya2/dCk4wpg9ahMxc4UDrLFht4XOY6DHgtKZZllrGOlfRUuQHMDrjz/n+l+4g7m0+MV6OsAX2rhxljJHvAw0l97zui7X3EvzMdQwK/+16R5yrAU0MwWV4F6DLW/fN1a1g1G3sAxNt1v9WMvKf5Fil/db1gFKO6VmhdG3316/hQBX5qAr5y/o5vuoO9/kvz4hAu+qBbPiUXu6/z581G3bt0i74PL5cKFF15ofD9+/Di2b9+O9evXQwiB77//Ht9//z169eqFjz/+GDVq1LDVoccIAICUlMgfIct59VgARVEvcYYvAAghhBBCCCGEEEIIISTO1K1bt1B8+ofD5XLh559/tqXv2LEDL730Ep577jnk5eXh119/xXnnnYd58+aZFPYAUL58eeNzTk5OxG3LeStUqGDbXlj1Emf4AoCQONHmu5HI97rgcgFamj8oSX6eG8KnQQRUbe40v6zV5ZJU/prfZ7+OFrAAcLuESXlvqOwD/7tcfssBq284n89lUsW7Lep7PTaAFatKX++ntX5N8+8rAKy6amTIMdFjBVjrlT9rutos0IesPkNt9TT9/Kngl0DZ9dcPMcrLlhBOaLoPfk0EGg0q+EK61zOJ9wJqfCcn7tb9E4EO+hODqhyLSlZW+SFg2WEo/SX/nYBfsQPoijlhUvsEN0h9lrY1fnmCsT8b71Mr/nWaeCb6y0qqZj12gklpaEWhzIxIzS+rcB3UnUY+e5PmahR5TH7i9XKy6l9WYQn4rUU0mNXlgX6ZylnLWvtlEZ2aFJoRqJRNynGL8lC2NDBwSepFJ+WlrZPO/XCyDohIEWrUbW5YaTEQ2CEtcA0YvtS98O8TYFgCGHVY/N3K7Tr229od+dqT1HH6NaeJ4Gc5BoSs2tP9w7vyg9XqCjvAv03+LCs6TXEEpH2yKo+tn5XHy7pf+nfdcsIHk0WLaUzk74Hzx3YdSepa4zjI+yGCYyRbD5gUjsK8j+HmBlMe67mn162nK65xU36EUOY6lLGeb1brGuM2rsedsNYtD6zUBy1fM83rflW8hmbjPIZSW7YaiJamEyfa9sVqAbDhoYHG/7o1gE6TFyaa8pp2wScl6MfSrbgXOaHZx9e4luR4Aar7m7RTKp/oVkspKbs5EwCkwq/WzZe3mf83Xat63W6YrfackFT1Ngsl1fykCcU1oRkXqHFKBa5lqzWQgAjOlZEg7ZvJBzjgHxdpbWL0yQfbnGTbDx352oB07SjuS5qUP1ZCzo0qpPlPkWzyaw8Elo36Z8WcpPTRH+k+BfKtHplpSs4Y4bFlXfVkpi2tKGjxtMc8j0s0H+vBusf9/Vr3eCaaP+OxWWMYy2aHMfGlBNbG8nwu4L8+pXMUWkC9HoX1ayykv/qcYZFkWAB5Xeb7oBd21b0X/vW75fzX71c2izs9X+CzTe2vwWQtYVhPuPzWqIB/bEQK4E0TEGnCfM/zacbvCPk6F25/3mRS/csW3KrfgtHSavIoCKFh9dXDC1wXISWRunXr4umnn0aPHj1w6aWXwuv1YtmyZXjyySfx1FNPmfJWrFjR+Hz8+PGI2zh27JiyjsKulzhTfOxnCCGEEEIIIYQQQgghhBSICy+8ELfffrvxfdKkSfD5zD7MqlevbnzesWNHxHXv3LlTWUdB6j18+LDpBYCqXuIMLQAIKQCdpvoVCl6fXxamAcjPd8Hn9b9b0wKqEM0tTKpvIQCXW5iU/4Bfce/ShKTuh1GPppnz6779ZYE5ALjdstUATH739dgAPpitAJxjCcCsVg+w4oqRaPPdSMMSQM+rxwbQWXvNMHvhCGjxVcByINC2OwU2CwXdukDTVUJhpKT+mAnBcZKla6p9NBfW5W6Ao7mArmDUFfyBNN2XrqkRk0pOBFWmXs3wyWuoB/M1GP5FHVTN1vqg+qof38B3p1gARl5deOgChN4Xl1+eZKioLf1R+t1WDJeslrOp9kIdC0WbRrqsMrMqxRXtA7ApyE0KPr285HdeVuPblNtyX3Qk5ZahgrSoxWz9siiMZbWZNV3l79jom3WshKTctJbTFPkB2/G0Hythzw+HsVe1KRMYZ/3cMsY6xb8/uv9a+fIVPsU+6c1YfSlrwbHRLOMltOA8Avj985uOu3QMdbW/rHbXvDBiFFjb1QK+/k3HXx8HzTxGmoA/7oTen0A+LVDO6Vy2qlGtanTdd7lJxazvj6S2NPyAW859ef81y5gILRjPQLZo0IDgHGYZb9P1JZ0zTueLk1rcOB/CzUNSm/J+ykpTodn7K2Q1tQDWDvUrXJuN8wTr8NouA6kjMI6f7hfbfwwC6mo3glYAAcsQTQOE298xa+wAJ5pOkNT68jwo3baMfJplzKXz3LAaCPTZb7liGVy3MClSAZh8ywdVr5p5nlTMVTaf9qq53adW+jvhaFUiWyDK/dXgV80r5nPTPU4/v/VzQ7akUWCyerH2SZqPjD4o5lkjzoDl/iTPD6ZzXZ4zVPcXq9WaW69aWgsJf/8MI0mFSllYqjF9kPsq3S+NbU7zf4wo54xo67bslLG+kevS9ycwT1jnJOW5bDlnHPst0XK0B2uGZwYTXMCqgH//lqM9Ee9SvAml/ofmV/23eNojJ9mQrad0awEV+n4a91l38A8A1j3mXDaeZN87KBgDwBu42biE/zMAd47/f+GC33JGOhc0YV9ryMp/k4VdYL61XhsCMFT+xnwjffe3G8jrFsFx0mD49Nd8MOLPZd81CI3eGg8g+Xz9N/3saf96LnDv0zSBJp8+DXeKD+uuDVoC6L/71l4zDE0/f8qwSnan+ODNc0FzC7+FvR5nT9OQn+c2flPq6WtoEVCs8cIFbzHSMBeXvvbp0wdvvPEGAGDv3r1Yt24dWrZsaWyXP2/evDmiOo8ePYp9+/Yp65DTfvjhh6jq3bJli60OEjnF44wkhBBCCCGEEEIIIYQQEhcaNGhg+r53717T91atWhmfd+/eHZFa/59//nGsQ5W2YsUK5Ofn2/JYWbJkifHZ7XajefPmYcuQILQAIKQALL7E76+w1eRRhiLf5Tb7zU9J85lV4fCrEFLcPggBuF3CKCvj82lICaj5NU3ABV25H1CdCGDpZWNs5XQ6TR0KHzRJOR/c5gLgkzQ6fqW/Wdajaf7YBCr/+u2+HwGXtctxUHS1+HqMPwaC4tWktQ+mflmUzio0SdJlxAMAHNX/8njJVbok9WDQ178W7IO1oK7ak1W5IlDGF7DE0H3r+wDkuUw+5kWKUI+t03g7SfT08wCaXb1vVeNKcnCbYtwnTGXkcnozVgWlUGS0+teFyyoBtvfPSSVsUgHrXZd9rVtQ+S22qh1NZa3qVV0Ba6hdYaiLZTWnrHgT1v6FOabCeg3o7TkppiWEHrfBqihTXLN6XuU2laJSP49Uyku9/XBzgaJe0yXkEob6VT8OvlSYviOgVFW2Jfz++G0q3cC4m8Sa8jWqigch9dPwv2s9d/U6JVWfMTUE+mDEFAio5YXbMu5SfpVy2nou+9ywn1t6Pr3/DueKrN4XLiFdD+bBNPze63OeptkUv4aKHLDNA0Z1PpjHC5Z8ls+mvrqDqmRT/1UKaEvfjHotYxf0MY/gOCnmM9M87AaaPetB1uBMZD0aVKC2eMpjMp5xOh9tPsMDVge6ErbZOI9heaL7tg6l/jditEjnqqEY1/dZnkN0B9xCMxT7mvCfj7pqXo9TYT3f9X3QYyD4x1+Y8tp2Wa4DCkW1XqfUPVP8ElMl5nKGlZxqLpX96JtOJD2vMJ1nxvUi+9gWwWtGZXUid81IM/bXso6y3lsDSmI5FogxT/kCVoqB46/Xpen3Yqkvcj9t15Z+35XPc1tH9DYDX23XiDCr+IUWHCf5fIY0d8vjqOiXBsuYyhtCoLymQtx/oqknjOGo49jKaybb0DrU6XMDqwNq/oxRHuU9xqT+txBqW2GzdohZ4W/FZCEA2K4X/bNyvrbWI1+L8N/7sx7NNMU1KSqy7xkEAEh/7Tlo+Zpp7svX42UE5hEtP7BjXksl0jpRn280H4LXnpRHXnf57wX+P5+h9A98TwV8aQK+Mv5KRKr/ovTHrhLGbwoBDZvuHGR0JdmU/zLy7z7dYlun+Zf+39qaBuTnutH0s6fhzXMb1hi+fJdf3e8FhCbgy9MXXgLCqyEvPwWuFB9Erj9/i6/HxGyhTkhJ5dChQ6bvVatWNX0//fTTkZaWhtzcXADAn3/+iT59+oSs888//zQ+169fH02aNLHlOfvss43Px44dw+LFi3H66adHXG/Xrl2RlpYWMj8xQwsAQgghhBBCCCGEEEIIKUXID9VTUlLQsGFD0/ZKlSrhnHPOMb5//PHHYev85JNPjM//93//p8zTokULkwufcPXm5ubiq6++Mr5ffvnlYftBzGhCODm0JiQ52Lp1q2GWtGXLFtSvXz/BPbKT8c1o+Hya/8/rMpQLLknB73b7DBW6rK5XKe+B4HYdFwQWXPx0VP065UezwkG/2oXQTIp62QLBZfTR/L81loAq7d/LR0XVPystvxntuE0Vo8C6zZyo3iYc0v3HQt22tU3ZCiNkP4Rm+BYWPs3wVwmfBpHvCiqGdAJqFrhFUGEpy8p8kkw6lARctd2iFrXGBFApdA0VpUXZFVY1J7cZRbqpXmvflQWgVPDqSitNVh5rls+KplT7pfL1b1KhB8oZKk5ZNRlC7WZT1+tqbutreVmBK33XlYeylYGpmEoZGgoNClWrcFb6qy65MArIYEZ7HTb1uKSag1XZLOdRtaUriSW/+5rwKzCtPvAh55P77wu2YbpGVO1ZjqGxT5LvXv24uvKkuixjqHkDyr5UaT/z/fujKwB1SwLhhun8MyFgs2ARij7qCm/r/huKYX3c5WMTUMXLSmddka2yuLEqqZV+4fXxkFWQVpW+nFVWpiv228miJdzcZTr+gePjM3wvi4j88cs0H+uBy2LJbLIK0q04EB+/1k0nTjSPr3x+6IpQt/Cr0IHAOPt9R9vkQPo5pB83NwBXwP9/ijSITsdQaP7YEAiMoWwxIM9phgI9WJFxbulWT8K/3aSuF87nm77d6ItL2OdVwFDj6xZjRpuqc1/KZzq/AjERrP3TvJrhL1yOyaEff1duML+pPpc8Z1isFQLHzYjd4XBvMD5brLXMc19wfGzjqFJyQz22ymtZKqu83hTzlSPW+yRCL3scq4l0LRKiz8q1knyNqe7BclY91ogL9jpcwOoR/jnA8IFvqXP1yILPEVZaPOlx3hhqnEMcj3BrD33+DjfnNXvWY4x7Ufn9D0f6q88pFivwz3cBdbkr33+tavn+60O/B2he6U+aWzXAmF9Mwxa47/vV/v4kbxrgLe8LWgYHrIWy+yevsj8WWnw1Bt58NzSX2YLe5/UH5hEi8HtKnpN8GuAW0Nw+47eWpgnz+kWTBx3YcMOQItojUlDkZ0HPzzoFJ9Upk+AeRc6+nSfwUPd/ACTvc6yDBw+ibdu22Lp1KwDgvPPOw7Rp02z5PvvsM9xwww0A/K53FixYgI4dOyrr/P7773HFFVcY3+fNm4cuXboo8z7zzDN4/PHHAfhfNKxatQonn3yyMu+LL76IBx98EACQlpaGrKwsm/siEhpaABBCCCGEEEIIIYQQQkgx5ZtvvsHw4cOxe/fusHmzsrJwwQUXGA//AeCxxx5T5u3Tpw/atm0LAPB6vbjxxhuVsQBWrVqFu+66y/h+6aWXOj78B4D7778ftWrVAgAcPnwY//vf/3D48GFbvr/++gtDhgRf3PXv358P/2OAFgAk6UlGC4BTf3oC+V4X8r1+qZYIKBK8PpdfDS+pxzRN+IUabp+hrtfRNAGXS9jSjW2SHiQa9f+pPz0BAEbcAADw+lxKCwBZ4W+3Rggo1KyKacWsIYSGvHw3Vl01wrat9bcjDasHwG9xsOKKkY79bzV5lFEnEF7IrOq7EBY5ja66FJrZTb/QDImqkzVG8LtwrEfToLYuCHz25WsQul/KfM2v9g8ovyCpUmwqc7n/jgMgbZcVMeGsAKT+mdX3lqZtKrkQnYlA8ReqLZsCT/YDbaokWJFJkOXVDN/WpjEUUKpAATi/Cvcp9l3uguzrVVcqa+p2HH1GWxSOSjWdqg65LhUK5WZI5aTDeNp8bMtNhOuPw9iF7Y+k+g5acmgmv9kAgmpcN4IKXgclqm4VYLME0dvxwuRXXvM6KD71/vsUx0ZWdkrngvUy1NuS40hA86v99HZNlgP69W25NqznmdK/NsyKYaUy3umAOJ37VkW1kK47yzWnt6kcS2tfFErmoGo2lKTUPEeorA709HWPZaL5Mx6j7qzBQWVps2c9pn7L2wqK3qY+LwnNr+zU1fTrH47OukCFERdAV5xbb0O6/3Z93tL859mGB/1tN35pgj9ZIOhjXycQm0C4zYpKm4WGfJw0qR6n4249rNa506dI1xX6gX6GsjwxvlstCOAfe79SV8ooxaKRY5GYYgt45YoDxzNgkSP79XflBq87k5WNC9DytKAlRZj7rS8F5ntGwDLAaf60Kc+d8unWCVK8CCdLrGBlljas66wI+hORBaCcPcQ9KCzh1h76+Wu5Jzj12WlMIrWKdNoXWd1vswBQzIv6vWXNsNjmqBZPesKO99onLH7/VfOz07HRrwVVG9Y5I9BWcSF90nP+D14AbvgPlDSPuHI1uPI0aF6/+l+3+rOp/4PLftPYGpdWwIJQpPiV/wDgLRuwACjjK3Gqf5mW34xGfuD3kqYJv/IfgC/PBZHrhpbmg8jXoOUGJq6y/pua8Gn+e4NuXWW9XwVG153mgzvVyzgAxQhaAETHe++9h1tvvRVutxs9evTAWWedhbZt26J69eooW7YsDh06hHXr1mHGjBn48ccfkZeXZ5S977778NJLLznWPW/ePPTs2RMnTpwAANSuXRv3338/OnfujLy8PMyaNQuvv/66EVOgevXq+Pvvv9G0adOQfZ48eTKuueYaI45mkyZNcP/996Ndu3Y4cuQIfvnlF7zzzjtGu02bNsXff/+N6tWrF2isSiMMAkwIIYQQQgghhBBCCElKfHDBV4ycmCSyr16vF9OnT8f06dPD5nW73XjkkUfw9NOhBaddu3bFBx98gL59++LEiRP477//MHToUGXeKlWq4Jtvvgn78B8ArrrqKkyYMAGDBg2Cz+fDhg0bkJmpfjlcr149TJkyhQ//Y6T4XD2EEEIIIYQQQgghhBBCTJx99tm4//770bx587B5K1SogL59+2LhwoUYO3YsNKeAiBJ9+vTBggUL0LNnT2V+t9uN//u//8PSpUvRvXv3iPudmZmJGTNmoFOnTsrtZcqUQd++fbFs2TK0atUq4nqJGboAIklPsrgA6vxT0OeYDxryvS7D1YvX50K+12VYtuqublwuASFguL/Rg+26XUGbdTn4rJwOwHABpLuX8UHDooufCtnPrr88Dl/APY1Psn0Uwt9nuV0rsisdlVsdOZ+1Dt2t0L+Xj0Kb70YCgMnNT6vJo5AiBUUWQjMFHzbXb27H+hkIa3UetOyWyln7C/hNRnUXTqo8upsmo1KpA5EGGBY+DcKrQfgC45/j92shAsF+Nbl+PVij1VRdaI5m/6bgfsJcxuYHw2pWbrRhrzhUgGAVKk8iYQP7CkteJ1chVtcDcnXW7b6guxhVEF/51beQ3b5Ibav64mQybwq6qZn7ZbhKsZrP6/n0w6J/Vh1kEcxnciVhcgkQwUFy8BGjdgvjkB4JKhcfmuW7dbtD/cbY+oLHFlCcm4Z7DOm4i2CaqS5L/Ya7Hc2c7pRfv370ckaQT5W7Bi0YfNjYZc3upsbkjiKUiwU9v8uSR28zUN5w+yOlW10GObpiks81aT9NfTDqliqRXKCYXGKp5gOH69k2XbmC+Uz7Iw2gae7zBeZJybVa1iMD0exZj9llF4J9+3/2/jzctqsq88ffMedae59z7r1JCBRaZSI3CQREywYLDCWGVhEpCmyAn6I0NkgjjaELIcGYACGko9PiByISGsUmiBQiYASCDYVKQdVjQJDkphILKUHS3Huavdec4/vHbNaYc619zrnJ7e/4PE9y9llrrtmtZq5z9/uOwZbxlRff9RA82+Xer7sq9/tQtrsZu3/z8hzuJoXckrDlEEInrlH5PBkupURyLUv3a33PE0LYGSYMkgPLayvtq+6JvLbV61jqV3Vt+RSmo14k0wUnQ3HJOZBdFomTB/d5Chsk17IqEbPsOznqr2G5KzWR2krjjyEtfFvNgeXBvbVpmDc5HkYIZbTouUwj22SX67VSDmC7yDncYo1dWMUWTW4abhDj4xk9Vuwb3b7dftPwc0r+C/Thf8baGXvOS+5MOKAzX33VoK4Ujuc+l1yFL7+8r/PM11w1XN+w+Bwsmqex7ena9S2KNo807vVbl/X3dhHGEzlcmdkwMQxQCP+TkwB36EMLejGFYk5yyLv42U9i2J8YAsgv+1CmZWDqsOfpLzvIIz583O+ai9B14e9s34VFxsSkx77r/34LH6gPCSTORQrRRCsd7MTBNmHHP/7EKw/hSJQDgfy3oCuve8BRFwLonLM/C+Dw/DvWN77xDXz+85/HjTfeiG984xuYzWbYtWsXTj75ZHznd34nvuu7vguTyeRO13/jjTfi05/+NP75n/8Z1lqccsop+KEf+iF867d+613q9/XXX4/Pfvaz+L//9/9ieXkZp5xyCh7+8IfjpJNOukv1KhoCSFEURVEURVEURVEURVEU5Zjg7ne/Ox7xiEcctPpPO+00nHbaaQe83vvf//64//3vf8DrVaAOAOXI53A7AB70Z+eBGZj7IIP83GMvxgM/fB5mzmI2D9+hJTU7e0LbdvlYZkJjfVT5c7FdJtg1+XNI/DuWdHezJMAP/ui5oiwVDoCkRk9q+/qOX+T0qlXxstyip0btGiAK8zXGf/yTX8v93KwPsu5aWZ/3AYN9KflyXW6sz4vUW1z1LycBrirjBXOb68gOgFiuM71St5EHJclsVX9SJRKGzoBE3S+mBQosKssVxwz7v5nEbn/Vepsq8FJbo33Yur2snvTIyQ3HEpIO+kGl6kr2SyZPTXUXKueq/YGiOtabFeJiH5t+Wz24Ijls7KNUyRXbF8EYCF03VfTTJvv3U9g5yiKpt9yWPw8Pv+GF54Qkp3HuR50dQFa/w1PZb3ENSRcFuXAM21IgLJO1yq4W28YSlAoFPNtQjzzXyaFQJPdN40m/c1k+HVNMl0guPLjuxPWStxOKa1nOS62ClU6BsXuuqCcmZB29N9PjTJZP17GtDvCiY6a6VlI7Izfp4FIae74BMG5k/JXyNbuBLB+QpLxHGykJsCRfC3USZvksTW4L+fyW13YnEvAS+vvFcHmekiK9eG7T4DqPm8PxdZLHtFbOq+fJyLMgj0/2g8L6Ea6V/poj6UASiYLrh+xAxZ+G7avtsh8E+FYk9k3zQ9yPQ86TXK8sFy4zcjS8txLp2SI3+fH7ZZEDoO77Qpfgdtb6RRYk+bzdxjvG2No9plQv6q6ekVsq+OV4x/q32fGxD1/8tV/FfS++CsBitf59L75qMLf1cysdm9X7dV82qV9yn9dehS+fu3W5MVJy4Hwax95FEd03sn9p/RVznxJRsz3yHQAAcK+3vw4AQJ0JiYDjJKR7m1xU/88IpgMo/klokgPAoRx/vU7HdrgB3DT+txy2sgFgGX7C2POsFx+K4R4WvvMDF8I5A+dM+FtOrD/sCfP1Jjiqxd/OZBgUn4VuHj60Sx2+/MTx2OTK0YX8t6DLPvmfjjoHwEse+ncADm8kC0VJaA4ARVEURVEURVEURVEURVEURTkGUQeAcsRzKB0AD/7ouVnN/elHX4IH/VmI+/+ZH31N/swMzJzFvOulLUn5npTiUtFfq+fl/lQmb4/qf0OMTz/6kk37+qA/Ow9GOAuk0l+q/51Qj6c8BDIfgeyP3Far78f6W+O92XS/RPZ7kbI/18t9nP6stt+k/Fb93aq9vuDIthEl4UJnAgPsDXyMFcopB0NSEdaqytE2oySoVrRlmdDitkuVf7wOasVaOl6o1Mf7sQkL1F+DfbVLY5FquGI0xnCl5MtlfVRYLYgHXcdBH4tJW4s7izaTgpnKOlMs+TqOPFsMFN258krWWiqrRT1CRT4mPK0Z7XelLB+Md+wyitfn/sSVHhP37xeL1KBbKUoH9Wy9r1D2p3i+AHoXweJrlMbuFzm/hOwsGZRNh4wp0jFss7hm03VE46L4MeVuciKkPhWx8OvnSfq1CZXXTotRt0E6vhrLqIK1ns/qGTiq5vX1RoxTzP/I5NT3etXnVPyfXnZ4FKhJgZ9j8TvgK+ccPCfC7rdehj3PfMmwfQbABN9ImWp18KLnfPEsjkr6pp74VLa/55LSnUTOAPLxOoxFzUys6zGHQLfDl9dow0KlH8u6xflzBuPh2G/DxTEDF87YfeuF0wH9eQx9EPV3oX85t4bIIcJW1G24cBzI+za7ioTrIKva/fhDeFwpT8P7ZgzprKmfMfLels+wO/Ps3sIJtr06RvpW76vfGxas9Vu2F7f94yt/Ffe78Kq8+YsX7t8z5MxXX5Vj7yfue9FVOZ/JdhT9Z74qlN+fXAB3xQVQ1zOYz9h3qeg/4/Irg0K+w+h6xxbwMTgxm0Obm2V/2f2O1wEbBjSncE9HiMPzLMX/T/dtdgBU7xZ1/P+03vtpiP3vJ0C3Izx82HKIaz/x2POMlx6agR5hfMf7fx3zuUW32sIuB3tF2zoQMb7w4792mHunHCzUAaAoBw51ACiKoiiKoiiKoiiKoiiKoijKMYg6AJQjnkPpAHjQn4XY/gCyAt6aoJb3Qs21IWL/A0FBb4wHEdBYV8TOt0IRlhT21vis9ndMMFEKs1mc/8QPfuxlxe8+quJljP+x2P+mki/5ETmcfBrIePNj8fXr7UQ8qoSv+5H6IvMieF9+F1mr9tP45Dlgpv0SqQO96EvmKlg0trr/4Ze+omK8VUdSP0N+AQL72N9OOACsB1WxenOdI2ra0bYWSRoXlMnnl8vto+q34vcFquyi8/JzJROulYCjSrot3AH7owb0QrlcxV6Wqs4ck7ZW+wkVVt3F4ph6/9gxVax3eQ3xWFxtrtpfpLzdTP044iIojuEF+0dUoPuj/q+P2S9HwCJJe9Xnhe6GsWOKDm6xv9pO8RrKir24Pzk6Bu6S5Pao20vnc+ycsKi7HnblJCCHMva3OKbexpYLtTJ11F9TC1SvY+rgReVLpwqX17iYk+B+iM9Cea2PXVP1+anrYfTx3WMOhUXX16ijZeye3WQu2AL/9NLD4wSQnP76K8MH0yu9b3zei/arjt3/7XKAkGNG7/5vl4cd+RqP50isR5zi+ktErPnaQUaMoL4fWweoKs8I8f4B2PX4fjKjoP6dMHwbCpPvr12YPtZ9zs2Sqoz9zs94oeBPY+Gkovcj16Tsn3gG13BU3MP0/Seh3q/XIPmMr3MCyOnpG0DvGkN/32e1f6prRuAm1lW9Q+R7TjoDFrQ35nRbdIysdyG1RSitlfIZV62zadybzstYx9JxWyHPzTbKFw7JkfKbuQ4GzxADfOn8O/8MSfkCgP1T9W+He18a6j4QbqdU1+D9ITnIxL0l3Qb3viw+26ocMgfCkXCo2P07l4I7A9oweQxmg2DmBOoWOABSDoBUiXjn8zYo/4GQD8G3gFvxcCvhJiJH4Nbjpp8/PtX/yvGL/LegSz/5wKPOAfCyh/4tAHUAKEcG6gBQFEVRFEVRFEVRFEVRFEVRlGMQdQAoRzwH2wFw1kdejpmzcD6o5tdnLQCgm1mQYUwmXVbZA1GlHcumu8dYDqp+0/9MLIr3D4SY/431+Jsfee2W/fzBj71sVGWf+pZi/XshXZNKd+cXf9/HjKz4T/kK5LZUl2R/Y+sv2reoHrldHpucBD6dg1TPonb3o+4x9f9mSv+6jjFXQcoDkFwAAMBRDWgaP1QfLhjEYP7StoVP8E2U1GOuAFmmVmzWNW8hAhyUq+uqt4/1c6TSLeM4V23KeNJJoZfyAwBRYSoUnLm5FG9fKE43Y3TMaXtS7o4o0LPKGv3+0Zju21Thb9pHoYgdxHMeKTvog9yfhJ51se2+TSw6iYscAGPqfaG4HKjA637Qgu0L+9crzokB6mI1lZJV/l6odVGWK/owNqa0WSisqb4e5bGJqBjMCmiheAahjPW/SCq/oC+Foj9dLoaHZSlWE9XfW90rcJUq1Ix0z5fnNo8tPQcWtLHIeZLvv0XOJKEOT9vZhHnl8DqAG15w5MaiXsRpb74if+aR8Rf3MFW3Xoo/X6v487XfzyFbDuexuj7Kcxp3dATjgkrWt8iq9qRwheE+nnZHxTmvlfuc2rRVH+emdMBwfw2MPaulo4A6KpwM2RVRKe2TA0DmmkmuFEmuWzyDshtgpEz9DDHzmFdAunHkWiGcAZtZr7br5Nou9bN3rP58z449d+RBaV1e8HzeVr6AzQ4Q70mLnGr9xk3WkpE6ElKhf+arrrpLyv+tOPM1Vw3mqs4fcDg448qg6P/KOeeEz+L+AgD4cO8DgJuMx/c/44or8ZUXHX3P2nv99utAa8G6YxxAM4Kdhbwd6f0huwGqayzd82wBtwR0y2G7W/HgloGpz38z3PSLL4GiHI+oA0BRDhzN4e6AoiiKoiiKoiiKoiiKoijKGJ4N3FjM1SMUfxT1VTk+0C8AlOOWB/zp+QCAtY0lzOc2q7R910tyyXisdxM0Ewdjg4yFmQBCiPkfSxrjYQ0PFOQp1n8qmWL9E4V921H+J+q6+5j/SX0e+8J9e/IYa/yokl4eW7a3uP16X+8cCGVSTH8T26xV97WTQe5LxzpvBnkLiLiPW2ZCexyV8Ju5DwAhTByRb425EOT2rOxfoKqvj6/nysODDMBxbGwYvjOgGGd5UT6CsDFcb8nrIOP499uk7HLwoSzD5T7CiItgEzU1jyiGF/nIclNZcTpSsGhL9FFuJw4KS9muVHVX85bVnqaPhU6M4Nyhvh8c28lqb1/VUQkrUz0ABjGyC1H9iMqwUMaavuxC6uP2K6A+FpeVgzFiUkdiRi+MS5+qz79s0Y+aBcpUqicv9aGQalLeLu8FqZ5HJTDNVUrlbN1Ucb319Ywq5OO2IuY/I+cHSHWzbFO8/yfF76ZOmjoHROrHWH1SZU0A+erejyrhoLyvGhbXVzGH9X7RB9/yePvo5zaps/c8+8VFX3b/5uUgR0HNvcgtYKrHWFJX+/JEZgV0fX7TocU1wb2zJ6q52fDCePqnv/EKMO1/vP0jhd2/cUV5f6Z7nWRs/LCtd7Kki3ekQnkfEIJKHijLe/FQiC4OGZc/beeW0Z0UpcBT3zedzqU8JquIqYjZn1XxwnUQnvdBZZyV/KlflkFzCq7Gpro/xLXsJ9znHhDPR/Y0dBsgtM8c+hccXfGdwVHIa5DyGURXQ3BLhL7I+UsuAj/h3iFgGK5h2DUDL/J6ZGcaA3AAt31duX2xLnLKn0D9XJXrspwM0a16zU1zL14Zchl5/lJVVFWe2459FDduepYO3D2yftHmfq2Fom2W40e1rRqCXG5kf2rqOTpY6v/7XHJV+CBusy+dt3Vb977sSvzTS0pV/b1fd1XOb5PU58DivCdnXH4liDGoR/KVc84Z/ZycATAMZ+Nl6An3fl0YDzecyx+N6n8AoIaBlfBM8zMT/h4yIbdJerx4AijlrmH0Dj2xtpNDdkl4T/ATBzKMm56hMf8VRVGUA4N+JaUoiqIoiqIoiqIoiqIoiqIoxyDqAFCOKx744fMw9xbOGTgfLv/ZrAE7yvHUKSqoTOvgZha2dfCeYJJCiYIOnIiLWP/OExrLOQ+AxEalklS0b6VYr/nLR70OD/nzxSqQVLcHwUZlfPo9IZXmuXzMZTDmAqjzAIQ6Yr2e8vjTts7ZKucBkCRTY3H3x5TvyTVgULoUajdA2uaR3AWyfvTOAzkeDAVdi9T/o4ypk+WYxtRhTH1ehXS8p3CdVddQPx+L28wCtuQm4HhNpjbKqRAdWfAZIafFsBEaytkxnL9iW6XUy21V20YdAxz/x31M5bC9lvWOdUSce7mD+gub0d/bhfuki/ukojuq4ev41YUInxeotM349EvqUOTDAqJOed/Usfm308g2y432Jd4wpfNipPPxvI/WIRTHudoF4148H6KOWlHK1MfATpVUfRlTfQLx/InrieQ1xn2s+jr2f30TkI+x+BvAzETduSGh9ot1UPwvu0Fk3aY8vjBtiLj+Oe+AfHinvhfPkPiDq34Rh2s7xntPilzfosgr4NN9MXb9RZV2kW8D4VqV6v/TrwoqUAMzGs88970eMw0vOW4ZRiqo032dy4YP6X5mC/iGsee521fz3/D8o1P5DwT1v6R/TgUFeI5rH5/vbKhUh1O/L8fdlzHw5TkTqnwwQtx+9NeDmVFxTOGamYj3JHltJQU8xxj48pjUl/SMTNdvanNOYANM7iD4JtTjJwxai87CJYbZEIr5Bv19kLo5so4ZF98popsg9zfND4XngHQ8cBvWEekWIx+OkUr/pMLOzoM0ZTMCGcAt+zAP8S82Mwd8I/oo3yuiU4Itl/cYiTkDogtn/JlLMfdDkbugKNBfKwtXmXr9TmMX3R3LRVPnS6iXcwBgD+EeWDCGRe9Q2f61SedHxjbq6sPBU/uP8eWX739b977syoUTxKZ/r0lx6s989VX9mi/myMRJuc9rrwKbxU6BMaQbYIwzrrhy23Udqex56suw++ro6J4yvDXghsDG5Hk2cwQHgI/vA/KZmN61LLIzjjqANgx4ulViHUVRFEXZPvoFgKIoiqIoiqIoiqIoiqIoRyQOBHcUBTFxo9+kK8rhQ78AUI4rHBvMOwvvCRvrLYCgCiYDcBdU1STU+5PlOcgwXGfy49taD+fCwuOj+ssYxiQ6BbwncJTcWcOgGCPWCoWbNR5/9cOX7nf/ZSx9G+Poe7EPiKr4+NmDct4BiaeyfFaFmTI2vxPuAKnA90yFcj0pumXboQIDa4OMdszxsNm2It4/enW882X/akJ+BYaPinIvyhdi05FjjciTwEyDmaORcoBwKowJrUSc/qS0952BaX1U7nOpeAMKN0adKyHPj/Xh3Iz0MbUl3RsDp0OtEF6k0r+r7y2U5OFiU+FGoNyd0N/oXqnzBqRtW/WHRHmgjBvtR+psKMSltr3KPMTG7WXTUjHL1Ks9c5NJSWlGxHab9XdETV4r/7dV39iFulDdWMb639IowJX60Qj1rFCWy74V2xc5A2RfRVuLxreZO6CsLt4U0sKR3DnVfTbqVkFU8ca+J3Vu0b/q/OfxeqFwjtcJm6jal3PEGKpvq2unOEfCgSAdA+R6F0CaCh9jLEslbR07XDaS1NTcMPwkdHI7Svndb7ss1L3exz5nM37s7t+8HMbGzuT7CiF+urhW2CA7CjA2F/kBDHgEhT91ZVnfAGz9URu7/66y+zcvR5qQLR1DeT4XlCMx9/V6kFwXNlxs+TbMrgsOboD0vBT3nF016CYe7Ci7smDS+4cBlsMFzSsMt25h1g3gCJTWBBfi+7NloOHeMRDxKw7rUw+zJi74abg+zYz6GPvEIYY+UQ6I6lsP0xFgQsfzvWOFK6yj8l6KuQgYZfns9HH9PPqGs7Mo56JIz4w4j1kYb8N8k3BEhDoAWIZv4jqV1lDh0kj5HdIwi8D96NcrWW8o3Pd91P1F6PMgjFE79jyLtbQvEp6rwrmR7vlF/6Yj1wALwC0ot9natz+ktaB+T4p86RW/egAaOfgsitn/Ty85B/e+7EowxXd8cX8md5qc88IdB/Tx++P6sZXKfzNk3P/TX9+7AW544dGVD2DPU88FgOAEMAxuY/6v6Nb1IKAFkuMo5yIhgOYUHAIe2enjJwxuOeQXUBRFUZQDxNHz9ZmiKIqiKIqiKIqiKIqiKIqiKNtGHQDKccODP3ouLBlY42ENMNkVgl4SAesbLeZoADjYVgZZDqr26fIM8y7ItKzxaBsHl9XtiDHngcb6qFyvVKkUVOIpN8B+xZ2vkLH7k0o+fQ59oRwb31b9cBwcAQachZjOm9wvA8YsqVW8CUr/qFJPuQQa64s+pPEBwKTtwExZpc9i/2jc98hmOQHkdqB3UqTcBXX9zGGcqU9juQfq7Yt+z+LHqn/p85Z5HBjCUdDPE0VniDFBPZXrTQq5Bf0kqpT0VRuyYbKhf8mpwUm6juG5SC6EzeanHtcipR2DqvPIQgJaKgFljoGsUpQDS5ui8p+4HH92BIz1pf56W8YfLlR93KtWnWh/ROVYNC1itYYYzyMq9Vq5XFdGC/ZVKv2FdaCfgmEdw/bGLtfFynrRT7Ft0WXBBoV6tejbZo87qSwem0PRl0Hbm9VbF06KWI9ibEV8+fq+qJ0CSbmKUtWcrilfnQuOymAPKmLqw1OveE91x/4ldXCK9T/IJZDLoz8fSV1sxs9Paie7DvJ1GVT03DB4wtjzyy8eHjzCvd7+uqzG5iYq/7c4VsahLxwKcv4Rno1gKtTrg7QTFO6/oJakrEY/muP2Hyj2PCech91vuXxrJfTIMyLj47VI/e/5/mx9f0+mF4kRlTl5wLfxfCdX4sTDT8N1Q5Zh4vvWDT9zHgDg9N99DfxGfCCvNwAx/DRcvGbXHADg9rWgiQPPDWhu0Nsgw7VAa8EG49vYmYbDf3OCaynnAGhuNyEetwfcUuzz3MB0BN8GRwylnAZp3cj3bb/dTx1oZkIbs35SueXgghBzYjoaxtaP+/2EYWbiWZGcSKa6bzkohpHuXXmvpDXMAIjvdYWLI1sRRLcI/RzKNavOrZLeExasGbm/uS2UhcWzqnCFSESZQX9k3dVzcVCNqGM0H0BanPb3VZyAL533q/t50BFM/fzF+Pld6E5zVOYHuYscbar/MXonwKWApd6g5NFf+Mu+vxbnBrRugLXwPHIr8b6depBl7Hnqyw79IBRFUZRjFv0CQFEURVEURVEURVEURVGUIxLPVIYbPsI5mvqqHB/oFwDKMc/Z174EAPA3P3IZHvjh87JCvXNBZeYdwc1tUNM3vbqdAUxaB2M8iIBdyxu5zhDTX8SBp/EHfFJ8mxGp09nXvgTXPfKy/RqLFfkJJDL2vswRMCgnFk0TZeDGuKzu9yA00dXgCEDMdSCV4fPOwlofnBQL1PWpDiA4DFK/tlLM13H187mIDge5P+UuSOORzoB6ThKpjkXq9rp9isek8un4ehyGuBe8iX2yLe97yZppuFegVaQ2cx2oilV9l4r7uohz0gEQSnvfuyPCjv6XPl/BsF8DpJpPKD+Dgjd+FhLpUKaWk6NUgHN/z+SSySXANDJlVX1jpD6Y2L6nESV5VBynWKt2uB8AkERbSTVnyybq2OubdSuc6P1Xzu2Pin+/qhfKzjSOpFIvRJM83t5oWxTiYtfOgV7JXUvuU4FeWTxwFNSq/E3al+1kpbJU3VNVTY6JnVToKGL9106EXL8BfEgpAxdVx3aW1PwUYusXbpHg8GB5nRkGdcN7L9WRxpy7LueB+rLpfJEf9pMtQqz+5HhpQozhPc/anvI/cdMvvBS73/G6XMdNP//ShWXv9fbXgRoCJwdOR/A2nI9CORoV55zuC6EU5jQPUj0cx3rj849+xejBYM+zXhxcAAkKLo1i2yLiuSjUvSTOTScexIuU2Ol8e4KZxbj1COeflzzM1OHGp7w8Fz/jfa8Ge4Kf2z5XS8wFYFqHG376vEE37/MHr8J8rQHW4wU9pxAz23pgzeR8E7RBYM+gGP+fun5O3DLDzAl2PWxqO4KbAkwEsshOMG8RFPGeCncYOwLNTVC/x5wcCZqPr/H5WPE8SeY+lvG+071NnOOCpzn1olxS/bOJ7Vsu1PscnYbgVGnZCaoV9XFuCgW/UP8XLrpa4V8/n9MaADEVPPK8Ti4E+XyWcyAx4jnJI1NcK/vH+po7UC5q6XUj1XGs/bvNGVeEGPs57r4pB7nYEbjJywQDZ1x+ZeHWSGvMDS84fp/Pe576Muy++rXY86x+fdx99aW9EyDCloGW4R2DHHrn0jF27Sn7x0P+/KX4y0e97nB3Q1GUYxDNAaAoiqIoiqIoiqIoiqIoiqIoxyDqAFCOeaTK3hqOin7KimwmgmmCXM02XpQN8fytYTTGo4vlGxEvvxeVMiwFBb0BD5T/dez/tP1h174YHpRV8n/1w5fm9n/wYy8rfq/HkpwNHthUWZ/2ffrRlyws8/0ffsVgmzXBDZHi+SeI4j4hsUoOAudNzIfQq/5pExXLmCK/VuH3O2jUSVFvSzkLmKlwafROAb8wf4Dsh/x2tI7DX48pxPePKnfhVGDLWc0I0SYY+ZoDSqFPLXiTjgCOroSC2hEgZPK2aKPPCVAK8YfOjLqVrRwBYzkExsqwrJfjSIXqG9I9UOUL4Bj/P6sJBxPFfT3AUMpG0V5AyMrQXD6rGiuJ92AQsXqhdMtNSuW/vJ4XqcbvBMO8AAv6ma6/wYXEfYzotG2sbqHQLOa5Pocj4yzqJQB+XEZJ6VzKe8uNlKtjUxc70bsxtppXaV2o+1qpVpkQnCyOelUqEOJmR3Uj+V7lyOiV/Wk4SfGcYuQP5Bbxes9dchTUv+ncybjePjVS9pui4phcuZ3j+Uumo5SjAoaDcjiqh/c88yWbTtlm7HnGUPW/+3cuBeZioAyQtJCkcRHAE489z3wJdv//oyKdohthkz7d67cuS0Vx4y/d+b4fKex+62V36RxsRXJ2LFL9Z5dAvLaKeP5A+XyQ8eAJ21L+swG48WDTP+e5YbBl7Inq/zPe92oAgJv1NxOltlxwjvgFWqW27fDlJ56ff7/PH7wKX37i+Tj9va8BlgAf6/RzE2L5U2jfT+N62hqAAbfsc14AcgQzj5es4aD8B/pruOEyj0gcM1vuVexp/E3IIcC2f+5mN079DpGcO/Jxafp5l9uLbfWkJPeMeK6Ri2MXau+iPrl2Ab17gMXzN10jY+2NDUg+V7Orlga7wu/yZQwjjYg66/pppOkqz0v/2OfhEl8sdEVvht1g4Msv/9UFnTs6yMp/oM9jJNatvK96x1nI2HmIP8fU/6e96Qrc+LzjJ1dLygfQ/z6M57/7dy4Flhw8o0gktOcYWOOUO4eq/zfHw8AdRRrmRe8winK40CtSURRFURRFURRFURRFURRFUY5B9AsARVEURVEURVEURVEURVEURTkGIeZtpXtUlMPGLbfcglNPPRUAcPPNN+OUU06503U95M9fir0bU6yuT+CjJds7E0K6EMNaj7YN8RQa67DcdkVSWaAPISORYWzGwqCkcEKjIWzAfRJepv22/T3kz18KZhqEC7qzpHBAlkKoGI+Q9NZSCmM0DAmTytThghaVr6kT5+Z6R5Lt1vMskwWH9jYPJ8QxEkxfpi83lhx4LNzPon11Ge9DoCTvDLwzRdghYz3IjF8Twz6MhOmRoYZQOrUZYuyiepZhiDaBi9gAwFi4pGHsgerYWGZsbmXSYDEi0Xmg9vVzHQJFhDIYdqKsstjmqA81I0LdwFN5XBVupainCrFQJ/TdrzA/i66hFKqgSn7aHyfiMSzq66BSVCFvyngIdQiQQVgAEZKiyMhbz0XVJlXPBZbzJZNQc3nc2Ji2mttFSYJH20jnvDrfxAA8YDoKYXZSsmdfTplM+BnCnXC/LY4xzZmc2yJZtJi3NKUpwa0cbwrFIdvMoTpSslOOoUhSQt2UKDQlHjYAWR4N33NXuddvvy6EWZHPHctgw7jpF0QSxHdeij1Pe1lxHIBNEwkrd53db7sM4BD2afdbQyilHILJA/AEk0JJ5diGIgRO68uk2DLEStoun6HpOuyoT0ILAMsOe54ezv+9f/9V6PZNYnkPbNiQYHhHyNK756nn4oz3vRpfeXJ4J/nOD1wIAPiHx194l+bizD+8OHSdCW4e1ma4fsw8szBrJtxL8X6jjsBTD8xMmRgc8Z5LSYITMnwYIYwL1fzV681YOBvxPOOUHFQkyyVH/TOZEO45yxhb++rncDGGRe3KOrZa1+S6vdm6XK0/Mqkw+X5d2VZy+3pMaS7H1rDqc7mvftEbtvnlc4/u8D9jnHHFlQvXysH53mod3kYIoO1w+huuvEvHH63svvrS/jkEANYPQggpxwdnX/uSIuSvUv5b0IUf/0Gc9K1Lh7lH2+fWf1nHhQ//KwB3/d+xFOVAoDkAFEVRFEVRFEVRFEVRFEU5IvFs4PnoCWJyNPVVOT5QB4ByxHMgHQAPu/bFWO9arM0bbMxaAID3BDKMadsVZVcmc3gmtNaNJr2tled5H1OhejbExbGD8rEuAAcl6c8DP3weAOBvH/OaTfcnF4Lsa5kgtzxOPjmSA0Cq7OUx23UA1Er3herxu0DtKkj9G3MqbDbmen/tLEjbvDfwnuCc6RX1HmimLtZRpFUddSGMUc+Dl3O4QOlXzm0/hvR50XnAyHHhly36xVucr+J4oR5doMwbbbt2Rmw2fUnFmObHBcUheQTllVSwJZn2mL0C1TahWCySOC4a+kgd/TGMUVV8UohKtWf6ub8OgEqFSlK5G9ukqFiVCSJDkloMlaq1G2HEMSET/C68JDY7edXkyqLSjDC6bUTNmQtFtahUoQKxv9ntIZT2Qq0rK+SoyE1ugbA9qIOzEj93Dv3cp3lJc1oPRMwdW8aeZ78YNfd6e1TR/8JLs9K7uJ7jNcO2VOMfCHa/81KwI9CGCapk0RbReLJg5chi91suz/d7Il+LyYkSr+GBEyXdk4YHLo7d73hduDZaX7g+ijJXvzbU15kjwgVyv2suwvreCbgz4Zq28X6cG6Bh0IyCEt/2zwS2DJpTr9CPBEdMKJMSb9Osv98Ld55BdE30Sv1iTRDlQ4Jl7h9y6VyY/lwUzxJa8C5WOxDSryPvDznxsKf4HKzWIan+34oxNwEjrEtM4+6DCnJx3mvXQaX8l06rgRtgzCWQDhpp859edmw5AM648spiHjK04HNkU/V/+kyMG56//8l+T7/qShjxpxhb4CvnHF9OAEVRhsh/C3rlX/zQUecAuOgRnwKgDgDlyEC/klIURVEURVEURVEURVEURVGUYxB1AChHPAfSAZB4wJ+ej7WN6ABgQmM92sbBEKMxQeK21M5hyQcFv4jf76PSvVaSz73NuQBSWQMu1NS1upuZ4EFwPnwXd2fj+D/4o+cW/ZPx8bd7h9cOgEXx7UO/y2Nke9thf3ICbJexY2rnwFgs/UTt6JBjkf2V53LMAWCICydEcgB4358XY0K+ifC5DCi8nZwJqR9jY2FgoMKvjxuvb/O2+l/6sW0rD0Dsw8JzWrsA6m1j6rzczoL9C5Tio207yjHTi24sOC4pDlnGex43SxTHbLl9UUflgVJpn9odU1JuFx+UlGYe58r1u7KivUEf21qMm4XaG0COSZ3qzVj06s56PKjqGO3jiBsCoq3ajTCCdAJIt0NWM1NVDnEumIq4/8mBkc6bVJlyg8ItELYx0DD2/NJLNu9gZPfbLtt22e3UleIJc8O46RdfEpwCQg18Z9X5u6++tDif7KjIWwDgoOUaUA48u9962Wj8fgDl/ZkezyPq8uyii9cFRWX8Zqp+Gd//SOS0d18Cvx4ipdpVA78ccgBAxtifuvDsWw+OAb8SnX2dCXPXRcW8yNeR7hWZDyDNae3G4pazYj67NISCvoj3H+vgmPODZI4SBsgId6BwIW223kly3+Tz1lOfkwCoHqLl8aMOJ7Ez55HwI/u4ek5L9X79vrOdsaRyteEq1XeMOwCy+n8Rmyn/5fVSf5bH76cL4PQ3XgFU7yMpt85XXqQuAEU5nlEHgKIcODQHgKIoiqIoiqIoiqIoiqIoRyQOBLdlVvojh6Opr8rxgToAlCOeA50DoGOD1dkELiqhvDeYtB0MGJPGoTVBwWWNx7UPv3JQxyM/fk5WeSeld1L/A8DEdpj7EAi6Ib9p/PpPPPLyOz0WAHjIn7805w14yJ+/NLeRXABjKvaxWP+SzZT/sh4AcELyuV31f13HcN/QLeGjQ2Kz+PiLXBZ3lrGcBpJ6nsbcA8kBwABYOADIBJcIEcMIhWXtHhhrr3Yj1NfUotFzil9eFWLhElnUxrCyqk2hsC63l8q8gTNBVjPmBBjbV3wed2ksyg8ADNX4xOhVh164BrZSmI9dZyPzm6XidR21el8qEgcdjJjqGBmHeZMxF22In9RREe8/F5PBAVM8adHvHH86xcFO53LMjVArTDm4Dop8BhDHj8yBVNoPPo+oD1P/CuV/Os9yHgyCC2JMNUq9I2JhzOOiTRRj4gljzy8P4/UfC+y++rViLqMDgIMamZog393z1HNz+dPecwlufMrLD0dXlW1wr99+3Wj8/j3PeGmRX+Jevx0+y9wOaX+6p5GeJZ56pTwx9jzzwDhbDhe7r74U2DDA1GPPU1+G3e8KuQvgCHue/rKwf92EXAEAeMnlhxTNTfl8SetMciBZLnKkJJJLgNuQY6CIax/3Gwf4VqwDlsMzSDh9Qm4A9GWA4fNubE0few7X61Pl4BrkqCl2Ij/ja6eDzMcyVl72cZCvZeylZywP0tiSXb+7pL6lz9WcH+0ugNOvCn/TjK55QLmmLXqVkGtf/R4XueEFQbF/2puuyNtufN7mboDTX38lyPXvI+QR19ToAtBcAMoxxtnXvgTXPfKyw92NowL5b0Gv+IuzjzoHwKsfcR0AdQAoRwaaA0BRFEVRFEVRFEVRFEVRFEVRjkHUAaAc8RyMHABnX9ur0Zw3sMbDgBeq/iWP/uQLAaBwAKT48en3pIxPOQDkPgD4+COuwJ3lYdcGValHaL92APzlo16HB3/03IEDQJLi9abPia3U/6m8H5H8LGpv7AlzZ9T6tRI9HbsotvxYvP90zHbi7KdjU36GmqTgl+VTm/U8MJdqfRbHp7wBixirK+/zZmFeg7EaF+UGGD1+wTUylg+gLpPq3p/2chnCeOc3yw+wKNfF6Laq7XRNeCpVg3VOgFSfVLuPbedNjkN1HPXt57b9SD3pEjQjToIxNru2OyrUpsQAkoK7Vv7LuP7oHQO+jfukA4AR4v3HNnJ/FzkTkhVDKkhjfGx5OzBFdXFyHYgY+1lNWvURCH0s3AJJoSznh/tujOVpSApEmRuhGEqcLzZBxcuWsec5x6bqHwgx0dmZMI8pv4DrJ48mrlD+K8cuu68O+Yo4xrgnR6WLKsa53/Pc7ccAPxr4jvf/OpgJX/yJV+Zt9/79V+GfnnQ+dr/z0v5htGGBOSHnEYnPSnL9M1SuCWZOg+dthuLxSVzvKKxX8b6TriMA4VnZigUsPdcLtfYC6XbaFZX+LNfBTfLq5BwGcq2K18LAIZjcWXJtSL97GjaQnWEjbgQ5BBb7ZMdG1tRBPpm6yXrdqh0UouA/veToU6af/vorB2tnYjTWf/q9/lxdg2LTkLjtxl8Jz4TkDsh9cBQcAK52yMT7JR5/wwuPvvlWji8e/hcvyn/np7/Z597mvxnl33zqANge6gBQlAOH5gBQFEVRFEVRFEVRFEVRFOWIxLOB56MniMnR1Ffl+EC/AFCOS+7KN+4feejr8cOfCHFAx+O+14ptKsTEd5VFeQOSE+AHP/YyjCm7ZJz37SjgE2mMaXxEgGEu4v/LsrViXarI0+da+T/mQhjGwB/v8GYugqSw36qPm9Xb2FL+K8+vbDu15T1ghTuhdwWEfWFHqMOaMpdE7SoAevHe0AlAMKa/stJxfoFjIZXJ/Rdq6NpNkcbC4pyLlvuycvyo1H51e1U/ZHuikvJn0ay4gGV5Dn3Km6UrYaSaIE8bqd5wr0Znymp2EqrWhRXXyrhaaU4Yjqn+PZWt4/ynPlfHJMVl3u6reQGG6r4uKUfLZnnqBzGZU24A8r0Cnm3cZgBufHZJJMUeg/v4yQBoTlmpn9V8+RxTr8wXnaGk9BRqTvIAE4E65PNPVdsZw6GfjnKZUbcGwrjYonc/SFUjQpvBroNBm0nRm+tpcEyq/097zyV5vrL6X0hvyQOYhklV9f9xRLwmUu6Ae/3WZSAmYBJukht/6eiO+b+IL/z4r+H+f3whznjfqwEA1nqYuFaY1uGGnzkPQMyT4RrQHCAv4veb6KBquMi94i2Qc8Wk5/e8V5+bOcFb9AjrUq7bAWjC+sbieU4UH6zy1YDT/0YWIkJ+SSzW/tTO4N0srvVeOAac2UQKjoGivxiX3OzjIj+WE8agaCM9mqSTgiBfPMUY5BpZjTHnizGcle3ScVGOY+t3ySMRqaJPboABm6n/q5cLOTXSnSePTfsHyv+0kxCu0XiBMcI2NmOdU5Qjk4dd+2J84pG9y7/jModdQ/4u5/9TFEW5K+hXUoqiKIqiKIqiKIqiKIqiKIpyDKIOAEW5E3zsYVfhMde9AN2i+PAjcprN4rynGIHAYoV/IuUvkPH/a1goyqVy3wllbeqjVHhJlf6i/num0RwASe09Nk7PtGl+gbF9281HUJfdLKdB6pshHoxh0fmRynsWavmx+of7h8r69NN7A+dpyxwAcl7LeSzrHuRViM6C2lEwUN8XwvHxfoy5RQbq/hQHnGrhWCwnFWFVX8bbLMfDSG4KWQhRfijr7se/8Boac5lIJaBwCbAV5zmpFut+1w6BhHQUjMC2V28m5WatlkvdAUaUcBSFmq7sE3kCZiZvIx9j9Mb7P5l3jOsb4r44yBF8yzBB01/mBoixqO2qASdFalRNZtVpUk12UcHXCJUmh/9x/pz6jJwDgI1wHRjxuxx+3M5taLxQdMZ6kkPB+KDYz2MU7oLSpSEaGDunKZ43Adz25+PG5x1bcc5Pe/clvXtJOkbyCaM+z0PLYEcgw9j9O5f259N6mNbjK09+xWEYgXIw2f2u1xaL3+7fuRTUAnt+8WWDsjlvhHQGTRxufMrLD0lfDwbXP+HC/PnMP7o43CMATNM78iY75pgxgV0DICj+AYTn/MyE2yQ9z0Uejf7BiOJ5JR1f3MRiHYq1j5ICPz6jczx+BkaV/umcFA4puU2q8QnwcY0fUWTzyPOyWHfStvTMFe+iuY91tdSPRe7kygonc71AKvbjUSTyEdT1c5y//OhPhoOUsyFv5/KnaP/el115VOYB2IzNzBsAymtncHD1kxcXDfv7uji5AFIn4nbZn9PfeAVueP6xteYqRz8P/4twTX7ikVdEF8DleMifvzTnkTPEaI3DJx55eS4LIL9rAXctP+DxhAfgtpUQ7cjgQEaBUJQDgToAFEVRFEVRFEVRFEVRFEVRFOUYRB0AirIJj7nuBQCAmbO49uFXFvs+fPYb8OhPvnB40EiMeUO8pcob2Prb/4dd++L+WzsCHvLnIf6udAKktp0fV+r3bW5vW5/bIP4OGo3rHo4fUYZt4grYivq4RfkFNts21jYR5zj9yQmR4vFLHBOMaFeq9eVY03y4SnXeOxRCe1IJQuTBPB73X6rrOSr563GkPA4L4+nHeuqtyRWw2XF1P8byMoweJ1wAuTwJZ8GYqLrKqZCV/+IYSor8ymEBGnEnSLn+2C3HY0WpqCvPrUm7WRzLQzeDCHdcnKYUN3hMTpfjzMdfmyAtz+PJP6mst3adeIAs94rsOYUY9eLrffJ9Q9wwzCzsZMsARxeCR46nTx6w60mNCvhpvFdmUenaoYhf7ZaDot/MkoIvtmV7lXwRSzk6X4I6NA8TZDjE3UdU9qcdSR1KyHH4fRNdARQmJcf7j84A34oY24vyPqTr1Mb6pUpZxPvP+QtMHKvhY071DwCnv/c1AADmoNjm2s4TpbK8YXulLaLC1pbX+I0/e/QqvJVxTnvPJUHp7Qkc763db70Me545VP4DUf0/D0k2qA2WnmPtujDEmHXBCmWEMv5LP3kB7vMHr8LMEbBmw/2B8MwjIKr+Y+HFr4bxGACGi3wnbBl+2cOsjei4slEnVjyI/Y9QwMQNUo1fx+Bn8cFEF4BY/2SugVRtKt/neylV+YOywlg0YDPpZFxXi3bM8Ji0tuRfYtn80VMxfBa5FgYuwdTv/HoyfvLOuDz8vfCVFx/5zoAbXngOzriy/Ptm8Ho3MvaMmMu6LMvzStU58OV2YgCmOhe1myAev/s3rsCe5x57a7By9CL/fv/EIy8Pf68TYZb+7rMOq/MJzvrIywFMctnGOjSqEVcU5RCiDgBFURRFURRFURRFURRFURRFOQYh5rHozopy5HDLLbfg1FNPBQDcfPPNOOWUUw5aW0nxX/Phs9+w5XE+KrWBcXV7Yzw+8tDX3+m+yTwBQFDij7XDTHDewEc1cXIBjOUlAFCotT2oUMQDGNSzFbKdRcfwgnnazCWR69zCOTBUype/G3AxzlBmcft1DoBiH3qVPgmFf96/IDa8VL0b44fx+0fKLpqzuk/MwaGRNqcx1dtyvVv0TxZgqVDf7Ji8cfHcjTY+oiLLscjrmMGLFGp1X6TiMf1eKy/zxPS/swvtkcFQubYA9mUZqbyXcZ3l/vQ7JYWoULsX/WUMLQYU3QoeMKu2b8YTYEqFo1SF5u1RxZvj7QvlI3FQ0Zt5P+8ppr+ZA/MTfC8w3aCsnueG4Sd9H9kg1FErMJOjI222KOY5OwbSeGqVKCPU6aicR46fCSFGdjoPCPWwLRWuWf1fKUeJ47yIe9iteHDD2PPs8ll8LHD6e1/Tx/Em9J+FwpcdgToDTHx/rlKMbkJQNcfztuep5x7S/isHn93vvDRcA5ax52njqv+a+/zBq/DlJ55/kHt2eLnfNRfBOYMvP/F8fOcHLgQAOGcwnzXh3Wlmh/eQhDjcZx4hR4CMr97JZyf67ZZznHqzFh7cbINLgBsGt77PAWB4qOxPLHCmZYdg8Q4jPkvBauUSLaojlK62FLN/bO1Pa5wX5et9oo+DbqWfvnIbbPJaSXWbsq4x9b88rt631etrXL+YgBt+9chyBpx+1ZVbFxq7fqp3ipoif1C6BuW5FLuK3DzAMM+AfIeK67y6AJQjmeTSB4BZ1wzy7BliTJoOBrxl/r/jHflvQS/580fgxG9dPsw92j63/csaLnvUXwA4+P+OpSjbQR0AiqIoiqIoiqIoiqIoiqIoinIMojkAFKWiVsp7EB79yRdm5fXHHnbV4Jg6RvsiJfvD/yKoVbaK9T9GUkFLVb0ZyTdQs0iRn7ZLRUJRNo4pqbfSvu06AdIxYzkDFvVZzuOYGh5Ajt2fWBT7PinHU78L1QXzQIWR2rfG53pTf+p4+bmfVQxTRDV/nzOAF/bPeZPblbGDZV/iCBeq/9O4xpR3aRxFWdG+nF9fOReIuBeeV6p84gVqf3Ht8IhSjwaVReFwVVUeSxZ/xfNnuFIj1v0VynvZl80CLVP8H1X7CSALcEdFLoCB8rAaDEU1eRoDR7VbcRhxX58VgvYUc94IF0CqhGPbMiguxWuYGDQTFXUE08VZSIp+H8fkAbcE1IrJXjWaFHb5podr+lj6FN8Y2MYcAaKLRMjqejOPilATXQ6NuA7c+PSRA7jpTQ5ZwRmV/oP8ClFKSelClfka4pxJR0OcEbAV9XDvEmA5Hz7OWbrvluK8HKPq/9PecwmIkONkh7jeBGyYoCqeh8klw+DGgwyDbHxOetOrhhsP0/bPnXv//qvwT086ttXfxyq7r34t4Exx0+15+vZU/5JjXf0PAF/8iVfi/n98IQDgHx5/YbHvjPe9Gnue9jLsfuel/cY0p8JlwxPfP9ul+2kiylbPTupMeM7tig+xmemfY0xIBu+8zI2tXzRcV+X7Dhl5jHg+GPF8ljHcR6B+MQczF2kF+qoprlHc1107AfoKF/8u195q/6hqP+2o1gqgcutV63FxeFXfWMof2S4xipj7Xznn4LsBTn/9lbjhhZu0I16TFsfex3DugaEzUVYr66pdnGN9kK84hkfPIxOAhrHnWcfeWqwcO5x97Uvwl4+6DGdf+xIA8W87Cn+bTWyXt9X5BRVFUQ426gBQFEVRFEVRFEVRFEVRFEVRlGMQdQAoiqIoiqIoiqIoiqIoinJE4tjA8dGjYT6a+qocH+gXAIqyABleZyx572Oue0EOL/ORh74x/F7ZYLdKHnxnWBQ+Z7MwMTVjCXDrUCyL6toqFFC9fSxczFZhfsb6uaj+OjxP+pxDJmVXPRdjHQvTJJPjhvBBZRif1JaN2+pEyQYMhz6MUQh/FEL8yITAXIWMqsP1yLFQ9JcTMagaY2pXhgEi4iKkkKh1YbggYzy8N8X5kA5wOX4PGp63KrHV4kTBZZigsbBANTkkDhaHVEr7+u4MwwHla0L0v08szEWogxDWBKC2zgwYyuZtMlwRoa9LTl6sgl2cw5SElkRVECGSiEFGJFvO4X9CqJ7cixj+h30IsEAx7A55wE9CGB/O4SMQkks6As0JZhbLulCnmzJgILYTfBNC3pAXCXnnse0GffJcADDx3MYwQKm86Si4/g3nvvuGixA8fRiMfvxF3IDUtqdhbIUY/4fFPJu5gW/7EEb5PMRDZVLjvp7YTrrOYqgNP2Fww7jxV47tRIN1wk/2BJ7H62pmwOk+IICaeH6+OQnbljww9eHamnb4ypNfkevV8D9HJ7vfeSkws+G+ivfQTT//0k2POd65/gkXFr/f/48vROcsrA2JkPc8LdwLu9/12lCgM0CM3IOGQesG2NmF7fFZjokHZgZwIUQQpYXFU0gObBGeufHZalY68GoTnvWMnFgeY+8D+V2Iy7VIPl7BoyFfyHC1xsvFX2yukgOTYRBI/J4OZwAM7gxSUtnQbxRJyDePHxN353EMYwEVkWpEBKPtkI/NMefKZiHq5mH0xb4gDT+fceWVBz0M0Gbhf05/fR+CpAxXiPFXnxpG+Z7ACCGo0poqQjAtTBY8EkVIhiFieV3ENne/5XINA6QcsVz3yMvwsGtfnMPWfvrRl+CRHw/3Yfr772MPuwqP/Pg5GgZIUZRDin4lpSiKoiiKoiiKoiiKoiiKoijHIOoAUBSBZ0Ij1NiGGB/6oTficZ96Hj74Q28CEJT/DXk0hLwN6NXqHZtRx8BdJSmf6ySxixTRiaSYN1iQELdKJLxIvV3XlxTVm/V10f5F28cU/7K/SWUv+zFWZ66nSkI7luw3qOhpUI8hzjnoaoW+r8ee3BcoXRg5GSxH9XxMtivn244p7KL7QJZNTgA5t0lZ4rzJboQaebwhhkvK+wprvVDal/ukcp94mNSZ8/mJbY2cRxbtpvko6kmukBHJYXYuUHXtcKi3V/LLg1AkB87HFar7PiHhMMEwi/bSxIhyY9OdVWqiTJS9UeNFmX68hdJdKB3TPHBKGjyLCVmTCyA5Q0TCXgBwO11QgK4ZNLeFzIbchGR6KRlvSo7rW4bZ6LuflPNE1CfVler9aUgITL4vm4fOQd0vZQV+wlnlLx2wQRkYRshV/8P+NHliG3FIzmuq8xjHlBIV+0lyS4j7j+KUu3idpGS3Br1C0fd98FPGDc8/tlX/Bem6TreAM6B1C9j+ugfQX8NMfeLRuQHWDczOOW74mfMOabeVu8Zp774E7A32PPVl2P07fZLaO5PsVylJjoAz//BiWOtxv2suAgBMlgndzALWw5v4ICYGVhhYt8FNIxXwbXAhQa5Pyw7YMGGb6ff5dQtKrgGxJFJsQzrjjPFZ+U/EIYE90tocy0vHmXznMRg423JD6VePfk2XSyuVLoBQSb8GDtZhK1TlkvS7fG6lPixwAoy+dhIGqvRFyYJzclrpjMgvP6KelGg+rS3bsBmcceWVg37c8KsHPzkwgMEYswmv2leXBVCcc0rnLlaQFP+juac9ivM2lnSYCdjz3BfhtDdfkV0FqQ/pfWL3b14ePhioG0A5IknhXx79yRfCEKHzJv9ddva1L4ElwiM/fg48Ez7+iCsOZ1ePGhi0MArBkQgfRX1Vjg/UAaAoiqIoiqIoiqIoiqIoiqIoxyDqAFAUwUce+no87lPP27TMh89+Ax573fMH2z909hsH286+9iW47pGXHZC+feKRl+Phf/Ei2CjBMfEb8KRNX+QEkIp5OyLFWZQzQH67bsAD5f9W8fs369PWDoFUbssmBpgYg30sxn9q0wrXAws3gMTHOP31/DhvijJAcgtQVtOlEnNncz2SWmm/mYvDxBi9Piro6znzftj/VMZ7M9hnF3zt60VOg3p8pSOgP/e94j9+jqr+Ip7+iDo/KfopSc2K7Rxi8GP8GPk7KKjxvBOuBKEUY1PG9ifiEMN80F7oI0sFG6dOole4iRwCoS9xR1Kz5XkSJ5hyp+RoKnmm+Bz7L+Mks0eIn8zI8djzteMojCkp+VvfuwGWQ1m7TnArDNMRaB4U7gk/jTH5nVD9N1zmG7DifLZ9/Oek+GPL8Ab9nMlpyMq+8fsxOwMougfqYqY/dnCfcGzOl44cYoCbOCb0pxOWs/shHU8cHBFsGBxdDceTkvD0976m/0XOfXKLND7nwiAK9ybPqVd7RnxnoRxd3PizLwcAnP67r8Gep6t740Bz/z++EMYYOGcwmQTHzBd/4kIAwRmQUgCAAD+zwJIDb9j+UTl1cY0jMDGQntuGgZajjLpanxnBRdBRfoYHJTf1+WcAeJiwpiQ3lHxspzVU1GtS3P+4TpZK/WptEz8Gu9M7g5GSefTOAOmEk85Uw2WdPir65XbZb9lmciOMORdH1qVCrSleCVIbRTVR6Y7qPYdln8beubbxbnv6VWVccNnVA5Ez4IwrrxzUGzb07S18Na3mQDJQ/cv3tvR77brw4V2g7stpbxaKaFlP6ltVz+63XoY9z3zJgk4rysEjxfe/9uFX4uF/8SJ8/BFX4BOPvDzv/+FP/Co6b2CI89+EhhnOG7j4d+gPf+JXAYTcAIqiKAcLdQAoiqIoiqIoiqIoiqIoiqIoyjEIMd8Zja2iHDpuueUWnHrqqQCAm2++GaeccspBbS85ANI39B94yJuL/SGOX1CGH4hY/0k1AATlwKJ9tRI9qWE9qNiXFOrMtFDdP0Z6EiyKqzcWJ3979dJATV8r4nPc/aje35/+9nUMy4y1YygoLiZN0N9JJ0Adl96NKtG5GJOsAwAckzgHwGzeG63yOWNC2zhY46ObYvN+j1HnGRj2c3zfZm6DrfJJyHZl2ym3QRbJCYdHUScP2xm6IZJrYKQvhVtAqMKFYt7PbS+4twxjfS5HJsw1C1MEe5lDQCj6pQo/qaHnUW0vnQKxjlQvWe5jp6c6q7wFSE3V5yf1Q0roYjn21Md8hnBRdJXicskBTDDfbHOcZj9h8LJDc2sDtjFWf+o+923k1AVRGUmeihwAkkIdSEKhKZWheZs4zpfuh76OuLEWkhP3ysCxaz3PWfo9bCOPvt+1ClO2b0L9e567OOb/7rddlpu66RePPXXh6e99TX8fAMCaDdd/40Et9+emM8CcgEnlmLIMOIKZOtzw06okP9I47d2XwG9YkAH2POOlh7s7xxXf+6EL8LnHXozv/uArAQD/63EhF8B3fuBCdC48lObrDfzc9m6u9HyambAU2BCPn+J9ZxoXHTdcriOF6p6yA4pdWE/I9jH2yTBgwrb8e01ai9OvnvLaJN8BC/ddVr6PdKzuZ8oj4Ku8RGJdzc/z2jDQhbVQ5paRKv1iHmS8+bE1ZMytsNkrmMwnMFJumK+gdDr0yQS43y8/D44fqbcq85UXbe4IOP31lZtAPsIXOADqrhf7t3L2beYcGLteMXQOLJy21Pf03gGE9V1ew+Jd5lhcs5Ujg0d+/JyYg80XfxtNrEPnzeBv+kd/8oUAkP/t4NGffCE8E1bnE7TGobUOgDoAxpD/FvT8jz4aJ3zr8mHu0fa5/V/W8MYf+QiAQ/PvWIqyFeoAUBRFURRFURRFURRFURRFUZRjEM0BoCgVOTZf/Pn4v/wVAL0TYJHq/3Gfeh7WXbPpN/ePue4Foe4YUz+oyMelMj/8iV+Fj/KmFDPQc6/S7Nhk1fp2xyUV2UX8euEmkGw3hv9WyvE6lv4iJ0Coa1y9nuL6y3q26xaQeCY01hX1mBiLfqyP8rM1vlD3p+nqz42oD0DnDYgYnbNgT1mNntT/Oa4uyuMWIc/fWH4CyWJnwF0zfaVvjYv5Mz5ci8Dwmhy5RuQ40jkcuAVGYEdZsZiOJWJ4L+qxHn7dhnKO+nuo6SVvWfUY3ReuMwADPioyqWGwM8DcgOYErPftwQ1Ve5Ti4mdlY7owgjSdYh6HcBx6Vf8gF4CU4/flsxJSuEWYo8KdAHQE7Oz6Y6Ly053Q5b7ShgE3PFTZpbjQUqlvwucU+5+TY8BR7qI0TCSXANugKs3j91EtOpZPIG1KF1Qaehc7mHMDCHGkUMfWToJMnEc2fVvkKChF03mQeQeYAAfs/s3LyxwIDOz5paAcTD+PVcgAAIOjm4QtgzoK2xngWbBlUOOBaVAj3/TzqiQ/Wkix/pVDz+ceezGAXvmf+IfHX4j7XSO2EcNEhX/OgdN60NwAGwa04vLzznemf3b5sOb19cSfzEjZiMK6HNfP9Gyem/B8jM9sTmtZdG2lNTznE+r6B/XgHSI9u0dU/H2B3JM4CPE+UOcDEO8G6T2GRRmpXh9VjMs1Lj3za2U9VT8XqNILRJ05T4BsS7waFNTzteB34riWyt1pja/qT0Pa9utcmvqxPg76W7Y32D6i3BfDKM5DXY7S+8PYtcK00Dkgc0DwIulicTDnLtzrt1+n65Vy0KjzrDXx98Z4POa6F+DDZ78h76tdAV181qc60t+Aj/z4OfBM+PgjRA4MRVGUA4Q6ABRFURRFURRFURRFURRFURTlGEQdAIpSkZT+P/nXzwGwWGn943/13OL3xgBL6Iptj/7kC9EIuVJWT4u4/VL1nRwCnTeDGPMy5n9iTM2d+kvEsNV+GbteqhZsVF8T94orj83dBbVaeys3wGaKdYO6n+NtSpV97QjYjnq+dlEAQGtcntPkBAAAiuU8UzGP1nh0zoT5qZpM9TiffpocH59M1owVfbUibqmc7zQn8nzXc7tZjP9aUd8r+uryvdJuO46OVMZW9Xvu60jbB/UIZVmOOZx+FI4AcR6kG4R66ZiPcYOpclKYxgNLADsD7vrYwr6zQWVpPUzT102GYRsP5t4lwBzU7J4ANABH9SM5Cq6AGF8+K+R9VLlbBqYe7GJ3WwwkemncDAKlGM5iflgq2xF+l64HqZxkQnAo7OifO0QMnhn4FZfrphnBrJvQP6m+a9KkRWV92mHiReERHlqubw+GYboRpd6YJDGNtRXjFNf7qFKyLceYNgMIath6B3FQSWYVZjwPtleMcuuHakagOJcA4Kfh/NPG5tqI3W+9LLob+m17fvnFC8uf9u5LjmgVds67EQdEcxPOUxcuFmrldUJod84OX2cV5Sjiuz/4ShjTv2/9/WNenfdN2piHyBPmTGBHMK3POWrYx5wArQ9K/+RiEyp/AGX8/qT0NshSeSYK61Vn8jOfXdzdmTKWfnx2cr02yfrlz9h+zqHkxw5KBUU/LZfPbKp+T8NL7wMy7j6hz7OzoI1eoR/XAfJlHbXiv2p7vG5ZVqxjwg0w0pVSIb/Ja2qeBtn16EYDEzjlxxFltjBNZm54wTk4/Y1XDNbWsVj+dez9evtW2xZRG0NLwf6InWFwbqoK67j/TPFa7q/dm37+pbjXb78Ou9/xOoAYe57+sq07qigLeOTHz8kK//C3dL9P/l1niAvlf6LOCXDtw6/MeQHk8Us2rA21g0AJ1LkPj3QW5VZUlMOFOgAURVEURVEURVEURVEURVEU5RhEHQDKcc/j//JX8jfv7//B38AT//rZAKpvx6h3BBQbKwxxzhkAAEs2qAQ80+Ab4KRGr5XrOR5/tS8pr5PgxRDnOsu4+Lz4mz1i2AW7kti3EE4JN8CgqpG+1Z8TtRJ8bFzD/lDhDFjkCkh1bRXbPuVAaFOsxUpOZCnEsa/dACT6zkxw3oAIsOBifiwxDBiOe9V/UsSnGtrG5b4GpXw81kiXSNkv+bsUbwXF3XBeFqn4F+WL6NX/wzr6YweHDUjXjvNVOyMSsTQjMjY+Fed6qABnppxrIPVpodvEMpgcPNviNrWth20crIiZzExBzC3KdXMTYh4zgLnJakM2DDIEbBiAAIox04kBn9T0c8rXDCMmJ7C9oyHdgEVegAIPFkFuyXI48daXcZMdAdMQkx2MvI+JgElQkdKsdy74Jd+rJuW8pQeK7EscF5oo02vyhR7UhyZW0UaFqQHQoVeejsSk5qodigL6sVwfxXwV91+VT0C4CnplZ5wvT31OA0+9WtBRf958dFAQ4CeVOtUDu99yOcDAnmdX6n4X6ss5Bhi419tfh5t+YUGc4aNA/EPE/R1IACY+/JSOk87ATB3+6UnnH4YeKos47T2XAABufMqR6zI5XmEmODd8zwOAJuUEal0uG/LQxOdKg+BiQ1A2+5yLo38+kuGcuyZBJsbpT4/cGLOePID0nGMAzvTPxHn/zOfGA0jOn/65ndYsub5zDkgfi2VX3MhDLyn6iweN7Dhy3phQvnqHGXuOFgrwkULJWWjC+pH7ZWM+nShFZ5fWhNoaIOqu+1rv3E5/R6peVEWh8ieZG+DOLSgsnBMk5nnUzZe2y3GPD3PTOrZFcnmQ/F38rB0AjGH9BHDjc6z/3W+7LPx8y+UgQ8FJIY7ZffWlwRHwc+fuR0eV452Uj6/eBmye224zJsbBEKPzpshBuFWeN0VRlDuLfgGgKIqiKIqiKIqiKIqiKMoRiQPBHUVBTNzRoAJSjiuIeTvaTkU5fNxyyy049dRTAQAP+4Nn4OM/9dt3uq7HXvd8TGxQW+Vv2oXEZeyb+/ob+PSt/FgMukXf1ktV/2akOtN/m5ZNMepHXAA5HutIDPjNYNEub9HnhXH6Fyx0Y2ptiqr5RUjFTq1ST4r+NFapwpD7NlPXF/2oVBw8co7lnDhvBg4AZsCxQRcVeS46AbwnGMNobHIA9GOySa0X+1fH6JfIOU/zzCPXSio3lqdh0XmQ/VrkStmqX1zlV0jH1v2RZXrhdq+SlK2TbL86fcwU4h9zmGMAYOG+8F3/gmgnDrbxQVlj+lj/fR/7PrnOwEW1ZYgvn+oOSkLMKajks+o/xJJnGxXqUvUeVXdZLR5jLJM473ksafx+OI+ho9TPgWVR3vTqvLkJCnfDvXpbHBP6JeY3ivzJo7SYEHI8XUrbRfvccK++TOrPpLynvp0wH1zOCeI8SmpHRKE8pPHnzYhaNMdZZsKYehG+jANNDMARuOXepZBcGvMq1wFx7yQg4WpIsaU5zgtC7OHd73ptbnfPU49speHpv/uarI5lZ7KrhCYu58Bolueq/j8COON9r8ZXnvyKw90NZZt89wdfmd1/MgdAzf3/+ELM5w1czHUSXGjhmcoefS6OaNfkLuaHkY/t6JIj4l6N72igyOd5cPP4mQ3rRXrQOfTr2lQ6uSr1fyxeOA6lGH87ylWpaPfIz3kSz1Xmuuxm9QWXAxsUytNKFAABAABJREFUjkOSseLrl4uqL+yoX++qNWhhH+rt1XGLXr0H5sj9+Gs85QVI3PCCc3D6G67Mn8c47c1XjLdBGHcriED9cpkdjGdMkT+2Le3KCn9RkVT9y/2pb1Vf6n4Ed2Z8F63dJya+V8t3IsO5fnUBKHeGx173/OxUrx3r664ZxPsHQsSBmbe5rFT6r7sm/w3UkM+5BlJewuMd+W9Bz/7oY3DCt6wc5h5tn9u/tor/9iMfBgDcfPPNOOWUUw5zj5TjnaPn6zNFURRFURRFURRFURRFURRFUbaNhgBSjireddZFeOx1z8+/exA+fPYbNj0mlf/Q2W/Eh85+40gs/8Awrl9SP5mR7SZ/6y/7kj9vEvNeMqas3ip+oIwz6BFFLaBCwZ5UWVL9XrQh48oXYwCsUHR5ptFvCT0TrOGyL1GtVavsU/1jjoS67CL1e1L/y7nJY6vmS46ZqOxj6o+l4byMngtwmWshbwdYxq9n5Hj+qd3Upovqf0MMa6pzS+U81A6Hum8y5n86JoU3l7gFroVibCJ3Qj3v0kWRxrsZ/TU0vHZTbgB5XXovrgcu56wWjqWcFkFgXY1B5AQoiGMy1mcVpLUe3hGc77NgeBdUfRxjIXNUXoKDmp1tcBck5WVWW1qUkrlpqJtmBnDo49QzwBMO21PxhoEl1yvekyBNXhvCkcIefYxnw706MtXPFFwKKd4/o1f6T+IVG1VvZLlU0nvq1XXonQshlj8DDceQzemi417RSH08/uQSYMM5nC8g52Go1GeHvk4gxLkG9xdbJTkcfSyaNEfCmZCUfuDiHCWHQ1aIAjAeYe4I5aVruD/UYahOTH3KeRf6ekg+cxn54N1XvxbAkesEMNbDi4nhLjicCMCep73ssPZNKVH1/9HF/3rcRfjeD12wZbnrn3Ah7nvNRXktdAbBiWaSml88T5mzSyeTXGbEYG9AJrpdG4Z3YZ3Lz6eWwXMLmhtguQPW47rYhOejWTfguQEvRdeiRXAd1IHhbXqHCHkGZN6Bzci5A8IvSIt8cRhxXBf6oefjPTB47SAG22HZnPtGvl0k91hVloxY74p3Cy6V+nXb0iFQ7OM+5xFjVGnP40OUTY8fIybr9DdegRte8CKc/sYrwufnv2hwzI2/8iLs/s3L+wqoX7e3Iq+rnoZjGHUPiI/1dFYukuJn3ZWUU4r6fha5EcQv7Dk7F3PbMvcQi30U36UWTrqijPOY614AoH9V7TjE7u/i+1NDPkcaqI/78NlvxmOuewFm8e+QxnhMKJRdsl1RfixHoKIoyoFAvwBQFEVRFEVRFEVRFEVRFOWIZCz07ZHMtkLiKcohRL8AUI4qfvFvX4Hpv9uVf+/81lGs5DfxT/zrZ2877pVnA0M+OwGSOtKLANpF3HlwVjqX9Sz+Fj8p5xftq+tZxFZ5DIAyVqtU4xcqfJJqc47q7WEfk0vAirYMghJ8s6wiY8r70NbiYxaNY5HCTM6pIS7aZCa0xi1Uw8tY8DK2Y81gPpIS3UdhmRiQNSHmvBxjkbtgQdz/PhdBqfyX+QNqx0HfZjpeOCZEm3X5um4jrhVZf+3gYDHPnod9kXHt5X0XBIzDuolqjX9QxjNznoPa0VA7S4z1cDFmOXuCj7H8eeLC9T3v1fg5Xv6yAxyB2nitOALaoHBnoLd+UFTNWQZ31KsvZwZmFpXxnnpleoxFzCQV8AB3BHY25AFoQuXUcHQuhDnwYgwAYBrfK/4B+A2bFWzsCLSc1EPREdD4Uk2ZYzxTfw0l9X2+vqp7yod+FfH6PfpcCOn4LqrzuFITclTecz9XKWdDPgdSNUniwATJwrJM1d0xFSP140NnQPOo0k/ns3IEpNjXKXcD52Njo1ZIOD2B07nrDLhhkAf2PF2o5dP1QcCepx2Zyv8EEfJ5ZgZgANqfoNRHGPf/4wtx/RMuPNzdUBQAwOceezEA4KyPvByffvQlC8stT+eYd2HNMoZhrM/5bHKODlDMz+HDs148+1JeHNO44n62rQNbhu/Es9QyMOkdAUB8tnuCX/KgDQO7N/yZ6Kce3EZHXbBAhvIOYEoq7V5xvdU/eMhnS3YOFGsAsoJ+QHIPpPcW+dxKh6T25Xoj6ya5DgkluA1uNGaUdoT06JfOBXH4YJ2qnAyp34ULoKif5I8SwrgDLrUVjzvtTVfgxhHlf12XPDDnKSrWUvF73fDg9/gzrqW5dpGboljj49oS2hlbs8vPbILzgoVaP72vhJ9ijRdtUVVPHpfcJq5XRdkOIaJA/zcigCJuf2IsMkHa1pBHFy/GzpvsNFcURTlUaA4ARVEURVEURVEURVEURVEURTkGUQfAUcQnPvEJPPzhD9/v477whS/gfve737bKXnfddfid3/kd/PVf/zX++Z//GdZanHLKKXj4wx+On//5n8f3fd/37Xf7BxqpNv7Q2W/ctOxP/vVz0MRv1p/418/etM5EqtsH+UlfplLZe6aBOnyrmP5SaT42npoxN0Fd97imfhxDLOJvDvtiwTBS3RD7Zit1wpi6K+UPkNa8sZwAklpxnuuq6k/x/4nGlRJGxNH3IDTkByr3xvjCGVCf86HLYRhfPp2rnH9BtkEMIoLzJgYX79VI1vAg50ESB3sQzGa2CVGPhAgwzNmpkOtFORZTqAOHboNRxRSqa3TQdunC6NX8ZV/rc+CiY4eybK4sy/m66dt2bhOrp1DEp5/dhg2qSCagi3H8Abi1sNyRiBdPSy6sgj6o/7PafuLAnmAmDLdu83aaGcByiK3PYu4QFG8MwMwpuAoA2A7w3oCtiJfPAHkT+tf6Xuk/8SDj+7i0WSUYXA31vJCJSkww7Mq8nxJPhSKz3w7AmcF5poaz0p9lzH4Tr5XKRZBiL3NS9gO9ks/U11eMpS+viXQccc6xkPqXj5UNU5q0+sIVddaxfFN857m4cq0YX/rB0Z3BADcs6ksq+CjXTPviNYUm9D07IyY+PACJsPt3LgUgnAAyNvQRzJefeD7O+L3XAECcJwa1jBuf8vLD27E7yf6q/9UxoBwKNlP/A71TAAC++4OvxAYadLMGzASO6yfPTHi+OQqKfLk+pve6uc3PZdsGByITh1j+AEBhrfFsIeOmkwn7MLPAxMPb/KIS1r8VV7RDhmPfKLqm0rtA9UyWjD0P83N+ZHtyCAhVOiU1viyalOGmbITTPMn3jiwZR9UmBxfA2Is1U1ac53UrZSmox1SvnXV3t63+537fSIG666e96Qrc+LzSBXDam6/Ajb/youEBXP2U+9M7iCyTtom1n2SOnFTUiDpqhb3MB5SO4/HtOeb/iFSRzMh1T/3lIi6W4cG5LxieN0VZQIj9T+XfkfEC2urfIoDgHshuAZMiC1Dx92j9bwOKoigHA/0CQAEA3HHHHXjOc56Dd7/73YN9t912G/7hH/4Bv/Ebv4FzzjkHl1xyCdq2PQy9VBRFURRFURRFURRFUY4nPAz8URTE5Gjqq3J8oF8AHKUsLS3hoQ996LbK7ty5c9P9Xdfh8Y9/PD7+8Y/nbSeccAK+8zu/E7PZDNdffz3W1tbAzLjiiivwr//6r3jnO995l/qvKIqiKIqiKIqiKIqiKIqiHFz0C4CjlG/5lm/Bn/3Znx2Qul7xilcU//h/wQUX4Nxzz8XKygoA4Bvf+AbOPfdc/NZv/RYA4Oqrr8ZZZ52FZz97cUidg4lnwgce8uZtld0sOa608cmwPymxsAwZ03lTWPOWmm4Q2kaGkal/btZ+anesnrG+1tvHbIKLym+HnLSVY3iaaHMswh2N2RXzWOTnPuzJIlJon1Cu7LcMITO2LW2X/QtJdTlbLCXpnI6FUsrXgQwNhBgWSYzXUuhnfc7yHBgPxGvIWFf1C6PzIcvULNonkwDLvnC8JsYS96ZiWyWeDsmQ4yE0vJ7q0Eg5YXRsQ4aAkmWs6UPZuCp0j6zTM+VEvnlcMXwL2T4ci9uw2fqd2RdD/cwpJDNM4VtiyBxufE72O1mZw3tC04TrIof6IYZzBkSMdoeHT8kXl0JSYXYEmptgf499QRuSJrJhcAyzwBMPs2rBLcNPXS5LMSGxzD0IT2AYmLYrwjZ5Z+DmMWSQI1Ab6skhi5hyGKF8AsAhXESq3Kfxc2+3Rwz/w8g3bE6I5znPBbhK7C3nOpenIgxQim+VwjGwF3b9FP6HquMQwhflPhThElJlVWggmXRRQiHcT76VPYUQP0suzH+8ljyFEAYU5yCFiyLiIkJETmDs0If/aXz/oHOEm37hpdj9jteVSYAN5ySdu69+LQBgz1OP3GTAXoRIshOHrzz5FYe3Q4cQDf+jHGkYw2ishzMexAYc87wTA5j6EApobvpEvlW4lvwO4IMCkUz/zErPWtM6eNevH2Q9/MyGBMMMYKOP50IdgdcssOJCXYjtxIUsJSAGYtidOjRbbkT0E+KdjlCW5/hekEIDkaiA40TIED7y9c1XDVP5k0wM8chyZ+oUA4bKdSW2l0IPiVUrLGleNp6qqetY9CIs1scirKSoCyjD6YgQRPmwWL4I+QMUn0chlHEeB2GRRvqSrq2m2p7Kxv/q8D00iwVEm2w5huOrynoKSYBpwdTRMKRlDmVVhTodHGoYN/z0eTj9d18zul9RxmjI53vhgz/0pv06NoUJevxf/gqaGLzXGC7+DSKR/tbSMECKohwM1JNynHPzzTfjDW94Q/79ggsuwEUXXZT/8R8A7n73u+Ntb3sbfvZnfzZv+/Vf/3Wsrq4e0r4qiqIoiqIoiqIoiqIoxxcuisiOpv8U5UhCHQDHOW94wxuwsbEBAPj2b/92nH/++ZuWveaaa7C6uoqvfe1reMc73oHnPve5h6qrGUOMx33qeQDGv4H/8b96bviWXpRfVA8AzLzFzNn8eWJcUS59M58U5YYYnTeFQ0A6BTo2hZJaHp9U3EUC2hGJVE4yLOrfLFnworGNsR31d94mHRS14wFUjaNXn6fFru5zrdaRSnUAWSHelx+OY+H5FP2T52rs+EVzuZXaIs8ReofEWBkWirb0caDK90N1f0roK+fJggs1vqnqTk6AXAeV9aU2UwLeQQJk4dKQLynMIaFxY13uT3IG1Mmbx5Ilp7o5qviYqTrXDOcpH5sU+MwAewPf9c4AnpugVgeApII0UaG43gQBXVJBNgyaU1CeEQNWtHniDLbp72/XWbiZwbwzIklgUEGyJ5gmJE9MymgyDLvk4DsCtx5IyvuNkOgXlmFmBn459mXJwzvq+waEBMHOALN4bFL1uaCKc2sWnWWRlDE4F0AMs+R6ZT7i/UGck0PGMweAggIzqx45tAmE+fCizXAhx770P/Opol6dSC4oGntVX6+yI0J2GEi1XkoWnFT3MDH5b1T/944OCJVneR+SiQl8xfUTkgCyuPbENVjfxnE+g5KQQyJfAGYezpuf+vJwH5NGRpUsi3pD8l8Gd6ZP7Gw5qP+f8dKi2T1PPRe7r74UPKfhw+8IxDS9Ku3LT1z8LqAoysHnc4+9GA/40/PBDHSdTUsfPDHsxKGbG6D1wHq0nE0deB7XliUHju+1NO3CM1mswcYy2taBW2C21gZHExDU/2lNmBtgKS4OqzasY0zAPgveIdantG4mRX61fcCC16yUULjfUNaZD0+q/UVKdUa/7nNcNljsl+35EXm5dJxl9T36pLGUU/9G5wOKhPah3dCRou3aEZD64rFQqZ7bFua3gjTMwjHH2P3fLh+2U1M7LlJ9ZqSTi/rn+3nIdaXEwGMq/DabAPs+J0dg2hG3szi/xfUk3xHEtZccKGTKvt7w0+eNdv3ev/8q3PDTus4p2+PDZ79h60LbQP7t+YGHvBk//lf9v6PIv81U/a8oysFCHQDHOe9///vz55//+Z/HZDJZWPbkk0/GT/3UT40eqyiKoiiKoiiKoiiKoiiKohxZqAPgOOaLX/wibrjhhvz7j/7oj255zGMe8xhcffXVAIBPfvKT2Lt375ZJhg8kv/XAV+OUU04ptv34Xz23+Ka82SLWflbkR5dAQx7ehNj/E+MwsS4fl/8D5TjgDXkYYsyc7ZX/HHIEbLgGlkoV+3rXwnmDSdOhje6ClEPARHVTjuW+icLfeVMo5Ou47GMK/prtOgjSmFrjBuruRRji7AIoYvcDowokqvqdtsn20uc07rEY+XWse4oOjaWmG5SV4x/LEVCXSb+P5YsgYtjk6EDMCRD3p/4m1X1S6VuRx4CIYLhXygOArdT5/SCH/Upx9z1CPaNuBJkbYQsnTJlHoHdzMPfSs3Ruc0z8rL4a1pfnK7oQWKi1k5OAZSxd4XKA8eAYXJY3UkB9LpV9AKgJcXxZnEqyHGIir1lgFuIWA4BfdnDrFm5jEtT7sU2aeJiJK9SH7IIC3M9tqGfZxe1BSc8eIINeKbfsgLlQhMf6adUGFbnlnMOAWx/UlpZ7BX4avwG4690GaYyFyjLFWPYE9jGus1RJJpWhVOJTdANQaLOYL4pzOlAn9tLCHA8/qfzz/MfPvr42+8+c6qovv6T+T8daj97WgqKCrMhnFOq+oMPkwTOKu2BhSDH9k3qSOcQVRsoBsOQBB1ByY0xjjgrLIfZ1dG5kl4LhULYz4fxntSuKOS07EyYuXYe7r37tEZkH4L7XXISvPPmVh7sbiqJEHvCn58Mz5fwU9//j8NNNDQiAnxrY1mGenqHpuddweD6hf375zqCZuPy+RPCYbTRopx127lrHvr3TUIcJ7gK30QR3wWpcf5ddeFZ3CDlV5vGZOfFoJuFdi73Jz0ES8rK8DlUqfPnOJhk4P+vy4DJ0f722FGp4oVCX7zLxvcRYH3IgiDooOdk8ysWsUtmntik6Hcf2J+dF2CTWSymBT27Feg2WbQplfD6udg6MKfq3gkX7qZKkxAcqNwDyejboY8ovBIR/WcjOAC7OE6f3F3F95PcLH98JUv1NfJFJTpC62WobJfesmJNFeWzO+L3XAES49++/Cv/0JHUBKIeG8O8VvXv+8X/5KzDpMSCu2/f/4G/gx//quXj/D/7G4eimoijHOPoFwHHM5z//+fx5Op3iAQ94wJbHPPjBD86fu67D9ddfjwc96EEHpX+KoiiKoiiKoiiKoijK8Y0U5h0NHE19VY4P9AuAo5Rbb70VT3rSk/CZz3wGX/va19A0De5xj3vge77ne/CoRz0KT33qU3HCCSdsWscXvvCF/PnUU09F27ZbtnvqqadiMplgNpsBCC6Cw/kFwBP/+tkwUT5Sx9f3TOiEzCQtGDNvg9o/Kv0b8phYh8Z4dL6P3995k8sv2S4rpGfe5jrnMcbq3Fu0xmFHOyv60nGfK8AzYR6P5TlhmlwA8T8AWeld5x1I/d8OtRNgu8fVjoLkVqjVWEmFNabGT3E/aUTFXxTbRI2+SEi7mfpffjbEmFhXqN9l/WN5GIDh+FOOg8JBUs2pVLDJnACpL411cN6AR15WDAllU719BIs+F4TsQ3IbpL44T5Wav+zzZuOW45L9YrHd+WHkOEMMa31R3xipzsIhEU+4I4rOCIbrDEyqz8b2knhvLd5DALhhmIkDrzegeZz7OYGXPOABcgSOKnWzZsFTD5oRUvQ7e9IGbIx9TMS92C46H7wnuKmBj2pH7kJ8ZTOnoGRL5oTGgzzAk+B0yPHuAfCSAxzBTKKLwFMYGwE+B/cFyAalP01CzoGkdDfW9/eQUOZxjMefYzan0yIVeun6NBxj8ZtCHUcxb0HeX5wslCo+AJQefbUar1YJijwVcKWqMSkAKZ1P6ehI13JSIabfUv6MWuHI8vki6pmE85/zJSTlfyoW26QZ9cLLtlcwUswNQGkMuT0K22MOjzTnbMu8HTXUeCDfN0fWHwL3+YNX4ctPPB//+BOq/leUI4nP/tir8N0ffGVW/qdnXRPXxpWdG5h3FnY5KPD9hg0usnlYTzjmqHFrDajxmMd8OUDvappvNMHt1/QLQNM6dPvaUGYp5syZGWDqEBoon6fexfWaGM2kzyPCCM/g7BhM7xGeBm6ukJ8lqLj7jeV8pH1JvZ/j32/6TB1I82N7Ii8PjbjI6nUlrVe5mHQWVD3I403FYr9TIRMWHRrkHqjcb8W+kTHVr2LV2lj0e7QeWV5K6asxj9WTMMK5IF9TiMEmOFFYXnMpj5R8Z0F4B6H6fZiEAWOLeOjyuM0U/ff+/Velji90ByjKwUDG+k9/J33gIW9eWF7V/4qiHCz0C4CjlNtuuw1/8Ad/UGzbu3cv9uzZgw984AM4//zzcfHFF+N5z3vewjpuuumm/Pnbv/3bt9WuMQbf9m3fhhtvvBEAsGfPnv3u+y233LJf5b/61a/udxuKoiiKoiiKoiiKoiiKoijHO/oFwFHM7t278W3f9m2YTqf4+te/juuvvx5dF5RAt912G57//Ofjc5/7HN7+9rePHn/HHXfkzyeeeOK225XOAlnHdjn11FP3+5jNqJXhWaUNKtT0KZa/IcaS7Qol9HrXYKnpgtJfqO87b7Azqvpz/VHmst41WcnsEeK+Z/WzENNIB0DCscHe2RQT2wW1ehU3vf68SM0v99dK7jtjOasV78BQDb5IvQ+giImf8EIaO6bir1X6KTfDWEz7Re0XOSCEa6Jur86XkOi8ycfleUTvBJBjkbkhIOY/uQDqeP3J1TCI77/FnI45AaSzIsT/H56fRK38L+oR5e2I+s2kOK1JYVePZ6RO50yR/yC1k5R9dW6Hus/WeBgT8gs4IMcQNtMOZIIq3s9trzz0YT543cB2FJX9gJ8G5RlawMPn2Ou80wHWh7MaY713+1o0J61ncVvqkfe968AYjrFoAbYO3gC+JdBG714waxbcxNjLQkmJCYqY/QBgWg92BGaCnfisvPfOgLsQ655EPF0iwBgfHQnIuQTIMkzj4F2Ix5xyB4TGokIzKRER3RCWSyVfjKvPnop4uuwpqO9iX/sd3Cv9SEj+FsUv9iF/AAN9PH6gz2mQ6+nj+RJxUO+LsYSmKV9PfUVRRSgdBim+sqFeTcoEGA7Xs6fesWAY3vbjzorUZJSQY4T4Pda/lSox9Z+9yKMwP7IcAF9+osY/VpQjlf/1uIvwwA+fh30bk+y+m80M2tbhi9G1kxwCXWsxW53ArnTw6w0ouc46AxDAzsA0LtfNjtAud5ivN2AX6iYT3ngoxl9PeV68J5AzQOPBzuZnKHkKz7cGsI0r3kkJ4Zma3Wzx3YE9Fe8D3kvHF4bKf+rfRYDSOcC+f84XOQUKNbx4x8lLWZ8/JqzN4v3E1c/8ql+c/xc21o/0uH4HlxuVAvycz4f79Tm9MjDl5WVL6rVpsH/k85gTYKwxqeQfq5P6vqc1vMgPxAjuyLiGynwQiE5Lsh43/uzLF/f/IHDv338V2PfXuaIcCpLyXxX9iqIcKegXAEcRxhg86lGPwjOe8Qz86I/+KE4++eRi/969e/Hud78bF1xwAb7+9a8DAH77t38bZ555Jl72spcN6tu3b1/+vLS0tO1+LC8vj9ahKIqiKIqiKIqiKIqiKAcSZgPPdQy0Ixc+ivqqHB/oFwBHEWeffTY+9rGPLdy/c+dOPOtZz8JjH/tYnH322Tk8z0UXXYSnP/3p+JZv+Zai/Hw+z5+bZvuXgiybcgHsDzfffPN+lf/qV7+a8wz88t+9HDtv3iFi+9PCmO4GHBTFUsEtVEadiGU+sS7EVzce626Sy9YKfCAo1Ds2WGq6XMdyM8/l6uM8B7VTxyar2y157JjOMHMWngkbXZjTjk2OGU/EaGOeAhnPXirTLfkQ116osrsUc17MDTAe51RCC5TdVCnX5fgWIbU1diALLrHo++XR97vue2KsbSP6uFmc/0XHpnwQsszYXKTzkJwAiewKQBBByTwCIlR4QT2vqf56vIBUzJuiXRmbvy7vU6xVsSu1t8jVIfsZXA2V8i7F8E8x8kdcBrLuOi76wGmQFNwI7XTOxBj5jGYSni2ds+HadAZzR30nZzEWsSOwAXgpjs0wzJoNyuuGQz4AALCM5V0bmE0b+P+3lPu30UxAloNKMivYKMfkBwAfYykb62EnDtwCWAJ8F/MReADzeLxh2BgHGRSfQc70bgof4vsbwwAxbBvnvvHoNhoYy7CNg4uKTO8MKLojAMpqOu9ibOXOAB31sfQ59B/CEUCegOhOoMaXisBa/V5R5Acgyoq/8Dwpzi5y0PwsjozXgRHOhRz7l4UaEqXS33J+iOQ4/qmYcEYE8WWoo1B4CnFmqjsf1/hcJxNyHoS8IZHnQyg1O5MdJYO8B5vhKec+AAG7r74Ue546/FJeURSl5m8f8xoAwPd+6AIAwOr6BPNZgzP/6GJ86ScvwPVPuDCX/Y73/3rIf2U4r1vtyjysQeSK5yk7A2s85kB2BjATNtZa2GkH3xnYVrgIDMM00ekqnvHGcs6hk9yDKb49c6/ud97AzS3Yo4wNH9dCYxa/owo/V78tqc7zo3X8/aZYE8Q6U7Y1qD1sk0J/oXAf5AjgdAzKNW3gWgOKGPtpINyPpa+6nIvB6+u2rAJV2wvgSqWf8g2VUyR+SbmT4nkce39Ia3Tfbu+g2x/1/5l/eHFxTr/0Uxds+1iJd6bI+XTmH14MMqz5b5SDyv4o/9UtoCjKoUC/ADgGOfXUU/F7v/d7OOusswAAq6urePvb347zzjuvKLeyspI/r6+vb7t+WXbHjh373b9TTjllv49RFEVRFEVRFEVRFEVRFEVR9g/9AuAY5Qd+4AfwsIc9DJ/4xCcAAB/72McGXwDs3Lkzf15bW9t23aurq6N1HAqSgjkp6bdTPivmmXI8fkM8Gmves8HE9GrwmbeFUyDXi6DeTmonD8Idsymmtitj0BNjFhXMU9Pva8jDgzCxDuvd8DZ0nrA+n2DHNKigrfHBEWAc5j6ojmcxB4GJ27OKm4KaKsWLL9T78adUPm0W07+fl1LhPWeD1ixWzS9S2i+qO/VLugHGYFFWqv5l/dI5MPM2n8/tuAG2sz/nWBjJDZDHk2LRMsFSyPngheKM4vW3aO4Hbcc2TVZZh3OZ8k5INX5xGJV1SRdIES9X7AeQYw2n2P3ynLgYz9z7cjy5btOL9OedgZH7BEnRlcq6GIvXe4IxjM6F67yNysQOIX5+Up5hCvi9LbgBzLxXGZoZwU84xJxf8lklxx3BuRA72X1r+bxr265wOxCFnAbzuQ0qyqheZ0PwczFvWVVIwCReEZ7gZrY/byaM37Yx78DMRjWhD+1ElSZRcBh4RwBsjlFrrHjWMcF34vwxBXW+FSpDRyEcf8uFAh+N72MjC+Xl2P0WVP9iu1DwEfFwfyqT8mKQ2OhDe318faF+lE1UCsJ8XZr+95SbAHEI6bpKfUo7mGO7WWEZFI1pjlJc676mWNdI++yr/ArU/0yqfrKMPU9brOin1m+6X1EUZSs+99iL8+fv+e8XYDZv8N0ffGV+hi+1c3zhx4Nb4Ps//ArMo0MNAPatTsOzLL3PRsV52zisecrPRGN9Xr+IeheBnbrwPuAJk5UZZvsmuW7fEYwleEbOJQCUwvvUphVOg7y5chmyeOeuXYw1JNaRfv2u3p8q9f9g+2j9/bqQysjPqJYQlhsZm3c6dz7+ML3sv+xi9dsCZ0Cubj8NAWPHslzHY+6coj8knBdxDJTW2pwXQLwDiM/GetzwM+XfoYkzfu812elYK/zT72f+0cXFzy/95PadAGf+0cVoJnJd7+fwvtdcNHoJfFGdAcohJin/n/w3zwIAGPL43bPeeji7dETiQHCbWZqOMI6mvirHBxqU6hjmYQ97WP78pS99abD/7ne/e/781a9+ddv1/su//MtoHYqiKIqiKIqiKIqiKIqiKMqRgzoAjmH+/b//9/lzSgosue9975s//5//83+2Vee+ffvwb//2b6N1HAq6qKTu4717eDZojKtishuYyiXg2cZjOO7rlVCNcTDE2Duf5vJNVNcnB4CMMZ+U/LLNHW2I6b9vPsk5Afr2GEvCHZBU5OuuwcS63EbngmK6sR7LNIcVboImxvvf0QZXQHIDMBPWuzYrW1rr0BpXOBEGbCIVGlPxeyY4ESTUgFHHwE/zVc+LnLe6nTp/QY6jv6DsohFN4vkbbKfepSDbq9nMnbCVEwAQuQFAw/EwwZCD8wbzeA025Itzu1k/5PlIOQYAZHG1JYbzplfdx3vEGl/lUQg/eSCDGxucL3JRJLWei6p/rqqgHOc2xIV3afzeBOU+cVbyAzHWfxpXUlETsLw0y66FLioJN+YNmCko5WXsXQZopQM7A7/PIp/qqEjjCYc8ActhBzGwcdsUIGDppBDGbOOOKSY7ZrBRCel8ed22jcO8s+ja0Bc3t0EV5wEm6hX2Ud2fFepJBdkE1TqD4OO2pFTn6HhIp8N1Bnbi8nPL2F6plpwYQU0X+zgPeQXIE9D6MFYg9M8yaCKvLx6o/1MfyMRzJ6499iEOf47bn50EXMT8TftlO4Wc0kUFoSdRPwV3A6X6pPRQqEGTatBwVp7mJvpR9epL6Wrwsd0kSMwOgKRg7M9Bvr6lSyH9iOp/6lLiBfTOBU9h7gFg0mGM3e96LcAGJK59RVGUu8rn/0tQQT/gT8/H+iz8Kbd3fYqzPvJyfPrRl+DvH/NqPPDDQW19696Vfm2SanhHmM0b2ImDjU4z11ms7FrHxkYbysVHXDPp0M0akGV4TyGXDPq65msN7NTlGOsmOqq8MyFXDYCm7Z+DMqK/VGN7uVYI15aE8jtD6RYI21C+33JsKeWU4eE6kuraLgMHbZrXYu3q15WqJQAh50/hvotrPCX3Wuq7cCX2a2OxCPYfk3pflMm5Fljsq3vEYpes24y3E3Lm9O43mPSeEt8X0oTEnBG16v/MP7wYzpn8/hCOIxAbMDPu8wevAgB8+YnnF8ftj+K/bi91KeVWMvH9IL0DZNcuBS/H/lwPirK/PPGvnw0gPCff9+C35O1J+Q+kvx/t4FhFUZS7ijoAjmFkqB4Z7z/xHd/xHfnzv/7rv27LBfC5z31uYR2KoiiKoiiKoiiKoiiKoijKkYM6AI5hrr/++vz5nve852D/gx70IEwmE8xmQVH+qU99Ck960pM2rfNTn/pU/nzKKafg9NNPP0C93R5JBS/JitkiHnyp/K4/y2/V112DncZh5hp03mTl/HrXhDj9plRvLlKEL9kuxvbvsqJ/7iw8CLvajUIhb8Do2GClmcMzYRbjnTfGY+YsVqKDoMxPQMX4l2xoZ901WJ1PsmLaeQNnDVbaWc55kPo9Fie+nqNasd/v2zzvwljdi+L0S4W83D/mrKjrS/tkPofNVPqJ1a7N81rvW4TMIZFIKv9iW1T65/j/1B+f+uu8wcR2o+Nc5JIYQ+ZLMNF1wMSYCyWcNR52ZF6k8nlsjqWy31BUdnF/nDUAkRfq/f6a8N6UcXIRYqR7DrH3Z/MmqwzH2rRRiZ7zfMSyjZ2Fe2Rui+2dM1hfnYCsC7GH5zFvwZxgOgI8hXwAiPGM5wQ0DFjOavyVE9dAFGInOza5bmZC54L6zhgPG1dK9gYuPg64I5BFLs+dUFhmlaEBzaMLISkQEdRypvFRAR/KWuty7F1jOeYCiHMb1XJJsR/6glB3OBNAGyeyQ5T0ASTnm5AdB1JBWSgmkwouxSS21fXIod00Znk99beJkBNScAmQ4VxXjtdfXX4pJ4J3ZsRhEuuqD2LRjyzej+4F3/ePLGfFaZnrIc4TMbw3hSo11U8EcdMFNwNbDlNsN79v9/zcudj9rtfixp99+eh+RVGUu8Jnf+xVxe9nfaR/1tj4nLc25H+ZrbZZuc+eYFsPaz28JzTRpWRiXhhjGEYo9hvr0RELx15cpycOrrNw89LRRiYqqa2HTSlxqD+2i7mxUtn0rmQI+QGd3IYp301at0x20YV1o1Seo49hD2R5e8p3k99PUr2bIXcnp1naJZ/5FB0NUtDPBAIP3GlkfZ+LRrogOP7OgE+5G5xYi0nk+UljxJjBoHaxVftrVX96LyhyHYh6JDk3APrcPIbzO0VaD9mFd6E65v99/uBVweHBtswNYDiv/0CV9+gAQKZ/58tO2OT6ozIPEoPyNXO/ay7K8/uPmg9AOQA8+W+eVfzd65nw5L95Fkz8275JZlMmqEZ3MZ4X/zvBkYhXQ5FyhKFPl2OUtbU1/Mmf/En+/T//5/88KLNr1y48/OEPz7+/5z3v2bLe9773vfnz4x73uLvYS0VRFEVRFEVRFEVRFEVRFOVgoQ6AY5QLLrgAX/va1/LvT3jCE0bLPf3pT8dHPvIRAMCHPvQh/M//+T/xfd/3faNl/+RP/gT/+3//7/z70572tAPX4W3Sq/2Hqv8xOt8r/T0IBkFpNPMW6y5c/k2sa7VrQ46BGI/UgNGQH+QAGHMUpDpTfalsG+P7r3YtZt5iZ4zfDwoK/jSO1AfpCvBCVTuxbqDgHyjfY8jW29eXMHcWe3mKpWae1eZj7ok8LyPugG3Fvq/yBAzdGYvcBChyFNSOgLq8/H1iXTH+dE63cgGcMNnotwndVHJZ1Ep/ebzMJ+FFLoQ8HurnJZ87MR4PwrTpRp0DxTzFXAJ1+zNni/wR+VhiwBtIj4olDvH/hdoOqOKdx+Mkzvd5HuR5Csp8L8qF/BqF0p8J1oQY+lKlFnJ0EBrr4L3p3Rs2qPacjBtL46qvNIc7prNi+7QBliZddgekmMVuZuH3NUFJ1zBoFut3lIXp872T0L8TPZYmQf3vmdDGPpBh0GSO1fVJyIWQYhQTwzQuKPQ8gPWk1CMYHxXhBlntzoyguJOnPc5/VsaLeSTjgxqOGKYI/enBhuA706smWx9yDHQUPud49FGnKOIjk+nHFeY6KS9RKv2q69M2QR2aFJc+x+EPMvphXP74zPIptq+Iq5/HyLndPndEGd+Ykiox1RFCBA8V+gaAA9iZPMakRqSGB21nh0Oh1AzXr7FlTGZ2JsYIBhDzKZBlYG7CPE08bnrqudgKO9H4/4qiHDxSrP/V2QTMU3zPf78AK5N5dgDsWl7HbavLMd9LfNdoGZPpHNO2C2tgfh9wmM0tJpOuf/YiPPtt4+FdWOMprnGus2gnHXzXws8tZjFfynTHLLw7ifc8+ay31ftffn8sFNmc47PnHAZh86A+uSO7BlK7SUXPYi2mvp46dU16T5LvONntt0CcXpSXdaOfK9MM35vquQFTdl5wdAcGZ4VctNDH+BfHFdRmuXotjir3/I4i+zH2Lm1Sw1yMz8fcTOWgCcY63PAz5+Hev/8qkXehf+ckYpimfx/50k/dufj+i7jvNReFJj3Bi3xWYzklatI78j/+xCtzPYpyIHjfg9+SFf8AYJLrRfwNCCD+TanvjoqiHBzUAXCU8NGPfhQvetGLcMstt2xabj6f49xzz8UVV1yRtz3gAQ/Af/2v/3W0/JOe9CR813d9FwDAOYenPOUpo7kAvvCFL+CXf/mX8++Pfexj8QM/8AN3ZiiKoiiKoiiKoiiKoiiKoijKIUAdAEcJq6uruPLKK/H6178eP/iDP4iHPvSh+K7v+i7c4x73wGQywde//nV85jOfwXve8x7cfPPN+biTTz4Z733ve0ELZA/GGLztbW/Dwx72MGxsbOALX/gCvu/7vg/Pe97z8MAHPhDz+RzXXXcd3vKWt+D2228HANz97nfHG97whkMy7hpLjMa40bjsic7bQrHdRdVJUMCH7RNTqa7ZYGIdlqgr1NtJve/YZIWUNR7OmyJ25KyzsIbhfIjJnlTqzhs4JrTGY6mZYxZlvSvNvOhjwhBjYrr8OY+PCZ5NMc6kLPeGsIQO++ZB1TxtO6zOJnBZTT/P89CQH8afj/kIFuUIGFPX1+UWxfJfdIxU7gN9XPdB+aQ+QzgXEzs899kJINqXZbZyiaSy4w4GPzgPTcwJEc6JrcoPHQ/pv9qBUeQKSH2oZVuRiXWD/mXHQVT8l6p9P8xfQP1PjzJ+u/MmqAV9Og8pXipnR0EqO5ZboJ+boDSTroqJ7efCpbi1TJh3NrQdY7OGuMMeTYxXzKIsGw+ylF0DQMg5QFFFfsLyBmhlHUC452YnW6yuTTBbbcH7wjJHjmDmBN8wMA91rN+6BDoJmLQd1mctTlxZC3UwoXMGk7bLbaUxzDsL33h0601WqdsNA7YM0xGE6QjUUZhKT30MfOtjfP5KGZ+uGU+gQhnIQr02nHczdSHGbYobnJT1tlQ7JvWf70y+FpgR4iPna6NX5CW1qBX9NCk+qUfvOECM/+sJ8DE3QtpnOasLTSPcFVGJRyIOMAEAhza8l7kOghqPggWgV3sysouCvajH8MDp0He0d0X021DkEMhtIowFIj4yOwJNPYiBPdtQ/5/+u6/pz4uiKMpB4G8f8xoAwPf89wuwPmuBDjDTGf7qhy8FADzoz84L7wMN5+dnO+my28wSw6T3GhAmba+iT+uwYyPi5ve5ANp2jvW1SXiuCpW56wwoKt5rx1X/Oa6fMf67IY4uwkrd7gvxeH5/6WP/l+85VDXko9OQSDzm5dJA1VoxuibIfeU48rg5lQ0NmZhjoaZ3PfaOhb7tPtNAcgD4uXAhij6iOq5spBpfvT0q/Un+XtcvDxDrq9yc8jMEV0I8n0sdvvLkV+DMP7wYzEbkbAjnzNZuOyac+UcXo4l/N13/hAtxV8mvNKZ0F0hnQNp+32suyjH+z/yji0FC/Z+23++ai/BFzQOgHADe9+C35M8//elnFn+r5b+teHs54Y5XPJvCjX+kczT1VTk+0C8AjjK89/jUpz5VJONdxH3ucx+8733vw33ve99Ny5111lm4+uqr8dSnPhUbGxv42te+hvPPP3+07IknnohrrrkGZ5xxxp3qv6IoiqIoiqIoiqIoiqIoinJoOKBfAJx++ukHsroDAhHh3e9+Nx784Acf7q7cJe53v/vhCU94Aj75yU/im9/85qZld+/ejec85zl4znOegx07dmyr/ic96Un4ju/4Djz/+c/HJz/5STCX3zxba/FjP/ZjeNOb3oR73eted3ociqIoiqIoiqIoiqIoiqIoyqHhgH4BsGfPHhDR4B+PDydEhLW1tcPdjbvM/e53P7z//e8HAHzlK1/BF77wBdxyyy249dZb4ZzDCSecgHve85544AMfeKe/iPmP//E/4uMf/zhuvPFGfPrTn8Y///M/w1qLU045BT/0Qz+Eb/3Wbz2QQ7pTpMS8MnnqMHltsNyuuzaEXYnWuonpQsgcJqy7JicBNsRYsl0O+ZOS+e6dTWGNx21rS5jNm0GYGi/ClxAxJm2XQ3W0MWTKUjuHJY+lpsOS7arjQ1sy7E/qTxprhoCQdbRPpDrztg8xA8JyO8/HGWLsm00wd334iZV2NrT5xnGkY7oFaUHGws/UNIuSuMbky7LtFP4mjWVi+sS+Y+fWgNFYv7AP6fh+nx8tV7Q/wIQk0KJPY0mNpVXTiPA2Ph6bQjMVY/ALEibzcJxjpETN9RgMcQi35NH3Jc03YqK1kfETE0zso6feTm9TiBf2MSyQLxIKjyUpBkLYHSvmVdq7g72fB9sb4+Fi+CEAWNtosXr7EuzEg31MUAtgujQDYHDb6hTdeoN0IbXLczSNw/J0DucJTRy/NR7LxqM1Dvsah/U2hMZy+1rYfTYkBU6xBTrG+t4JuiWDU+/xTdzyjbsBAJaXZiBiTBuHjc5iHsO4mDgXzlvAU7bPu51dSDIMhMR6bQx3QwBWLWhm4XfEa9RZwDCYuQhXw6CcdFcuodZyTr4I6sPTpJA6oaE+2axM9peT9zqTE/7JUAXp2DohbyrDTMPyiGGJZDwFRhkuIdVj4xhtX3ey/6fwPzncA8L1Q8Q5DFDuS25YJA12/bUm5zH1byzqXRi/78MApUSIrs6YGEMZdSJuFgC0DBCjWSqf5Yu44afPw+53vRan/+5rcMNPn7etYxRFUe4MK5M5Jtbl8GpnfeTlAEJYTAZgG5efk7ONBieduJpD/OVwPAghgVIYvE684wIhIbxco9b2TWEsg6wHOxOSpwPwjuENw7PNa5b3IfxLnczXxtdUz9SvDahC4wjyO83Ie8WCV6j8rO9/L8P+jK4XdRUU1w8ZNi+VFUmKjWHYxg1DC8W+EsIcmhyqbrzLefyth59X44xjKD6z2Dh474sFSP4+Vk7sqsIi5W2yXRenlfqwhin8j+ssjO3f/yglEuZQT17jY/inEAbywPz7waJwPf84sv0ff+KVuF8MDfSln+xD/ljj83ZFORj87llvzZ+f9plfEH+7asgYRVEOHgclBNCiePOHmiPpi4gDyRlnnHFQQ/CcdtppOO200w5a/YqiKIqiKIqiKIqiKIqyHRi0MGfekQgfRX1Vjg8OWg6Ae97znlhaWjpY1W/JTTfddNjaVg4+A2V2lfTVg7IqXKrrAWDvfIrVrsUJkw0AwLprcPtsin2zKW5b7a/ZSdvBGsa+1SmMYazdMQUA7DhxHSuTGTwI+9amRdlpE1T4J0xDQtLOGzTGY2czG+13nRhWstXi1nmDb24sY1cch1SmnzhZz+p/mdQYCM6BplLIp33SXSH7sNl8A0HNvTCJcEwy3HlTqPsBYMl2myY6ksl00+9jyX5lst5FCYCzOr9S6XsmzHyDvfPJMFFxVecJk/XxZMMEGHJirnv1xoztqJOgbqtm3KVQkupJSYLlcXVC4noOuqiCNinZFPXn2wJorYON10mR1NiHZNJEjHl0y7TGFclqE8yEuRfjF/M5qc69XybMT7DZEZCUhwBwx9oSuo0GSztnWJqGe6xQLVaqseBmYOyYzjBpw3PgDsPAToL/t0lQcgMw+yz4thbdhsX/8XeHiS6fO25fxmQ5qCmt4XxFrd62DBAw3bkBMj46EgDyJFTvvlT07ezA6xa0ZmNZwO8IKk12KJLydTOb5zEp/JmpT0CIUvlfJELM5zvNQa8grFWLMsmidyYr5scSIRJxfnlNykWOSf9yYkJGkAF6Ciq/5JbKKv+gPg196RWAcpo47Yu/FF2hsDElppSwD3PVuxf8cCyQiSD7RJiEOCeWc+LGom7LRbJFIsaen9s6+W/i3r//KpjGlC4GRVGUg4A1Pq+fs67BRnSurc9adHMLMKGdhPfhnTvXYSk4/ADkBKzMIQm9ie689Fz1ntA0Dl1nQQS4WVzPLMO2DswW7DmrwNkHh6yLaxoAsDNwhoMqPD1zERXzcc0wpn8+p2d9em5LJ2GxDlSOgnpbqpNZuACYSlfAIIluXBtyUs6+vVFVv2E0be9E5ZjMWK5W3lNYh7wBGQ8Xz09yC/QHl+0YA6BheFful3OUlPnMpUqfs8reF2uZTGosoexK4GKOSazlEOeCGnFcrPuM33sNyFBe87MzIr33xn5kB4RhGOOHDof94Ds/cCEMMf73f/31O3V87RhIv3/H+0N9X/jxX7vTfVOU7WLzs8Wj83bTsoqiKHeWg/YFwHve8x484hGPOFjVb4kx5ohxIiiKoiiKoiiKoiiKoiiKoijKoeagfQGgKAeTpHIOMduD4qmJiv9eAe1DXPakYgdjFmP/rzRzrHYtAOCWW08KSiVnYKzHjqWg1t+YN1hda+CdgTEOSzvD9lNOuhXfXFuBYcZJO0J+iaVmjtY6rM4nIGKsxboNGCvNPMdlN1Wc/KTWlWOQKu1yzFGxLdRHDXmsdw2Wmi7Eghf7T1pawx2zaS7rvEFnTFb/b6a8T3z47DcMtj32uudndfxYHZ03hbpejiP1sSGPiR3G2E/9qo+rxzx2TD+u8VwEJldnogI+qCtm3mK1awfK+dR/+ftqN8EJ7fpQ0R9dDvV5q48f5qtgrLumV+NTuF5kP1KOBqB0hTTks9NFtivLDHIKUJ9PoO6Xj8o/SWOCIySpCjdi3oy2CW1Oq7wWiP1w8VrNMd1HcgcwE+SZMsRojcM05uNwMSHB1+/Ygfnc4t/d43bsnG5gYvv73BBjo2uKulMcYSCEo0vuALNrDRvzBvNvceg2ojsmxurnzsDdOkGXYvcbgKcdbl9bwo6lGf7dCXsBAGvLG7h97zJcZ2AsY7ISzpXrbI4t7zuCafoYxn5mgWXXK+82DKijoBCc+KwwlHFySZw3qXonw4X6UCrdUzxdjsq64fffHBR3QgUY6vRRUdnHIs7lIFT+EIrMGO845y9IZUyQ7icVaO6z6eM+E0IuhVRfnQMgYUQdEHOAPBdBxWgnbkSRCXhvCsVo/uxNoXKUdfp5CkYd+xrPI5JSdVLmGtkKYxj/9KQy9v99r7loNA6xoijKXaEhj44YM2dhyQ8U3IywdgPAtOny2ijX8TmHZ+DavMHEOrTxmTdzIRdOr2CP604XVP1+bsNzMz1n5xbOGTRLc3T7Qh4exHjwtg0/KTnxjAdz7+RL63lya4V48duIiS1NAdl1GDdEV5nPyndOmweuxaB2711yQDhuzCknXWWuK/tITHldDoX7NZpF2fT+QLQ47wEZn3M0ybWwCHXL5bsDENew5NYbcUjU7jRjw9g55ijwrl+4g1I/Ojj6JntHYHqHlvnSxHyFd8E+VUGqo3c6hPfS7/nvFwAAPv9fLsb3fuiCvm/infhzj7246Dcz8L8ff+fU/5uhyn/lUPHOB70dT/vMLwAIrurWzo+qMDeHEscEdxccQ4eao6mvyvGBZhlRFEVRFEVRFEVRFEVRFEVRlGOQA+4AYOYjJvTOkdQX5cCRYrYDyLHlAcBERfeSnWPmm6CGYoMJenXTumtw0mQdX1vbidvWQrz/jY0G3VqLdmWObznxDtx9aTWX/fq+HUFNZRh3X9kHIKisTlxawwmTjaw639Wuw0VV+b9trGSVclKsTEwHHxXiaQylinw8Jn8/5l5RnZhYh7strWHmbKkAZwpqdDB2TTYwi7kANlwD6w0mUb29qC+png+d/cbR+R/b/pN//ZyBal+Op/6cHQQYugiyA0Lcu1Kdn/MVmN5BIN0VtqpPfvPu2cRrxuL2+XRQ9yJkzoLGuEEbc2+LfADpfBqKbaLMgZDGuNq1OCnmiwCQy4zNWY10BiRnRdq+yEVS5FQgUT7OdbdAZZdi/S8185zvYXNKN05yFySFmAdhHq/bnTGHxcxZzFyDW1eX4ZzBjuWwnZmwc8c6lichJv9S5TowxOi8eA4gjMczwRKji9f/JOY0WKcWS5Og3E/KwnlnMZ9buBjTHzOD2WqLlRPW0Yi4ypYYJ+1cxe1rS2isx1pUNtrW59wERpyLzll0UwPXmTx2Z2xU6iHkjmj62MdhvKUCP29EGf++j+/POY6zrEeWcd70qn0R0z8oA+M5p941IPMOSMUjx/JEQX1fqCxpmAMiqQmN7e/zFMt5kaKzzmkQukkghP6xcPiQQVZN9jkAUmxpLsbmo8OrcFFEN4T3I0m6GGAXYjtTVMHe8DOlmn8rmmboGDiQ6v8z//BifOmnLti6oKIoxzyfeOTleOCHz0MTFfVNVGLPOwYaj0nT5wqaOYsVO8dKOwvu0PiOaY3HN+/YgcZ6bHRNriPlkGFvwrM/Pb7nBN8ZICrFOeXuMQyywYVgpmHNZk/wMwueuJynJ9Wd1i3ny+dw70rrHQ3Mpc49rS1jbyVpTUp5n4wp19LeZYD8+ximdo2l/qXtss0U659R5A4ocw70baJaM6UrbmxcNLJNqvC9p6LdpLiX/U8zSNUybGy4dsimXES9Op/M8H2dEN8zqK8z52wYyX0j34/kn+fy/SDxvR+6oFD6P+BPzweAYtt3fzCsp23D+O4PvhJEjM//l9IdoChHC+980Nvz52f9/c8BrDpdRVEOPAf0C4Czzz47/4P73e52twNZ9VHdF0VRFEVRFEVRFEVRFEVRFEU51BzQLwA+8YlPHMjq7hJHUl+UA4eJcc8ls6i+nkWVclIEz9hmJT4Q3AInTNZx+ywo/2fzcPkTATtOWsN/OPE23GNpX1b172w2cI/pvnxsUqjMXINTp98E0Cvz3/qf3pnbefLfPCury2Wse0OuUIknJ8PE9IrmMQV9TRr/3vkEE+Ow2rXYuzHNapqldo69G1PsnG7Aks/x2BON8Tl+fJov2f4i5X/Nk//mWfnzkojLvtpN+nEIlXlqO5TvtozV79kU9Uhle1E+ugiSKl/GvfegfI7WXYuODdarmPGFKl7QkB+o6CemgyXGmmvRkEcb8060xmWVvIx3P/MNDHmY2PeUdyJdoybG603XaYq5X87HVmr7ksUuk/G6pHMjzV0X594zYe5tHudS0w3zCtT1gbLrpHYmJJXhxrzBvo0JNjbarPg6cVfIpzHvLLwj7F0L99DydI4dkxl2tRtYasp7xTOF+9X0bXkO7RuE9pI6fu4sPAjW9g6GiQ2KyKV2jo22wawN40xugNXbl7C+NskxbY0NMXHdzGJ9w2Ll5NDnxno4T2gbB6J+nqdNyBuyPm/QRWWkax26uc2KOlso4uK5E+p4GcdeaPeLcQzOQVY3xrLGg4mycrJ0gkTFPFOvvkyPKcsAWKgjAY4KfjLCkZAkiTFec1IVJsW9NT4rKHuln4f3pWOAYn/GSMrGHC/YhrmYrzUgK9wL8+CqYG+K/AqmqZT/QI5v7FLs/0TKoUAM03rc8NP7p/xPXP+EC+/UcdtF1f+KotTY6NJzPqrq2/DsX2q7/Py1JsThn3uLueuff7etT+G9wSy6EdP6ZAxjbd8EvjMwjYeLeXRAUfVvPXhu8rPfTh3c7S38ilizZxZEQLfehHc6F+qeTLvgwqIydwtQxsSXa2HeJsZdfM7PeqGuhxDGc/8zuMhEnYbH7QQLXs8put/kMcYEZwEDhRo/lA/9kq4CG/MjjJHeB6R6vka6I4wFfHzf8J5AoJCfh8sxGOtHnQ/BWRcdAPU7ZHrPkg4+Cq4HGes/xfhn9E6Uzd5lU3vOG/zD4y8EEBwAKR8AgJwDIeUFkM4NVf0rxxrhfll8zx/PeJH/8WjgaOqrcnygV6SiKIqiKIqiKIqiKIqiKIqiHIMc8BwAinIwscRBmR2VM02Us6x3TVa9rndNVpqsdw1WbFDhGmLcPlvC1/btwtqszYqZHSsbuO/J/4qJ6aJS3xftyfjyAGBaho1Snzd9/7sGfVxpNvC+B78FAPD4v/yVqEZmNMah46SMdlG5nHIDSKV0r3zvY+b7sB2Eb6ytAAiKmX3zCaa2w0nLa/mYlWaOEyfrWW0tFdtJwZ3i7wMoyu2P2vx9D34LnvI/fimMJ+ZbAIK6v1axJwdFclc0xi1Ukif1vBe7k6LcEKOL31saDuqIdM5SfWku0zfuqV9755PCyVEj4/wDwN2n+7KaP+URaKNzYt216LzBydEhYonRGifyDZg8znxdugY721nc7vGNtRXM2WC169tMcWq3Q31t9NvLa2n82GEZz5RV9J032VGzZLvi3KayY3kj8ucoDlzvGqx3LWbOYn3W5pj5fl8bYgZPPSa7Qqz/9VmLu+1YxT3usQ+3rS9jOc7VSjMvnAe1eyPlQpDbc56CrsFGzBdijQe8wa13LKOZhHFMdqyBGXBsYAxjZSm0OW8s5q3D0nSO1jjs2wj9JgKaqUOzy+PW21ewsRYcHWtRbWcnDr4zWN4RxrQ8naM1HiuTOeZRMee8AU/m6JzNKswa7zmr8VOMe1PF3zXG5xjKzlOhYDT1OaJwP3k/Ej/ZMDxCvPtaBUlJpZjU9b5XNoa+5Q8xPwCBGgbF64iI0VgHK+Puiz5KCYJP463mgtErCo0RbcZ4x7lvqSvRmUAyL0LMQcBAdDuIdp0RdaW6CdR43PiUl2N/SYrFz/+Xi/Ed7/91fOHHf22/66i57zUXHdDcAYqiHJtIRXdalztnw/O5QX5eOm/gPMGxwdpG/z6cHo3d3IIdoVkJrriNjQZ+bkHWw89tUJQDQd1ODJ4F9T9FtbfbsGDLQGd6BTwDWLPxQQ74HWEd7qyBm1mY1vdqegBt2zt4B7H340+ZG2C0HPVKce+R+0JxPRgE2s/rCBf1yvprp0FeU+s4+2nNlWXRx9NP5axYy2s6F/4eIOI+F1EsL+cKCOebOcX4T+MI651zpipfjkH2vXcZuqrcsH8U8xpwWkPRr7dG9LOYv6oe5lLB//0ffgUA4HOPfTW+/8OvCO4/6VAUqPJfURRFUfYPdQAoiqIoiqIoiqIoiqIoiqIoyjGIOgCUow5DPseJ77zNcfYTHRvMOgtDjBMmG1kFu9pNsHcelLyzzua4lHdbXg2KdOKgEI8qllU3QUMeK80GpuTRkhftL1bKv+OB78ifP/CQN+Nxn3oebp0tYaWZ5+1L8WdS6c6iSjmr86OqvVdnBxVQ5w3aOFY5vrH+LKFXlY/NYYZNzqHwgYe8eeG4xpAugls3lrfMH/DTn35mMW6pYk/jBAsXQHYDDGP2A32cfjsyRg/CmmuxN+Zj8BjGM5Wk6yjlZNhhNwZtdt5ir5vg7pN9Rb/7+TAx70D6ndGxHbS9dz6BNR5t3NaY/pxuJw9EPQ/JCTEss7XToqEu/57anhhgiQ3WXXDTrNB8pE1xXqivs/OmUFjftrqE1duXwJ0BrQVrAE890DCmuzawNA11/7ude7FkOzTGY+eu20I9ELH9QcVY6jj+We3og7qwMb5wo0ysQ+cNTlxawyTOt0fIIbBkO0xshy66HtJzYt01+Pq+Hdj3b8F1Mz1xA7uWNjBpOrQn+RwfeW3eYt/6BN4ZkFAtzjsLtoSNeZMV7syE9X0TLO/cQCNi18tnGLPL58d5k9V1Uj3XijEAlF1RQFAdym/3fVToETFIOABYbIch5D1R+U+V64CamC8ASfHft8Ke0Ey7wjHQWIdmJLZxGktyKgBD5WZSE6Y4wnVcZu8I3pmQC0Co/ZkJ7CgkE8mKfi4UnfJnyGuA4EhJz6PG4YafuXNx/2tF4pl/ePFdjtWv6n9FUbbiYde+GMxh7XLeYKPrY/unZ15yohmE/ENEQZE+78q8Mzt3rAMA9q2G9ydjGaZ12SmV4/F3BmjiM39O4JQEgCm7A9KDmzobyjLAbf/Owt5gujLHxmoLXmtgT4hOvLmFbTwa68qY80hK8lrtP1SXG+qf/fWrFYl5yWtFzAdAEC6B6higjMefYuXnHD7xeKa0DstaYnx86vP/WBPU8smt0LnyvI2tjSau/zIvgo0Kf88h1xEAwIV3UplvQP4Eoeh76Ff/e8qVlvJBtI1D5/o3Me9NjP8f1+g459aG8xbqLOcwnffP/tirUPP9H35Fdjo84E/PD/XGd/x0rsaOU5Rjkf3NAXe8IP9ePRrYrrNfUQ4V6gBQFEVRFEVRFEVRFEVRFEVRlGMQdQAoRxWEoARJsdYb0ytl0zflMxdcATvbGXa162goqFBm3uKEyQZOmAQF7+1rQYfv2KDzFj7KVN5z1tsAAE/7zC9E18ASVomzMnzZzrFsZ9v+Zv7k6Spuny8VcdWTsnrffIITJ+tFeUMcYphX3257EGbeCpW2Q2N8joEuj5fugYFKXcT/Dxs6/O5Zb93WWGre9QO/tV/lZTtP+R+/JJTbYV68UJ3PnB3Mce12kKrwoRq/V2NtRnJdrDRzrDQb2BlzRsg2JdOYKwJAzgXh8rf7PjgqsqPBBnW/R1a3xwPQGI+GfP65qL2trrPaTQFEF4xrBvdHnVsi9DjMYZ0DwhNjJfZrtQuqwsb4nM8i1CP7YTBzFqtdm9tx8Rpc3rUBYxhLk6D2dz7kYrjt9hWsxzq+etsJOHFlHVPb4eav3w07VoID44TlcH805LHczkeu9aEDJt0rsuxq1+Zj0mfHBnNnMbUdpk2XcxysNPPsCGiMx66l0JeNeYO5NyBnsdTMseHCEjptOizvmmMelXvrUTXXOYPOGbSNw2QS5mzSOMyW1zFzNsdmBoDldg5rfFT8U7625PNO4riP6UsU8nuE80DoqM/rEAobOKasJuxj9UoVo1DYJ9k9h8/SMRB+RqW9uOXapQ4goG16J4M1vnAm9HBUOzIQ1X4+N1qVFGp97wg+KlV9Z2AnPo/BO6FgjR+tGJ9nAnuC62yRo8D7sJ2sh2lC+1/5/9059X+Ni306432vzvGsv7iFmv/+f3whrn/ChQekfUVRji8oKrqdN1k175yBtR4zZ/PzdGPegJnQNi7kmIlrqHMGTVT6T5sOFPPZrG+ENZPj85e7+Fz2APmQMwUNBScVAFjO+QCSbp5bD2oYWA95AVJdnjycM2iXOnSG4f4tuA7s3WZgT/BUxq/3THBzC2MYTeOymzdR5yQySMp2wJVFCwV9Qq5Ci96/6lj60hFgieG9CaM2fUz9FMu/roOozwEglaJp/cjx/JNDzXA+z9JBx4x43nt1LKUxWB7kbso5foDsRkjz7Hx4d5HrqieKa6bp3yFi3c6ZXEdjg1NgLL/R3z/m1aPzedZHXg7nKeYG8nkeP/OjrxktryjHMs/57M/CgsXfloqiKAeOI+ILgG984xu49tpr8dnPfhY333wzbrvtNqytreVkRtuFiHDttdcepF4qiqIoiqIoiqIoiqIoinIoYdBRFVaHj6K+KscHh/ULgJtvvhkvfelL8f73vx/z+XzrAzaBmUF1oEHlmMOQR0MOTcoBwBYT0wX1MvdKlSU7x65mPcSijHqeHc0s7zPEuNt0LdbJWHcNTp7uK+L3v/NBb8+fn/G3z8jxwedscMfGLizZOZ719z8HAHjL979rYZ/f+aC341l//3Po2OJf13cCAG6fTbHetWiti2rtpIAPKt3lNtwPKVZ5oovKacnEuEL93sfVL4+tY8HXzolDzXt+4G358+P/8lcAAP9vdSecN1hpw7lKiqIcg59Nn9vARPXTgviiLXVojMvq+ltnyzmufF0+XQOeKTsAWuMx9wYbvkEb57IxDoY95mzzdQX0ToDQF482bbdBvW3AWLL9M25FuAyGiv9SojaW32AMeX6XyWONJvj6+o4cW36SVft+9Hj5MpUcAY3x8Z4Lx9w+Xwpz7pq4L8bhN0k5P8POdgNfX98BADhpuo5v23Fbdp3INjpvMTvR4taN4MTZuzHFrfuWsbHWwq01uOP/xe18IvyJHch6tEsdVpbT+XGwhtFYh+VmnhVvq/MJ/m3vCu62Yy3HoAWQY+M6b/J1sD7rl8Dl6TzHnl1u5/gPO2/HCe0aVpqNnKNjtZtg3TXovInXSp8nYu9sGnIDGIcdk43cJhCu20RDHu3EYcoGG/MmuyRmzsL6oKJLMfvTeWnjtlBn2E4mxBC2xhdxglNcf8cG8jv0ENe3LJvUfkHxR7m/LuZRSDGQkwow5TEAE2zj8hsE+xBj2MRrQioVx/JGyKU6lwXyvew8FfsJ6GNUx12m9VnJ70V59oBpPIztHQ3MFMw5TCDjc+4C5uAkMNaDzIFT/ue+m5Azwc8N5nFuz/yji2GIFzoBVP2vKMqdwYPy+iFV8AxgY6OBWRLqbwDWOsyjkj7Rth0a6zFtOkwah/i6BdcYuDbEe/czC7KiLuvBcwuz1CG9/ISY8GG9Sa4teAueE8gRyAPgPkK+I4ZtPUzj4XfE/DYdwcRw+Cxy1yDmrelmYafs/6KcWGltsyIWfnIi+mL9ROE2kIyp98t8MqIfcexg6t0B3uQybePy+4bMk8PV2tfn/hH5fxon3vP7NufOBkcb92t5fyzDUl9eqv8L5ycTOmcw72yeZyC4EfK5QFmPZ0LTOEzaLo9HvrduV8Wfxpfep1X9rxyvZAfwghxuiqIod4XD9gXARz/6UTzxiU/E3r17s9Jf/wFfURRFURRFURRFURRFURRFUQ4Mh+ULgH/4h3/AT/zET2B1dRVA+Id/Zt7vkD/K8UuObw8GKIiUkkL/bpNVNOTQVkrnZTNHE+Mw3326L+cG2Ey9nzghugkQ22nJY84G+7oQq/QX/+7pWDZzvOkB7xk9/i3f/y488++ehpOn+wCEePDrrsFtG0uYOYv1GJN852QDXVQoe6bsDJhYhyXbYaWZYz3GHU/OAW8IE9Mru5PSOsV0T+rjjg18EZ/+yMkB/oGHvBkA8OS/eRZuuv1uuHV9Gd73iqqJdZj7EC/9bsvBuXHidD3EuGfChmvgYkB6GaMfCErxRFKH1bFQpcNgrwvx7qc21NOiclIQY0pdvt4ADOI0ZpU9B4WZtYufbWPx3aV6qnZujGGoV+NbhBwQLXm0Kw5rLlxbt8+WMLEOZjB2P3CDeFDOLTGp7qOZDzk25Bymueg4uChOEnkt9s6n2YWQVImdN1jt2qyAA4CTltewPJnD7yJ8c98K1vaF8+BvnwCrFugauNkUt+4KzgCaGfAJHZqlOabTbhB7/qv/fDcAwPSEoMb3nuCdQTvtcszgE5Y3cPvaFMyE9VmbleQbswZf+/oJuPvd9uI/7LodJ7RhPDubUNdeP4EhzjkDGhNyjqRrKzkmDDFunS1hfX0Z6124b5eaDs4TNuLvaQ7axmG9s3DO4KQda8V1kRTx1nCOa29jPgYizi6CcO6iko57RZ3J8X0BGeFYLrlyX74OmFBcfiLuPxnO85hyFzTW5djEi6jzT9Rx/1NOg7S9z1cQ1PTpGQ4EVaJ3BGM9fIo9TcGxwMywTRw3YlzjuYm5CyiPIfwHNJNuYZ/vDPe75iJY49F5G1SzsXpjCZ6A+15zUVThhj7+w+MvPKDtK4pyfMJMWJ83eb31zqBtHTbmTV4n03OnacIzO7nlUl6ApJRfnpTu7NXkFIvPW2qjo8r64Epr0rtPeL66zvSPeMOgzgANAw2DUx0Iync3L99JU06WpNBPK2JwbFFweaFfx5j7bZKxWPSAcJiKbb1LsTxmqE9bvMb1ZblwEyQlfoqxn+bcko85ccb7ndT/qb/MQe1PxPl81s6+9A5pDMfz6Td9l0zj9kn9jzLPQdO64AhBOF9J7c9MsDa8f1rqcwD8zY+8dmFbY3z60ZfgrI+8HJ9+9CX7dZyiHG5+7n/8IgxxETXgQCBz+SmKohxIDssXAC9+8YuxurqaFf9EhCc96Ul48pOfjO/93u/FPe95T6ysrByOrimKoiiKoiiKoiiKoiiKcoTguUz2fqTjVd+sHGEc8i8Avva1r+GjH/1oVv2feOKJ+OAHP4iHPOQhh7orylHIzDfo2BbbHBOW7Ry7okr3Nx/w7oXHP+Nvn4FlO8cyLVbrj/GG7/tdPOezPwsgKKynpkMDAmJc9zvmS3BMeObfPQ1v/U/vHK2j3v7Mv3savm3lVnxjYyf+bWMZALBvPgEzYakJ8ciT4me9a3JM9pUmtOmZsNq1aDiosXO+gCQYqMS1nbeY2C6rgJLe9XfPeuu25+Fg874HvwW/+HdPxzdnK/iXfbuwNg/q9Vv3rgQlGYD1Wdg232VxwtRiJcZ/T+OfmfBYS9uSA6AxPsd+r9X/UvG8Gl0dLXks21lR1lKI6d+Sw7Tp8rW4GlX2IfauEXX3CjNfqLTLF5fNFP+LVCCGyvwINqu3fRyTww7yOT7/DjuDB2FfN8Gts+VevU5Syd87ARrjMDEdLDHaeJ0v2zn2uQluuiOo63fEXA0zZzH3Fl/9+klwaw0QVYAnnbwPrXHwIHzzmztg4nY3szCtx2TSYRqV117EoF9bncDvjcGEpx7UOviZBbcGiCpBtgy6vYG7rcG+XR3MNJznXbvW8G0n3YaVe3wdM2+xbx6cBK1xWamfzwMTvm1XUO133mS3zFfvOAEb6y3+9V9PwEbX4N/t3BvGM12HZ8LeWXANrIkcAw2FePwT6/I9ut412Dub4o71aX+uo1o+KS2nTRe3h3MwbTuszlosRYWdcwYwHku5nC/qAoC5J3Sufy5yfDnO14bxmHub2y6uI8MAGOQp7zPGh/q4jK8PCraCpnU5/0Cqo7EdbHSTpGvYg7AoljIz5fwF4VxUbYlzRHEM0nWTlIeeCLbp60HMgUDExVwBgOsMbOPg5qEeMox22uEfF8Tj3x++579fAAD4/H+5GEBQ2LqYO6Fd7t0FSXk7abscg1pRFOXO8siPnwMAcL5F5wyIgrMsPX9kvHtTqMo5O7ZkDpn0/F7vGnSxjl1LGyG2u/VY32jzP76k52xSsGfXGTE25k1wB8jH+sQDMwPaa0F3C2sxWUbTupwzJT8tiYMTlAFjpZMtKNyZQ+6ZpJxvbJ8rR77T5VfiOt9SXHO9WCZS2bB2leNJyDw2YS0bnhNDwZ0c+jNsN6yfaX3uc0hNhOPUewPPYV5NPIep7jSufv0s4/7LXAfW+Dhf/btnnbMgHdtYj5WlGZwz6JzJ29sY43/e2aD4z3kXODhLxXr7Vz986XBCtoGq/5WjiaT89zAwYDzlf/wSgPLvwMY4rHbhb5DVrsVJk3XsatexL27bFV3F8+pvPEstGnKDf+9QFEU5EBzyLwCuu+66Iub/61//ev3Hf0VRFEVRFEVRFEVRFEVRFEU5wBzy4GJf/epX8+cdO3bgZ37mZw51FxRFURRFURRFURRFURRFURTlmOeQOwD27QtJUIkIZ5xxBtq2PdRdUI5ibtp7MpZv25mtphPrYMA4abqGk83qlse/44HvuFPtPuezP5tDC73080/Ev813YNnMcxiWZTvH19Z3YWe7se06U0igX/y7p+cwLXu7Kf7f6k5suAYNeTRxnCnMTfoPCHbCJdth8v+x9+fxkmR1nTf+Pkssudy1qnqnWQQEQZYWEZRNEBVnAEVGYABBFsdfKw8PPC0DMjgIw8goDPCwjCKILSjiNKIPOIja7IIoYjc20NA0TdM01Utt9968mRnLOef3x4k4GZn3Vq/VVV3d5/161avyRkacOLFknIjMz/fzUSaEqgKUNkcKN7MEamhtXdpy7NuT9U+Xdz3kj8LrX/mXZwNw6ZFTuW5rSJ7WTEt/2To06nNk3MMYyaA32+/rvTFbRU6uK3pJxXJzTFJZY12yo0QcmJvW2sAcLAdI+vR1yanZZnhfNjtQYSmcbl7PSrilMDva9cvO6sy7lkC+hLRZfxPgu9g/OJoNkJuz/gnTOstmwp9bmfTBxVI7xnXKqLHG0U04nBSOqzZX/dqsYLU/IWuCp8vGekXi988gKSlqzaGxz2o5cHAJN9E45UiXyrkw3a0yJ0n8eZc0Aa69vPJBuNOUyRFvf4VyMFHeZqYWMGwC59qy/6IJD8yb/esEalBSH5nZ6wD8wN5r2ZtuM2hKa9tjMDIZE5PQU1XYZ5WT9Bp7o4lJQqj3ajphvJJyuOgxKRO2inyurUQZVOfzqTtWXdtVOmeBM0wLlhvrIPAByMbKXWygLKmuKWs9V5rfSyqS5jq3W5hh14qhJdUW7Wbnmy/3NzgHbiGE11sLzH8m2gDiNpC3PZ7O+gDdqtAYI3GNfVOiDUhCrk9323b7vC3216+LXe2CWpsg5wRCuuCmIBp7CN3YSrXhk0p6GwglLV/92VfvaO/eH3wt3/yFV+yYfmtxTlBWmntf4C2Aerm3RahqRTlVpPlsX/3bk37rmK8/EoncOZk2935t0LwxjbVYYzdmGxuJufsROQt8t05gmuDXPPHjobGC2khsYzuzOcnppxWpMvSGVbCjcQ6Mk6Ht1naotQ4S0uIa20YcTYKsxWUWtprpyxV15cPSd+TUCm8R1A3TdQtjXhtG79zMtudo/tC7jaEzOxvfSeeAReuizrKq05e2jzA/1s2H/xKmt+20/xb7pCQo19oxOa/SW1i+O+a3Y7e3Q7KkwSapbc+G+0HjZgG/3XVrZefa6doBtZZ1Xbu+rv0f+Psh0bGXikTuDLTnu8QtPJun4bWWavZaWEqrOFz2wzPCVp010/21u/0uYGw1R8o8PGNF5rFOnlQBySdTXyN3Do77Gblnz57wWusTkkEciUQikUgkEolEIpFIJBKJRCKRyB2e4/4N/AMf+EDAKxu++93vHu/VR05y9ubbkKRBpV1biZaWzTJnoMobWfqm0Qb59FQV1OjdYOHfeeD/5iUXPZ1EmKAAKKxmmBQcKXr8yr88m9/7offe5PV1Fe/P+afnc7d9B/nqxmmURgX1elf506qxU2WC+h8IwaPraoyWhtLqEOLaYpxACcfEnByVN0mjar/P6rXcc+UA23XKdZMhAIXRGCuZVAmJtCFo9XvlCllSM6n85a0b/LucFNQ38XfPVhVfO0nRqDMSadHCkAhDYXXYt7YT9guzX/tbJXQiLAYRlOcGESoFrBMQqgFs2OZW0Z80Sqtu0HC7Pe18i6r/lsVj360SKIzfpm9evU6S12hl6GX+HKrqhGs3lqim2ofxJk07yuEqgdAOhGPfPl8ZcdopG14t2ATAFo0ScbSVYw9nGOVAOaYH/DESDloBnWyUZ1Y76Bv0oMQaiRk3w5OWOCMQgxqhHP2h/0zsGfpqMrMmGRUpa70JAJtlzv7tZQZJyWo2CQp/LQy1VRw2SQiTTVXNdp2xnm5jnSRrgpF7+Aqavi6Z5kmortmu0hDg6xVxs2OopWU5Leaqb45WbVI7SW3lnEqxtArsLNg3bUJ/M1VTGUUvqbzSqDmnSqPmKgkW1Xdz68Sr9yur5gILhfBKzVbNae28wjK0JWfXH4dXDUrpwvRW/Sdxc2pQJe0siLhTAdNllvvrQwlb5WhX7enavxeCgq2RWDm/3c6JGwz1/cbPv+qo791SHviRV/HlJ772qO/BLMAyqv8jkcixJISxN+NDe91tqyX7ecm08GNYqwBvQ+IrJ9DKhOuTko4qjHEuBOQK4RiXCYk2mE7gfFUrX/1UK7KkDtd+53y1mK1lqOJzToJwSG19NdmwUbobiTMuhAAH5b1t2jECUynyfhn6EsJvrfDtQhNE7KsApNxdjd6tHtgtvDfsU2V3hNLPq/p3qSRYWE8bVtyOrztCiEP15vx9Wnd93T6HvjX7M9HzVb5JUP/Ph/taJ5hWGudEUPqDCEHB7Zi7uJ3WCYRtx/LZuN+tKuj2/dOP+90d+yQSuaMihWVqEnJVYZ1E4z9/uaqZGs1qOkF21P0t3ZDg2iqkcvR1QSbr8HkqrUZLw2o6Pb4bFYlE7hQc9wqAhz70oZx11lkAXHfddXzlK1853l2IRCKRSCQSiUQikUgkEolEIicBXUvkk+VfJHJ74rhXAAgh+M//+T/zohe9CIDf+Z3f4fzzzz/e3YicpKyl2+R9hW7U00Xnl/VeUwHwy198TvDXvyWsJz5L4EA5OOo8b3rQn/GSi54e/NWHumSj6rGaTbhqe43n/NPzARjoYq564MY4/6Hv5pe/+Bx+YOUavjteY9qotA9N+9xt+RA9VQXldmk1U6NJlWFcJxwpvU95rjR9XbGUTBvf+8aP3Wqsk0yNOmm8Ot96zp8A8OJ/fQZbZc6oyhgm/ji3FQ9p4xXPkv9vX7bFV4+cxvWbQ747XmXQ94rxld6Uvq4Y6oKxSXcMyF0/xy6tJyPAtVO/kvV0O6it2mXb9qyTVI2643BzDp3RO4KmowhfWM52KgBmiunG37apOMhEhUFSN36+prmpSKRFsru6GqDq+P8WVrNVZ1y9tcKRkffed5WkchqjFZORV+gPl6dkSY2zgrInwTQelnlFb7Vi60gPBFz3vVUAhMSr9I0AA7Ka/bYshcNkDjmRJBvNdAHVivcB3nvWYb+ftSFtFPi6oxxPpWmyLvy5/J2tNQC2y5QzhptYJ1jPx3NVMvt62wyTKVOTsFXlTZuGcZ2GqiGAuk7RwnKgHM6p69tjUjtJaRTbTV7CqMi8v7K09JJ6psRrjmOby9GSN9UH7XnRkkpfPVQaNXcepsqgGw/77v7rNb7MFkHZqC+ndRKUhQCVnf89f1E1aKzAWkltZMf/d+bZ7LrLNH781oo5JaWQFq0aD2PpZhUDUqCEwTjffruMEg6H80rSTjXETCU6309jvef0XF8Aa2aq0nrLHwuRWqQ21JVCSBc+519+4ms43lz871/L/f7q1WhluPjfv3bHewA//NHfOO79ikQid3xa5fXD//blTKqEqlZYK4JCvKoVeVaF6QB56v/G+XGhl/oxps0RaD3fWw94YyRFpSkqjbMC3bRtrUQpi1aW2shQRTgpEu9RX0nSvp9WThJwjae/cjgzu8a3innEglLe7VTOCzFTwRvbbaOrmp/N6//f6bfffX83pNxZJbAzu+boFQHt+1rNlPq+SmF+vW01hnWCysodfvzt+91tyLSZm7ZYZdjeGxS1om7uGRa3xTYVwfP7Yb7qoG0nF3VTWWHQyu7Ybikcj7nwPAA++bg37LovIpE7ErVV5KpiahK0sDNnAicZJkWouNad6tf2s9w+JdROc91kSF9X7MtHLCmv+M9kzUAVJ82zeiQSObk4IakU5557Lo997GNxzvG+972P97znlgWzRiKRSCQSiUQikUgkEolEIpFIJBLZnROSwiuE4EMf+hD/7t/9Oz772c/ywhe+kEsuuYT/8l/+C2trayeiS5GThLVkwiCVbNZe1Zs16mwpHG958PuP6br2pts3+P6bHvRn4fV5Fz+NU7ItMlmTyjp4jJdW86IvPZOeKvmdB/7vm7Tedz7kfF70pWeykk6wZR+ApFEvWycYaK+Atwi0k+xJtxlVa0ERv1lmQWHbVSAv6ylSWCqnqK0KVQrnP/TdN6lfLS/60jM5VPWZdnIEJI5U1UFF3fqu92QVVPy3hm9u7WOryuambU5zhlnBICk5rbcVzoVEWO69cj0/sHoNV26vs39rGfCK8UzVpNKwlo6DMrx2u/8O2vViPNQo+S1ejXWoHLCebs+pM2YK9NnrtWaeVmXV/t9mMUgsCLDNb7ESi0UisXNtV26mFB/VXgHdU1VQ/9+QSqTNHVDCUTmHdZJBWnAEXwGQLpWYSrG6sh2U5lI4jox7Xv1nBcnAT3cOpkWCyoz3iU0blVihEbVAVAKXOGxbHaEcVIJ0pWDv2SPGpT9nUmVQ0rGUTcN5q6UlbTwwU1mHLATfH9vsW8k9lg+G4wIwqlJKq+YU5qVVjOuEVM1yOqZNJkS3ugD88S+rbNd9WBoV/P8Bcl1TCoUSFiXtTIGvCMr/VJkdVSRdugp43akiaV9raXdUI5RGUVrFpE4oqp3Dtuqo9MtK71AMemW9V1gaK4N6slVMtvNZO8uuEDikZK4KQGm/71plZN34SWtl/TLCoZUl07MqCCkclVGddYqwrys3UzuWne0S4IMi2vlV0z8DMp+1bWsFOJbXxidE+d/y0L/5DQYZ/NNP//ejzvPPTzj6e5FIJHJrUdL71leVV/z3G1X/1jRjPE3J04pW9zUpEvK0uX+WjqK5lq/0plRGsTHOSbSZV9C33vrKhelpUjdjiL9PHaT+/lTiGE0zpLbU1SwzQOrZ+EEz2TVjU7se16r6m2HNOYGQbjbeaBPGBCXdnPreZ/Tsruxv+wk7M3MW5wsZA8yq1ebn6c5L2I9djrYOsTCfsRInXKP+n92PttulOvsGZuN9m73TbaetEOxmMbTVHIhZxUR3/4TqC/xYbqwM1SNtdk97v9PmS7R3Lu19hsRF5X/kTsV7f+Rd/Mq/PNv7+AvHivY5ZBOTzs0n5/Kv2mc9/3nLVUW/56+ZlVUhn6+nKjJZhwruSCQSOZYc0x8A/viP//hmzf+Lv/iLfO973+Nb3/oWb37zm/n93/99fuInfoKHPOQhnHLKKeR5frP78Iu/+Is3e5lIJBKJRCKRSCQSiUQikUgkcvvDIsKPsycDJ1NfI3cOjukPAM997nMRN2SoeBSEEDjnGI/HfPjDH+bDH/7wLe5D/AHgjo3B+5gPlfd7rpyaU+IfC26JYv0ND/xAeP2Si54e1OgTk7BZ50hhOe/ip2EaVc5N6bMWhrpRA61k3hewtorrp0MAVtMJa+kYLQ3LScFK6tUHy8nUq3SFRQkXMgPAq3X6ssLImsz6Pr7oS88M3vNKuLltafmlf/6l8Lq0/aDwHzdq9FGdklvFcjJl0GQxAByq+vzKvzybnqpu1nF6zj89nyNlj/0jr95fyjTbZYps/MTBq80Ob/dxfcE4KUhS02yjZT3ZxiK599J1rGc+0+ErB07j29fvod5zGC1N8Pa3JvGejE7uqtxuqznatlvF1Wadsy8d+TY6qn0lXDjOiTBzCq2ZSr1tr80dmHnEFkYy7FRuhOkuRQnHnmRWmWIaNYnqZACYjrPbpNm2ti+ZrNmTjbjs8F7yxqt3WiTc8/TrOK23FXI0tuqctWzCqEq5RjrvFQz0sxIlHaNJNlOVAWaiwQicwPvHp74/QjtWTh+x1pugpGVvz/c9VYZcVTuU/hZBZRWJsAuqmdn+X0qmc9P2ZP4YbVS+omFqdKgmsE4GBb8UzmcJyBotZ/t7ahJGVUZtJakyYd6ugi7kEeiaXFfUTuKcIG9zKKSZ5QpYGZZNEehmW7pVDP5/MTevRYTzr80HaKcDFEYzqZKglF8bjMP8vhqozZdwFLWmNhLbnLutit86gakUTs3GadX4+QrhwtkvhMNaiZBe0d/OnWiDlDaoLqcdFWTbFyHnVYlCOFJddxSVHtOoHVt/4rDOhWqERBvKUlMX3us/dKZZhcpmx/JE0Sr/H/63L+fzP/n6E9ybSCRyZ8RYiVaWXl5SG8V24e/PsiavxjQZMNAqvUVQkfczP/ZPK3/PsNwrqKxk2lTtOUfw/c/TOrQjpUNJS6oMSfMPYJgVbBep97EPqnOvlq+mGp3VIQMgjD+t932rgjcCZ/19hLMO0Uy2Td6A3GWskU0+zSJdlXt3/u77u73X3k1ZxI4qgBa1y/raMXHxi5/d7jGdI+RGeXX9bJndPP7BV5E6M7vXW1wmvBNe+MweJTvzNPtPCbujn0K4HTlXUhmUtCFzIhK5s2OdREtDImy4t/fKfYl1/v6++7yRSENhdKigt04w1EV4r21jq85JZc2ynhKJRCLHmtvEAsgd7S5pF9ofDBZ/OLi5bTjnbtGPD5FIJBKJRCKRSCQSiUQikUgkEoncETnmPwDcnC/ub8n8t1UbkZOD0mrecYwV/11e/K/PCL/Aa2mOqoi/Id70oD/jvIufBkBhNbVVHKn6DHQRKgPa9Ryt2mBZTxiZmS95aRS1k6xnY4aNAjqTNZmsKaxmLR2HZd/7I+/atc2XXPR0rBNMTMLv/dB7d53nvIufFvousRyp+lgE4zoPXvnTWjOS3o+/3+QRaGHR0qClobA6KMlHVYYWlmunyzzxMy8KCmvrBLmqmJqEg9M+g8TPn0pf9XDVxplUteK0lU3AeyMm0mKdoNfOq7zf7LROuGprlQOJz0tYTguGScHedERPVdyt5z3jB6eWbJuUQ0WfcZ2yJ/NqdCkcU5OgFxTnXbV/+15bVdHSHk/rBAZJIoxX4x/lt0h1E36jXFR8tB6siTO+0iD4wlqkc0xsysTOlP61VUxswpKehkoNmFUJbNmcfYMRRe0v/w8862qGqvBe7Y3fZCZrBqqkrzMqq/jewRUANg4PENLhSgWFhF6jbHECl1jUSk2a1chGOVZVGue8qj/TNatNlQpA1mRGdJX+Wji0mFd0Wyd3rQbw29RUukjHnqypxmiV5s352lYMdNXyLaZR9/d1hZamk92hQkVArsdzqr02b6CbHTHb935a+552Ft055+e3y+dJTBcqdNr2ZUf5V1tfndJLKpabaqDW2xdAOIFpMhGE8OpOKR3GNP0ykjSpUdJhs4pp0ag6IRwrJd2c72+rHk20CZ/bVPvsh1GR0dM1Mp3fp0LMKxW7asFH/P3L/EQnglexMTLsH79Ns+Msmr4bI7FG+qyMWiIa72epHYiaPK9OqP9/yw9/9DcoTcIPf/Q3gOj5H4lEji9SuEbVD4OsDGp86wRFlTcK8OZ+QhuMkShlGWZFGJ/aZSZVQi+pgtK/vbYL4dga5wx7RTPdj0utgr6tOM1UzSArmU5SbJMB4GqBqHx7VSVRTZ6LVA5rhG/DCVzdjJVW+CyYiYLcoJLZWNHNDGhpVf6LSv+jESoPFqoDdlPut/tgt32+uL7u/YLE7brcjnaa51grmLvHvCG6fQzrFPP/d+85jZBzGQBSuJCJ1C7mHCS63lF5oJpsIiEcj/vES7nwx//nTepjJHJHRwlHYTVJo/Q34RnE29S0eWXttKlJZs+f+GXBXzu7n+nC6B3PDZFIJHIsOKY/ALznPe85ls1FIpFIJBKJRCKRSCQSiUQikTsxrhFQnSwsWsxFIieaY/oDwHOe85xj2VwksoNlddv64b3lwe/nRV96JrBTsXtz6FYNnPulZzExCdt1Rr/xXW/98F/+5aeSCMNrf/BDc8uPbUrlFHmj4N4sM/bmY2qrGDUqZZVO+L0Hv5cXfPG5SByDxkfwhkikJZPz+/DF//oMEmmprCSZiZo5VA3YrlOsk+Sq4kjpPdZXswm19X1rlf5DXXKk6gXlQ90oydezbUZVHlREh6a+jbKjbCjq2WtjJUpa1vtjDm4PMI2SWgmv/u8nJZMqbfqxiXWCQVJypOhRNsqzqzZ7aGn5tlrnB9e/xxnZBgB37R3EOEnVV4xMFlRWhdHBl3E3RZUUjn2NunxNb2OcRAkb/geY2gScpXIKhd3h13pzUcLOqciUsKxor543HeW5afq/WedBfbJR9lhJJ2SyJpcViTBhuQxfMXLvpet3nC+F1UyM37ffm64wqlI2pj22ixRbtypAh9tMcIlDKIdr1HxIR29tytpwTKbquXbX8gnLyZRM1kHJXzu1Q/0Pu3/mjqb+99svMM25pphlQ1gnMa2X/EKbunNsaqvoJRMWqa0KHp6L/QsqfSOC739fl41SX83Nr6VplP5yrh8WEdR3fVGFtqdGN9UuJsxfW5830Esq0u70pm9t1UHa7PdUeb99i1fad/eBsZJJmZClfp1VrUgTrwTNk4pp5SsDaiFZG0yCCrA9t1JlmNQJua6RwtFr2jGNd39Za1Jdh/m7KsHP/sTvAPCwj72ColZo1VbVzCs5ayOpahUyAIRwCGkRVqJyg1Szz+WgV/AvT3jdjuN3IhiX6dzfP/TRV95u+haJRO64PObC8wCwzt8DSeHIk4pek1FTGsVh0w/5LQC5rpmi6SVVWAZ8RosWFqMkqaqpjb9ny5KaotL+up+VncoARym0zwjoyM03pznOMefHLxKL7NUkWT2XDWCNRCqHMV7x33r9O4evGHDgaoltMgOk8mOOFA7nZFDYK2mPqv73lQGzv9uxfLcvZnbz4FedSoHdKga6bXczhLr7tl3v7v1r5r0JFe0W0fRn96qELt2+WCvCuNve/4aKkLaasLN9spPto6SNqv9IpMOv/MuzyZrPzVY1ewZrnxsGumCj6rFZ5oB/dl5JJuxNZzlulZP0VEntFFvVrNK+r0rGJg1ZAZFIJHIskTc+SyQSiUQikUgkEolEIpFIJBKJRCKRk43bJAQ4ErmteOl9/vAmz/uiLz3zqB77R+MlFz2dXuOBeqgakMr6Rpa4cd5xzvsAeMEXn8uRqjf33usfcAEAL7v4PwDwOw/834CvEPjlLz6HtFEULKcFU6NZz7aDcmf/eBmAdz3kj/iVf3l2qCo4Gko4jBMUNuUlFz09tJNJy8hkXD1e5dR8a079lKuK2iqW9TQoxlvl1FZH2V8YHRT0U5PQbyoDpiahtIqp0d7HvKP2TaQlkQbX9TtXhsooEm04bXkzKJfyjqq89QwvjeL7lg4ghWOYDLliYx2ASZGQpTWJMmzXGUXiL3MrekIiDDkVS2rK2HrF7ma1StUot7uqe2Bu+wA26NFXJcmCKj2XjRLaSSqngupeLcxnFhXlRwkLkLiwbKuAV6EiYdamtYKBLuipMvj392TFxCYcqXpIkYd9ODEptZOM65TNMpu14bz37uFJj7Ly2zk+3AsKf5EaKHzboldDbpGpYbg0ZW0wy55YSnyOQO0ky8nsXGm9+bss+vzfGDdUUbHbfpHCQqge2bms6ez30upQudJinaR2ktJops2/lnGVUjYK9n7Snuf+/eVmH4RKB6sordrR/1lOgaBszr2i9p+fpcR/1tt5pHAsZ9Og5GunT2uNbnIxbJOzAFAbFdR77bxHKz/Vyn8Gc11jnUA16sBc12xOcnppRZ5U9PUsS6KnKwZJSWnUzDda+8oEnVg++bg37LquNgPAWI1WPktDqfnzoLZezZkmBl/fAkWpUdqitaWfl3zpZ/7bru2fSB514a+jVc5kmgZF5bSMyq1IJHLb015zH3Xhr5MqiXGS7TIN1XhSOJZ6U7aLlKr248TBYkC/VzBMCyqjwr1IIg2TKiXVNdtlFu63qlqhpPXVZU3FF/jrnBAwSEsqM6uAs1YgpUNKh1UzdblOjB8jlcW0VQTSURfK5wtZAdPmfiOzuNQiaoEoBa6pCnPChiyYLu04J+XR7xd2u5doVe/t67atxfu3RX99P//OdoVwcxUDXVSn/UWsE3M5Ov7ebH490GYfOb+/dun34vZI/P1yV9HfZhdI4cKY1a5TSdu5//TzR/V/JLI7hdWckm2hZfvc1+RXOcFqMqHI/fNB954+vMbfv5smF6+drqWhT8mp+dbx3pyTgu6z0MnAydTXyJ2DWAEQiUQikUgkEolEIpFIJBKJRCKRyB2QE1IBcI973AMAIQTve9/7ePjDH36L2/rc5z7Hs571rNDe5Zdffkz6GDn5eOWXnwKAQfL6B1xws9X/4JX3bTvryfaNzH3zME6wrHfPMGiV/13e+ZDzQx5BJmuuHq+ghKPXqM1/cPV7nPulZ/GOc97H7/3Qe290/ZWVFFaTNVUNrQp7s85JhGFfPqJyktLOLguprMlUjUGE5WqrMAh6HbVC7RQ9VVE5SSprxrVXmG9WGbmqSaUhlSaona0zLKcFtZVMZRJUSRZB1niYbxU5S5nfX+M6IVW+jdYjcWo0106XGdcJ37d0gOnQ9ztPelRGsZxNOVL22Jt5pX9iTVDm+/2hwjqlsEgx825cZNR445vGu31FTThQD8P7rT9/IgwJs2oF1akoMM16WqyTKHZWBbR0lf9SWKyTvp+deZR0ZLJibDJv3gsUaFJZc+VonevHQzbH3n+ymCQI6bCjBIzw/wDXM15dVkroNedG3/9vpIOxDm0jIF+ZcsrKFoOkDEr/XFUk0uyooNDSoHBBcb+oguju7xvy+r8x/PHrZiY42k636n7rBNsmY7tOwzlunQge+oeLXvDM71aqlLXmumtWAHBWoPs1ZjNBDits2SgVtSXp1awOJvSTkpXmvM1VzdRodGfbtLRNXsC8P/9KNg3VNW0uQFhGWGonwzLgz99ulobrbKdrvH67vs6uURl1vZCVtGhlGZdJqP4Ar/ZcG4zp6Ypc1XOKRN3sVy3t3DZI4bjwsW/c9fg85sLzcE2FSqoNQriQCbDIw//25Rgrw3HL0pqqVuRpdbv11P/0436Xh33sFVgrg/q0vnlFLpFIJHKr+PTjfpdH/P3LKGtN10o+VYa9g22EgK2JvzcT0lGUCRvTHokywb+6sgqtDJMywTgZxoVeVlHVvrqsNhLVDEXDXoHEhTGgVaJr5f34k6Smmvg2smFFWWi0bryymwwA01QlOCdQmcE0050VyPGsqsCUTQVA0qj2ZbNMp8JgtwyARXX+3HvsVPVb/DjZeu3fUHvdNndU+t3QcrtUBS7eCUrhaIsVd/S7URF31fvddrtT2/2ZKhPmF8KFzK322IGvAOn2Uy+2H4lEAP8Z7KmSTNXIzifOIpH4Z8qJSUJ1dpsHJoUNVeSJMFSo8Hzdvdfel45CNX0kEokcS07IDwDf/va3Af+F/WSyM4Dx5jCZTObai0QikUgkEolEIpFIJBKJRCKRSCRyAjMA4pf1kWPN6x7wF7e6jVdf8mQM3rt5N1X+reE9P/wenvmFFwLw4n99Bm958PtvdJm2iuElFz2duwwOs3+ywum9DcD7Dg5VcaNtnHfx0wDoKUMiLVoYCquZGL+dtVVsmTwo67sKhHGdsZJM5pTsUlgqq9HSBPVx1SybCItl5s13Sj5is/JtS1xQQhdOB/Xw3t723DoBRlXKWm/mL9/XFX1dUlvF9ZMBAJtFjrGSRBkmJuG+y9cAcKTq8c/XnY3Ecb+V/WE7D1d9KueVFokwbNZ5aL9VeSlhdvjBd6mtorAag+CUdLOj7JBMbUIi66DYX6Sr7rJOoppqhJuifLdOYhBs1X1W9Gy/SGExbeZAs4LCar412ssVh9YZb+XQqL9wXi3nBIhBjc684mRlacKkSJiOU7jO7xPnIN0UiL7DJmDzpo+HU8qDKZPelFN7I/pNLoQSDi1MUKW1x1OxUz03t09uouq/bbNbQbCotpur7nCKiUmYmJRRU41ypMi5bmtpTknX+iEn2rC12cO2WQcTBYMamRrMRM9UiCsVZivBSXwlRatUVJKylly/v4/TjsHpPvdgtT9hNZuEDAyAYVIihQu5AW3OR21l8PSf30eOUZ0yqRKEcKzn/kfzlXTKVpVB48fc3R+mmdaqOqd1QqpryiJDCEeu/bEvG89mayVZWofpSloGSTnn/b/Ixx71Zv7dp/8vAP76Uf/vUecD71H9mAvPC69viM//5Ot52MdeEbbHNSrHo+UY3B744Y/+BkKIuX2usqicjEQixxcpHIky4TXMKsgGaREqA0bTjDSpMU7gaoVIZuPHpPIVYUWlyRI/JkxLTaINdZPR1FYGDHNDbSS1kWRJHaroALa2c4yRpH0/jjig1/fjX1FqsrSpNNSGqtLYWlJvpYiy8a/XDidAFQIcmHFTuZdZakCn/p6j3abZGDGrcmsRHf/7+ek795/C7ToO31h1wc71zV4vLrPYfpsZcLS2YGduwKL6f95b3NPNG1qcV6saiyCRhk801XuP/+RLkMLxsUe/mSd8+sV89FFv2bVPkcidlXO/5F0nhspnfiVUGOTMv1/Mno17qiJx/nNaWRmqnmUnYyPBYBfrfwTh+TKyk5gBEIncOmIGQCQSiUQikUgkEolEIpFIJBKJRCJ3QE5YBcCxoqpmCsUkSU5gTyJ3BF59/7+6TdtfT7x6+6ao/7sUVjPUJcvJlI2qF6a36qwbqih4wwM/MPf3K7/8FFb0hHHja99TFYXV1FZxoBwwbRTzqazR0rBR9VhKpiy1HrFOkQjLZp3T6/gT9lRFbRUSxzDxHuhHyj61lWxXKT1dBbXzqf0RK8kEy85fxScmQQrX5Ab47RvVGZulryQYJH6dma6prWRcpRwqBgybvmzXGfdcPUhpFf988GzSRg23no3Dtu3LtmZKjE7+ALCr52uX7TpjpHPW9HZQnVscUxKsk4xMGjIBDIJEzPvgw7zyXbIze2BXZbyTrOjxjlyBRb47WeOa0RJVpUl7Ff2e3y/L+ZRRowBPlWE09cr48TRlOk5xmwm6Ud6pKZgUTM8hahEMZYUR2J7huv2rjMuUs9cOA7CaTljSBdbNfP9vjN1UcDdE1z+z/burvhsZvz0Tk3D55l72H1qhLhWuavatcqS9CucEQs48e8tCoweWvF+il+bbNlZQp4a613gU1wqsQK8WmKlGHvbnk1muEZXELdWwrdi+1lepTJZSrk+G7FsZ0W/O28OF//yuZZM5f92gHmqqAEK+hpVoYdkuU1Z7E8Z1EqZLHEiLxM2pBKU0c1UBSloqo7BOMC0TbKPSXBuMKWuNUpZhVrCWTcJ+afu22zH68CPfCty48h+8ovDvHvOmG1X+tzzi71+GEDKoHZWwoKCoNA/661fRS/yY//mffP1Nau94kGpDZRSZrtGNH/XtqX+RSOTOwacf97s85sLzqN1MkdpmL0nh6KX++lkaxWg7RylLnlXhXrI2ilQZjJXkomJa+vGml5U4J+inJULAZOrvH7eLNOTKaGspav9YOZpkSOmoppIkae6TnCDR3odeKRuU++NxjyStEf2KUgBtHo0RyErgFN7bvh23sxqdmKDKb8cKY311uVazasB2nvY+78aKz1tv/O7yQPDK705bXK7tR/u6VejvVnmwMy9ABBfxo1UVLOYG7NYuYn7Mro2kqDVZU93XvqeafiYL+Unt/ccTP/MiPvqot+7ej0jkTkz7fJM0Vc+V8/fW3SpkxHzGF7TPPPNt1VZRuZ2VAe2yI5MTiUQix5qTvgJg//794fXS0tIJ7EkkEolEIpFIJBKJRCKRSCQSiUQitx9O+gqAj3zkI4BXfZx99tknuDeRSCQSiUQikUgkEolEIpFI5FgRMwAikVvHbfYDwHe+852bNN+11157k+cFcM4xHo+54ooruOCCC/jQhz4U3jvnnHNudj8jkePFSy56OuYWfuTecc77eMlFT2dvNgrT3vSgP+PcLz2LV/3bz7EnMbz8y08F4PUPuGDHetv5ATJZs2l6HCz7AKwmE2qr0NKwkkyCxdC4TslVTWkVqazZakJzU1kjhWVZT8M6pKqYmIRxnbGUTNls2iiNonaSlXRKqkwIQs1VhZY+vHdqEnLly9L3pGP2pn4bC6v53mQ1rKMtY0+1L7McFwml0STSkErDdcV8BdCoSunrKoQbl0azWWbkqqZ2KpRPS2G9tQyLQW12hzXPIjMLIMuSmjJ1GoPka9unAd5O6Pv614EwN2jds2j5s5uFzq6hwU5S4cvH21BjiUNJx1l7DvOg9atDCHJhNdZJxnXKoaLHdYeWAUizClcq0A7XlNhXSyBrEJXwVedNFpVVFlFIRAHbZsDXx94GYM/qiHusHqKvC6SzR7VRWixtnwutuwFLoK71z+KypdNsVTmHGmudKw+sY63AlApXKaibMK6VMXWtSJKaQebteIyTDHpNkLGSoWQ/kRatDIdGfUytsFt+O+VEYhOH2UyhFrNwZCsQU4mVTfigaYL3Rgml1lx9OCff4+11HDDIS7TwQbtt8O7iPmr/bz8z6/0xUrjw96ROQqh2NwxQNq/bUGFPzdj6bRj2itm531gHrfXG9HUV7LIkbs6eazFI8ImfeVGwAbox/u4xb7pJ87XURjWWEq31AigMqgkY3y78dvzY3/1n/uHx/+NmtX2sedSFvw7A5qRPnlRoZclUfSNLRSKRyG1HG7peNSHvSs5sXlQzZqTKoJSl3E4xRoZQ3zyrQpA5EOx0vLXcbGxqbX1qI9HKj5c+PNivsxylyMQgtQt3M0v9qbfGEQ4nHEc2/D3oYFgw2srBgSslNAHqopR+jDUC1zPIrAlYTyxSOpSyNzkg3iJ23Je0+6Rr3yObvrV0A3y787evu/csXRs+0dyfyKO0tYjCIRfuC7v92o3F9mZWSDJYMRk7O27dfrfHOFUGiePJn/01ALQQ1Ce/OUAkcpvx1nP+JLx+5ZefgsKixOz6MLEpZpfPrb8e2OY+3l8ntTRoDFt1zkAVZI3trUUisfzOA//3cdiiSCRyZ+M2+wHgbne7G+IGzBZdY/74rGc965it8xd+4ReOWVuRSCQSiUQikUgkEolEIpFIJBKJnMzc5hZA7Rf9t/T9G0IIgRAC5xyPf/zjefzjH3+L24pEbg2v/PJTGNsUJRxjkwRV0MSkDHTBO855H9YJ3nHO+27xOt70oD/jlV9+Ct+drgHw8587l+8bFFROkcuKJTU96nJdlLD0ZIkSveZvR6YLDpUDLIKVxCuVW4XC1Giuny4FdUMqa5aS6Q619rjOmBrN/vE+9vW2AVhOp4yqbEd42maVk0iDEo679A6HNjJZkwhDImuskyFMd2oT9k9XuG465OC0H7ZDSUtlFeM6YdiErPa1V1FYJ6idJBd12I424Oz66ZDV1LfdBhnvpjCXYhZe153ug31n8yfCYJBYK4PiHmC7Trlo42xOybbYk47IpK90aPt0c2j7112vEhYpLIVNgnJES8MjTvsWQzVlZPKwz+/aO8TI5BRaUzvJ0pLf/sPXLvlQXCOxmZ9Xb3uluywFpm9xqlGQKQeVwq1UsKVxtg29g3GdkMqaRFhMR5l2tEDgxWDkmcp8d/WZdRKLoGjCq0ur2L+9zHcPrmKNxBZNmcK0+b9nUL0a0ajgjZVobdDKnzMAVa1CNYBSZk7hB7A+HDNKDJvtLi8ySH0VhNMuKP1lLXDaIazwyTpN1QHOQSFxiWW6MQvzKscJo17GvuUR68IHg8tGndcq/Fv1fqoMpVHh/G5DgBNp5gKDg3q/U0FgO4pAYyXWCnrJTN05rtKmm2JHIPdiFUD3OEkxUwy2/NUj3rZj3ltC3qnaafvugxx9X5Jmv0yqZNflb2t+6lP/Nx979Jt5/CdfwqT019BhXjCpEoZZwSce+8YT0q9IJBJpUdJy4Y//TwAe94mX7hhfemnFtEowRuKMwKomMLhS9PoVSjqMFWjl5y8qTaZLLAJjZBg3p5Wmqv146pwIAboqr8EJTClJm/uK8TRl3/KIUZFR1YqsV4W2nRVQS0QpEc24KiqBzSwMa8RU4ZrppD7kXklfCdA+R7qF+7QWX3Ww8/6uq4jnKEr9xXuCG1Lkd98Lr49SdbDIbhWQtqkkaNu7oQoC8FUOlVEUtQ7zauVIpPWBv8oE5b/sbLsUbm78fvJnf+2YjeeRyB2Vl1z0dIbKf24TacJzRUsiDBaJbp4jFZZEGoyTVHI275XjdaRw/vmpeb5bVpNd778jHgcn1f655d90RiK3DSd1nZ9zDq01z3ve87jgggtufIFIJBKJRCKRSCQSiUQikUgkEolE7iTcZhUAz3nOc4763vnnnx/UfI9//OM5/fTTb3K7UkoGgwHr6+vc73734zGPeQz79u271f2NRG4Nr3vAX3iPfycYqgLb/La2Lx3x2h/0ORVvefD7j8m6WsV6Ig1DVVBYzSvv95Ed8734X5/BWx78fl70pWcCM9/CqU1QwnJ2fgiAw3WfscmZmASLQHYuCyvJxKvoVUVp/fSBLrz3vZhXa0thyVXN3ZcOsZ76CoC+LNmse/RUyWad02u8/tf0OCyXyJqN2qv6JzbFiorCei/9buXAajJmapKgYAMwRtJPSlJl0I2yadrkChyY9lnNpkHl1NcVUljGdUppVVDMt0r/xSqFLovTjJNUTpPg2xi7nLHJ+M50HYlj2Bwj6yS1c3x3sso3tvZxRn8D8Gr8FTXZNWegVcXvmgPQUf8H9RaGvXqLDeH34ekrG6FaIBGGofJKk0xWjExOT5UMdcFy7itGNtI+biOFvoHGv9fkDmHBDCzCCETR9FE6XGphS0PisBN/Thw4PPTHZQnGKqXfbH9PVSBn+Qddxf9iDkK7H9q+d/dLYX3VwqjK2Ci8kn6zyDlypI9ODc4CZbP8RCIcGOUagX6rtHFgBZOJQiz58zDtV0wrTaJNUMl19y14BX6rVOQuFXWtMJV367Vlo3yUwFjhlENoh2vE6aIWfn85XwwAvorCbSaU2wn7C8Vk1c/cSyr6SUlfV3MBV6k0SOXV+IuVKOAV8hbBpG6Ul8KSKjPXRi+pqKyiqBVSOHJdNftYMCoytsuUwmjSvgnr7NL1O26Vil1/48XPxxM+/eK5+T/6qLdwU/nk496wY9oj/v5lQa3QfgKsEzz0b36Df/rp/36T2z4WtOr/UZmFPJKyVvSSitLc5kWVkUgkcqNc+OP/k5/61P8NgBSC0ihSZchVWylosf0JRaWpak3djGVLgym1kaTaIITANOPKcm/qq7GcI03qkC+QaOP9+KXFWEm52WQRaYfSBpUY0sSvc5iVlLWmNhKlZuNtPW0rCEBYQTvMucyC9uM2vdr/D1gjcc3y3bwCf/+6s3Ktm++06OO/m4/+Dd4DHsV3H3YGPbZj5Q2p/nebf9f3F6oSFnN5XDMmGyvD+A+QNJWBiTRzWRCL6/75z50LwAd/9B1R/R+J3ASSznMjzHI1ErzKP5fV3DNe5RRjk1I5xXadAb5ie2+6zZGqRyJMqBYYmSz6/0cikduM2+xp9T3vec9R3zv//PPD65e97GU89rGPva26EYlEIpFIJBKJRCKRSCQSiUQikcidkhMmV3PO3WBIcCRye+A1lzyJsU15/QNu3GKq9dp/1b/93Jw651X/9nOhCuDW8roH/AWv/PJTAChcwveKFX7vh96767xtxUGr/G9p+/Lif31GmGadCAr6Q8UAgDP7R7hbfpDVZMjV09Xgy71R9UilYaALNirvgX1gOqC2kvuv7udevWtDu7msOFQPmVqvch6qAoB+8z94pftSemiujwbpMxUa5VYiDP2s4MzsCAeqIeAVEgrHZp3z3e2VUBmwnE5ZT8ZoYRk1KguAvKk+kEnBdZNhmJ4I7/0+MQnWyeD73/bN90fMTaucCv/AKzu+vn0qpdFeYd2sa1ynbFYZw6RkPRvzvfEK4PMVTs83WEu25/IAKqd8dQXzSniDwDiFRZI08y8qsNf0dtO/WZWAlXKunTW9zeF6wIFiwErqKwCu6dWU2wlMJC7x7amxxPYsekviFEF9JqYSJ8Fp5z1pl/12molmkid8u15HCBf8gTNVs6c3JlcVqaznqi4WMwBCnxuv/zZLYVRlbJYZB0ZDilJT7W8yIKYCO7CUCqgFrcWvHRqcwP9tmRndCZCp8VkBh733/bRUmGHJcFAEb3nw/sk+X8GRqZpB6s/Xyio2Jzmy7xhmRVD/lbViY9yjLhW2lijdaUtbrJGYNqPAChgahLQ4Kzh82H/ejkjHcDjl9OVNhkkZvP4PTvssJQW1k5RGYZrPobG+QmbRk1g12yGFC7kA1onGo75kNZuw3Xj/b5UZzglqIxmk47l2WhVlV23YVQ12Kww+/Mi3hulP+PSLKY2am+/HP/7/zLV9c33y5/xVm3UO0pJprXnMheftWjVwLNjNC/nHP/7/MK0zxuUsg0AIyJKbn+sRiUQitxUfe/SbAX/NcgvX8L6q/OsV2F+vBH/9aZmglWHvYJvNIqeX+DG+Moo8qaiMQnWq5XpNxRrAtE4oh/46ba1X+StpyfRMhQ4z9X07lgnp0FmN1RKrbVD6OysQtQDhUKmlHoXSOhw+w8daSaJn7cK84r99zGzV/t3xcVcWpnezA9qsnN28+rt08wUkbq6y8Kjr7Sy7G3aXSoPu+F87GfJyYKb8V9L7jrfr7rYv8X9rafngj77jBvsViUTmsUikqKmcQjoXnt0Ass4zbvucODI5prlvbiv5D5RDtLAMdEFPVTfpu4bI/PPHycDJ1NfInYMT8gNAtzrgfve734noQiQSiUQikUgkEolEIpFIJBKJRCJ3aI77DwCXXXYZGxsb4e+DBw9y6qmnHu9uRO4EvOzi/0DlFKpRvLzhgR8AvEI/ESYoXDNZkYuaLZNjEYyM9zBdVhOUsKw3yuqXf/mpADf6C31X7X/exU/jDQ/4wDHdrtc94C8AOPdLz2JPsn2L2+lmErzuK/+ea4oVDpQD+torEzaqHi8756MA/PZXf4arpusAXLW9BsBqMg6/au/Nt9mbjnjLg9/PWy79iaB4+LV7f5zzLn4ay2oyp3bPpFeNdRUT4NVWxkn6omRJTue8XBNhSMRWULSfKQyFTThQDbluOmQ1nYR5C6sZ6IJDRZ/N0lcBrGZTaivR0pJKw7bxKujDZZ/NKmOzyLnP2rXYRn2mm3OkpyqyoCyzVE4xMhlHqj4Hyka9XfZYTSfsyUYMm/0HMNYJa+mYbZNSGs1pvS3Aq7W+snE6dx0e4pR0i6Gahm0EguK/pXKq45HvL9u5qJHYOcU/QOEyDALrJEmzj9p9vmVyNqucVBqu3PDH0VmBKAUunynvVAlOiaD+F5WfLozAphZZCoQR1Nr3RU0lk2IA2uEEbNat7M7xnWHFYFgwyEqWMr+dq+kULQ1LuqBqtmtcZ4zrhKnRVEax2Xj9b2z2MRspySGF6Tlaob6TIEsJjrk4e1d6f36Eg1pBU9WAFRjlvC//sKmySAz1JGGjVLjVMVr5xpW0ZMqfJ91zMKemp6s5H3zw6o4sqUm0oTadjIp63usYQEhLmvp5tzZ7pLn/TKRJTaZrSqOwetZ2ZRTbpCTK+4qWtd/nWhlwIigaW7p/6+azslHlaGnJdcVVG6tkulmn8v3NsppEGXRn2d18k60Q1FZSOzn3/r/79P/l38e/v5gZoKUNatSbS6teDcrFTh+X0mKH3/OxpK3CeOBHXgVAWWmWehmjaYqSDtn0ZTWfYBF8+nG/e5v1JRKJRG4Jn3jsG3nMhedR1Jo0bSsMHX1doYVF7nVcc2QZgMl2ylmnHkbieMje73Dp5uz5zDrBUlKwVWXsycdhWl9XXLm5hrGCPPVji2nuJTJtwrV7XKXUVqKkHz/L2t/j5GlFbbyC3WoZ8gioJUjns4cciMRfb02p0InBWEnS5NnAbMwSYqeSvq1akAtVAqJTidCd3i7THcsQDmsVXYRw4RkjtNFZh2jGv+70lnZ8rp08albAbn7/phmDu5hONlb3HqBV/4c+7JItZZ3g5/7hVwGf//OBh//ejnkikcg87XcKu/GaS55EImvGJmOz9s8yibTNc8OsMns9GWMQvOOc9x2XPkcikQicgB8A/uZv/oaXvOQlAAghuPzyy493FyKRSCQSiUQikUgkEolEIpFIJBK5w3PcfwAYjUY45xUIZ555Jne9612PdxcidwBaH3zTSH8VlsJ5tabENl6XMJQzH76XXPR07yWvLBbBuFGAV1ZhVcnIZGSyZk/iVdpjk6GEV3y/5pIn8foH/H83u583pBC4tdxaxUC7D1/3gL/glff7CK++5MmMTBp82k/LNsO8r/iB/xNen3fx07hqvMZmnXOP/gEAVvSEl/2ArxZ48X3+Psz78i8/lfv0rmXbehV+q1Zv1U6tv2qrwNq2GQpLLiumNmHaHFOv/jckouYuic8LKJ2ikpqxTbnP8rUcafIISusva7VTLKdT0sZL3ivVSmqrkMJxzXgJgPVswjAp2Ztv8+UDZ7DcqNSNk6xlE87uH0Ypv0+OVH2uL4YcnvYQwnFa358rp+QjMlmTCEtPlkGpddD0SYTllGyLwmquHq8CXmV1z6XrmZiUw1WfTHoVm1rIAwAobIJpFGJAOD5KOozz21pZvx/afXzRkbNYz8bBVxJ8/sKBcsi/Xn8mo0lGcY330pdrJU471KZClo2n/d2nuFHi1Xe1CL7rwvprd7ohMCnIcePha4EMRCERDmzPzqZfm7NVKbZkj80lfx5cWa+zOpywlE3ZapT+R7Z7lNf1QIKcStrCBmFAaqiHFgQ0wwfCivC+mghsq/RH4KRDOOG7bcRsfuErFBj5feu09G32YePwgFYclw9LlnpTtPLXErWgjK+dpNdRHmaqpk4khzaGmKlC9/17g37R+BQrVONTXE4SlLZoZ1ldHQc1fqa8Cj+VhqnR4XjXRrJd9FnKCyozrz5sfX5bX+a2f6bJsmhVgkpYEmV8tkBWzqkFU22CSnE3dWCX2krGdYIUjrL5HMG8t7FuVE4Af/eYN91gezeFTzz2jTzqwl8PfWvXo5r1JMLe0OK3iiOTHg/48G8yGvlry9rqNs7BSn9K3lSCgN9mfRv2IxKJRG4NlVX0k5Kp8fcMqTJoYUmb7JJJ398nbbheqHK75MjpPGDtewAcKIYcKvqM6yS8D7CebTOuM7QyGKvDeFYaxXiazmXUCOEQAspKkaf1XO2WEI1KH8DfymDkTNEvpMXix78kr3FO+Co4mK+wEzMPfpiNF11P/u7fnk7VXKP6X1TkS+F8dVvjm9+tPGvvY9ttXfT8nxsncbvmCMiF/rZY56vquv1R0iKcm9u3TviKilQbUlXPjU3d7V7cpkVkHMcikVvNb97//+OVX34KBjlXbR85Nux2Db09c1tWKkcitwR547McW/bt2wd49f8ZZ5xxvFcfiUQikUgkEolEIpFIJBKJRCKRyJ2C414B0P3Sv5sFEIncFP7npc9jz0ZKIr0SqDIKi2Rik6CMLqxu1OWOuuOjroTDIhmZPHi5A1gkVa3IZE0uK0aNX1/hEgqr2ZuMgkL7jkSbJdDy6vv/1U1a7uZUNfRlyZbphf3XqtSX5NSrkhvP+1adpMRMhZzLipyqed+SCjOnTsqFBQt3z67niO5ztfCe9pVTXFcsoYWltJpUtp63llxV1AsKp2EyZVl71f+91wTf2fLtjIqU6zeHfC9fRjVKtF5S4pzgrkuHWU+3g/erxDIyGVJYlLCo5sf+s/IjHKwGKOHIZM2pua8YKKxms85Z1lMSaTlY+WqENb2NFBbrZKiKaPeREjA2aVCBb5oe106XOFL2yFXNMPHbUFqNlpZvbuyln5SkjUruLv0jHCwGLGdTDl65FlT9tlDgwOyrUP0mv+CaPsIBQuAShxj46So1mGt7FHsceiRIRh11n1EI45X6ITOgFr4KYKTR25LxplcZIh3XXdfjeiMQTV6AHTTHqVH/t+I0n0PQOWDNa6u9NzApmH7nfefncVYgXFOF0L4lfJ+cnuUCkFqYSv9mc5yn0x4T2QPhyFYKysP+mkBim3kEWEiHfr/kWUVVK8xEQy2oj/hKhyObGb31CXlWhXyBIjFUtUIr2+QF+GG4n5SMqxSrKzanOVmjzNTKUlnHdpmSqpmfcqs4F8JhhJxTOuKEr2xqjrFzglxXMxWhnCkWSyMRAnQ22VURCDPvYSkcuar93x35QNcnWQvLRx/9ll3buaUk0oTtadeVNRUAWh57xeLPf+5cjhQ5xvVJtKHXfC4kjqLWlMbRT0rypjJIChc+Z5FIJHJ74x8e/z94/CdfEq7lpVFI5Uilpa8reqm/19qc5GxMeyhpOXvpMCvaZytdM12m31S9pcqwmvoMgERYRlWKFhanTfD1LytNog1a2ZAH4JzAuaZ60QpUMyZOpilJUnv1vpxl5lgjMaUkG5YUWxm659cvhEMr37bo3Bssqv9n03f31j/a/3Oq/eZ+tK2mE8Ir77tjYstcpeAu1XFt9QDhFmJ3VWi37Vb9nypD3VTuhepAJ0M1n3OCYVYEv/9uv9p7hcXxfbEyAeD9D3vnrn2KRCI3j8Vn7EgkErm9cNx/AHjYwx5GkiRUVcW3v/1ttre3GQwGx7sbkUgkEolEIpFIJBKJRCKRSOR2jnUnmQXQSdTXyJ2D4/4DwPr6Oj/1Uz/FRz7yEcqy5IILLuA5z3nO8e5G5CSm9e5v0cKglQn+8lLNFOSZrFCNsmXL5BRWc6gaMFAzb3TrhK8GsLDZqP/Be6b3VRm859/0tZ8E4CX3/dvbfBtPRl5zyZP4zfvP5yQkssY0KqdcVOTtPkcEhXv7P/hjJpvjqLrKKqxX12Pnp0vL1KUkwnBK6jMLNuo+ZHCk6lFbGZTXWlhq21Z9zJTER8o+U5OQSsNp+SZ37fuMgc065/rpElOj2Sj9eXHWYIOlZEptFX1ZhgyKwmpOSzfpq4KxyRiZLEzPZM2RqkdhNKPaT0+lYVwnqJ6jqhRJU6UwVFOMTXz2hJ1Vr0jhmNiUa6dLHCq83P3gZECuK7bKjNrI4FO+Z3XExjhHCsdh1+fMtSMA7J8sc2ja5+r9a9A3MG7aLxQMa2RiqYpmSFgtcbUE5bjXXa6laHyDv3PVXsSazzgoBgrVeOmriaDZ/chaYhuhv+k5r+BXjnpo0NvNsXbS+/FL/xJ8foCaCmzmsJmDVqXf3jc1KkI5aRRvifPT1ExRF+aTTXWAESEDwCUOJ91M/d/imu6oWdmBs8LnGdSSctoPlQE4idPOVxEoR7HZHGeXIRKHc00T7c2esDhgWibhfCsLjZ1qxsJRjBNk059Me9/eg+MBSlrK2u9z57zisjSK0iiGmc81ER2lonEz3/1EOsAyqVKWmjyL1XSKRVAaRWUUqZ5lTYBikBYsMu8F7Pe5xoL0WQCaebVj7SS5qvmrR7xtR1vHCmMliZ5dt4/FQ8CTP/tr4dh86MfeDsC01kzrhLXe2K9TzrJL+mkV8gda1f+HfuztPO3zv3Kr+hGJRCK3JX/3mDfx+E++BIDSKrS0Qdm+lPgxQK36e489+ZjaKr6y6au2c1VR4qsLaytD1tKB0t9rVNaPLe39XKvuV8KSNvk801rjXFN5VumgzE8S7+lvrUB2MmSyvMRlwvv996qg9lfKkmiDkvNq/zavp1spJhZU7qG6oJlnN6//3fzy27Gv7Vubh9S2oRfU/13Vv+6MH2Gebt7OUYawsqn2bCsv2mebg+MBxglyPfP6z5OmGrHj/9/dht3U/+22+z76sezZX3gB7/2Rd+3eoUgkcrN41b/9HK/9wQ/domVffcmTSYThlff7yDHuVSQSubNz3DMAAF7xilcgmju5V77ylVx//fUnohuRSCQSiUQikUgkEolEIpFIJBKJ3GE57hUAAA9/+MP57d/+bV7+8pezf/9+HvvYx/Lnf/7n3Pe+9z0R3YmcRExsgnaKolEfWScZ6AKFDWps6wSZrDFOYp0MOtW+KkiEobA65ASAV2krHBOXkAjLQBfN/CWZrJDCt21OkhT3l3/5qWzWOWdmRzhQDYNi/uZ4998U3vH1Hw9VF//p+z+1Q/3f0lZgTF0SFFAGiWpyGAySgZwpkFNhwvvtMTVIcF5N1iKxSAFKFJiOsipJDCt6TGE1uaqDwk0jSGXN1CSspeOgsB/VWZiWCMOS8qrpdb3NmdkR36aY9/c2CCqrw7wwU0yv6DFJk0dRWY0Slr3JiLFJKVzSTJdsmywo69eTbb+PbELtFMaJuUoHYwWF1UF1B6CVYbPIGU9T6lqS5V4BdvDIEKksK0tj8qTiimv2+gUcnL5vg/7ylPFmj5WzfAaLko7xNGVtOOa0gc8ouOLIOhtH+uzbs8U3rz4FZ5rfiqcKsWxwRxLILG6fP25VLTFHEtREoLdnqn41FtjUgQWXWaq88a2vBWpLYTOHMLNjZzOHGRqEANce6vZt6RBWYPudY+G8Eh/h32vnwwifA5BZXLrQzgJOdZRxrbpPOhgYnBFQi66g38+mfdVB23cnHa6UCOUgtbimL6KpqsjyCtPuQ+f7ON1OkXp2Pl97YJneoCTRxmcDNApKiSNRBiUto2mG65zrrddvZdzc9i2nBev5JHj/tp+7UZWy1hsHL+FUGfq6QgtfYbOoElxU1y+qI7vz57IOCvpjyU996v/GOhX2Q6umlMKRSnOzvPef8OkXNyrU5vgIh3M5iTKk0gR1bK4cqarp64rayXCtqGrNIC3o64q/ftT/G9p9xj/+Mh94ePROjkQit2/+7jFvAvx1FXxlpO1cy0uj6SclZSdDBkBLQ1+VjFzGqEpnynNVM64Tcl35PJrK3+OYJgvAWkGimxwj6XNvpLRoZuOLtQJjJc4KqkqRZV7xnmiflyOlQylLnraZUA4lvYJdSTt3PW/X09IdsxarBbr/h3EFt2McbOfTWKwQc4r/VJpdvfzbdhbHycWKAwBcU5XaVgW0tzIdP//aSSbNvpXCj4VCOLImhyZX9dzYeKPrbNsXllTWUfUfiRxjXn3Jkylsyou+9EzAPyO+5cHv52UX/4eQQThUxVyFwMu//FTAP3MqQZgvEolEjiUnpAIA4GUvexm/93u/R57nfOUrX+HBD34wz33uc/mbv/kbDh06dKK6FYlEIpFIJBKJRCKRSCQSiURuJ3QtQE+Wf5HI7YkTUgFwj3vcY9YB7btQliXvfe97ee973wvAcDhkeXmZJElucrtCCC6//PJj29nI7YqpScmd6qh3DLVTc57ulVMUtfdeV8KSSa8a6suSRE04NfHK57H1/t1Tp9mo+8GvPW/m957zrlGqa86778eO9+beIl7/gAtu0/Z/+6s/0yji0xvdJ31ZUtgE6bzav1UzBGW83qIvyqDsl43qv60s6Cr7VauKat5LRR3mXVZT0o5K/6pqHYVjKZkyMf4a0lMVEsfYSQqjOwq2yqveVMVash3U/okwSOfPgW71h8LRFzVGzvrZVVcpbFCgXWtWfK5Bo7Ae4isGrJOMTUHhEjarPCyfCMN2nTEyKbaR0U/NrHJis8oYlf683S69tD3RxudYVP5ammYVzglG05TSKLLcn8/GSu65coDlPVMOlAP2pr7q4DvjNfadMuKs/DAHyyEAp+abbO/N+LcDp5P3S8rSt91fHbM9ykCBqCXuSKNOEQ6bWBACmwjUtFXGN28bAWXn92YHpm9Bua4TLmIqvYe/xXv7N/OKqlm2Uy1AYnHaetW+IGQE+IMw8/oXRbOsnrUXcgFS69u3wr/fqO6FdL7qoakuoG5yB7SvWHACX2mQNPOLpmEHzohZNUKtcH2f89CqFJ0TyNRgK+nn7WQdlKWmLDVpWpM1qsl+4+1bWUWa1KSN4k9LS2n8tbCXVKRtjkRSeFWnEyFzolUA5rpG4siTWRteqTiv/pe4cE3dUQWAI1Vm3s9YOD74o+/gtkIKh25U+m0/b07WwM9/7lwOTXukqt0P/jOR65pUes/kqUnI8ftlXCcMk5IPP/Kt/Pznzg37Vgq3q9//+x8W1f+RSOTkwV/zNKMqZVIn9MI1saKvq5k/fPDMl2hVURrFKb1RmJ5KX2XZ5gC0lYuDrEQrw7hM56rWWh9/IVyY1znp1fkS0sbbH3yFWlWrUEHQZrG091em9uNq1+dfLCjdW1V9tyqgnTeo/8V8xUD7f3eMq52c+yIn7Jfm3rDr9b/bOnbb/6FtK+eq9br90c3YXBsZtm0pm86Nhe2+mssV6Kyn+3w0/55FCxuqCCKRyLFD4uirkr7y9/Ajk/Mr//JsEpGyJx2F+X7nq09gy/icuby5hhwsh/Sa5SKRSORYc0J+APj2t7+NEALnHEKIkAfg3OwGZWtri62trZvVbttOJBKJRCKRSCQSiUQikUgkEolEInd2TsgPAC2LX9jfmi/wuz8eRO64pKomEXrOF884gUFRGz8tUzWJMCTCMFRTctEq+h2pqINKZklN/PxOk4uaqfNZAK2Xe2GT4OX+kvv+7XHbxts7r/iB/3OT591frtKXJZVT3l9fNp750lcHQKOgch2vf2oQXl2fBjV+o/ZfUDElNN6ywpI3aokjZsDYZEhhWU+2OUIfIGQ7LJLhVVbXTpcwTrA38cqMVoVmECHHIBFeLVw5RWET+k12QVsJ0M0oAFhSUzJZsb9cZWIS1pJx044hkYa+KMma8xO8+mtPOmLVyXCOXzY6BYnjUNEL84BXfNXWe8Vn1BjbVdk58rT2arJG1X7W2hFqJ/nOeI17LV3P3TIfvn6Pnv8/kxVnpwcBOGQGXFcuc+pZW1w+2ssVR9YBuOvKYb7FHkZO4LY19JvtlY0H/eEEJ8E2hVtOeyW+qAWyEDg9my4qEVT64P36bW6Dz75oKgCcFaEawGmHGjeK/lphM+tV/FbMvPyFC17+c1UBTQWCy+xM6R+qApzfhrYvlfLzGIlzs774agCBcPj8gW7ugPPtCe1wTTGKKCW29MdRNO1LbbFVkxfgZlkHzgmskei0pqoVm40iyPQEqTLep77jgT9MSmrrlZe58kp28J+ncZ1y1dYquvHHX0oLSqNYTouwDEBpVKPml0hxdC99GdSJzbJupixs+fnPnduoIM0xVcR/7NFvvsXLPuHTLwZgWvdYTotmX1U7+vfLX3wOf/Ijf8ATP/MiACZVwlJa8Jx/ej4f/NF372j3Aw//vVvcp0gkEjnRfPRRbwHgiZ95EbmqKZucEykcG0WORZBIw3rm75NLq7BVzun9TSqrSORsvBjqgrLJ1dpsxortMsNYiRK2k6Hi1fyJ9FlcVZMTIKVXyhsrgt8/+Huwbn5Ae+/T3v2392ihwqCj3u/6/mu5u8J/tzybnZUPM4W/FC5kAOxWPdBdx2JFXTvdill77fi5W/+AOZV/Kg15o9Rv21+sXJC79MW373ZULmhhyWTNOx9y/q7LRCKRW87rvvLvyaWZqx6XOHrN83B7TVzRE6Y28ddDp6ib6VoaKqd2PPNGIpHIseCE/ABw9tlnR7V+JBKJRCKRSCQSiUQikUgkErlhnJizlrvdczL1NXKn4IRZAEUikUgkEolEIpFIJBKJRCKRSCQSue04oRZAkcgtoVsmVzWWFGt6jJHe4qMvfajs0cphu/ZBLZmsyKjmprVhsFN304OoI57f+eoTANiu17mi2Ms9B9fRVyUbxtvx9GXJ1LlQSt1a6CTCYJFYx1zpJBDCma+tVwA4VW8wkEUI6TWNjVAuK/qq4GA1wCLRTal6bRWF1eyfLLOejZk24cBSWHJVAZLCaq4pfPunZRtUTs0Fq63rUejnmDQESfdlESyNxjZtrIw81kn6smRiEq4rlwAfJLwv3SKTFUM1Defk2GSMTIYUjgNNIO+haQ/nBJmu2a7S0O5cqJ0y4e/RNGNtMObIuEee1KjE77fltGBqEg4XPf5hfHf+Ud4VgLsvHeLM3hHu2/te6MeqGpNnFd8t17nX8Dqmxg8V3zq0h7utHeI7cpWNaojc9NNt4m1h7FqJUA57oAmfzS1qW2JTh0ug3ZU2t4gV48N4m8PsKonQrR+OoN2FohSQOG8DVAnM0B9P0QTxCuf/d02wrzACJ739jiwkNm3aTCxUElEKXLMbXd3YAMmOzQ+ANLhaQiUQzMKMobEjcgJRixBoSOm3w2ERnaxjegbhwBYK0QQGUwmEtkjlgv0PgEoMSvvAP61NCPxLpJ+mhEVpS9Eci1GZMakScl0zSAtS1Z7nPuS6l8wCxGrrAwxHVerDgxvrhb6uSGW9w8bAcsNqlTYgsf1stPNbBKW9fdxWPPMLL+Sjj/qD8PpPfuQPeMY//jLvf9g7+Q+f+/8BcKTMGSYlH/qx83nmF17IVuk/+4MmADgSiUTuyCxe55782V8jlSaE3o5qP1hKHLKxzMvkLDRWCouRAotgKA197cedOh8zrhO2qzTYXZTSW1+My5TJOEWnfsyyzuGsQCmLMRLbWOvluqaX1JRGURuJ0u3YP7P36VrmLP7t++fmLHkWbX8W598tyLelDQGWu1jqdF8v2vN095Vt9mtrpec7PutXPbvZmOtLO76HvuN22P7sZjsUbIaERUtD0syvpeEd57xvRx8jkcit4zWXPAkl/DNs1bkftggqp5iYhKHy9rFbJmdkMpRwc9dVACUckt2/x4hEIpFbg7zxWSKRSCQSiUQikUgkEolEIpFIJBKJnGzcPqR6kchNpDQa1flFPRGWgfbhjkkTptoNlUWYoMaWGIyTJMKH67TTuyp0JWxQkvtf6/263nLpT/Di+/z98drMk56N2gfW9lTJD61cSSbnqytsE3KraILdWtm0IxwDKexcAJJxglxWnKo3gPnAXYVDiTYQeMIZyREOVEv0ZTmnoMhUTSZrjlS9RvVPqAQY6ALrBPunXgX87e11fnjtSvYmW6FCoXJqLtC4rQ5pFdrGSaYuYV1tA3BVsYfT0iMksmYtGTNt0nGPVD2uL5cY6JS9yVaoNumrAiUsY5Oynvg2zJLgu9urLCcFuaoZNVUA4yplkBac1t/iusmQYaP4lsKxXabURuI0nNL3VQujKiWVhsoofnB9P6tNIHFhNet6m6lNWFV+2rbNSIThnvm1TG1Cf923rcXZXLu9xFnLG0zLhGLaBNxWApc62ErAeoU/gN5Q1KcVuEqieh3VoBNeYS/A1Y1y3wJTBT0DE+nDegGRWmRqsLXyav02eLdV7DsfFByU96bJAdYOKyw0FQDOghAWjEBOm894z/j2pMMZSThVBCD9ZUSNJbYNC1bgVNPXrkhetsHGfptC32RTXcB8v4V0IBwq6QQPO6hLjZCWpFMBYJ1gKSnR0nJ40g/Kw7yp7HBOsDnNWe35sMbKqPDZ6KoGcz3b/2lTFaOF3aGAvKksqg3bfllEUNj/7x/9X7eo7VvD0z7/K9RO8sEf/QOe+YUXAvAnP+IrAQ4VfZ7w6RfT176vfV3xoR97e5hncf5IJBK5M/FXj3gb4CsBpkaHqsOlpOCMfIORSUGAbu5ZEmFJVEkhLJWT4Z7NOEFfl/R1xYGpr/xU0kIJaHC9kroTAmylH8sSbRhkZZi/aoLqN8sshP4mTiCEQ0mLa1T5QFi3xIXxc3GcmgsBbv/hdq16ayvdgDnF/26VA4uhwm3l6WLbUszG5Fnb/n63topUmrmxdLf2Z/2YH79DgDE7Kx5i4G8kctvy21/9GQAS6T/TY5MxsSnj5hlzYhL2pGO+O1njPsNrANis8+Yz65+Fk+71AbmrY0HEXxtvrFL59sTJ1NfInYNYARCJRCKRSCQSiUQikUgkEolEIpHIHZDbdQXAaDRia2uLpaUlhsPhie5O5HaAkoa+qoL6SGFJOkqbMJ+wJMJ4ZXgj6+2quLse7a3Kx+Knt+qbRd526WMB+LX7fPzYb9gdiDd87ac4pfF2LWxCJisSYUhFHaorjPDKhq7CqqXru98es9bn1DhJKrySWeJQ7PRIlMBp+gj04XvValBD+9wBzZX1Hk7PN/j61qlhmXGdUDvJKfmI03u+wiARhu9O19g0PSrr+/39/WuQ+AqSVTWm77xSrfV2NI3ff7vOcwbf5spyD7mosUJS0SjehONAOWCzzsllxYqahHVaIVlr1P8AK3rCqdkWANcWS4xrryZZzqYMk5JTsi2WdMFlm3v9PpMWYyWnr2xySm8U2unrkqtGq5w22GKgC87ODoZ1JsKghKVs1CZt/y2Cdb0d1GQ/se9rXLey3OQrCC5vjl25maEPaOq+wynnffuBetUfKzFV2KlCrPj95axA9yqskehB4wPcKOSdE7h0poJR2mKNBOFwtfTqeYBCgnagG9/91hc49XkAwkhIjc8TwGcGOOc9/UVbdVD54+q0m8sAcM3qhXKYoUE0+QLUAmGFXy8O11YGWO/r76RAVDLM74Tw3VI29NtVCicdUvntEo3PrzUSZwQq9YrINtNBCkdl/HFZyqZBvZ9r791fO8m01sE7eCktKK0iVzVl472shaWvq6AYXPQvLq0mlfVN8P6f/6y1fWn9oq2Tc9UAx5Nn/OMvN32EcZXx+E++hPVsXj3V1xXLyZTzH/ruXduIyv9IJBLxlQBP/MyLKEWTC5RN0NJw1/QQ1xTLc8rzTNU+s6k7PAgAS6pq9ua+svDAtM96f8x2lTKRCXXj6e+cYFomIBxp4jNtALbLjEFasF1mWCt39f63zJT/zgkszCn0uyr/3ZT7u7GotAewTeBP9z2/frHDj39HBsAuq7SITh+96r+tGgjavG4s0S5+/91xdmd1Q/PcIxxamB3+4pFI5Nbz6kue7J9FhcU0jgEWr+S3TqCFYaNa9tOdoLKSew2vo2iqxyunSPDPfcaJHVXvkUgkcltwu/kBYGtriz/90z/l05/+NP/4j//IVVddhTGdL4GU4uyzz+ZhD3sYj370o3nGM54RfxSIRCKRSCQSiUQikUgkEolE7sDYjvXbycDJ1NfInYMT/gPAeDzmv/yX/8K73vUutre96tW5nXKJuq751re+xRVXXMH73/9+zjvvPF74whfy2te+ll6vd7y7HTlBLKspQyVmCnExrxAH772XCBOU512Cb7xjRxXAbkhhMY3ve9742P/+1x+NEpapTebaaH08b8usgNdc8iSKJgOhr0peeb+P3GbruqUsySlLagrAEdNnbFMO1wPOSg/Njkfr9Y/cse+9/79ZbHb2frPPr6uHnJ0cQgmLwnkFWoPCcqY+zB61xab114f2+Nwzu5Yry71kK14Rtb9Y4Rsb+1hKCsZ1GpRSa+mYtWTM4arPxHgf3JHJ2at9JkCbBeDbVhyqh+zVW1RWBd9G4yR3TQ9SOUXfJhwSAwAOVgMGukQLn0vRZiQoLEnj274kG093p9mrFd8t15mahLsODwNwarrJteUymayxTnJKz18/r9hY5357r0HivDKvufE4MB1y5mATgNqqcIxa3/+pTUIFwLbNUFhyWZGLktN0GfbtPr3FEdPnqu01vv+U6wD4SnE69bL03vpWBA98J4CJhsQi+rX3/QcYK+rG7980yngpvTe+VjV1rTCNP7BSlmqqG5V951xJrPfXFw6ZWEzZ5BEIi0N6/30rZkZ3HZW+aXIBsAJRCuSkqQRIG4VhW2VQCV85kDR5BNpXFyAcopa0Er02v0D0DSgzyzUIlweBzvx5ZZRX/wsBTjhf3dDOJR2mUkyKhH3LvnojUzXDpMQ6wbhOmBr/+Z8a3XgNW3JVs679cbQIRlVGKg395ril0jRVAU1Oiutet3b6DXdZ/Hx2b2Tb/AwprK9GWGj7Gf/4y7z/Ye/ctd1jTbtt7/nh9/CMf/xlDhX9kJfRcmq+ye/90HuPS38ikUjkZEYKR1/76+qRosdAlWzXGT1VhvtQJVy4x+h60tfWV3iWzMYWLS21lWhhOW2wxUaZA1BUGildk6XkqJrKtVxXfpq0KDXLhGozl5pehv5afLWbkjuzbRbV/92/u2Nfq9xv/fRDtVyjsJ9X6s/aaueZTWvbkWH+dmy0TuyoJJBilhUgw32l2NFGdz27VTT4fluSZv1aGt5xzvuIRO4s/Mq/PPu43Oe95pInkQiLFJbK6nBNautOV/SEqU3oNfemS3oani/bqnKFI5GWykoSOfseozAaLWPlTiQSuW04oRkAF198MQ960IN4y1vewmg0Cl/8CyGO+g/8DwRbW1u86U1v4kEPehAXX3zxidyMSCQSiUQikUgkEolEIpFIJBKJRG53nLAKgK9//ev8xE/8BAcPeh9qIQTOufAjwNLSEnv27GEwGLC9vc3BgwfZ2toKy7fzX3bZZTz+8Y/nH/7hH7jXve51QrYlcvwQOBJh5hT/Cu932aprVONp7jMAOvMJ6/2pG5WNWvCOn61kptJRWCoUuaiC8lxhMU2VwZyKRxgKm/C2Sx8blOEGyeF6cIuV+m3uwNQlvrJBilCJkAjD2y597O0uk0B1jk3lVPAF7+6rXFY+D6CpxFg8Tv5fJ9OB+b8BTtMbzXszj1eYqaYSWdKnZElO5/uHY1lOmDqvDv6qOoP942WmRjNMyh1KqzOzI6G6wCA4ZAasq22+W66z0qiuK6cYqilKWPqyZGx921I4BhQoYamEQjV9HOoyKD78PhLNfjEsyak/x5rzbcsmpKLm1GQDBoR15qLilHSTq4o9GET4TDzklO9QW0VhNVoYCpMBsDcfUVvFajLhjPxwUP6D95pcVdtsWz9v970uFklOyT5d88wzvsCXx3cB4NC0z9XlOjYziK3ZsKI2FTZzOA1uMyHZ54+FaT3+BUG5rwcldelV7QjQqVe+KGVJexXlJEEqy6JQXUiHKVVQ3ZMAFlTerqM5b5zAGu/J7xr1DdbhhIDan4u0yv9a+OoA2+QDtG3njZe/ABIDlQjbQb+GJqtAJDass61EaAvbdDLbdgm+ugFQeQ1OoJRh79I2mfLbv5wWpNJQO0ntZPDdL63PypgajXWC2s5XNFlEuCZuVgmpNKEKpqtOrJtpN0T4bC3s/O5nZaZetEjR7l553KoA3vPD7wmvR1V7zm/PzRPV/5FIJHLTaHMAWq4er3Dv5euwTgRlaqtAV3j1vumMAy2tqr4yiqW0YFwnlFYxSHyFWk9XTOoELSxCuJAVlSgTxrW1Qed+xUp/X6AMpSHM3y6/mAEAR7dg6N47Lk5fXL5V/89VEsyp8bv3sb4yQs7dy9pmDG6XmY3DbVtt5YGfu72/mGULtMvZo4zbiXT0ZMVbz/mTXbc3Ermjc1vf573q334OgL7y1dfdrDsg/P+tyT6sk2yUvgp9q8o5Ld9ACsdQ+ZyTRPoq8J5k7lkwUzVamFCpHYlEIseSE/IDQFVVPOlJT+LgwYNzqv6HPexhPO95z+Nxj3scd7/73Xcsd8UVV/Dxj3+cP/zDP+Tzn/98WPbAgQM86UlP4t/+7d/Q+oS7GkUikUgkEolEIpFIJBKJRCKRY4BzAncS+eqfTH2N3Dk4Id+Wv/3tb+eyyy4LKv7l5WXe+c538gu/8As3uNzd7353nv/85/P85z+fCy64gBe+8IVsbnpP62984xu8/e1v58UvfvHx2ITICSKRNYmYnbZdBYwM/nuORMx887qK9KD+FzaohrrzGNdRowuJdYJEGKYuIWGm3LVOMHVJ8HovrPfCHqopEhnmTUXNylHU1DeFoK5yjr6aNkr4WV8Ncq5KAOC8+37sFq/v1vKubzySLdMLqnuFZaim7NVbc8cEGuW/sHTFV61yQjKf7aCEC9Na7ILnf3gtZu0D5M16DbPjuU+N2LLef/Ye6fUU6wkXb5xFaRWHy75v3wl6quLM7DBJ08lD9YDKeSX/uh7x3XIdgPv2vsf3qlUO1wNW1Ji+LJvtqenLIrxumdqEEVlQgbS0nvtKuODHv6rG3mNXMp+jAFxbL7Mn2eK01HBAL4XpB8ohiTRMTBqU5FoY7t47yLoeIYUjF76PfVFi232l2n0lwueju58NMpzfqTDcO78GgFPP2uQra76S4iuXnwVTv6xRDjWRmIFBZjXlpq+MEKWEYe2PfasWNxJTSUyVIqQjyVqvTIVzgiSvcY7gmS8EKG1QyuISE5QzQjhc6lV6jtmNlzUCiVfo2/ZQKHBG4bRFSIJKH+VV/6GqoGorBgQMvFJfKMtcOYIToC2uksH7X+imYqBTdVAbUNqS6JppkaIyfzyVtjgr6OUlua5YTv250delr6BxkjStg1qwr0tKq0mVYVwnHC56TfuKpWxKX1fhHAJ/LTlS9lhNJ3PXzba6YDeCalLM/72b57Flplz8kx/5A8BnALT/H68sgGd/4QVIkbOejTn/oe8+LuuMRCKROyJpk0k0rhNqK5mYhEzWc17/LYXVIRvAOhHuHdrcmkFSUjtJZRWZqinqpvpN2nCf0lXqF0YjcSTKj+9JU3G2XWbkTTaBlhbNvG//Dr9/dnrld7Hs5sm/qK5vq+dcqGg4+ryexapVJRyqrQ52IrzfnSZFpyJAuF3V/m073Yrmlqj+j0RuW/rNc1v7OW0z3Nq/D5ucg+WQa6bLjOuEM/u+Wr2nSpb1NLgRAKGi3yAobBKmJ3J2rx+JRCLHmhNydXnHO94Rvvzv9/t8/OMfv9Ev/xd56lOfyic+8Ql6vV5o6+1vf/tt1ONIJBKJRCKRSCQSiUQikUgkEolETi6OewXAZZddxje/+c0Q6vtbv/VbnHPOObeorQc96EG8+tWv5mUvexkAl19+OZdddlnMArgDI/Fqm9ZL3SwagkNQ6cyWmVeptqgb8b32bTmM81UFrcp/5PLwfvAqbRQ8qsko6Kq021/4by5vufQnGDQ+q6mqd7yvhCXBYIVXa7fb/I6v/zjWiZAN0FYI3NKsgN/56hN42Q989CbN2+7rVl3f9imoHFo1dlD/y+BvuojCBmV/q/5fPGYGgUGQ7FjWoZoqjLYPU6tZapT5QFDpL6kJxknuv/w9ri+HbFReSb1/ssK+fMQBuRR89/cmWxyuB/zTxt247/AaTk+PNNslWVETvj4+jQ3Z45TUVybdI73Ob7+o5nIktnXGuh4xtlmTadH66HaU2eGcskxJyahAzFRllVOcqjexCEqnWdfe73zL5KSypraKZT3zj+ypkpHJUMKyUfe4W3p9WI9ZqK6QTcaFRc59xqRzM9G7g1Xl1zl1Cd/Xv46DxYCVfVuUlR9aikmCK3PQlqxXMW787sVSBYdTbH/2OanqFD0okdJhrZh546cGqRzldoKrJUL7vnrv/wSVGXRiMHWT0aEt1nj1oVQuVJjYWjbVAJ3tUQ7Rq7HNsqI5P50R3vtf+O10SRNQXwvY1pAbROIQzbEwU41IGrW/nu1LV0uSYemrEpq2TaVwDgZZSTFNUbo5ztIilMNYyWn9LQZqdq5aBD3a495mlPjP/NQk9BsPZYBeUqKlZbPMGBXeC3+YFQwpdyj9W8WkFnZOsekzBVRQRna9/lNpyGTNxCRz/sjdnIBnfuGFfv8uVA4cDzJV03flDpVmJBKJRG4eH/zRdwDwxM+8CCsE+ycrrKaTueqq8y5+mlfrCxtU+oXRlEZTWkXZVAmURgXP/W5mTWE0PV01HvvW32fQyXMSlsJoqqadPGnU/8JnAnXHra6Hfsuin3+Xxfnnq4pn07WYZR50ff3be1q18MzRfdbYLWNgl0eXuayA7jTVeZ5YbG/utbBR/R+J3Ib89ld/hqqpclJNnpbCZ59cVy0DcPVkhUNFn1QaTu9vcteez7ps8wsrp0Ib4CsIrJMoOcsRqZya+x4hEolEjiXHvQLgX//1XwHv+Z8kCc9//vNvVXsveMELSJLZ138XXXTRrWovEolEIpFIJBKJRCKRSCQSidw+sG72g+/J8e9E77FIZJ7jXgFw3XVeESuE4O53vzurq6u3qr3V1VXucY978PWvfx2Aa6+99tZ2MXI7JhEGxexXcm7AI6/rl39TWcwGaNtBMKcyN4ig9m+RwpKIGusEFSq0lwjDu77xSKZ2Xqd+Y4r8F9/n7/nDbzxibtqiqkgJi8Lvl6rj993NBmhVTO3fBknl1FGzAtr5ltSUviz4/tzwV996EJsmb/ogec69Pje3zB9+4xHkskIJxYoah7501VWJqEmCItjnFyTCYJwIHvQtakFltdtxNEikc1TNZSxp5kk7yv+u8nhVFuG4GUSYb4/c5qz0EJdNT2O7zhjomfL6+ukQiQu+tmdnh1hRE+45uJ7KKUbNPqmcoi9L7pYf5CvbZ3B66j0ft23GmcnhkAkxaPIATtMbHDF9DIK9ahzyAebUZ50sCuWs/x8bfN2nNgkVBdaJoNQ/WA2oraJyEukkPVU1+8ewoiccqIZkcr6iRDUeuTPP9/bzNf8rsRIOhVewtMcPYJ/eZGxTzuodYWo0k8qf698e7UVoB5sJk6lCDRuvzKmGlRq5oWcfYemopzliufIK/MZ3P8lrhHAkvZq6UOjGM99a4VX9dj4MqppqpLbgBE5YTNOONbKZPtuekCngBJQSjAib71IHqcUZEaoOqDUusVBLrHKkvWZ7KoVsPPzbfrY7sNxOSfslvdyfV1tlj0RbhIAkrZmOvEpfpYb1lRH3WD3EQJVBdW+dQHeVi01XZOMRmsqaRFiWE1/tMa59zkKualazWQVIbSXr2Xweybzy0c3UhML/Pa5TaieDgjOVBi0shdW7qilrJxnoMqgia6uoO9VJx4N3PeSP+OUvPod3PuT847bOSCQSuSPz4Ue+lZ/7h18F2HH/8IYHfiC8ftGXnhlet2NHO64YK5HKoKQfxHSTL1BXfsxKG6//bmVZe0/SVgi07fiKA0cqTWhfilmFYnuvPPdehzYnoK1eO9pYOKse6OZRddrqKPlny9jwbLKYD9D6+ctdps1e76xI6PqB75Y5IIXbcVwikcixReHYsGnz2lK4hMpKrpmucEq2BcBdeoe5R/8AI5MxMSlD5e/Dc9H6/UtGtFXy/jsChAE7czVov+dQu1UPRSKRyK3kuFcAjEaj8Hp5efmYtLm0NAu/3N7ePiZtRiKRSCQSiUQikUgkEolEIpFIJHIyc9wrAPbu3Qt4C6Crr776mLT5ve99L7zes2fPMWkzcvtENp573b9bgl/8UVTji4qg3bCI2XKOoLBW2KBSb9U7XsXeVeR7up7/7boSYUjUrFrAOMm7vvFIjJNMXcKL7/P3N7rti31f3L55L1ATqhna+cr24+58ZUSr9E+EwSCxTpAIw7pu1QoliTCkokbi6GuvXp+6hA9884eZuiSo1BPhFekWwal6g28WpzXTd1ckJaImF47SKUynHYtENt7/XT984yRp05bp/G5pmwwAnAaadQlfBdAqyboKiva1wnX8Vmvuk+1nSU25Qu/j0pHv+2aZk+uaw2Wfw2Xfz2kVd+0d4PT0CGObcrgaAD5PoFXG32ewn69tnw7AWXnOqhpzpj6CwmFb39tGIG6QHDID7poeAGa+/+1+hpk6LGm2r50e9oETVE4HT8llPWViEqo6ZzWZcGqyGfb52Gas6AkAlZtd/mWj7Ec0/Wt2jRJm7hxXWKSTQfXWHoucirumByhsQmF1qJg4/V6b/OPld0ccTnFGYLZnfRfK4VYqMM06pxJRC8TB1HvuZ/74F5sZul+DcOjMBN99IXwOgK0UlRWhz0I5bCWRiaUuZ1UxQs7U7bZR6DsrELXAKYewImyXsAIKAZVASD8fgBjUUErf90pSNsdC9yrqQpPkNdaKMD8CpDY+z6CZNBgUWCdwDopxgs799WI4KLjH6iHW0u2581YtKBdVo/IrrA7XtEzWc9VBozqdU1LmqmY1nSCFCx7N4fh2qifmfIydRWrH2KRhWq6qed//zvwW//fEJHPXIi0s7/2Rd3E8ier/SCQSObb0dcnU+Pu8l1z0dADe9KA/23VeLQypNFhVM27GyUzXFLUmUQYtLXmTbTWpEyqjguI/17P7xlzV1E6yVWYspf4etASwzXJCkTXza2GxCLSwC/fDR7/nT2V7rzh7fuiq/9vpyS6q+9A+81UCfn121/XKzj1eW0HZfZaQwoRKh/lKgNlyu70/f08biURuC/qywGj/+btqus49etczMjkHyiFZcz0bqoJE1qwl20H1D/MOA/2mGrz7PJuIunmWZUfuR2Qe5+Yrv2/vnKi+HjlyhAsvvJBPfOITXHTRRVx22WUcPnyYLMvYs2cPD37wg/nJn/xJnv3sZzMcDm9W29dddx3nn38+F154IZdccgmHDh3CWsva2hr3uc99eOQjH8kv/dIvcfe73/1m9/vTn/40f/RHf8TnPvc5rr76apRSnHXWWfz4j/84z3ve83jwgx98s9uMzHPcfwA444wzwuv9+/dzySWXcP/73/8Wt/eVr3xl7geAbvuRSCQSiUQikUgkEolEIpFIJHJH5dJLL+W8887jb//2b6mqasf7VVUxGo248sor+cu//Ete8YpX8OY3v5nnPve5N6n9N7/5zfzGb/wGk8lkx3vXXHMN11xzDZ/85Cf57//9v/PSl76U173udXN5rUdja2uLc889l/e973073tvY2OArX/kKb3/723npS1/Kb//2b9+kNiO7c9x/APixH/sxtNYY43/dfPWrX80FF1xwi9t79atfHV5rrXnEIx5x9JkjJz1yQRk+916r/O+8P6cCuhEvPYv3ArULimeEnFMIGacatY1Bzs27s30lLLKpHjBOzlUhSBwIy0AUwev/eff+LADv+PqPk4p6h+qom0/QVfd3p7fT2myA9r2ugr7NJvB9mfXPtzVTL3f3TdkoEyy+aqGtXoCZmqHNIhg3HolrumIgi5AJ0B6bWR8tqTDB115ij6piMsgdlQFh24UNygmogxpZOYsNVRgzP8USybSZP8WwJKfcRR9kbFNOXfP+/V/cuhvXF0vkan7w/Mb2adyzfx2ZrIJ64+vjU7lLfpihmlI5xaCpltg0PQ6ZIctyypKczqlBtkVGYRMULuRDpMqE49HO2+ZJVE7PVbz4PAwbvPi3mjyCRBj2VysAHKl67E28L2VfGNb1iKlN5tT/XcK+bc55P23heIjGR18w89MXvgrg3vl+Tk+OcMj4yohrylUeda9vUlrFNw7v4+C31/z8EsSGxuUWWnV9LXCZxSUO17XYnShqQBiB7dXIpK3QaT5L2vgsgMbrXyjvA2wqBcqFTgrpMNsJql8h2jZKNVP/2872OHwFQmYRysJWc5NRJP5jMawRpQwVE3WTO2BqiRCEz44rJTaFtF+FyoVpkSCkY2QzZGJZX/a+/HdZPsJKMgmf+d18fq2TVM3nVDfKRS3gmuky49r3sXaS1XTKuE7CMaytv/b0muqkuWucOMo1UgDSkFOhO32yra+zcNS2U43jJLWT9NUsQ0MKx/kPffeO7YhEIpHIycWf/Mgf8POfO5eNshfGkkWWmwrDzbqH1AWZrEOezZGiR9n49tdOcqTw9yxKWDamPTJdo6RFmvl7DuvEXAZA3lQVGCNxQlA1lX6pqsl1Hfz9d6NtI4yNyLl7vDYPoOv532XHuHwUr/+kqVZe7IcSjjc88AO8/MtP5fUP8M++L//yU0NF3esfcEGorqitYjfaPrWZVpFI5Pjwa/f5OOdf9qMA7NNbXF8vIXHsTUdkzTPbkpoytil95a+F7XPV1CbhuU01t+ASF963qB3XkaN93xGJ3BCXXHIJf/3Xfz03TSnFPe95T0499VSMMXzta1/j0KFDgP9y/Zd+6Ze4/PLLee1rX3uDbb/85S/nf/yP/zE37YwzzuCe97wnQgiuuOIKvvOd7wBgjOF3f/d3ueKKK/jzP/9zhDh6JURd1zz5yU/mE5/4RJi2vLzM/e53P8qy5Ktf/SqTyQTnHG984xu5/vrrOf/8WO19SznuGQArKys88pGPxDmHc44PfehDvOY1r7lFbb3uda/jgx/8IEIIhBA86lGPOma5ApFIJBKJRCKRSCQSiUQikUgkcjKgteZnf/Zn+cu//EsOHTrEpZdeyqc+9Sk++9nPcuDAAf7yL/+SM888M8z/3/7bf+PDH/7wUdv77Gc/O/fl/73vfW8++clPcvXVV/OpT32KT37yk1x55ZX88z//M+ecc06Y74ILLrjRL+tf+cpXzn35/6pXvYr9+/fzuc99ji9+8YtcddVVvOAFLwjv//Ef/zH/63/9r5u1PyIzjvsPAAD/9b/+VwCEEDjn+K3f+i1+9md/lssvv/wmLf+tb32LpzzlKfzmb/5maAPgN3/zN2+zPkcikUgkEolEIpFIJBKJRCKR44tr8mJOln/HOwMgSRJe8IIXcPnll/OhD32IJz/5yTsE0kIInvzkJ/P5z3+e0047LUz/jd/4jaO2+7a3vS28XllZ4ROf+ASPfvSjd8z3kIc8hI9//OPc9a53DdPe/va3H7Xdq666ire85S3h71e96lW85jWvod/vh2l79uzhD/7gD3jWs54Vpv3Wb/0W4/H4qO1Gjo5wzp2Q+sFf/MVf5H3ve1/4Ar9V8T/iEY/gsY99LA94wAPYu3cvg8GA7e1tDh48yMUXX8zHP/5xPvvZz4YKgrac5FnPelYsBbmD8t3vfpe73OUuAPy3Tz6MtdPyubK4xbDb7uuupUVr8dMu09K1z2nnW6R0msLesNeYFN6eRgoX7HYkLtgAdW1XuutY7G8i6hCGO9+vnb/XdcNzbwzjJImoGchiPkjXSQySyqm5dSrhwvxbphdKE9vt2DJ5sBFq+9xyfb0EwLraJhH1jjLqXJRhWulUaDMRdbC1UR07IG8NdAP2T7gQoNtug7c5sqQ005u2rqmXePzdv7ajjc98+56MXcp1tR8k91drwcooa8rdN+o+dbOfTkk3w7JjkzG2KdcWS6wmM0+8wmo2qh5P2nMRd0sOhP01dZojts9lxWkoZnZM63pE5TRLcsIR4we+gSyYupSxTcP5tIhxku+W6wAcrv1y5wy+zaoac2Xpg9f36S22re+nQfKg3Jfo9aW3bJkLXWZmAbQbBtFYWvljXjpFhT+Oxgmmzu+36+slDtcDvjddBWBi/Gfomxt7Obg1oLy+B/027MrBVHlLoH4dbHSkstitFAyQOJyaWfqgXLAQkmkTqFfL8L4zIlgFMVWo1QKcIO/5bZ5OE28fVCpQFld3bITazODEkuSNfVYtMRspGAES9JoPzK4nCSqvcUZgjUQ1fam3UkRqUVmNbEKItfbvVZVieTjl9KE/j/bm2wx0gcLNlQG3IdBSOKwTIWC5ZaPqcajokzY2C1o25cZGB4uevq4YJgU9Ve2wOdvNGu1ogemF1ZSNLYF1Mlg7lEYjhUNLs2t70QooEolETn5+/nPnooVlKfFj37se8ke7znful55FbRWVk5TNmDU1CaMqDRZArbXc9eMh4zJBCEc/rVDNGKaF9ZZAC5Y+Uji2qxQlLM4JEjUb+1LpA4a7Qb7WCermPn8xQFcLi5amY3M3b/+jO2GcbVutvU+XqrEG9fPN2kqECetqLX9uDudd/LSmnyYsf97FT6MwO20cM1Xzhgd+4GavIxKJ3DTe8LWfCq9HJmdkck5JNllR42CF2z6/Fy4hExVFY5XbfX5rv3dY/L4hWO12rlPnfv8niMx/F/TAP/5V0n0nj+NHef0mF/+i/wL8qquu4qyzzjrBPZrnne98J//pP/2n8Pc3v/lNvu/7vm/HfGeeeWbIXf21X/s13vrWt95gu294wxv49V//dcD/4DCdTknTdMd85513Hm984xsBOPvss7nssst2nQ/g0KFD3OUudwlf/L/tbW/jV3/1V2/CVka6HPcMgJZ3v/vd7N+/nwsvvDB8iW+t5TOf+Qyf+cxnbnDZ7g8Gzjke//jH8+53xy8XIpFIJBKJRCKRSCQSiUQikUjkaDzxiU+c+wHg0ksv3fUHgOuvvz68vv/973+j7Xbncc5x4MABzjjjjB3zfehDHwqvn/e85x31y3+A9fV1nvrUp/LHf/zHYdn4A8DN54T9AJAkCX/9138dkqe7av4bKkrofvEvpQzp0lqfsE2JHEcyUc8Fqbbqfzmn0jFzy+ym6O+yWDnQxm5VTs1+pe+EAO/aBrOwr66S2iKgUfAmomZss/BeIgwWEbYBAOErBVRHgeT7JnZV+7evF6sFlHAhzLedJxE1+S7BbQY51353mwaNoqF0CtW08x/v+QX+9Js/4qsIOh/VqUvIRUXlFPv0VuhXKgxTl1A5FdTm7TaBVxLnogx9adethJtT8x+No6nifduCUjQBcc5gELuq/wEeebdv8plv35O7JQfCtC+O7s6eZDsou85KD4VjuFH3w/7sq4JE1hRW863RXnLlFeNaGk7JtrimXmFVbbMkvWouEZaBKBmZ3FdmSD//2GaclR5k6pJQ0bBle2yZnLHNQqUAwKnJxmzf2ySc57VVnJEf5j7ZNQxEFT4vR2yfJTVhjx6xKsesylmlQouhDf61IeC2Daebw4EShjJMnoU4IyRLwredJyUDWZDJilGdkzXbeXq+wVXLa4xOybh+PPTHR9dcc3iZ8nAOY40Y+n5LbRGrBabw6xCN4t8ZET7ZzgpfEQDgBCqrMYWeU95X0oVptmnDTDWuFn5TJ3p2pagdTjuy5QIhHdW0qVDJawzgEocoJPaanu/Tekm9ldLfM6YskllftQ39axU9ptmX1vgqi3b7S6u41/L1SGGZmJReE6bbhv22y7chwSOTsln1mNaaYVLOhRtaJxjq+TBe3fmM7KbSrzqVUO31wyBCBQJAIg1S2EbRacM6+9qvvz0H2/+1sJRWhXM5EolEIicvH/zRd/Ccf3p+GEN++YvP4Z0P2Vl9nckahSMDqmbc18KGcUhLw6jy91KDtKCyktpItouUpKmSM1YySEuGaTHXdl9XPgi4TnzFbVOJlqt6rrIAIJU1FoF2wofqtpWFjZq/Vf+39zhStPeebi7EV+F46zl/wnkXP21Xlf3i9Fa531YB3FJ2W9cbHvgBXnLR06ntztDQV375KbzuAX9xi9cXiUR255Vffgpria/4Bv/cda/8GlbVeO7Z2t87y+aZU5LQ+X6ifc4ODy/z1fute0C3Sj8Sua1ZX1+f+3tzc3PX+YbDIYcPHwagLMtd5+lSFLOxWwjBysrKjnkuvfRSvvWtb4W/f/qnf/pG233CE54QfgD41Kc+xWg0Yjgc3uhykRkn9AqTpilvfOMb+cIXvsDTn/50kiS5wS//wf84kCQJ//E//ke+8IUv8Lu/+7s3+EtRJBKJRCKRSCQSiUQikUgkEjk5cYBzJ9G/E73DboQrr7xy7u99+/btOt9DH/rQ8PrTn/70jbb7qU99Krx+8IMfzGAw2DHPxRdfHF5nWTYXHnw0Hv7wh4fXdV3z1a9+9UaXicxzu5DNP+QhD+FP//RP2djY4POf/zxf+MIXuPLKKzl8+HD4VWdtbY273vWuPOxhD+NhD3vYrr8iRe74JKImEWpeGS8sFrnDyx/mff9bjqYWP9p0g/QqILfz/a4yWnXU6ovZA5XTJM0v++08SlhyYYLPPEAmKpRwVE6F7fPzd7bBzbz42z4vZgBY55UGXVWCdR1ffWcX1PYE3/1WUZQ36nHjZFDxA3zgmz/Mf7znP3P+ZT/KdqOG3zI5q2rM8+79Wd71jUeyZXLA+84noqZ0iqypgljct+22AHPvGyeCCt0rzmfZAGH/N+p/dROGV4MI+/VobLmcPXI7/P3o5Uu5ZHKXoIxvsxLaapGh8or+kcmRwucC2MGs4mSzzrlmuszp6QbX1KskycFmn5cYBGelhzhUD9kwXkm+kkzYMH0SYZg2mRNb1u/btnqircoAX5kBsGH6jJp9XjnZVFXU5MKy3FQdKGHZsj36omBVTubO3VbJnTdKNYVr9pekW0DTquaMaBQuHWWLwlKh5pQrSlhOFRusqDFbuhdyCvqqZG+6zfcPr+Vr+nQArh0PybOKQmUIwI389qenFUwnKTKZqekBZOawlSTp1QjpZqrBxJClFb3VmnGZsD3256jOGhWitvSyprpg1VHVinI7gcx12jaoRr2vleUeZ10LwDe+dyp6tcBZiSlTbK/Zhxsp2aljJhs5yaAiX/HHqqoVplI457MMAEztj5lODcv5dM7r83DZZy0dB/V/l/Z4bdb+ejGuM6a1Dp7/4Rg2KkggePR3Vfy+rflrWe0Udu76aamtQktDT5Vh3dYJJBKlKio7+yxNTUJfF7M2mt3S5gVE//9IJBK5Y3D+Q9/NC7743PD3L/3zL/GeH37PnPp8RU+aCkdBuGVTvlKstLrx3p955SvhcNJRm1lgYiINovH/b1X+ALWV3udfOFbTScgYGNcJWlqOVDnLSRHa1sJgnSRtqum6dD3/Yeb731X+g/fXh90V+btNP9p8v/3Vn+EVP/B/dn3v5vCmB/0Zr/zyUxg1auS2v1E5HIncNqzoCQoXqq8TYVhV23N5dkB4dmtZzNYzTuxaFeRz+vz0TFRzuYGRyG3JX/zFrGpMa80P/dAP7Trfueeey8c+9rGwzMc//nEe+9jH7jrvRRddxO///u+Hv88777xd5/va12auDHe5y11IkhvO22znS9M0VCFceumlcz9ORG6c29XVZWVlhZ/+6Z++SeUfkUgkEolEIpFIJBKJRCKRSCRye2X//v03e5nbMjR4e3ubt73tbeHvn/qpn2JtbW3XeZ/0pCfxohe9iLe+9a1Ya/mZn/kZXvrSl/KMZzyDe93rXgghuOKKK/jgBz/I61//+hDU+7KXvYxnPOMZu7bZrT44++yzb1KfpZSceeaZXHHFFQB8+9vfvknLRWbcrn4AiERujEzUpELP1OtBmTo/X+ur3/2VvVVtw07P/JbFSoKummaHDzrzqv8w31HU6L4KYOev/hJHd6pxwvdB7OLt3/VmP8o2dJnaZK56wLgU1VH/d7chETWpMDuyAyzCVxI0q7umXmnmN8Ff3oqZqmpJTndUYyyrKds2Cwrho1VbVE57D9Zdtq09ft3KhZvLjXmx/szdL+HvrrgvAKvKD1x3zQ5wZbEXgIHeYklOQ2XJN6anAbCut71qv1Fs9JTfL3fJD3Gq3uDvD9+P9dVRqKJo99uqGnPE9Bkbr+rekD3OSg4xkEVY/13EQRS2yWqQ4bhsmpwN02ef3goVF+C9d89ODwTl2mpTMZC7mlXpFSyJsB2/f0fafi66an+8d233s2UQzXnpUM7N8hUw/3/23jxMkqM89/1FRGZVdXX3TM+mZTSSZkY7FgIJC3FAQkhosYQEGLMdlgMGfPDheDmcy8UYDEcXLMPVgw261pXZjC+XxchwhAEDBrEcLMxFCKEFMYu2GY0ktMw+3V1dVZkZcf+IjKis6uqZkTT7fL/n6aersnKJzMqsyqh43/fzThIcXWdiBny3PB4NlVFLvFomMFkfoW1T9LjfQDNZxKKRFr/OEtqbR3A136bW42OYaU0+PwcFyvj5nXKkIz7P3+WazlZ/DPRITnuqznTDH2NVnv/OalCOLDNsnSltiA5c4Y+ny3vnrMs0TjvqIzn/Yel67th0DABLFkz6WgXb5mGOnKE7Vbp36pbOjjr1+R3yriEZ8edZe6aGLRTaOEzpAJgYa9Hq1sgLzY52g9GaVzBsnWnSTDK2ZyPMT2f6ztVUWzpFwkxFWdQueup//971Moxryiv47YATYGekuoiq/naRUtNFv/OI4ADxj61T8TzXytIu0lhrIDoQygzlt/3izXzmt/+fXbZBEARBOPCpfp6/7Rdv5h2/fAPzkt536FWnfx0os/DL7x/tLCRQd3m8zwSv6M+tpmYKCtubrhQ45++1Em3JbVnzSjlaeYp1ih3dBvNq3uXYLQy51aXLwH+XNfH9BDPHvd/g/bqv19Vzwqbld+xciv4ny55Q/weuPuNG3nnHawFmfVcLgrBn+OjqSwFIlaOpO4yXzu/gxg6K/+rvEqHPNthPLdB9Nfr6+viKSj1AZjnmhR6WXs2xg4FqW5+KUn1X8ehPh3e961088sgjgM/p/+AHP7jT+f+v/+v/4sQTT+Qv//Iv2bhxIx/+8If58Ic/PHTeU089lfe+97288Y1vnHN9k5OT8fGTSXeZN2/e0HUIu4d4BQVBEARBEARBEARBEARBEA5hvvjFL/KJT3wiPv/v//2/71YG/5/8yZ/w1a9+lVNOOWXOeY488kj++I//mN/7vd/b6bqmp3vCwEajsZM5+xkZGRm6DmH3EAeAcNChle0bNbdOR2VyIIyiV5Xog+r/wdz8wflwmprK+5wDYZ1GWVJVRJVu4VTM62u7lFo5cp+qAsr5q/nzqSrQ+GmhHgD0cv3NwD5CxW0QpiviOudyNFQJioMCU+5nL7cw1ArQ2KgCD20q0HSdier1CdPixvvP5HUn3s43HzgDgNXtYzi2toVvrzudCWPjvNO2zoTJ0fj8/9D2oIzwjgYG8sd3tg96TvdAf86iV6MPujYMjl9uOI6zjtsw5zYmrf8COjbdinWKUd1hoZkCoKZyHssnaKiChupy2shvAGJdgKVmK8vSLbTK2ggFmkXJFK9b8v/xy5nlMcc/nJdtm2KwHF3bXs6v2NBdzIn1x2noGQBGVS8PfpoaDfx71Ui6TJhW3FZSnovHjmxmUTI1a7+auqfmL1DUmK36r9ZSKHairsicpkDPztPFUlO9LMzgxIFQv6M3b6oKMD1XRqfM8T1pyUZYAjXjp2+eaWJRbJ1uMrl5FNrldVSzZJsaqPEMZzWq7udXymEaGfl0DYyFUuFPriBxoFxch0scyjjMSE4BJCP+2B61cAfza222tJsAnHOEtyhOFTWmsgabp0bpdJI4f95OMI2CkXqXzBiSUu1fq2d0Oyk2V9TH/LyF09TTnCPGfR2GTuH32znY2h6hmxpGTBZdNVo5cmvo2IRWXovq+njMlfMqxvLY5qXysWGyeP638lrM9E+Upa7zctnq55qK7+d40omvD15DSZmjrI2LqpaprIFF0SxrF4Q2aOPzlPe2+v/qX1/B+37rX/bqNgRBEITZZNbE77FB/H2J/z6wTpXqev+dFtT3zimMskx3auV3kP8urxmHUo52kVAzvVz+buGXtSi0crSLsl6QKWJdnLG0VytJ43P+B+8zh32/paog1XaPKf73NuE+3t+7+8fyfSgInnfe8Vo+9uwvD33tg3e/lA+c/o05l/3wqssBaJR1Qhoqo6k7sR/btulOa24Mc6n3UgN603qu9mJWvYCn4nQXDmx+/vOfc/TRR+/vZnDzzTfz1re+NT5/znOew1/91V/tcrkNGzbw1re+le9///tx2rJly1i5ciXOOR544AEeeeQRHn/8cf7rf/2vXH311fzjP/4jL3zhC4euL8t6tSqTZPd/lq7OG2oBCLuPDAAIgiAIgiAIgiAIgiAIgiDsYY4++ui9mum/O9x5551ceeWVdDp+oHzlypV885vfpFar7XS59evXc+6558bIoBe84AVce+21s4oG33rrrfzJn/wJP/vZz/jNb37D7/zO7/CjH/2Ic845Z9Y6m81mfNxut3d7H6rzjo6O7vZygueAGQDYuHEjt912Gw899BDbt29nZmbmKWVefeADH9gLrRMOFKJqvIJF09BZVPf05fZjozI/qMfnqhswDI0j1dmsaWF91e0EtXNN5X25oqnKsei+aWGUf5gbIbTTL9NT/etB5bvrqbTnyv+s5qwOzjNMiWDRMXcwZLoXzqv1q5nkbVfjmw+cwZUr7/ITHjiDCd3ivOX3cfP6Ezk23QzAY/kE07bOqO701ReoVdaVWT0r198o16eECI6KaqaixvW5AfoeV9T/PeeEf97YRR2AV5xwOwA/XO+tbaOqy2ipbO46E90AmTMsTbaWx83n1G4pxmjZOkuSHQAsMZNYNE3d5cLR1ewo3QWTtsG0rfNwtpD5Zoam6sR1ouGhbCFL2QZAaop4vEZVN77n1hksmt9kC0hVweLUZ+AN1mDQQ4T86RBnRJUC1ecW6G3TP86ciSr/vvUoCw5MqAnhiHUbqtdtgY7vaXArjDY7rGhsZNtYk63ZaHz/0nkFqc7JbMK6oxexfnIhAI9smaCra7jttZ6yH3DdlDxxqEzhxvAuAPCBwtMJGIcaL6/pVgK5Ip9KUbWCk47aCMCxzW10bMKzJx4GYHHq2zhufDb/ovoJ3D+5mPsfXQLA8mM28fiOcbLcoBRMzdTLY+9IajlHLplkW8vbFWsmx2gbX09DPn9KnD6d10jK8zmoG7Xy57S1PWcA0JsvL+stJDkNk5HoYpYbIHfetRGU+zq0kQKNxpjKZ1S5XutUn0qyaxM6RULXJtRKJ0HN5OTW0LUJiS5olLUBRkzGp377c7POkz2NqB0FQRD2DyFvP3zfVPnIGV+Nj99z1yvp2IS6ckw5FWvTjNf8/U9Rfj+Frl9wpPXq2/T+W6eo6YKuNXG+rjVo5WiYPH43pcqSOU1d2eheC+swOApUeb/ov+/qOueaZ31lzx2cvcjVv76CRPl7yrBfhn63sSAczgT1/zAnwDD1/wfvfikWRaoKmkOcsh2Xxv667/f39zPB92+GOQNi33VIXx7o61MF9f+seQXAu8acm9ulfqBxILV17dq1XHLJJWzf7pMHli5dyk033bRbroT/9J/+U/zx/9xzz+WHP/whaZrOmu/ss8/mxz/+MRdccAE//elPmZmZ4fd///e5++670br/2hgbG4uPZ2Zmdns/QoHhwXUIu8d+HQCw1vLpT3+aT33qU9xxxx17ZJ0yACAIgiAIgiAIgiAIgiAIwuHMunXruOiii3jiiScAWLx4MTfddBMrV67c5bI//elPufnmm+Pzv/3bvx3643+gVqvxt3/7t9EdsHr1ar7//e9zySWX9M23aNGi+PjRRx/d7X157LHHhq5D2D322wDAhg0beMUrXsHtt3u1bVXtr9STHylzzj2l5YSDC60cqSriCHzXmZ5ivRwpT4FUaTKXUDgVXw/LFENGYnVFeV5EhVB/Fl+YnmqvZO9T6CuHoVcTYFANYF2/Qt2iyZyJdQQMO1elx3ZU3Q8KzIByvsrOFAh9LokBhUFQj4f2BjdCij+OmUsY1zM0VM8ZEZ0AwHnL7+PH608GYHm6kcwl3Ns9knHdjrUGCqf6HAnVdjVUFo9rVsmSTylIVb8bIyjX+3IT6V9vX75iuc2b15/Iecvvm3V8qly4fG18/O11pwMwrtpM6BaTrlRdlUrqhspJVc4iMx1rCARC7YOGtjTKc3HCzNC2CUcl27EodlivDt+Sj9HUXTJnaFlvxZtUDRo682oQXKyvMGlH2JiPo5VlYTIVj+2EmWbSjjCMoPyfK9+/Oj0o/6s5/1282q7t0v55nWZUd/yxr2btKgtOo2ed3733q1HWOEiNP4YLzRRFTVecO4qaKvhNtoARk3H2Il+/YenoDtbvWEhhNQtGWtz3uFfjZzMJ4xMzTE/XUQ5M6re1fMlmJjsNuoVhwYhXDnSKhM2To+S54cQjN9Iw4RzXtPIaR9R2MK77LYnTts5EOsNMnnLeCff7vXGKFfM2c9empRjlmO749y5N/Dk3mnaxI/545YVhrNbhiMYUD0/Pp1tmJ6+ct5mHp+cD8FhrnEbi25IoS6JtdBAlwT1QyUDOnaaZZOXrRdmm3jXeKmo0TZeazkt3Tb/jwysqe5+NiS6iytI6Hd0g0RWAYn7aU2pYFNuLxLfHWUbKtuwL9b8gCIKwf/iPP/vPaOXoFgnTRY0/vf0/AnDtmf84a96PnPFV3n3nq8icoa7z+B2SW0M3Mdh26TYrby3C/Vpu++9la6agW/h7kYbJ+1T94Tu8W9YUSk2XEdO7b0wH7ncNjkQX8X70YFH/g3e+veeuV86anlnDB+9+KTBc5SwIhxtz1QGo8tHVl9LQOrqC6mWfqtqPhF4fOdwPD74+2B+vzhfXUc5fvU+v/s4QqO3CsS4Iu8vDDz/Mi1/8Yh5+2Dvb582bx7/+67/yjGc8Y7eWr2b+H3vssTz72c/e5TJnnXUWy5Yti9v8yU9+MmsAoFpIeMOGueszVpmenmbLli1D1yHsHrtXeXMPs3nzZl784hdz++23xx/+qz/eO+ee9J8gCIIgCIIgCIIgCIIgCMLhzOOPP85FF13EunXrAJ+7/61vfWtWdv/OCNE/4AcAdpfqvFXVfuC0006Ljzdu3LhbLoDB1JjqOoTdY784AD7wgQ9w//33o5RCKYVzjmXLlvGKV7yCZz/72RxxxBFS0EHYKUHxXVP9z6HMsSeM3Os+BTj0VK6D+ftBARRG3AcV9NXpRjlwldH8kL8ZFda67zU9RKGvh6j3B5XZJmaezq59sCsMFpSe1bZU5eCSqBiH/uzBnrvCfzyMqzaTNCrr6dJQGW2X8s0HzgD6HQAA5y+/B4BbHlxBqruM6zZaWaZtPc6Tkpe1BfI4raEcqcopnKbt0lnqBzNQR8HMkY+oy/zEvvcBVWbSOxaZGX654TgAzjpu1yPOl6+4G/BOgOB8mFdRho/rNqmyjKqCs47bwE8f9Ha6UZUx7VImbYOm7lKj5xBp6JwGXr0WnAFtm9JxKU3die/XtmKU1OY0dEbmEtrWOwAsKqrTx81MVMwb5Viid/hcWxjqLTE4sqrSRIWM/3D8evNZFF1M+bqapfz32wwOjv5rCzRGFbPP68qytvJaQ2cUTpNSzHrvl6ZbmW9a8Xw5oraDlc1NbMuaHFXfzvGjXg2wdvsRnLHgN2xoLWRzu0k788fr+LGtrMmP4Ph5WxlP/XF7fGacVBck2vJb8x9jKvfK/bGky/PmPeDdOWVtD4DtRZMt+SjWKc5evIHH2vMAWNncxPqZRaycv4WNM6PRYWCdolMkXqWYlsc48a6KqbxOI8k5qulrN7SLlHm1Du0ioWaKqNK3TpFbn41cM0VfHj9AXrYtKP/Buwa0srQLf73NK5WWQf1fdf1ElT+KeiU3GQAFHat7n0P4z7P56UzMT4Ze9vO8dIZ2kc5yGAiCIAiHHg2TkVsTv8eDa3NY5jZ4hf2773wVGSZ+z9RMTq1IaCQ5he2/V0hLN1q7/B4N1ExBbrWvYVOpqQO+FkCtkt8d6thUs/6Dw00rh1GO5CBV2ob7+HBfqJWjaTpk9oAp8ScIBzQfXX0pQJku4NBlDYBQp6xe9vmq2f/ALBd7VelfTSqo9nEL593/sT+vvAugGPgdQtg5vt9y8KR+7M+2btmyhYsvvpi1a32qQb1e55//+Z8599xzn9R6qgWCn2pWf7Xgb+C5z30utVqNbtenAdx88828+tWv3uk6q1FEy5Yt260II6GffX6H0Gq1+Pu///v4w7/Wmg996EP82Z/9GcZI4aJdsW3bNn7wgx/wox/9iDvuuIN7772XrVu3Uq/XWbRoEWeeeSaXXHIJb3zjG3erKMb/+l//iwsuuOBJt2P16tWceuqpT2UXBEEQBEEQBEEQBEEQBEHYg+zYsYNLL72UX/3qVwAkScI//dM/cfHFFz/pdS1dujQ+XrVqFa1Wa+gP+lVarRZr1qwZuo7A+Pg4F1xwAd/97ncB+OIXv7jLAYAvfelL8fGVV165W+0X+tnnAwA//vGP6Xa7Uf3/7ne/m/e+9737uhkHHWvWrOFd73oX3/ve98iybNbrWZYxNTXFgw8+yD//8z/z53/+53z84x/nzW9+875v7F4kKEuj8tsRR+mrFGhGVSfWAQCfXV+g+7L7A7bM6W+o2ccW+lX6QVk+LK8vc6ZUps8exR+cZspt6Upmek0VO80SDPu2s9djTrfT0QUApUtBaXBJnyIhbtep/v1Rmrar0XUJo7pDoXpq74bKMAOK/mGcc/w6frnhOE6tPcb6fFHcz4VmirZLseiyTkMR122wZCR970XhdFnzwA5k/M/OtA9Kf4uZpZYOrxtcVJ/dueFYnnXcQzvdj8C0rWO03/9U5ZU8/gbnL78nugqef/wDAPxyw3FsLsZo2TpaWeZpP2reVF1azo+mt12NHYWvG9DQGTVXkKo85vinyqv/a6rw557qOTpSlTNPz9B2NUZ1pzwmlgkzE/P+e3USPINnjD9e/ccpqyj9Q+4/eKdIRm+gturAKJy/tlKV912fVLZefZ+qyvrQbn9d+emD12hTd2joXn2IeaZNt2aiayJwYvMJJkyL3x5bx5ZijK25d5PVdcZ58+9hW9HsnVvjvboTVYyyaHzti7ZN2ZSPA/DgzCJGTJdjG1vo2JSZoqe6m5/OsNmOkZb5xADtPGVhoxWVhgBLm9sxyjFqOmxoLYzXRCtPqZmCRFksqs8ZEeoAQC8PWStXKv1d32eIz+/3n0FBBWmdRisb1f+DOcgoy4xN+2s34FUrdZ1XlJVJdAnosr4DwLRNqJmcus4ZMRnXn/UFBEEQhEObfzj7HwD4z794E5/67c/xh7e9EYAt3VHefeerhmbqX/Osr/C+u15BR/nvz8VqivGkTbd0km1q+e/sbmYw2tLNDfMa7Xj/H74nG2lWOuT8con2av8jGlO0y+/mVl5nPG1TWMWY6cbvMlMq/4FZ9xoHE1ed/nUA3v+r343ui1QVWLVfEn4F4aAjrbh//H1y/28Bvl/Tq9VX7T9bp2f1p6tu+2G5/33zYn3NkyHCf63s0JqFgrA7tFotXvKSl/CLX/wCAK01n//853npS1/6lNZ33nnnxcedTodPfvKTvPOd79zpMtdffz2dTic+P//884fO9+Y3vzkOAHzrW9/i9ttv58wzzxw67ze+8Y04oAHwpje9abf3QeixzwcA1q9fD/ic/yRJ+LM/+7N93YSDkrvvvptvfetbfdOMMZx44okceeSRFEXB6tWrY1GM7du38/u///vcf//9fOhDH9qtbTQajTkvzkF2x10gCIIgCIIgCIIgCIIgCE8H52bp1g5o9nVbO50OL3vZy/jJT34C+Dqrn/nMZ3jta1/7lNf5H/7Df+CUU06JUUJ//ud/zsknn8xLXvKSofN//etf533ve198fvrpp3P22WcPnffVr341V199NXfffTdFUfD617+eH/zgBxx99NF9861evZq3v/3t8flLXvISzjnnnKe8T4cz+3wAYOvWrYA/GU8++WTmz5+/r5twUJMkCVdccQVvfvObueCCC5g3b158zTnHN77xDf7rf/2vsVjHX/7lX/Lc5z53tywyRx55JP/6r/+619q+pzDKkpYj8dUc+0DhNAWQ4vO7p51XqWtlmSwaMZuvqvpp25Rx056V3e+318vhB3pZ61iKPjW0w1DMVuXPocSpZgZWM7mDEmBQLTBMPVClmj/ot+vb2lMnJHE+o1zM/Y/q/8H1u5Drbiicjpn3BSqq0cMi33zgjFl1AALTtsY83aGhuownXgE/qrrUXME224y57+Dfu1QVjOuZ0k3Rc3xkzrfDlGqNmipijmtYNswbleaOoS4Af5x6SrCb15/Iecvv28nR9bzqhNt2+vpgPYFJ28Aoy9JkKxmGidIBUKAxzpYOgi7NxI+QNypZkxOm1ddOv1wv9x/gCDPl83FdEt/3zcVoX97gXGdNyPnXuFnZ/zifl9vFu0gs/fFsg84LXyug9x4OZmX2/hP3r0B5p4CrtrB37vZvr3QH0H+d1BTekUEWj0vXmXjNLkkmWZJM9q1rSTIZ11OUDpQw/8ZS6Q8wqjtsyceYLBpszrwicWljG4uTSTKXMGbazEv8Nr1zxZE7XSry/foaSUbXGo5u7uDBqQWAz9fPyn1eUp9iY8cPpjaTjHaRkGhL1xqSSlbxXOdwmG4rx1DjlY0zRRrPg5oqSJWNdQKq71uBYqZI2ZGNsKg2HV+v5iaH9lZzkoOrAGDEdOnYBK2cqP8FQRAOMz71258D4BPP+TwAf3jbG+nYhPfd9QquPuPGWfNffcaNvPvOVwGgS1djM8nY0a3jKvcvW6dHMNoxWuvSjvewjlr5XaaVo1bWBhgxGRvbY+ROs63rHZQTtRl0+T2XOY0u72vTyv1jeAxwzarLePczvrNnD84+4EPP/BrvueuVvr5Q0ZA6PIKwC67+9RU0dZdhvaRC6b5+aaYMqSr87weuf/7MJbtdpy+4o3v9pbJu2hz17AThqXDttdfy/e9/Pz6fmJjghhtu4IYbbtit5d/whjfwhje8oW+aMYaPfexjXHHFFVhr6XQ6XHnllVxxxRW8/OUvZ+XKlTjneOCBB7jxxhv59re/HZdNkoRrr70WrYf/IqG15tOf/jQvetGL6HQ6rF69mjPPPJM//uM/5uyzzybLMv7t3/6NT3ziE+zYsQOARYsWce211z7ZQyOU7PMBgKpyXFTku0+aprztbW/j/e9/P8cdd9zQeZRSvOxlL+Oss87iuc99bqy2/d73vlcysgRBEARBEARBEARBEAThEKNaeBe8+DpE7OwOz3ve84ZOv+yyy/jUpz7FO97xDrrdLs45vvnNb/LNb35zznWNjIzw6U9/mgsvvHCX2/x//9//l//0n/4TnU6Hxx9/nL/4i78YOu/8+fO58cYbOeGEE3Z7n4R+9nlIYLVw7BNPPLGvN3/Q8rKXvYxPf/rTc/74X+XYY4/l//g//o/4/O677+b+++/fm83bb5ghKpdqtnjb1dhWjLKtGCVzCfVSYd22KS1bp2XrMce+ZWtMFg0yZ2KWZiBkbIdc/cwZ2i6NOaKD+f5a2fjnc+uHj+6HdbZtStumsU6B3zc7a77qX3U7qcppqKzM5u+pgn1bkz7XQqCmiqj+z1wydP2BDFNWT7CM6w4NldNQOaOq6/90h7k4b/l97LB1liY7SClI8Wqrcd3mKLOdRXqaCd1iQreiKsLgaKpu3Cf/l8fs/eBqCArnwfOgcDqqm61TfYr4OA+9nPtaRdl807rTuGndaXPuz6748fqT42ON9ftn2iwx04yqnFGVM091WaTbHGWmWJrs4KhkkqOSSRaZGY5KWiwx0/HvKDPFhJ5B450vE2aGCTPDIjNNUxdYp2JtBIOLDojNtk6GwkLfny7/wvxB/Z+Wam9fHyGcQ/3OEIueVYOhV2PAb7ft0r5ja5Sd9acHajkMEq6Z8DfsmjADiplwLTR0FrM3Z62nrHPRdiltlzJZNNhSjLExH6dwignTYsK0SFXBZDESPwsmswaTWYOm7rK9aLIlHyVzhrr2ufcaR6J9LvFY2qVhcv+X+P+dIqGZZDSTjEdn5jFmuqTa8nh7PJ6fiS5omBzrFDVdkGif+z9Rm6GZdH0dgLIWQKJtVEA2TMZ42qaZdGgmnajy986OcD2XNRxswmTWILeG3Bqy8rWuTfz8ldoDqbKlMrL32aeVo65zZoqUzGl25A125A1yZxgxWawPIAiCIBy+fOI5nydzhh35yJzzBEVtqgrGki5HNnYwlnZZ1JxmUdO70RJjSZOCzBoKqymsJq98p2l8rZta+b00lnZoFyndwsRaPB3r7287tqd509HZ23OZGmUPSvV/oOqITnVOuhvfx9et2fmPMoJwKHL1r6+gXl4vob8S+ixzqfF12Y+o9u+r8xbo6Cq2g45lev2X0AcK9QKrvxHM6rfM4f4VhP3FW9/6Vn7xi1/wyle+kiSZW0eepimvfe1rue2223j961+/W+t+9atfza233sqLXvQilJr9u40xhiuvvJI777yTF77whU95H4T94AB44QtfyOjoKNPT0zz44IM89thjHHXUUfu6GYc8V155ZV9O1po1a2SkTBAEQRAEQRAEQRAEQTi4cKovKu6AZx+39aqrruKqq67aa+t/5jOfyVe+8hV27NjBrbfeyr333su2bdsAWLBgASeddBLPfe5zn1LSyzOf+Ux+9KMfsW7dOn72s5/xyCOPYIxh2bJlnHfeefKb8R5inw8ANBoN/uAP/oCPf/zjAHzqU5/iAx/4wL5uxiHPwoUL+56HzCxBEARBEARBEARBEARBEIQnw7x583jxi1/Mi1/84j2+7hUrVrBixYo9vl7Bs88HAMCPTN14441s2LCBa665hiuuuIKzzjprfzTlkOXBBx/se75kyZL91JI9j7fFVYuL9sfVdJ1hVHeYtCNszsdipEWw5YVCsy1bi8tkpKQUNFQW439S1bP8VSNxinIdoTDtIAUKU7apV4C313botxhap/siaKrb2dWyvePhesWFnI7LDiskrMsolGAtTFVBQ2dkLmHa1uN2RnWHrkvKGJSEFv541VwRi7H12uC4ad1pXLxi9az9AB8D9MsNxzGquwA0VEFDWTKXM+2SaL3sOkOzHCi36L7j11BZr7gvswuZhv0vKsfT0F9AtUCBI54TADVlaVas04vM9NB92B1++uBKzl/+QN9+B255cAXtYDfH0nYJo+U+hTicmrIxkicUXkX1Ci93nYnW94yEdtF7H3xBYV/8OkQgtZ2mVrGh+iK/ru+s6BUD7tFyuu9Y77AN327Vi+6pFtH210KvLaFId3w9vEch9kfZsti19o/x71soXGcHqgCHGKD+It1PLsGuQLMpn0eqcjZ0FgEwU9QYMV1SVWBqvf3JXMIvdhzP4toU1mmeMf4bAJq6Q0NndF1CrYykCuueKursyOosrLdi9EDT+Nen8jrz0nbct6mixlRRo5l06ZaxBF07/Os4FASeX5shsyZe/9bpsuiwpVMk8Tyv6zzGAI2WxaXz8nNq1HT6CvnOFP6aHjEZIybrFd0uC//Wy8+4EdMtj4spj1lG1ybxMyRRBQbHx5795Sf1ngiCIAiHNu+76xUAs4oBh+fv/9Xv0rFJGQM0ycaOVw1uMZYsNxRW0c0NjYb/Ps2tppWntIuEo0d2MFOks7Y5r+a/+3Z0/b1LzRQsqk/H78lQ5B58DNChUDT3qtO/zjWrLqNla6RD+hTD+KNTf7iXWyUIBx7Dro/QP0lV0fc7Q3XewWK/BXrWNKNcX/+o/7PFonFxnT5e1wcC4Qb69hL/IwjCXmKf1wAAP2L07W9/myOPPJJWq8Wll1660wISwpPnxht7N9pJkvCc5zxnl8ts27aNV7/61SxfvpyRkRHGx8dZsWIFL3/5y7nuuuvERSAIgiAIgiAIgiAIgiAIgnAQsV8cABs2bGBsbIwvf/nLvPWtb+WBBx7g5S9/Oc997nN5zWtew2//9m9zxBFH0Gg0nvS6d6dI7qHO9PQ01113XXx+6aWXsmDBgl0ut337dr7yla/0TZuammL9+vV8/etf5y/+4i/40Ic+xB//8R8/rfY9/PDDT2r+Rx99ND72ivCe2qeqEg+K4JrqqcMbOqOoZK81VMa0q2PKApdxvRS0XTqr6GlDZVidkZbFcqsUTvcplTVuVmHSOO+Amr3KoBsgzL+reaHnCuhWnAjVdlYLqBaxYK4GRVQbaEXpishZYjoDSvpem8N62i5lXLfLdVUUVDbh2+tO5/IVdw9t+8ZijIXGV6aftAZ0l1Q52hXl8yIzVbowkr5CsVq5qHwP77MNboaB7dSUfy+DOjsWCq68fVU1enh864bltG3CIrN7yqlB7txwLBN6+PsPcM7x63a5jp8+uJJUWbYUTS5dseoptePb605nXLUpUN5FUO53jdJdoBQMFPLV+OOTVQQn1im6GDYWY7MU/QUKTX/xZFROUboQMkxct3eklOdUZR12yDleLeDdO2/9eVg9l8O8mQ3bsbSdV7OnKu9zwYRrpHCKhckUbZty8i5yujUAAQAASURBVMhjgC8GXqDJnOHR7kSfW2Rh2qJjE+o6Z2HpCklVgUUxqjtkzsTPkMJp7p9eQjPJGE/a5GW7ajpnxGRsz0aom/7rX+NoA4nqOXu6tqfkbybd+D6AV9lr7WKh3Y5NoFThpyaLjpGg/p9IZ+K2dmQN7xSwCVu7o9TKdYynvq2JLshtT+kfCv6Goolal6pJ64sVGxyjptN3vHamOHz/r36XDz3za3O+LgiCIBx6dGzCVFHf6Tzhu+Hdd76KEdNloubvE5kHj0zOJ7eaWlIw3fXrGUm7jKVdGiajYxPapQNAK8f8dIaprM72Tula1JbCaja2aiTKRgdcmgSXqFf6fuD0b+zxfd8fvPsZ3+G6NReKsl8QhvDhVZcDkJb33dX7+KDkr6m8VOn7++S5lPi+gG/vt4HqPXAvpaD/dwET/5frdH7erkvQqr9fpCsuBKEfd5DVADiY2iocHuyXAYDly5f3VXdWSuGc4+c//zk///nPn/J6lVLk+fAfWQ8n3vWud/HII48A/ph88IMf3O1lly9fzjHHHEO9XmfTpk2sWrUqHtPt27fzJ3/yJ9xxxx38/d///VNu37HHHvuUlxUEQRAEQRAEQRAEQRAEQRB2j/0yABBwzsWBgPDfOck8ezp88Ytf5BOf+ER8/t//+3/faX0FrTUXXXQRv//7v8/v/M7vzCoePDU1xRe+8AXe//73s2nTJgA++9nPcvLJJ/Nnf/Zne2cndkLIzqvmkFcV4eDVyT5P3NJQXbLyNC/QTJZZ5pQZ/tBTlDdUFhW+Yfr2ogm0aJPSKHPiNRZbbqMPZZldEcCrCkItgT4Fc5nd3+csUPTVG6jOm6qcAt1TNJeZ6F6xMFx96+sVqHh8dNkGXWmLV4DbWNeAcvs+1z2dpUAI7oq0Mr3mCqxSNMiYi0tXrOLH60+Oz5eoNuvzeRxlppgs6zGMqm58f7vOxG3pMsvfK7arroveflXbmaqcrjM0dL+DIRw7MyTvdZ7qcvby9ax9aOmc+zDITx9cCcC47nonBYo7NxzLs457aLfXUeX5xz+w65l2QXBg3PLgCgyub1+16in+A0aBQVGUOf0AbWfInGHa1SicjrUbNDaq+0PNAeh3AlTfh64zXtVfcQQATJdq/cFrAufXa9HR1VLN4qxec9XtW9d7b2M7mK2c0ViautNX/yIwYVq0rV/n9qLJUfXtZM5wdLotXvuF0/4cVLp0F/n2bMrGOWnsCXbkDaxTUWFfNzmZ016pWNZrqBuvLkp0QcNk0S1QNzndbkKiLQ2TRWdAaoqoWqxmHWtly/oFlkQX0SlQ1zmZMxROxf2bSFtl2zTz05mo9N+WNRlNOsxL2uzIGz3Fv/Kfs0H5H9Zjkt7nbrjuAK55Vr9zrMp77nol03lzztcFQRCEQ5dwT/ueu17JR8746pzzjRmf2x/ca0Y5arrggW0LmerUqFXcmbnVTNk6WrmKW06zPRsh0ZZ64r+DE2XpKsN8M8OWzghjZS2ezBmsVYyYjDqHlnBsd9T/4hIQDkcG+35a2eisD78BmNBnr9Rsg9nO/OAQ0IP1+pSNrumaKmbVqyucjm5oi08diP0m11tHdduCIAh7kv06AADyg/+e5Oabb+atb31rfP6c5zyHv/qrv9rpMi984Qu56aab5nx9bGyMP/zDP+QlL3kJL3zhC1m/fj0AH/zgB3nzm9/MkUce+aTb+dBDT+7H0UcffZTnPve5T3o7giAIgiAIgiAIgiAIwsGNdSqKng4GDqa2CocH+2UA4E1vetP+2OwhzZ133smVV15Jp+MVNCtXruSb3/wmtVptj6z/2GOP5ctf/jLPe97zAGi1Wvz93/89733ve5/0upYtW/aU22GUxVSUp0GFWs3NC8pgo8J0P0rftXWmbZ2GytCqmJVZnaoirhcgI2FxMsmkbTBRZtcHus5fOlFRrqxXqZdq/Gp2YFDgZ653uVWz/PvyBZ0t8/n79zusr6aKPmW0Vw6UWfaVHEKDY7rcXthuOB7W9RwF1eNalLnpqeqpnRsqi7UOdNmokK1fVVL4NnjV/XfXPWOX+fVLkykypxhVXTKnGS8V5tDL5K/m/oP/AvXOBb//QWHRdYaG6q8XgKN0ZNjoVDAVhfugCsRvD+59eCn6SXxPLyprIWgF1kF3/9RVH4o/LnMr2/prIjiKyiFJlT+3GmQUStMs35+2TeKxM6VSxi/fr3Dp1Veo1mzwLgM/X09RU1W4BPW/d+9UrsXyHA6Z/VCpaaEchp6Kx2Bj3YOqm2ZYjmf47Cic7nMXtIoaWjmW1bbQ1B065WdK4TTzTYuOS8u6Gf4c7NgEi+aI2iT3Th/B0Y0dsY3bshHqOo/q+smswfHNzcwUNXJr+nL0x5JO7z0os/x1WUch0UXM9wficlrZWfvW1F2vcKwcq7Gki8YyVdRjWxbWpjHlddasuBQARkxWHtdK/Q0cufNtTsm4+owb2Rnv/9XvctuW5SxuTO90PkEQBOHQ4vqzvgDAH//y9QDkbphHtkfI4X/PXa/08+uMzXYUi0IpMDrc62paeUqi/fdT3vXO3mbi701zq6ODLtGWRFu61jCd1eiW333B4WZKR+/hhp4j11wQDlWuWXXZ0FpVoZ9gdMjtH6667/X3Xd80o/qdzClF+VtFT/EP0Mb0rcdvy+GrpIX+TP9rgiAIe4P9MgDwD//wD/tjs4csa9eu5ZJLLmH79u0ALF26lJtuuomjjz56j27nnHPO4UUvehH/63/9LwBuuummpzQAIAiCIAiCIAiCIAiCIAiCIOx99nsEkPD0WLduHRdddBFPPPEEAIsXL+amm25i5cqVe2V71QGAe+65Z69sY3eoKv7D46CMD6p1ABQUpXq3oTPGXZuGzmjZGraiRqqrjMwlfWpaW47ST5gWmTNxND6olgfzAE25bHUdGkuqbcwWryr/A1W1QaotmUsoyvVXs9ULp+J6wn6nKu+vIUDPFQE+5zQr99PiM8G9A6KqMui5GFL6s9wNDsq6AH057AqyimI6VV5pP2HaUMA3HzgDgCtX3tXXtvOX986ZWzcsp6kzJm2N0bJ2QIGioQpQvq5AEGZ16dUDCG0MroXBGgVeAa6ZtjUMzq+PfpV6UPyDV+73lu3l44cs/58+uJJR1V/bQCtHQ1nSqhJEAc7ymB3jlxuOA+Cs4zawv2i7FONsPLYZXlHilfVuVr0Ko8C6oNB3pXsgYcLMUAt5lrpgmx3pU877ZXvKmQJTOae8+iWcx+2qCwZHQc9NY8t6FUY5n2FfvhM1VVA4xbStRyU++Gs2qP/TAadDuD77rjc3O8PTosmcoesSWrbGVOGVhL52Rrh+kl4bncLiHREtW4tqojHTiQqe+ekM27KRuI1UWUaTDiPOuyjqdZ/RP2NTtHIxjz9VllHT4bH2fGo6n6XGT1VBs9Y7D6vXfWYr+1VOzpzpZZgqR2Y1I6ZgUTrNTFlzI1FFVCO1rKFu8r7pPZdBeZ67Xj2Gnan/r1l1WdmGUcbSLiubm+acVxAEQTh0+duzvgjAu+98Fe+847XUdb7TWgDhtffc9UqOHtlObjVb2k1mMv/9n5S1AHKrKawmDc8zTTPJvGut/CLMrUYrR6Iso2mXx1rjACyuTTEvac+6fzxceMcpP+L6tRfwjlN+tL+bIgh7nWtWXUZd9+6fo4O+0v8unEaroq8PXUWXrvLYv6nM4/sh/nMo9FEzTHTQV+cbJLyucX2PD9fPJkEQ9j4yAHAQ8/DDD/PiF7+Yhx9+GIB58+bxr//6rzzjGc/Ya9usugpCUWBBEARBEARBEARBEARB2Bs45/8OFg6mtgqHB4fNAMAPfvADLrnkEgCUUuT53NnYBwOPP/44F110EevWrQOg2WzyrW99i+c85zl7dbutVi8Lv9ls7tVtPRk0FqMqo+xBHY5lVPtc7WlbJ1U5j2fzARg3M4DPyy6cmqUiTivq2IbKYm2BwmmaukPL1ivb9/n/pvwLWDSZ7amZQ9Zg1SVQHeX3qgRLl3SoUmCYg2CWE6FUHzRUl7Yd7Xutl99vZ+UYBsXBYD6+zzPsTWvonG12hAk905vJ6Zi1P6q7nLf8vlntHOTs49az6qFjGNddHsvHY/uM7kS1fnXfohuhuj86x7hSfV5pY42CUdVFq17uf1jH4P7Nlfk/X+fc+/BSlgyJrY31BqrTlD8PJvQM26xXgN+6YTmZ00yX58rFK1bPdTj2OIPb+umDKxlXXV8DQtGX+V9TvYx3gFQ5jHOgcl97oTy2metXxkQnjuvVmDC4Sva8LvMxe6oWKJUx5evBoeKV9ibWuQjraNGrI6BxNCoqnlTlQ3M5C6eiwqdaB2AYXZfQsSmZM9FhY53i6Np2dOlGCJ8h1XojGsdk6RjYnI2SasuI7jJmOjRrkwCsay1mxHRJVYFVfrmZokaB4rjGFh7rzouqIa0cv5mZoJl0yG3vpLMof9xtQsdCXfvPqRGT+Tx+LB2XxOmpKtDK0dTdWEegcJqR8jBYpxjR3Thv2MaY6tUfMKp0LbmyFkR5zI2Cq07/+k6PJxCP46Pt+bSLZJe1AgRBEIRDm2ue9RUA3njL2/jg3S+Nmf9z8ZEzvsq773wVR4/soJWnsRZNJ0tYUJ9ha8ffZwXFrXWKbmHiYwAUTHbrLBmZpkYRX9/UHaOucyw6fh8eboj6XzhcqOusP3tfldn7lf4NlGr80uVO2bdE6aH9DOj1aapu/az0V4d+y6AzoPpadT2mdNv77Yj6XxCEvcdhMwAA4A6RIbgtW7Zw8cUXs3btWgDq9Tr//M//zLnnnrvXt71qVa+46xFHHLHXtycIgiAIgiAIgiAIgiAIgiA8NQ6rAYBDgR07dnDppZfyq1/9CoAkSfinf/onLr744r2+7ZmZGb7xjZ5i5/nPf/5e3+YwBhXdvTw+P8DTdabM47cYiApjoxwbuosZM23GdTs6AAAayjJZZpsHJ4B1PkM8juyXA/LTzmeRN3TWl4FeU0VU6FdV0tOuVClVHAY1VaCx1FQeFQTglQNtl2IHsu1DNnpKVlFX9+cKBmVC4RQF3nUwbmaiUyEt2xfmrWb/V9X/1ba3nM85H9edqKjKnPb58rTie9HF0HWGhsoZVbvvrtlm6xxlZjgm2QHAxmKUAoXB0cXE7PkCBUqDq9R6KBXPjXJ7VWW/Vq5PFRamVbP/U0Kth7lJB9wClp7q31ScAybUF1DeOdBQUwDc1T2atk05tf4Yk7bOt9edDsDlK+7encOzR2m7FGMdVuVoVUDFxVDgMKi4T9Y5UIqasxRKxXoPoS5Fu5LFHxhUtACM6g5FOF9Uf9Zm26VkLqGhvPpOK0tD2ajYD+p6rRw1lZOqIrp6BhlU5cTp2JiJbyvLdiv1P2oqBw3tIomv56SMmxk03gGQVtQ9wWGzvWjySHcBAEfVt5evOVKVsrE7HvcpVbZvHYku0E7xcHsBFsW8WhuAxzvjJLqgXaTUdO+zxChHoop4XMLnmbZe5a+V88eG3nukKWiabuWzzzuivBNBxc+cVOcYei6ZzCZxG6kqYl2QMP+uFJvDOHFMouIEQRAEz0Q6Q8fuXvfzmmd9hXff+SpWjCsemp4AoFsYprIazikKq8nCd6W2fXnbYd7R1N9j5FYzlvar/VtFekg4AK5bcyF/dOoP93czBOGA46OrL6VZumHNQL8X1Z/B3+fIDy59bPwtwKcNVOfpPe5W6u1V11Xtm8ZadH3O/x6i/BcEYV8gAwAHEa1Wi5e85CX84he/AEBrzec//3le+tKX7pPtv//97+fxxx+Pz1/+8pfvk+0KgiAIgiAIgiAIgiAIhye+BsAc+b0HIIdIAIlwCCEDAAcJnU6Hl73sZfzkJz8BfB2Dz3zmM7z2ta99yuv83ve+x3e/+13e+c53smzZsjnny7KM97///fz1X/91nHbWWWfts4GH3SFmkePV9UFFrisK4GmrWFbbQqoKGqo7SzXcUFlUyANehVtmfmsszZADXuZjV5evKoSDchZ6agOfSa6jC6BwXtEe1LpVMucvS42OGYRFeKx2nmceqGbnVxX9VfX/YBsHMcoyrtq9vPtyf1MKjjI7aFT2uShzyq1TTJNw64blgM/53xnPP/4BHnj46D73RoHGUAxtl1fx++ltm5S58/4NTivZ8ABtl0R3gN/PnvrfOrC7uHcwQ1438f/sFzXeIWAUQVzPGbVHqSuHBUZVr31fuf85vOqE23begD3Mhct9ZNhPH1zJs5Y9xKqHjgF83n/mvNsh1ALIqq4Up/tcN1X1fMCW57bBkrkknnNB6e9z7HuuAaMsxllazsQ6FaO64101WCZtg4XJtJ+3ch6kOo/Xh3fgqHht9NW0UK7PIVPlNSfeyufvfV58rvEOA4OjU7axUyQUTqNVwbhpxzaEa39TPo/txQh1Va1HULAp88r/eYl3FyW6oGMTJkzVQWOo65wRkzGd1yv5+o4j6pN0bIJ1Kir+56VtMqvRypFbQ93kZbt9Pn+qMqh8VoTrtG17mcnh8yC4KMK14p1GRZ8LIBzb9/3Wvww9frtDWrpz6jrnb8/64lNejyAIgnBo8WS/E6551ld45x2vZaJ0y7WLhNxqJuptdnTrtLIa4O9NrVMk2sbvwYbJSbTFOsXC+nSsr3NkY5K6zmmag0/9f82qy2jZGvMrLmZI+PCqy6NzOdxT13XGn576/f3TUEE4AGiWDh9T6fdqHKnKy7pllNP61f/V+/6h/VFcdD4XzHYSDDrqLZqG8skBvVpiNjp0M/r7VoP16gRBEPYUMgBwkHDttdfy/e/3buImJia44YYbuOGGG3Zr+Te84Q284Q1v6JvWarX4m7/5Gz7+8Y/zghe8gPPPP5/TTz+dxYsXU6vV2LRpEz//+c/54he/yEMPPRSXW7hwIV/60pdQ6uAZfRUEQRAEQRAEQRAEQRAEQTjckAGAg4RWq9X3fOvWrXz3u9/d7eWf97znzfmatZabb76Zm2++eZfrOemkk7jhhhs45ZRTdnvbexKNGzoqHpT6gZRqZreff1y3o1I/ZFuDz903WBgQ10eVvPM54UFF2yCjYTLaLmW0dAUEJbIpc/3jdnA0VJdpVy/V/pWNOFvq/70qwK9HM1k0mDCtWYqDoNwP+xlUzoPzpUHR65TPWK8o44O6fmcEhURRqUNgnYpqeq0c1ikKFI2opvDZ6O2o4PfTf/XQMiZtjecf/8BOt5mWaq3RstZAoYJyuV/BXM10D21MdU6tVH6F9mVOk5b56+H9768RUMlirE5nLuW/6ptn9jErX3cOUDS1i8tpFBZIlaVdtvHU2uPctO40Ll6xeqfHZW/w/OMf4JYHVzBe7kjmvFsG1du3AoV1/jhVLzfrFA2dY52i7dJ43kLvvGjja1AAbCuatF2NhurS0FnPEROuJZUxXqrlw/mm0SxNt9K2Xo0flivQFE73su7L8zsdqDkxqPy3ldoEBZov3XcObzzpljjts/ecS+E09b7rxF/PmTWM6k7M46+pAlu6cMZMO1pCrNN9NQbSMm80dQXGOKaKelQh1cvjZ51iIm1FBdFEOsO2bISF6TSpKqiXKnqLokWNjk2omzy6DoLCMbMGrVx8Ht6nVBfxXE4p2J6PYJ3qUzxqZaNbyjr9lDL+h/Hnz/g2AFfd/bI9sj5BEATh8GVB0gJfTou7tx3NvFqHbuG/gOfVvTOgk/subW51Lx4iycESs/+DStfX1fI54MGxdqDzwbu969oow5hp887Tvhdfu27Nhb7mT7h/L/dzqmjw4VWX09RdDFbqBAiHFdeuuYhRnc/K9/f9ZAtD+sPFQC/POu37naULP9zn275+oRuoFTb7d4rQV/H1Av3jzOnSgSuKf0EQ9h27lyciHJKceuqpvPzlL2fBggW7nHf58uVcc8013H777Zx55pn7oHWCIAiCIAiCIAiCIAjC4Y5D4dxB9DckNlgQ9ifiADhIuOqqq7jqqqv26DpPPfVUvva1rwFw//33s3r1ah5++GG2bdtGURTMmzePI444grPPPpuVK1fu0W0/VfRApl6VXr7+8HEtoywNyuxrVE8NUA66N1WHdiWnvLqcH93vZXUXKBoui+uYtnWflz+Q+2eUZVR3MMr5ugGVtmcuwSjvEAjZf5N2hEnrHQDQUyLUVBHXqaP6QM9yBfQfiwSYrWyq5v8Pey0cP4tXNae6GxX/EOoZlOrjitpaK2hQgPP5+wANVZC5hJvXn8h5y+8buk3fXv9/XHdp2ZTMmb68/yq1oNhQ/hhmpTqjMaAEb5S57oOqirlUFoNnzVw5/9BT/BdDKvtoQA8smyoFrn/bdj/dENzy4AqfBT/ggDCql/1/0rJHWfvQUjKnvHPB+oxdrRwNlWNR5TrKc6U8D6ZdjbZL4zmUqoJUzUQHjS7XP12q+8fNTHQRhOsKFZwdPbdO5ox3x9iRivpGM23rTJhKXQ1mq3fC89edeAtfuu8cXnfiLX2vG2Vpu7RPvRP2J1UFWllqfTU+clq2xphpR3dBy6akOmcs8UrEVlEHvNo/c4a6sswvnQ6ZM2zPR0qnimHctOM2j6xlbM2bjJkO9fLa7XcDaK/yA3A910W94joCMLqXXRrf46S/VkmcF8e7n/GdWdP3BEen2/bKegVB2Pu8765XcPUZN+7vZggCTdOJ333Hj21lOq/RylNqpohOgPC9B0DpiOsWBp2EPPy83xFY1vmxc/QZDiSuX3sBHzj9R3O+Ppey/913virud6oKPrb6EoA+94AgHGp8eNXlACxJOmU/pP/e12Bjtn+vH1P9bOg5mY1y/ncC5Z3uoQ4ZZd2znTGsr11166bK+j5seG0X6xMEQdgTyACAAMAJJ5zACSecsL+bIQiCIAiCIAiCIAiCIAiCIOwhZABAOOgZHGEPavhhI+kmKmJnTyuc7sv6jypmiqjsD+vVeDVtUO43VIZFUSvV/6aivB3XbVJXMK5n2FyMAV7Rn5UigLarsa1oAjBZNFiabiuzuftVSbOUBHPEBZpS1RASzavqhlTl3jkwh8qg6iTQWBo6L+saOLrlvlqnQBU0cDG7v+oEAJgoayOAr70QVctD2GzrHGX8/DUsv7EjpKpglC6oXnusUxjVU08YZ/sy6G1UgKtKO3sKd60g3UXG4rD8f38sqvOoWY8L5zBKYZQa6goIhLZN2hqXrli107bsLc45fh23bliOKdtpUaAsbdf/Pu5wNWoUtF1Ct3z/5qkO7dJ1UXXaGGXpWq/Sz1xCQ/m83VQVNFQ2K6u/pgq22WZfrY6ewyQ4UIJDwZ/DFl2q7726PtbNKN+dV51w2y73fVD9X8U6xRHpDgA2dpayNR9lWW1LT+1D7xpanEyyvWjGugGpzunYlDHTplXUmSodAABjpsNUUWcMr/TXytI0Xdo2pam7fdeGVo5F6TTbsmZU/Td0RqE0jSQjcybWRsidIbOK+ckMqSp432/9C+CVT4Mul1QVsQbB3lL7D+Ptp/x4n21LEIQ9yzD1/9W/viJ+1gjCvuJdp32Xq399RXxunSZRlu3dRnQW5k4zv9ama028H3ROkVtNu0jYno3QMP47u2MTmrqLVQq7k/vTA4V3nDJb/X/92guGTq9yzbO+AvgaAX906g/56OpL/fRVl5X3BR35nhYOORaaaQDqKisz9y3W6eiKrRL7w6rnAjAVlX5wCwTmUukXcdmyFtiAKz3cl9tKP6tAxeVE/b/7OOb8CeSA5GBqq3B4cOD7HgVBEARBEARBEARBEARBEARBeNLIAIAgCIIgCIIgCIIgCIIgCIIgHIJIBJBwUDKssE6I6ghFcQcL41ZjMYYVzi0oi36GCBfVswYOFvY1lAVLwyoVfTbisK1UFaT4Qj/WKR4p4zus8lbEtk1JVc7D3YWAL5rpI3cKX2xX9WKH/Hp7+x1iUcJrRSxcSllw1YLSmDJmpVsuN2hLrFK1IDZ0To0iFhoNxXfbJKTKolVvBDFVLsbHNFSBVr3jkJZFln68/mTOX37PrG22bUJRRgZpBeu7Szgq3Y7RjmYZJdO2iT8m6BhdkyrrC9S6JLYToOtMfF59zw2uL+KnGPDkmdjm/hyg3R0lLWKkTj+6fK3Asa2Mr3n+8Q/s5lr3DhuLMcaVj6TxxbFz2pXizVAec10e1xhXldDUGTUUhVIxfqdtEyyahsqYp9u9dZQFgXtxPf7YaizjemZo24yy5TJ5XMZgQeX+/CzfEIONBYBfccLtT/lYvOmkn/KZe86jSxIjfZY1tvJIZ4Ij0+2M6xmmy/fNFwNL2F40KVB0yus5K+MEGirDGEfHVmODFIvTqVnFB00ZFRY+NUKcWMcmjCaduI6mUTRNZ4h9OeOq078+a3/+/BnfBuCjqy/lXad99ykfF0EQhEFC/I8UExX2NeH7L7MGrSyLG1Mk2tJM/H1iK69hnUIrR9f679PCahLtIwoTm9DKawDMS9vUdU6zvDP+4N0vBeADp39jr7X/o6sv7b8PiDGHDq3sk/6+3lX8T5VQJDgUQ82AzBkmbYPr1lwYp+8qDuiz95zLW07+yZNqpyDsa8L5bJSLnxuh6G/AqP7I3mlb9xGdyhccj9eKM77vWfkNoIrGxX5LlcLpvnkL5siYnYNhv3MIgiDsCWQAQBAEQRAEQRAEQRAEQRCEAxLnFM49uQGV/cnB1Fbh8EAGAISDCqNsX0HewcKhwCxlf1C1V4sDG2WjqjmM3NfU7BF6r6QvGIZXlPvXahR0famgsuCQG5jXYjEsSqYA2JyPsT0fJ1W+wPCY8arpzHllk8ZSVEoVh8K+GtcrjlpOK8rCpOFyrhYtre5/rdy1wUJFgzRC8dE5nAJher+joucCKFCxKFuv6G2dC5evHbq+85bfx6qHjonrfGbjIe5oH0+j1kXbnuLCK/ptRUXuFf4Nlfv3IrSnfB7Wl0YXRdj/oc2IFHHZXX9hVwv+hqNZDJT7CWfPpNWcfdz6Xa5zX3D5irvj45vWncbzV8x2JJy3/D5uXn8iGYaN+TwAliQ7SF0xq8jsqO5GhYxXywQ3SlXFXz1WetY6QjEsi/JOnHhENaiCtq2RqpxGWd7aoqPr5enizyVLo3QAbNdNjm1siYVzA5kzoGDMtHkim9e3fN/6YnFsw/ykRaqKnlvAGV/Y1/UXGwfYkTeYl7SZsbW4bx2bgiae48NU/3Nx7ZqLAPjTU7+/28sIgiDsiqry/z13vZKPnPHV/dga4XBge94EvNK/ZnK2dZvUdEFeqv1zq+laQ8PkNEp3YMPkWKfInaadJ7QLf3/ctYZ2kbKkMcm8pO2/2/cSofDuMPV/YPB+aG8R7gWuX3tBLEaauST2Gz62+pKdunpE/S8cDITz9Ev3ndOn+g8E9X9N5fH+fVR3MFi6LsEo1/eZ4B27s/v1gUG1P/g+SvWa133ug52r+8Pr++pzQRCEwwupASAIgiAIgiAIgiAIgiAIgiAIhyDiABAOKryi20blyq6ojriH3P/gIAjq/ajWd1BgaLsypx+987z8ihrAup7iuTo9qKILNFo5JnQLgPG0zWTSIHMJS8wOvj95OgBHNR5lVHdKVX8RVQApIc/QQlQU+PXWVN7L/I+v6L4aAtX9H4ZRlobKSCsZibVQWwA1RPkw8FyBdcT504HX0zlcFIFnHPsIAL96aBlLTJvnNNZzR/s4lqZbAZjQrVkZ/tW2VNtTw8YaBHZAPDGX+r+63t1R/vt19av/C9zQ9deUYukxv+HG+8/kV/edDcBrTrx1t7axL7h4xeo5X2u7lJarx+vA177QTNuEDNN33Ju6GxUzVZdJqJdRdQEU2Jh5X93WZDHCkmSHX758Gx7LJyicYp5pz3K3wNPL/w+85eSf8Ll7nx+fj5s2LVuLqp94/jvvcJgqGgCxZgB4V0DL+nzhpunE6fNNf60D7cocY2dYaFpsyccA4rLbsiZ1k8f80cJ5FVH4vNpdUlX0qY8EQRD2BqL+F/Y2H151OY93jgSgZnLaRYp1ytenimp/n/8f6lYBUf3fLQyJ7vUdNI6pvMaW7UdwwvhmFtamAV8LYE/WAfAuvP57nWr2P/jv6n1dS6NaP+CaVZf1ORKuuvtlgD9Ge7MmgiDsbV534i18/YFnA/194KD+b4TaYsBkeV8/yGA/encIjma/fOhLm1hPcFdOfF8XRNT/giDsHWQAQBAEQRAEQRAEQRAEQRCEAxMHB1U60sHUVuGwQAYAhIOKRBUYVE+xXeaN24oCfmcj6gW2dBH055gbZSmUpl2k0QFQKxW3lpBrPzdVRY91Ko7cBzV9Fkb7Q768KphQrbitpbWtcV0pBaj+fMG59iu4C6r5gz1lgetzMFTnDcqHuM2Yo9+rr6BLVf+wDMKgsK8q50MdgKpCInOKdqnavnPDsTzruIdmH7wKzzz2YQBWPXQMz6g/wi/bywFYWXuCI8wkReVdSMt6AJnTpJVjYypK/KA+9/TXLIjzP8kY+aD83z0dCEyWM+4Jpfq+5NvrTicFus5E54rG0i7V/1U0lsz1zsPqudp2aTy/ArY8DzNMVPUXTrHQTMXzN9QdaNlazOLvOhOvy8KpPXpM33TST+Pjz95zLk3dYWM+zpHp9sp1lGCdv94za2LtjlQVZM6re8L/QKiLEKZ1nEYry3wzQ8vW6Vi//2Omw1RRxzroFAm6PIZ13XMDvPsZ39mtfbluzYX86ak/5Lo1FwI+77eq+BMEQdjTvOnnb+Vzz/37/d0M4RDkz5/xbd531ysA2JGP8HA+4RX9KJ6Y8S66sbTrs/3zhJop63PpAo0js4bJTiPemzunMNrSymrcs30Jx4x5B97i2hTv/9Xv8qFnfm2PtT048QoUtvz+r9LUnWGL7XU+c895bCuaTBbN6FoM/aP5psUfnfrD/dIuQdjThNp/oV+dUvh6fdjYp5gwLaZtPS4zrJ7gYD+8Wv+r2A3Hre+P9n6vqC5TrW8IvT67IAjCnkY+WQRBEARBEARBEARBEARBEAThEOSwcQAsXbqUN73pTfu7GcIewODoVhTIBgd9SvegYB+iXB9QuYf5Uixt51X/QQ0QRujDCH9QAxjsrHX7NthZ2y3Qs9T/cR4Ho8orm5/V8Mr4lq2RqpzMJX2ZnGH5diUDXeOiEruqSghuiKB20H0KfgvKL1t1TFRdEWmsO+Cwyqv4q/ntoS19KvqKK6PrHFml7dYp77DYzWx98DUBfvXQMp7d2ADAL2eWMzrSIXUFDZ3H9U671Le3uouDTomQ1a8qLg3mHv0sgktjJ+0dVP8P5v+HY5E5ntR+H2iE66HlvCqmoTJqlWz5cA6Fa4YBF4pF0y1dOqOq21dvY9L6GhhBXV+g2WabLDJTPJZPMFpRxWll0VhedcIde3uXAV8T4JNrz6dl67MUew2VsSSZpFXUozJ/STLJb7IJWkW9bz0Lk6mo4KmeB5lNMNrRtimd0gWE83UUplydVFccLeW2n4z6P3MJH1t9CVqF9+nJ1Q8QBEF4styzbQlvvOVtAHz+nM/s59YIhxpXn3EjAO+847Usqk8zU6Q8sH0Ry8a2A5Dogtxq2nkaHQBTWQ2tHIX134Xt3N9D15I89iLaecqDkwsAeJAFnDrxBFf/+gre91v/8rTbHOoiBbSy8Z4i3Fe8/ZQfP+3tPBXedvLNT2m5j62+JOalN00n3g+2rb+XSbV3GO/rugaCMMiX7juHce37w0H1D9717t3wRbyPb5BhtKPrDBZFt+xvDzoBqu58i0LjsAP9vP5+92yqtQiEp4BTuN2sBXlAcDC1VTgsOGwGAE477TT+4R/+YX83QxAEQRAEQRAEQRAEQRAEQRD2CQfNAECr1eLzn/88P/nJT9i0aRMLFizgOc95Dq973es4+uij93fzhH2EwaGVo+bKHHClylx7tVPlf2/5uUfbG6oA3eaR3CuBxvVMnN/Qn20fcv7tkFHd6rQC1ZfPX60NUBvWTt0tM+1z9JA8wWbpGBjcVtclfYqCqvo/bNvgSjX2cIL6P620q5fr3z+fxqvgg7apwEXFfE313ovMKbrO+FoHTzJwzDrFhJ4BYFltM5uLMebpGYwr3wfl8+UNXSymd2xd5bj21SjYvSo8VeX/sCaHs2BQ9R+ma7zyH2DaGVqlKupgo3CaLoauM/E6aLkaGYWvU1Gdt3SIhHOsOr2hMjK8CyC8BanKGdUdpq2vVQGA83mXj2QLyhoBKs7rkzr3bWJdWiqDdF99CUvXGZq6y8JkOroU2jalqbukpTtCV673hspAQVp+Zm3NRjmitoNN2TgNncXPlbrO2ZyNklvDiJlmvFJfICiUdkbI+99eNCmcpqEz6mU7JP9fEIS9zYnzN4nyX9jrfOzZX+Z9d72CrXmTZy16hMfbvl7QCc2NPN4ZZ6I2w29aftpRzUkW1Fo83p7Hhu0TpLr8Hp5usmh0mmbaZXNrlLHSMTCT+fu13cnz3hX+O3n2/d9gDYDP3HPeU1bj7w/eedr3+ODdLwVgqmiwNWuypTvK4voUAIvTKdokXLfmQqkjIOxXitKBHtT/1bp4QHQox/nx81Ppt4d+S7WGAPT3KasugDB9rnqEg4763rqlUqwgCPuG/TIAsHr1av7xH/8xPn/LW97C8uXL55z/3//933nlK1/JE0880Tf9hhtu4KqrruJv/uZv+IM/+IO91VxBEARBEARBEARBEARBEARBOOjYLwMAf/d3f8f//X//3wAceeSRfOADH5hz3vvvv5/LL7+cyclJAJTqjdQ655ienuYP//APUUrxtre9be82XDgg8Hn75RMHIdd+9nzDR9+HjbKHaQWaY5Kt5eOeen9YTl9V6a+Voyiz8qFfPRRG9rVyfW2qqgCCer1BDiRlbn4xtA5AmDdzmiZdWq62U3V03AaWmgLcbGXCzlwTmrJ2QtmUws3OwB+cv+t6+9jQOZNFg0nb2MlSs+limNDe8bA83cwtrZXUagXa9tQVhdMUql9NMUxdMayNpnJo58r739l+DlP/A3ScYkM+H4CLV6zeaTsOZK5ceRffXnc6bZsyr6JGB8goXR0lDTJSCiw6ZmuCz8sHqA3xnfhzykWlf8jKz1zChOmp67suAQcvW3nH3tnRIXzpvnN4y8m3cP3aC9iYz2NJsiO+lrkEozK0skxbn/k/rtu0bI3MGRoqZ8K0/D6Vx8HX9iizR7V3CRyZbvcqfe2P0aZsnFOaj7EpG6djE57ojgNwVH17VPLvjPB+pKqgbVOMs4yp9h46IoIgCDtH1P/CviLUA3jXna9hu/HfoduyEZbUppifzEQ1el3nGCyTpsHEyAzzav6+omEy2kVKEuoWlTUCjhidIlEFRlmuWXXZbtfeGeS6NRfG72QdayP13JGpKhjX/vv5YFL/g3csZG4x4PtBqbacMLqRxzredTGpG4ybNm2XlrWI/P7/6anf329tFg5P3njSz/jmA2f06tCVuf7BKV84TVaprRf7jsrGPn508O+yX7nz10N/YLD/Xf2NQNg9nOuV9zsYOJjaKhwe7NtMhZJvfetbuPJqeMMb3kCSzD0O8d/+239jcnISpRRKKZxz8Q+I0/7bf/tvPPTQQ/uk/YIgCIIgCIIgCIIgCIIgCIJwoLPPHQBPPPEE69ati0r+yy+/fM55V61axbe+9a34I//ixYv5yEc+wgte8AI2bdrERz/6Ub7+9a+jlGJmZob/8//8P7nuuuv21a4I+wE1INTWyvVcACUFGsOu8/R6efy9+WoUtMrHKYXP7p4zNb9HUAoM5obWgupXFbPaU60hUHUTGCyokOffW2ZwXu+EsGjnaKhuVFAXTkfnwiylfyW5P7gGahTRmZA5TagSYBWkyivdjaqo5JXDOq+0T0PWYUVBb+mp60fLdTVURuE0ax9aCkAXzTOPfXiuwwnA2cet59YNywGvoN6SjzFu2kwrr7oe1R0aqkvbpYwO1EYIxzceJ8A60EOdItX8R9c3PeT8myHLVY9scGpkTjFpawe18n+QzCVRpe/rRORkLqGhsqhwa7uUDONV7i6pHA9TXkf+egzTGyonUwlGzVS2Y3gkW0jL1pgw0175jz9PX3HC7ftyl3ndibcAUFM524pmnN5T8inGdZstxWh8LeT/L023RrdLU3eZLBp9yp6m7lLXGTWVUy8dEgAnNx7DKMuo7vCb7oJ4fW7OxjFpz4EwF+867bsAXL/2AlJV8M7TvvdUd3+P8dHVl2KdZmEyddCpHAVBEIQDm48+6wbe9os3A2CdZkfeoK7zvnvqus45afQJRkzGaOIdADNFysK0xYxNyZ2mlft7mYbJmUhn0KVi+JpVlwH+HrRwmg8982t9279uzYVo5cgq6n7fFn//Ypj9WrgnffspP95DR+HJ89HVl5I5g3Wa9/3Wv8w537VrLgLggZklHFGbpKm7tOx8pgp/H74tG+HE5kbqOuP0Ue/U35SP963zk2vPn7Xez9xzXnRQ+v6R3a/HQzj0KZyG2CfWvl5XX6a/jX32rjMxWaCXEKBIKWK/OjgHQlrAsO0Fl0Egqv1DfcE51P+9+oO7dv8KgiA8Wfa5A2DVqlWAj+9RSnH22WfPOe8Xv/jFvnm/9rWv8Za3vIVTTjmFF7zgBXzta1/jxS9+cXQE3HDDDVgrH5aCIAiCIAiCIAiCIAiCIAiCsM8dAOvXr4+Ply1bxujo6Jzzfuc7PntRKcW5557LC17wglnz/I//8T/4wQ9+AMCWLVtYtWoVp59++p5ttHDAYHCzlf1lrn1QFwf1/87y9KrrCapw63zufLsc1W+onFHVnXN0f+h6VRi1723bZ/+7+H+w7V51X6kFUDoait0cn6upgrZLZqkM4vYrSgPwee19rytHgabAuwHCcUx3on4PhBz8wXmCqr4oj3NDZTR0Ho912ybcueFYnnXczmO7zj5uPQB3bjiW/zB6L3e2j6NVKo+OTLezvLZxpw6Nqurc4J0Lc+1P1zmySv0An84aXBehjoJfPivPt7IcAV00G4tRpm19ltrrYCZzCQ2d9SldUvw5pSEqZIIToHC6792wqOjIqb5P067W5yAA2GxHyJxh3LRJVcGVK+/auzu3G7zt5JujAhD8Z0uqcmqqKK873/7MGQyWzBmmbT3m/bdtSkNntG1vP+s6o6EybHnwlqbbZm33yHR7vEa35yNsysb48KrLaeruLnN033HKj57WPu9JrNMUKLou4WOrLwE4IJwJgiAIwqHBZ377/+l7fvWvr2Cb8869h2YWsLg2hVaOpY1tZLZ3fzad1ymcQuPoFn56oiwPzSxgfMzfAYY75VQV1HXGx1Zf0leby5AQbuuDQzB87wEM1vEK9wa7cijvbd512ne5+tdXxBpEc30/705u/7VrLqJla9GFOMgwZf/bTr6Z69deAPh7luA0EIQ9TeZMeT9tIfSTS+W9V+D3+u0Nlfs+PypOL5zv8Ric7/mE672sI5ACWeXntMFrPjCo/p/1+sD0/f0ZcSDjnMK5nfw4cYBxMLVVODzY5w6ArVt9gVWlFAsXLtzpfHfeeWeMCnrlK185dL4XvOAFjI2Nxee/+tWv9mBrBUEQBEEQBEEQBEEQBEEQBOHgZJ87AFqtVnw8MjIy53w/+9nP+gr9XnLJJUPnU0qxYsWK+MP/xo0b92BrhQONMDJffQ5V5Ty950MII+ppRY0fRsEypcD1cvc1ds6R/KKiFJ9rG6EdNYpZ6v/w2Of4z7W31XX26gIErFNkLmHa1aJCO7Tb/5/dvlRZUmWxTsVjVKsos6vHrSitFdaVxyhm6itQDu1cVNOHltnycVbZdqoci3SbuvIKe4BVnaU8o/6b3XIBADzruIe49+GlWB7isXwCgG1Fk2lbp2lm5/8Po/qeWYjnS2hrVo7Qt5md1xpTIxV0LOxwNbKK4yJzCRcuX7tb7TiYKJxiVHdiVuu2osmEacUcTFseg0aZZZ85Q4GOan/vYrHUBs5Fi6bAorFsLMYB72RZkuyIrx8ozDetuJ9GWRo6i0qdUe3zhDWWVnmMMmdolKo6jZ9fY3k8nw/0jpVfn+tT/RTouMyCZBrwjoGposH2vEma7roeyYHAl+47B4C6Hmd9ezHjjTZb8rndfoIgCIKwJ6jmz7/zjtfyRGecx1rjNJOMmilrXJX3e2NJh6418d53a2eEhsn55fbjWDG6mXnG1ylKdY7B0XaJzw4v1f5TNo2ugrrOAeL3f6DajwjLpirfG7v+pOg7Tk/Dmbc7LoFhVN2KT3UdgrArGjrry+4H+pT4qerP2y/QZC7pd8/vQozf1F3a1vfDe/3h0G+o9LGxs9sx0A8I7Ox3BkEQhKfDPh8AqNfr8fH09PSc8/3bv/1bfLx48WJOOeWUOeetxghNTU09zRYKgiAIgiAIgiAIgiAIgnBA4JT/O1g4mNoqHBbs8wGAiYkJwBf2rdYDGOT73/dqgJD/vzOqAwm1Wu1pt1E4cNnZaHhQ8Ng5Pmj7VPdDsM6r4RcZfz4VaKwrswCV3WUdgL4c/5Jh6v9hy83lNKjOE5TD20ql8bStk2FivrgJCv1KpiFUVAjY3v7MeQxUzCZPVUHmFFp5N0E2oJjX9LL+A17vXZmuHDiHVdCpvC8TpsVD2QJOqu2+Y2dLUefYZDttV+vtv0touRrQ7TkZlMZEBbqK50N4H8I+td3sjFav7hrYp9LFAdB1hklbp+1SthWjMe//TSf9dLf342DiFSfcztcfeHbftEk7wrieKd0ywW1SnmeqQDsXs/GNsuhSaVNVveC8a6JAMa5D1q6iS3JAZP9XGVTzVVVCVTV/C+8WaLuUpvPOgOAQqKmCCePdb12X0LI1mrob1xMowrmKjeu2SoHx1+BU0ejLzT1Qed2JtwDwnrteGT+XFqeTgM8LFrWfIAiCsLf52LO/DMD77noFG7vjUaU/Y1MmswbbuiO0i4RO4bvDo2mXVp6yeWaUdp5w8rwnAJifzJCqglZRI3OGMeO/2x+cWUhuDe0iZUnDf8eNmQ51ndM0nb56Y9HB7DRai7JXEPYFpux/DObv11QRa3KAdwIYHG2b0FBZX/041GyFfui7h+u7UX62BHf4MFX/YH9/Z7UKBUEQ9hb7PGehquSfnJzk9ttvnzXPunXruO2222L+/4te9KKdrnPTpk3x8fz58/dMQwVBEARBEARBEARBEARBEAThIGafDwCceeaZ1Gq1+OP+Rz7ykVnzfPSjHwWINQAuvvjiOde3ZcsWHn300bi+448/fk83WRAEQRAEQRAEQRAEQRAEQRAOOvZ5BNDY2BiXX345//zP/wzAV7/6Vd7ylrfwX/7LfyFNU77whS/wd3/3d/EH/Wc/+9mceuqpc67v1ltvBfxggVJqp7UChIOfqp12kCJG1/Tb7qr22/A4cyoWpE0rFrz+YsIWWykIa2KhoIH5Z7WxWtTTFxZG9S83rJAxECN6wnp6RYt76xwNBVdVQuYMRg2JWAnrdjpaFwuXkpalVwtsjLUpVG/7qbLUyvZbR++/ml3o11SScmZvORwLRYGj7XSf9XFpso1fzhzP8nTzHEvO5pzj13HnhmOZ0D5KZVWxlIbK2FY0Oba2mVF8pEqDzO9T2f6wzcKpWHDZWjUr+icc40ZZnG3apbRdStumscjytK3HeJPDBT3w7mosmTNkmGifDe9t4TS2jMzy0y01VVBTPgorxitVCghXOdDif8BHYQ0W7CvQvOqE2+Lzr9z/HJYkO9hWjNJ26azYoFTlMUKsoTK22FHGlY8+qkYK1VRB26V9cWPRomygY1O2FyMAfHLt+bz9lB/v2Z3dQ3zu3ucDsKV7EiuaG2nojG55DXXKyDJBEARB2BdcfcaN/v+vrwD8vfGOdITCKabzOo+3xwHY0a0z1uiypDnFvFqbTlnYs1XUaJouW/MmBhenj5iMRzqj5FaztdsEIE8ME2mLVBXYgfvywmlaztAs4wEFQdi7pKqIRYAH++8Fuq/Pnjk967cE63zfJsYIVfr9admPTpWlFeJ4B36jmPU7geufFvr6w+J5JSJoOM6nCx80HExtFQ4P9vkAAMBf/MVf8I1vfAPnHM45Pve5z/G5z32ub57wg/673/3una7r61//enx85JFHigNAEARBEARBEARBEARBEARBENhPAwBnnXUWf/mXf8l73/veqPQPcT9KKZRSOOe48sorec1rXjPneoqi4MYbb4zr2FWxYOHQQFeU5xoXleo7K7Q77PWqMnxYId4C3V8EqMQXxzUM0q/8rxT2BIyz2AHlQKBadLbahqrSoOpiCNNSlVPYRlRoB9Vw1Qlgy4JjcZ0q7Kd3AQBoNDWKqHboDiSD+W1XVBP01P9dFwoP99T+s46L8se4oSxt64/btmIEo+zQ47gzdth6LI56ZLKDlq1xbG2LLyhbTi9QaHRZ7NdVCjK5vvclvF+psqSqS+Z0nwMivDaZj/CylXc8qXYeSmSuUmha26hI17ieUr1UxhhV+ONfkTtMu5p3qFSvj3K5zJn4nly+4u59sTtPis/d+3waAwq+zCW85sRbZ83bdjU25eOkqmB74ZWASxJfFLBwKroCNLZPBa/D+stD1lAZbYar5DNlaBW+CHirqHPdmgv5o1N/+NR3cC+zsDaNdZppW2drPgrAVad/fRdLCYIgCMKe532/9S99zz+6+lK2m2Z83jA5XWsYSzuMmIx5iXfqLUymSVVBs9FlUzYWHQCpKjht3mM82p7Ptq535yXKMpr07m3D/Y5F0SpqLE6nDujvbUE4VPj2utOZ0BmF06WKv+y/xL71gMNZORrk3pFbqvu7ykRneHX+wT56mKftklkKf+j9LqCVi9NC3z6kD1SXq/42IAiCsCfZ5zUAAu95z3v49Kc/zYIFC+KP/+AHArTW/MEf/AE33HDDTtfx5S9/mSeeeCIu/5KXvGSvtlkQBEEQBEEQBEEQBEEQBEEQDhb2iwMg8Na3vpU3vvGN/OAHP+Cee+5hZmaGpUuXcuGFF7Js2bJdLr927Vpe9rKXxedXXHHF3myucACTqtkK/oAdEKUPzmed8kr58rUwSm8HnAF6sFbAAFV1eXXkPszrM9KHt7HqMKgqAoa5FrKKon9Ud2ZlhhssOqwDF/ctVUXpFtCzct3BZx9WtxmzEEMOYtgfoHD+eTyWzkHlmGSuNy9ADUuBoqm9osIWirrKuD87guLBlTz/+AeGHpdBzlt+H7/ccFy5PzmPZ0uYb1ocl26hqbt98wY1Rk31MhqnXUpD5X3vaw1LqhwZlmmX0K58LBrsYa3+H6TrDNg6aMo8zJCRaTBRIeOiyqbrjK8LoDQ4yMqaGuF8vXTFqv2wF7tPQ2VoZfuu7WHq/1edcBtfuu8cjk638ng+n2nrVfoL3RRGOYxy0bnSdYYFyTRtm5KaItaXgKorpeh9VqieU6Kpu0zlDQCmSifAR1dfyrtO++6e3/mnyOfufX78fDmuvpknsnl0bCrKf0EQBOGAYvC78+pfX8GmbIxt2QiLa1Msq20BmKXYf99drwBgczZKXeccN7KFup4HwOPtcSbSGTJn6NieGtgoy4J0mnc/4zt7e7cEQYCo/AeG1smrUnWLG4peP98xS7EfCH19W/ldIdbtCm2Y5arvtSP0uYO7P6xPKzf0NwChpD+Y4MDnYGqrcFiwXwcAAGq1GpdddhmXXXbZk172gx/84F5okSAIgiAIgiAIgiAIgiAIgiAc/Oz3AQBBeLIMKvoBsj7FPX0K71S5OM8wl0AY5Q8j73F0XunoAhhU/A/mBgaqGX9hndYpUHOnbQ1mCoblDS62PVBzNirU2y4tcwczCvQsdYPBscM2ovLY4Gi7lJoqsJV8w17blVc6xBoDFo2ihu3b25D/byBmvdeUz/8vBpT/4J0CXbwCPOSpH5tsJ1UF/9/0SSxPN855bAb55Ybj4jHelHu11ZZijAnTiqrjhs7jvlXft3ZZbyA4PrqlGn2yzP4fVRltl7C5GANgkZli0tV3u22HKq844XZuvP9MALYVo/H8AOiW6vVaqf4frJnRUBmt8hhaekqci1es3jeNf5oMU/vPRdumtGwNYKe1LYIbIC2P2SBaWa8WCZ8ZztddMMrSdQlH17YBsKq1FKMsDZXxmXvO420n37zbbd2bZM6Qlp8Ro7rD4mRS8o4FQRCEA57BGgFzcfUZNwLwsdWX8LNtK9HKkpc1rh6dmke7SDh2dBs13fueb5qMMdPmg3e/FOjdJ4S+x8PtBRxZ3zErP7yuc8ZNm3ee9r2nv4OCcBhRUzkWTVo6vwf78gW6T93vUwAUqbIVR8Bc/X01ax1AXDb0g0zZHy1Q/Zn/A1STA2xZw26uZANBEISngwwACIIgCIIgCIIgCIIgCIJwQOKcwh1ERZIPprYKhwcyACAc1FQVx1rNnr6zx3Ovs6dfD6P0Q9XyO1muunxwAczlIhhUJfj8QRedDFUydFQZB1IKTEUpEJbpOsM83Y7KeDvgEogOiYF9q74eswnpb0sa3RWU6+791/RcAsERUMPSdoZtrhb3PaWgrjPuaB9Po8z1H1U5pxz7m6Ht6R0fv7VxM8Mj3QW0bI2N+TxMWh5P1wLl37PMaTaWiv62q5UqEF8joe1SALYVTZ/TjqWpO1HNvrt1CQ43UpV794mzjOoO4M/9qrol4BXq3aGvHWoYZWnqLo935nNkuh2AzCWkyh+joPjXaDJl4jkXPjcM1qv/w/oqTiSjMrbkozyezef4+iYAjqhNsrk7RquoMT+Z4bP3nAvAW07+yT7Z37l428k3c+2aiwAY1+14nQmCIAjCocQ7T/se16y6jAdmFnPHJl+7brzepqYLJrMG42mbrHQGzBQpY6bN9nwEgPnJDAA78iaptuXjBmOJr2fVKlJSVZDqgpatcd2aC4HZ9QgE4VDgujUX7rFz+yv3PweARaZU3zvt69kFl3p5/z1I6KcE93+gi8E6RTFEuQ/9LoDqsn21A+mvsRden7Q17/Id8luAOAAEQdgbHDADAM45fvGLX3DzzTezevVqtmzZwvbt27HW8td//deceeaZ+7uJgiAIgiAIgiAIgiAIgiAIgnDQsN8HALIs4/rrr+faa6/lwQcf7HvNOYdSiq1btw5d9u1vfzs33XQTAMcffzw/+tGP9np7hf2PVr06ANUReutmvx6eB2pYn0dPL29vV/n+g6PyYXR/cGR+rpzAkOU913pNRRUA9OX+B0+BpVfDQMf16PhYR+29p0BFtb8NdQmwpMrGHPbqNoNCu7qfIa8/KhnCvA4a5UFtuzBPJbsQMJXH4GsAtF0S1z9ta2yxYxybbqFAc3PrZABeNb6K9Q8fzfJljw4eRQDOOm4Dd244tmyP46jaNjJnMMoybXt5/SkF83SbAhVz6huqS9vV2Fg0KZxmec3XHqipnEtXrBq6PcHzihNuB+BL951TqtpzjHK0Xc+NYrCgChoqo1Gq3TNnGNftuMyhrGbRWKZdnYXJdFT1F33XpH/csnUyZ/w1O1AbJHOzv5KDS2C+adHU3egkWFHfSFN3eSKbR6uo0TK1WcvuL8Z1G/BuhOvWXMj1ay9gwrQAeN2Jt+zPpgmCIAjCHuPdz/gOH119KWNHeeX+vZNL6FpD7jQaF519IyZjc3eMAsVMkcaaAVpZCqdIdVHeo/v7pKbJGNFddHkP3irvcT+6+lLeddp39/VuHpBcv/YCAN5xivT/D3b2lPr/xvvPZFF5vwlU+sw7Z9BFX50+mM8Pw3P84zaHvBb6+kWlBl1mNeO6O3S7c00TBEF4uuzXAYD77ruP17zmNdxxxx24spioUv6DNTzfGa95zWv49Kc/DcCDDz7ILbfcwjnnnLP3GiwIgiAIgiAIgiAIgiAIwr5FxkYE4Smz3wYAHnjgAc4991w2btwYlf7Oub6BgF0NAlx44YWccsoprF27FoAbbrhBBgAOE4JK3o/M979mHUMzx4MzIIzeRzXywPK7O+I+e/09JX9Yt3cLFPH1QWrYoVn/wwgq+rg9LDXVW3fYr23W54umqqBAxYz/4Aio1gGo7ku1/b7tPfdEVadsFBTODdVUaCBDget3FwA0VM50mQfeKvP4m6bDQ9kitudNADZbzclJjfUPH812m/Cs4x6atY2wvkXJFC1bY3veZFI3KvtiMdrSdik7bIN5pRo5VTmF1SxPNzHtaly4fO2QPRB2RqryqEKrOlqMCrmWZsDNUirbStX6oaxmsWisU8w3LWyskZHPmq9tU7YXTZq6Q1N3e9ej8se07VIKp2nozM/vUhoqo8DQ0BnbCn+tZM4wZvy5vSkbO6Cy9kMdgi/ddw5/dOotXL/2AlH+C4IgCIckVUX+1b++gu35CI+25zNTpHStv29fUptiY3eMrk1IlI33snVtaRX++1srS1337huMsmSu5xQAwM2uN3a4Isp/YZBXnHA7N607DSD2kQPVfng1t79Kgep7LVx/wKx6flnVUR/d/kWfY2C4G8Cve7S8z5+LQ7nPJAjC/mO/3EV0u10uv/xynnjiiTjt+OOP59prr2X16tVMTU3FQYFd8Xu/93vx8Xe/K5ZIQRAEQRAEQRAEQRAEQRAEQYD95AC4/vrrueeee+IP/L/7u7/LF77wBUZGRp70ui677DL+6q/+Cucca9asYfPmzSxatGhPN1k4QAiK9Cxm8M09b3ABVB0CBSqq5atq/fC4OtoeRu0HVf3V0fzqckHJn1VG/o2aXSsgsCv1v6aXoR/WaSqq/7ZL0RWFcWwfjlHdIXNJn0ugup+pKobu6yBhnmqFgcIBylE47wbw6/bPA9X3J3OKtkvYUjRZYqYAmMaxuRiN+f0t6/PLWzal43KONA0mXcbah5YCcMqxv5nVpiVmBw+4I2iaDkWlHsJvsgUsSSZZkuxgkZmKueptl3L5iruH7qewe7zqhNv45NrzSU3Rn2/vQJNg0bHmAkBDZdRKJ0pD7VzpcrDzppN+yrVrLmJ70eTIdDvgr9egHgqKnwnTYrxU7rdsjUZ5faYqj3n//vrsd+wER8Ci8hrqOkPmErYzwpjpkJbr+ew950YF/v4mc4ZPrj0fU5n22XvOpWVreyzvVRAEQRAOFN73W//CdWsu5IjaDjJn2JyNA9CxCcePbEHjsCjWtRYD/p52Oq8zkbao65xO6Rio65zMGu/OrTh30wFVsyAI/Vy8YjUAP17v68sZ5WvgxfvqIf3ual/dOhX7t6kqaLuEdIh7HqBwmgJi7bNhCQTVbWROx3WFeUOdgcHfHQRBEPYG+8UB8PGPfzz++H/WWWfx5S9/+Sn9+A/w7Gc/u88psGqVFPMUBEEQBEEQBEEQBEEQhEMB59RB9ycIBxL73AGwevVqNmzYAPic/6uvvpo0ferZxaOjoxxzzDE8/PDDANx///2cd955e6StwoFPUPfPpbKvjsSHkffB+Qv86P3uKgOqzKoDQOlKKDPwu3OMsfU5B4bOQV8yoVZQcxYUUXndVN2oGAai0h189npDtftU2jpus1/FEBQH1qkyh7zieHC9egvVpUKdBTtQpyPUZAjHq1v50uu6hEnbKNelKJxiXM/wYHdJVDR1nWFMp1gsx5qchwrf/l89tIxnHuuv8VAX4JYHV7A42UFDZ33HoaG3k7mEhspKxYdXTp9z/Lo5jrTwZFiS7GBLMUaqTFT1pyonKxXpuqKSCfn1NZUfFoqWUd3h8Ww+G3Ov+Fuabh1yvVmvGHLK1wAYeD08D+dzqnLskMxfi8Yoy3wzAwa2F34Q/UByWrzppJ/OmmaU5Y9O/eEB5VQQBEEQhD3FMIfbh1ddzlTeiIr+U8ceja+NZKNA+F7390odm1DXOXXVRSsb76Heedr39sEeCMLBT9slNEp3bZVhffpwz22waOVizb20cu3BkDqCA9N9LYDe7wm96b1t68pvAIPq/zDP4dBnEgRh/7DPHQC33357fDw2NsZFF130tNe5YMGC+Hjbtm1Pe32CIAiCIAiCIAiCIAiCIAiCcLCzzx0AGzduBLz6f8WKFWj99Mcgms1mfNxqtZ72+oQDF+voy/SH2aPw1Uy98L86X4GiQPdG5ctptqwPYChmrW+QwboAodZAVsZRPVaMATChZ0iV7Zsv/NcqLF/J4q9so1oDIOyzdYoag5n+Pmc8bGNLMUZNFYzrNjWKWdsezPsPx6goVfkM5hyWs4d6C9b1Hod1D74nAesUO2wdoywNlfFE4ZXRt06tZGN3jD844sdM2pHeetBM2TZjuoFG0SqzUI80bdY+tLSvFkBTZ8wzbZqqw4SZie+nKP33LgWatk1pk1Lo4LrQpCqnQNO1JirYDN610lC5f32Ikv1Q4m0n38x1ay6MTpftRZO3nXxz3zyfv/d5WDSF02Sul+0faliE46iZI2+0/JTQWK8WxLKlGGVct/fWbj1lrl1zEakqeMcpP4rTgivgLSf/hE+uPZ+3n/Lj/dU8QRAEQdgn/Pkzvt33/Pq1FwDwjlN+xMdWX0LL1nisMz86lceSrne4VvLCAfnerPDJtecD9B0PcRcKgYbK4720dQpbqUg12BcOKvzM+bobob9icHSdAUdfLY7C6fi8Ot276fUs10HA4GY5CoLjvtq2uZIHBPyxOpgMEgdTW4XDgn3+a0y73fuRol6v75F1bt++PT6eN2/eHlmnIAiCIAiCIAiCIAiCIAiCIBzM7HMHwJIlS+LjTZs2Pe31FUXBQw89FJ8vXrz4aa9TOHAJSvVdZeOFTL3qAHoYZTc4sjDiDj1VsrLgoAhFpQdG4wM7qxFQBLV8VPP21xXoqfD7lx22TltZr1ZBee8q+YMaQ9GX8w9eUVxVD1eV/4POhfDYOtWXRVht+2B7Y/vcbHdE1XEB0C3VFpuLMbYUY9wzcxQAZ489QENlbLNNCqdpFX4wcIdt0HJTGNchVYbTUu922GKhrhwPPHw0K5c9Wm5fsTLdhMHxjGMfmd1AYa/wqhNu4yv3P4e2TWlZ/76lLidVpXrdpVH5kqqcUd2J52NWUd8caHzpvnN43Ym3PO31pKroXXM4brz/TF5xQi/6zigHZT2PaVvHuH7lf0NlfZ8HXeePWU0VFE4REv47Lo05oqkqaDtfSyf8PxAY121WzRwz5+tvP+XHfOYeX7Nn0CkhCIIgCIcqVWecVpam7rKoNkXb+u/wVBXxOx6qzuND20n5ZBjmhBD1vxBIVQ6U/fwBd3sxpDBrmFY4hS2vs67z7nSN7XMxW3R0BVT7vtX798H+feZ0X996sC8e0KF2gJgABEHYC+zzu4ijjz4aAOccDz74YJ96/6nwi1/8gunp6fj85JNPflrrEwRBEARBEARBEARBEARBEIRDgX0+APD85z+fJElQSuGc46tf/erTWt8nP/nJ+HhiYoKzzjrr6TZREARBEARBEARBEARBEIQDAnUQ/gnCgcM+jwCaP38+z3/+8/m3f/s3AD784Q/zH//jf+wr5Lu7/OxnP+MLX/gCqoxsueyyy/ZoW4UDjxABtDN6ETmqz+IXCu90MeVrw6x81UidXnxPtWBw2Pxg3E2YBrDIzMxqVyj8Ozituo5gDMyc6pvXOuiWhYt7NkMb/2+zozSUDwdZYnbEfR2M/Rl27PqLIfdKD2sUmdMYHCmWtBKDFOJ/5irAHIqYZZUiSVvyMeYnM+XyGqMtD3UXMWkbLK1tBeC4ZCuTDrbnGU1dsT4rmLSaAsUtD64A4JzjH2J/8M0HziBzpi/W5XAjcwlbijFGdQfwsTYG6+NtdO/cnDAtpm2dRWaKwulDvgjwDfedTUOnFPhaN744d/8+V2OGPnfv89mS+4LhmTHUVUamElKVU1M+/sqUxX5DFFD4TNtWNMmcoam7PNGdx4LUO+EGCw3uT95y8k/47D3nAr74McAbT/pZ3zwh+uez95zrC7HjxMIvCIIgHDb86anf59o1F3FEuoOpogFAy9aGzlsrY00OFKTornCgkrkkxgBVGdYXqd5nN1TWF12a4mM2Q9wPQNslNFTu44Ir0+M2yj475b181xmsU6TK7vbvGIIgCHuD/fJrzP/2v/1vACilWLduHa9//evJsmwXS/Vzxx138Hu/93sURYFzDqUU73nPe/ZGcwVBEARBEARBEARBEARBEAThoGO/DABceeWVnH/++TjnR0u/8Y1vcM455/CDH/xgl8s+8sgj/Pmf/znnnnsujz76aPzx//Wvfz2nn3763m66sJ/JnYoq+KJUqGdOz3rsVf66T307qFi3aCyaDONH5tGxCK7fxvDLI7yeOR0fV10HQX0f/qrbt474V6XtNG2nmXbenRDU/2HeXjHg/vX6fdKM6g4NndPQOamyvniY2rnyf5ACRdsmZM6QOUPb+cdPFGO0nRna7uq+h/+Z07RdQtslFE7TdilrO0fTsjVSVZCqgt9kC3iouwijLI90FjBt60zbOm2X0LKGunIYFIXzhZVbVtFUlt/k82i7dL8WOr1y5V2HtfofvIp9STJJ26axYF2BZnM+Rk0VLDLTLDLTZM70FbW9eMVqLl6xen82fU72RAHg15x4KxpLTeXUVE7bpbzqhNvmnP9NJ/2Uus6o64xtRZP7O0cyWTTIXELhvIPJKEeqcqzT2Ipqqam7GBxTRYOZohZfD0r7A4WgDHzjST/rU//fcN/ZgC++/KX7zuEtJ/8EjZtT9SgIgiAIhyp/eur32ZSNx/vkI9IdNI13WVa/+4Nr7kDgM/ecR1aqpgenC8L+5vzl99B2qe/rl33SwvX6/hm9c7frDFsK34dpuVr8C8sbZUtXr+9TN0pngcWvM0wP/W3rFFq5+FuEwffNw2vhTyvXVxgYen3+7BB3TQuCsH/Y5xFAgX/6p3/inHPO4cEHHwS8ov+SSy7hqKOOijn+4cf9v/qrv+Jv/uZvuO+++7j33nv7XnPO8cxnPpNPfOIT+2tXBEEQBEEQBEEQBEEQBEHYG7jy72DhYGqrcFiw3wYAlixZwne/+11e9rKXsWbNmvhj/qOPPsq3v93LMHbO8aMf/Sg+DoT5zzzzTL7xjW8wMjKyz/dB2PeEXPvBfLzqKHlQ7htsnwugL+ve9bL+Qu50mE4YiXeA6mXiV9dvBqaFOgFaObroqHienQlYabdzoFSfqt7gaDvdp/DfGUF5410BdqfzDra36ioAny0ecseBUrGfM0+3h9Y7CG4LgLZNvLLB+VzEcGwzDG2XkqqChsnInP/I2V6MMFk0aOiMMdNhUzbu19NIaah81p40tSNFcemKVbu9j0+Wrz/wbCZ0i/OX37PXtnGoEa6tLfko46bNqO4woVuxHgUQczTt/jGc7XNqqqBTOlRCjYSd8Y5T/Pfb9WsvIFVFmTHauwJC5r9Wtk8FGNREbZuyqDbF4mQSmJ2xf6DymhNvBfqdF285+Sdcu+ai/dUkQRAEQdhvfOD0b8TvQINlXPt6Qh27/1yvg1TV/RrH20758ax5DiSXgnB4c+HytQD8cP0phOCLvjqAZde27VK0smyzzb66AQ2Vxb5uqoq4XK+3DDVF/JHXOwX8PLovBaDcnuv9NhD6370UgepvGYIgCHuH/fqLzEknncRtt93G29/+dozxPxiGgr5KqfgXqD43xvD2t7+df//3f+eYY47Z940XBEEQBEEQBEEQBEEQBEEQhAOY/eYACIyMjPB3f/d3vO997+O6667jO9/5DnfffXef2r/KiSeeyO/8zu/wzne+kxUrVuzj1gr7m5D1H/LyfO7/7PxJrRyZM360fsiIf5/KtpzWdaZvFB9lowsguAkAahTl+vvHz4IzoUBFF0HI6w/qgUFHQHW/Bp8PuhyGEdQDczkS5lqmrxZC6VwA+o5X1xo0FqNm6xDC8tVjm5b/2y6Nqm9fTyCJuaaBI9Id1FTOtK2zvr2IuvZqi8fy+SypT6OBrnOYspmZg5aDBx9cQVN7dfkzj314l8dnGD9cf0qfQn1zMQbAEjP1lNZ3uPK6E2/hxvvPBOA32QLG9QwNnZGqPJ5POH+tQc8JcKjTdSZ+zrx9iDJuLoJbYLJo0NRd9Bzj86Y8tk3dwShLqnLGTZs3nfTTp9nyfcPHVl9CU3fisQm1AAo0k0WDcS26J0EQBOHw5E9P/T4A1665KNYDyJRBq/13D/Weu15JQ2c0dRcYi21ZaKZnzfuZe86jbVM25ePMNzNx3rBfgrA/6HP4l1hU/A0g1AmoqYLMJTTVcAevHeLM7zqDCYJVF1wACVmlyx/6QA2dE5MFXK9PXk0XCI/n+s3gsEcigAThabHfBwACy5Yt4yMf+Qgf+chH2LZtG2vXrmXz5s1s27aNZrPJ4sWLWbFihaj9BUEQBEEQBEEQBEEQBEEQBGE3OGAGAKpMTExwzjnn7O9mCAcgeciWL0fsJ22DVOV9KvtU2aF5en4e+p4DoGxU7Prser+NBll0AVh6LoNpUsZVl2lbY1R3y+0ous6wrRihpoqY24liznoAQMz/H8z8j06CAYZl8Qf6ax+ovn3vLW/jSHRQaQfnQlh3OHYNlWGU7dUIGNiuVg7jbNzP8F5M6BnWdI8CYNzMsDH36v/MGaaKOgAPtxfw7PENrG8vBiC3/vi2y+z0ltNMaEe7dAJlTtF2xm+z3IFfbjiOs47bMPRYBG5efyKPFfMBeDybT1N3OSpNyZxhoWkBME+32WEbGFyfS0HYNeF4HV/bRK3MzCwqDp0JPQP4uhCHSw2AzCU0dLbrGQcICv6Prr506OvW6b5rOnMJGsd80zoocv8/d+/zARg3hredfDMfW30J7zzte7FeyMGwD4IgCIKwL7BOs6E7wfykhXWacFdx7ZqL9rqa/rP3nAv4ujwA27IR/v2R3+Ky41cxP5mhKGsShL7OZ+45j2nr7++35wtIdU7hNNuLkdI14OschZpHe4rr114AsMfXKxx6XLxidXx807rT4uPQ72yoLtPUaduUhs7ICL83GN8fLvvIIde/6gTwqQKVvH+nSVVO26WV5AFFQ2W+j63CvbyNdb6sU9H1XqOgi8FIJQBBEPYCh8cvMoIgCIIgCIIgCIIgCIIgCIJwmHFAOgAEYS4SVZC5OtOuBvRG2aGnoq9m31cfF6g4St+t1A0onO4bye86f1kYZbFOg8qjohlA4/P/G2VuPXiFQNcZMgzzVHtWu3eV/T+o/B+sHRDbhunLCPTrtn3K4ALdl+s/WB9gGNXMdkpVd88ZMHz54Brw2yjYVh6D1FgWlnn6LVdnZe0JFpopthWjPJpNAFDXOTWVc/bYOtZ1lvBEd9xvs8w8LFBMWtCVIuBtl7DDNtjGCACLzDQ/fXBlnD+0pakzthUNn8FISqtUJS1JJmnojMJpr+4oVRnjuh2V6nO5K4ThXLnyLgBuvP9MHsoWMao7aCwn1J4AIENjcLRdGq/Zw4Gn4yQ5Nt3Ca068NWbjBwo0hVOxBkBDZ7zuxFueVjv3JJ+/93k7VfEP1igYVrvlc/c+n7ZNaeqOOAIEQRCEw5YCxcJkmofaCxlNOvFevKPTvb7t8P0cFPZH1efxomX3sSCd5q4dy3ju/PV983ddwhPdeX3TjLJk1rDFjgJ+fz686nKm8gabs1HmJb6vNGY6LEym+KNTfzirHdeuuSjWcwu1u6q1lYLzVBCeDC1Xp6G6Pmu/0r8f1R2mbb1U5fvfAhqq6+vZ4fv/cf5KHcDC6Vn18grn+z/V6YXTZGh06Z6vqSL2tX0tgNCv98u0nfxMNxQH7EadxAMGqQEgHGAcsJ8sk5OTbN++HWstRx11FLXa4fPjkSAIgiAIgiAIgiAIgiAIgiA8XQ6YAYAf/vCH/M//+T+5+eabWbNmDUXRGzG96aabuPDCC2ctc9tttzE9PQ34ugFnnHHGPmuvsH/ojY6XyvMBtXogKtrpuQCqKvyo7i8fU3EBBMU4+Hz4wmkaKo+KmJBDn6qcjYVXtoyqLhmGcdWmUVGk+Ky/4Q4An9PfU/4PvrarYxAU7LZcT1FRIxjVy/oPWYM7cwIMbj8w7DgO1g6oTpu0Ddou5Qgz6bfpLKvax6CVY8K0+O3mA3EfHup6xXhTd+PyE6ZFqhxtazCqiDUSqsdjm20CsLGYx7ieoaF8VmNWKiVSm/v3o3y/ghuhpvKY3Zg5E49XoXR0hjxRjHPWnEdJmIsCTUNlbMnHOL3xULwGCjRtmzDtaly+4u793Mp9Q8vWYm7uU+E1J97a9/+G+86O6n/ggFL9B3al/h/kM/ecR1OnfOae83jbyT+L63jTST/j8/c+L7ocBEEQBOFwJPRRVo5s5NHufB5qLwJg1HS56u6XcdXpX99r287KmlvhHn9xMsniZJJJ2+CI+iS6VEEHNfQ7TvkRH151OQCtok7L1mjojLrOY98qs0msK3ZUfUe8B+/YhO1Fk4+uvpQJ04rT2y5lfXsxR9e2Y3EUZV/G3zfcDBD/C8KT4WUr7+Ar9z+HUd1z1mgcDdVFa9vnUO26pOISsFH5byr1A6Hq6Ddzuv4tuuz7+/WHunxdZ3zuf7ldo61/TUlStyAIe579PgDws5/9jP/yX/4Ld93loySc6//QVGruH0JvuOEG/vqv/xqAefPm8eijj9JoNPZeYwVBEARBEARBEARBEARBEAThIGG/DgBce+21vPvd7ybPc5xzfT/2K6VmDQYM8id/8id8/OMfJ89zduzYwf/8n/+T17/+9Xu72cJ+pqoGL1CkeDV8dSS+oXKsU6SqwJYj7WlfDl+Cjln6pvyvyVxC2/l8zdTlfSP1QaWeOa8YT7ExOz5VlkY5/+C8ekiWf2j7oPI+ZPwX6J1m7wfaLo01DYJCweCwTlNgvdpmDvfBMIGC39/ZioO+9g9Z7rF8nG22Sdv6Y7cx91mgy2sbOba2hc35GPe1jySr+2M5WTRo6i4/n1pJ5gwd6z+Kjkp2MO0MbZewzY7E3PhtxSjbiiY1lVMvc0DD/ls0Ghvfz5SCVOXo8nxYVDoAqserQMU80XDMtKiOnzIGS0NntF0W3RQABV7xMqj+//a60w9pR8CX7jsH2DNq/er1eKAp4z9zz3kAUcW/u3RdMivvNzgI3njSz/jcvc/fMw0UBEEQhIOQdz/jO/HxNasu49H2fADu3bEYrSzvu+sVXH3Gjbtcz/VrL+Adp/zoSW277VLGVTv2nwAylzCVN1je2Bz7J1UFfuhjZc7w0MwCRk2X00Yf7bkFymUWJD0nbpWwfOjLpBQsb2zqWxZ8jvon157f1795Oq5L4fDkVSfcxo33n8mo7gCQDdTYK8rbbYOK/cxqzYDMmT73QEwJwFFAX20B8OezRZf1AsI6ElA5Fg0UfcuEen7CbJzzfwcLB1NbhcOD/eYt+uxnP8s73/lOsqzyI5wxnHPOObzqVa/a5Y//AMuWLeuLBvrGN76xV9oqCIIgCIIgCIIgCIIgCIIgCAcb+8UBsH79et7xjndExb9Sine961382Z/9GQsXLgTgK1/5yk7jfwK/93u/x/e+9z2cc/zgBz/Yq+0W9j95yG0vFekpPVW/rYxnZU6XSm/dp/xvu4RUWdLKKHvbpmSYUjlesNmNlfPWaLuMo8wODA5TbquhczKnyZyO66nWGfB5/L1zN3OajP46AL2swP58/qD+H8RUXARBqV44hcEx7Wq+TgFZuU5fFyBVBbjKdpWubGe2KyHWVdhJrYDQ9sF8wwkzw5ZirLeu8rg8lk/Qtimb8nFSnbOt8Pn9j3QWlEoIRV3nLG9sBmBUZUzaGo/kE6ztHE1TdwEY120WmSm6rpf139AZDeX/aqqIDoAsZCsq21ePwR/XDIOLLg8gzpM5w5Ur79rpvgvDecUJt3PDfWeTOX8ddcv3wDrF+cvvmTV/4TTffOCMA+p433Df2TF3/6niFfFpvP6/dN85T9kFEFwEhVMY5Z5Uxv6+4HP3Pp+3nfzTp7TsO075EdetuZCFyXTf8QnHa7JocN0aP7g/6BQQBEEQhMOJqhvgP//iTcwUNdZ0xnn/r34XgA8982tDl7tuzYUUGD62+hJSlcf757rOhroCPrn2fH8fV2aPV/tPPWdzT7l/7ZqL+NNTv881qy5j9fRSALZ0Rjll/HEWp959G1XSyvX1L0I/YbAfFNzc1qk5ly3Q3o2sdt5fEYSd8YoTbuebD/j6kbW++n26l8evHMbZ6GQhOgMsqSricsGNEmpehKskphOU9QBrquhPMihf7zpDQ/faADuvBygIgvBU2S8DAB/4wAfodv0Pe1prvvSlL/HqV7/6Ka3rvPPOi4+3bt3K/fffzwknnLBH2ikIgiAIgiAIgiAIgiAIgiAIByv7fACg2+1y4403RnX/f/7P//kp//gPcPLJJ9NsNmm1WgCsXr1aBgAOcaZtPWb2BQqn+0bKu7ZOTRWk5HE0XivHqMqiOjmo9xsqw2Bjlv6p9d/E9VSdAkH90nYJG4sxFunp6EAIiphUFdFlAP1q+rZL4jr6VDAV1b9vx4DKBWCIKt/XK0iioico39s2paEz0jJPcDDbflDBv7NtzJ4ntLfneAjTFpop/n36ZE5uPEar8Ar7QmksihX1J2jZOr9uHQPATFHj+JFNvkaD05zS8Md8czHC2u7RAJxSf5R2WQMgvN/B5RDwyf/K14Ioj3mNItZEyJzpO+Yhn76hctqu9/FXoNlhpYD408XX3NBM2joAFy5f2/d6UNqEPM0Diaer/gevAGrqbnQjbcrGdrHE3ARl/Ofvfd4eqSWwJ7luzYX80alPTf0fGKbsf92Jt3D92gtIlWVSrkdBEARB6ONTv/05/vT2/0hd56xvLQLgqrtfRqoK3vdb/8JHV1+KjTXR6n3ugQ+vuhwA7frvv65fewEAWemOrWahBzJnZuX2W6e5+tdX8J1Hn0mr6+/XL1m2hiPTHWhlZ/V1htG3LdfrT4VaaNH1POgUCC4A4LP3nCt1AISnRKvsrxhT7e9bauXjrjOgenUGg8N3VHeim7yhsl5+f5yv381fOA3K9k9XlpDGPVgzQNgJjqH1CA9YDqa2CocF+7wGwL//+7/TarVixv///r//709rfVprjj766Pj8kUceeVrrEwRBEARBEARBEARBEARBEIRDgX3uAFi3bl18fMwxx7BixYqnvc6JiYn4eMeOHU97fcKBS+aMV3y7uceuqnl6ANPl/4bKsKXzJFVFVJPUVBEdAKnKo6pdK+czKJVXzbdtEtc7qrpMuxrjqlSmq5xHivksMVOkysaaALZU5Wvl+pT4BRrrFFq5oZn/w/Y7qO6D4r/rDBqHxvZlFw66IwbXkw7kD85FaFfYl0EnQZVUWUZ1h+Nqm5ksGnHZtk0xWOoqZbJocPLIYwBsK5o8MLOE/zB+HwAPdI4A4OHuQk4b+Q3jesa7GJx3WJhSNVFTecxZbLsUo3wG42B9hZCjaJ2iZb2Owx+ngkI5ahQ0dVauJ6Fla1y8YvUuj4kwN6858Va+/sCzmXa1OecJyvjCKVCab687nctX3L2vmrjXMQPqnnEz87TqAAAHXPY/7Jlc/mvXXETHplGdeN2aC2nZOk9kR7Cy8QTjuv20tyEIgiAIhxrXnvmPXLPqsngvb51XKH/w7pfS0Jpm2Q8Y/K6eb2YA3xf42OpLYi2Aju3VxQpZ59VaWdZp2i5hqqhT1znjxn8/t2yN37QnGK91eN6SB/02klYvL53+vkO4R6qqncM9U3DpBqo13sxA3ba2SzE46uV9fOE0n1x7PkZZ3nbyzbt5FAWhd5433fC+c638vSDU4zIxDaCGwWJLp3vwxlhU7KdWsSgoz/2i6hJQtkwicH2/HVSvP0EQhD3JPh8A2LhxI+AL/1aV+3sKa8VCJQiCIAiCIAiCIAiCIAiHBE75v4OFg6mtwmHBPo8Aqtfr8XEoBPx02bx5c3y8aNGiPbJOQRAEQRAEQRAEQRAEQRAEQTiY2ecOgCOO8FEfzrk9kte/bds2NmzYEIsKh/ULhyZTtsEoOkaJALOKiVbtddOuFh9nGBpkZZRMQUN566hWrmfXq7j2ghUvxNlUi8mGIlVZXLdmkZ6mbRPaLo0FeQ2WpupSq1hZq4QYoEEGY4G6zpBh+qJuamWUzzzVpkD1FSIO+9x2KUUZoxPm12X8UDx+ysVCxNWCxLtDte2jKmN5bSO/aK2kXdqJp4o6R9R20HApk7ZBqnxbHuks4JTmY2zK57Ghs5BOGa90SvMxGiqjQJO5hHH9/7P37mFyVHX+/+uc6uru6ZnJ5J6A4ZKEhIDAqtyyCHIRAS/A6uqiyEVZVlxW1sUv4gVxFdbrqiz7Rb64IIIIysKjAoKCIiDoDwW5kzsEQsiFJJOZzExPd1fXOb8/qup0dU9PMkkmM5nk83qeftJdferUqc50dZ2q9/v96Y/7jiKXkkLNEEUdhbHt2Ve14sDpz8hXoRujsVGx4NAqDMrZiz0Mx+67ZMj7LAzO6bOe2ez7Yeo7FdqB392xTl4FnDHnCW5eehQAORVsYY3djxuWHEPJ+BRNng6vn6+9+D4AiuF41lXamVlYR2A9srq6hZ4EQRAEYfckXdwX4KqFJ20x3jM5908K+vYEeQAXlVkyPh2ZIkk3yfK8quKrkI2VAsYqAj86D39iw95ML/Rw2IQV0XoQx3JG53bJ/CJNY7HTZrFAje1Cq2vRonE0Snre42EweIRoblhyjJvTSWFgYUucO+dPANzx0qFkVejiYtMS1XS0Z+1vOy5GbRWh0mhbm3ua1Pcw+btN5pzpvgwqVXjbuu9vXgVoTN21DkEQhOFixI8s++23n3u+YcMGFi1atF393X///RhjXFHhww8/fLv6EwRBEARBEARBEARBEARBEIRdgRF3ABx22GFMnDiRjRs3AnD99dfz3e9+d5v7+853vuOez507d4fUFRB2HgyKPpOj1avdm3fqkbR8X0Uq/bSiPbSaEj5+VIK3piKxtTvuSbt0v1ki5XyXKUTLSQpkZd0ttB7TQkGV6QzbyOuAvIrGp7GRGyAeWjZWwIcoN960Gt/g1SnW0/tYMj6eqncSJH14WLxUIWBPhVSsV6egSV4nxYzdexZQ8WfU4A5IaCxgnBRNThPGqvqCLrM+aANggt+HsZqesAVjNfm4YNce2W7yKqDH5unI9NOWKiimlaFocozPbHSKCV+F5AncfkD0/5QUW4rcEc0VR/n4czGoOnVUrVDxiB8Gd3sCm4lU3l7IfcsPAtgligGfsd8TQE1RdMvS+e74IkRoLJ+a93tuXHJ0nTrv8899kANaV9MdtjDR63PH4e8sPJlLDrh/tIYrCIIgCDs9Fx/wAABXvHAaZdW8gGhSFPiKF06jbDJM9nu5auFJbKxOACLXYne1QMEr42HprUYOgUJ2E4HxmZztY32lle6gBYBDJ75GR6afgm4e6duo/ofoHMA0cSpUbKaufcn47nw+sJ47Z0/maiXrY+LzBIOOFNnWUKHWT+N5hiAMhrEaUnPs5G/IzXkV+Kpa55IPbIai9QhshvFen2sfNhT7hdqcO+kv3baET2AzFFRUiDgY+ctzYwoFNAlP2GmRWaCwszHiDgCtNaeffjrWWqy1fP/73+fpp5/epr6uvPJK/vrXvwJRUeGzzz57OIcqCIIgCIIgCIIgCIIgCIIgCGOWUbnF+OUvf5lbb72VIAioVCqccsop3H333Rx55JFDWj8MQ770pS/x7W9/G6UU1lrGjx/PRRddtINHLow2xiqn/kgoWb9OjZ7OhWzMs49yIhUBXi2PjygLM3mdENgMGuMU58n7BkXFZlgTdLBJR+qY8V6RHhM97woLhLYtXt5Huy7RZ3O06rJTq2gMxGqAdO4fUKcYTqsHkgz/2r7YzWYEOvWBqrVPPqa6bM1YRZ+QVvsnNQoGq1VQtz0sWRWyp7+R9ljRH1iPRf17cnDhNfZUgXNd5HRAj8nzav9kcl6Vl/qmADAx20cxzDEj20mAxzhVqvssPGVo1ZFCos/k6tT/jY4EP/X5AqDAd6oL5T7bY/Zdttn9EoaP5PvYE+YpmhwawzivtIW1xi6esnSFhdEexrBy27IjOXO/P2/1etcuPh6AC/eP1HiNqrwDWlZRMj7dYQu+CllfbQdqOauCIAiCIGyeLx9095DaJPV3AFpiBf+Cnj2YlO0jo0OmZzeRi2vxeBi0ih4vdU1mr3FdQDRf8FXzGmeublrqNzyZa6RdAKHVTuEfZaJn4vUNoWWAWyB5P6kXBpF62yTzHRvVAxCErSFx8ALc8/Ihzhkf/T1FDvaK9erU+76qklcVPGWp2PpLasnfte+c/3GdvVS9i8jJHv3thlZRJAeAp6L6d43zWkEQhOFgVKqL7LPPPnzpS1/CWotSinXr1nH00Udz9tln88ADD7BhwwYAl+sfhiHr16/n8ccf5+tf/zqzZ8/m29/+tnMRKKW4+uqraW9vH43dEQRBEARBEARBEARBEARBEISdjlELGfvSl77EsmXL+PGPf4xSijAMue2227jtttvq2llrOeWUUwYsA5z6/+KLL+ass84asbELo4dWdoADAOoV3dHr6HmQuiPvq6pTn9Q5Bqx2d+iDlGok6s8jwKMrbHX5fquCCWgsEzO9LtM/sB6esngqwLe1jMAe00JgM/iqSsn6zkXgKeXU+DTkBAJO1R82KF/SyoHG8Sak6wLU9a0MoCP3Qapd5JjQTjHvxpByIjRT/0fZnOm6C5Gqp2SzzoExJdPDnuNepGQi5f+GsM0t76y2ArC6NI5srDIKrEdHpsh4r0heBXSZKGd0z8wmWnWlztExTpeiugMN487SXI3kYev2ucfkmrYTdjyB9VgbjGNiptf9Pe6KnLnfn7ll6XxuXnqUW+arEA9TpzYaK9y89Cj0NqZZXrj/Q5t9vyfMk9cBU/1NktkrCIIgCDuQy978K7694N3kdMCmOOs/7wUs6Z7CPu0b2agL7JHtBmpzqbLJ0J4r8XpPBwBTcj20eyW0MnVOgCS732ucV6Qcx8ncZG3QQUem6BT8vkrmA/H8LT7lSOYVJjVnczUDVPx+3EdapX3jkqOBga5DQRiMU2c9x89feqt77atqrf7cINrZZm58TzXWyovaNLoFNIYQzyUAJHUFG+v+CTEWxpQ5YiyNVdgtGNUqIzfeeCP77LMPX/va19xF/fTF/YRkWUJy4V8pxde//nU+97nPjdygBUEQBEEQBEEQBEEQBEEQhN2CDRs28Lvf/Y6nn36aFStWsGnTJvr7+wdcs94SSikefPDBHTTKwRnVGwBaa7761a9y8sknc8UVV/DAAw80bZfcDEjfJDj++OO58sorOeqoo5quI+yatOkSkHN34pNsyL4GNfcHZkeFpe96+S11CuMkL75iPbLxPaZsg/o/yalP1Cebwjw9poVXK5MA2C+3lsBm3HoJ6WzA5N9CKvc/7TSIxh6p8dPq/2QMidI/eS/Zz/T6yWfQqLCpWG/AsqTPxAWAxdUgcOOx9creJPu/2fLGXEIPS2A1xiqmZ7pYUx0PwCx/Pa9Vx7OuOo49/Y28EYwDopoJKysTGe8XGZfppyMT5R3uk11Pu9ePT4hP6NQSJZshr6rkSdVBUDjnQtDgoBisXkGybmA1J+y7uGkbYcfxodlR0fZrFx/Pm1tW0qrLnDrruVEe1Y7l7DmPc8vS+RTjY1SoRiV5b1jorLaR0wE3Lz2Kc+f8aavWvWXpfCD6PAbre7LfQ3fYst3jFARBEARh84QojNW0eVFtrSXlqbT4AcVqlmm5Ta4GT2A9Xi+Ppz/MEhpNf1BzBESuxto5t7cFV6eJHdudYeQCzuuAcuwS7g7amOz3urEBhPFcJ2kTWk2oo/eS8W2sttIW15NytQAATehy2LflvEXYfUmuIyROAA8T1alIavmla+mla/fFWf+esnXXHxqd/lBzDRg0nrJ1/ZSsT5fZtWqICcJYZ/ny5Vx66aXcc889BMHARJKtIRGzjwajegMg4aijjuI3v/kNixYt4te//jWPPvooCxcuZMOGDXR1dVEoFJg8eTIzZ87k+OOP55RTTuFtb3vbaA9bEARBEARBEARBEARBEIQdiVXRY6wwlsYqDMovfvELzjrrLEqlUtPEmrHETnEDIGHevHnMmzePiy++eLSHIuykBDbK5H/PzBeG1P70Wc+453e9/BYAPFWJ1PVOXaLJqpDQagI8p/wvGZ8NYRuB9cirgH2yUXHqbJzhHTY5oCeK9UQBY6wmrwMq1sMnrGX2Wwji7Wts05xMY+vz/TW2qYIg2YfNva7rU4WQVjG4rMwGN0GDiD5R1XsY5wJIVD++smyyHn02y7rqOFcvoT3+rAD+WpzJoYXlQJRvWI33b2Kmj8mZHiBSArWrSMXjKcN0L1r+WnU843WRdl0hW+fo0PH2ay6A2jgHuhRCFCHK1RYQRofxXhEP4xQ2uzp5HVCOnUVFkwXgxiVH46vqoIr4nYmvvHA6AG2eIrAeodXcsnT+Vo19S22/fNDdfO3F97lc4ksP/PV2jVkQBEEQhC2Ti+twjfPLVIxHIVOh4FXcPOHl/sl0By283hdl/08sFAHYM9dNTg+ughxszlI0OXeOXjRZfBUp9Ysm686Rkn6LYa7OEV00WTyToZf6OVcveTq8fkKUS2M3VoGKXM8GJfUAhK0m7QTwMKTLYJnYrZ/O+vcY6PRPyKoqJZt1rzWmvo3Sdcub1TwUBGHk+eMf/8gZZ5xBtRr9ViZx9Fsb+bOzMOI3AJ5++mluueUW9/rMM8/ksMMOG+lhCIIgCIIgCIIgCIIgCIIgCEIdF154IdVq1V34z2aznHvuuZx++ukcfPDBTJo0iZaWsSMuHfEbAI888gj/9V//hVIKz/P4whe+MNJDEMYwx+39EDNmzNimdaPc/yhXXtua6t6gqFgPg6LP5Ory/dp1Pysqk2n3S5Ti/MlWXXY5gEkGoIepe53c4U/U71kVRll/yY3CWEHgYerU/mk3gMa67P9knMny9Gusrmu3JUrWJ68Cp74xpBQ6dmBNgRA1QE2ffi8aE4zXFTrDAuO9PvbKdMd9w0SvCNl1hGiCeD+7wgJvym4EIpWPr6I7qn0mR5/JMdt/g3Zdcf3vlemix2Qp2QyBq7NgyaeyR9OfQbKs2bh7TFby/0eZM/f782gPYZu4YckxnD/30a1ez8O4+h195OiuFtB+Dz0mz81Lozo2O2s27dWLTiS07QDODRXEx8sblhwDsE2fSTMue/OvAET9LwiCIAgjQJg6dy5WfSbmimhl0FhXt6tsMnSWozzyUuDzlsmvAzDB73Nzn8bs/0ZHdPLaWBWdy5voEoTGMiHTx+vlCfSHPmEmaRfNGQpembLx3Tl+XgcUwyyB9WrKawU5qqwNxjHN3+TmcSjAGucCSLTZP1h8bNNaacl4EseBOAWEhA/Mfpo7Xjq07u9Zu/n6wL+ldL5/0qZiM5ttk17erE9BEEae559/nueff95d/N977725//772X///Ud7aNvMiN8AKJWieA9rLTNmzGDKlCkjPQRBEARBEARBEARBEARBEMYClgExxTs1Y2mswgCeeOIJoFa094c//OGYvvgP0Dycbwcyffp0IMpOmjp16khvXtiN+dDsvxJalcr695wiPcCjYjN1CpaS8Slbn2l+N+ur7fiqiq+qVKwXK3qreESqlxAdK9wzBHE/UVa+cXfxI5eBrrvT36gGSFQniVpYY53iHyLFgUFhULVt4rnnySPdPk2IJrSakvUp2Yx7VKxHJa6vEL3nu7z8aD2FsdGj1tdA18G+mS5m+V20a0O7NuSVomQyVGyGOdk1TM90Mz3TTVZV6fCK7OlvZC9/A2UbfdYehryq8Hp1PH1xZjpAXhnG63JtH9BufFqBVlEdAF8ZjFWuPoFuGGKPydJj8oP9iQjCZlkbdHDt4uMBnHJ/KHxg9tOENvru1Vw/Cg/jXC9JNu3OxA1LjqFsfDoyRToyRQq64r5/FZtx+/SDxcdy27IjR3u4giAIgiAMEQ+LsbV5RZtfRivDpqAlno8oQqt4Yf0ebCrnaffLHDn1Vea2rmFu65o6l216/lE/V9Cxazo67wnR0XbjbXZkigTWY4LfR1um4pa7+Zn10MqQ00HsGA4pm0xd7npnpZXeMIexiu6wxc3vkvlZMo66MdnaI01gPUqx4+CGJcdww5JjdsrzM2Hk+dDsvw6Y50Ok2E9fU4BI8Z98f0KrMERz79NnPePm3KfPesa9nya0ilNnPceps54b0f0TBGEgb7zxhns+depU3vnOd47iaIaHEb8BsOeee7rnnZ2dI715QRAEQRAEQRAEQRAEQRAEQRhALpcDIvH63nvvPcqjGR5GPALo7W9/O4VCgWKxyPLly+ns7GTixIkjPQxhNyVRnkRZkLX7X435ewBFk8NXIZ4y7OFvdG3S+X/GDlwvUf4nz5P1sip0d/l9BaGtuQESlX+Y5PnbJBcwal+xGecOSI97sAzLRN2SPE9j0ATGcy4DTxmXi5koZqKxW5f/n1fBgL7zqkopVjuULIzXAZ6CDSZHNu5xihcyPVNkOkVeCTrcmAq6QjFW40/JbGIvf4PrO68C+kyOkskwzqu4sRggr6pOWVTBIzAeRlXJqxA/VgOF8WfpK1vnUthks2wwrbxn5gtNPzNB2BITMn0UTZZLn/0Q/eFMuhadCMB4r7jFDP90jYoJmT4AfBXSHUa5utlMdQeNeuu5ccnRlKzPivI0fBW6Y4VB0eH1022ytOsSF857ZJRHKgiCIAjCtpDMVbqrUfHC6flNrChOpKucRyvDimI0P2/LlRmXLXPQuFVM8PvqlP96QN2w2OkYq/0b8YjU/KsrHQB0eP2ujwmZPjdPWFPuYHqu281F0vOtcZkoTjhRXE/J9pDTVTxlKBnfnbM0bj+t0Ebp2nyuiQugDmW2uQaUsGtxxn5PuOdJTYC0gj+wHh+Y/fRm+/jQ7L+650nbn7/01i2uJwjCyDNr1iz3vLe3dxRHMnyMuAOgtbWV0047DQBjDLfccstID0EQBEEQBEEQBEEQBEEQhLGAHYMPYcxy9NFHk8lksNayfPly+vv7R3tI282I3wAAuPzyy8lmswB89atfZenSpaMxDGE35EOz/0rJ+FHGY5x1f+qs5zh91jOcPusZPjD7ac7Y7wnO2O8JPGVo9/pp1/0UTa4uKzJR/zfL3QeiTM3k/VQGYEIQZ//rOJ8ywHOP5LVBuRoAWVWtcwxArV5As0eUURjlESZ1B5KMwjBW5ST7H6nt/dr68f6U4j6SrMI+m6XPZima6LvbY7K8WN6TF8t7UrIZNpjIIjVOVdDKopVladCGj8XHMt6rP2D6KqRdl+gxLW6bPWELPaaFqV7PAHeDryxZjOsboroKFbw6pX+S/R8phqDL5OgyOXpMTtT/wnZx4f4P0a5LTM1uoj8+jgTWoyfMc8vS+Ztdt8Mr0uEV8VWIsZp2r0RBl12ubWM9kJHmlqXzXd5t0WTZWG2lr5qj32TJ64B8nL0L8IUD70Mr69rvaLam3oIgCIIgCEMjsB591Vz0ex/6bOgvMGfcOgKToeBVKHgVMtpQyETP02hl3Hwn/Uhqohlby0ZPFPyBzdBdLbBvfj375te7Pl7un8L6oI3eMEdvmKPFqxBYjzeCcQQmk5rfeHjK4KvQ1Sea7Pcy2e8hpwPavZIbn7E1N0LiSEjXJEjGVqvjFj3XytbXVou3PRLnO8LY4UOz/8oHZj9NyWb5wOyn3WNbEPW/IOycTJo0ife///0AlMtl7rzzzlEe0fYzKjcADjjgAH74wx+ilKKrq4vjjjuO3/3ud6MxFEEQBEEQBEEQBEEQBEEQBEEA4Jvf/Cbt7e0AfPGLX2Tt2rWjPKLtY1RuAAB89KMf5Z577mHatGmsXr2ak08+mWOPPZbrrruOp556io0bNxKG4ZY7EgRBEARBEARBEARBEARh12S043wkAmi3Y+bMmdx22234vs+qVas48cQTWbhw4WgPa5sZlcwBz6svrqOUwlrLY489xmOPPbbN/SqlqFZ3nkKKws5JuoDP5sipgA/N/it3vfwWxntFF/PTY1rQSaHcOIrGw1CJ43bq42g0qKprE7iYjyoh0ffAoFP9mboiw1CLwSlZP3pPxfftUj8oJo4aSkjG2licqK7wcbrolYqic/w4aihZFlodRfHYWhHTPpvhmdLezG95iTf5GwFYF45jvC4ySZcBKBofiCJ6AIpx0eBk89MzXbxcmRq1CT3GxZbd8V4fFZuhZH0mesW6/w9NXNjX1j7zvK66gsOuKJkCEz/ti/sCOGHfxQjC9nLB/o9ww5Jj2Dvfyav9kwHI6JA3F17n9mWHD3p8Sb7X7V6J7rBAYD3aU7E66ULbW8Nty44ktIqz5zy+TesnBKkIosBm6oriJQXxOrwiBR1FAFy4/0Pbtb2tYUsFlgVBEARB2DbKJvr9X9nXgacNe+U3utcAWln2a11HTtefpxgXi6rqlofxOYOHrSsYHPVlBsT0lGyG6dlNbKwW6A3jONFMiWKYpc0rYVDuXMlXBg9LIZ5vAOR1gMbi6eg8a0AR3y1grBrwWitbWx4XDE7HAGks583d9msWwq7Dmfv9ebSHIAjCDua9730v999/Px/+8Id58cUXedvb3sYZZ5zB3//93/O2t72NKVOmuIj7nZ1RuQFgbe1kQClV92/6PUEQBEEQBEEQBEEQBEEQBEEYaY499lieffZZjj/+eBYuXMgtt9zCLbfcss39jZZ4fdSqDiaq/+G44J/0JQjDwXcWngzAJQfUFLV5HdAXF7lNk6jrEzV/aDV1QhhrgEys3E+th3aKYKBW3NfGxX2pFRtO+nXOgHibOtVfVEzYc+u4Ylupr3i9s4CBy60ifUgoGT8uVtpPVoXOpeCrkH2z6+kyLXSFrUBN6T/F9hGiaI9VwiXrE6DwsOSVoRSrjEOrmZNdy4awlZKt3S31VYgfb6tkMxiSGLCwbn+T/Qhih4JPvQKpEhcxLpkMx+67BEEYTs6f+ygAFz/zYSBSz71anszM3DpuWTq/qRo/KfB118tvYQ9/I1kV4quqU/43Fr0eKsOhPLpxydHOKQPRdymwHjmvSkaFTvWX14Eo3gRBEARhF+CSA+7noqc+Sktc3HdTKc+Bk9ZSDLNsqrZQyES//XsUNpFPqf8bFf/GanTDOUyj8j/dLin8m/RV0BVeD1rZI9vN+qANiM6r2rxI5d/mldgYRPONCX4fHhatrJu/6Hhbvgrr1P/p+Y5HvcO6ZH3yKhgwJ4rmbfUuAk04YN4mCIIg7F787Gc/47Of/SyrVq0a09efR+UGwDve8Q6n+BcEQRAEQRAEQRAEQRAEQWiKVdFjrDCWxioMyqWXXsp3v/tdd9FfKVV3PXtrbgaM9s2DUbkB8PDDD4/GZgVhSFxywP11rxN1e9hwAE/y/5P3TFqt36CEqViPfKx6ATarIqnYTM0RkCJRqaSz+9NjcM+tccr/eiVMbfyBzbgxBnj4hASAZ80AFU+rqhCinMPAw9Ku+wmsx0SvF4CijdwR68JWJnpFp/yZ4vVRspp2leT0R32P01H+5/RMd53y2MOiMWTj9pV4m1hoV1UCqwhS+59XVZcHmmAslGyGosnSZ8dGFpswNrnqLT8D4PPPfZCCV+b54gxm59/g5qVHAVGuf2NNgNNnPcPtyw5nTbWD6ZnubVb+Dxc3Ljkag6JsfPfdN1ZT8MqUTYZ8qk5ByfjcuORocQEIgiAIwhjnay++j/WVPZmQjWpuhVZTtZq2TImXi5OZO+4NoDa/SBT8yTwk/Ty9DAa6BJLz9Lr6Y/HywHrske0mTGX9T/Z76ay24quQsvHpyPTXrWeswos3YVBoLAbF2qDDnVe1eaXa9tTAuVfJ+m57bmxxO1+FA2oDhGhXf02n1hMEQRB2XW666Sa+853vAPWx9Vpr9t13XyZNmkShUBjNIW4VoxYBJAiCIAiCIAiCIAiCIAiCIAg7C2EY8sUvfhGoKfff/OY3c/nll/Pe976X1tbWUR7h1iM3AARhCxirqVjPqfJ1QxZ/QpTDP1C5H+X/1ytkPGXwlK3VEEj6Urrudbq/RHnjq+bFQtLreBgq1nNjdX2k+gtTY0mcAkWbdWqYJEvTV1VKJl+X1Z9XFUK0S+gvqDImVvsYq6jE+5FXhp4wi6ctvrK062jsRWOp4KGxeFScUihxT2hlyRLWHABEaqIK2rXNqypZDFolqv+47oHV9JgcJ+y7uOnnJAjbw23LjhyQu//NQ+7kOwtPxthIfZYQas3tyw4f4ALwVZV2XSJEu+9b0ex4t8otS+dj0O67H31nFRWbQStDb5h3bdcHbXRk+gmMx8ZqdHIzOdNDYD1uXnoU58750w4fryAIgiAIw883FryHYpinajxe7Z0IwLS2HgBeKk5FKztAdQ/1Cv5m2f9pPGzt/D7+t1ltgCjT34DVbptFk6VqPXrDHFOzmwY4B6I+a/XTkvnIZL/HKfcDmyGM65DVtU+NrVm/g9HoOhAEQRB2bR599FHWrFnjlP/HHXcc9913H/l8fgtr7rzIDQBBEARBEARBEARBEARBEHZKlI0eY4WxNFZhIM8//zwQRf4opbjuuuvG9MV/oIlcWRCEAZhYqeur0GVhesrWPdLqeo2pOQViRT5E2ZhptUzaBZDGU3aA+j/9XvJIqFgvVuTrlMugvo1BuzGlc8dDGymCA+sRWk2fydFncnRWW+mstrEuHIemflt9Jhep9THRQ0Xuh9erE+gyLRirIqVMvF6f9ekxGYyN1PqvVCcBkCWMP1eDr6Lsfw+LR+QCyKsqeVWloGtZm3kVkldhnfq/gqZkM5Rshg1hq6j/hR3Gmfv9mduXHT5gebsu0Rbn5q+ujGd1ZTwG5WqIpPnA7Kc5b+5jdXm0FZtxtQN2FIn6P7Ce+74nr4sm65aXjE9BVygZHz/13dPx8SRosk8jzTWLThjtIQiCIAjCmOGqhSdx1cKT+M7Ckykbn1XlDvJeQFe5ha5yC22ZClNzPXRXWtirZaOb9/gqRCsT1wOrPSA6HzBW1z0SGusADLYsqSUQWM/Nk3I6IKNCcrpK2fh126zVK4rmGiGaosnFcyBFYDMENjOg/2YE1nN9l2wmVdNAuXlV/fhry25ccvSQP3tBEARh7NHX1+ee77vvvsydO3cURzM8yA0AYQB/+MMfOO+885g3bx7t7e2MHz+egw46iIsuuoinn356tIcnCIIgCIIgCIIgCIIgCIIw7EyfPh2I8v+nTJkyyqMZHiQCSHD09PRw4YUX8pOf/GTAe93d3bz44ot8//vf5zOf+Qzf+MY38H1/FEY58qRzuhO8Jn4ujQGXDZlk4AeD9ukRNn1PYzCxayBRmWhlnFo4cQykx+A1qT/g1MVxHr/bnjV1yhiDcpngaYomR3e1hcmZTeBBn8nF+1SJczW128+QKqHVtOoyL1WmcnB+ZdxLlWleiafK05me6XaOgH0zG5yaWGPxbJzPGeer+cqQxeA7xbHCV5Yspk49VLKR8r9osvTFNQreM/OFpp+rIAwXjZn+ABfs/wgAX3nhdJel3xO2kMsE3LbsyDq1v1aGD83+K2fs94RzE7TrfsrWb1pjYGtp1sftyw4ntDkMqs4BBJAnoIxfc/ooQ15HNUA0Fj+u3dEb5unwik2PFyPNp+b9frSHIAiCIAhjkpLxafMqLOqbyrhcCYhcfiuLE5hR2Ei7V6qrFZYo49Mu5nS+fzrbf0u1AdLohr6T8yeNpaAr5HVATgfOedishkDiHEjcCI0ug5qqv34ffBViUnUKkrleENdFqq2v0Mq6eQtE7mmtQqmJJAgjjY0fY4WxNFZhAHvvvbd73tnZOYojGT5G5QbACScMr3U/k8nQ0dFBR0cH++yzD4cddhhHHnkkEydOHNbt7MpUq1VOP/10HnroIbds3LhxvPnNb6ZSqbBgwQL6+/ux1vLd736XdevWcfPNN4/iiAVBEARBEARBEARBEARBEIaPY445hokTJ9LZ2cnLL7/MunXrxrwTYFRuADz88MOukvKOIpPJcNppp/HpT3+ao4+WjL4tcdlll9Vd/L/88sv5/Oc/T6FQAGDDhg18/vOf54YbbgDgxz/+MfPnz+ef//mfR2W8I8Xtyw4nsD6B9cg1UfMnKvxElZ9k7JsGNX4zJUxo1YCc/vS6jYr+xm26vjGgao6CStIucQXEzSvWS9UPCNyYo9oAqT7jp21eiRnZTkrGZ1OYJ6+j/S/ZLCXjRypiXXar+aoKFlp1GRP33Wc9svFn0mPyeDrqvKADtzxEOeeEn9QowOIr6z6BxAmgFYTx+ErWo8/69Jkc75q5sOlnJQgjzYxsJysr0c3ndq+/VudDpXJxUwr6tJvglqXzm9YE2RpuWTqfss1y45Kjo+8kcPacx2PHjqLP5OpUcIkzIacDSiZydRXDLAUvqgHQH/qMy0TqwImZPkKinN4fLD7WuR5GimsXH+9cVefNfWxEty0IgiAIY5WrF51IYKPf+JLxeal3ClmvSnephQktRQDyXsDeLZ0u8z9hqGr+NIO5ADxs00z+ks0QmAy5eK5hrKbNK9XqmsWTE19V6TF5Jnp9NZc0YSqzv/4cKrAeBjvAyV23bzaZd235/Cvt5jQosFpcAIIgCLsovu9zzjnn8F//9V9Ya7nuuuu4/PLLR3tY28Wo+/ittXWPrV1nsPeDIODnP/85xx13HJ/+9KepVCpN2wrw2muvcfXVV7vXl19+OVdccYW7+A8wadIkrr/+es466yy37Ktf/SrFYnFExyoIgiAIgiAIgiAIgiAIgrCj+Pd//3f22WcfrLV885vf5I9//ONoD2m7GLUbAOkL+Eop92i8IdDssaX2SZ8AxhiuueYazjnnnNHa1Z2eq6++mnI5UnLvvffefOlLX9ps2+TGwNq1a/nRj340ImMcLbQydar+tLI/m1KT1OXxq0hpkqhNQnRKwWLcAyIXQKPiV8dbyqrQPZL2zdT/jW6D7CAql2R7yb9J374KyesATxm8OEMzsB5zsmtqSn+iTMykdkCiLE6W9ZkcD286gGXl6Swu7cEjffN4pG8eXWGeNWEbnWEbm0yLy9AMnAK5Ps/TKf9dLYXokd7DwGoCq+mzPl2mIOp/YdS5cUnNZXb+3Efp8Prp8PrpCVvi71D99za0ituWHeny/xPOnvM4Z895nDteOnSbx5J8R4smS9n6lK3PzUuPcnn+rbpMu9dPu9ePr0JK1mdt0EF3teC++74KafMi1f+4TImCV44esePHVyEhmmsWncA1iwaP9PvB4mO5etGJQx77FS+cttn3jVWcN/cxzpv7GN9e8O4h9ysIgiAIuzOB9SiaLEWT5aXiFLoqeV7unsSUQi97FrrZs9DN3Na1FLyyq/ujlWnIwh/6ZYPB1P9JP0nfxmp8VcVYjaeMmz91eDWBWeJISPqckukZ4JLWyuIRrZ9XgXMLelhKxh+Suj8haZuerzXdx3h/RP0vCIKw69LR0cH999/PPvvsQ39/P+9+97u5/vrrhyxe39kYlQggY6If0z/84Q98/OMf55VXXsFay9y5c/noRz/KUUcdxQEHHMD48ePJ5XJs2rSJVatW8cwzz3D33Xdzzz33UCqV0FrzyU9+ku9973tUq1U6Ozt57rnnePDBB7n55pvZuHGju0lwxx13cOSRR3LxxRePxi7v1PziF79wz8877zyy2eygbSdOnMgHP/hBfvzjH7t1/+Vf/mWHj1EQBEEQBEEQBEEQBEEQBGFH84c//AGA73znO3z2s5/llVde4ZOf/CRf//rXef/738+hhx7KlClTyOfzW933O97xjuEe7hZRdpRuXdxxxx2cddZZVKtV2trauOqqqzjvvPOGtO6KFSv453/+Z37961+jlGL+/Pk88MADtLa2ujY9PT188pOf5Kc//am7CTB58mReeeWVumib3Z1FixZxwAEHuNePP/44Rx555GbX+dnPfsZHPvIRIKq1sHHjRtra2nbYGFeuXMlee+0FRHFFM2bM2GHbauS2ZUfiYdgQttEaq1/zTWoBJIToWvY+tazIdNZ2I2l1sHZKf0No6x0HzdT+zZZBSumfch8k2d0aE9UBcBn8mtAqDJo+k2OS1wtAV1jAVyEGRWi126dEIZwobRI6w1byKqDH5JmVXQfAnOxanintTY/Jc2DudffZ5XWV1pQ6x+1PgyMgvWdlq1zuP8C6cBynz3qm6WcqCKNJonovmiwelj38je69dN2Q9Hf/zP3+PCzbvmHJMYRWu+8pUPc9Tdw7ELmaAuvRZ3KUje+yd4smugkcmEgjMNnvicYeH9uyqkpBVwYd87WLjwegN8zTE+bpyBQJrAdAQVfIq4DusEBBlymaHAA9YZ4rD/5F0/7SfGfhyQBccsD9Q/xEBEEQBGH346qFJ9V+z63HqtJ4AP66bgb5TJXJLX0cNG4VOj4XKXjluvXT9YKa4WEJUe7fZNmW1mmsAbC0fyp75Tsp6Ipb7qsqIZq8CiianDt3ScaanmtFY60p/JPlZePjq7DufCgZW+JCSI8j2Ze0MyH67DL4qlrXR+KO1lipSSQIO5j0taAZX/0SmQnjR3dAW0F1Yxcr//0/gJG/jiUMD1rrAfVrG1NntgWlFNVqdcsNh5lRiQB64YUXOPvsswmCgEKhwO9+97shX/yHKKbmV7/6FR/5yEew1vL4449z/vnn17Vpb2/n1ltv5e///u/df9CGDRu48847h3VfxjrPPvuse57L5Xjb2962xXX+9m//1j2vVqssWLBgh4xNEARBEARBEARBEARBEARhNEjr5pM4+mT5tj5Gg1GJALr00kupVCoopfjyl7/M4YcfvuWVGlBKcd111/HQQw+xZs0a/vd//5d//dd/rbs4DXDNNddw7733uoz7hx56SOoBpFi4sJafvtdee+H7/hbX2Wuvvchms66w8qJFizjiiCN22BhHk7yqEKJp1/1OrZtWhCQKl3TGf13dgJSCJK32TRT6nrJ1Kn4vpZjxVLpWQJSNiaVO8W/Qda6BpG2IN2Bfkm0aNB5hnaK/J8wT2AwdXpE73zgMgHdPfh6DomIzLhs82kdLAAR4lGI1vq9C2nXJOQ56TGSB6ovzRtt1iVeDyUzJREriDZU25mTXME6XQRn8AbUNkv2Lx46iQpT7vyGM3Cai/hd2VhK3UPK9KVu/phyzpqkL4Jal88mqkDP2e2K7tq2x8XeqvhZIfS0Pzy3rCgtsDFppy5ScUjBR4U30++qOSdH4ozoHg3Ht4uO5cP+HtjjOaxadQHdYcDm/lx746yHtnyj/BUEQBGHLXHzAA1zxwmkYFC9u2pNXuicAMLEl+t09YNwafF2rWZao4hMaVfzNHAFp9T/UVPTp99PLmzkD9sp3YqwesP2k3lDiTtwcWlnnAkjGmayXa7LN9HaS8Ud1CBLnZE3xn/SduLxdH6n9vHnpUYDUAxCEHY0C1BiKXt92fbiwM5FcrB+ruf9pRvwGwOrVq7n//mgCn8lkBij3t4b29nbOPPNMvve97wFw0003DbgBMG3aNE499VTuuOMOlFI8+eST2z74XZBXX33VPd97772HtI7Wmje96U0sX74cgFdeeWWrtrly5cqtar969eqtai8IgiAIgiAIgiAIgiAIgrAt/Pu///toD2FYGfEbAH/84x+x1qKUYt9992XChAnb1d9hhx3mnj/2WPMMvmOOOYY77rgDay3r16/fru3tavT09LjnHR0dQ15v3LhxTfsYCkmG21ggysoPyXqhU9BHufgaTwVUbE1pn1aGeA2q/EY1LirK3Q+tAlVT8Q8+jqgmADBo2zCVY+kpG6mLMe7WcxYIsW4/0gQ2Q8lmaEfxvinPxss8p/6P9qmm4gltvcMg2k60/Q6vyPLSFAByKmB9tZ0Or58V5YlMyESqoyNbl9GqK/jOQZHe10j5n1YUlaymaCL1/6mzntvsZyUIo01aIf+dhSezrDSNPbJdAIz3imBTyrOUMwcajhPbgKcMxjZzANWOD4lzx4vHsUe2i8Bm6lRwifrNoNzxK3IXbWH7WziWJXxq3u+H1E4QBEEQhK3nGwveg6c0vdUW8l7AuHwJgFXdHew3aT3GqjoVe5q0ij85N0hU817DOs1qALhs/UHWSSvwC6qS6iupnWbrXocNqcWNr9M1ABrd2cmy9PlJMmerq7WmDCEKH+O278ag6p3ayeeW5P9vaR4nCIIgjE3kBsB2klacb+/Ff6hdtLbWsmLFiqZt9txzT/d848aNTdvsrvT19bnnW1O5uqWlpWkfgiAIgiAIgiAIgiAIgjBsWBU9xgpjaazCbsGI3wBIKh1ba1m7du129/fGG28M6LuR1tZW91zrUal7vNMSBLVcxUxm6H8O6bZJLYCh8tprr21V+9WrV++yNQYEQRAEQRAEQRAEQRAEQRB2FCN+A2D69Onu+YoVK1i+fDkzZ87c5v4eeqhWbHDatGlN23R3d7vnbW1t27ytXZFCoeCel0qlIa+Xbpu+wTIUZsyYsVXtRxONcfE7FaLYjJLJ4qsqWRWSTaJ9VEjJ+AMspkmR382RxADB0OMzmpHYWHWDxTVdtCt6L1NXfLRkfHrCPL1hjmmZTS7yp7PaRk4HBNaLCv/Gy9OFvBJLb2AzFFRU+LTbtNIb5gBYGUwktJqFfXvQminT7kV/N74K6TItjNf9+Kl+kv4TgviueWA1FetJ/I8w5mjXJV4LJ1I28fFD+RR0ua6AN9R/b29fdvh2FQNOrOkm/i5VbAZjFfm4IF5e1W78hmhX0DyJ9mr3+gmtrov/SfobUBR4iNy+7HCAbd6vG5ccXTeezRXau2XpfM6e83jdsmsWnSCxQ4IgCMIO5fLn34+nDF856K5RG8M3FrwHgMBE0/yyyVAKffoq0bl5zq9SMR45XcXXzcVz6WK+jfE9zUjaaGXqonca+2t8z1dVF8ejlSWrovGEVrvzjbBJf4NRV6h3M8LbWtSQgbj/xgLGScyQSUXAJpw39zFuXHI0Ny45Oh5n1PaWpfPxlOXM/f485DELgiAIwkgx4nL4Aw44AACloh/Tb33rW9vc1/Lly11xX6WU67uRl19+2W1zLF18HgnSN0T6+/uHvF6xWGzahyAIgiAIgiAIgiAIgiAIgrBzMOIOgCOOOIIZM2bw+uuvY63lhhtu4PDDD+cf//Eft6qfjRs38sEPftBdtFZK8cEPfrBp27/85S/u+Zw5c7Z98LsgkyZNcs9Xr1495PXWrFnTtI9difuWH4SnmitPjNXQUNg3r4OosG/qvpqXKpmZLuSb4NrapKhUfZGppL2nak6EuoJVm3EMJOp/3USxm1WhKwQKkbJ3XstqfFWlM4xu6PgqxNioD0+FAwp8Ndted9iCh6XNi9wAr/ZPYnpuEy1ehTkta6MCqEBXWKBdl5y7IFT1fQdWEaIoxqrpPpvlhH0XD7qvgrCzcsH+j/DtBe8mF6vvS9bHt3FRXaJiuwmJOn571P/nzvkTNy89KirYa2vOoqLNkyegJ2xJFfKL/i3ocp2yX2Nd4b6S8d1xysM4F0EzblhyDJ1he9P3kn26Yckx9JlIhfjpeb8b8n4lhfaGQnKMvGHJMUB0vOkN2/n8cx/Ew7iCzAVdqev3xiVHb/W2BEEQBCHhyoN/weXPv39Ux9Coss/pKks3TqZUjs6p95nUyT6tnU3bNpszAE3nAIO1bVaEN+mjcQ6RnjMZq6ikLk2EtqbmbyzgO3CbFmPVACe1h6l3BaTaA9H8K3EKWO0cCcm8DGrK/8EckHVzO1Wb+92ydH5du0ZnoiAI24CNH2OFsTRWYbdgVALxL7nkEqy1KKUwxvCJT3yC888/v+6i8ub45S9/yaGHHsozzzzj1P8zZszgIx/5yIC2xWKRBx54wDkOjjzyyGHdl7HO/vvv754PVkS5kb6+Pjo7O5v2IQiCIAiCIAiCIAiCIAiCIOwcjLgDAOCiiy7i9ttv5//7//4/lFJYa/nRj37Ej3/8Y4477jiOOuooDjjgADo6Oshms/T29rJq1Sqefvpp7rvvPlatWuVuIFhr8TyP6667ri7PPuGnP/2pi6tRSnHiiSeO9O7u1KRjk9atW8fq1avZY489NrvOM888M2gfuxKBzTh1bpJ/nzwP8NDWuBoAoY2yqUO8OsVLiEGnMii9lComrapNY9AD7hanszAT1X/aCeClMjdr2eIejZhY3RL9G429hI+vQtZWxxGYjNvXPbJdlI1Pm1fCWFX3GTSS0wHGKtp1CV+FTu082e+l3et3tQSKJgtAkSztuoRWFq1snSLI2EglVLIZKvE2Rf0vjBVuWHIM5899tG7ZpQf+mk/+9WwADmhdjRfX4zBoyrETJ6cCbl56FBqz3SqxvAqo4LkaABAp2Co2Q04HNUXdFvL8k9oBiVLugv0f2Wz7zmrkHrrsuQ8A8LVDfg7AFS+cVhuHbucLB97n1PZbQ7Ns/2ZoDD9YfCxhfIrjYcnpgGKYxeDxTO/eru15qfVE+S8IgiBsL1ce/ItR3X5yvu6rkMB69IdZ+ss+no5+86e39DDe74/mLen5ReqcwMPWqf7TrxMGcxl7rg7RQJq5AKLlkUo/ydtPzjsa50peXGstTM2jALKJcp96d3XSb9oFEM07kv5qdZOC+L3QMmg9goTIYVj7PHRqnwLrcfPSo6DBsX3L0vlujiZuAEEQhJ2XYrHIww8/zIoVK+ju7mbSpEnMnTuXt7/97Xje4NfEtsTChQv5z//8TyC6Nv3DH/5wuIY8ZEblBoBSivvuu493vetdPPnkk06dX61WefDBB3nwwQcHXdda6/qw1qK15sYbb+Td73530/Y/+9nP2GeffYCo+OwhhxwyzHsztjniiCPIZrNUKhUAHn30Uf7hH/5hs+s8+mjt4taMGTOYNWvWDh2jIAiCIAiCIAiCIAiCIAjCcLNmzRq+8IUvcPvtt1Mulwe8P27cOM466ywuu+wypk+fvtX9r1q1iptuusld/95tbgAAdHR08PDDD/P5z3+ea6+9FmOM+yCgdqE/TRL3Y63FWsucOXO4/vrrecc73jHodn7729/ukPHvKrS3t3P88cdz//33A3Drrbdu8QbAbbfd5p6feuqpO3R8o8nps57hnpcPidT1aJfpWCRSchRNjiDJhXRKEkuQ+tP1lHVqj0SBksbD4Kfy+GuqmahdY8a/V6fOqdUJCGyGMFbNRCqXOAdTNTgMVJTpbdDkVeDad1db6Mj0UzYZN0ZjFb6qRo4H69UpgRLFT+KQ8DC0e2U8ZSkZn/XVKAd8D7+LN/mddIUFysZ322z3SnX7klYVBVZTIXILVDbjOhCEnRFfhbHyK8rjT9i/sBaA18qT8HKGdq8ERMr/NAbdVOl++7LDN1sb4LZlUbzdmfv9uS5vHyIlf15FLhyt7IC8f4OqU69BdFwxcU2TgioNad9Lxqc3zLGpmgfg8uffj6cM3dUCs/NvAPCpeb8Htuw+aEZn2Ob2qdFlkabxs7txydEUrEeH109gPSb7vQAD1IyDkc7xFdWeIAiCsLPylRdOd5n0vgrxVUhvmI0y8k20PKejc3dD5F5uVPEnc5FGpX7j682p/0PUoP02rptW5icOgLT7MOovUfXX6qKlhxOmnM3pTP5mNQSMVXiqVpstUfonc5SsqrpzI6jVADBDOGdIuwXSz03D/C85r/CU5cz9/rzFfgVBiJEaAMIO4rHHHuPUU09l06ZNTa9FA3R3d3Pttddy8803881vfpMLL7xwm7aVpNmMBqNSAyChUCjw3//93zz11FP84z/+I62tre7ifjOS9w499FCuu+46nnvuuc1e/BeGxsc+9jH3/N577+Xpp58etO3dd9/N888/716fe+65O3JogiAIgiAIgiAIgiAIgiAIw8qTTz7JySefTHd3t7s433iBPi1G7+3t5aKLLuK0006jq6trdAa9jYyaAyDNIYccwvXXX8+1117Ls88+y5NPPsnrr79OV1cX5XKZjo4OJk6cyIEHHsgRRxyxxYx6Yev4h3/4B772ta/xwgsvEIYhH/3oR3nwwQcHfM4LFy7kggsucK/f+9737vJFlZMczbQSfbxXZFOYr3sfBX78vlaGwGbcelkVxpnfloqtKfuzKvq3UcXSjC2pZRP1f/06Fo9wwHuBzVCyPqV4xGXj0x+rg/I6YGpmU7wfUUamH1U2cDUGEtWOR9QeIhVzNlYRddmCU9/sm11HyUY1BnxdoaAjK1VeVdx4jFUuRtNYRZ/1CWyGY/ddsvkPRRB2QtKq/zQXH/AAEOXjv1Sayuz8G7R7pTq3T6PjB+COlw4lsBkC6w94L83mFGRefJxJVGxueXJcsQO1AJ6KHEs+wVap9VeXOsh5Vfc6pwOuestdA9o1fk6NrodEHZde9ul5vxvyONKcN/cxblxyNB6GrKo6ld9QuHHJ0Zj4WFmxGa5edCKturxZB8L2ktSCAHEcCIIgCEPnKwfdxeef+yAAnq397lur8Lx61b3GEjbk+CdZ/81y+jen+E8IUQPmC+n30i7iNO78RNXORxpdAFEfut4FALV6AA1DTjsK0v0k50Qai244L4Janr92ruyhqzQTV0HyfCjctuxIcQEIgiCMEv39/Xz0ox+lv7/fXfS31tLR0cH8+fOZMGECr7/+Ok899RR9fX11be69916OPvpoHnjgAfbcc8/R3I0hs1PcAEjwfZ/DDjuMww47bLSHsluhteb666/nuOOOo1wus3DhQt761rdy0UUXcfjhhxMEAX/4wx+47rrr2LQpujg8adIkrr766lEeuSAIgiAIgiAIgiAIgiAIwtC56aabWLp0qVP353I5vv3tb/PP//zPZDK1y+XFYpHbb7+dK6+8kldeecW1X7BgAW9/+9v57W9/y3777TeKezI0dqobAMLoMX/+fH784x9zzjnnUC6XWbt2LV/60peatu3o6ODnP/85s2fPHuFRjjwfmP00P3/prQQ24/LuK9ZzyveSqalyQzShpS6PHzIYq9E6UuGk1SBZoozJAM8pUgfL/k9nVDbWEUhvHxJlS0rpEj9PxpTXAeNVH11ha7yeYnqum54wj6/COnVsGNcKCNHk4n1Oahkk6iGAbEpBk1VV9stHeedTvD7+3D+TVl2mXZcGqIyS7SdjK9kMfSbHu2YubLqPgjDWeVNuIy+XptIdFsjrYIAqPyHJ9IdM/J3bsTmBjXUANJasqlKxmbo83cG4dvHxGMbR7pcYl4lqBhS8MoHJ8LUX38dlb/7VZtff0Ur38+Y+BtQr7ZJ6As24ccnR9Jg8xhbqjltl42Os5trFx7tjsq9CQqvdNraXwVwkgiAIgrAlkjnKVw66i8uffz9+/BuWz0bLA6vxdW1OklbsJ+caaRdAs3P3wfCwsBWuQQ8zQOUfjUnV/TugHoCtKewTJ3UyN0n37cWnTs1qHwXWq3NHps91goYaZJtT86fPndJ9pGsAbA6viftTXAGC0Bxlo8dYYSyNdXfl+9//vruYn8lkuPfeeznhhBMGtCsUCnz84x/nwx/+MP/n//wfrrvuOucGePXVV50T4JBDDhnpXdgqRrUGgLBz8Q//8A888cQTHHfccU2LUniex6mnnsqzzz4rtRcEQRAEQRAEQRAEQRAEQRhTrFmzhgULFgBRxv+//du/Nb34n6alpYVrr72WW2+9lXw+79Z94403OO6443j88Z07vlXZwSruCrs1y5cv5/HHH+f111/H8zxmzJjBMcccw/Tp00d8LCtXrmSvvfYC4LXXXmPGjBkjPobblx3uFDDGaucGSLL+Q6JliYomUeP7qhrl6Deo/9PqeYCASGkymNI2vW5jm8Q1kM76T7YXWu3eh/paBsnYO6utrK6MZ49sF91hgQ6vCNSyM7Wyda6AZN+zDcrlEE3J+BiUU9Ps66/njbCdosnRFRZcPwVdZnqmm/FePx6GUjyWLlPgPTNfaPoZCMKuwlULT+KV0iT2zW9w37fke+UpS2hV3fdWx66e0Ko6pfzNS4/arPI8ydFPvuvpbNrkdfS+F2/HuuUl47M26GCy38OF+z+02f25ccnRLOrfg7XlcUzLbWLf/HoALtz/Ib694N3OPQTbnuO/vVy96ETadalO1Vc0OXxV5VPzfl/X9ualR9ET5uucXxCpKsPUMb4cO8AC66GVoaArbllS82EkuH3Z4QCcsd8TI7ZNQRAEYefm2wvezfqgjftfm0d7vsxebV0AdPj97JXf6No1y+SHerX/YG02t06adP5/WvEezZ/CASr4EO3U/9H26zP8oXYOM1hWf6LA103GFFiPkMhdnV4/bJjHpbc52DlUuv9kDI3bbHQCaLcP1jmrG7eXjCN5Lr/xwu5K+lrQ3pdfTmb8+NEd0FZQ7epixZVXAqN3HUsYnLvuuov3v//9QHQR/9VXX92q/6O//OUvnHbaaaxbtw6I6gK0trZy1113Nb2R8OCDD/Kud73LbS8MmycB7Eh2mgigTZs2cf/99/Poo4+ycOFCOjs7XRXmn/zkJ/zt3/7taA9xt2LmzJnMnDlztIchCIIgCIIgCIIgCIIg7M5YBhT83qkZS2PdDVmzZo17vvfee2/1DZojjjiCxx57jJNOOolXX30VpRR9fX28733v4/bbb+fUU08d7iFvN6N+A2Djxo1cccUV3HjjjfT29ta9Z61FKUV/f3/TdT/84Q9zxx13ANF/2PLly3f4eIXdkzP2e8JlcvuqGqtGQjxVXwsgUWokag0Tq08MGmM1eVWJ+6jlTRpUnZoldIr+gW6AdJ5kou7XRP3X5/7HY1C1bE+o5fcXTc7131ltY1O1hUMKr7E26MBXOQByOiCvAtq9UsMYFFkVopWp6xugZH2KJksxjPoY7xVZFUzg9fIEOjL9FFUWgImZXkrWp2QCPGVqCuUmOZiCMNa5fdnhdcqtDq/IrBbDK6XJzGspA8QqNTNA/Q+Ry8cjHJCTf+6cPzn1dzOa5erfvPQo91xjOHvO485JkD62AHRkii7nfnOcN/cxvr3g3dHxSNk6x8Dr5fFMz3W7Y8UNS47h/LmPbrHPaxcfD8D6oJ12r+QU9cnysvHRylA0WTYGrUz2o/MHrQyXHHD/gP4+Pe93/GDxsXXLSjZDiOKaRSfwqXm/58YlR8fLc6yujKcj009Bl90xuWIzTgWIjZxMUfuoLkBvmHe/BVe8cBoTM720e6UdnukvqkBBEAShkUsP/DWnPnoRk1v7KFVrNcuSmgCbU/431h0yVg/JBZBeL+0GSFT+IbppLbPISWdr5xwWULXaZgPG2GQsjTWVNLZOtd/oEPCI3tMNNQCS8aXrD0R13nSdMj+pQ9BYQynZVrL9pO9kLI2OcDeW1OeSruuWfO53vHRo3bxLOxdnRuoFCIIgbAMbN0ZuOKUU06ZN26Y+9ttvP3cTYMGCBSilKJVKfPCDH+Smm27iIx/5yHAOebsZ1RoAf/rTn3jLW97Cf//3f9PT08PWphF99rOfxVqLtZYVK1bw4IMP7qCRCoIgCIIgCIIgCIIgCIIgCGMZ36/dHO/r69vmfvbcc08effRRDjvsMCdiD4KAc845hxtuuGE4hjpsjJoD4Mknn+Skk04aoO5XSjFp0iSXo7Q5Dj30UN72trfx1FNPAXDnnXfyzne+c4eMVxASdUWiuA3jbH+IsqET5SdQVy+gZLN41lDQZSqx0j2tCmmWHZlW96fJxu6DqG3t/p2vqk654imDT5jKoazlfCcOhYIu01ltc+u3eBV6TJ7eMEc+zuuekekksJ5zLdTUKDUVUJKPnVbdtOoyfbriXo/3ikxv7aZiPVc3wFhN0eYipY/FfS6nznpukE9fEMYujQrtJLP/6kUnsjoYD8De2Q2uloivQlfTIzkODKbu2lr1dzM1euOyG5YcQ4imVZeHpNaHSGl4zaITWBt0OCX9eXMfi2umhJj4ODfU/hIXwTcWvIeiyXLt4uO5cP+HXB2RCw8YvC7BjUuObloX4YL9H3H9QPT594Z50FFWMrQDsLrSwcriBEphhmktPW79vmqWjDK0Zsrsmetmsh+956uQstXkdODqHfgqxFhFV1jgmkUnOJdTu9c/5M9AEARBELaWr734PgCKYRat9iQ0mqmFmss+50Xn7omqP63UTxT8jVn+je3SNLoFkvXTjgFjNelmiZI9qp9We6OScgRn47lNM7U/NMn+b+KcTtf9aeqsjpX86ddJ/bPaWKPaZmmFvnMCJH02GaNBuTE1U/8n22tWAyBN2nWwIWxjvFekaLK068ih3RPmuW3ZkQPqRAmCIAibZ8KECUCUPJOOA9rWvn7/+9/z3ve+l0cffdRl/F9wwQX09vbyb//2b8Mw4u1nVBwAvb29nHbaaRSLUfFDay3z58/nrrvuYtOmTaxduxaIbgZsib//+793fTzwwMgV3RMEQRAEQRAEQRAEQRAEYQdjx+BD2GmZO3eue97Z2ckrr7yyXf21tbVx//33c8oppzgngLWW//N//g9XxsWgR5tRcQD853/+J2vWrHEX+C+66CKuuuoqtN76+xEnnngil112GQCvvPIKa9asYfr06cM6XkFIU7I+BV0msBmn6szrIFLuxm0SRXyABzYTKUpS99vSqhD3OoVBRwrgOP8yyZlMMigBl/0PA1Ut6f7SGd6RM0CDNS7bv8fkCaxHyfh0ZPqZkKnZnxK1racsYfwDlih68ipwShafaH9LyqcrLDg1TyXuN1Sa8V6f+1yScZdsFh2rfARhd6Ndl1hvI9X5ov496Mj0M83vxiesc/SMNL4Kt0ml/ql5v+eGJcfUqe//79tu5epFJzoHwA8WH8sF+z8y5D6/cOB9da+bKfsb2VybtNLw0/N+58bUY/I80RUVvi9kyuS9gPWlAmv79qTgR44mg8LXIeOyZRZ0TefQSa8BMNnvpaAreClXmKeiGiyJ4i9PdCwNreaGJcfgq3CH1wb4zsKTAZrWRBAEQRB2Pb724vvorrYAsK7SRptfpmo0hUyFFi/6HSqHGUJP4+vqAFV/+nXazZwwmNq/0TnQrE7YYHUEnPrdpt5TtYx9ja2b1zQq/xtV+I15/HVtGsimHNTRGFXsCjB1LoCkRkE6m9/tf8M+Ndt+4zjSn0Nd9n/qHMWLt6dT2xzvFekJ87R7JbdeQZdjF4HHbcuOlHoAgiAIQ+Tggw8GasLzhx9+mI997GPb1Wc+n+euu+7iIx/5CD//+c/dTYCvfOUrHH300ds75O1mVBwAP/jBD9yHfMIJJ3D11Vdv08V/gEMOOQTPq9n7FixYMCxjFARBEARBEARBEARBEARBEHYdOjo6OOigg1wt2p/97GfD0q/v+/zv//4vZ599dp0T4LHHHhtSys2OZMQdAE899RRvvPEGEN1pueKKK7arv1wux4wZM3j11VcBWL58+XaPURA2x7lz/sQtS+fTGrsAADaFecZ5JVcHIK3myOuAivUIrcKL1SSRoiPK6ddYpxqNlCGGMFZyJJiGjMpkWWgVWtVywhtJK1SS+gFZqqDAt9E2Z2UrvKYm4auQPfyuOiVLWqGSuAGSPM3AenVtV1UnEFpNYL2aCjZWq1SsR2fYxl7+BgBeqUxhT38jWVWlYjOcPFNu3Am7H2ml+tdefB9vVNrp8IpoXf9lNyN8r364lentukTRZIFIKXfDkmNGLQf/U/N+P2DZBfs/ws1Lj+Jdk14EcMfxt43L0BPm3dh9FbKpmueVvknMbO/k6Q0zAJjS0sf0/Cb2ynfSE+YBmJHtxFchWoUUTZZCXBdFq+i4XzK+cwLA8H3m1yw6Aa0sF+7/EMUwNyx9CoIgCDs/n3/ug/SH7eR05Kpt8yp0GY9qrDpviWvUtGbKA5zHjdRl/sfPQ9SgKv7GdRPSjgEPO2D9KHN/YJ/GKrzYRRdST/I7OpiqP71vYZ17YaB6P12/LcG5lW2DO7tOnZ/q09bXQkvmdsm/gJsbJeNJ5o+weQe0R81JUbJ+7D736uZaRZPD6ACNwcO4WnVbWyNKEARhd+TEE0/khRdewFrL7373O1asWMHee++93f1qrbn55ptpa2vj//2//+duAoz2DYARdwCkFfoTJkzgb//2b7e7z/Hjx7vn3d3d292fIAiCIAiCIAiCIAiCIAijj7Jj7yHs3Jx66qkA7gL9VVddNaz9f//73+dzn/vcTnHxH0bhBkBa/b/PPvsMS5/5fN49L5fLw9KnIAiCIAiCIAiCIAiCIAiCsGtx3HHHMX36dKy1WGu57rrreO2114Z1G9/4xjf4xje+4bYxmox4BFAY1ixy6ez+7WHjxo3uedoNIAg7irPnPM7tyw7HTxWv7QoLLibHpIo8hVaRVwEl6+NRi8ZJW0Ob2Vi9hlvGSeRP43KgafxP0ncS0xPaKHYIouLEJRvZXvMqoF2X4m0ocknh39hKmmwviSFxMUZ1VlhDXgX02DztuuQ+l86wjQ6vSF4ZPGvpClsBmJjp5bn+vTmoZSWnz3pmwNgFYXfjsjf/im8veDc9Jk/R5JiY6QXAY/DidTsbNy45moodaKc/b+5j3LgkKnqU18FOWaCuWQTPjUuOpqDLdZFuk32PvfKdALylPTo5fLl/CqtKHXQGBfZtiWLOFhT3RCvLZL8XrQzdYQGIYgJ8FZLTAaHVdMXLr150oitKvD18at7vufz59wPw5YPu3u7+BEEQhLGBsYqcrrritZ1B9Psyzi9TrGaZ6BcBKOhKfVHdLUT6NBYKbqSxMHASFdqsj2RbzQoMD+y3ecHdZv27dayum/c09tVsnOliv8YqF/WT3n6IxqNWGLiucG/8HtQXKNZYt430uNNFggObceNtNpdL9+0pi6eCuG9DZzWaUyURg8n8LPlsb192uMQACYIgbAGlFDfddBNLly51yzZs2MBee+01rNv53Oc+x/Tp03n44YeHtd+tZcRvAEydOhUAay1r167d7v4qlYrL/weYPHnydvcpCIIgCIIgCIIgCIIgCMJOgFXRY6wwlsa6G3PSSSdx0kkn7fDtnHvuuZx77rk7fDubY8RvALzpTW9yz1euXMkbb7zhbgpsC3/84x/rYn/e/OY3b9f4BGGonLHfE/z8pbe611HBx0g1nxR3ipQdFUrWj1QuccGmks2iiVTzBlWvJEnUKynBjadMpGRR9QqWtBsgm3IjJEWGvVQRr5BaYazQalf4KlAZWnWZDWEbWVV1fVasFzsYIKtCp0wZrCCpr6rkVECrLrvCVJ1hG91hgYKu1BXayuuAufnVTdUugrC7cumBv+YHi49ldTCeQvx9aSwIvDMTWI/XyxOavpco3ErG55pFJzQtxruzkS7SDHDDkmPwMHXF/gD2K6xln5b1lI3PG5V2ADorrfRWc5iCoi/Msa7UBkRKwxktXQRWc0jbSucaGw6+s/Bk3qiMY7JfGrY+BUEQhLHBt//mDi599kNUY6X5HvlNPLtxTwD2adtIayaaL6+Lf6fGZfopeBWSs/PNOQESlb9Wps7lDNQV8U3aDaVYcGN/abX7oOOwekC7RsX/UFyTIRqtbFRsGDNg2YBtJHMgm3wOdsB7bp+weMpERXnjsQXWc4WBt5a0E6ESF/81aHcu4qnovCRyKNTGopXhjpcO5UOz/1o3Xy3Z7E7pxBQEQRB2PCN+A+Dtb387uVyOSiWyq916661cfPHF29zfNddc455PnTqVAw88cLvHKAiCIAiCIAiCIAiCIAiCIOx+/PjHP3bPTz75ZKZNm7bNfa1Zs4YHHnjAvT7nnHO2a2zbwojfAGhpaeH444/nN7/5DQDf+ta3OOecc5g0adJW93XPPffwy1/+0lVT/ru/+7vhHKogbJFEleGrKtiMy4nUqTzHEE1gM+RVxa1XMr7LyY9UHNW6fgObqVsWWj0g89JXoVOWJNtNY1Bgk9T/Wh4lRGqRSXHGeGAz9JmcW68njIpq53VA0eQY7xXr+tUYDBpPWafq7yMXux0s472iqy/QrvvpClspGZ+iybqcysB6dZ+HIAgRF+z/CD9YfKx7fd7cx7hl6fxRHNHQ8VXI1w75edP30hn7Nyw5ZqSGVMdty47cLtXb+XMfdS6AOoWhSmX75yNF/9RsDz1hnoWbppP3qmwoxTUAdEghU0BjeapnH6ZlNwGRmvBrL76Py978qwHb/cHiYwnRlI1Pu9fvlie/C8mxf01lEt/5m9u3uB/J53/+3Ee37YMQBEEQdkrSLt1ymKHNr7Cuv5WMClld6gBgU5BnfLbIpmqe8X6RSX4fAAWvPKhyP53Vn36/WYZ/s2UhatBaAjo1l6ktq2/bLMPfvdewvXTbZir+aIyqaZ5/gq9Cp/ZP2tTNtawZMMZG0v8XTq3fMF7n8AYGmAOsIZtyHEZe7Oh3P+1EDG3NDdD4/+RhuOvltwDKudO35LIQBEEQanzsYx9z15t/+9vfbtcNgBdffLGuv9G4ATAqlQUvu+wyICq4sG7dOk477TS6urq2qo9f//rXnHXWWUBUTyCTyfC5z31uuIcqCIIgCIIgCIIgCIIgCMJoYsfQQ9glsHZ4/zOHu7+tYcQdABDFAH3wgx/kzjvvRCnF448/zkEHHcRXv/pVzjjjDNra2pquF4Yhf/7zn/m///f/cueddxKG0d1upRT/+q//yr777juCeyEI8KHZf3XP73r5LVRilX5aZVGxHnkdZeMnCvwwvutXU/XXvoqhVZGalLCW2R8r7sOGQjKh1bTqMoH1nKKjYjORogRNpD9J1wmIvjNZQjdWFIQ2T7vup2hy5HWkYO0zOdp1P6FVeMo6JUuS2x9a5ZwDiWPBU5Ye0+LcC3kdMEn18nowgbwOnGNhoteLQXPqrOe2+jMXhF2dC/Z/pO712XMe5+alR6ExnD3n8VEa1ZZpzMwfjNFSnjdT/9+w5JitGo+vwuh4m1ZIJodYVVP55VVAh1ekY2KRRb170J6NspfzXpXOcoGq0UzM9bOh3ApAVocc0L6aUx+9iFlt65me6wbgCwfeV/f3kLhDekyewHoYq5mc6QEYkvofap//Nxa8hy8ceN+Q910QBEHYuUnO2QEyOmRKrpe8F1A2Gdb0t7t2KzftwUGTV9MVFJjgR07ftHo8rdYPG6Tp6RoASYZ/o+p/sPz/xvoBjTRT1Yfoptn76febOaHT7zW+n2T9R2Oq7zv9XkLy25/uF2vi+VlNxa/jcwBXzy3ZXqo+XN34rHYO7aROAETOAIOmYmv13gLrEVgvcl+ndjWwHr6t4imcAxsgT0BABs8a+lLzOw+z3Y5IQRCE3YlEsb8rMCo3AABuuukmXn75ZZ566imUUqxatYpPfOITXHjhhcydOxeI7owopfj0pz+NtZZXX32VYrFY9561luOOO45vfetbo7UrgiAIgiAIgiAIgiAIgiAIglBHWvk/WjcVRu0GQKFQ4Ne//jVnnHEGDz/8sLuYHwQBL774omtnrWXBggUDPqyk/Xve8x5uu+02tB6VNCNBAODnL70VUAOyMxMlhrG6Lmc/rwNKxiewmai9rVfCZFW1LrM/rwKKNherYNLZkZaS9evcAllVpRKrTErWd8qRgiq79UKUU6YEsUOhsxo5bxIVS6suM84rEVrFpjDvlCPZQY5VnrK06vKAbP+SVfSGefbJrmeiF9UdSMZ6//IDOXnmgsE/WEEQgMiR42Hq8vM1Fk+Znd4ZsDOjsVulhDt3zp8G1DCoq8Xisnyjfwu6wuzCOqbkomNfbzVLXzXH5Ph1ZyVyAFSMx/LiZI6a9BJryh38acNsAD7/3Af55iF3um01ukO2hy8ceB+XPfeBQes2CIIgCGOLq97yMz799EeASMme01WWlyYShB6+F6nTu0stTG3tZX2pjcn5Xoph1q2f0wGaetV/s0z/ZHniAhis7WC5//VtBs+kT7L6E3V+um1a0T9YjQAPg6cMFZtpqvQfCs22PdjY03M3qLmmG0nmQfVtrVuOjerDmdhpALX5WbKvybyssQZCmsSRHbkU4r6VXDMRBEEYDXp7e93z1tbWURnDqP4CTJkyhQcffJBvfOMbTJgwwS1PLvAnj/QyiG4KdHR08I1vfIN77rmHcePGjcr4BUEQBEEQBEEQBEEQBEHYcSg79h6CkPDcc7X46/T175Fk1BwACUopPve5z/Gv//qv/PjHP+a+++7jj3/8I52dnQPatrS08Pa3v51TTjmF888/Xy78CzsdUSZkSnGBocfk8VVIJZW/GFpNiHbZmV5DFmYtxx/Xj6+qkXojpcAPrSK0PqHSdSpUT0VZk+m6AZ42kfIfO0CRUzJ+5CRQIYGJMi47vChuy1ehy/+PxlarN1DLpaxXwaRzsF8LJjEj28lEr5cuUwAid0HiWrjr5bdw+qxntv7DFoTdhBuXHE1WKVZVJuDr6NhS0BVeK09iqr9p0Czd9PpJRm1eB5L7mmKodQvSNGYBp2l0AxgUHZkiRRMpLGe1rGd1pYM2r+x+DwDWl9voqrQQmAxaWe455v9uw95sPbPzb4zIdgRBEISR4eq3/tQ9v/iZDzOjtYsXN+xBpRT9bu3TsZFSmGF6vofxfj+5+Lyiu9pCQXtM8PswVjsXQNrdnJ4/JHOY9DnIls5HhoPB1P4J6flIOp8/TeIG2NzveWNbqHcNmLhmW7IdoC7Dv66PuFZAkvNf1y4+V8ipgEZ8Fbp5XOIuyKuAis24bSdUrDdgGRA7zj0g3k8bnUMKgiAII8fy5cv5n//5HydqP/DAA0dlHKN+AyChpaWFCy64gAsuuACAtWvXsmHDBrq6uigUCkyePJnp06eTyew0QxYEQRAEQRAEQRAEQRAEQRDGGOedd96Q2v3nf/4nP/nJT4bcr7WWYrHI8uXLeeaZZwjD0NWyPf7447d1uNvFTns1fdq0aUybNm20hyEIQ+IDs5/mnpcPIbD1WZiRal8TxKqMbEqZkVcBBk0FCOLMfl9VnaoeUrmOsfjEUxaPMPW+qmsPULKR0lRjYsVJfX9ePIYkl9KL20FUDyBRquZ1wKYwUq0UdJmSieoZtOqolkBagZMs0xh8FdIa1wHoMi1unCXrsyqIrE5vya8gRNEVtpFvongRBKFGWqX+7QXvBmB90E5vNUtOtTDB73PLE3V5v8kyye8BYFom+e5H6rNbls4HkuOJ4Yz9nhjhPRoZblt2JMCIOh7Seb4hkVpQEzIjG7kaA5th3/x6p1BMVHgdmX5e7Z/I4r5pZEZAQZnQzAFx45Kjt8kZIQiCIOxcGKsYlykxZ8I6Xu/tAOC1TeMpVTJMb+mhoCs151pcMwCiGgBJnv/mVP2NLoBGR0C6lkDaPZDuO5lPeBj329ioyk+Wb0n9n26TrsuTVvGnnye12tLbiMZlB9QMSJPUJgjRZFV1gPI/OedK5mDG1u9TLZvfuvlYYDNued2+u1pulXjeZ+gzuVrtNhRTMj2EVlM0Hu1eya3bHRbc86Q+XKsub7bugiDs1Nj4MVYYS2Pdjbnppps2W5Q3qUf7wAMPbFP/yfrJNtra2jjnnHO2qa/tZae9ASAIgiAIgiAIgiAIgiAIgiAIY410Ldt8Ps+PfvSjURO7yw0AQRhG2r1+p5QH4hz+SIHiq7CuNkCIxlgdOQFUpFCJ1q0SUq98SRQsacW/xqDjG5Umrj2QtAHQKnYUpNQ0eVWNMvyVoRKrXjaZFkKradclusMCxTAXdZTpoce0UDY+ZKDPRMuLqVoGyb76KsRThomqF5+QJZXogLY6mMA0v5vAZsiqKvNyq+L2VbAZ8irYYvamIAg1Lj3w13Wvv7Pw5Mh1E9fs6PCKsZMn576fgfVYUZ7EzPw6AML4u5/XAWfO2XXrAeyIY8sNS44hydFNjsuNWb8QZfWm0U7BF7mlotoqCh0rQjqAPXPd+DpkYc8eXP78+wG48uBfDPs+bAlR/wuCIOwaXP3Wn3LhU2fR4ffzQv90AIKqR0suoLNcYGK2jwKREy1yDqey8eM+GlX9pJZDzQWQPN8cje83KtHTv9vJ72YyZ9ociSI/+RciJ0DSf7Os//T7zfobbBvJ2JI2UU23yF2drjegMbU5GQZfEc8Hq855nbi6kxoBtdpqnns/TI0lq0L6TKZufO26RE+YJ68DCrrsnNzpsXjKOMd1aDWh0ty+7PBd1gEqCLs7XV1dPPjggzz00EM888wzLF26lI0bN5LL5Zg0aRJvfetbOemkkzj77LNpa2vbpm2sXbuWO++8k1/+8pe8/PLLrF69GmstU6dO5cADD+S4447j+OOP57DDDkPrLbu3rLXcd999/PjHP+app57i9ddfp1AosNdee3HKKafw8Y9/nLlz527TWIdCotLf3jbN8DyPuXPnctJJJ3HhhRcyZ86cbepnOJAbAIIgCIIgCIIgCIIgCIIgCGOQRYsWcckll/DAAw8QBANjloMgoLe3l1dffZVf/vKXfOELX+C//uu/+NjHPjbkbYRhyNVXX82Xv/xl+vr6Bry/YsUKVqxYwW9+8xsAli5dyn777bfZPteuXcu5557L/fffX7e8v7+fDRs28Mwzz/Dd736Xr33ta1xyySWbjevZFpYvX950ubWWWbNmue395Cc/4aijjhpyv1prWltbGTdu3E5Ty3bnGIUg7CI0y6jUWAyK0Cp6wigTv6DLGLTLfdQpBUrJZusUKwmNef6Acxckz5N2iVrEJ6zLo6xYjwCPNUEHkzK9QKQmmZTppWR8OsNW9smtd9sOrSZE8Wp5ssuwTuoUhFa58QXWY1Kml6LN8UJpL7rj/ewN88zIdjLR60VjXQ2EMHY+hFrV5W8KgrB1XHLA/YO+94PFxwJRxm3Bq9ATtpDTAW8E4wAohlm+s/BklhWnMi5T4tt/c8eIjHkkuG3ZkZw7zO6G6POsHW/rj8/KHeshrgWgzAB1ocYOqrC/YckxdFbbMFaxsjQegK+9+D4ue/OvhnU/tsQNS47h/LmPDnm5IAiCsHPTH/pUw5oCvsUPWNvXzr6tnayrtgPR71jBi9wAHhYTW4sNg7sA2MJ7W2qbzusf2vpqQCZ/47I69b5KzccGqOvr52zp1x5mQJ8hGqxxffkqjNqm9qeZIzCNp6K6a76bD8UuglSdpsbX6TliJX7fV6FzYyevDYrAZlw9gtoZSuwGULW5ZWgVZ84R9b8wBrHQpCzHzssIj/WFF17g3nvvrVvmeR777bcf06ZNIwxDFi5cSGdndF2nu7ubj3/847z00ktceeWVW+w/CAI++MEPcvfdd9ct32+//dhzzz2x1rJq1SpefvnlIavlN23axAknnMCCBQvcssmTJzNv3jx6enpYsGABQRAQBAGXXnopPT09XHHFFUPqe6jss88+Q2o3bdq0IbfdWRnWGwAnnHDCcHa31SilePDBB0d1DIIgCIIgCIIgCIIgCIIgCCNJJpPhfe97Hx/72Mc4/vjjGTdunHvPWsvdd9/Nv/zLv/D6668D8B//8R8cccQRnHrqqZvt96yzznIX/33f5zOf+Qz/8i//wl577VXXrquri9/85jfceOONW4z/+ad/+id38d/3fa666io+8YlP4PuRSHTlypVceOGF3HPPPQBceeWVzJ8/n/e85z1b8YlsO3vvvbdzALS0tIzINnckym5rkFETtNbDbscYKtZalFKEYbjlxsKYYuXKle6g8tprrzFjxoxRHtHg/Hb5ARRtrm5Zn8lRNFk01qnufVUlsBl8VSW02mVBJjn7kfLEOMV8gm5QyCTrpWsDpLMifRWSjesOAFRshlXBhLp6BHkduLE0KnPWVceRVwGdYatTq8zKvkFgPQKbcer98V4RX1V5uTyVlZWJTkWzd24D0/1u8qpCPjWOPptlvC6yLox+jE6f9czQPmBBEIadaxcfT2+Yd/UFfrD4WHpMnrwK+NS833PhU2dF7d72E25eehTnzvkT1y4+3q2fVdU6ZfhVC08CouPcp+b9fsD2EiX5zUuPcseVkvE3mz1/45Kjd+ps+puXRnbQdOYu1GoBJJ/PLUvnc/acxwft59rFx/NyaSqv9k0EYG7bWvbIdjX9HHckg6n9G/8fdvb/F0EQBAEueuqjPN35JgA29LQSGo01ijdN7OKtk1YCsL7cxuzWdbR5JSByAUCkmA/j3zJvEDnrUBwAybqbazvANddE7Z8sTz9Pv59W9GtlXQ2BtPI/qcPmq2qdazu9/XQNAog+h8bxeNS7ARNnduIESOZtkTtbx89VygEQjaFsfee8TreJ6jLUxhfaaD8SxT9Q58b2G+aNJeO7uVp639q9EufO+ROCMBZIXwva99Iv43eMH90BbQVBdxevfDtSq4/Eday77rqLX/3qV1x++eXsvffem2372muvccQRR7BmzRoADjroIJ5//vlB299yyy2cc845ABQKBe69916OO+647RrvE088wRFHHOFe//CHP+S8884b0C4MQ975znfyyCOPAHDwwQfz7LPPjtq157HMlqsx7GCstXWPHbWOIAiCIAiCIAiCIAiCIAjCrsTpp5/O9ddfv8WL/wB77bUXX/3qV93rF154gZdeeqlp256eHj7zmc+41//1X/+13Rf/Ab71rW+55/Pnz2968R+iGKP/9//+n3v9/PPPc99992339ndHhr0GwLZckE/fuRnK+o3t5SaAsLPgKYNPpO6HWJnv8vyrTuE/yasQEudDKwiM59oENoOOs6PTiv/oVf09u5LxB7QNiRUuymLQTnlfsR5dYWFA5r4xkZqkXUeKGJ9q3I/GWEWrV6bH5GnVZQCKJkefyZHXASUT9bWJfDQe69PulZjmdwOwj7+eHpOnQqYuH7tkfPrI0a77pQaAIIwyF+7/UN3rC/Z/hNuWHcmZ+/2ZG5cczd+01nKDO6ttfGPBe5iSqbqcWT/l7kkTovnOwpMH1ClIlOXN1GfXLj6epf3T6Mj0AzAh08en5/1up1eZnzvnT9y89Kj6GgAxodXcuORoAM6bO7j6H6L/i7S7YmVpAm2ZEj9YfCwX7P/IDhh5cwbL+m/8fyia7EgMRxAEQdgO/u/bbuUTT54LwF/Ke7NpUwvjxvWzqZxnRTFynLVlyk5h7sV1bJqRuAESBnMFNFu+pToCjer92vuqof1A1WeyLJl3OZeA0m6+5cZBCCrEWIVJO/fUwG0nJJn/Tfe1oQ5AotxPz9uS84OcCtw8MVqundo/oHa+VTJ+nWO7nCj5lalzEUT7E1WWi1zl9echvgopmqwbS4dXHOAoF4Qxg2XEc/W3i518rKeeeioXXHCBe71o0SJmz549oN1tt93G+vVRnch58+Zx/vnnb/e2S6USv/71r93rT37yk5ttf8ABB/COd7yDP/zhDwD84he/4L3vfe92j2N3Y1gdAMaYrXo89NBD7LvvvkB0IX/atGn827/9G7/85S956aWX6OrqIggCurq6eOmll/jFL37Bv/3bvzF16lR30X/mzJk8/PDDGGMk/kcQBEEQBEEQBEEQBEEQBGEQJk6cWPd606ZNTdv98Ic/dM/POuusYYneefjhhykWi+71KaecssV13v3ud7vnjcWOhaExahFAt99+OyeddBKvvvoqmUyG//iP/+CVV17he9/7HqeddhozZ85k3LhxeJ7HuHHjmDlzJqeffjrf+973ePXVV7nyyivJZDK88sorvOtd7+KOO+4YrV0RBEEQBEEQBEEQBEEQBEHY6Xn11VfrXk+ZMmVAm66uLp588kn3+vjjjx/QZlt49tln3fOZM2cybdq0La7zt3/7t+75mjVreOONN4ZlLLsTwx4BNBSef/55zj33XIIgwPd97rrrriHd8UnIZrNcdtllHHrooZx22mkEQcA555zDAQccwEEHHbQDRy4Ig3P/8gPxFfiEzmYaWp+8DlyRqcRm2hW20u71o7FUbH3xKdPElllfAKp2x1U3WE6TthqDpwytqkIlLnrVZQoATMn00FltdcWwtLLkVeAifXpMVN3cVyETM32sqXZE7WIPW4/JU7EZVpQmuWWryh34ytCaKVPQFQq6AkCAR49poV33k1eBs6u265Ibb2g1ty87HIAz9ntiaz5yQRB2EGfu92dgYOTLxQc8sMV1h9KmGVcvOpHuajtXveVn27T+aJOONLp56VFxcb8QX4VbVWzvwv0f4geLjwUgo6bw3KYZ7Ne6jh8sPpZiHCM3lM84KUy8Iwv9fWre70c8nkgQBEHYdrJeSCYb0r2xgJ+vwvho+bhMiU3VPHkdYIBccp6eys4ZSvzPYJFAaZL5kFbGPU+K8tbaDCzyuzUk6xurMKlonaTPWv+puVRcIBhbiwEK0QOKEyev03OZ9GugroBvEtETxfek5n3KEFiPgq5QNNm6fnwVDmifkI7/Ca2GQcS4njJgo/ZJlKunDGfP2XwcoSDstEgE0LDy85//3D3PZDIceuihA9o8+eSTdZHrBx98MAB/+MMfuP766/njH//IqlWraG1tZZ999uGd73wn559/Pvvvv/9mt71w4UL3vFnsUDMa2y1atIipU6cOaV0hYlRuAHz2s5+lUqmglOLSSy/dqov/aU455RQuvfRSvv71r1OpVPjsZz9blyMlCIIgCIIgCIIgCIIgCIIwGqxevXqr15kxY8YOGElEX18f11xzjXt98sknM2HChAHtnnvuOfe8ra2NbDbLP/3TP3HDDTfUtSuXy3R2dvL0009z1VVX8ZnPfIZvfvObaN08dCbtPhhK0WKAPffck0wmQ7Ua3Sx+5ZVXeMc73jGkdYWIEb8BsGrVKn77298CoLXmoosu2q7+/vVf/5VvfetbhGHIAw88wOrVq9ljjz2GY6iCsFWcPHMBv11+AAB5FUQLNXWFnhKVibGaPpOjVZcxaLxEZWJVTQ2jcHeNvZT6Jf3cJ8BThtBqpxrJq4pT5ocoijZSjK6rjmNKZlNc3Krgxtju9WOsZkO1jbwOXD+B9ZyCNVGNRNuMtjch0+dUOwe0FnmlNJlq7CroCfOuj/Fe0Sl6EndBu+53/SWfgSAIY5drFx9POS4KvjUOgK+9+D73vM2DLx9097CPbTTYXtV9oqi/auFJVFs8fBXSHRaaFlC8YckxwMDCvTtK+f+VF05ncqYHiBwAov4XBEHY+fmfw24G4PwnP8Yf+majtEVpy6J1kXqyOkkzPtvPJL8PX1fpjc/lC7oyQPkPsYpfGTxsnaI/3XYwN0B6PpQ8d+r7Rmztdy/9fqLCT5T8zZT6myNxAQym7m983dh/VOzX1qn+IVLkN/5Wm1j9nxTpzcVzsMBm4qLAtTlXI2HKKZ5sL70s6serzQN11LevQkKrMErjWeO2Kep/QRgdjjjiiK1eJ628H24uueQSXn/9dQCUUlxxxRVN223YsME9b2tr47zzzuO2224DwPM8Dj74YCZMmMDKlStZunQpAGEY8p//+Z+sXr2aW265pWm/PT097nlHR8eQxqy1prW1le7u7gF9CENjxK+6/elPf8Jai1KKmTNnbrdlY+rUqcycOdO9fuyxxzbTWhAEQRAEQRAEQRAEQRAEYffi1ltv5brrrnOvP/OZz/C2t72tadvkYjtEufvJxf+PfOQjrFy5kqeffprf//73LFmyhGeeeYbDDjvMtf/JT34ywCmQ0NfX557n8/khj72lpaVpH8LQGHEHQNrq0cxisi2k+1mxYsWw9CkI24JBobGUbKSE7QpbAfBVdYBqJETTE7YQosmrinsvcQzoVPvQKjxl6/L/AbSKlSmqphAJ0WjCePsFOsM2AKZnupyypFWX3fOsCilZTV4HFE22rn9fhXXZ/QAl47vXPTY6WLfrMvNaVtNj8kzJNL8TG+BRihXCBVWmVZcJrWZN2MG4lCNAEISxx4X7PwTANYtO4IoXTgNgZu6NLSrNOrwiEB33Pj3vdzt2kGOQiw94gGsXH4+xih6TJ4xdVp948tyamjNW/o9UFv9XDrprh29DEARB2DFkVEghX6Gr2EpQyqDykUt30RtTecseqwAITIaNQVQ7rC1fAqsJrFenbG/mSKtX9NcrV5u1Ty9LK+yTumlaDeIKoOYGaHQOpGsGpOsImNQcarD6ApurO+DF9dXqljXZp/SyxtoAgfXi3P9ormdQBDaDr6rkdVCrz9bEWeCrkK6wgK9CjFV1czNfhSSvkm1G9eAsJq4B4G1jLQVB2JlQNnqMFdJj/ctf/rJTJJU8+uij/OM//qN7feihh/L1r3990PalUmnAsjPPPJNbb711wPK/+Zu/4fe//z3z589nwYIFAHz1q1/l3HPPxff9urZBELjnmczQL0un21Yqlc20FJox4jcAkrwmay1r1qwZlj7T/ST9C4IgCIIgCIIgCIIgCIIgjBZ77LHHDs30HwrPPvssp556KuVyFO88a9Ys7rnnHrLZ7KDrtLa21r1uaWnhv//7vwdt397ezlVXXcXJJ58MwMqVK/nd737Hu9/97rp2hULBPW92k2Ew0m0bxyZsmRG/AZC+67Vy5UqWLFnC3Llzt7m/xYsX89prr6FUdMd++vTp2z1GQdhWNpkWxusiG6qR6r5ochR0maIpkFNBXZZ+o3IfcCqQSCmfgTg738NQiVUhiTomUnNEqpcwVuZAlDMZojFoOsO2uv5L1ievggE1AxLlTJIPmcZTtk5dY1BM9Hp5LZjk1D2d1TYKusyefhcexjkgNIaS8Qnj72eSS5moXyrWq9VLAO55+RAC6/GB2U9v/YcvCMKo86l5v9+h7XdHEndFI9csOqHu8xvNLP6Rch8IgiAI28/fTFnF82oPOt9ox2Qj7Xg18Hijv5V9CjkKXsXl+pv0HCM1f3AK9bgOQEJNua8GrQHQjGY1AJK+0s6ARhLnQIgmsBnnoE47r40dWMNgMBIn9ZbqCejB6hvEyvvE9ez6jT+3kvHdfrTqspsTJZ8xgFYhYezOTvanM2zDWI2nAnpNgUI8p/RVSGA9AhvVC0rqrgU2g4nX1RjO3O/PQ/4MBEHY9Vi8eDEnnXSSi/TZc889+e1vf7tFV0JbW1vd63e/+91MmjRps+u8613vYurUqbzxxhsA/OEPfxhwAyDdb3//0NMgisXioGMTtsyI1wB485vfDOAu2A9WbGKoJOsnBTIOOuig7epPEARBEARBEARBEARBEARhLLN8+XJOPPFEd0F+8uTJ/Pa3v2XWrFlbXHfy5Ml1rwerFZBGKcVb3/rWuu03kr6JsHr16i32CVHR3/QNgC3diBAGMuI3AA499FBmz54NRBftf/rTn/LNb35zm/r6xje+wU9/+lN3M2HWrFkceuihwzZWQdhaPjT7r3SZAkWTo2hyLp9RY+kM22KFR2S8SZT1ACWbpWQj61XJ+Bhqqhtj9eD5l7ESx6Cj/uI6AYH12BTm8VVIQZcp6DJdYSuBzVCyPu1eP626HCtPYoV/XGcgq8K6h4ehz+ToCfP0hHnnZJie6SZEEaIomiwl69NZbaXH5J0SxVM2cijE4/NV1SlTAPIqcI6FEE1WVSWjUhB2A25bduRoD2HMszO5Jy7Y/xFuWHLMaA9DEARB2ALXHXoLOV2lHGTItleo9PtU+n1MVdNbzrG2PI415XEEVhNYzSulSS6rP5pzKAzKKdoDk3HzgQTj6pLVL2/Ew7hHI4H1KNmBYQVeSuGfXjeaL6kBc6dmef61caq6R7r/AdtVBo1FY50LO5qB1bdP5nBpRX/i1A5Sbu7I3Z2J530KTxnyOiCvAzxl8FW1rvZbVL+tOqAWg6dM3D7EV6GbgyacO+dPW6zHJAjCrsvKlSt55zvfycqVKwEYN24cv/nNbzjwwAOHtP68efPqXg/1onu6XWdn54D3999/f/d8qHVcX3vttUH7EIbGiN8AAPjiF7+ItRalFNZaLrvsMv7u7/6OxYsXD2n9RYsWcfrpp/OlL33J9aGU4otf/OIOHrkgCIIgCIIgCIIgCIIgCMLOydq1aznxxBOdAr9QKHDvvfdulWg6SXBJSOoHbIl0Vn9LS8uA9w844AD3/MUXXxxSLdenn67FRHuex5w5c4Y0FqHGiNcAAPj4xz/Oz3/+c+699153Af+ee+7hnnvu4dBDD+W4447joIMOYtKkSRQKBYrFIuvXr+eFF17gkUce4a9//SuAu/APURbVxz/+8dHYHUGoI7CZmmLfRpn5JeNjrGZDGOWUjfeKlEI/UuA3ZF4adJQfmV5uqVN7RNuJFPaJ+qSmOKl9rZNcyKhfhUeUM+lhnBI/tIqK9TBoiqHvMiXzOsBYTcn6lKzvFDHZ2NXgqyrjvciCVTY+vgrdeAs6qsie1BdI1nH1C4jcBXlVJatCNpiogEtUz2DoOZ2CIIxNdlQW7e3LDueM/Z6oW3bbsiNHLft2d8rGP3/uo6M9BEEQBGGIvG36Sl7cMJ3OvsiBrLSht5RjSdcU3jxxDS1x3S6tDMWw3tUM0bwCq/GUcYp/VKLO37ybd0v5+hDNYZIU/WR+kVb7J8YCY5vrGZM2oY36StcBSM+7hjKWzWGa6CkD61HQZcpxTbTQ1tzOzbZZ+2zjz0/ZyAGRqhdgrKJkfVcXIaFiM2RV1eX/e2r79kcQhF2Dzs5O3vWudzmRdS6X45e//CVHH330VvWz9957s++++/LKK68AzeN8mpG0B5g2bdqA9485puYcLhaLPPXUUxxxxBGb7fPRR2tzjfnz52+2eLHQnFG5AQBw55138oEPfIBf//rX7iK+tZYnn3zSXeBvRpL1r5RyNw9OPvlk7rzzzhEZtyAIgiAIgiAIgiAIgiAII4SNH2OFURrrpk2bOPnkk3n++ecByGQy/O///i/vete7tqm/97///Vx11VUA/Pa3v91i+7Vr1/Lcc8+51/Pnzx/QZu7cuey///7uBsWtt9662RsAlUql7prvaaedNuTxCzVGJQIIojtQd999N1//+tfJ5XJOzZ++GdD4gPoL/9lslv/4j//gnnvuIZ/Pj9auCEIdoVUu2zFE46uQvA7qMjDXVdudMj/JxfdVlYpT62v3PE0zlUqS/VixHhXrEcbrmlhNnzgEEnVJELdJagYk28urgIIuu+z/hMB69IZ5t512L6rSHtUFaKEnbKGgK+RVQF4FhFbXcjnjmgLJ/iXZmYlaps/6bDJ51lXHsa46Ls7IHLX7koIgjHFK1ufGJUdz45KauiVR/9+89KgRH0+I3uWy8W9ZOvAkfnuRmhCCIAgjx/8cdjMtXsDM8Z2gLCiLtYpKJUN3Mc9fVu/t2rZ5ZRb07BEp/sFl2WssnjKuFsD2ouOaZMlcRyvTxP0czRF8VXVtG9uk6w4k7oBm6v/0XK1ZrbXBlm+O9GeRdgZELon6+gRJ3/nEadEwx+szOTrDVsrGp2wiJ0ExzMVjr11VzKpqrR5Dwxzq3Dl/2qrxC4Iw9ikWi7z3ve/lySefBEBrzS233LJdF8w//vGPo3V0nFmwYAF33333Ztt/5zvfcZE+2WyWU045pWm7j33sY+75j370I15//fVB+7zuuuvYsGGD6/MjH/nI1uyCEDNqNwAgym36/Oc/z6JFi/jc5z7HtGnT6i72N5K8N3XqVD73uc+xaNEivvjFL5LJyAVDQRAEQRAEQRAEQRAEQRB2L8rlMqeffjqPPfYYEImnb7jhBj784Q9vV78HH3wwZ555pnt9/vnn1yn80/zsZz9zbgGAc889lz333LNp24suuoipU6cC0NPTw5lnnklPT8+Ado899lhdvdd/+qd/Yq+99tqmfdndUXawq+2jxKJFi/jLX/7C8uXL6erqore3l9bWVsaPH8+sWbM4/PDD6wpGCLs+K1eudF/w1157jRkzZozyiDbPzUuPckqMoqnlkuk4zxGSbMgK7bofT9kBufeJasRP5e17qVxI12ec/V8yvnMMJNn9CYnCJNmGFytsEnxVTeVL1udKBjZDTxi5a6ZkNgHQrkv0mDx9JsfaagcQZf57sctgvNdXr66J6xSkVUKtukxeBfSZHFkVurEHePSZHB+aPXgMmCAIwrZwy9L5sTMqOb5WOXvO4ztsezcvPYpSrNpLFH6ixhMEQRB2Fj7x5Ln88fWZAPR151Hakm+tML61n4n5qM7XmztWs7rUwZtauvBVyIYgqttV8AJadIW8DtzcIZlHJAp1naoJ0KjUj5bXlmllnVK/MSu/rlZa/Bue7i9ZlnZbDxzD0LLxtRp4acTVMEtqmikzQLEPtfmbjmuu1b8X1YQLbKZu7O265HL7030WTY7usOD2ycNSMj55HZDTkes6GYuvQnduk/Ql5xvCrkL6WtDMz3wZv2P86A5oKwi6u1j+vSuAkbmO9e1vf5vPfe5z7vWECRO2mKuf5qyzzuKss85q+t6aNWs48sgjWbFiBRAlupx//vmcdNJJTJgwgddee4077riDX/7yl26d2bNn8+STTzJ+/PhBt/mLX/yCv//7v3ci8FmzZnHRRRdx8MEH09vby/3338+NN97oig/Pnj2bP//5z0yaNGnI+yXU2Omk8/PmzWPevHmjPQxBEARBEARBEARBEARBEEaZOLFszDDSYy0Wi3WvN27cyP333z/k9Ztl9SdMnz6de++9l1NOOYXXX3+dcrnM97//fb7//e83bb///vvzq1/9arMX/yGqL/Dd736XSy65BGMML7/8MhdffHHTtnvuuSf33HOPXPzfDna6GwCCMJa5fdnhgO/UF+1eiXXVdgq6AtQUKh41FX5a/Z+oU/M6wMM4Zbyv0mqYSH2SqOoDE7VJOwN8Va0NKlageCpSwQQ2E2VPplQ26fZp90DRZCmaHLNyb5BXFbc8pD6rv1WXKZlov/tMrm5/8iqIHAzKOLUK1HIqQxQl69e139H8/KW3UrKROyPJBxcEYdfhtmVHDlD7eUoTGJ3KMc44VwA0ZvcqfBVut4Iuqs+ScU4AQRAEQdhZ+J/DbuZDlX8G4Kn+vQgrmmrVo6+cJTTRb+Km1jxLu6YA0OIFbKhEDoDeIMs+rRvZp2WD6y9Rtofxb2g6q77RZRy103GO/+avkqWdAL6qNq0Xlijl/VQds2aO6KE6AZphnBq/OYmC3zRJWdbYaD9tvYuhZH1XKLRdR3XWPGVj52CRtUFH3EGVdq/kPtv0fqbV/82cCYIgCMPBQQcdxPPPP8+ll17KbbfdNuCGA0BbWxv/8i//whe+8AU6OjqG1O/FF1/MoYceysUXX8xTTz014P1cLscZZ5zB9773Pbn4v53IDQBBEARBEARBEARBEARBEIQxyFe+8hW+8pWv7NBtTJgwgeuvv56rrrqKhx9+mBUrVtDV1cXEiRPZf//9efvb3042m91yRw284x3v4K9//SsLFizgqaeeYtWqVbS0tDBjxgyOP/74LToJhKEhNwAEYZi46+W30O5VmUgvRRup4DeFedp1iZL1CaxXl0eZZEJDTQ3vqSQrX4HSTtWfVoo4x4DSGKsJiRQ1jYqPpLZAOvuyXu1f+/oHNuPeT/oPbMap+TWGfLxen81G7ZVhotcXt61pYdZXx1HQZbc/kQMgUqkEsWbGWEVf3EdgPbe+tx0+uduWHQkMTdH/gdlPx26NaD1xAQjCrsFty44ktIpsg8pQKxOp7lBU4uNtNlYRJsehtAPAU2bY8nONVZRtbssNBUEQBGGE6chGqvO37L2Sp17ei6DPJ6xqxk3pAuCPr8/ikGmrqJgM68utVGNnQH/VJ7Ca7moLHZmoD1+FhCg8bDR3Sf0WJ8t03bJI/e9U+Sr+HbbNVey1LP5qXV2AdPZ/WvWvlWnqPIjei2oONDoDjFWDOhJ02tGAdrXY6ttENc8C69XN9aK6Z1XK1ByBHsbVPUi3Da2iJ8w7BzlAbzVPe7YLbIZsyrkdWA9PGc6f+yg3Ljmac+dK9r8gCDuetrY23ve+9w17vwceeCAHHnjgsPcrRMgNAEEQBEEQBEEQBEEQBEEQdl7GUA0AQdjZGNYbAElFaIiKRGyL9WNXHIuw63PHS4fSqqu0qgolm6nL1C9Z3yng07mTodWgon+TmgGB9Zq2bUZoFV5KNZNWz4dWRQ90TQmj6jM0088D6xGiKJqcU+Mn457md0euhFhdk6hkNcYp+iFW/dgkmzNaXtBl99qgXU2DbLyPriZCPPbE+bAtbI2K/56XD6Hdi/a/K2zdpu0JgrBzEqnxwqZZwzDw2BpaXaf+91XojsnbQ9JvcowVBEEQhJ2NGw67CYCPPP4JJk7qZcPacZiqZt2mNgA8bXhmzZvQylIOMuT8aI4TVD2qocf6Qi/TWnoAaM+UaPPKFLzICUzqtxVlBrgAQjQ6rm2WVvQn6vxmOHV+2iWgam7k0OX02zo3QCNO6Z/qJ638T7afLGt2XtAs6x+I51W1umYbwuizLBnfOSQat5l2FzgHeMrZUPAqdIcFJmT66Alb6moe5Im2c97cxwbdX0EQBEHYtittg7Dvvvsyc+ZMZs6cyWOPje4P0M40FkEQBEEQBEEQBEEQBEEQBEEYaYb1BgCAtTuPJ2dnGosgCIIgCIIgCIIgCIIgCIIgjCTDXgNAqeZ2vdFgZxqLsGvTqst4GHxVZZPJs646DohidDxMVOSJ+qJSBoVJYiFcrI5FY8iqsC6mB6izywJ10T/pAsBpO6qHIXGPehiCVDxREsdjiGIqAjxK1nd22YKuMCWzifG6SMn69MVFLIsmR1dYIK8CV0wzsB7TM92UrE9e14r+esrWFRNu96IiYUk8UWKNre3j1nzqW8/tyw6PC4Ll3P4XTY5bls7n7DmP79iNC4Kww0iKeoOuFR1PiqtjqMQxZGGTOIDEqp8cU4fDQn/L0vkkp1jRb0O43X0Kux6XPfcBAL52yM9HeSSCIOzudPj9zGjvZmNXK0pbrIlOypUHxihyuSrGKlpzUWHajdUWNvXnWLt+HAu8aH6z15RO5nasozVTpiPTTy5V2Ja4KHA6mic6J1cYvAGFd5PXjVFA6bjURkyTyKFkeXoelfzeB9arm2ulY3/S2/BUVNhXx8uanUvUthv9k1VVXq5MAWCi1xe/p5vml2dVlaLJ0uFV4/4Vgc3QU83T7pXq9j2az3kuAqhxLiUIuzSWsVUDYCyNVdgtGHYHgCAIgiAIgiAIgiAIgiAIgiAIo8+wOwASnn32WTKZHdb9kLDWigtAGBF8QsbpUqSAVwEl6wORKsMM8jcYugK4xhV5yqkAT9lB1f8wsIClZmBRKk/ZqKBuentExShDO7AgdrrIVKLWeZO/EV9V6TF5Aptx+xRYj6yqYlC1sSicyt9XoRtTVAA4Q6uOioElxX81hrwK3PqJk8Cgm+7PcBGiebk8BQ9Ld7UFgMl+L3kt6hlB2Bm5bdmRrrDfuXP+NGi7xBmVFEfXyjjVTVSEt3Y+khTySwruJcfb4Sj8m8ZTZkBRwh8sPpYL9n9kWLcjjF3Syv8blhzD+XMfHcXRCIKwO2OsZkq+lwnj++juacHG84hKJYPvV/GUob8vS6kUzQd8PyQIMthAUy1FbV8NJ7FqYwf7TO5kYq6fSblegLgwcIWCrgxQ5rspiDVNVf9hE71i+v1k7uUpQ0DG/e5G66r6bYFzQg+ca9laYeAUIZFqfyjnCAZFYHznGAhMdO7Ro/K06xKB9TBW4zU4GEomclCnXdztXj+lanudiyJH5LLOybxFEARB2AZ2yBV6ay2XXHLJjuh6yCilpAaAIAiCIAiCIAiCIAiCIIxhlI0eY4WxNFZh92CH3ADYGS6+i/JfGAnuefkQAMbrgBBFyWYo2SztOsq69+KjfmA9Qqvr1CPJa90kHM7D1Kn+09mVQ6GSUr+k+0iysNMkToTQRtnZ0zNdQKTSLxmfPpOjbH03zlq+tudcAQDdYQsH5lcRWuXcAMm++Ko6oFZBNM6a8n8kyKsK7brE+mo7RRM5IUp2dJ1KgiAMTsnUnEeDqedvX3Y4YaqmiUdYV+8ktJq8DpwqMFlu0HVKwWbH4u3Fj+u5+MS5wfGx7trFx3Ph/g8N+/aEsYuo/wVBGE0Cq/GU5ZDJq1jqT2HVuvEAKAWlIEupPwsKwnL0u+llDGFV4+VDTDWad9tQYa1iRecEgg6PUhidY4/zS7yppQuNjVy36TlNkqevAFtf7wwacv2JXNGNroAwrv/jU3WOu/TcqRA7kev6TjkOan1HLoC6/P8mDkGDcucM6eehjdzWJRPVgCt45Xj7FbfdaPzRGJNZVOSetu6cJ3EQ+Cqsczv4KnT12pJ9kxpDgiAIwlAZ9itfo33hP2FnGYcgCIIgCIIgCIIgCIIgCIIgjAbDegPg3//934ezu2Fj1qxZoz0EYRclUa57yrAhbOPVymTyOogyLmOSLP60ekRj8XVQVwcg6c8jUozqhhoAidojUZCkcysTpciA8TU4B0rWb9oupwLGZ4p4ytATRtn4vopUtIFT6cf7AbTr/qguQKxU0cqSV1U2VNsY7/U550N6+5HzIOU+sNH7vqo69UqyHz9/6a18YPbTTT7x7WOS10fJZimaHIVs9H9UMn6dClgQhNHjtmVHuuMK1I47IZqsqnLjkqMBOG/uY67NGfs9wW3LjgQgSxDXOlF4qWNlxXroBmcVRMfibOwISPe5vXjKEpjUsToW8BmruHbx8Rir+M7Ck7nkgPuHbZuCIAiCsK386PAfcf6TH8NXhpntnbzR3R69YaFa8TBVDVVNorGr9Plk8tHvp98SK+Cr0e9epd9nRWkiB8xYA0TzhL5qdO6d5N1Hy01dTv/mlP/R+8o5BhI3n69DesM8eS+gbGsO5GRuEbmQU47rOM+/mYugbPxoTFaTV9EY6+ZYg7ixu8MCEDkNAusRWI9ek3fzi4Ku4GHYGLailXFji85XABXVk0ur+cP4MyjG+5TTARrLxmqr6xOghO/GKgiCIAibY7e4ASAIgiAIgiAIgiAIgiAIwhjExo+xwlgaq7BbIOHXgrAdJFn/eVWlaHJR/mRKveGrKh6aEBvlNsbK1kS1opWpy79PVP+JejVRqyb5k41qFYhdCLbmRkgcB43KmYr13NjS7oKy9SnGOf85FdAa52RmVZUuW4jcCVY7Ja6vQjxlCTFOwQPQa/NujMkYUJrQaorWo2T8ugzOaBuhcwukGU71/yOvzHXPfVVlktcDWVgVjAeg3SvRE7Zw45Kjh1UBLAjC1hNYD4Oqcyp5ypBVVQq64o6dtyydjyFS6DUeF1t1mU1h3tUo0TQ/zqYJreaGJccAw5PFfuZ+f3ZuhWYOrRCNsZprFp0AwKfm/X67tzmWETeEIAjC6HPDYTdx7l/+EYPi4D1WA9BVzrO6exzWKiqVDCaoZfZbqwjLHkrHdcLyVbS2eC2GIPDoLEXK+Mn5PjZV84zL9Ndtz9fVSP2vDKH1nBMgIcnKb1zmYeuy/Nu8EhCp5BOCeN7jEf8Gx3OqwHrOee0pk6o1FF0WSRzWacd1kJpDJSTzop6wxc3Xekw+3qaNndSRA6BospSNXze+BA8T5fw37Gp3WIhqCcR9hyZqoJWJz4dqNdkEQRAEYSiMTOVNQRAEQRAEQRAEQRAEQRAEQRBGFLkBIAjbyO3LDievApe7OCu7jr2yGyjocqTYjx9Rxn217nmtdoCNcqnjR5pmav90vxCp/ZutZ6wmRFOJlfcl40dqewx5FZBNZ0ymlKnjvSKesnjKUrEZJmV6Ge8VadVl2nWJdh0pbCrWw8Mw0etlotdLQVfo8IrkVcC66rhU38opU9LKmawKyesAX1Xrxh9aPaxKlj+9Osv9HznXRYO66OIDHoj/TwaqjARBGDluW3YkOlbqhUQPL87KzcXf4awKU8ePMK4tgju2FnTZOZBCq+NjSr3ZMTnihrGzKTkmJMfKaxcfv937cvPSo+rqvqSP28aqKNfXZClZ3zkVdmckv1gQBGHn4OYjfkhWVyl4FQpehXHZMhPbikxsK+J5Bj9fxc9XybUE2DBx/EaPsBpp+FtbymSzVcbn+xmf72dF73jGZUpsqrYQEv3+FU2WwGQIiX4To7mLqlP9J46A5P0kXz+wnlsWtRvo7MurwC1PnHih1S4731ehO0cIbMadR0Ayl1IYW3MkhvF5Q+MjjYeN9st6FE0WjUVjKRvfqfbTDy92Uxd0haLJYlAYlNtHX1fJ6YCcDtxnEZhM3WcRObOb1yYQBEEQhDQSASQIgiAIgiAIgiAIgiAIwk6JstFjrDCWxirsHsgNAEHYRiZ6vU6NUbIZpwTxMANyHL04gzrJu/eoqeGbZeBDkuUffUUNBq3MAIVLsq5J5+4TqVQC66ExTu3f6Cgop1Sne/obnTomycLM6yB2DFTQurbdxL0Q9R0pZXwbunoIG8I2VlQmA7B3dn30vgrrFJ6JwqYxTzOw3jbn/9+3/CAg+qwLqoKnTF2WqIdlk8lTtLm6z+qaRSfs9vnbgrAzkHb/JMcWwB3HjNWUYrVdXtecTOmMfxM7B9Iup7QDoFGtB5EyML1tYxXXLj6erKpucz2AAarAlDovUe0BlI2o/yGqgfCDxcdywf6PjPZQBEEQdnt+dPiP3POz/3w+be1lMjpkaqGXQiZS0C/dOIVu8lSKPrYaq+RDUNpQqvgU8hVWbYpcwT2bWmjzK0xr6aG/4tMSZ+F7majGmRf/Zrv6ZVuhaA/R+PG8yqNWL81Txjn8DMrVLQutdvMPX1Xd73FeB1Rshqyq0mdyrv/AemhlI0cANVdzsp0QRRj34WFjdX40J9R15yIeGtUwH4pcCH3xnCw5dyhZP95GzUltrI6cANqilXH9NHOMC4IgCEIz5BdDEARBEARBEARBEARBEARBEHZBxAEgCNtIj8kz3otU7xXj1eU4ZxuU7aFVcd59rFKNM66bEVqFQddl4zdT/4dosAZUpP5v7K+xNkBgPacsCaxHQZcBaPXKGDQ9YQtdYcEp+SuhR1aFaGUwVqNjNY6HoTVet6agCSlZHw/DXv4G10e0fuDWSxwLvqq6vH9PWafI31b1//3LD6TV5XbW8r89FaLjbfaYHKuqEwisR2e1ze2PKGcEYfS4eelRAHEeLvExwVCJVfvpmiUhmryKlIehVTVHlTL0hC1xP9UBjqvAMiDvHyJFoHNuKVN3LPCIxnDNohPcca5RnZ6M/dw5f2q6b5H60NS5rRKS48/GauuQP6tdnQv2f4SrFp7ExQc8MNpDASJ3WOIe2VnGJAiCMNLccuQN7vlH//xPmPic/c2TVrOmMI7FK6fht0S/zZWiT7WUwYSaaqhpyUVzgGy+yoLX9yC7d4ixyrkIuoIWZreuA2q/iwCh9epcvO49N3cIazXGgADP/VZnm9T8qtiMe92Yl69TTuy8CjAoPIw7/mtlKBmvzrUcmIwbk0k5/oJYsa+xznEAybyrQinuM6lDALV5SNn4+F60jaLJ4mHJpxwKflIHIHYtJttN5nOCsFtg48dYYSyNVfj/2bvzMDmqem/g33NOVXfPkplsEJE9QEAEEbjsyL5DCC6gXFmFqwjivSgXQQiGoOCVTa6gXgURWQRRdlBA2YKKoKySBDEkvAQhEEKSyfR0d1Wd8/5xqk5X9fQkk2Rmenrm+3mefqa7upZTDamq7votowJ/+SIiIiIiIiIiIiIiGoGYAUC0hsaqIoJU1IcSGjmEmXr8fdX3l0IDpn70uRIm0yMAiKNLBDJZAMnzdD17Ny+qWQhJHcuk7rQUJlN/slvnoYRx7yfRqhIGi8MO+CJEQQbVaJW4NuYYWXJZD7ZXQLUW5bre8sy2fRG5Gt12LJ7b14pROHqzv9X9nPrjwfnboCAiF1UTxZG/SQZEUecAAF26BUvCdrTKMgKjkI8jd2r7EBDR4Lrxtd1d1Hy6Dm9J+5DQ8EU1cs8XISpGuayoSGSPb+leKYA9/iV9AJJjZLrGfxL1XysyMtN3AAACrRBBuvmvmbsfCjJwfQHqRf7/7B97uu1oo1zWV3qbUhhobV978X7M/PuRuHCbe/vx6Y1swyXS/vI5B+Psj9i+BEREZN2yy0/d8+P/cirG5nqw7Ub/wuIem832drkTOlDQgUQoFXpSy3q5EG91daLgBVih7LX5ikoeK8I8thyzCGNUyV0TRBCIIFwWQPLdRgqNfE1mcsL2/6mex9NZf+nvPcn5OOlHlmQtF3UeUkToiloQmGrEvzYSCiYTdW+/x0lEEC5TGrA9AJJtSqFRjOz3oCQbYIwsITBete9Q/BUuMAoRhPvOkiwvhUZnHOG/OBxj+xfIEAoGvuy9T0RERCvDswURERERERERERER0QjEDACiNRQYhba4HnUJykWLSJRRRN7Nl47Qd1H7NffeaqfX1vsH4ggU0Xt63SyCePlSTe1pKQxyIrTZCqnIW19EKOo8xqpirygSu08GJW3XFQjbP6Bo8plMB4kylNDwEaFo8m46ABf9L1PjWpuo/8z4YPsPJOMu6jyU0iiIEN1G4b2wAwBQMQpjVA+6dd5G0MT7f/qWjw3IOIho1W58bXdIaNzz+scxbfILLvIuMApjVREl4yMwXiZarxJHygXGQ3JoDITn6v1367yLposgqtlG8aFXIo4YhHQ9BgBkjgPpHilpOo7wS9ZX0j6unnsA/nOr3/drf+tlHCT1kyMj3fMPwtZ+rY+GxtkfeQhA774PRERk3bTLdTj52ZMBABNtGx4saWlFTyQhlYbRAkZXvwMJabCsWMD7YRvGjSkCAJYXC4i0RCVS2HzMe+jwSgCqEfOo/d4Tn7fT0e8A4my9mkxpoTN/k3NxbT+gdD+hos7ZPmVxLX/Afg+KIKDj/gN2HPF3vpps4ggCvgxd1kCyH1Jo+x6yvQ7K2nffwxSMy2YOtAdIew1SRM6N32ZklzPZy0pol5lINOKxBwDRWmEGABERERERERERERHRCMQMAKI1VDGei7B/P2q3dfBlgG6dd9H1iXQ9aiCOUBHodVdYQdsolnj+evUt62UHpEmhoaARGM/WzEZS6zJCZCQ6lY26SSL6fRHG2QshfBGiS9swnm6dt/UrdR75VKRNAQFK2kcR+Wr9boSITAFtsgwJU5MZYMcbGIVpm7208g91Nd05b3uMkdnal2NVNyJILNcFFHXe/TcqaR9FnXf7S0RDLzAKY2QACY0H528DHV+G+CKy0fnQQBzZD1R7lMBoF9EP2GOlNhIl46NsfBfNZ3uAZI+RORHFmQX2372L/Ivn0xBxn5JqZL6tx1s/U0tB180C+Nk/9ux1bKkdS3J8T7IKkmyFsvZw6ezDcN7WD/bnYxzxfvjqvgCGLkPre7MPxeKgHQAw0V+Bc7b+7ZBsl4iomd2w0w347J9Pw/h8NwDg3z5cwuwlk7B0WRuMAaIozgCWBtCAlkAuF+KDLpv1NrFzBXwV4d3udiwtt2Bs3mYFrt+6DONz3WiVFSiR/T4UQWTOzsl3J5X6zgPYDGEAmXr+gL0GqGYHmF691AB7TVJ2mcW5uv3CbES/yfQAsOMxUHHWQDLuQHsoqFR/gnh+uy8SH4Rt6FQ9mfVoI1E2qtrHQAZx1oHJfB+UDDEmIqJ+YgYAEREREREREREREdEIxAwAIiIiIiIiIiIiGpaEsY9m0UxjpdGBNwCI1tCSqB05YdM5O2SPS8dU0C6d1DaOUtXSEfFZIDLClQHSpn6ZidppSVprbaPgevMHxnPzJQ2ofBFiHbEcgVEomZwrU1QyOddMMxkzAORECG0EAiiUte/SWLUR6NIdmOQtd/NqI5GTUVzaorqOJMW2pH18arPn+/vR9tunNnseD87fBjkRuv19N+yAEgZFnUPFeFgWtcSfk4k/G1W3mTIRDb5WWYEvqmnwyXOVKhWWLqGWExEqRkFD2lJfcaZ+xVTL5yTLAfExp6ZhesUo1wjYzmsvfSIjUekjEbIgA7e92mNuBAkYjZ/9Y08A6RJCvY8tUTwW13zQ2MaCgfZQ1tVLMMUU/oyhbs4exf8NAdQt9UBERPXdvtuPceIzpwCw58Mp497D7Ehi+bJqc3sjDJQyEMJAawETn/KWFQuY1NGF8a1FFFToyuR0hXn0RD7G+j1YJ9fJ0Uj1AAEAAElEQVTljsu2zGnctBfZczoEIBGhHJc4hbTfZZLzb1IqR7nyf/ZcnpAwbjsFEaCoc5n9rC0lVE8yT3JNkv6OZ79/eZnzfV5Wt9MVFVwpQgmDYpTDOL/bbdOWJhTQxp6v+F2GiIhWF0sAERERERERERERERGNQMMuA2DJkiWYM2cOlixZgmXLlkFrjYMPPhiTJk1q9NCIMk7c4k+4c972AIAJqhsVo/Be1BE3ubRNrDSki/pfXdmGV+nmUnUyBFJNrCJIyFTEaXo52wjTQ2QEIlSbVQYmDwBolWW3niQSJomsSSJquqKCXZ9fHcd74RhsmFuCwHgoad9lHSCO0h2M6P9Et7ZjT6KGl0TtceROHsuiFvc5FGTgGh+3qjKjPIkawGUzxYfFdARbklGla2ITkuh/DeGOWoHxMpH1tVH6dh47dxKFL10mls6877aTagRYgderoWA6+k8K45ZPGqwnf5NtJO9XjJdah4dilIeGyKzPkxGKUX4Vnx4NFjZfJiJaczfufL17fuIzpyCnIqQT26Q00EZAwCXyAQCMESiFPlq9IHMODrWCFtXzaT3J+dmPs4AV7Hk3n3wHQfX866N+xHxtJqFrJhyf0wGgbCQiiMx6Var5r4J26/ZFiJLxq1kKqe8agVGIjESAanZ2YBQUDNpVCWXtoxh/x/JFhLzMZkhCVMeYNDgGgC9Mearu50M0IhmgqZJmm2msNCoMixsA7777Lq655hr85je/wdy5c3u9/8gjj9S9AXDDDTfgzTffBAB8+MMfxqmnnjroYyUiIiIiIiIiIiIiagYNvwFw2WWX4cILL0SlUoExvW+RCSHqLGWtWLECM2bMgBACSilMnTqVmQI0pN6orAMAaCuUURAhCqIChWr9fRidqftfTxJBUksbmckCqJWO+k9eJ9usjVq128+7+dI1tm20i61XGZjsIcHW9Le1JtvjaJW8DLAsbEUQ19UGgPFeN2ScYWCzD+y4SiaPz27+bJ/7MBCSyJiCqLjXSmi0yjJKxkMQ19kuRjn40kbotsrKkNeYJhrNbv3nLgAABXtsS6Lu0lH0Sug4cq53zxOgWr83kY7wT9i6/b37AKT7B6ws8j/ZZmSAANn5ABtFqI2w44oXK4hqJF8yxtrMBO0ytITbfqusVPdNmF7jIOvquQfgP7f6faOHQURE/eDOZQLQQXwOVBpSGhgjoLwIrS02ur27u4APjEAYSazbtgJLKzYCfny+CCkM2rxy3e9Cme9Nwl77+yLKRPrXXjP0Rab7+8R/XR8BVDOyA6NQiDMVZZzlZ3u9ycx1RfI80F6mpn8yvxIaUTzdh4ESkcsw6EplAGgIlLUPX2X70yTfe/q7f0RERImG9QCIogif+tSncO6556JcLvd6f2U//CdOOeUUdHR0wBiDKIpw6623DsZQiYiIiIiIiIiIiIiaTsNuAJxxxhm4++67YYyBEALGGGy//fb4xje+gWuvvbZuNkCt1tZWTJ061b1+8EHWcKWhddZHHsZZH3kYS6M2SGis7y3FWNVto9DjCI2KUb2i/21kvURgPFuTP36dPBLaSPcAetf/V8L02WPARsLbOv424sRG/ivoTDRNYBRK2kdgFLqiAoo6j6LOo2R8FwHjiwhjZA/GyB4URIBOrxhHp9hI3jZZzkTbfmqz5/GpzZ4f9Oj/ZGwFGaBkciiZHAAbFaOERqA9vFcZg/cqY1A2PopRrs9aokQ0OJLof6B3b5PqsVChW+ehjT0upo97idp/u5GxvQGiOpcyNqNJZaLyIiNR0j4qxkPFVDO1pDCQdY6jyRiS9eh4WzZaX0IbAW0EStp3Ef+127TrEe5YXzuuZNtJ7eJzX/pMvz7T0YTR/0REzUNDoKNQgpeLIH0NGfcMM/F3Ia0lovhhDFApeSiHHpaUWrGikseKSh7FMIcxXgmhUZlofAAuel4K+33Gfq+pnsOTc3wSfa8hUNS56jVD/KiO136XCeJtaSNcdraOewH4InJ1/RNJ9p/tA2Cqdf/jvxrZ737JNUwptT/pa4L0dQVgswTbVSkzb7LNCDbLkd9paFQyTfQgGmYacgPgqaeewk9+8hMIISCEwMSJE/HAAw/gb3/7Gy699FJ8+ctfBtC/LICjjjoKAGCMwR//+EdUKpWVL0BERERERERERERENAo0pAfAhRdeCMD+aN/R0YEnnngCW2211Rqta5ddqpGF5XIZr776KrbddtsBGSdRf31282dx3+sfA4A4IsPe8q3EER1JEEgS0VoyNmK0SxdQEAFaZTleNq4fjfoR//2loAFRrWuZnp5E1yYkNAIoVIyHsvZdZE1BBO65NgJlYyNWxqgSllTaMEaWMMFbAQDw45qYChrdOr9GY15TUye/hAfnb+Ner+N1YWlkexQsj1rc9HLkYaxfdJE8RDT4bnxtd/ipe/l99TaJIF2Effq4FxlRraefidgTUEKjYrxMz4D0fNU6/NXIOyW0i8hxPQTibSYRhDLuiWLfqw4+qd+fjM/V443XnR5fyfjIidAec1E9rhajPMpxX5K8DAETr0tGkHHm48y/H4lC3HPlnK1/W/+DJSIiGoZKkY9WL0AuF6JYsd8JhAfYU5xAFAkXGGsiASENSmUfUhqs02a/V3hSIzQKgZYoIod8fE5EnWuIJIvOneeROicLDQmDggx6ReQnvYKSuvsK2n3XseutbkfFtfrTkuuWNAXj+hDlZeCyF2yEv+jV7yeCcNdFgVHuOqSsPfjSfrcqapvd3Cor2T4CdfrHERERrcyQnzk++OADzJo1y0X/X3DBBWv84z8AbLDBBhg3bpx7PXfu3IEYJhERERERERERERFRUxvyDICnnnoKURRHzSmFU089da3Xue666+KDDz4AALz77rtrvT6iNfGvYBw2yb2HksmhVdiIfl/YutaByf5Ti4xEyfhok2XkRVCN/DciU9M/HdVaG83fl2R5hfpR7oGxmQmJsvEz9ShbpS2jlRMhoOFqV3eKYrxPIXwRoU1Wm3cnUSif2uz5fo1xoPmIXJZFQVVQMj6WBG12bPEboVZQQrv9I6KBc+Nru+PELf6Em17bFRrVCHwl7HEtF0fOpSPqkoj/WrVZAICN+JcwLjI/XUM/E/0P6aLr0jWBM9kD8fvVrANhjx9m1cfYZFxS6EymVmBUr32pGM9tK6kJ3KrK0MbWIw6NcsctaWzfEgkDHWcaAMB3XjkCvoiYCUBERE1BG4FWL8CYQhlBEJ+zyx6kMvZMKAyEjM+NuQhSGrS3liGEwVtLO+1Kxi5Du1eGlrYGv+uFVieDVxsRX2sk81TP5UmWYJIxmLCZ0hqBTkf8m/jcnj1vA/a7RPq17Q0Q9srwlnH0vy8DaCNRUDaKf3HQbq8RjLbZf7Gy9uGLCGVtv4uF8bnfl7bnQGAUilHebUPG/c0m+ctw6pZP9Oc/B9GIIox9NItmGiuNDkOeAfCvf/0LgK3vP3nyZIwdO3at19nZ2emed3V1rfX6iIiIiIiIiIiIiIia3ZBnACxZssQ9Hz9+/ICss1yuRiL7vr+SOYkGz5e2fAL3vP5xFETFRbtqI6Cg0aa6UdK+q4+fRHfaOo4GkcnWpUwyAdLRpqvqB5DOENCQqBiFkvZdPct1vC5ERqBiVCbqP4laLQhbXzO9HSkMxsgeSJjUPkm0yoqr+59sr78ZCgPtwfnbQEHYLADYyJ+kRmZLKtq/HEfu+CLE6Vs+NmTju2bufvjKVo8O2faIhsrP/rEngGq03Y2v7d4rqiCKI9aidFZATY3/egL4bv7A2OyddP3epI6uNiLT0yOChBQ2ai5KRd1k+p7E49Xxuu32gAD2uYKNApRCI0plSylksw2C1Hv2fZ2ZZqMJDWB0JiJReT2QkcnMm0T/A8hkOkgYFKMcpr/8SbSqMs7b+sG6n9dw951XjgAAnP/R+xs8EiIiGkyhlvCERotfQRSOcdOjQEJIA0BAKXtOFAIQ0qA9X8byUgETx3QDAMbmSnFd/FRkPZLvQybzvSg55yfXAtX+P9neQMn8RZ2HL0JEkHEEvv0+Y68pqturlwmQlqxfZzIMs1dBpTjrQAqDVllCV1SwWX5xL6BkrIG2PQKSayIVb78YFVwmYUn7mWsFIiKi1TXkNwAGI1o/XfZn4sSJA7JOIiIiIiIiIiIiajATP5pFM42VRoUhvwGwzjrrAACMMXjjjTegtYaUa16J6M0338Tbb7/tXn/4wx9e6zESramlUSvW8UIXNRJBok2WUTI5lEzO9QJQQqMgAkhoREa4mtkAoA2qUSzx9HrR9enIWSVMZh3LowKKOo+iziMvAzd/sn0Jg0I8XaJ+zwFfRMiLADkRZaL9I0is4y3PjKUgKoggcc/rH8e0yS/09+Naa/e8/nG0xp9VEr0bGAUJA19ECIxCObL7PCG3Au2qlKkLPhQY/U8jxU2v7QoA7ljjJ5H0cQZQ0n8kh/iYI2T1+BbX13f9TpL6+an+J+neAbUqpvflii8iRJC9egYk0XK1EfqJqGa6PWak6vvGNXwTtXV/a5WNdMfZNG1ENQsgGTPssXSMKqGoc266hIGfqgucRAcGRkEKgxVR3h2zm1ES+X/uS59BQQaYsc09vea5as5BOOsjDw/10IiIaABJYRAaiYIXQsj43Bwp+IUQWguI1Dkxea6NQEehBF/aa3pPRujw7DV7Mq26/t7fiVZ2bV97jeCysBFm1lUyfq9a/3Z54f7WXg8k7/W6NkhlJADV7OSCDOw1jstEFAiMrf0vodGuqlUNAu0hMhLtXslto1PZfmxfYv1/IiJaA0PeA2C77bZzz4vFIv74xz+u1fruuOMO91wphV133XWt1kdERERERERERERENBIMeQbAlClTsOmmm2LBggUAgCuvvBKf+MQn1mhdy5cvx1VXXQUh7N33nXbaCWPGjFnFUkSD5x89H0KhNUAg7T+tgqigZHKoGJWJ2M/H9fY1ZJ9RqumI2sB4SGI/szX64+dGZyJp22QZbbKMwHjV2ttJpKwwUCKoW3s7HemfExGk0PYvtIvOLYhyvB2JXGr+ZMxDyRchAihERqIU9zrokD3wRWj7K0DDiyOHJAzGyNKgRc2c9rfj8eMdbxqUdRM1yk2v7ZqK+DfuGBGkI/JN9t99td6/Pcakj2XJ+7XHn2Qb6dr3yesI0kX1p2vuSqF7ZUvpdGYUkmwDgcAoG61nZKYef7ofQBKRl46MsHX/q3WAk7rDSe1g+7nYbKMAyh2fk4jD2nGn+SJy2Q4qrmucjNd9LkYggkSoFZaFLb3W0Wy++7Ff46wXPlf3PUb/ExGNDNoIeEIj/ooOE0pE0sBoAelp6Pg0rCMJ5Wks7ylgfGsRgbbXABXtwZcanoji63l7fqz+1b2i/uudZ1f2nv2OJFyvNF9E0PF5PrsvvfsCJNOl0L2i/yNUewkk1yhFk3fnc3ttkO4vVO1x1BNnBrarEnwZYowoufEo2GseRv8TEdGaGvIMAAA44YQTYIyBMQb33nsvbrzxxtVeRxRFOOGEE/DWW2/BGHsBcPrppw/0UImIiIiIiIiIiKhBhGm+B9Fw0pAbAGeffTbWXXddCCFgjMGpp56Kyy67DFEUrXphAHPnzsV+++2H++67D0IICCEwZcoU/Pu///sgj5xo5b7zsTvxRmUi3g/b8X7YjuW6BRWjUNR5V0vfFyE0JDQkStpHSfuoGA8V47lo0MhIlx0QxNkDLppWaPdIJBG1kRGZGtuZ2pZxtCpgo0hyInKPgrS1/pPMgTZZhi9CG2EDHdfI1i7CXyHpYWAgYeLt27Hf/s+dBvdDjj0y/yPwYY8ZBRFgglqBCWoFlusWF03cqirw4+ih1lRdzcHA6H8aaW56bVcoYdy/oSS6XRvpjmW+COOsIpM5TiVq36udJzkWRkZmav+XjB/X45Uuai5KHROTcdjIfuGmB8ZDyfgoax8l46FkPBf9X9I+AqPccbcY5VCM8u51OX644y4EZNyvpSCCaj8VSBf5lzy0kfGynsuOSMacjjxMRxJKoeHL0NX+T/ZLxf0AfBkiL+1xuM2zx69zX/oMzn3pMwP3H7kBrvr4bZj+8idxzotH133/8jkHD/GIiIhooEhh4MmaCH0B6EDBRBI6lJDSQMYZAUppFPwQxSCHzlwJnbkSKpHC+5VWhElWYJ3vPdqIlT4AZP6mrx+S83s6Czuoqdtf3Z90jyHprj2S7MIIIvOojlGgGOVRjPKZ9aa3GUGiqHPQkChrD3kRIB9/v0ok12BSmEwGIxER0eoa8hJAANDW1obrrrsOn/zkJ6G1RhRFOPfcc/HDH/4Qxx57LHbccUcAtlGwEAJ/+9vfsGTJEvzzn//Eo48+ikcffdRlEABAS0sLbr31VlcKiIiIiIiIiIiIiIhotGvIDQAAOOKII3Dttde6sj3GGLzxxhv4n//5n8x8xhice+65vaYlP/b7vo8bbrgB22+//dAMnIiIiIiIiIiIiIioCTTsBgAAfPGLX8Rmm22G448/Hu+88477UT/9A3/yOpGU/DHGYNKkSbjjjjuw5557DvnYifpyzta/xfdmHwqg2lR3rCqiW+ddeR6FCF1RAUWdzzTereVK7ggTN7zSmSbAiXSJiSjVZCrdqFNDItAyLtlRTWlNmvxCVBtxAkDFKBREAO0aB2ebUKWbY2ojoIRtjLmy/RlIBRG4ppsl47s035L2XSmRbNkjFuEj6ssPX90Xp2/5GIBq6R8l7PGkqPMAkgZ5wqaiG1tGrJaGhI7/qbkGvenGvKlm5TpVOkxDuAa96X+3SQmBpHRO+t9xBAHE5dKqxyLpGvCl1+3GFx8f7bqq6f+Z9HztATIEjARS021ZAZlqyFdtVGzHmi1RkDQLTo/fjRvZBsPJvkcQmX1UwpZRkLCffV9N45vNxdveBQA487nPAwB+sMMt7r2zP/JQQ8ZERERrTxuBggqwtNyO5Cu8ykWIKhKmomCEQCWy58RcWwUAsKJkm99OaLXTP9SyHC0qLodTpymvFDpzLk8k33+ScaT/JtNtOR2NsvbtuTl1Tk+X8KndXnJ9UftereRaINCeu/7wRYS8DPFB2IpQK0DZ/Q6MQqgVQgB5Vf3+pOLtdekCSvF3uXW8rnofN9HoYuJHs2imsdKo0JAeAGn7778/5syZg0suuQTrrbee+7E/KfGT/vE/mT527FhcdNFFePXVV/njPxERERERERERERFRHQ3NAEh0dnbi3HPPxTnnnIMXX3wRs2bNwpw5c/D+++9j6dKlaG1txcSJE7Hpppti3333xc477wzPGxZDJ6rrnK1/CwC49Z+7uIj4MbIHJWMjW98LO1DUORRE4Jo7JTRsNH1BBG5abfQLANdYE0CvrICciNx71b82wlQJ27Q3uSNdAZCLA1oqRrl1FURgx4HAjQuAi/6X0IhQjZ51DSyHqN19lyng/bAdbbLsGn8CQFdUQMn4tnGnDFzz31ZZxpe2fGJIxkbUjG58bXcAQCGOjtNGQgkgiI9PgVFQQqNb5zPN8saqIoD4377RLpMoOfakM4sUbDPhAH6vaHYldLURultHtdlvLRlHzAPVKLwIwkbwo3rMcpkAcfS/iwqEyjYpjPkytMe4+LibzrBKPpfkbyKZlm7kq1IZW+4zSUUPSqFtlgGAIB5nZCSqR34r+aylMO64PfPvR6IgA3euaVZJ5P93XjkC53/0/gaPhoiI1pY2AssrBQBAa4uNdA8jiWJQAISB0AJJqmAUSkBpSAlEunpOzcsQeRnCl1G8zjjav07mYfocbSP6Vz6+5Nxuz8HZa4v0eT393aus/cx532Xt1ck0lPE1S2AUCtKe0TPZhrKa3dgV2M9pvfyyeP/sNhcH7RjnFaEh0Kl6AACnTpm18h0jIiJahWH1K7qUEttvvz3r+RMRERERERERERFLABGtpYaXAKL+W7p0KX7zm9/gK1/5Cvbcc09MmjQJuVwOY8aMwSabbIJPfvKT+NGPfoQVK1b0e52PP/6466uwOo+5c+cO4p6OHJERULARs0uidiyLWrEsakVR56Bg4IsIBRlkHrUZAUASAeu5v4HxUDEqE/WSqI3A15DxQ8QRpsL1E3A1LY1w0brJ+t8MJmBp1IaS8VE0+V7b0ZA2yjU+s8khPsOVtA8NCV9EqMSRNkmkrDYSS8L2uGeCcdG4RFRfbQ3dJKLdFyHGqu74UcQYWQJQzfoJjEJR52x2AHTmGJaO/E+OQkHquCVh3COJfk/WXe84GKT+nUdxPXxtpKvLm9T+77VvQrta+kD1mJjsty8i+348ltrI/vTzam3h3tu071ePiRFkNZMhnjcts45kf1J/k+cK2mUtJFGRZe2hKyrg/Jc+1Y//usMfo/+JiEaG0EgUQ9uby/ci+F6EQi5Evq0CIQGjDCDtQ4c2Yj/SEm2FCsbmejA214MOr2Qz35LvGPF3lno1+hPpc3H60dd86dfp83E6szCdgRhoL3OtUi/6PzISZe3ZfRdRZv7ke0t3mEdP5KMn8rFefhk8EWFFlIcSGuO8bozzunHVx2/DGFVCp+px1z1ERERra1hlAFB9c+fOxdlnn42HH34YQVBbHAAIggArVqzAG2+8gbvvvhvnnXcevv/97+Okk04a+sESERERERERERER0bDAGwBN4O9//zseeOCBzDSlFDbffHNMmjQJURRhzpw5WLJkCQBg2bJlOPnkkzFv3jxcfPHF/d5OoVDA3nvv3a9529vb+78Do5iOI0B9EcIXIRZWJgAAWmUFY2QPlDCZyNuk3mRtTf9EJuLfVLfhi9BF/ktUa3BLodEqbA18G90iXfR/Zp3GHgpsJL19Pkb2oCBs7c7kL5DUvexdg7Nab3sVxTcHyKc2ex73vf4xAECbLLteBTaDQWFJ2AbfKIxRJTduIupb8m9EQgPCRq2VjECbtMeQpJbth8RSlEzORaQtjVrjXhxxrfrU8atsfERGumh+laqTD6SOG6iNyMseR6I4g8lF2vURDReZao3/KB3lL6PUPMn7ChoSHiJoI5CXtl9Lbc+VdLRg0mvErjfJKMiOE4Db3/7UI64n0Coei8n0Kcjsm9F1exgQERE1wrFPfxESBRS8EN1BDr6sniFzbT14e2kBQlXPW0Lac1wUSZQDD2Hq3NcqKy57NzkPy5rXaX1mB9TMa68nVK9+Ppl11lwHJNdHyfWLNgK+jDI9hqrrr/YwqmYNKoRGIdAS43Pdbv4encM6uRW4eNu7eg37rI88XH9/iIiI1hBvADQRz/NwxBFH4KSTTsK+++6Ljo4O954xBvfeey/OOOMMvPXWWwCAb3/729h5550xderUfq1/0qRJ+N3vfjcoYyciIiIiIiIiIlpdAmsUV9MwzTRWGh0G9AbAk08+OZCrWyN77bVXo4cw4Hzfx6mnnorp06djo402qjuPEALTpk3DDjvsgJ133hnvvPMOAOCb3/xmv28A0MCLjEQujohNR47m4oh9X4SZ+RU0lKjUiYaVfWYFAIij9u26ItSPjJVCu8jcJBvAjlEAQqKoc72WSWpjR5DwUY3gjSBc9Gvt/pZM7/UMlg5ZchkP3fF2u6JqHXFtRLV2J+tnEvUp+beeiIywGUxGoktX/00VRAVKGBRQAWD/zY1VxTgzSNt6t/GxpWRsDWApjIuSU0a7+ZK/adoI14MAgKv5q2CghYZO/TuWMLZOvlYuEj6Io+wAINCpHgS6dxS9FAaeiFyGQL0+IemIQhfxH9cK1q7Wv8i8n8yTqHfscevI9BgQ0HGPhGQfWkQ1ArL2s4ogUdYK01/+JAD73+fCbe7ttS0iIqKhYKPqDUItUQk9iPjcXIkUJAyENIAWkPlqVp4QBr4fojVXQUVXz5fJuTNd+1+ifqR/vYyA2mWzY4yzoY3MZvHF1yZ9ncPTkf6Brt+LLTSqmo0dz17WHpQwyMvQXRcBwPc+dnvdcRMREQ2GAb0BsM8++0CIxt3nEkIgDMNVz9hkpk2bhmnTpvVr3g033BAXXXQRvvSlLwGw5YPmzZuHzTbbbDCHSERERERERERERETDzKCUADKGNWkbaerUqe4GAGCbCPMGQGMERiEyAlIAJe27iP+8CDIR/bXR/TkRZWvpx0+TqJVEOkIlHYWSTE/6D6S3EUGiZHx0RQUANgq2TZbRFbVACo0V8fRN8++55WS9aH/U1uiW0Fh5psJAiyBQMjlUjOf6HkSw0UebFxbhn6VJbt6vbPXokI2LqJlcM3c/jFHVDKGciFyN+fRxJTICXabFZguke5fEfUXsGgQqcR+RJJo/Sh0+NGxWjhTG1blPS6L/I9dTRLnjmS/Sdfyl+5uuw5uMp6yrlzdJpJ1bXlSnK2jkZQgldK/a/ytTLwMqux/9C4ZIthlpv1pbGDKVrWWzAnxpM5qSTC1fRLY/ADR64mk9/R49ERHRwEui23PxOWt5d4ubHoUSMhcBwtb+BwAdSIShQiEfYIOOZdio1fazW1Jpw/hcd5zNK3vV/u/7u1DNubfO/LImwt8tm15Pzfu11ytFnUNehgiNgpe6NtFGIDICERRCrRDJal8gX0T4zsfu7POzIyIiGmwDfgNgTX78r5c1UG89/Z1vtBs/fnzm9fLlyxs0EiIiIiIiIiIiorVg4kezaKax0qgwoDcAvvWtb63W/MYY/OIXv8Abb7zhXnueh2222QbbbrstJkyYgLa2NnR3d+P999/HSy+9hFdeeQVhGLqbAZtuuilOOOGEgdyNppd8nol11lmnQSOhkvERGM89WmUFgI2wBXpH/qcpkTpjxJG46QgWBZ3JDEhoI1ExNm4/iZwBkJk3if4HbBRLmyzjw/4HkEKjpGyvgsAoW8M7ziJIegAkIiMRxP0GFGwt70q8zFApGT/um6DdZ1kQAhv6PdCQKMjAfeZEVF8EicAo+PExolJzsRqlIugktDs2pGkIV/8/qZFbW8s/mWbX2btmbxK5V2+6gkEEUV1PbVZAPN0XUbwvUaZubyZ7IB5DOvo/k0GQ1AyujRBM90io6YOS7g+QXk/t9qvHY40oNT6bgWAQxlljEHa+srHZAJG22VXp/QDscbon8uNtaJz1wufQKiuMMiQiooZZEeRQCqo/M4RlBR1KqHwEowWiYnwNoQw8r4Jy4KHdK8OX9ry5pFK9xshE48fn1fTZOYnor5d556b1cb2RLJ/eTmRsNmN6+8l1RZKFp41AT+TDlxrdYT5zvu+JcmjzyhjrFzPbvHjbu3p/UEREREOoYTcAli9fjqOPPhpvvPEGjDFYZ511cP755+Pzn/88JkyY0Ody77//Pm6++WZccskleO+997BgwQI8/fTT+NWvfoUxY8YMxG40vTvvrH7x9zwPO+64Y7+WW7p0KY455hg888wzWLRoETzPw8SJE7HddtvhgAMOwAknnICOjo7BGjYRERERERERERERDSBhGlBDJ4oi7LfffnjqqacAAPvuuy9+85vfoLOzs9/rWLZsGT796U/j0UcfhRACn/jEJ/Doo49Cyt41/UaT7u5ubLnllnjrrbcAAIcffjjuv//+Pud//PHHse+++/Zr3Z2dnbj44otx5plnrtUYFy5cuFrzv/3229h5550BAG+++SY22GCDtdr+ULvxtd0xRvagW+fRpW0tzDZZRkEE8EWIwFTvw7l6/SL7zzJKRdT2JV33PzDK1tmGgXLRMtptKx3ZImFQkAEKooIu3YJunY/XJ9ClC9g8vwgdsqdXH4AAykXLlIyPkvZx/BZPr+ans3buef3jKIhshH/FeMiJEBXj4fXKuvjPrX4/pGMiakY/fHVfFEQAwB6HlDDuuJM+RimhM5H1QDU6zr2Oj1Pp6P/ayPh60Xp91fFN6v8qGJR0NSqwdhzJ+NLjssunI/2yxzFfRNVjZE1N4eR1bb3/elGGffUEqF1HsmxZ+4iMdNsOjEKgFcrGRzmqft6BkShrDxNyNpIwqTWc1B3uDvOu34GMswh8EaFFBfjux35dd0xERESDYeqsMxEaifeLbXh/aTt0ZM95Jv7rt4TQUepcX1IYv24XNuxYig6/5L6frJvvQl6GKMgg8/0j3a+n3rm5Xm3/vuavdw0B2GuHsvbc+37cF6msPYRxLwBPRgi16nU9k5eh64PQ6fVgxjb39OdjI6KVWLhwITbccEMAwFZfuBC5MWMbO6DVUOlairk/mwmgOX/HopFnUJoAr8oVV1yBWbNmQQiBbbfdFr/97W/h+6tXNqSzsxMPPvggdt55Z7z00kuYNWsWrrjiCvz3f//3II26OZx99tnux38hBGbOnLlay2+yySZYf/31kc/nsXjxYsyePRthaH+UXrZsGb761a/ihRdewPXXX7/GY0wO4EREREREREREREQ0eIb8BkAURbjiiivc6yuvvHK1f/xP5HI5XHHFFTjwwANhjMHll1+Or3/966M2C+CWW27Bj3/8Y/f6a1/7GnbYYYeVLiOlxAEHHICTTz4ZhxxySK8GwitWrMDNN9+M6dOnY/HixQCAn/3sZ5gyZQq+8Y1vDPxOjECRkSgZWzMyqVNf0j4iITFWhdl5IVfaF6AvOq69nZDQAGwWQBJNI1GN0m2V5V5ZBiWTQ2AU3g1smSdfRMjLAIHxIGFc3wIAtta/9vGpzZ5f7bEOpGmTX8Ad83aEgkZBBm76ct2Cozf7WwNHRtRctBHQondku04dV2pr5UeprCMpDLQRmbr/Lnqu17Zk3ed2XdkxBHEUXhJR56bH6w7jv56rsS96RfknY6ud7va5ZgxJtGCSBVCbjRDVzK+EBuIMhVrJOpLxJhGKSSZDcnwuadvPREJnMiaS6P6lQQtyMoSOzyV5GSKAzPRFSPZTx5GKiRl/n8YoRCIiGnRSGISRhK8iRIGE9OLvNB/kYNpDRKGE0QLKt+fszok9yHv2u5CGQJuyWb1KGNdfDEK7LIB6/QASyflZ1Zlu15+Msf752s1fcx1Sjnse2WucODMy6b2DbE+gsvbgiwidXk+vnj1ERESNNuQ3AJ5++mm89957AIBx48Zhv/32W6v17bfffhg/fjyWLFmCxYsX489//jP22GOPgRhqU5k1axZOOeUU93rHHXfEJZdcssrl9tprLzzyyCN9vt/e3o7TTjsNhx9+OPbaay8sWLAAADBz5kycdNJJmDRp0mqP9c0331yt+dMlgIiIiIiIiIiIiIiof4b8BsDf//53ALY8zcYbb7zW60vWs2TJErf+obgBcP/992Pq1KkDvt4bbrgBJ5100mot8+KLL2Lq1Kkol8sAgMmTJ+O+++5DLpcbsHFtuOGGuO2227DrrrsCAIrFIq6//np885vfXO11jbbaZ0kkiRImVRtb2GhayEy0pzYSEABM/7MAaqP/ExIGFVQjTVXcAyAvA5SNj0hXlykZG31a1HkEcX1LSKBdlBAZgQAKOdhIlggCRZNvePR/gpH+RGvvK1s9iv97dW/7Qti+I4HxoCGqtfTjY1k68h+Ai/yvZevm9s4qSPTVByAyMhOBl6w/MshMy/QdiPsUKGEgjc5E+yvYY23tcTWZR0Nkagy7fip1ov2T+dOSUdTrW2DXozLrtOO0kY0uE8AIQNhMCl9qBPFQ8zKsRvYbAT8V7Q8A6SBGBQOIatbAfz5/LADg6u0Z/U9ERENHGwGVixCV458a2kPI5R7aNimi64NWhNqeL3Njimj1K8jJCMUwhzFeCQAQaAlPJedtmYn213GPszRZp/9PojYjINAetDs/Z+d1WdPCwHffe4zLNkwkfXgCY8/bQWo9eRVCwuD8j/bdg4+I1pABVpLAM/w001hpVBjyWjnJD/UAEATBSubsv/R60usfDV599VUcdNBBWLZsGQDgwx/+MB555BGst956A76tXXbZBfvss497vbLMASIiIiIiIiIiIiJqrCHPAOjosPXFjTGYP38+yuUy8vn8Gq+vXC7j9ddfh4hrF48ZM2ZAxrkqhUJhjcrfrEpLS0u/550/fz4OOOAAvPvuuwCAiRMn4pFHHsHkyZMHfFyJffbZB48//jgA4B//+MegbWckqRgPeRNAQ6KobVZGq7Q1LtNRokAcUWts3W1bo7LmvTqiVG1/wNb/t5Wk7b+JchxhGhiFyEh0RQUooV1tysAo9zyCQGtcfzMyEr6IUNR5jDVFdMOO3UeEaZNfWOvPhYiGh0tnH4bztn7QHWMC4/WKmEtTQqNiPBu1Dri6/0kEfBLt7iLg+4qMj+vhJ/MGceR6YFTmmKZQPRZWx6jc9nuinDvetcgAeRVCp7MFINwxUcZ1he1YBIDe9YIB9Mp6WJkoVXc4HeGf/iz6Wl+yDzqVoRCZ6udi99+4sVf7E2Q/UwDoMQpRPF0aCRlv65wXj8b3trtjlftBRES0tgoqRKAUdCBhKvb8JAwg1i1jxfICIAxM2Z7jy6GHggpRDH1MLHSjO7S/CbQXKivtiaYhoOPrhLr9AVJqz8+BUe51UBPZD1TPr8l3Nl9EKEf2+iTU1fmTrABpqhccnoyQlyEu3ObelX5GREREjTDkNwDS5V+KxSJ+/etf4/Of//war++OO+5AsVgEYMsBbbjhhms9xv444IAD8M477wzJtupZuHAh9t9/fyxcuBCAvbHyu9/9DltvvfWgbjedWZA0BSYiIiIiIiIiIiKi4WfISwDts88+yOVyEELAGIOzzz57jX9If/vtt/Hf//3fLvo/l8tlStSMVIsWLcIBBxyA+fPnAwBaW1vxwAMPYMcddxz0bSc3W5LtEhERERERERERDSrTRA+iYWbIbwB0dnbiqKOOgjEGQggsWrQIe+yxB5577rnVWs/f/vY37Lnnnli0aJFb17Rp09DZ2TlIIx8elixZggMPPBCvvvoqACCfz+Puu+/GnnvuOSTbnz17tnu+7rrrDsk2m92KqADApqCOkSWMkSUERiEvAlv2wni2wSWka1Zpy/pUp1ebbcpej6TkQ1I2o6jz6NZ5lLSPwChIoSHjkj++DDNpr0nqa0n7iCAQaC8zPRl7WkEEuP2fOw3FR0dEQ+C8rR/EpbMPc41mk2NAugEwYI9hFeOhpP1qY9465X8iCHs8SdaTOl4ByExPBNo2HE6X9rHrs9OSbYVGVdPu40a4UmhIGEjYRnzlyEM58hBoiUBLlLVny+rUXPIkyydNh5NSPsm+r6z8T/pzSeatLSWgV7K+yMjMflbX1XuM9hhuoGDcZxcYhbK2ZZjc9rVCGD+6wgIq2kNFeyz/Q0REQ0IKg4IKUQp9QAAiEhCRACoSUSDR3lGCymnkx5WQH1dCqWzLlLoyfipAi8r2CNSmen5OP9z7ybUDROaRlp7fF1G1LF/N9QZgSw2WjZ+5JgKAsvbcI9C25F5kRKYBcLsqr7SEIhERUSMN+Q0AALjiiitcLwAhBObPn4+dd94Zxx57LB588EF0d3fXXW7FihV48MEH8bnPfQ677LIL5s+fn6n9f8UVVwzZPjTC8uXLcfDBB+Pll18GAHieh1/96lc48MADh2T7PT09uPfeak3D3XfffUi2S0RERERERERERESrb8h7AADA+uuvj1tvvRWf+cxnUC6XIYSA1hq/+tWv8Ktf/QpCCGy00UaYMGECWltbUSwWsXjxYrz55pswcaOdJOrfGIN8Po9bb70V66+/fiN2Z0gUi0Ucfvjh+Otf/woAkFLipptuwpFHHjlkY5g+fToWLVrkXh911FFDtu1mVtK+awBc1HFzK1WCEgbaSPgidJGwlVQEaU5EvZpp1oogoWEjYUpxs98ItnlvvabBBREiEr0jVZP1K6GBeJsFGbj1KKFREEGv+YloZAi0hyLs8alVlgHUbzyejtxPN/MNjEKgbfPg2uNDvSZ79ZriJlHxUhjXEFfDLptMl0lTQCFds1wbyV/dZhKN58evPRm597QRgIj3y2j4MnINBJOxZCILk/GkXvsyyjQUBNAr4i8wyq23L+nPV9Y0O0zGLOOIRF9Edv9NqtGyiMeX2k4p8iGFQU6GCHTvz52IiGigffpPp8fPBJYHeXSV8tAlBRnE53gDmJLCClGAl4/ceXXjiUtQijx4UiMvQ7SoCgB7Tkwyo4FsdD4AKOhqE2Bhep2r7VCq51UJk7neSM6bvqxmA0hhUNaeu9bIS12z/tT6hI4zG0WvjAWee4mIaLhqyA0AADjssMNw//3347jjjsM777zjIvmNMTDGYMGCBViwYIH7kT9NCOGmr7vuurjllluw//77N2I3hkS5XMa0adPw1FNPAbD7f9111+Fzn/vcWq334YcfxkMPPYSzzjor05y5VhAEmD59eibDYocddhjSmw9ERERERERERDT6CGMfzaKZxkqjQ8NuAADAfvvthzlz5uC8887DjTfeiJ6eHgBwNwMS6dfJDYJCoYATTzwRl1xyCcaNGzek4x5qV199NX7/+9+712PHjsXtt9+O22+/vV/LH3fccTjuuON6TS8Wi7jyyivx/e9/H3vssQf23ntvbLPNNpg4cSJyuRwWL16MZ555BrfccgvefPNNt9z48eNx66239vrvRPVduM29uGbufmiVFfjCRnWWjI/ICCgBdEUtLiplSdiOiV4X2uII3ES6VnYS/ZJE1UbGZhcExv5zlkLbyBgIBMZz21QiQATpYk7L2ketpF41APgIkY/XFRjPZQAEyNbuJqLmFxgFFUfdF3Xe9gwRYWaepN5/epm0JAo+0F72tVF16+0C6BVdn/xNR8e7uvhG189eMhIqtZ4gzgpI+hJAqzhaT8CXcNkFEBLSmEyUYHosUWq7aUl0X70MiSTXINn3lfURsMfp3pGCvoh69QJYmSCVkeFJmznmySjzmRAREQ2WUFfP8QUVwlMRRCghwvgcKA0MgA+tuwxLVrRiw/EfAADKoYf3u9vw8UlvZbP1IO25V2TPhe4aIjU9Sk51RmeuKZLrDiV0r3Nx+nXtdUnyOllXaBR8qaGNhvTs97OK9qBEhHLkuWwAAFgR5dHhlVb9gRERETVAQ28AALYp8A9/+ENceuml+OUvf4nHH38czzzzDN54441M5L8QAhtvvDF22mkn7LPPPjj22GMxduzYxg18CBWLxczrDz74AA899FC/l991111X+r7WGrNmzcKsWbNWua4tttgCt99+O7bccst+b5+IiIiIiIiIiIiIhl7DbwAkOjs7cdppp+G0004DYCP9ly9fjhUrVqCtrQ2dnZ2MOB9gW221FY466ig88cQT+OCDD1Y67yabbILTTz8dp59+Otra2oZohCPHoqATk/xlLppEG4ku3YIxsgdFnXORpJ3K3uypF1kKwNa8rskAqBgPJeO76BMfQCQkIkjkZbYuJYzuFcUbGVvjvxjl4MsI6+WWAgCWRS2u9mYlFcEbQOGzmz+7lp8IEQ0nF297F85/6VMAbE3cVllx9W6T40XURzR7uv5/1EeGQDrCLn18SyL3ekXgxfNE8fTaaHbXE0AYSFGNdg+0RO/cJsS9Aqr1fBNJvV+FvvuaBH3UGU6PWUNk6hUrEU+Lj6/1+gXUZjnYji7xGJO/ovdn0ZdQpz9v6TI4/vP5Y3H19r9c6bJERERrKskAkMKgGProKeWAUAAyPl96BrItwMSWbrTnymj3ba3/sW1FKGmz15KMZSA+3wmbBVA3I64mM89m/cleWQB2XfW/U9XrK5Cc510GQjyWnri/TuZaJn7eHeZd9oLWAmGdvkdENEBM/GgWzTRWGhWGzQ2AWkIIdHZ2orOzs9FDabgZM2ZgxowZA77erbbaCnfddRcAYN68eZgzZw4WLlyIpUuXIooidHR0YN1118VOO+2EyZMnD/j2iYiIiIiIiIiIiGjwDNsbADS0NttsM2y22WaNHsaIlUTXrptbDgAYo3qQFwGUMOhURVe/HwAKtVH7qEaZBMZzdSsrxkNgbD3+svZdtH/yV0FnIlWSiJjAqEwkr4YAjIQvI0RGumUmecuhIZAXAXIiQpcuAABKJjcwHwoRDStFbf9t+yaChOmVAQBUswBUnZCWwChImF51+u1y1frASbQ7gF6RerXR7knEfRINmK7Nm4nAT02XcRRhbVYBYCPrkyj9vjKtkvcUNFpVBV2RPfaFRkHGx1UNWT8iP6lLHAcnSmFcz4DMKGqW9UQEhSRDS9TODQ1ZkwVhex/o2mN5vN8rwjy0EpnpREREgyE5l3tSAxEQlD2YvIb8wJ7/9NgAbe1ltHoBCipEu2/r5GsjEWmJUuSjRQXu/JeXNoMtqtMnRwmTyQqQ6e87QmayA2qvFdKS83w6A9BlBRjhtp3O/EsEWsXXAsL+1Xa58X5xldl6REREjcJOnkREREREREREREREIxAzAIiGyHc+difOefFoAMAmhcUAgDxsdH2SAaCERmAUCiLoFZ1qoz/D6rzQCKAQGAVfRC4iNydCREYiiCthu+jdVPCKgkFR2/cDo1zdyw1yS1wGQldUgBQGvoggoVGIo3GWBuwBQTQSXfXx2wAAZ73wOZS1B1+GdSP9gWx9/6S+roznTWrcAzZKrl5Uu1s+Xn1tjf/ktUqi/2Ej8tJReK5Wb6a+r87U+0/40tbXTy+fqfMrqvX7y8a3GQrCriepSxwaVTfyXxsBLapZDcn+2ej/amZC9fOqLuf2NxX9n86QSKIcpctaSPcjQHyMtu+FMChpH6XQ9jVIuiGEfdQ/JiIiGgjp3jhvLhkHLMkBrRHCifa7w9gJ3VinbQUAoKCCat8yGaEU+iiGOYzxyq6WfqJe9H4SkZ9cJ2R6BBgNnTpPRn3U33bZhX3EQqavPRKhVi6jTgoNHWc9Jv2IAMCLeygR0eAQxj6aRTONlUYHfiskIiIiIiIiIiIiIhqBGpIBMFgNZYUQmDdv3qCsm2ggfG+7OwAA01/+JNbLLUWrrCCCzNT9j4xAt85DQ7jI04IIUDEq0ysgqV0J2EiUMaoHgO0NoI2o1rSMA1gCo1zUbTHKo6ztupYGrZi/Yjw+MdH+20m2uY7XFUe42PuE3ToPAPjClKcG9kMhomEnMApl7UPCwI+zf9KiVFR5clxRQttoOCRReXHEfioiDwACLV30XjrCLjICSphekfoSIhvhl1oPYI9/2fq8OpMVUBtRmI74S3oLZKIG45r7EhEC7bljYg+yvQmyn4etF5xkTEhohOleCKba8yA0yq0niWCMYLMZks+ytu5xuhZxLVf7P65FXIo8dOSqkZQ5GeHM5z6PH+xwS69liYiI1sa0p75ia/8DWF7JIwwljDIQnkFhTBkAUPBCaCOwtFLAe93t2Gzs+wDsOfFjE/6FDyqtvdbbO8MP8TJxL546fc4iqGpmgEGvbDogNa3u+VS6a4v0tkOtbGZhPC2Kr2+SdaxXWAYA+O7Hfr2KT4uIiKhxGnIDYMGCBRBCwJiBzYkRgk13iIiIiIiIiIiIiIiABvcAGIgf7I0xg3IzgWgwXbztXbhqzkFYYmw9/SQDoJKK8NdGIBJxpImQ0BCIjMxErwbGQ7sqISdCt2xS0z8wHiKI1LwKgfZQ1h4Co7A0sNE275Xb0e5X8PyyDbFNh3JjaZUVTPSWIyciTJ380iB+GkQ0nFz18dtwzotHI9C2jn2qtD2U0C7630Weu2h2e5xJXifRcbaLSPW4ZaPqtKvBC/SO/lepjSoBlJOou17195P12vl9qePMApNaPlUn2NT0BhARdM34ZDxFG4GizrnpUU3EoR9HPJYjz65dmFTkoOf6EEhhbJYBAImabIR4fYH23edV26eg/v7aCMSK9uLt2wjFknsuoWVSY7nC6H8iIhoUUhiE8bnvjffHI3yvBcIARhoU8vY7RVvOZgK0+xXI9i53/dDp90AKjXa/lOndo41EYCRCo+CJqKaPjurVn8j2xMlG9tsa/9lsOgCAkJlrjkS6t1GQ2kZQp6+QivvwAMAYv8TIf6KhYoA+2pMNT800VhoVGnIDYKONNlrtH/+LxSI++OADhKEtRZAsP27cOHR0dAz4GImIiIiIiIiIiIiImlnDSgCtiSiK8MILL+C2227DT37yE3R1dUFKiR/96Ec45JBDBnaQRIOsZDz4IkRR511tf1+ELsolHe0SGGUjbyGr9bah0SrLiCBdff5kepDJJLBROUEc+Q8AK6I83q+0xe8LTCp04f1KG5TQbp68DKAh8dnNnx6sj4CIhrGy8QEDBHENfF9E7liUlvQjCbTK9CZJaCPgxevI1MWvw48j/dLHuQiybu19narFC3ecs+9ljp+uV4DJ1Ad24+9VS1hU5zHVY2JtPeJy1Ls2cXa/Za/+A+n9r1d/OMkCqFf3ODPmVPR/KfIBAKXIQ0/gx70AQrft5LMnIiIaDBVtz22VFTkIA4hIoLWj5M7F7X4FUhgsKrZjnZZutHs2I0DCQBuJFhVk1ieFRnfQYp8rA9ReVyCbLQfAXQek5+pL0kMgc76vEZjqtYOC6ZUFAAWUtYfWmrETERENVyv/hjnMKKWw44474rLLLsNLL72E7bffHu+//z6OPPJI3HnnnY0eHhEREREREREREQ0gYZrvQTScNLQHwNrYeOON8bvf/Q477rgjFi5ciOOPPx7bbLMNpkyZ0uihEfXL+8EYFHIh8rJ35EgS9ZoWGRtZm9TNjCABU410XREVANja/YDNMACqUbIaAkpo9OgCKtrDuFwxXq+AhsBGrUsgYVwPAJtJsPJoXSIamcraHj/s8aX3cSCp7Z/mIuWT+ePjk4Z0tXIjI+DJCKFW8GTUK/IuMCqOCLTHuRA2ut3W9e8d/V9dLn5tJHyh3fYSNksAUDDQqSi+JOI+u850TeDqZVJZe+54G2rlogHt9iRqow2TCPz02Gtr/NeqF/0foX72QznyUNGeOyeUIpsRIIVBKfJQifsBlGXTXuoREdEwl5MRvPh86LUECCsSolvB9yLkVJz9pyUqWqHFC5BLZcZpZDPhkrr73VEepchHoVdmgEGoFTQEvJqeOjWrQpT6DpPuGZC+PtAGCPvYr9pztU71ApDCQAmDvCzhe9vd0ccaiIiIhpemygCotc466+Ciiy4CAJRKJZxzzjkNHhERERERERERERER0fDQ1DcAAODoo4+G7/swxuD+++/HokWLGj0kon65fLvbUdQ5lLXvHq6WtlHQRiAwqtcjLekJkESlSKHRFRUQGIWCCDPTfREhMhISGjkZojvMoTvMYUKuiPF+N9pVGRoC7aqEdlUCAJw6ZVYjPhoiajBtJHqiHEKtEBmByAiE8XEpOTYlz5PXAGy0f/yw67H1/5OHL2zUvycjm0VQ8wiMstuJ1xEZgUDbaPdQV4+DEQQCIxEY2auWfmAkIojMA7BR++W4F0pg7PP062TewCgbYRhH6+dl6B6hVugO8+iJfDetRVV6fX5SaGgj3OdXrTdsowaVMJnoQm1kvM1qX4PkkawnGW/yCI1EMfRRCj2UQs+tXwiDUugjNBKhkbhhpxsG5f8RIiIa3T75xzNQ0cqdb6JAAQaI2m0/n4IXoOAFkMJgbK6EVi/InLO7Apu9nJwjk/Nbd5iDjM+TUmh3vlUw0KhekyQPHV8LJOfL9MNeo/S+LkiuIZJHcq1Qe12RLF/WXrwdCSUMLt/u9qH9sImIiNZS098AaG9vx+TJkwEAxhjMmsUfLImIiIiIiIiIiEYE04QPomGk6W8AAEBnZ6d7/sYbbzRwJEREREREREREREREw8OI6Az33nvvuedh2FcrH6Lh5/yP3o+r5hwEX1T/v40gezXX1HFqam0JIF9EUDCu4S8AKKFteqvx4jIU2XX1RDn0RH5mWrsqw5fZfztf2vKJtdo3ImpeP9jhFnzxrycigoBMpcJHqJYiSzfwlXEDXJlqHh5BwRc1TfpS0g14k9I4gG0UHOrqsS5C9jWQbRwYpN5LGvQpYSDjsJuk6bBbNtX0V5vqMhkCQNzYV0q7nrwMXWPCVq+MfOqYaUutZRsKJ+V7Ii1SDQir2wq1qtvgN7OfRrp9DeMyCwlPaLT7ZRTDnP2cAvteixeg3a/0ap5IREQ0kJKyO6W46bwuKUAZ5Doq6Cn7aM+XAcTne9j5Wr0KSvH3EG0EAq3gqQg9UQ6V+Fy9tNKCDr9sS/oYBWmq1xu2rJ49PzvxObu2qTCA+Fxe0/wXAjIuJyRT52cNW4ZICZOJ3JWwpQuT64Wk/A8bABMRUTNp+gyAefPmYf78+RDCnvAnTpzY4BERERERERERERERETVeU2cAGGNw1llnuedCCHz0ox9t8KiIVk8pjtQHgIIIXPRsWfuZyNSk8VSURLJA2Ft4cYRtMcoDsBkAMMpFtpR0Ndq/rD14MkLehOjwbKPfDtWDMaqEMaoHFdPUhwQiGkBJI9sA9piUF2Ec7Sfde9V5e0fdhVohhLJNyGX1WBZllquG2AU6idKrxiYkUfQAXOO/hDa9GwDr+PgZptYdxA37Am3HkkQDJhkH2ijk4uaCyX7bxsASEgKIkxh8qeGJCLm4GeGK5JgLU/2sku0n20p9lrWfTb3MhmQ/05JoRw2Bik4do2uytpTUKEceynEkZodf6rVuIiKigaSNwLsr2u0LAYhQoKO9BwAQRMrN8073GGzeudhG9cfLSlE9PxbDHBaXWgEAHTmbOaAhUI68Xuf+9N9k+dprBKfOpCg+X0uh3fvJ9UOSHZhIz3P19r8EAJz1wufYCJioEZqtrn4zjZVGhabNAHjttddwxBFH4P77789E/++yyy4NHhkRERERERERERERUeM1JNx35syZa7RcT08PFi1ahOeffx4vvfSSm55E/5933nnuZgBRszhv6wdx6ezDANgIzpKxEfuBUTb6FHCRqZl62nHkS2BUJhK2rHNoV2WMUSVIobEstNE0GgIKGr6M0K7K6PSKbp0KGiXt4ytbPTr4O0xETcGP+4kkxx9dE4EXpCL1pTBQMAjiTKXqdBtxr42uvo6Xr+1RUq8efhL57qLg+6iVf9Mu17nnp/71JFz3bz/Hyc+eDADZqPnU9nIydOMItQKkPb7mpUY59CCFQUV7COMMiJ4Irn+KXS5y446MgoJxn1UFAkhlSuhUvIU22cwGN72P6MVkv0OtUj0GBEKdQ05GCOPMiUArtPoVFJSNrfRl3/0XiIiI1tY9e16DqbPORE7Z842IBIwy8KXGkq5WrD9+KQDAkxqtfgXFMAev5tykhEFZewhTWc5JTx1tBCDgsuXSWYO1gjoZdVY2Ay97LZGN9rfb0Jl5pLA9AH64w81unqs+fluf4yAiIhquGnIDYMaMGWv1Q72JGwEJISCEgDEGhx9+OL761a8O1BCJiIiIiIiIiIiowYSxj2bRTGOl0aEpC34nNw+MMZBS4owzzsBll10GKZu2ohGNch8EbQCAQi5Eq6xAwdagLqfq9yfR/5keAABaZSXuF2DPMOO8bjsfBHxojFG2DnRR59Dul+CLKBN1a18LRv8TUcYPdrgFZz73efc6MNVavvZv6lgUX+DKOAsAsBkESQS/E2cIVDMDsudtDeH6lwDVfgE6FRUIADfufH2f477u334OALhhpxt6vXfiM6e48ds6/QbaSJRrxhkaBZhqnWAAqGhlo/Dj+byaXgJezbE1Gbcno17ZDfX2O8lyqGUzCJJIxGw2RkUrF3nZhgpKoYeCF6KgAvc5EBERDRZtBJS05ybVUYF5pwWL3utAvjVw5ycpDMbm7PeRUCvkVLWHTaAVQiPR6lVQ9Hy3zvSlgzs/m/pZAEEqQ6632vOyyKyvr/mT7fhCw5MRTn/uuEwWABERUbNp2A2AJIp/TQghMGXKFBx22GE45ZRTsPXWWw/gyIiIiIiIiIiIiIiIml9DbgA89thjq72MEAKFQgEdHR3YcMMN0dbWNggjI2qMJMqkZDwsKndg88IirON14Y3yRABAWXvwRYT18x8gJ2zUjI20tZGpBRWgU9ma/kpoVIyHxcEYBFIhiOtfF3UOXVEBrbKCMaoEP15PWfs46yMPD+n+ElFzKOu+LxNqo/QBmyWQ1J5PlpVCIzLV9ShhoONjVzrCP4ne82RUN3p/IKQzB05+9mSXBQBU6wenI/G1Ee79MI5STHoDJL0FPBnBExpSVgMbZBxWmPQASNSL/E9vs1pzOBvpn2y7EmVrHOeU3TYA5GSEDr8cPw9BREQ02ApeiHEt9jvIe0vboccFEB/koFtC5OLrAZkKtU/q+wP2nFgxns1mS/W00bLvUsG9I/1XXgEgE/FfZ3o6o0Abm4XoCe16Fv3k325k9D8REY0IDbkBsPfeezdis0RERERERERERNRsWFefaI01ZQ8AopHkzOc+jw0L3e61LyIsCjoxzutGp2cjasraR14GUNCuF0C3zkNBQwnt+gIkCiLAh3MfoCtqQSGus5leFwAEcUQuo/+JqC/pqLmoj/q66ch1DQEdiZr3q1HrNtJO111OwuCmXa4byOGv1A073YATnznFRvXD9Ir0T8abRC4WVIBilLMRirIaZW+X1fH8qX2DcPuejn509fxrvsHYZauZB+l5bf+B6udVijxIYbAiyKEjV47HZ2v/52WIn/zbjQP1MREREfWpEil3Phvf0Y335o+H8bNZbLXnvSSDTsJgcakVrV4AbUSmZ0A99SL5k74A6cyCVZEwgLDnex1vKsn4k/H3rHQmIqP/iYhoJGDXXCIiIiIiIiIiIiKiEaghGQBPPvmke77ddtuhs7Nzjde1bNkyvPjii+71XnvttVZjIxpqP9jhFlw6+zAAcNH9y8IWSKGh4kiZTlVEFN+v64oKAGwEvy9CBEYhgoSKo2qT+QoiiNdRne6LCJC2TvfZH3lo6HaSiJpSUhcfyNbDB9LR7qno/1St3boRfMZmBCSResk8N+08dJH/aTfufL3rBZDej6Q3gCdC1zfg1L+e5DIAPKnrri+p8R/Ef1VSy78marE2+l+5z0pDx30GANjPK7VsKapetgWRgpI68zmnexwQERENpkOf/E+E2kOrFwAAlhVbAAAiEGgtVNz5q7a/TUJDoNUL3DVB0jPAqzm3ufnrRfgL1C0JkmQWJtcmte+lsxCTsUmhIWFw487X49S/nmSnwzCrjoiIRoSG3ADYZ599IIQ94T7yyCPYb7/91nhdf/3rX3HQQQcBsI2Cw5CN74iIiIiIiIiIiEYCYQyEaZ4mAM00VhodGtYDwBjjbgIMxLqImtmysBVAtU5/q6pgRVhAu1cCYKP9pdBYErWhVVYA2OjbZVErorjWdF7a6BtfRNBGoihyaJUVFHUOgI1MLSKH87Z+cKh3j4iaUFIfP6GNcJHrNmpO9bGkZaPos5HyGiJTp7dRkf9p6V4AQFwTOI4czKtqUEE5jr5P9wVIS5YB0hH99SVRkem+Ckn2QNKTIJlPGwFPaGhRjWI0RiDQCkIYFzFZUMHq7zwREdEaSs5JKwL7XaO9pYwlwmYBtPgBKlG1D07BC+25z2Sz4KQwLuI/md5XD4C+xpBcW/R6L8lMNPWrHtfrG6AhcOIzp8CPF2H0PxERjRQN6wEwUD/+ExERERERERERERFRbw3LABgMvKlAzao7zLvn2gjkZeii/wFgWWSjaXwRuWyBos5BG4HAKChhsCy08+RliIIMMGObezD95U/i4m3vGsI9IaKR4NinvwhAIdQrj/JPeDJCTkZNW4P+xp2vx+f/8h/udUEFuGWXnwIATn72ZABARefhCY1QyF7RhqFWUCqsZjzEmVmREVDCuEh/W9+/d/+AJDoxiUQM3Wtbo7gS/3fIKRvt3xP60Ea4usvJPhAREQ0lKYzLkPtgSRvgGei8Rk/gQ8X9cnIqQqjj/jaimgEQpnre1MusA+rX/a8f0d/73Lo6mQS1rvu3n6/xskQ0SAzq9vwYtppprDQqNCwDYKB0d3e75y0tLQ0cCRERERERERERERHR8NH0GQBz5851z8eOHdu4gRCthR/scIt7fvaLnwUABNqDiiNFA63wnY/dudrrZfQ/Ea2JX+76E3z+L/+RqWuf1K0H4OrSAzb63xO66SPQkyhDKbSL/geAiraXSrfv9mN8/i//gZwRCI102RFS2NrFgVaIajIR09H/9beZjfyvNz2MswDsNqvTW/0KSpGXyQIgIiIaCgc/8V/unJRcJ/iFEJUuHwJAFElUwvinhly5bjR+qCW8OEsgfb2RqI30r5dBt7J5k3N5OsOvd0ZB9bwq4+yEZr+eISIiqqepMwCWLVuGn/3sZwBs+Z+tttqqwSMiIiIiIiIiIiIiIhoeBi0DYObMmf2a7xe/+AWeeuqpfq/XGINisYj58+fjD3/4A5YuXere23PPPVd3mETDzuXb3d7oIRARucg52w8AmX4AUhjcsfuPGjKuwZJkNNRGKaajBW/Z5aeY9tRXIIVJTZcAdNwXILvOyIheUYnp1/VqG2fmhchE/deOtd2vjLj/DkRE1Fy6KzkAQKXoA20hVD6CSJ1LtRFxhH187oxPZ0n0fzJPf2r216//Xz+y/9inv4hf7vqTTFYfkM0IkCKK5za4aZfrVrl9ImocYeyjWTTTWGl0GLQbADNmzFhpU15j7L+Gm266aY23YYxx2/B9HyeccMIar4uIiIiIiIiIiIiIaCRp6hJAQgh3E+CKK67Apptu2ughERERERERERERERENC4PaBDiJ8l/befrS3t6O/fffH2eddRb22muvNV4PERER1ffLXX/S6CEMiXqp/yc+cwp+uWvvZoBe3Pg3zZbrSRoD911GKFGv1IGGcKUS0sutCHKIjMw0ZFZ9rGO0O/4vp6IY5dCqKgDq/3clIqK1E2rboN4YgRWlPABASAOjJVpbKvCUhopL/PSEPgoqBIDMOS5dTk8KA53UBopPbb3PpatRQs8IABKf/fNpkEJnrmVqSwIRERGNBoN2A+Cxxx6rO90Yg/3228+V7rnsssuw44479nu9Ukq0tbVh/Pjx2HjjjVdaZoiIiIiIiIiIiIiamIG7QdgUmmmsNCoM2g2Avffeu1/zffzjH+/3vERERERD5cadr8fxfzkVgI0kP/pPX8Y9e/4Ix//lVISpSMS+IvFXFqEY1mlkqOOmwcl7lUihGPoohT7KoYcWPwAACGGQUxHu2uPaNd63keqmXa7DJ/94BoqRbUr5+b/8B6M9iYgGyP6PfQ1A9fxWCn2Ue3wAgAklIA2CUEEpjUpks+JWlPIY45czTX8BuCb36UwAAICwTXlXFeUPoJo1EJN1fnHrq3EwERHRaDKoJYBWZm1K/xARERERERERERER0co15Ha41to99ttvv0YMgYiIiKhPxz79RQA2ojypI3/H7j9y06QwLvJfG1v/P4yj95OHhuj7URPZWBv9D9ioSE9q9AR+JnLSGIGcjAZ1/5vZXXtci4IKUFBBvyJIiYiof9I1/AGgK67/DwCQBkIaVEoeokgiCBWCUKG9UEYp8lzE/8rWB9jMgHrnUHfOTU2rXUdf04mo+QnTfA+i4YT5cEREREREREREREREI1DDSgARERERDVe/3PUnK30/qSt/7NNfdPWFq3/rL6ONcLWObSSjdsslUYrF0Hfz9wQ+QiMRRRLKr0azK6n77DtAVvq/DxERrb19H/06TCqiPjQSWgskZfhVTiOqKHSMXYEV3QVM6OwGAORVCAAu+y2dPVfvb3KeTL8GgIpRdceVPrc66cB/A3z2z6e5l7fv9uM12X0iIqKmxgwAIiIiIiIiIiIiIqIRiBkARERERGsoHb3vpqVCD3tFMSaB+waQwsZhhFq6msfdQQ6V0F6e5bwQPYGPztaezPrzKsRde1w7SHs0snjCZlmc+MwpCI10mQFERLTmNASKlRyEMCi0VAAAPSvyaO3ogdYS4zu6kfNs5L+Ie+ZIZCP/00Ij3fsAMlluq6rjv8o6/wLu3MvsOaImZgA00z/hZhorjQoDegNAqWxanhACYRiucr6B0tf2iIiIiIiIiIiIiIhGmwG9AWBM/25x9Xc+IiIiouFMG+Ei/tNRiNoIVLSChHHvJ9GNFW0DITypM/MvK7VAG4HkMinSEn5c7z+IFHwV2fUIg2Of/uIq+xQQcNMu1+Gzfz4N2uQaPRQioqa1zx/OhpIGUapef6QFRCr4vr2jhGIxjw9NWOai/hNS2HNhbZR/aKoViV32XB/R+vX6AvQ1Pd1rAIDrCXDHbj9ag70nIiJqfgPeA0AIASFWkYYXzzeQ2yQiIiIiIiIiIiIioqoBzQDYa6+9+vVjfH/nIyIiIhrO7tj9R/j0n07vFf0fahtjke4HEBqJSqTgSW0fcX36FUEOQZwVkPNC5JUtZyiFQU7aqH/tC/dcCsPo/9WU/Hc4+k9fBmD/u9Vz/F9OxU27XDdk4yIiGu4OfPwslMKCq+kPAMYIaC1hjM1WAwCjBTo7iqiECjkvQpLjllf2mYRZab3+dBR/Oqo/kWQLZPrprGQdRDSyCGMfzaKZxkqjw4DeAHj88ccHdD4iIiIiIiIiIiIiIlozA3oDgIiIiGi0+c3uP8Rn/3yai04MtawboSiFgfQMCirEXXtci0//6XQAQMGEyJkIoZIoqNBFLuZUhN/s/sMh3ZeR6Pbdfoyps85EaKTLzDj8ya+i4IX4ze4/xOFPfhXdge0R8Pj+jP4nIkp7ZJ+rsNvD58Y9amyEfRApG6WvUxWFBRBpAS0Uxvo9rs9NJVKuBwBQ7YeT9ARw02tr/iObASCFQSn0XBZdel3peeqti+dSIiIa7Qa8BwARERERERERERERETUeMwCIiIiI1tLtu/247vSps850NYk1BDyhcdce1wKoRiROe+orqGjlIhbv+8QPhmDEo0cS/V8KPfcZlyIPpcjDvo9+HZ5UaPMrDR4lEdHwFcWZbZl+N1pASo0wsj1s8n4IT2n4UiOIpyVCLTO9b9KSLIB0/f56WXQaAgUvzET9p8dUG/UvhXHnWyIaAQz67P8xLDXTWGlUaMgNgF/84hfu+cEHH4xJkyat8breeecdPPzww+71CSecsFZjIyIiIiIiIiIiIiIaCRpyA+Ckk06CEPZO/SOPPLJWNwBeeeWVzPp4A4CIiIiGi/5E89+z5zX45B/PwF17MVJxMCS1/wOt0OIFAIBikIMQBvm458IDe/1vg0dJRDR85bzQ1f8HAGMA34sQhApGxxH4cV3+SAuUIw/lyP7U0OpXXKS+FsJF8Kd7AQDIZAfUi+pPv59M10Zk5rlnz2sGaI+JiIhGloaVADLGuB/th+P6iIiIiIiIiIiIqPEEy+oQrbGG3QDgj/VEREREFusUD6wDHz8LgI0SDbVCoBVWlPMoVnIAgJyKMCZfwiP7XNXIYRIRNY1IS6g4yj/nRahEClEkIZWdFoQKQgBSRjBGoBBnXCXR/J7U9nn8M4CsKZAdGmmni2qGACP8iYiIBoZs9ADWljHVCwLeVCAiIiIiIiIiIiIispr+BsCKFSvc87a2tgaOhIiIiIiIiIiIiIho+GhYCaCB8tJLL7nn48aNa+BIiIiIiGg4SEr7HP7kV6GFgBIabbkKIm1jX3JeiIIKGzlEIqKmkW4ADACVUKFc8aGUhohL9HhKQ0kNIewxNmnuG4Sea7juyVSj3/h9CePK/wDVkkFJqSCw5jcRAbb7uGmiA0IzjZVGhaa+ATB//nz85Cc/caV/tt566waPiIiIiIiIiIiIiIhoeBi0GwBf+MIX+jXfZZddhptvvrnf6zXGoFgsYv78+XjhhRcQRRGMMRBCYN99913T4RIRERENuqmzzsR9n/hBv+ef9tRX2PRwLTyw1/8CsJ97URiUQh8AkGf0PxFRv+z5+3MQaQUAKIX254NK4EEIA0/pzLwSBsYAPRUfSXs+YwAplMsUcPMKAykMNLKNfmulMwWIiIhozQzaDYCf//znK23KmzTvffjhh9do/cnyyTba29txwgknrNG6iIiIiIiIiIiIiIhGmqZtAiyEgBACxhgUCgXccMMNmDRpUqOHRURERNSn1Yn+B5Cpl0xr7r5P/ABSGBS8AAUvgCf1av+3ICIajSpx1L8QBhL2oZSGMQKV0Eb2C2EQaYlAK5QCH6XARzlUKIcKkZEIIoVAK4RaQhvh6vzrVG+BZLo29YMIecwmGt2Eab4H0XAyqD0ATD+aXvRnnnqUUpgyZQoOOuggnH766dhiiy3WaD1ERERERERERERERCPRoN0AmD9/ft3pxhhMnjzZle65+eabsfvuu/d7vVJKtLW1oaOjA57X1D2MiYiIaJQ6/MmvurrGv93r6j7nC3XTJmsOqX0f/Toe2++KPt8/+In/QhB5yHu29v/KPnMiIqqKjICSGjJV8395TwFKahv1H9r+AEIYBKGCijPXwshO91QAY2wmgVHCva+NcFluUhg8tPf3AQCHPvmfdlpNzf/V7aFDREREVYP2C/rGG2/cr/kmTZrU73mJiIiIiIiIiIhoFDHxo1k001hpVGhICP1GG23kMgBaWloaMQQiIiKihilFHkqhDwDY7eFz4asIvoygjUBkbNR/pCWAtgaOsnmsKOex28Pn4s8HfRd7/eG/8eT+l7n3Dn/yq5BCIO+FLsKUiIj6J6ci10Nlaan63T0MFTwvis9VgBIGSXVfIQx8LwJgz2VGGIShRCVS8KWdnvdDSGHsI/VLGTO0iIiIBl5DbgAsWLCgEZslIiIiIiIiIiIiIho1WESfiIiIaIj9Yd8rsefvzwFgoyh7Ah++jJDzIghhIyFLoYeciho5zGEv+Qw1fERaYocHL4Anfez/2NcA2M/5gb3+t5FDJCJqankVQkPgD/teiR0evACArdkPZVCpePA8W8ffGJvhXwk8SKmhpD2XRVpASQNtBACNALY3QM7YrDdtBOKWOERERDRIeAOAiIiIiIiIiIiIhiWh7aNZNNNYaXTgDQAiIiKiBnjqgO8BAHZ96DxUIqAceiiHHvJeCADwpYbPDIA+7fTbbyK5lDVGYFlPHgDgKY22XLmBIyMiGhn2f+xrEELgyf0uB2Cj+QFAGwEpDDxPu6w1KQ2U1AhChUhLhJGdVwoDQEMIwPeiTGZbkjVAREREg2vY3QB4//33sXjxYixduhTl8up/edtrr70GYVRERERERERERERERM1lWNwAeOihh3DDDTfgT3/6E9566601Xo8QAmEYDuDIiIiIiAZXLo74T+okJ4QweHL/yxo1rGFtnz+cDU956C7nAABBqCCFgRAGr0yb0djBERGNEEtLLWjLVdzrJGI/CiWMNBDSZMr3VwIPSml4QrtsgeS8ppSGL6s1MZTUUPHr0Egc+uR/AgC8uG7GfZ/4waDtFxER0WjT0BsAr776Kv793/8dL7zwAgDAGLPyBYiIiIiIiIiIiGj0MPGjWTTTWGlUaNgNgL/+9a/Yd999USwWYYyBENXYgfTz2psC6ffqvU9ERETUTCRs5LqS2SwA1v/vWyn00VXKI4okACDnhyj4IT8zIqIB1JarQMa/Yu360HkoBy0AACEAIY3NCBDZzDVPRagEHjxlI/kjLZDzI7TlKih4Qa9t6Dir4KG9v++mJdkARERENDAacgNg6dKl+OQnP4nu7m73g35HRwcOPfRQbLrpprj00ksB2B/7jz/+eKy//vpYsmQJXnnlFfztb39DqVRyy2299dY4+uijG7EbRERERERERERERETDVkNuAPzgBz/AW2+95X7EP+yww3DTTTdh3LhxAIBLL73UvXfiiSdiv/32c8t2dXXh+uuvx8yZM7F06VLMmTMH8+bNw89+9jN43rBoaUBERETUb4/vfzn2ffTr6AlyUNKgLVcGAPxh3ysbPLLhZ58/nI1Fy8fAGBuF6ns24r/gh2jLlfHYflc0cnhERCOKNgJPHmB70ZTCalR/YASkMNCo9gVQMgIgUar4aG8pu3VIGLTkAkgYaCPc/AklNaTIZvX/dq+rB2+niKgpCZNJOBr2mmmsNDrIRmz0Rz/6EYQQMMZgypQpuPPOO92P/6syZswY/Nd//RdefvllbLfddjDG4JZbbsFJJ500uIMmIiIiIiIiIiIiImoiQx4y/9prr+Gdd96BEAJCCFx44YXI5XKrvZ71118fDz/8MLbbbju88847+OUvf4kjjzwSxxxzzCCMmoiIiGjwMHK9b3s88g0sWdEKAAiCsZDK1phuy1eQizMAhDCITEPiWoiIRqynDvieey6FQRj3XRHCINISQhjX5zKMJJQ0LkvAl9rNq42AhgAMXLR/0lsg0IoZb0RERINsyL8pPffccwBs814pJY488siVzq+17vO9ddZZBxdffLF7/e1vf3tgBklERERERERERERE1OSG/AbA4sWLAdgGvxtvvDHa2tpWOn9PT89K3//sZz+LXC4HYwxeeeUV/POf/xywsRIREREREREREVEDGdN8D6JhZMhLAC1btsw9nzBhQt15WltbUSwWIYTAihUrVrq+9vZ2bLrppnj11VcBAM8++yw233zzgRswEREREQ25PR75BrpKeZSDNtc0srWlAsCWlMh5EQpeAGB4NEz+5B/PAADctce1DR4JEdHA2u3hcxGEeeT9EADQU8rF5X8EPBW5+Sqhgqe0a/gLAIgb/yqpXTkgANCoTiciIqLBNeQZAC0tLe656eOOWEdHh3u+cOHCVa5z7Nix7vm//vWvNR8cEREREREREREREdEIMeQZAOmo/66urrrzrLfeenjnnXcAALNnz17lOt977z33vFKprOUIiYiIiKgR9n3063hnmQ0E0aYNhVwAKQxyORvpr7WNXWnNBfjjgf/TsHHWw8h/Ihpp9vrDf+PJ/S9DpCWk1Ogu5gEAxggIAUhlIOJAf9+LoLWGMQKRkRCoNvsV0j4PIwURNwFm9D8REdHQGfIMgK222gqAjf5/8803686z3XbbuXkee+yxla7v//2//4fXX38dIr7yGDdu3ACOloiIiIiIiIiIiBpFmOZ7EA0nQ34D4KMf/Sg8zyYe9PT04PXXX+81z5577umev/nmm7jtttv6XN+FF14IoFpO6CMf+chADpeIiIiIhsAOD16ARcvHQAgDIYyLDPWURrnio1zxEWkB34vw9MGXNni0REQj156/Pwd7/v4cV6+/EimEkYKUBlJWI/iNFpDCQMa/dAlhEGkBJWwfABlnAURaIoij/yMtEWkJT0XwZYQn97+sMTtJREQ0igz5DYC2tjb827/9m3v96KOP9prn05/+NPL5PIQQMMbgtNNOw69+9atMz4Dly5fjjDPOwC9+8QsX/d/Z2Ynddttt8HeCiIiIiIiIiIiIiGiYG/IeAABwyCGH4OmnnwYA3HfffTj11FMz73d2duLMM8/E5ZdfDiEEli9fjmOPPRZf+cpXsPnmm6NSqeCVV15x9f6NMRBC4Ktf/SpyudyQ7w8RERERrbkdHrwAkRbwlEYYVeNTdFx32o+vWLURyKmoQaMkIhodnjrgewCAnX77TQBAFEkEoYLWNvBOKQ0pjcvYAgBjACUNjNIQAoji7AElDEItkfdChJHEs4de0oA9IqIRgWV1iNbYkGcAAMCxxx4LwP5w/9vf/rZuL4AZM2Zgm222cT/uG2OwePFi/OUvf8Fzzz2Hcrns3gOAnXfeGeeff/6Q7gcRERERERERERER0XDVkAyALbbYAvfddx9KpRIAQGvda57W1lY89thj+MxnPoMnnngCANyP/clfYwyMMTjssMNwyy23wPf9IdoDIiIiIhoIuz50HspBHr4XwRgg59sI/yTSNIxUtR+A1Kz/T0Q0yJLIf8BmaGljfzaQyobfpmv+C/e8uny6L0CgbcxhJVL426HfGfSxExERUW8NuQEAAIcffvgq55kwYQIee+wx3Hfffbjtttvw9NNPY9GiRTDG4EMf+hB23313nHDCCTjwwAOHYMREREREREREREREw8/SpUvxhz/8AY899hheeOEFvPbaa/jggw+Qz+cxYcIEbL/99jjooINw/PHHo729fa23t2DBAmyzzTbo7u520771rW9hxowZq7We559/Hj/72c/w2GOPYeHChYiiCOuvvz523313nHjiidh7773XeqyjXcNuAKyOqVOnYurUqY0eBhERERENMG0EPBUhpyKYVHFKLQVkTbFX1o4mIhpcO/32mwi0cq+DUCGMJMKKqtbfFkAuH8IYAR1H+EupoSHgexECLWHiHgCRtr1bePwmorUhjH00i6Ee69y5c3H22Wfj4YcfRhAEvd4PggArVqzAG2+8gbvvvhvnnXcevv/97+Okk05aq+1++ctfzvz4v7qCIMB5552HK6+8EsZkP7RXX30Vr776Km644QYcd9xx+OEPf4gxY8as1XhHs6a4AUBEREREREREREREWX//+9/xwAMPZKYppbD55ptj0qRJiKIIc+bMwZIlSwAAy5Ytw8knn4x58+bh4osvXqNt3nrrrfjd7363VuM+5ZRTcNNNN7nXra2t2HrrreF5HmbPno3ly5cDAG6++Wb861//wkMPPQTP40/Za6IhTYCJiIiIiADgmUMuwYtHXIxnDrkEzx56CTyl4SkNX2pERkIIG/nP6FEiosEXaOVq+GstEEYSRgtIpaEjCR1JFFoq6GgtoSUfZPoASGEQxdH/yfQWP4QQwB6PfKPBe0ZENPJ5noejjjoKd999N5YsWYK5c+fiiSeewFNPPYXFixfj7rvvxvrrr+/m//a3v4377rtvtbezZMkS/Nd//RcAYKuttsKHP/zh1V7Hj370o8yP/1/84hexcOFCPPvss/jzn/+Mf/3rX7jgggvc+48++ijOP//81d4OWbwBQERERERERERERNSEfN/Hqaeeinnz5uGuu+7CtGnT0NHRkZlHCIFp06bhz3/+Mz70oQ+56d/85jdrV7dKX//61/Hee+8BAH784x/D9/3VWr67uzvTJ+D444/H//3f/2HcuHFuWltbGy6++OLMTYD//d//xVtvvbXa4yXeACAiIiKiYWKPR76BPx/0Xfz5oO/i6YMvxXOHfRvPHMLIfyKiwbbrQ+cBAFr8AM8d9m08d9i3IaVBpegjKHnI5UKoXASVi9DTncfiD9qxrKvF9geIJLS2fwFb918JA5Uqgh1ECrs9fG5D9o2IRgBjmu8xhKZNm4af/vSn2GijjVY574YbboiLLrrIvf773/+OefPm9Xtbjz76KH7+858DwBo36L3hhhvw7rvvArBlf77//e/3Oe/06dOx4YYbAgBKpdJK56W+8QYAERERERERERER0SgwderUzOu5c+f2a7lSqYQvfelLAIDx48fj8ssvX6Pt33nnne75Mcccg/Hjx/c5by6Xw8knn+xe33XXXWu0zdFuQDsnfOELXxjI1a02IQSuv/76ho6BiIiIiNbMHw/8n0YPgYhoVHr64EsBAH8+6LtuWiVQMFpC5UMYI+D5EQBA5kJEcbS/1knUv11GCgNthJte8AMAgJI2GjbJNBBxnwEe94mIhl7tD+5Js91VmTlzJv75z38CAL73ve9h4sSJq73trq4uzJo1y70+5JBDVrnMoYceipkzZwIA5s2bh1dffRVbbrnlam97NBvQGwA///nPIYQYyFX2mzGGNwCIiIiIiIiIiIhGEGHso1kM97G+8cYbmdfrrLPOKpd5+eWXXcT/nnvuucZB4LNnz0YYhu71brvttspldthhB+RyOVQqFQDAiy++yBsAq2lAbwAQERERERERUfP62H0XAgC09pBvL0NHEuWSD11RdgZhkGsLoCMBxPF/SmpEkYSWgDEC2tg3NAR8adMDjKkGCxojoIdul4iIKCVdgsfzPOy4444rnV9rjf/4j/9AEATwPA8/+tGP1jgAfM6cOe55Lpdz9f1XJpkv6VXQ35JFVDXgNwDMEDe6ICIiIiIiIiIiIhpu3n777dVeZoMNNhiEkVjd3d245ppr3OuDDz4Y48aNW+ky1157Lf7yl78AAL7+9a9jm222WePtp7MPNthgg37fSNhoo43cDYAFCxas8fZHqwG9ATB//vyBXB2lPP7449h3331Xe7k5c+Zgq6226vf8Tz75JH7+85/jT3/6E9566y0opbDBBhtg3333xRe+8AVsv/32qz0GIiIiIiIiGt52/t03UQ4VwshG+s/91IX46D0zUA4ljBYQKo7ZF0BYURDSAHEAoBAGQhoYIyCFge/F/QJgXDZAmhQm02+AiGik2nnnnVd7mcEMrj777LPx1ltvAbC9VJPa+n1ZuHAhzj//fADAJptsggsvvHCttt/V1eWed3Z29nu5jo6Ouuug/hnQGwAbb7zxQK6OhlBXVxdOP/103Hzzzb3eW7ZsGV555RVce+21+NrXvoZLL70Uvu83YJRERERERERERDSqmPjRLIbpWG+55Rb8+Mc/dq+/9rWvYYcddljpMmeccYb7wf0HP/gBWltb12oM3d3d7nmhUOj3ci0tLXXXQf3DHgBNqFAoYO+99+7XvO3t7aucJwxDTJs2DY899pib1tHRgY9+9KOoVCqYPXs2enp6YIzBFVdcgffeew833njjGo+fiIiIiIiIiIhopHvmmWew3nrrNXoYmDVrFk455RT3escdd8Qll1yy0mV+/etf49577wUAfOpTn8IRRxyx1uMIgsA997z+/yydnjdpBkz9xxsATWjSpEn43e9+N2DrO//88zM//k+fPh3nnnuuu6v3/vvv49xzz8V1110HAPjFL36BXXfdFV/+8pcHbAxERERERETUOKXAQ6QlZh81AwCw5Z0zUSnmYYyA8jV0aEv52NI/tuyPlDbMNYwUhDBQUsP3Iqi48a+GgIxLWShpIIR9zvI/RDRarLfeeoNa078/XnzxRUydOhXlchkAMHnyZNx3333I5XJ9LrNs2TJ89atfBWCDi6+++uoBGUs6g6BUKvV7ufS8bW1tAzKW0UQ2egDUWG+++WbmH/H06dMxc+bMzD/ICRMm4Kc//SmOO+44N+2iiy5CsVgc0rESERERERERERFR/7z66qs46KCDsGzZMgDAhz/8YTzyyCOrzEo455xzXAPjmTNnDthNjHSlkp6enn4vl/4Nsj/VTiiLNwBGuauvvtrdAdxoo41wwQUXrHTe5MbAokWLcMMNNwzJGImIiIiIiGhwRVpC62rDXh1JmFACRkD5EaSvIX0NXVEQysDztG3+KwxkHP2fz4WuAbBbD+LMgbjxL6P/iWh1CdN8j+Fg/vz5OOCAA/Duu+8CACZOnIhHHnkEkydPXulys2fPxk9/+lMAwMc//nGXCTAQJkyY4J4nNxj645133qm7Duof3gAY5e666y73/Atf+MJK03/Gjx+Pz3zmM3WXJSIiIiIiIiIiosZbuHAh9t9/fyxcuBCA7fX5u9/9DltvvfUql3333Xdh4vJtL7zwAjzPgxCiz8cbb7zhlr3ooosy7y1YsCCz7i233NI9f//99/tdXeTNN9+suw7qH94AGMXmzp2L119/3b0+5JBDVrnMoYce6p4/8cQTWLFixaCMjYgG3uRf2gY/U35zMba6cya2unNmg0dERERERMPBjr89H69Mm4EwVJjym4sx5TcXI/7tByYQqHT7kNLW/M+1V2y9f2Xr/ftehEI+QCEXArCZBMYI9wCAZw+9hJH/RERDZNGiRTjggAMwf/58ALbu/gMPPIAdd9yxwSMDPvKRj2Rev/DCC6tc5q233sJ7773X5zpo1dgEeBR78cUX3fN8Po8ddthhlcvstttu7nkYhpg9ezZ23nnnQRkfERERERERERGNctrYR7No4FiXLFmCAw88EK+++ioA+3vf3XffjT333LPf6/B9f7XK7HzwwQfQ2jZ/b2lpyfQVVUpl5p08eTLWX399vPXWWwCAp556CrvvvvtK1z9r1iz3PJ/P83fINcAMgCa0dOlSHHPMMdhkk03Q0tKCMWPGYNNNN8VRRx2Fa665BsuXL+/XeubMmeOeb7jhhvB9f5XLbLjhhpkyQXPnzl39HSCiIbfZbZfg9WO/ic1u/w5ggLmfuhBzP3Vho4dFRERERMPA3w79Dj56zwwIYRCFElEooSP7c4HwDMaM7UFrSxmtLWVIYeD7EZTUbnljAG0ElNT2IezDS81DRESDa/ny5Tj44IPx8ssvAwA8z8OvfvUrHHjggau1nj322AOLFy/u92PDDTd0y55zzjl9vgcAQggcccQR7vUtt9yyyvGk59lvv/3YBHgNMAOgCS1btgx33HFHZtqKFSuwYMEC3HPPPbjgggtw8cUX48wzz1zpetI1ujbaaKN+bVtKifXXX9+lEdXW8uqPpP5Yf61OUxAiIiIiIiIiIqLRpFgs4vDDD8df//pXAPb3u5tuuglHHnlkg0fW24knnoj/+7//AwC89NJLuO+++zB16tS68z733HP47W9/m1mWVh9vADSpTTbZBOuvvz7y+TwWL16M2bNnIwxtzcVly5bhq1/9Kl544QVcf/31fa6jq6vLPe/s7Oz3tjs6Ouquo79q7/4R0eCb97lv2r+fPb/BIyEiIiKi4eiVaTMw5TcXZ64XN/m/y5Ffp4gVXQVIz0bzK6URhR7KJR+eH7lpUhoYBShpEMHW/n/u0G9jp99+c+h3hohoFCmXy5g2bRqeeuopADbK/rrrrsPnPve5Bo+svt122w2HHXYYHnzwQQDAl770JWyxxRbYaqutMvP961//wuc//3lEkT3XbLvttjjmmGOGfLwjAW8ANAkpJQ444ACcfPLJOOSQQzB+/PjM+ytWrMDNN9+M6dOnY/HixQCAn/3sZ5gyZQq+8Y1v1F1nd3e3e14oFPo9lpaWlrrrICIiIiIiIiIiGlAmfjSLIR7r1Vdfjd///vfu9dixY3H77bfj9ttv79fyxx13HI477rjBGl5d//u//4unn34aS5Yswdtvv41ddtkFp59+Oj7xiU9AKYVnn30W11xzDRYtWgTA/m7505/+FEKIIR3nSMEbAE1ir732wiOPPNLn++3t7TjttNNw+OGHY6+99nKleWbOnImTTjoJkyZN6rVMEATuuef1/3+F9LyVSqXfyyXefPPN1Zr/7bffZoMPIiIiIiKiQfSx+y7EPz49072e/MtLINoFKkUfXj6CiX/QikLb0FEqDaR+h9FaIDAKobDZBIlnD71kKIZPRDRqFYvFzOsPPvgADz30UL+X33XXXQd6SKu02Wab4a677sKRRx6JZcuWYfny5fjud7+L7373u73mzefzuPHGG7HLLrsM+ThHCjYBXkP3338/hBAD/vj5z3++VuPacMMNcdttt7nXxWKxzzJA6a7cpVKp39tIz9vW1rbaY9xggw1W67Heeuut9jaIiIiIiIiIiIhoeNprr73w0ksv4cgjj4RSqtf7QgjsvffeePbZZ1n6Zy0xA2AE2mWXXbDPPvvg8ccfBwA88sgj+OY3e9ddTHfN7unp6ff603cW2XmbiIiIVtfOv/smnjmEEaFERMPJS1NnYuu7ZyCM7I8wQkroQAIQCCtwJS2ENFC+hlQaUtiJwv0FfC9qwOiJiEavGTNmYMaMGQ3bflKFZE1stNFGuOeee/DOO+9g1qxZWLhwIaIowvrrr49dd90Vm2666cANdBTjDYA1VCgU6pbVWVvp+vprI30D4B//+EfdeSZMmOCev/322/1e9zvvvFN3HURERERERERERANJABBN1AOAVepX34c+9CEcffTRjR7GiMUbAGvogAMOyPwQPtyky+YkTYFrbbnllu75//t//69f6+3u7saSJUvqroOIiIioPxj9T0Q0fHnKRvD/49PTsektl0IqDeVHLgMgiiSEMPYHuVTkPwAoqaE1f/oiIiIaTtgDYIRKl+lJ1/pP+8hHPuKev/fee/3KAnjhhRf6XAcRERERERERERERDR/MABihZs+e7Z6vu+66defZeeedkcvlUKlUAACzZs1aZVONWbNmuecbbLABJk+ePACjJSIiIiIiokabfdSMzGsvF0FrAZOK6hfCAMImBBiTTDcQwr4WQ1yn42P3XQghDF484uK6r4mIiEY7ZgCMQD09Pbj33nvd6913373ufGPGjMG+++7rXt9yyy2rXPett97qnk+dOnUtRklERERERERERLQK9o5jEz0a/YERZfEGwAg0ffp0LFq0yL0+6qij+pz3pJNOcs8feOABPP/8833Oe++99+Lll192r0888cS1GicRERERERENH9ve+y33/KP3zMBrR18AKQ2ENJBKQyrt6v0LANoIaCNgjIAxcM+3u386trt/+qCOdYcHL8DHH5iOl6bOxItHXIyPPzAdH39gOqRk9D8REVEabwA0gYcffhhf//rXsXDhwpXOFwQBzj33XFxxxRVu2g477IAjjzyyz2WOOeYYbLPNNgCAKIrw+c9/vm4vgDlz5uBLX/qSe3344Ydjl112Wd1dISIiIiIiIiIiIqIhwh4ATaBYLOLKK6/E97//feyxxx7Ye++9sc0222DixInI5XJYvHgxnnnmGdxyyy1488033XLjx4/HrbfeCiFEn+uWUuKnP/0p9tlnH5TLZcyZMwfbb789zjzzTOy0004IggBPPvkkfvzjH2P58uUAgAkTJuDqq68e9P0mIiIiIiIiIqJRzgBD3F5k7TTTWGlU4A2AJqK1xqxZszKNePuyxRZb4Pbbb8eWW265ynl33XVX/OIXv8AJJ5yAcrmMRYsW4YILLqg7b2dnJ+68805sttlmqz1+IiIiIiIiGr5ePvIi9/yVaTMA2Ka///j0dEz5jS2royMJYTSkZ6pNgONf5jwVDVn5necO+3bm9QuHs+wPERFRPSwB1AS22morHHXUURg3btwq591kk03wve99D88//zy23377fm/jmGOOwbPPPot99tmnbsaAUgpTp07Fiy++iL322mu1xk9EREREREREREREQ48ZAE1gq622wl133QUAmDdvHubMmYOFCxdi6dKliKIIHR0dWHfddbHTTjth8uTJa7ydbbfdFo899hjmz5+Pp59+Gm+99RaUUthggw3wiU98Ah/60IcGapeIiIiIiIioCUSRxBZ3fBsiDh+USkMpjbmfutA1DX75yIuw7b3fQhgpbH33DLfs7KNm9F4hERERDSneAGgym2222aCX39l0002x6aabDuo2iIiIiIiIiIiIVsmguerqN9NYaVTgDQAiIiIiIiIi6mXbe7+FeZ+1fQG2vHMmAOAfR08HAEz59cX4x2cucvOVA/vzgpIaoqm6dRIREY1s7AFARERERERERERERDQCMQOAiIiIiIiIiHp5+Ugb4T/l1xe7HgBTfn0xolBBKtFrvuT9xEfuughzPvmtoRksERER1cUbAERERERERERERDQsCWMgTPOUFmumsdLowBsARERERERERNQnpbR7HgkB5Uf4x6enu74AArbnpY4kRDUxAFEkseWdMyGFYSbAENnstksw73PfbPQwiIhoGGEPACIiIiIiIiIiIiKiEYgZAERERERERETUp3rR+1N+czFgbLh/GEnM++z57r3Jt17ingsJSKUx5dcXQ0pbFmPupy4c5BGPXkn0/yY3/g+gBRacfE6DR0Q0AHT8aBbNNFYaFZgBQEREREREREREREQ0AjEDgIiIiIiIiIhWyz8+PR1bxT0AjDHY7LZLoEMBXVFQhXgmARhjewNAGEShzRjY/FffhlQGSmr2BhgkC078BgBg05svBQDMP+68Rg6HiIgaiBkAREREREREREREREQjEDMAiIiIiIiIiGi11dbyn/zLS/DGF87B5F/aHgDK05DKFsMWdeanwcfIfxoJhDEQxjR6GP3WTGOl0YEZAEREREREREREREREIxAzAIiIiIiIiIhorb1+7Dczf4mIiKjxmAFARERERERERERERDQCMQOAiIiIiIiIiIiIhicTP5pFM42VRgVmABARERERERERERERjUC8AUBERERERERERERENAKxBBARERERERERERENUwYwzVRXp5nGSqMBMwCIiIiIiIiIiIiIiEYg3gAgIiIiIiIiIiIiIhqBeAOAiIiIiIiIiIiIiGgEYg8AIiIiIiIiIiIiGpaEsY9m0UxjpdGBGQBERERERERERERERCMQbwAQEREREREREREREY1AvAFARERERERERERERDQCsQcAERERERERERERDU/G2EezaKax0qjADAAiIiIiIiIiIiIiohGINwCIiIiIiIiIiIiIiEYglgAiIiIiIiIiIiKiYUlo+2gWzTRWGh2YAUBERERERERERERENALxBgARERERERERERER0QjEGwBERERERERERERERCMQewAQERERERERERHR8GSMfTSLZhorjQrMACAiIiIiIiIiIiIiGoF4A4CIiIiIiIiIiIiIaATiDQAiIiIiIiIiIiIiohGIPQCIiIiIiIiIiIhoeDLxo1k001hpVGAGABERERERERERERHRCMQbAEREREREREREREREIxBLABEREREREREREdGwJIyBMM1TV6eZxkqjAzMAiIiIiIiIiIiIiIhGIN4AICIiIiIiIiIiIiIagXgDgIiIiIiIiIhGlU1+fDk2+fHljR4GERHRoGMPACIiIiIiIiIiIhqejLGPZtFMY6VRgTcAiIiIiIiIiGhUWXDa2Y0eAhER0ZBgCSAiIiIiIiIiIiIiohGINwCIiIiIiIiIaMTY5P8uxyb/x/r+REREAEsAERERERERERER0XBlAOhGD2I1sAUADTO8AUBERERERERETWvj67+HN045x71e8CXW9yciIkqwBBARERERERERERER0QjEGwBERERERERE1LTS0f9ERESUxRJARERERERERERENCwJYyBM8xTWb6ax0ujAGwBERERERERENCJtcu0VAIAFZ3wdALDpNfa1EchMJyIiGqlYAoiIiIiIiIiIiIiIaARiBgARERERERERjQiTr74SIgKMAl7/z6+56ZtcewUWnPF1zP8KI/6Jmo4B0ExldZpoqDQ6MAOAiIiIiIiIiIiIiGgEYgYAERERERERETWdTa+5ArIkIEMBoe00kQPmnf01TP7+ldj0B1dgwZmM+CciotGNGQBERERERERERERERCMQMwCIiIiIiIiIaNjY9JorMrX6N/3BFZgfR/JPvvpKAIAIAC+QiAoGYV73WofxDIS2tf8BYMEZzAQgalrGNFkPgCYaK40KzAAgIiIiIiIiIiIiIhqBmAFARERERERERMPCJj+8HAu+cnZmmqwIbP4/VwECUFoAALRvELXaKNv5der8pzMIiIiIRjNmABARERERERERERERjUDMACAiIuqHza680j03Anj9rK+t/Tovj2vYGuCf/7326yMiIiJqdiISmPz9KyG0jfwHAAkB7dtof6PiGQ0gQgAi2yOAiEYgHT+aRTONlUYFZgAQEREREREREREREY1AvAFARERERERERERERDQCsQQQERFRPyQp6IAtAbT5966yL4SBEcC8s7+Gza64EvO+3ruUz5Tv2HmNtI9/fuOsZFFLC2z+vavwz3POGtR9ICIiIhouNvnJZVjwxf+u+54sC6gKoNO/WBhAaAERl9Ywyl6DGVm/CTARjRzCGAhjVj3jMNFMY6XRgRkAREREREREREREREQjEDMAiIj6sPn/XAWhARHZ10JXI7aNAFANCMer0xm5PdIZWf1/QaabOhn7P8KUb18FBYEtL74qu5wA/nFB9f+PKZdchSnfvgrCACpeFnH0GgBs8d2r8Nq5A///0xbfzf7/jOT/ZZkdHxEREdFQSKL/N7n2ChfVr0oCuZK9KDKpcEUjAVWOr5uSwFoj8M/zeA1DRES0KswAICIiIiIiIiIiIiIagZgBQEQUm3LJVdVo/xDwdRz1n0R7pzIA0owEtr7gKkQ5+/rVCxmJNNimfOeqavQXUM3GiCPpBzKCfovv2oh+qWG3mWwr2b5ITTcuISAztqQHgAwBFdq/Isquwyhg6/Ovgm+Aj54X9wz4/+ydd7wdRd3/P7Pn3ptGIIQACSQkIQRIaD+INKVEpSkg+ICIjwiK9REbgoUmVVAUroVHQAVsKIgIgqiQB0MTKVJCSZGSQBIDgQRISL337Pz+2J3ZmdnZdu65ue3zfr2Se3Z22s7Ozu45+/l+v3F62ArIFuDfZ1Y/rsmXtKO2DmiN27QsAOL6dzy3HTJ+Iuhpa5bJ30muw3+fVa4vky9Jxld0GtcsAIh4W1k/KPFgzVYW6nTn/Mla9JfXNSGEENI9tK4IUFsfb0igPii+/wqJoCO6MevnF8MKV1LOSMjAQcroX1+hL/WVDAh4yySEEEIIIYQQQgghhBBC+iG0ACCEkBhRB4KO6LP6ayqmg3qiLhYSCGNlcH0QEIpIfUwaZ/IlkV98V+Vuqv2FqbpXf13FvYzqkoGRX8bntw4gtOuSwrbskAJAkCj0a+pVeazwF9L4a7QJkcwJs35RTxTp5vwRyqIAxl8gZWWirABkDdjpm5HSXVkEyCAdY0Ap6FWbQdxfpYDXVi7q+OMxURYAU85pt9XxXYh14bXUUBYT0j4HQHR+WgwFv2mZ4B6niVINBh3xGBvHr4/VaUtLIIx9Vj+dzzt/vd22DojLywDa8iQ0nqqEBOaeO3CtBrb73uV4/mtf7eluEEII6aVs+4PLEawXqK2LnlU6B9v7I2tJ9yEveU4DAAhg0mWX44XTeL8hhBBC8qAFACGEEEIIIYQQQgghhBDSD6EFACFkwOEqymWQ9jUuDQW4qw5WqmvXV7hSd+/0jdh/ew1AEKvCg0RR3dM+1nsrShG//bfbLZ+uwvigxtyKy1B3lP7GOdPK+/hcmqp76/Q5KnXX0MDsn/7rKspjFbjyGa+OQSjf83DKmlYEod1vyx+9qjcAAqU6ryWWARCJZQAE0JoWy/nrNvrsygH0OAX22Ox4fhKbIGV54UGoY1TWCHXnWI3rUPnpN/sY1BLrBymAKd9q97ajrG+CjthSx7S6MM+bi2vJYe7yxHLQc1Ak51ePhZFfrRG7nN5uWZiYVgKzLz4VU89MzlvYCsw9r/+sDVT/E0IIAYBJl18OIH6O6UjuD8G6SP0va7BiLIl6YtkH2M9Z6m9ipShLPY8QQvoDfSwGQMrEmJCehRYAhBBCCCGEEEIIIYQQQkg/hBYAhJB+yQ4XtltqorAFeO6MU7H9t9tTftBFPVLtt5n+4YG0OjiEVwEMCQTrE5WyjgXQEeULaomCG4h9rAewVdkGsmYrgXc8tx1BPao7bIvS+osVweRLDEW3UszLZAxFaPjNdxXc0kh3xzEWhJkWAK5y31WgpxTfcKwJpEyXd8qGrSLxA28o2XTfLV//0koXTn+AtAWAFFGlpt950zJCbVtq9DzlepBWsJvWCd6xNerSx2laNJjWF+ocmWlhct6scRFO/Z62LBVgvM+1MDDbiNqUSXvONVeo/nfH0dcndV7MfhvjGtYSqxDIRHmx89faIdS5aIVl9UIIIYT0ZSb872UI1kc3xRe/mliETbrscv1Z3ZfrLYCsSdTWRfnVMzoAy4oO0n72BmhtRgghhJSFLwAIIYQQQgghhBBCCCG9E9nHXAD1pb6SAYGQkrOS9G4WLVqEcePGAQAWLlyIsWPH9nCPSG9hhwtj9bijGFdppk9xEcYK/RZAdCR1KAsA5ac9qBvlPX7Ko3QJKUSi6jUU2iZKAa33uT7DkdSt6le+w5NER8FtpGepk91ySaa0dcGGZPuLk/OlxtungE/5zA89FhkexblCePYl6n+ZVoC7lh6OCt8+/9LbZuT7X6TnQZaPeY/iX4TS7q9RtzqfMlAy/WSuaNU/EgsBrwWAaTVgpKfU9cjos5PHJXW9hB4rAm0R4LemSCrztJnVdoZVhhkDQITSsAJJGvMdZ9KesLfjPiTjmOzXFhpqbAOhr/l6a7Tu6O4FSZ/N8xwGUb6wLd3mnAv6h8UPIYQQst13o+fBlrWRlVx9sIQIo3gAAJJneBePNaMbw4sQ0r8wfws6cIcvYHDrxj3co/Ks7ViBe+ddAYC/Y5HeAQ3OCSGEEEIIIYQQQgghhJB+CF0AEUJ6PUrpH6w3/OuHiHz259kwSUcAHwLohKVSDmKFeVC3lcpaNWz6Eq8nKnBXSW2qvl1VcaLUNtTbHrW1V+nsWADodpy8ecpsvT8AwtYoBsGcC7tfMbX9Re0QYXTOgg5gUGx5kfL97u1wnNdQkPsU/S5Cqbt9PvUz/Oz7VP0pywQjX7Iv2hEp/wVkIG31f56yXrrzTfrV8JY/fAGpnenblgGJWl2m23WtSExrAZ+lSBmU33+FacHhngPjmNzzkDoHDlnzOstCwTc/lHWFuqatvhjbZt3WtaiU/sZ1bKn9a9AWASotrEltFVKTgKzbbahjT/IDCKJ+B+vs61wGwNQz2zH74uSa3emMdjx7yanY6Zvt2rpg9kXZ1/TUs9sBCcz+NpWShBBCepggfn4SIor71BHdP1UMpcCJ/WQ+b4v4vqj2Tb6kHc+dwXsbIYQQUgRfABBCCCGEEEIIIYQQQnonhnvfPkFf6isZEPAFACGkMpMvaU/U8DGyBvz7zK4rcLa/uB0iVowrP/AtoeEXvkAZrvYlHfO3k1Jbx/UF9ShBxwVQvtkBiE5Tre+YF5i4Cm6t1FadF341vyru8TluqbVVGY9627IWqCX5ZS3ZFiEw9ax2f38BIFY6d9VKIKhHYxZ0xmOn/PqrsQ0958rjf19IaZ9rOJ9d9JyQmYp73UasVk9bC2Skh0YFShkeRg3KQDgKe2hlftI3u16vAl7Cc04j9b9w06HakE6aoyK3rAjMAciwPGkE77lTn53jTp3PDAuIon65bbptIW6rLhMrC11GJjFCPOGQpBDRtWD5+hdATX2Ox8+0CIj7GtSQWIU4FkLaesJID4IopoiOJeA5J7t9OblmWwDs9pV21AQg10dpu5zeno4TEvc7iI9756+369glz15CxSQhhJCeQwaJBa7p87/eFlkDiHps+Wvc62X8N8x4hiaEEEKIH8YAIIQQQgghhBBCCCGEEEL6IbQAIIRksv3FseLUEccGSqmj1DqxqnyHC9pttTGAf59dXmW6/UXtCDpiNVBH4u/fVPvbPvqVKjtRDplqcdW3Ikw1sq4n9g1uxwBIVMRFPvdVvwFTwZ3s0GmGL3HTn7tZf6QslpYyWAZCWwHof0CkWFZ/BbR/cG0NoPI5PtnNNNQjUfnUMyP/4nMuKH8Od7gwOocAUOtIlP9BPbEACOrQ50xbV2T6hjf7mUzEVDwA+POXrcdS92cp01U9Wlkd9x3QCn3LZ7xQlXkGylWum5YFDiKIJONZ6m7brMFo22NFkFlPlhygjLLObD7nXOg82gogPba54+FY1qTa0PlsCwDI+NqVsXTQskZIjx0A7WcY8foCACJAFEekLmFad8hAAkF0/rWf4kD4rULMuA0qX9wZf5yG9DCo43djEbhxSTRBUqdEdE0CwC6ntduWIsaxP/vdU7HTN9rx7HdpJUAIISTNtj+4HLW10Y2lFluihS3Av8/Kvm9s+4PLYytQ8wEFaFkd3Zv0M6uyhmsBwjbo+3BgxPFS9/h/f5P3KUIIIaQMfAFACCGEEEIIIYQQQgjplQgpvW47eyt9qa9kYMAXAIR0Aztc2G5tzzunb6hTtr+4Xau0IWO/0Q6mSlWLzmNFTtgSKc218lZE8QJkADz/jeIxEK4CXKl7Y9//tho/UZAr/6Gq35ay2HffFXa6HUvAp0hP0iLLB0e57ByDiR4nc4dWBSc+xFXexOd/XL6m0my1bwgJWRNJfkcFLGvwO3mTTh9De6x1tiBOryPFDhe0W8eqVP6iDrR1ps+RqfiPysnEgsM8b6Zq31T3O4p8RRlf81be2KrDSjPasx7SfL7hfQp0IPYVL+1tI4+tuFeJ/gnkm1eWpYFTj6v0N895Sj3u+vx362kCqf57LCgKz0WcL9knKwXR8ir9YWyHxraxViWTTkRLRCDjz8m4CR2Lw1hEPDE6olgBiVVI6hrXlj5St+9aB6i+WHEdrH3Sby2g+6f6YtefQtrpMkjiC+x6ajvC1ii9PggIW4F53+ob9zNCCCHNZ+KPLwMAzP/Kadi2/XLU1gn9DCrC6LuEDIDnDGX+pO9fjqBDoEUp/81nPEDfg2prkk0ZAGEttgIwrFnVM1tf+W5FCCGE9BYYA4AQQgghhBBCCCGEEEII6YfQAoAQQgghhBBCCCGEENI7kTLTirpX0pf6SgYEfAFA+hw7nt+Ouec23+xTue1xTUrd9B0ubMe8c07Vf81+6cBUbp/PbUcKn1uHHDccUlQLqJuFdk9kBs9UniycoKGZ/XLc8ajt2nrbRYUOlhsAU89u1+2ELZFJrwwi90EqKGWAyG2MSgt0QF7T5U+cVk9c/5jBZKOAn8pdT9rNiM/Vidf1jHJTkhqrDJcxHmTsSiQ9hm4gVsc9SC0xp9auf2rxuDmBSs19Os0cW9OFj3IB4hynFTQ57quoIwp42hIFAzbHqiV2G6TqVnW458gM9KsDNsPIowI2w3D1E3rOA+B1JWPtzzhXZr99bn5cdzFum7pvKkm7WnImej1JF9akQy7m+cx0N5SFcvUSmPUkC1DaBZCdYAUQzupnkHMAWYGLPa59rG2zWbXPPBfIKOOkZ6Hmlr8/Zrq5wzxOGV27od24UEGUA+jAz4DPNRCAQELWRXyNCghVjxEUWAq7fd96G7kQSvbJmnmgiSsh1Y8kPWce6LGwXRIlAYmNeQ4AsUuGsCVyAbTz19vxzKV0vUAIIf2NiT++LPNZWaFuXdv+4HKIEAhbpfMsAwQdbiFAtkigLvSzImA873fAduepigXRLTyIn7FCIHqW5W9qpJ+ywwXt+jvR3PP5rEUIaS50AUQIIYQQQgghhBBCCCGE9EOElLRLIb2bRYsWYdy4cQCASV/6Flo3HlFcKFMBm/G5DFawyEQ5mbVfpWnlcWj0x1GvaCV1CEf9mdSp28trx9dfB1P1CUSKUkvt6VoGGMeg093AsdII9OrWYR6LMXY6cK0ppDZU5KZ63Qz4ayrGLXW5pUaXaYW5qxT3jZ0nCGlmYFhH2ezFCQabjIVSCTvbcV5LjVsTCGtA2CIQtgqELVG6Crgctgj9WaVbwdIMKw2oc2AF5EXqvEnnOrGUWq61gKrDmCvKGsMM9JtrpQEY88y2FjCDxfqU4HmKcmtb+spIY3yk57jS59c9VymEL7ECbpt5U8xUfzuWCaYyXOeF03/ACRrceN+91jB5gZTLBOg18VSfnNv0NZrbP/U553itsXClEkKk54GIrXb0+TAsAkwLDUO1nw7gLLz3rOQ+kBEQ2LEK0vtT/VaZ0mlmu6rvOt3YF9aAsE2g3hbvr8VBGlVb8d9nL6FqjRBC+gMq6K/6/iBUIF/1zG7eU0IRPdt1RulJEPkoU9AhtKVvtB3nrdsWAFLEz7IiqkPVo74HmZYCc8/j/Yb0PXY8r93+ncDznDv7Is5twP4taPqkz2Nw68Y93KPyrO1YgXte+AkAYOHChRg7dmwP94gMdOgCiBBCCCGEEEIIIYQQ0jsJZbYL0t5IX+orGRDwBQDpU4j4Dbn2j+7xmWwpI0vWGVXm7HD9WJu7YuW6qVTR+SyVMvxv910fl0rIairifep5ow5Xmamz51gmuP759ec6tKLG9cmeUiWo7dBoxrQSMJQ5WaoGGdi+p3U/MhTjZppWehvKf+03XvfbUJHXDaWxqzrWfU9U44VqZY9f+Cxf4jKQhtI3UdUKmfhLlUa6TxlsKrnNMQnqImpWSoh6EjMgaFEqXaBuWAZY5821mHDmrVDKqzBWZJmWGKoOo4zptz/t619aFhy6Lz5f/7HaXxgPSynf/ca4W+p+51ykfM+bfuGta1sm6anr0ic79ywuRc70MlTpqaqz/NNn+ao35pAwLAB07AlrXXQsBZy6pLCzZ/exRCZn3Fyfvr7zENWdccyAx6LDo/6vipT+8+n2xey/UAuxSM57fM1GYxPPv9giQKh9lgWAiGIEpCx/pBEzxFH1KxOdwLDwgJFu5nXKpw7bd9900vX6bFqIBHEmIRHWkvkk6vE6I4BgfZR311PbdXwSZdEFRPuTeCZJH56+7FTs9I12yBow+2Iq3gghpKfY9oeXO8+E8Q1OinScJ/2cHC3m2hpY3bPV2i8EZKuErEX1hMYvEAHSzwkiBGodUTeCTiCMYwrIlsQyoOyzFSHNYMdz25PvN/X8vGViVKSMNM3v94QQ0k0wBgAhhBBCCCGEEEIIIYQQ0g+hBQDpU0gRqZtT/u8tZThKvXnXmMp6U11sKVucOh1lpFIpax+Vhuo++2A8XSl6628q/k2FZp7Vg2FR4Crzzc9q3Eyf8ToN6fxeCwnzHAAptbhXUe2p2+pTnC6UOlzHS5BxOmD6cneV5GbfMpX+qg9WDABD6e8olrOOQwoRq4pVHwVkICEgIJVqWOVTfsFdH98BLF/gap6JWKiuz4/QRSzLESkiha0U8Vg551//M+NOIFJUqWMPa9EYBcrCwrAW0BYEjtWFFZPBrFsm58m06IARp0HXrc6ReX7c8+FT+7vWGL7zlKHo9vqRj/vgQ/hem7tKoAJVWuZ14PbDt21VFFuGmD7pA6XWMxXkiVpdOIuMKucuH7l9LNO3PBpQ7YkwjK1dSlhJAP7F1HvsMlsK4fYzgLYaiCxHEjW+0NY+6kJU14eMxzzqn9cqADCuX8cEzI0TYlwAbpwHbcXhWAVE9ZS3CJBCHQvie0y0I2yN1+LYVzMQqTFFCIh19j0xMNSakEgskUTs8zlem9S1u8f/tKOlLVqHdvpmO579Dq0ACCGkJ3jxy1/1pmvLAPfeGApt5aWfO51blnqGBQBZkxDGlxYZRPeKepA8bwZxDAH13KnqDyVQqyfPuQAw5VvtmHMB7xmkeex4fnv0wfjOVDMfOY057qJj3Bm432+95cy8hBDSTfAFACGEEEIIIYQQQgghpHcSC/b6DH2oq2RgwBcApE8hYp/krtrf8kkpYSjDjbyubz2PH+TEjzMgOp039obC3H3zr2MB1CL1tH7zb4o5XaVA3g1BqQdMSwI3v7D7Yflv9qgPrL5KWOpt09d/KiaCdNQIzni6x2KOVVCXlu9+X7yFlG9+6ctvq/2tvHXpzWuqyaP80npocJXkum5XPZ7lC9wliMuYKmBVvaPUVer/SLmfqP1RS6tupTqfNREpnlR6YMw1wyJFxVfQ518dj/LDL+O5bRyLjGMFSOP8aPW/aQnjqP/NeBGibsdk0OlmXiMeg7boUOejnnF+fJYY5nHlnKe0lUfGdir2g0znVfj8flZ9EPXMo1z/9z5MaxI4lgnKAsBQ95tWAGY+a6ZuyAdqZS1ThDo3sQVAeesBR9nvaU8r8KV7vcbj5vav7mQPZFKPFIklgNlm3BddZwhA+fq34oUgPh/SbkNZ07gWDSJtwZBYCSCFFInFjmstlsoe16vXopbYt3OnAGQICIGOoVFa5xA1hkDYIrQVXNAJBJ0y3Sdl2NAhEdSTdSqsCdRCoBZEVgC7fbldj4usAfVB0D6jg05g9rep9iSEkO5g2x9dFj9IRtvqmTwIEd3r1H0uiG+rQiLUz5zCfr407pfaotV4jlLWYaFApPQPkm1lTaDuA0AU30oGiSpb1TflnHbMuZD3BdI1lJ9/03JFxcmzvotnWQB4fpNQ9QDZvx8AxnUh42cjOuomhHQDXFoIIYQQQgghhBBCCCGEkH4ILQBIn6K2FmhpcZXHjkLfUPO6vs61+sRUNSNWU7fEqhLHN7rpu1xt19bbvqg7hwQIWwXCGhDUYCEzfC9blgiOFYIbYyCl2Ed0vEHch7AmUsej/mrVTAss9YJ5nD5lPpCdnrICMNTY5pgHsRpcqSe8/tuzrAuk678f2rd/Ko+hJNeKYUNNbuZXx+yqyYVSfWepx+GUAWwFb2gorE2FSNy21IpdR/0fq/tVfqnU/0pYG8cD0Mr+LIuP+DzLWvxZOCqUUJ2PuJ6WpB4Zzws9501rgRD2tWUo+q14DLGPVvXZTEddlVESmNhiwLC4SM6l9J6f1DnJOleuRYCjGM/M66jLS/nAd+vJI8zIU2ae+TD8/wOwfbw71gEIjCWmMNBIN5DXZtbxW5Y7Mr72s68/CzUW5rl3xyTaSq5ZIz2ltnfQYvbQkLUHsao/TJ8Hb1+ddkUdOiaIvw8yZdUl9DEZ/TLq0CUdS4/U0bkWBHHgFxHXre91QkC2ROrP2ro4Kb6vykCgZV1yjiJLB6Demij3gcSCT1mp6b6HkbwujGMG1Naq/FF99TaBjmFR2jPfo8qTEOJn0mWXO8+JsWI9vaTGmTyVxM9FL57q94Xf33nxS6dh0uWXW5bPQHw/gGFNFq/zSIwFACH186ioC+shXz+PBkDYFt8rOkVkcar2W/ft5Jk2VM+46j7oxrLqgUcb0rcxrUamntVuPRKaXgK0dwDrO0L8uON+HzZjokmkrF0sC0yZfM8yn4f09dPZrCPtb3i+D/Rq+lJfyUCAFgCEEEIIIYQQQgghhBBCSD+EFgCkT9GyBhhUl9YbdUC9ZZfOtlIpR+lB3X4DmyioRconn4vrMxmIFI/qjX9tnURtvfKZLOy3+EImKkdTfGwovU3Fvm7P8TUohbAU0+oYI0VlaKvl67AUO0Ck+A5bhKUcN9tyx8Dyg22q953P+ri0kkHa1gVhougujCUAJEppj8WAakf3q6zaH8Z+01pApet6POrwLEz1f5ZiWEqIMPLd71o0SAjvvFIKXlPpL7Wvf9MyQKmiRKL6j/Nb6pNYQZLy+W+8/tUqFUvpnyhehKHGNueduraibWmfbwAIzTRH1R3K9HnyxWBAkifXV3+Wet/n99+JF2CpzLPKZaWVoZFyWRYDLlrt7kwm179/nOYtm7V/Q6LPo/obptMzrKlS/v3dOA3aD72IVPOBtdCZfyICmT8WcawPPc+EAJSC31L6JHIyqzYh0rEM4vNlWm24/ddWAmb9puBf+e4PYPU/FVfAqVdfl/riQxIzwlxzBCJrnjpQM+qI1PwSgaFWU+tTEK8V5j1Qr1EyWYci5b9EbS0ga0ksgTAQCNZLBB3QVgeEEKKYdPnl0QefGjfeiJ5lXNMoWM+USX7oeC6q7he+2rctAbb90WV48UunVSqTdczbXdqeWPlKpL5TmET7zPttfE+UsXUAgKDDftbUdcdx2GQIyDp0nCPZEVdpfGdRMdMYB4C4KGW/9f0xfuapAdj56+0A4mlpzCtnCUl/7lQxMeJp6Hwf1rEAjO/iwpnjgG2drx/bYktt97cOQghpBrQAIIQQQgghhBBCCCGEEEL6IbQAIH2KlnUSgYD2JW7FADB8ymu//aZlgFKnu4ofSwmfrfo01ZOJktuj0hWOyj5Iq+7N9qSlYsnIG0B32lRy+45JKbBFXdrHWYtiFMhAQNaEbXUg0scvheGT3RmzRFXvjIlMFN8qn+m73xcDQJc1jilK86m0YZ1nVU+mT3+TIhW5q8j14fEXntpnIpJxdsuoMZXOnFD+tPX5qSXzQvnNVulK/R8afiVN6xfI2EIEkZVKGJ/3oJ72p6r9/QPJudK+LO1rK+iMFLkqXcd6MPz9A4nyX89F89y5502dszxFf5Z6H3DOvyfNzG/VIZN6U/kzVPiyzGRpkKrWAiGqKfeFM1GVGr4R9X+VMmWOS/v6D+00IN8CoAhtARBEdYTGMccWAUIa8itDsZ4pkzDzq3ntGw+vmY9S5DtqfjNWgyeWQOTLX9r9stbsOCmEI1mLLQgA2HEEss+JiMtZ3dfWSQKh6p+EjmEi6klsnLAtQNgioKzTVCycsCWqJqwJdAxJKq91RGtK2BodetCRHFPYJlAfBHQOzuwuIWSAolWy2lF32YIZy7NCCm1Bud2l7dnLpWv4hcTSSX1W3TPLPP/1DadUV+r/7S5tjzuT9MO0Un7h9GJLB7Pfky9p91tR6LphqfRFGFvrSWGcN+O7gkASk6YGrYQ2vydZz87OLZTq/4HDjue2G9bJsHzvm/OxZirw3a+FzhwSxtdmYV4jjl9/wGjHvfZD+5/53TyynDbar6n4gwJujCczLhtx8H1f6830pb6SAQEtAPoACxYsgIhdFzT6b8GCBU2t+29/+9uGHQRCCCGEEEIIIYQQQgghlaAFwACgpaUFm2yySU93oymITomgU9pK5VgBr5UASokc2grjxE+99KjAzUaa11/Tn7N0fSkDhrLTKajVpyU6Y/jMBxx1tUmnhKgJSCGBmhGnwPAXLYVMH79ZL5Cr3DfV/lZfzLEHbF/wRhuqfrcty4+/KWz1KMZTinBHMW7lKUHKv79SDcM+v1aaM7ZJnIUkj1Y1BUl+lVf5z47qUJYbiXWArju23jDPdaTQh7YCUX65VZwMIWOfk4Piehy//1GiGls7XVkDRPVLbV2glL+Wv/84XSn/rdgAvngM7nXp/vWduzz1v8/SI/TU7fqeNwelrEVAM3HbdOdf2blbJp9vbrt0d5wAc/yzLD0Upj/UvH749gkROSwOAQTxxRXE17JU17SxtunYCv66LX//Skph9tmxDvD1J7UOWdYcppWAYR1g+u1XPv+1wl96YwdYx2Wqz3LHMCpnWzVE8QWEEJGSE0DQIROLMiMWQ7A+RNhSQ31wgHqrYYm0VkYq/9bo+uwcHNWzfri7bqo+As9+l6pOQgY6k75/uf5sKdXjtSh6bqxilWZ8NoolfsDde7GTx9zlKouNjJZllqEqnvyddrs9pzIZAC+c1rXYA5MuuxwiTOpS6v1J378cQgLPf+2rmPyddt28UvSnLJGzviMJIHSlhGrs9JeMOFkrooWjjI7uSzpum/G8CSTPw5YlhbJcVXFnYuuBnc5ox7OX8H7Rn5l6djsQArXUd5Z0Xhkk1s5xNk1KwW9amFgWyPGHMPb5b1odyGSqu3H4dFy0ulOPs46IOJ5aFM/P7n8VgyZCCCkLXwD0AYYMGYJDDz20dP4wDDFjxgy9feihh2LTTTctVbZsO5tvvnnp/hBCCCGEEEIIIYQQQgjZ8PAFQB9gyy23rORy56677rJeAJx00kmly/Z21z4tayVqgasCh60uVv7mXd/4psI4ViWr8pom+2kzFZspX8o6g02mKjPPYZfXX7onX2dcf2C0o/1ruv6e3Y6Zbag0jzWAo/TX423kt2I25PnvL6v+zvIXb/U/W4lbmO71ty2sdHM8y6iktR/TUFpqYREKZ+wlAgjjMNWEFolwRSZKKK2SCqLOyPi4pTQsCIStSjHV/jotVse450oY/v7d2ACWz38gssKJy+s0IDnH3jgP0n9OC9T+3ryh9OdPxQBwFP8+SwGXIqV+swhznID69mXNc5VetZ/WdVDCa2AZqwKzP9a5CLPHvGy9CrOvSpnuyjalgI4LYNYnBFDPGEeltjctI6RjERRtGX3x1OM7T4aCXrejx6PAMkCVCY3Pzk3Aslgy63aOLWolWidsC7G4eEeIIL5G6oNbIFuS8ZOtUeWdg4Mo3sh6iZY1idJ/7aZRh4MOic4hAp1DksMzlf5TvhWpY+dcQDUnITue266t+ZSFzEC7NrL80z//jfQ4KHW9SUqla6p/DZRRWPQhTjP9eptWVCqGlrPGe2OG5WDfmpJnye0vbo+e20wrASHx/NfyLQMmXxIdf60udPvbX5yMSS1W4e9wYXu0dBsxwbRi2pJL28djKq8D3yOKNKwyzDGPxzDogBUDQMVREE4VOkaVaRmg8sMY9wBU/g8App7VnliLuNev1NMIluWK/g3A89mZc5kYc9etQ8UFEMb3VP39yZ230rYKMIwTkt8sVL9JNqHcMBbZzaIv9ZUMCBgDoB/yy1/+Un/edNNN8YEPfKAHe0MIIYQQQgghhBBCCCGkJ6AFQD9jxYoVuOWWW/T28ccfj0GDBvVgj5pLrUOitt55k6oU/4bK3PX3D9jK/5QCHUlZi5yXtnl+5H1KUKH/81WW3uEqiqpgHpNVjxAQkLHLa1PSE+d1+2GWdVQ+lrJfN5Yowq3tLJW/Nx6DTxlstGnm85XL6G8K12+3VvAnavwsX+KZVhrKksJjMVAGrUox4ihACgghIx+oYVK3rMs4NoCwfGbrfsSC57DFVCrHuy1//LbiP+mHtBQuOm9o+vqP0+vSVv8blgEw1DDJcSbnPpWWFwvAZzFg5gFs9b7XWsBMC+10b2wAZyJVtSQpwlXVl1X1+45Z7/LU0QwFSkFMEiECO1/RmJhxGZDRb1/9vv64Cv4wTMbWPK9CAJ2x/CoIorgApiWAmd/X/5QiP84XOD79zbJm7AKzqlT9cfkA6XPu5NXWZU7cgETlL9Njoup2LZl0hUleK36JijsS563XAgSdttWMbBEIWwwrMilRbwsQtkblZC2uowWotwHhcIGwDZj9bb9qc6CpmwnJYsq32i3VMxDdk6ee3R7d5w31tvcZUy0lhoo85ZdeJHnmnptcezuem6jGIYC5552aSpc1YN63es/1Ovk77dYzC8zl3HzGifdbSmL30d1V+zrLv7akdMpZSt4St163Xt2XWAVv+r2XgcAOF7anYweoZ7k60GL60Y/Pr5lfxZSCsopQ96jQmUKGktqN+aX7HRbsc+NMKcW0KhNvm31S5UU9ekwLW50Bk87fBh+/SN9g569H600t9pMvAOc7RfxB7TMe5WQdkdW7ml9xUdMKQCd66jbr91oRIT3/E2shidr6OE9dxStMeyxw60jF4CCEkCZCC4B+xk033YQ1a9bo7SrufwghhBBCCCGEEEIIIYT0H2gB0M8w3f/suOOO2HvvvXuwN4QQQgghhBBCCCGEdAEZAgUWw72KvtRXMiDgC4B+xIsvvogHHnhAb/dH9b9YLxF4Ik4JrzsRWG4ULHcksPdZgYJNfK43POu4W66M1V6mGxnADuzYRXQ9PrcPZganP1kuiKq4TLIDsjouW3zpZp0ZwV4Lz1GRqxPl5sM8jtg2PArsa7v/EABkaLjVUGklXb7oYHKZGQzzUgA6ELAa/1BCBiIyNTfcLokwSpOBTMy79fEgdS4Av+mq6z5L59PtmCbcjvufOFCq5f7HqS9Jc86n77yb6T4XQFlzJS/Yr+vyx9yvyprt63I5AWl9lMlTpZx37ZHG7tCbngqqW6ItmRdoOAPhCQgcXT+B4W4mZ967gZatyl1XZLH7GBmm3QD58us24uMy+2q69grD6MKpBZGduPbroFwZZXc/5SKs7mxDFrtMyjp2x2WQNH1X5PUpJ6C5Dv4eGDcX19WPFRhe6GDxpkszGQAIBOoqfF0oIWtRoMlgXYj64Cjz2pE1dA4Bgs5o/VCBJWUAPNXee9yFENKd7Hhueyr4pM+9g+XOxXQJ4XMLYX4OnPp8LlGUKxnf8qDaVW3WY/c+GS4odjy/3XZ9UQfQGbkpkmZES9dFCwDZAsga8O8zu/f6N8dSP69muEZyA3sCjvseZ8xTbndy+uAG/9WBQSXgPoN53QSZ5y3r/Hn67HPH46vbdQlkpRe1YbpYysqrjlOlhUaacx0oN0dmuumyxRvMVUA/x+eNDeldKNdl5ncM1xWXdY3I5LEnN0iuiNYXr6sr2OWs+o0gvVZgX5VeT9z5iNCoW0TpQd2oC9H3IUhVLgnsa7n/Ud+dJKDcrQrzOV5dX/TTQQjpBri09CN+9atfQcY/KARBgI997GOV6zjxxBMxefJkDBs2DMOGDcM222yDww47DJdeeimWLl3a7C4TQgghhBBCCCGEEEII6SaElI3KFklvQkqJSZMmYf78+QCAQw45BHfeeWdhuQULFmDixIml2hg8eDBOP/10nHfeeajVasUFMli0aFGl/EuWLMFee+0FAHjnPt/A4MGbpDO5Sn8jzatY9ymSAX+gW08bee376vHVV1ZBDqB5r+p8QSGL+hOgMKBu7ji5gZhVmqPsturyBmz1KIarLl85Cln91whgKoUAasLar5SxEEm6mSYDI91R10pVd4AoeK9AnD/uRxzQ11TjmuovaQU9tVVbWfiUUd6AbT4VnBPU2VX/K8VKUE+C/0aB28zzbJzTrPOs8oaefb7AwCod8Kv/rX2hv4ybX6n+s+oxh8wx5/Sq0nPyN4xr3VIyULF0jyuvzqRQ+X6ZwX+FSKwD8oLopupQ14ZT1lHRW2OdFwTYxLVWcPOq695KzzmnWUGOi7aL8FkMmGuMldeov8z6VIv3CeiAvGaQXzNQL0SyPkXlomQZRGXNdUgGQNgSpddbgbAt2ldvhVYnU/FP+hNTzmlPgr+atxJTHS4MFbgRJNW6HxvBeyspmB3Vfmqf7pBnvyctFcAyT2Xr5gF0gNrUMTgWDVrpbVgDAcC/z7LXh8mXtFvbz51xKiZ/px3PfbP6OrLDhe3ZO5WS3VC0m89BmUE5i86Vo15OqY5Vm6pKRxnvrbLE/EgpqH3lHYsG93ikM3910NQarPNpf6/y9MN81vPks8bWnDvu8Rv90+eoMyoftiRz6envn4qdvtGOZ7/Le01fYMo57Qg6o8+iHv/zXCtZ14T+XuQJgO610pEZ9cOpP16rg/VAbb39G4JQ67jxvUhZBygVv2pLrc9WftOKwGdtbVnvJml3//2M9AAMQBYtWoRx48YBAKZv/UkMbhnewz0qz9rOlbhn8TUAgIULF2Ls2LE93CMy0KELoH7C/fffr3/8Bxp3/zNmzBhMmDABQ4cOxRtvvIHZs2dj7dq1AIC1a9fioosuwqOPPorbb78dra2tDbWhFnBCCCGEEEIIIYQQQggh3QctAPoJn/zkJ3HttdcCADbeeGO88sorGDJkSGG5l156Cccddxw+/elP4/DDD8eYMWOs/evWrcMf//hHnHnmmViwYIFO/9znPocrr7yyob6KqqpIA20B4Jm2torJeHNf5Os/Q/2fyufmdz+7Kve8vFn1laEL41dYT1frzhsvn8Lb9QPu/k0pnnOUzD5SitwMVa+p6HWtAZSqFrCVtRnpWoEb16FUtzAUtlp1G6tyExVLnDcQKSWW75gyVWFVT6NPCeMqWtR+5d8ylIaPTOnEAZC6XKH637n+9D7P/pTVQOjJZ80rZ774/M6b6v+URYKMP3oWB3Nu6rgSFa7lqte9z0+/aVFU5O/fFwvBrS7veiuDCCAK/N7DVfCrWBsp5X+8HYa2VUBcvxBBsRLfE6cg3R/nmlf9Mrd960aW9UFeWpl9bt1GfssKwGMBIIMgvRYBKfW/NK2c1DoUmPUgsUYKROK/vyYga0BYs/snAyBsjfLW26K0J6+gEpP0PXY8r137fxZ1WP6hdYgQUwGtFJxKjWouCx7f1tGOeNO8x2f5qUY6PZespaVCXZmKbXWcxjOJrCXqcGUJoIsL2JaFliURLAvGeeeciu0vavd3Jksd3sC315Rf/rrdxywLgBQ5fclVGqv5YFiF5M0TIOM5z7UAKfnMV2hJoM5j/C9U58iJNZGyKHDHw7QWkM5n97lSfQxgqbfVNajGJ6g7x+D2QyCl/n7qct6Heiu7nB5d7+55NvGq/9U8Mfz7m9YqVjnz+gPS16Lr678eWTSbVi5B7MvfWiOgykuvZYA17/X3DjufmTfZTn8fogVABC0ACGketADoB6xevRo33XST3j7uuONK/fgPAOPHj8fDDz+cuX/QoEH4yEc+gsMOOwwHH3wwHnvsMQDA1Vdfjf/5n//BrrvuWrm/CxcurJTfdAFECCGEEEIIIYQQQgghpBx8AdAgf/7zn3HkkUc2vd7rrrsOH//4xyuVueWWW7By5Uq93aj7nzw23XRT/PGPf8QOO+yAtWvXQkqJK664Aj/96U8r19WlN59a3ZGWsUjrNbqIFFuB1HlFGH+UEtIorz8FrmLWUVy6+a3GpfaVL4VI3uKr8lJGn32qXze90BLBo2K2+l1CFpXja7rLZCmPvT7fM5TaLj7ldl7+TH/goV9dW0ek8g2M+kQiLxKmMthQ+ev00LUcSOoWZiyBUCRV1wREPfHBDUDXq60GoBRNhuWAKYkJjPQKeJVtlkLcyefEAoBEpPo3LDW0skUaShnnnKcsaoriQ+i+ecq66v9U3aHVd+88NH3ol1H/Z11bWfPTp9o326hISuWfV1cJNb/MsQpIWQPk1JNQT4syHfW8CIROEzL5LOtGvY66Xqj1Mwj0fJFBCBHGVgBqfx55+z3zLepHXM48Zp81gLveu3W6bRetWaG0xyA+PiGlfU9yjltICRkKICtEj2ntAERrjDKukMY6Yl7noUQQL0ZhrLKL7q1xlkAp8gTCFuh1a7cvt2PWD6m+JN3Ljue2689ZinlL0Q941faKFkPxb6m0lVJTOu0YquaUujmWNitFadS20NeQrkIk27a1n3M8jiLcW6Ykuep2H+rYVMwPdf1LQNZhK7CNvnqrctW7ATDlW+3Rkic8ZVMq2Zx63bZ9dcV/tSWHcZ5ddbqJLzaC6+dfNynT+9x54qqUs+aAtTYbx+H6Lvf2233cTR9WKoNSU8vA+FpkPqKb59lQYFuVm9dRxnWp53P8WYSx2toTX8MsJ4ztouPZ/ZT2RB3ujOusH/D+1J1M+VZsTWX6+g+N+W8+8tQA4XluUXMjZQ2jzUZs9LptVODG3lD59LWvlf4y6WNoW0DbVjrG9yG9jkj7Oge0tbTVNx/GsajnOxFfeDJs0vfy/kYos7+P9Ub6Ul/JgKBZoUVJD/LLX/5Sf95uu+2w3377dUs722yzDY4//ni9PWPGjG5phxBCCCGEEEIIIYQQQkjXoQVAgwwePBhbbrll0+st67pHsXjxYtx99916+8QTT2x2lyymT5+OX/ziFwCABQsWYP369Whra+vWNk2Uz3ThvvqXgKm2r6xuMnF9lcd12u1lKEbNMiZK5W9aBBTUU4hbl69/WTEI6hXa6Sp5Kv8s5XQZpX+eutrn+1ur9QGvhUAg7X1K6Wv4KVf7hREfQHfPtApQqo1Y/S8CAKHQFgNSiEjlZMYIUPlrwlL9R4qsDMuAulRZihXQgHdcXTVjkm5sWP75k7pMCwEdb6PMtWfEBUjFzEj5+VftZswZN54EAEv9H3rqNzHV/1VU+V7Vvd8Pv6XcbyR2Rdn2gVK+/v1tBlZ+EQi/FYCpgC9Tv8qjlP6hhFqAZB3pmAEisCwDEETjJ4LAjgdQpP0z14BMi6Au4Kr0Afuc5Cj1vZTJg+R6kaFhaWRa2RibWtBfjxRlEkFUXvnw10o8+zzr9SaIYwTEajRRFwg6o+2wJbYKaInuyyKUAATqcZ+o/ifNZOrZ7d7no1qs+ARsRXWW8tgSjgonP5BYCyhlaJik62KhRKBUrVpdKu0244a01YFStwqZxOBQzQdJOa/au+SSpVTYKTV2I2Soa6UAghr0MSiluIpjkOq76zsexjJnLpGePruWDg0dRs44+BT9qX3w5DGV5+ZcMxXA0vkLTx5f3e6+IquGPFWx038rHoFzbzfPp4itmdW2W69reSBVc8b15OtHajyMOpQy3OcHPlVXztjlFXPZ43PtOoMbV0AGwKwf8R7WFeZcEI3f1LOjcZaBvY5auOfRnffGGq/XZd91qD6HTnpq/sdrdj3Jq9NCex6aa7vPAkB/VhSpvQ2rf239lVr74sUyy5qTEEK6AF8ANMhBBx2EV155pae7gV//+tcI4x+XhBDd/gLADRK8bNmyVBohhBBCCCGEEEIIIYSQnocvAPo4pvuf6dOnY/z48d3a3urVq63toUOHdmt7XgIkPvzVm3tHciKVDDKOBQDECiwpIUJhySTVm3b9At6IBaD871kv53P8+Xt9nPv+mn0vo37XZTz7fP6ndYcyFKreegrUvFX75StXaElR4OM8qw/ucdZzTBy04t9RCIfOfu0Y0lD6iyBR/Zp+/4FMqwCh/Ig7eVVcAP0Z0HEChKG6jcrK2IJAWnVrAqBQCuUMrddSxVJWGSoXNy20t82y3npdFb+p/vddIz7LAJ/y39znWpjk5df9Klb/CxHYcQDMuAEmnvJa+W/1J4z/eNaPwJhnCl+8DpMu+JZU7em+OOr+1P50Bfn1+fBaBNjlrXxhkCjWTUJpxwFI7TesBRqJEeCNk+LIIVXffXndNvNiAvjKuHX7jiFEdL9yrMFEPVY0KuW+imcShnGck8TxvxAiVvCKRHFryaQBfQcMACljuZqpfIvVckEgUY/z7vz1djxzKRWUpDpTz4wUo6ayOvD5ac9RObv++JVy1KtANfNCqZGlnV+VjxWgWUrWVLrzOCEDQNSl1XdhPK645U0FttkXVberqk0U+QKuL/mqmKp87RfeUWErBa0U0TnytaPKyBosX+wpn/1uukle/z23G1dlXhgnwaMu96r0XSVxznyL/qafkbL66rX8kPFzpKkSlp6xiz9nWo/IqHndViis2BTKIkBIAHVoa1M9/wxlvBunIdWkaUHjwxw7Y7vqOfahLeSce6X3udRXt56DAnt8tl1b2T1+Je9leez0zXZLSa+tC5H80GRO4SqWMb7rzZvfhzG/0xYA6r6QPDf5rLksS+es/mVhPEtZFk3GM5t5zaasfxp/vO/f+Ky5ezN9qa9kQMAYAH2YRx55BHPnztXb3RH812X27Nn686BBg7DJJpt0e5uEEEIIIYQQQgghhBBCqkMLgD6Mqf4fNmwYjjnmmG5tT0qJG2+8UW/vu+++3dqetw+mWhqAiBWOEqaCO1Z7xMr+RLEUp2n1f6zuj1VL+gWt8TpeKa6lUjkCtkhFFYp9Zqq+abWJ6fs/V4Fi7MtT+buffdtZ/q5NFXrgq7OWbluG6fpdn+o+shSubtwCd1xMVb5PYW20rVTZQhgOdMsSCLt+rfA3VfUBtGVAllWAq9QO7Xq0VUCcJo3xV7ECZBAk1ci4TbUfgAyE9vFvqQEb9WXus1xxlVpaFe/ky5uHJllxNLR6Hon6P0v5b1qr+FT6rqreFyMglT/016P7ra5nw4pDhvac99QhiyxXzDrDyNe+9rFvWBdIrQQ1JaFB/Cfrmsp5j1/VX39GWaH8kJasw+2rZRGQYTWQ2mfG4ChDGUsod591vefsa4S88r5rx7c2AnasAcMKQEgZrSfKCkCVUVYAgLZgAyQQSNsSAIj9/AeRb+8aEK80kLFWT9Tja1LdZ0OhDZK0qq0mUB8coN4axQsI4qlbW1dqlAjR7Py1SEXakqEMtq6aAAhrsFSSSr3sKotNVaUUSClVteIzLuP1Ve5u+xTjOer9lN926eT3KmCljhVk1RsrsLXvfcdPtLZSsPI765GUqXFy+xrF/4jTgkTBK2E+40IrfQHYloYCiXo97pe2KnDV6ob63+ppI8uwb3ltoBogYy4Z65+VpreT5yd37vk6k1Ltm20Kuz7dBpCOCZWuOvvROADqNaEtuPQ1ISWU5UJe312FvYmvv10hV2GdsS/osuLWVmbvefLl3jFQ1+DjVw0cC4GdvtEOAJav/Jp0rhV3G/Z1UsViJi9ehkk56wFp5zfXYfNeEH9O1e1pX/vxVwTC/s7g3Cus/Hmx/AghpJvgC4A+yvr163HDDTfo7WOPPRYbbbRRt7b5v//7v3jqqaf09tFHH92t7RFCCCGEEEIIIYQQwpcmhDQOXwD0UW6//XYsX75cbzfi/ufZZ5/F5Zdfjq9//evYYYcdMvNJKfGjH/0Ip512mk7baqut8JnPfKZym83GUtxbYtc43ePcUSJSUXpjA8Q5dD0QiTVBrLLS1gBC2GrlGvQNKVFexq36/EEbVgOWlkYdh6UgMJTyWUpRH3m+r72qd1N9IRE7fbb7IwwFtOsLvshXv9c/vEdV7PXXHo+to0LW22V8oSslrRMiQPjUxubYufECtNzKsAjQaYGl+tcWBEIkamcptI/uSHGl/KGHkfDZjC8QWwREH7uoSi56YCoTJ6BMPW4+n09/9c+1FtA+/T35AccCJUzy+/L6VP9F1jZxundeGXVkqv5NfOerlswVoSWR6nAkIEPHh348Wc35paoPBCor+33dzFDZp3z551kb5NVfy9mXUt4716IQEMoaR/2N9wt1rbmWTkGQfPb9VRSp/vOO1xsjoGCtLUuV/FldNBTAQHxPCqJrQ68jRlwAESYWSkL9FyscZXysIhCQNYGwFv3VmeO1UoRA66poztTWAXt8rr1QGTn1rPa4L8Dsi8upKLUC0aPKe+Z7A0eJ2VOo8QegfetD+VM2l9cA0SOEUn0DOi6EGyNi11PbUcu6rWi1pJFWB2puqB+lRg+BlFLTqMP0ax6prJMnRRFKHdPCjoljbEvnydJ8lszCVJ7G9fn8+9tqcOPe4PrOVxaCvmXIq3TNk84a3dQqZ9WY0T9jGTXV0Fk++7VK3Kdwz3g0LbP0Ffrzd+ssoyDOSC+vPvbsjMcmpZb3WQCIdLqlpJZJG5nqezO/m270J9UN85qQIroGnLVVOH99g5Hly9w9X4V+21MVl8tWud6i+pA9XhGJlcA7Pnl5cn0G0fO9rAFP/KRv3o92OqPdmgNCQsf7aAnt9FRcDGf9ta2rpF0WyT6TLMV9nnWXz6opFTclB+WbX0Y+BfRzjy7vPFOZ9abmvrb4NQeiuB+perr4lY8QQnzwBUAfxXT/M378eEyfPr1yHR0dHbj22mtx7bXXYtq0aXjPe96D3XbbDVtssQWGDBmCN954A0888QR+97vfWbEGBg0ahBtvvBFDhgxpxqEQQgghhBBCCCGEEEII6Qb4AqAPsnTpUvz1r3/V2yeeeGKXlcGPPfYYHnvsscJ8o0ePxq9//Wvst99+XWqvmaSUN0WC2FhNrwW16q1/rH7XlgBSRsoYFSvAVNwbPpFVWhJ3QFpKehmrua1+OvlSFgNAWtlZVuhbFCOgKH/RPqWKFYDlxNbyyZ6l3nby57VvqrDj7cL+FlF3zoHqCuqRYsN0vW4q+V1rC6VElob8Q/n7l3VbrR0IrZBN0mNrAGUJEDt/V3EB0opmz7F4fPo2jaru4vNiA3iV90Y5V5GfZU3i+MtPWQqk8of23FN1ACkrklzrEY8VQSn1fx7q3BnWAAglRBBChkH81+6TDKWt+G9EjV+xTKZyvyt9yCKw57wwVfzaAsBYJ031vy92hypr/g2cbZNmqP0buQ9nlcmwTjDjiKTKG8ebUokGSI+HIo4j4N6jXN+2KuaAGXZF1gTqgwJ0DomsBcLYMiBsBcIST5izvx0pJHf7Sjt2+3J7FAZFAsF6o3stkZpS3W5ate/2tOpzj8+1xx3LaNBRgCv17ZM/7ptKzQ3NLqe1R1PJUYf6/D63mHMnHvPdvtIOGd/Sdv1qe7I/PhfmzJSAVkabVgSmxYGJcJT7WrVs+Ko21ak6joaDjOe3hDP/fapTVV3GfEvyJop6t14A2dYDKqaHeVxxur4+C54FMq0Ecvan+5GcG6v/xjlLKb2F7Udd5S1SxBf1S+SUSVdilHPPkTEPssqUxTLmU6fatFCG57jN8mpeGo8EspZcN0EdQD2ZQ6m+GteHNJTGbpyJwH2ucPqkYgDoehxFsjQ+u30JMh6LKt8VC8Y/U+nfyDNwwT3b3Zue49BxRdS5EqGM7oV9RL6989fbo1gjSNaZFnOdVNZdrpo+79ryEX+fTq6HdFnfvMr07Q+k1ke9zltlys+L1H0tLp8XA8Dbzyp4+tdsaxZCCDFp4rd3sqH47W9/i87OTr194oknNlTPmDFj8JGPfASjR48uzLvlllvi7LPPxtNPP42DDjqoofYIIYQQQgghhBBCCKmE6Ua2r/wjpBchpOSsJMDChQvx7LPP4uWXX8Ybb7yBjo4ODB8+HKNGjcLuu++OKVOmdN3/eIMsWrQI48aNAwDsu983MXjwJnaGLNVJlqrHSU8pCSzFjJLCeOrNUjRb5aR/v9pXpi6rHveYMi7fqqr+XAV0jo9+X/kyCnDAVlVnqbTden0WBFXwzeEgyM6j/Iwb27Zvfic2QEqNrNLSfs2tMo762VJlmd1rxjXYzOs461y7fv3dvFmWIlYd5r4wnW4+WLnzwlNHrk//LNz4AYCt/ncU0y7CnVs5yNA4xno97X9fhkj5/1fbZeIAVFW4K9x+5OX1tlugsMu6/txry/T5b+ZzYwOoNPc6tMp4xiLruMoq/Ru5rkq0mbsWOIr+TOsAtaYESK8veYg4f03Vr5R2ErIWNdI5pIZwUICwxbYYqLcB9UEC9VYB2RJZBABAGCudgzrgqrWVj2Gfyq6SIs7Ja99LkZJ1ur7KcxXRpiIdfdfHc1V2/3w7TCW+5QO+lgyrpRJVKkpLTWlUalhjRDFx8sfeVYL65orPJ7VVxqkjKVdhglnl/OlmXzLzpcwdPOWBzGfWLvnCL4Gt3k/WAJ+wOdUX37WUdX2VPI7S65ZZtXvtW/uQuS+1vwSZx2paBCjFuGd+KvW98j2urKhkLVoba+uifEGnTMrHdYc1kcSJ8PU7VqmLMPme41oHpPrtlFf5LMsr3/w2aeJPDN42NuQvGBnzXgYqVk6cVost4QK1P78+tfbN+sGGu5fscnp7dB7j+7AOZ1ZH2rrKWbN1csHlWGhx484dz/qcaxFgzK1M3/9uO1nf/832TMW/24+s78oZyWWvi7y5PfOub2RUMrAwfwuavuXHMbi2UQ/3qDxr62/jnld/ASD6vW3s2LE92yEy4KELIAIAGDdunF5YCSGEEEIIIYQQQgghhPR96AKIEEIIIYQQQgghhBBCCOmH0AKA9E08Hi+8JtwpE0SPyWAeKtBrlllt2fIBgDAxYdYBg1P9tfNagYcB+5VdaNThHrsZoDarT1lkuRMp6/Yn5dInw2WKlP6grD73MIYrFulxy1IaY8y165F6PbUPQORWpC4hPdHytCsS1Zcst0BGkGiva6CoI+kAqBl9TvexSa5IUN28vrKLqqz8bmDfrHpSLoKMIL+uqx+fmW7WnHT3mcm+YL++vOq6NgPXFpE3f0UUCDjph0y5rZFx0OBcstz+VHHjE+TMP6upHD1BZqBbTxk3YC+M683c7wbkNst76vC6/yk6tqK0qu6QCur2XoMedz5mHSkXQfHxa5c/AGQQQLvzCRIXE9AuKYR1bzFd4igXBwAA5WYCtol92CLQOVhYgUyVSwQhAXTqePcIVJ0tiTsgIMoXxG2qIK9WO1lDneXGJcfdh3vlCR31Mmkqaz10nzPe8anLS7mE6ZL7ipTLIv9+7Z4nMNyBGGWUu6LdP9+e9ClULj2k1yWDqqPF7a/bphBW0FLX7YUURjHtaiE5v24AVd9xZrmUcPsUBZs0qspaJo36wxLXss8dhfac4nEXaQbLtIbOdxzC2FfVnURJqroMiho1T4iEiAc3FdzXc0xuEHF4znGlrjTwEF44Z3x5GsQ8LGu+6x1JUGTLPZS6BvSaKXUeUY9cqMkAqA+K8oWtAkEnIpdpOm804KYrGvf4ZGB8BxFAAKldASWuu2z3J0UBpEvRrPHNe9wpaKORc+y9XszLoQZ9DzX36XtHGO+u+/th1i8kMO3Tal1O1pK89cDtj67XuMerNTmsqf5GeZQLPh3cVzUpACiXbuZ6J9NjaLs4Sy+K2S6A7O3M4xHG+urU4ZIERI+3a578IaxBj4JaJxn013wRN6yuLVVMAqiJ9HGF0ijsHqOdOXceNuk6GRCErg+zXo7vuyQhPQgtAAghhBBCCCGEEEIIIYSQfggtAEifJzPYL5D/9t2jwPUGAHbrrIpjBQAgUfdrCwNX2R01KEM73dqyrAGcNs06cxTLer9Sv7lKY5mhti8TxBVIB1F1AsHmBmZ1LAdSyv+8wMWZJGVS8c9dFbfPMiCWVkkl7VEESlUVAKinlcE+9a6pXPap/DPraIKq220TDYryygaUdueRG8jX2hem51WWpUjGXLGbLlBelLEkUf3NUIyn1O+eOlPBg/UYpPuXCgDsQRSd7yrzxJ0LZYIXV1H15+X39Eu4fbcU6841VKZ+99rxWgbkWAM00dIGQKa6PDPgt+ezFfDXFww4QKT8B2AG85WBgGyJ8wXJthWsUAhbqWp1XsYK/fiarCV9kyJR3lmBER1Vt4zvhaYBiwgNVaKhSNT394zLuIzCt7AM7D5Gm1L3N7ecT/WX048yStSU8tS9Vbn5HGWlCGUq+KgQwLTPtEdKSbciAUTa7kR5mlKfZh2PKi9kFKtdKU/N827OLVNp6q3M2MwYz6x+FaplnTasgLY+ywOnP9Joz1WxSilSilitGi04n2adZnatwo2fE91r0p1LhRYTbrNllrDU87XM7IMbNDg1TwFApIej6fgeeTMUuda+stWXOABRUK8vwDJCWAr+sEU4k8Gs3K0vUi2Lzni3EewXSM9XO1i2TO3XXdNrSs6x6PtGdh4f3iDEvny5qmn/zq5YdWTe++Ix9gb1Ne8TobTHPVVPVsMZ7WbcY1L3JpnstyyXRRRMOqxF1iS6rEjux761Q9eg7smh3YbVxUCk1k0VdNodi6J1y0pXFmVGX5K6hD1v3bmc6qNxfGFcv9m4Ud7aZ92HpLUpJGKzRjtNP8NLkT5nWZ4IzHFwn38IIaSJ8AUAIYQQQgghhBBCCCGkd+K6Gu7t9KW+kgEBXwCQvol6k+/6ygdg+eIr8ndvkKlwaWTdzlLf+/qd5WdaSkD7MYzViIZFgP5kKviBdGwAV+2fRyBsBbcIABlmj6PbjvkXiBS6YWjvM/oswiBSdVsWCP62RBDYKmqzr764BVkKaEVKZR31SdbrdrI5fvW6rY5W++IiMssHvKMg1pYC7r4sSwFfX7qTZrXjs/wA0pYh6rOp9HetQpwyhRYhWbEsGkHNJauN5Lqz5ozVb8ePf24Twvu5aeT4u/cq/pul8M84lpTKP69M3nXhtmta0PiU/z5lfZbVja9+oHK8jBReBWHG+fEp/t18Rn7tzz+rj1JCdKpiEmFLYiWQFMmYq4FA2CLQMUygPijKXG8VfgWoqaIMU8meftlqybL+/N06SuUrUVbXoXaLjPq60mYGmQpGUw2c15ZSd+pTKyE90mvrmUcgygMAQaTa1Ar0ov6Zqs74g6kGtZT2gKE+9cydLLV8iXF12yk6F2q+aaW+2YWM/mhRqLFfq25hzpdYke3peJYgWKoNV9UaN5ioe1Wa5zmp5PxrKB5AQf2W2lm4A9r95FngpJ7vu3CdVjkcpbDXn1XznrVSCqC2ztiuSR2DxbWkijIkdQrTItLTlgyEtSaEgZFPCkelLVMxOlR7vrqF88isjkn32ZjgtnWXSs9QRJehQv6yFhnJWuZmis6HiL+HySBK09vumiHS15n32cE4L9ZaKqP7oBmjQa/JMragc8cu45zVBCADmcytwLD6c9Zmr8LfuKdoKy8B/TwiQiDolPpzFFdGtZX81Z8zxsHbLpC6tnXsi9BICwEhRWypIJMqfcfjiWUUrb8C2v+/c7+NBl+k5606Z9azf9bzgp2YaW2i92+gxZMQMqBgDABCCCGEEEIIIYQQQgghpB9CCwDSLzDfkgv3zb2hOrfetjsqfRl4VEKArciy0kXyNj/2aZyyRqiKWafvc1YcAeM4Ump6havOz/Lrr/PnKKhTlgLCrt+n1PX5Yg8AESbvIaVyCh3CVhrHZU2lsgxD4xVmrcGYAAYy1KL8uDG1w84mneM2cS0EVB5Vb2DEEHD3KbzWAj1AoY/5bIWxhXFepDunUnMu3nbiAKTU/mZZp06ZocBP7SvAVuH7JG4V8JzDlMq/O85zlpJeN5lhXeKbw0V1I2OuZs2jKsqmPOW/T8Wfp/xPxREwpX/pPuUqsBo5ZVkWC852lo9/qz+O0l/vE3Fe16e/iH3+1xIFo6zF265aMa4rrCWKv7A18ksdtsDy/Z8oDw1/vyGSOs26y5x2c4mtoAA3aSQ2QGZZFHS7i7eeXCoo2jXqEahuJ6ZU342ei7z96pFF7/cNppqPMqUOlUKkFKmZ/fUokv39cpSanjyZGOpsKDV2Vp+EXaUAtCWA1ZfMZ8ooXT+nGtkEjLHQiSJ17LLJk7GyItsn7K0wb3OrrmCl64tdsiGxrZmMbngUv7a1U7aKX98bgtife81QMruKf0PpHWWI1nJzPpsxJ3TsFplWUQNAOpaATLWbZBZpJXrOsSX7c/Z1M1n9SfnGRzrNF+tGlXfrNi2CLCui0C5j9cuZSyI+N9Ycc/3zV7A6MbfNY7KsBQz1vm5U+b6PFflZlmHuPJBKlu9b55311v3s1m+ulXr9DZBYZcTt+GIx5MW1ML8ra6sI1R8rD6J8EtBRT0KnnO5vD0xsQgjxwBcAhBBCCCGEEEIIIYSQ3gljABDSJfgCgPRtDEV8IXl+7H1WABn5M1X+hhWArjpVWCZ5Acunf2YZFyMugITQx2+VM+MCKNVzlkrftBzw+f/X20X5nfrddBUPwKwLiJ1TxmoVpeSvwVaLe2IqiFrN9guvFEympYHvPJVVgWdZQChVpQiQkpS4MQTMuRAEgBtfwMlj1a+6AeRbUXQXebEHfKpurciXdj9dn/1Gmrd8FvH5yFTxl/D5X9W3fhWLAW8bsQK9ktq/UcW8O6ae/F7rFN1uljWAXY+l8s9Sz3stBkrI5bPmt69v5l+3H6byX6c55dz9HjLV/2WU/yWV/qm2lKrftASI0yx1tFL4C0ORHO/3xQsQdQlRlwjWGQtM7NNf1gKEbQHCtqhcqCwCgkjtH7YkylOfz2CoJAFL0a37kqHey/Lzn1LPlrwMC5WjOfuz4wr0hBzVHOC04rRUFb5HnaqVVDl2n/WfmW72S8rMvkhh15GpUM1ShWaRdShFdZgSfIGo7+Y1JrL7YilH1e0xLpdSAqv57jQtjM9mn1PxAHSBuP6uTltD/aqbzVFtp8gb10aU/j5ldCpPOrFsvJDMvhS0U+hX3lqf/deyXYUR6yH+L1JRS/2MJOpA0CGt+pRllxQAaskYyiCZWEGnp39x2dTxKEW3zgMdFyTupZ3POhCPGjx10NkZqszdRmNZFCIMH/lqO0BsdWHcD+Nr37qGnb+p/rp9dvOb90LHn74w5kD6nplW/fuOy+yHvk8HTrrRTzNWgDduC4DUiu67/8j8/XZmI6tIl3VjACSWEfZYpNpVaa7FBJAxl506PDEX9Gf9Hcjc3/w1iRBCugpjABBCCCGEEEIIIYQQQggh/RBaAJCBg+lT3FUUOFYAQKwQ0Eo0W6mYqLgcak47SqGvVVkFMial6gesclZZNy5AzU6OyhrtWa/5RBIbwBdrwFDjJwcER+mPRG2t/EBr3+0qj5Ouq/N0Ngzt/DXV93zpmZQhUAts5TkQWQaoej19kMKfjtB5H5qhKE9U4fW0stuyDgDMeSOzFE9lfKH7LAeiSovLNkqBgly6am09B8xrJV+171PLa1JK+FrcraxjrtmbhecvP1+qf2Up48tfhvnHm+er39phyqSkP90l1wrAaTerj1lqdl8/q/j6r9Xy9/usDEz//kA0rnnKflOlrOaC221nvc6NA5DVr4ztlDrfKevbL+Nj1ApPVU4p8tQ6HCv5IhWorTy1+2A0qdSFoYyU/wDqgwTC1lj9H/uaNuuxlZFJfSIUloLO9F+cKPWkrbzLUD8WqUB9vrQL/dXrfBnrUW6Z/P4AyPcprKopWh5ilXkqqbuUrqqNQsWuW8Dd7zyfFOHLFj+XmX7sdbwmX/sepWrKt3UBWcedFS/BirNhFSio13mUTK0pItltPidK3/UgVT5fx/39qWz94nmGSz03G/3O7EcJcq+bomvavVYaOe4yKt2senzzzVFZ6yo8eax0Yw6kMAoL6SmjYmgEAuaanOVHPVF6O/f8OI6LkCL6W7dV5V4f83n7rGMw2ikxP7zHoCtw76tGvT71t/rruxcaVhraqk6p/Y37rTv/RV1CGVhYMRqcdUhkHbdzXKZ/f72tHv2z6shQpJtt6GcC975tqv6dPqn4ELof6jgDmTwyu2uizp9xjzcsGXJju+hjy0g3i5qxKYy4CFkxFZI+qv3p8cucx7612FH9++ouZdHiydOleIKEEJIDXwAQQgghhBBCCCGEEEJ6J6Es+Wall9CAO1lCuhO+ACB9E49iqPBtuaNochVewpEhSEvNL4zYACqDtJUPOqsTI8D12e+06h6LLhvAUidIiHhbqVed/Dqj1GWTMkjKBE4Zn3LbTI8acfY5x2EqaU1FdVHdUtqqX9cyIKt9ILEQqKXrT1kHWOVUn5x+1uCo2oNkn1ne7EuWetyX7hPx++II5JGjVm/EX326O/myyZSgS/kjLShXyge+m8d3PCX8/Bfh9kW6lh9Nxjs2ro96nR4rz7NU+nnqfUUDVgsppb9bT1cV/1WsALLIikOhFblGX3zKfp/Fk9quG/uizNlWBD7lvtUPV5noKPoz8roxACwf4zWBxBIgzl8TWtmnfTjXhOGX2LEAkEphaNxTagL1NgHZYisYRShRWyvR2ikRtgjUB0Xp9TYgbI3ym0pjpVxU/1Qd5r6k0Xh/hloxGguPAluV8XzOzFfW/26WSrCkMrkKwrwPFFwWprVA6e+6XbnUuthGocJZ7fIpWIVIqZTNspbq2elDyg++aiMrj1FHkaWA9YznUyK7VWaNYcZcz20zPgYhpfcYvWp/4RkrZyzcfnrr1tX5ldaF15ZI1wVkXFNFj+7ea9ZfyGe54fWtLpM6fI+3ufUUtWm0IZ3tROVvKI8hEh/ypkobSX7HCNnep/oghG7TKpajsNaxKIzrxrTccvObKmt9TID3fKS/Y3mOwazDeeYTQHQflmZC9Fc6cQYy7w36WcC4poz+RedE6rpFiCTeQR32M4E6JuecJOrzZCwtS4SstbDkWu1fu+I5Y8QjSCyiPHEnhN336DkhqdiNx2PHHYD+vhl0JseVqO1l0gckZaxnAVWvb+1HsmZZ8RVqAm7MobwxKXwmKFqzzP458QBE3bmwgGjszefk0Jgj8QdrLS4ZO4QQQrobxgAghBBCCCGEEEIIIYQQQvohtAAgfQqplJGGaFz7aTZfzSvlgSthkUjUGGX863liA+hdYba8RffFasOVtsV/LZWfq9qPy4R2Hl3Oq/IXdj5zn7dMetwyywOOj3e7L3rD6o8hATXbdGMRAPZ2reZpO7Tzqjpr5uBLCNSi+l238DJMjtdV8EqZxA9w2/KRpUBzLQt0fea4hfZfbz0l5mezLQKK5JCGyloEIt+Hfx4+lXqZ/hb5iM8jw6LAp9B3x64wFoB57F7Ff3b5TLW/ri+w04v89Feh8LjcNc7YruLv3/S7X7ZM1b4VWd2YcTkyLC9SbZe1XOiChYOlMPYpP02/wm5+lUUt1fXYf3MQyUlTYVSUP+d4vZShRNApIddH7YTxE2HYAsgWoLMtQFgD6m1R/rA16pfwWDMlVgBxG0oB6CpFS+DLm2UVYBdUmY1CTr2R0tajNLUai/+k7vk5bRXRwBQpE1OgKnkxCErHMHAea1w/2Va6ozwFYOVROzLVqIBHOarypfvt9TFtN5Xuh5MxK3aG20YKJz3XKjWlOs+eIL54ASmrAKNO/ZTlU3CjII+T37dbuLJyo12fwteyNjBjbOkK7b6VVfyXtebJU6kDhhI8r94c0hYXGUpfM5aFqcaGtKwA9OOyMkJ1rh/f/SbTX77Vr2TbsoqQ9rZax10f9CrN1056jorUeKfjwxgTR8b3rdCedKJTJvModdQOeeNS98wf44NdUn2vcSYmkH0Pctc3Iez10MiTpej3tiEQxSIwlfFxWlgT+efbOZy02l3qc2H6zC/rCx9w1l7H776eG8b3M/vasp9tzP5bFg0unu/wlu9/p+/W8XiOJWUxkrrf2FYvxo5UvxvGUz7tMYAopAzj7/N9g77UVzIwoAUAIYQQQgghhBBCCCGEENIPoQUA6VOIuox88ZlpPlWPR/GTUjNYfokd6VRWvQ2Qp+zKzKt8MWs1vJHHUit4VHPxgUqJSNHv1qWUOR4FvNWOa8WgxkspuMrGERASXqsAM16ATynv66NvLLOsBFKOXQ3LAEAfa/JmXtj9NxXOrjWA02am6l+Xd6WBRt0ZyoC0r3qftE1JxNJ1iEB0PS5AXH8pH/6Kigr4xIqkotolT22e1S/fecgYu1Q+X32e/hQq+gG/er6wTMXxKZO/zNpURd2ep/QvU3eVY8xbn1PrhhNzwfXB71pXaNW9Ss+pW/XFZ1kWx4ORQtjrp8ovE42XzmMYKqgPIoyUfhLSVtmF8RR2DgOx+t/qqTomd+pJJcCVWu0ZxGrUQMrIzW2cXu+MYgCkDj9WqJpKRVtJmKg6tW/hWI2apfZPkbeEOKpWraRNH2qc0VYkppXUGXMrqw/NeVRIN9cV0VjWIfhi0VRA1JEehxy1pp4bWs3sPI+oeg01ql1BmU4leZWaO0sdblnFGP3zImFbkWb1pcr5ryrqzLrNlVhnvd1yb4Eeawt7v6cK36OITO8TUsC0IrD9oqfb1Mr3jPZ9ViBZfSxl4ZtV1u1EYSV2PZkq8Xjd98XEUFYAZtPqWhOA5Qtdxw+oojAvSWqMpSe9DDkxAZSuXh+viPMr6zUzTg0AFdugEbzru+qEwmcFmjWGwpPHtdLTcXxgrX26vHuNmV8fzPMcRD7ww1p0bwVi1X9gtq0KGvdVc/1z77+ea8iN3aGPw3fQ9o5Cdb1Lcg820grmq6u+F3kqfW//0vuERKHa31obM2Pu2WVL44ktA3jWdcp0CSHdAJcWQgghhBBCCCGEEEIIIaQfQgsA0qcI6iGCztD7pr20ot9VtPv2uZ9dHDV8HgLwq0Ytn48ZEoii+tX+0KgjVp1GPigNJY1M8uo85s4iZWvNTpcwVK1K1ZeSgcVlQyddxwyoaBngs1rIshIosgzQfkUTqwAZGJNCK21dxUecN88qoIryvqQPd5Hr/t6/swtCsIiqqvNUB0xpS5Nksnpsm1Rf0fiXsGgo7cffu6+xMU75/i9jedEFX/Wlcc9z1vXo8RGMPMVz5XgFnrgMruLf/JxXv6ve97WXZVXlrLVSWW0F9rGrNTvaLyGCpJ1I1SwhhIA00iEkEIpEpSzi+0Dgu/aT+57VH6EUhSKlbpNCQNZEot6uCYQt0b/6oKiFehuAWtQDUYeOARApH0Xss1hYKl8hZRIfwKfqzVKSF2D58jYV6Xn1wqdu9TeWp3wulbmwjLPp85deljKXeqNLqKMYFWHUV1GXyeUuEM1XtU/d0oW0z41btXlpRjLhbBWym+5sp3xpC6TbLlJNVznnJcqabdpJ5jVZnN96ZnSXnRLlVXoUD8qtPN4tjV2+Z2ljn+860gagxjYQqbltS4F4fyCRUijr5zCjn8pyqhnXXlfOb0YV7nD7FP9uueh4pLOGJbNCXWNm/abVgK4vLm+tfcLfZhJnxhjaWlw+iFX3LUafzfNprOfpiv3Hi/gY3TbN2AJSILHADGVyfWZXn0+G0j87ZoKp3E8sLGQN6RNrdsxUzsf3vaz82ud+6plIrVGxRYFS/wdILOtUHaYlHex7qp1u99MXD6PUNZEVz8f1se87ZO86nIytb5i8cwb28RTFG7Hy6e+gRj0e3/5CWaJY34/z6k8fdLn7tbHem18PrIo2wPN6X8U8p32BPtRVMjCgBQAhhBBCCCGEEEIIIYQQ0g+hBQDpU4jOEKIWpt6mev3RA543+TL5W2QB4G43S8HsQRRYCJjbXmuBrFd5HiVCqWP1bVfBVf0qv55met5xhIZpg7tP4dZntu3zya1U2K5y36jbjREQxQcQdl+VEiRD3S7DEKhlyRtLjGmjqo9mzs9G+uBrP6tPvU25kaX+9oyDyFPzA2n//hUU/0rVLzPiQpioPNoSIDSutXTF/r75+hdVXth+abyyaY/6PwvVvzLHp7eD7LxZhDLJr62D4k3dhzjBtAQowlnrkvXXlqdHbcjEcEFZCggR+yqPlf2u5ZilrkvU+pZ/6JzrWUBGVgctQFgLkq7VDIVejsQ1NkKAbAHqNdhjLoGgE5FlgHkrDQTCmlO3RGI94KRndDyNoXx1/RpnYQqLs/zG59WTGhqd4Mqys8uky6qM8dwIclTJDVyqWqHYHQJDU2EpYqV2Pa2C9s3JPCuPrFgRPh/fSbwBVTij/grH35AP8gbHt1QcBF+HDEWtayGQ8hmeVa+uAI4aPcnvPoMKvYYhfb1YKl3/X6kORwrbkkBKXYcwHvvdPmWuU2ZXMtaTVJkGnk0EkFr3UvuhlM/JWHmV/jDOlVIoKwsqd2wDozFhlBXCbtPshKPGhptP9Q32+YzOi0isOnxrk/kYHtr1mY1KN6+WzstE2W4eWkqljZSiOxdtiQatpNd++gNYsWuiPMi+dmXSP0vFb9xvI8V+Tj16DIX3+JIDTcqre6MwyruqfNUfEcKyzEj5wYddzu6bf0AbjcGg+5zC/b7ZQL1Z167vGvccv1L7J/kkqqj9uxSjp0w9Jb4HEEJII9ACgBBCCCGEEEIIIYQQQgjph9ACgBBCCCGEEEIIIYQQ0juRsrmWyt1NX+orGRDwBQDpU4h6CFEPU65tMt38ADpvyvVNjtugzLrdvF1Fm1Kn68xy9ZNKFQKoV2w30zWLPzk1BlXrzjKr7q6boulixHXV43MFZOavGebIKriuirFrHEfKTYtlousbg4zBzRiDVJDhPMqMY9Y58LlJyQp02pX2i9rsKaq6+SnrRgeofJxlXP/4ylgBgU1XNkmmqI9h6O+/S9F5zwr0W5auBDfLcwUEoGxQ7Sqkgub6TlOeWyDXRZmZpgKoG66BlDugqN7o3EXm6cJypyDifdKoU7mMkEESIFLCuZ61SxSR2IFKQNSNNawuk4CExtoYxK4rgg7p1AWErQJha5TQOUggbIuCGKIlMXMXdWiXQGELUG+N0sPWxA2DqEeugwAg6IjdCIUyfZvMc+3jdQOQnd8bNLigDW8dmR0qWYWVL6nQ574hnZ7lusDZLLMEqKC9vry+W0aOi59M1z5Fy4zrVcXnssRNKzpfvrGTQBD682RS0JfUvoI6GsH7jJjh1iW/Ik81OXMo83mw4JrLDEia126JPuVeA1nXivk8lOV+JQvfOuQ+X2Xdn2RB3Uj6aboCiu4BTj2efugV3wwYbKzRumntUtTIZ33I6lxcxphcqhuWm7cacvHPTfcYk3Mp6klDUdBgYbnjMfNDRIHqAVgufrKuB9OlkZBIXBI5fVCuqOx+qO1kzGVNJG0G6fUh5bJMrVvOfp97MzMAsOnqR4RSj5EZVDnTBRCS4/COh4vv+0PWtaX3N+H7Xd6zoi8Ar+e6j9JlhtvfdH1l3SKVpkx571rYTd+PCSEDHroAIoQQQgghhBBCCCGEEEL6IbQAIH0K0RlCBIbc3VX3Kyqo/LMDCGfU2QiZCuHsvCnVKWArT7VyM0vG0RyVdWkVQlfGxzfuphpaW3P4VCgNprmWAGXGq5aoYbV1gCJDuqZV3TVHpe3PnFRXM+rPswYoO+4FiqxmUMlqoSIiR7kuwzB3f3HlPmub7lP653elweMosuRQn+v1nOOo0HZWHVXTTfKuW7e8eQ2Z3ZbG8albhQ4KnNOmEEDdbUumxlVkBDCXoW8OZbTnCyDuBAqWbp68QL4qIGOZMTYtCKQElNK+XtcWAKo/YYuAbA0QaqsoJIEGTbWiiBSPpiKxtl5qFX9Uf1xtCIh6tC9sgbYYqLcBnYMjqwEgUZCG8WdRF5HCUdWhFI+mcl8dn6sMdpWiBl7VvzNOVr4iqi4F7mOGWVWWSDlLeWkGlfTUXUWlWWgl4My1vAC7je7LxXOMQdnbTxWVuVvUnS/CUGxbFbkVu/Xkq/e9bZbMn7uv4PhyFbQF9ZRVGKfymter+QzkUV3nIqW3/zot9Uxfos4yGHPBu9tdn7oLc06aFjxSJxtZ1XOscx27dZace2Yw9cKyOdjrnLGe1TzruYRxT5BRg45lAyQgOoFAytR5kDX/tSWMYLKJwj5KDzplMrZufWr9qceWByK6b/vOv9W2sC0FhJPftKRJ1P/SYxVh3J+zri9FwbVQRgXflcDApfE+E/qzWmtUliV/wXF5LUrM/ZkBe4v7mflbA5DTX1oBeAlDZLos6I1043djQhqBFgCEEEIIIYQQQgghhBBCSD+EFgCkTyE6QwjhOLx3fP3rvFlv0MOM9Cq+/n0K7iIVsKv48ipOAa/q1FdfvUDxGTSgHAiQGkep/E8XYaqMU/UKe8xUXvMvUF3tkKeoyIxzUPAmvqgPWcfpHqPOnrxn1dYAmXMlI11ZD2RZDmTRHeqRnPGzrBY2IKXazVO3Fymnyyr8i/zTp5rN6VN3xknI8uHvO7dZ45alSvf5u/e1WZUCFXxuXhlGVgD6/JQoD9hrtMLyz2+o9t0qzFgBbntVjiWEZe1l3SnCuC/K37NMFIcihJazCaWKzLknRPldawdArA9tAwsBIBCQNVWngAxS9lDxvjguQIvQ/v0h4vQWWErVoANoi+MKaCWjGoJaUhcA1AdF7Wq/yYY6UqlDhSEQS5TEGSrGqlNTeO69DV6upr/n1L7MQk7TBepDS0GaUkD6O15V3VloIVH0eJShPE8aqNaf3D7kWCAUbRcq+ctYjjRjae+m24NUimPjuorSRaaKttDixKfGl+bn5Lo3VddWPo+q2S1fSOo51OhbgxYTVl2+4iXV/9rfu9O9pBsFCmzrfmck+9Tqqm7hZDbba0Qe6Luu3Fggwtznye/UJyTgTkeB5BlcW4rF94bIwsw/N4R05t966Ngy2votZ76lfPTrilN3/yRfLbEAkLVY6a/uhWqMhcxRlsOygNF9M+9tcPor4V+/C/z4W/VZeTLmSMZ8boplQEYdXVX5lz0+7/nIsILy/tZQxTtBlkeCjL4RQkhXoQUAIYQQQgghhBBCCCGEENIPoQUA6VvUQwjz1XyWz/4qyvCUL8QGfbXVc/YJwxGnwlT4ugqSlFzH2DZVp1lqW09/SvmHNpvMUh6UUSSU8HFvbZvpSqUlguRcKNV9hsq+tEqiq770i/Jk9S/Gp/iWVeZbZVV4Tv6q1gSKZqj8q6haGo1l0Z0K+i622RTlf6PjUqVcV+IqANnWAI1QNv6C17e2cRy+8c2q26fUN60DrGtI+tdmIay1OFmHZa4Ew6v0ByzLLqXsV/cLKQQQyMQSQEsWY4WtWmoyDZAcC4DOMFYTKkWjiLLEPot95fStKxCotwUQLbEyU3Vb++6PlJFBXHdLGPlolkEUT6DeFqv92wTCVkT/1BOrMYSW2tE+XKN/qm/Cf+xa9RlnD5N/lnWBUyY6Llt1aN1nHcVoClcBW0Y9roqajzi6oXT/UvlT6QWqbh/dIEr0qYK9+xXmOfWkl2orjwLlfqWYEJlq1owyZcbXnPNdOR8lz7uQ0lEhO2VkVrpM51PXklkfkKiYi/pkWgw4x5DKW8Lvf1UroNLnHoayX7XtXX+i9VrHkjDzm33M71V+Pwp72qxCCT7FvwyMNMNfvxDwroF2UJQkSVmgWetgXL+owZh3wpp3+rYcyti6Ttj3eT3N43JFz8mB8Bynk+aLl2JeB86xei1jjDzmddXQNeDk95YpSaNrmPf7peerUJGqvyhWQXqM89eDMn76M/NUsQAou03X8X6k7FvWEX2pr2RAwBcAhBBCCCGEEEIIIYQQ0od58803cffdd2PmzJl48skn8dxzz+GNN97AoEGDsNlmm2H33XfHIYccgo997GPYaKONeqxOl/vuuw+/+MUv8OCDD2Lx4sWo1WoYO3Ys3v3ud+Pkk0/G7rvv3lC9JEFIyddSpHezaNEijBs3DgAwfeL/YHDLcDtDVYU/UE7l36xLI0/56lMC51kGiIx9JVWtPiuAUv79gQoqe994F6T5LDncc6RjPZRQX3jVJRn15dHIHGhUWZ9quv9LP3KV8FlUVfaXPB/NGO+GjsekzLGVVdJ3VXHfVfV/mT7kro0lFf95+YvW16K2vHVW6FfRGuxT0bt/zTIZ+VP7tbLS1yd//7IU/dFOQ8VbxjduXEfYGsT/kpgBUCr/IPkLROp+vS2S/uh8tcQCQNaQqCXrQBBbWIhOIKhL7Qfa6o6hqlR9CVuAequAbFHte8oYCksR+lXOmT6tfYrxrCmfoeCsoja2yuYpPLP25eTJqzval7HO5i2/KYsHv5rfO3Y+64oihX4Xl0QvOcfXiBVFU/xnV2ivaC6YClxvLAkjvVDxb+ZHkjfdppnfqS8rH2A8O2YcU1Z9Ju5xu7uL1lTYSnB/evzXuGeU9otfhi7c+6vG8ihnTVNwnHrNF9a6KYMMqwAf0jMnvfvSc86dn/b+nPlS9lot6L+Ou5FRr/e6cvKZFnbpBnK65r0GZHaePMV8noK/qD9ZbeYp+q3vfEVtZivrK6n0s+IOFJWrUo+ZN5T467zvgNi/BR047EMYHAzr4R6VZ224CveuugkAsHDhQowdO7Zb25s7dy5OP/103HXXXejo6CjMv8kmm+AHP/gBPv7xj2/QOl1WrlyJz3/+8/jNb36TmUcIga9+9au45JJL0NraWrpuYkMLAEIIIYQQQgghhBBCCOmDPPPMM7jjjjustFqthu222w5bbrkl6vU65syZg+XLlwMA3nrrLXziE5/ACy+8gAsvvHCD1WnS2dmJo446CjNnztRpG2+8MXbaaSesX78es2fPxpo1ayClxGWXXYbXXnsNv/zlLyuNC0ngCwDSt5DS78e9qsp/Qxq+mL6gU/uUo0BDeqiORfmmVAiR3W/3UN2ycfnSav+exIwBoJBhMn6mSrOMaFsds6loDsP0+chQsRbmaQK9Qe3fZfV6HhvCH/8GVPormj5moSweK891XSpfVer16kpC12qgKAaAz8e+L2+Rur7oPPREPAjAe3xCykRFGiJZz3LOl6ohigUQY8YCUB/qSqEqgcBQlZkWAa4aVgnz6zD6mqNcK6uQlRLB+jqC9dE8ShT9IvabLIDAyB/7S5aBgGxJLAbCmkozG4H2zy8kIn/OSBSk0g1TIuLjk9HnMD6IQEb3SVkHRKfQ6kIRSgR1IOgEgo44b6eM20zaAgBZEwhbgLBFpKwIlIrRjCUAAZ3fsmpoMUY9a7qWVML60oT52VWQelTd7jEARUuK8KtJK1JGue+qiLPiA/jGq2FVdQZ5qmCZkZ5Z1p+tuKxXMWzvT1uuyLR638nr+hpX11DKB7mRVsrSxCUzZlTW8Uo7zVyTwuTY/HnjbVdJ7Kr13VuKT8Xu7tPzUT2rSivuiDDLCgFtgC8AodTvWXTVoq/k84BwLhrXwsa1bkj59zfyZvfFXhNFXZ2fdB+7bMlTNAcz/OwX5W8m1hBnrN/e/WXjW+j96QyFsWF0WxnpZetHQb48X/15fSvwmV9JoV+kyi+qo2x9eV4KivpIAAAyDCH7UIAEmRd/sBtpaWnBEUccgY9//ON497vfjY033jjpk5S47bbbcMopp2Dx4sUAgIsuugh77bUXjjzyyA1aJwCcddZZ1o//55xzDr75zW9i6NChAIBly5bhm9/8Jn7+858DAH71q19hn332wf/8z/9UHBUC5IagI4QQQgghhBBCCCGEENJbaW1txac+9Sm88MILuOWWW3DUUUdZP9QDkSudo446Cv/85z8xevRonX7mmWdusDoVCxcuxA9/+EO9fc455+CCCy7QP/4DwGabbYaf/exnOOGEE3Ta+eefj9WrV+fWTfwwBgDp9VgxAMZ/NooBkKf2LVL49tSUL6PgcZWsZfxKl/VT3Z0q2NzzUVFFkVen79wWlW20fcBvbZKXv9F8ZelKfIGeUkFXoQnxEzakNUW3Wk1sSKr41c9LB4pjB5Sps+z6Vdbvf14deXR3DIOUj2hT4Z9Rl+ezt5wQjmpVpGIE6PQMRWueCrYUptrWuLZNZZ1pAaAtBYSwlaYiUtpbeYFYeSxtdaKj9FV1RHEE7GOVqk1VrVM2qEuIzvhzR2iNh7IAQFxvWIv+yhah96v4BdZYaPWr9LYtA6DeFls/tArLWsDKa8YjMJTwshbVIR1rBD0aWadQeqwELD/JaeV9KQqW9DyrAe3/21X6q23Y28jaliX3+bYLqi7ly7/sbU0r2ZNtXz36vEvjMyqo+oFEre+osZP602r+lPLf12fr2cvZZx2rf1DK+FnX64dPlZyn8M7wJ152nfOr0X33IJVfWOt4VowLXbdHVa/uF5lWLkX96yreODZFZXL2VVDXF64NVuYGDt6n/geKlfQuXX1urVg8P7ZIzhjmKelzfeKXqDunD1aZrMfzglgBmUr+rH5n+tR3+lNF0d+VOAJAw99L//r899J5ByDmb0EHDDmmz8UAuG/NzQA2TAyAqvz0pz/FZz/7Wb39/PPPY9KkSRusztNPPx2XXXYZAGCbbbbBc889h7a2Nm/e5cuXY9y4cfqH/yuuuAKnnHJKl/o6EOknv14QQgghhBBCCCGEEEL6HVL2vX+9GNc9z9y5czdonbfccov+fPLJJ2f++A8AI0eOxLHHHustS8rDGACk71GktnB9x6f29zIldJZitSuKbY9PUyu2QFcpOgdZN7syqoes+qsou9Uxhp5x8GH4rbaoOc6ky9zETauBsnOt7MNBrRfN3a4+0DRB7R91o9y86Atq/Q0dC0KPSdba4FtH8tKBaP7nWQGoeZMVXyMr1olvaHzNyJzYBXVnu3BOFKyZWceSt69ujp206rZ89sd9NX36p+qNz4NbLlKeSitvpA521KQqToBrSSAltN986xhkopYtowy1LAlEfIzxqErbp74uEgIyMNTHSvVe96vnXEWh9FhOSEiIukyOx0OWmlEdU9giMs4zIDolanXplMuw5si4xDNVzIYS27WKCFsCy+ogrAFha4CwNYlJEKULyyLAPE8pf/Gpjtl5vT6jTYW++hxkK4Vtv/FOult3Ec24JUr7s4j9yFt+yrPGSdjH7dZrqeyhLECk3u+rTxdXqnBDrQ9E12VQj+e003e3DlVPnm/x1D7v81dGXiD3WaBLcSGKyqr5nDsJ1BoQU+IWm/jqNvuizkGUmKw70bayXIo+u5ZG5kWk0oz8rmVNg8/oVryOZj0quudWpGN9pNoqec5T65BrEWdU5Lbprvu2mt3tYLrtRtTrRTQjBkplMtr0+q/P9Y/v1uvclyte994+Nfh4mxm7row1QVVrgTwLgCrxBbxraMm0vHRCuoGRI0da2ytWrNhgdc6dOxcvvvii3j7ssMMK637f+96HX/3qVwCAe++9F2+//TY22mijLvR24NH7fxEhhBBCCCGEEEIIIYQQ0mVeeukla3vzzTffYHXOmjVLfx40aBD22GOPwrr33Xdf/bmzsxOzZ89usJcDF1oAkL5HkTrGfPPeB1S/ucfTqA/qvHKuMqHKeJZhQ6r/M5UhBX3OUhk3wzqkEasBl6zYA12htylKTCuNLtAblP0NKfebZAFRioxrXMrQHj+fJYA5b0RGurvPN39dq4Cq89FndaBU16nr1lO3bwxkPaO8gQiyz5Xj3z1dNmOdMfEeQ2IZkKhRHXWkVot6FJoAEAorLSoT16lORd1oV5Uz8vliBuh6U5LMqHyRP21TxW5aBsCjks1GIOVP2+xvFjmXaeWrseyyEyL21+9RW0qZqxpVY+VVFCvrjXpiHVGTEkA9Oc4gKS9FUo+sJZYZZqwCWYNOV+fHVfcmivaozaATidLd13+h6vMdoFFvaNSjVNaGRUAqXaWF0lHpZ6xXVrseZbFHPZ9SaRuGO268CFWXNb/NMoFdT17dVt9kGFskQK8VKR/97qXYhXu997pqkFQ/yvgZBzLXzEKFuxsjBM7xBEhdt77jlTCsqnSf1VruWBQkSZ7+SshQQHhWl2gNTtLt+CZmupGctZYaXUx9NO57efnL+NS38uRNk9R8dPfLdLr05HWv7RLlkzaLFfAN0+gjZwPtF17LFS0ZumL50KiCv3R7XksN9fzjX0tK+d438hdiPrO5luGBXY90rS/Ntn3fb3yW5lnW573NUwHp1/zxj3/Un1taWjBt2rQNVuecOXP053HjxqG1tbWw7nHjxqGtrQ3r168HEFkR7LXXXl3s8cCCLwAIIYQQQgghhBBCCCG9Eyk3rIiqqxgveJYsWVK5eHcGDV61ahWuuOIKvX3ooYdi00033WB1mpYC22yzTan6gyDA1ltvjfnz5wMAFixY0HhnByh8AUD6FkIUvxmvZbxRbxbN9KXvUsVffR55Prpdmn0TLaOuz/MDbo6r6ltWXIcs9UQZdXmemrm7yvjw1ZPnQ92lrLVAls/1RmjmtVXmOmrCHK2k0i/TXqNj0Ih1R5X54JtvOWtWygogL3+eurboms867jKWAVnXeRXyhj1reIXItj7KswwAorHLOpYsayhzvOruWNtlhF7j4M2XUrYGhoq07paxPwuzvONTX9Xhqx9CWH72dfyCLHG/a/VgbuVNeeFX1TbN73UZPPEEyviAtlW0Iu3/G/5z503X7caK2HqsmI3V4aruQCnjhbCsCbznWOFaETgWGlY8AuO4vGpf5zilEctG5zf94jvTwqd4Tyu07f4mlSX9L6WMl0mdgUwUyF7Vsa4bUHEZzPZMvH7lszDPj/no41G4A/a1Ep13VYGn/aKmpfSulbmKfZ3mrFEeKwnAoyTO65va5Vqi6A/2ZHFjlAjIZO6F6UpE1nqpMMe/CQEnvO10RYlfhHGPEqn7ubcLcRseqwVP9d41LyPGhTsf/BYARmKWyttTd2XFe0m8Y50TS6bh9rP6n/fcUnY9K0FXrIYqU6atPH/7efUUWH40dJzmM5sTz0dbVfq+c7vfZ4HycelIv6URpbrsxuvz9NNPx+LFiwEAQghccMEFG7TOlStX6s+bbLJJ6TY23nhjbx2kHD3vO4EQQgghhBBCCCGEEEJIt3H99dfjqquu0ttf/epXS/ngb2adq1at0p8HDx5cup0hQ4Z46yDloAUA6WOUsABoNlnq8mZS5ZjK+gqs8sa4WWNaVRWfdyw+9QQAhHlyRQdv1iYojBvxX94oVRXj3dm3kkr8pqvto0oL6inZZhOUFNJpS1RR6OeRdR2q9vLaybuGc9aszBgKRetcGSujMv643fPmO8a8c5bnZ7+MxY4QOT7+s5uFrOcfv3edAoCMda0qdd/4J5YbacWurdTWBP5zJNTn0ExP1LKpI/Acrsgan5xx04q6zBz+torqbqZv81y8Mllh7U4U2+lzKA1VMqxzgJTVg3tMUgigFrXiEdemCZ2/qo/m3FFhMlQtJZTfKQpUz0k92XVZ/vVVna7gUojsR4HMOEL+5GS/O+Y5+SxFdcnntKSAYW0QJzlq/FSdnrHy+UrX+3xDUNUXd145oHl+1vPIiTOiLJCkc82l5puxXwbIsCgop8j3zeVMax3IdP9zlPilJdwVx72yErpM9oI6q/qfL/Q53wxVbNHS1YWqi/33N//cdquSvynjXeX7Rvmsucedta9qepYxaN6zZdHvB9rKvQnf40mf4JFHHsGYMWN6uhu4//778clPflJvT5s2DRdffPEGr7Ojo0N/bmkp/7O0mVfFAiDl4QsAQgghhBBCCCGEEEJI70RKbJi3zU3CeJEzZsyYbvXpX4ZZs2bhyCOPxLp16wAA2267LW6//Xa0tbVt8DqHDh2qP69du7Z0e2beYcOGVewtoQsgQgghhBBCCCGEEEII6WfMmzcPhxxyCN566y0AwFZbbYUZM2Z0ySqhK3VutNFG+vOaNWtKt7l69WpvHaQctAAgfQsVbK1U3opuXVyyAtVWKdus/Hl9qNqWr65mmhk289jz3MNkmvRnmW82yQw0t785ioRGTFRT9RfnK3S/0yyXO0A190QV5oXrYqcplHET02jVjboEKtN2Vl3NdvnTCFXGtMz5F6LanAqCctdV0fqZtb9eVD5xuZPepXynePapIIKpc5FRX17QdF+6t99RmnDr9w13gYueUldM0TTLdJGR037Ja9XnfqPSVV7lEvEEUc7rB3LdjXjGtsClkFW+wTHvdqRMu1Kp+piQKi9TdSgXOVVdjQAl3I00QlOfq4qzNMXlSHe7kmkGKTc/HldIei3NqUe5G3OCuqbcB3k3/HUVUXiN5jXRlTnaHS5/YkrPgap9aOB4G56PzZ7Hza6vD4mdXSqdk2bMpSasc902p3X7JcsxYDBpIvPnz8dBBx2EpUuXAgBGjRqFGTNmYNttt+2xOjfbbDP9ecmSJaXbfeWVV7x1kHLQAoAQQgghhBBCCCGEEEL6CYsWLcJ73/teLFq0CACw8cYb429/+xumTp3ao3XusMMO+vPLL79cqsyqVauwfPlybx2kHLQAIP2frqhRq5ZxyzZLBdJoPd2t9q9CKVVGluq+CWr/pgWCqtiXon0FSpBcRX+RiqRSwK0GJEbdMJe6Rf0PFCppuj2Qr4+mWgqUVCDKsJwVQBmFUlabG0KFJwRQrxfnyUONv6/dvADCWYp7b5s5QeCkp/9CJBYCqX0lzluZeRBWtKIzk0rmS1GmXyWCA5ehISMXs/68aVXBOkGgoN9OP7MsA3JpokKwWwMld2V57eItoUdU6ln0FoVyPyDXWkhRZu44dTTjKsgOAtwY3TKHN3RQ1yy6cH13aVy665raUNdqb1aHN9sKvsQcaVrQZd0m19zeigwlZKapX+9D9vD9+9VXX8VBBx2E+fPnA4j87t9xxx2YNm1aj9c5ZcoU/fm1117DkiVLCl0HPfnkk5l1kHLQAoAQQgghhBBCCCGEEEL6OMuXL8fBBx+MefPmAQAGDRqEW2+9Ffvtt1+vqHOvvfayAgXff//9hWXMPGPHju2SC6OBCi0ASN9Cwn6L351vVbtSd08qB4Ic5aqPDaUiyVPUKlTf3fEzJZ2mIj7L0sJXT1b7VdN9qu0wzB7HPB/jUhYqY0WY8562ZlbldeadXdYd41rNn68MTbwORVf60dto9rVVUuVfRGGciAyECOyyBQL8DUWluAaW/3tnHKr6ns+z4MgqE+bsyysHAEEF37alY+UUjF3ZOdeIEreKqr8LZQE0du004frVXsq7UldXpTol2+7FetK+Q29Q6vuutb4s99qQSucmtdWtPe4Nc8yku/rTDcagvcoaqD+wocezmd+tORdIP2fFihU49NBD8fTTTwMAWlpa8Pvf/x4HH3xwr6lz+PDhePe7340777wTAHD99dfjuOOOyy3z29/+Vn8+8sgjG2p3oNOXHwkJIYQQQgghhBBCCCH9GRn2vX8bmNWrV+Pwww/Hv/71LwBAEAT49a9/jQ984AO9qk4A+PjHP64/33HHHXjiiScy895222365QMAnHTSSV1qe6BCCwDSt5BhY77KFQPBp19YrCq36E0qiDLnRylWfZYACnVMvnEIcxT5mW0WxHRQqvVCP5YlFcdmPbUSfZUSAhWV840I7QfC9UM0rqVAo5YDXpo4l2QVU4SqVgs5a2mu5UHeGtyopYHb90YtCax8Fc5pkyxQonb7mN68ocACRvEmdaOQZp4joGfPU1+bI1XZkM9efWks+1JfBxq96ftCX4NjN7Dh+ScbiHXr1uGoo47CAw88AAAQQuDnP/85jj/++F5Vp+K4447Dt7/9bTzzzDOo1+v46Ec/irvvvjsVC2DOnDn47Gc/q7cPP/xw7L333l1ufyDCFwCEEEIIIYQQQgghhBDSB/nhD3+I//u//9PbI0aMwI033ogbb7yxVPkTTjgBJ5xwQrfXqQiCAD/72c8wffp0rFu3DnPmzMHuu++OL37xi9hzzz3R0dGB++67D1dddRVWrFgBANhss83wwx/+sFTbJA1fAJC+RSj7nwq52Yq9vkzWWPjOeZ4iUzte9qhbsxT1UqKSTrPqPJQy32d42ToGIj153F2xOMpjQxxTF9uobFXiI+s6abDqplohdJG8vuTG7kBBDBQX3xxs1IqpCu56VcV6otkq3h5XBfeSgBeN0ONj1wQG6nNSfzh3PrpoUUNietH9sGE4F0gzGKj3CEIcVq9ebW2/8cYb2sd+GfbZZ58NUqe7/1e/+hVOPPFErFu3Dq++PPkw/QAARMJJREFU+irOPvtsb95NNtkEf/zjHzFp0qTS7RMb3nUJIYQQQgghhBBCCCG9EhnKPvePFHPcccfh0UcfxfTp0yE84odarYYjjzwSs2bNwgEHHNADPew/CCkHqqSU9BUWLVqEcePGAQCmj/sMBrcMb24D/UE10F9VYr2NgbZcdvdDS1fVa42cj0YsN3o6r0lXLRK6cw731PXRHx+uu+O+1Iz7RKN1dMX6qVn3t566T/a1+/NAu8+RhL42V/s7/eH7SX+C10ffoh9Yl/z1xe/3dBd6BeZvQfuJIzBYDO3hHpVnrVyNB+SfAQALFy7E2LFje7hHvZ/58+fjoYcewuLFi1Gr1TB27Fjsv//+GD16dE93rV9AF0CEEEIIIYQQQgghhBBCeoSJEydi4sSJPd2NfgtfABDSL9SjXTwGqoz89Iu5YbCh/MV2l4K0O89HM/qcpQ7z1d2okqyW4Ty/r6h2uyOmQm8QeXU1vkdvpbcqHntrv3z0lWuTEM7Vnsdc2/rbM2ij9JbvKH3x+uhL98pm09tjZPQDCwVCSN+DLwAIIYQQQgghhBBCCCG9ExkC6OUvd0x6+4soMuDgCwDS6+ns7NSf1659E6h19FxnCCGEEBc+3xNCCCGEkCaxaNEijB49Gi0t/MlOsQ5ru+z4YEOyDmt7uguEWHA1Ib2e1157TX9+6LXf92BPCCGEEEIIIYQQQrqPceOuY+BYh0fx957uAiF9GjofI72eV199tae7QAghhBBCCCGEEEIIIX0OWgCQXs+OO+6oPz/44IMYN25cD/aG9CeWLFmCvfbaCwDwyCOPYMyYMT3cI9Jf4Nwi3QnnF+kuOLdId8G5RboLzi3SXfT03Bo9evQGba83Mnr0aCxcuLCnu9FleC5Jb4AvAEivZ/DgwfrzuHHjaAZHuoUxY8ZwbpFugXOLdCecX6S74Nwi3QXnFukuOLdId8G51TO0tLRw3AlpEnQBRAghhBBCCCGEEEIIIYT0Q/gCgBBCCCGEEEIIIYQQQgjph/AFACGEEEIIIYQQQgghhBDSD+ELAEIIIYQQQgghhBBCCCGkH8IXAIQQQgghhBBCCCGEEEJIP4QvAAghhBBCCCGEEEIIIYSQfghfABBCCCGEEEIIIYQQQggh/RC+ACCEEEIIIYQQQgghhBBC+iF8AUAIIYQQQgghhBBCCCGE9EP4AoAQQgghhBBCCCGEEEII6YfwBQAhhBBCCCGEEEIIIYQQ0g8RUkrZ050ghBBCCCGEEEIIIYQQQkhzoQUAIYQQQgghhBBCCCGEENIP4QsAQgghhBBCCCGEEEIIIaQfwhcAhBBCCCGEEEIIIYQQQkg/hC8ACCGEEEIIIYQQQgghhJB+CF8AEEIIIYQQQgghhBBCCCH9EL4AIIQQQgghhBBCCCGEEEL6IXwBQAghhBBCCCGEEEIIIYT0Q/gCgBBCCCGEEEIIIYQQQgjph/AFACGEEEIIIYQQQgghhBDSD+ELAEIIIYQQQgghhBBCCCGkH8IXAKRXc9999+Hkk0/GjjvuiOHDh2PEiBHYeeed8cUvfhFPPPFET3eP9DD33HMPhBCV/82dO7d0G5yD/Y/Fixfj1ltvxdlnn41DDz0Um222mTU/7rnnnobr7o75IqXEHXfcgQ9/+MOYPHkyhg4dilGjRmH33XfHGWecgX//+98N95c0l2bOrQ2xvgFc4/oCb775Jm6++WZ84QtfwH777Yctt9wSbW1tGD58OCZMmIAPfvCDuPLKK/H22283VD/XrYFLs+cW1y0CAOvXr8c//vEPfP/738fHPvYx7LXXXhg9ejSGDBmCtrY2bL755thzzz3xhS98Af/4xz8aaoPr1sCkO+YW1y1CyIBBEtILWbFihTzhhBMkgMx/Qgh52mmnyfXr1/d0d0kPMXPmzNw5kvVvzpw5hXVzDvY/Hn/8cTl69OjC+TFz5szKdXfXfHnllVfkoYcemltva2urvPTSS2UYhpX7TZpDd8yt7lzfpOQa1xeYM2eOPPzww2Vra2upc7/JJpvI6667rnT9XLcGLt01t7huESml/NSnPlXp/E+fPl2+8MILpermujWw6Y65xXWLEDJQaAEhvYzOzk4cddRRmDlzpk7beOONsdNOO2H9+vWYPXs21qxZAyklLrvsMrz22mv45S9/2YM9Jr2BwYMH48ADDyyVd6ONNsrdzznYP3nrrbfwyiuvNL3e7povK1aswHve8x7Mnj1bp40aNQo77rgjVq5cidmzZ6OjowMdHR34+te/jpUrV+KCCy5o+vGRYrprbimaub4BXOP6Cs888wzuuOMOK61Wq2G77bbDlltuiXq9jjlz5mD58uUAonn4iU98Ai+88AIuvPDC3Lq5bg1sunNuKbhuDVyklNb2xhtvjEmTJmHEiBGo1+tYvHgxXnzxRZ3vnnvuwbve9S7cc8892GGHHTLr5bpFumtuKbhuEUL6NT3z3oGQbL7+9a9bb8TPOeccuWrVKr3/9ddfT739/8lPftKDPSY9hanYGD9+fNPq5Rzsn5jzZauttpJHHXWUvPDCC+W1115rncuqFgDdNV+OO+44S3V2xRVXWMqghQsXyiOPPNKq94477qjUd9IcumNuddf6JiXXuL7CTTfdJAHIlpYWefTRR8tbb71VvvXWW1aeMAzlrbfeKrfeemvrfN122225dXPdGth019ziukWklPJLX/qS/K//+i953XXXZaqvX375Zfn5z3/eOl977rmnrNfrmfVy3SLdMbe4bhFCBgp8AUB6FS+//LIcNGiQdZPMwjSl23LLLa2bKRkYdMcDG+dg/2XRokXytttuk0uWLLHS58+f3/CPtN01Xx555BGrT9dcc403X2dnpzzwwAN1vl122YWm6T1Ad8yt7vpCyjWu73DrrbfKT33qU/Kll14qzPvyyy9bbqh23nnn3LxctwY23TW3uG6RqnzrW9+y1o2///3v3nxct0hVys4trluEkIECXwCQXsVpp52mb37bbLONXLduXWbeZcuWyaFDh+r8V1xxxQbsKekNdMcDG+fgwKMrP9J213w55phjdL599tkntw+zZ8+2+v/nP/+5dP9J99IbXwBwjeu/XH311dZ8e/755735uG6RqpSdW1y3SFXWrFkjN9poI32+vvWtb3nzcd0iVSk7t7huEUIGCgEI6UXccsst+vPJJ5+Mtra2zLwjR47Escce6y1LSKNwDpIqdMd8Wbt2Lf7617/q7c997nO5fZgyZQoOOOCAwnoJAbjG9WeOPPJIa3vu3LnefFy3SFXKzq3ugutW/2Xw4MGYMmWK3s6Kp8N1i1Sl7NzqLrhuEUJ6G3wBQHoNc+fOxYsvvqi3DzvssMIy73vf+/Tne++9F2+//Xa39I0MDDgHSRW6a77cc889WL16dcP1uoEdCVFwjevfjBw50tpesWJFKg/XLdIIZeZWd8F1q//T2dmpP2+88cap/Vy3SKMUza3ugusWIaQ3whcApNcwa9Ys/XnQoEHYY489Csvsu++++nNnZydmz57dLX0jAwPOQVKF7povZr0TJ07ElltuWaneV155BUuXLi0sQwYeXOP6Ny+99JK1vfnmm6fycN0ijVBmbnUXXLf6N8uWLcMzzzyjt81zp+C6RRqhzNzqLrhuEUJ6I3wBQHoNc+bM0Z/HjRuH1tbWwjLjxo2zzOk2tEky6T28+eabOO644zBhwgQMGTIEw4cPx8SJE3H00UfjiiuuKKVW4xwkVeiu+WLWO2nSpFJ9cfNxHvYvmrG+AVzj+jt//OMf9eeWlhZMmzYtlYfrFmmEMnPLhesWKSIMQ5xyyino6OgAAEyePDnlbgrgukWqU3ZuuXDdIoT0Z/gCgPQaTHXRNttsU6pMEATYeuut9faCBQua3S3SR3jrrbdw00034aWXXsLatWvx9ttvY8GCBfjTn/6EL37xi9hmm23w4x//OLcOzkFShe6aL43Uu9VWW6GlpSW3XtJ3acb6BnCN68+sWrUKV1xxhd4+9NBDsemmm6bycd0iVSk7t1y4bhEfHR0dWLhwIX73u99h3333xY033ggAGDt2LG6++WbvD6Vct0gZGplbLly3CCH9mZbiLIRsGFauXKk/b7LJJqXLmf78zDrIwGPChAnYeuutMWjQILz++uuYPXu29v341ltv4Utf+hKefPJJXHPNNd7ynIOkCt01XxqpNwgCDBs2DG+99VZmvaRv09X1DeAa1585/fTTsXjxYgCAEAIXXHCBNx/XLVKVsnPLB9ct0tnZmfvD6+DBg/GhD30I3/nOd7DVVlt583DdIj6aMbd8cN0ihPRXaAFAeg2rVq3SnwcPHly63JAhQ7x1kP5PEAQ46KCDcP3112PZsmWYP38+HnjgAdx9992YNWsW3njjDVx55ZUYNWqULnPttdfiu9/9rrc+zkFShe6aL5yHBGj++gZwbvVXrr/+elx11VV6+6tf/Wqmv2GuW6QKVeYWwHWLVOeQQw7BSSedlPsDLdct0ghl5hbAdYsQMnDgCwDSa1A++gBYppVFmHnXr1/f1D6R3s0BBxyAGTNm4L//+78xcuTI1P6NNtoIn/vc5/D4449jwoQJOv2CCy7Aq6++msrPOUiq0F3zhfOQAM1f3wDOrf7I/fffj09+8pN6e9q0abj44osz83PdImWpOrcArlskTRAEOPTQQ/W/Aw44ANtttx2EEACA2267DQcddBAOPfRQvP766946uG4RH82YWwDXLULIwIEvAEivYejQofrz2rVrS5cz8w4bNqypfSL9g3HjxuGGG27Q26tXr/aabXIOkip013zhPCRVKLu+AZxb/Y1Zs2bhyCOPxLp16wAA2267LW6//XYriKAL1y1ShkbmVhW4bg0cgiDA3/72N/3v3nvvxXPPPYfFixfjjDPO0C5c7rrrLrz3ve/FmjVrUnVw3SI+mjG3qsB1ixDS1+ELANJr2GijjfTnKjfo1atXe+sgxGTvvffG9OnT9faMGTNSeTgHSRW6a75wHpKqlFnfAM6t/sS8efNwyCGHaD/UW221FWbMmIExY8bkluO6RYpodG5VhevWwGbMmDG4+OKLcfvtt6NWqwEAnnrqKVx00UWpvFy3SBWqzK2qcN0ihPRl+AKA9Bo222wz/XnJkiWly73yyiveOghxMR/Y/v3vf6f2cw6SKnTXfGmk3pUrV1pfGjgPBx5F6xvANa6/MH/+fBx00EFYunQpAGDUqFGYMWMGtt1228KyXLdIHl2ZW43AdYsceuihlqupq6++GmEYWnm4bpFGKDO3GoHrFiGkr8IXAKTXsMMOO+jPL7/8cqkyq1atwvLly711EOJiqtd8viA5B0kVumu+NFLvwoULM+sgA4Oi9Q3gGtcfWLRoEd773vdi0aJFAICNN94Yf/vb3zB16tRS5blukSy6OrcagesWAYDjjjtOf162bBmee+45az/XLdIoRXOrEbhuEUL6KnwBQHoNU6ZM0Z9fe+21Um/Ln3zyycw6CHExFTumb0YF5yCpQnfNFzPt2WefRWdnZ2G9TzzxhP5cq9UwefLkwjKkf1G0vgFc4/o6r776Kg466CDMnz8fQHSe77jjDkybNq10HVy3iI9mzK1G4LpFgMi3usmyZcusba5bpFGK5lYjcN0ihPRV+AKA9Br22msvK7jY/fffX1jGzDN27NhuM1Em/YPZs2frz1tssUVqP+cgqUJ3zZf9999ff169ejUef/zxSvXus88+TQvUSPoOResbwDWuL7N8+XIcfPDBmDdvHgBg0KBBuPXWW7HffvtVqofrFnFp1txqBK5bBABWrFhhbY8YMcLa5rpFGqVobjUC1y1CSF+FLwBIr2H48OF497vfrbevv/76wjK//e1v9ecjjzyyW/pF+gdr1qzBbbfdprff+c53pvJwDpIqdNd82X777S2z36J6169fjz/84Q96+wMf+EBhP0j/osz6BnCN66usWLEChx56KJ5++mkAQEtLC37/+9/j4IMPrlwX1y1i0sy5VRWuW0Rh/vDZ0tKCbbbZxtrPdYs0StHcqgrXLUJIn0YS0ov43e9+JwFIALJWq8nHH388M++f/vQnnReAfOihhzZgT0lf47TTTrPmy6233urNxzk48Jg/f751HmfOnFm6bHfNl0suuUTnGz58uFy0aFFm3h/+8Ic6b1tbm3z55ZdL9590L12ZW1Uou75JyTWur7Fq1Sq533776XMQBIH83e9+16U6uW4RKbtnblWB6xaRUso333xTjh07Vp+v9773vd58XLdIVcrOrSpw3SKE9GX4AoD0Kur1utx55531zW/KlCnyP//5Tyrf7Nmz5ejRo3W+ww8/vAd6S3qSO++8U371q1+VCxcuzM23fv16+Y1vfMN6qNpjjz1kGIbe/JyDA4+u/EjbXfPl7bfflltssYXOf8ABB8gVK1ak8t1///1y2LBhOt8pp5xSuu+k+2l0bnXX+iYl17i+xNq1a+VBBx2kz4EQQl577bVdrpfrFumOucV1i0gp5c033yzPOeccuXTp0sK8zz33nNxzzz2tuTBjxgxvXq5bpDvmFtctQshAQkgpJQjpRTz00EOYPn061q1bBwDYcsst8cUvfhF77rknOjo6cN999+Gqq67SPv0222wzPPzww5g0aVJPdptsYG699VZ88IMfRBAEeNe73oUDDzwQO++8M0aNGoW2tja8/vrreOSRR3D99ddj4cKFutzIkSPx4IMPWia/LpyD/ZdDDjkE9913n5UmpcT69ev1dmtrK4LA9pB3wAEH4K677vLW2V3z5ZZbbsExxxwDdZvedttt8cUvfhG77LIL3n77bdx555249tprdbuTJk3Cww8/jM0226zCiJBm0cy51Z3rG8A1rq9w6aWX4hvf+Ibe3nTTTbHXXnuVLn/CCSfghBNO8O7jujWw6Y65xXWLAMAvfvELfOITn0CtVsOBBx6Id73rXdh5552x2WabYfDgwVixYgWee+45zJw5E3fccQc6Ojp02S984Qv48Y9/nFk3162BTXfMLa5bhJABRQ++fCAkkxtvvFEOGjTIesvu+7fJJpvIe++9t6e7S3qAW265pXB+uP8mT56ca35pwjnYPznwwAMrzxsA8sADD8ytt7vmy+WXXy6DICisd6uttpKzZ8/u4uiQrtDMudXd65uUXOP6Aueee25Dc0r9O/fcc3Pr57o1cOmOucV1i0gp5XXXXVd5HtRqNfnNb34zV02t4Lo1cOmOucV1ixAykGAQYNIrOe644/Doo49i+vTpEEKk9tdqNRx55JGYNWsWDjjggB7oIelpdtxxRxx99NHYdNNNC/NOmDABl156KZ544gnsvvvupernHCRV6K75cuqpp2LmzJnYY489vPsHDRqEE088EU899RSmTJnScP9J76K71zeAaxzhukWaC9ctAgD7778/vvjFL2Ly5MmFeYcNG4YTTzwR//rXv3DJJZd4z6kL162BS3fMLa5bhJCBBF0AkV7P/Pnz8dBDD2Hx4sWo1WoYO3Ys9t9/f4wePbqnu0Z6CS+88ALmzJmDRYsW4c0330S9XsfGG2+MLbbYAnvuuSe23XbbLtXPOUiq0F3zZfbs2Xj88cfxn//8B0OGDMHYsWPx7ne/GyNGjGhOx0mvpLvXN4BrHOG6RZoL1y0CAMuWLcOsWbMwf/58LFu2DOvXr8fw4cMxcuRI7LTTTth5553R1tbWcP1ctwYu3TG3uG4RQvo7fAFACCGEEEIIIYQQQgghhPRD6AKIEEIIIYQQQgghhBBCCOmH8AUAIYQQQgghhBBCCCGEENIP4QsAQgghhBBCCCGEEEIIIaQfwhcAhBBCCCGEEEIIIYQQQkg/hC8ACCGEEEIIIYQQQgghhJB+CF8AEEIIIYQQQgghhBBCCCH9EL4AIIQQQgghhBBCCCGEEEL6IXwBQAghhBBCCCGEEEIIIYT0Q/gCgBBCCCGEEEIIIYQQQgjph/AFACGEEEIIIYQQQgghhBDSD+ELAEIIIYQQQgghhBBCCCGkH8IXAIQQQgghhBBCCCGEEEJIP4QvAAghhBBCCCGEEEIIIYSQfghfABBCCCGEEEIIIYQQQggh/RC+ACCEEEIIIYQQQgghhBBC+iF8AUAIIYQQQgghhBBCCCGE9EP4AoAQQgjJYcGCBRBC6H8f//jHe7pL/ZLzzjvPGud77rmnp7vU49xzzz3WmJx33nk93aWGcI/D9+8Xv/hFt7U/ffp0qy1CCAGACRMm5K5L06dP7+kuEkIIIYQ0Bb4AIIQQQgghhBBCCCGEEEL6IXwBQAghhBBCCCGEEEIIIYT0Q1p6ugOEEEIIIVUxXbkceOCBdBnUh/jYxz6GE0880Urbaaedeqg3hJC+yC9+8Qt84hOf0NvXXXddZRd9119/PdasWWOlHXzwwc3oHiGEEEJIr4IvAAghhBBCyAZj2223xUEHHdTT3SCEDHDe9a539XQXCCGEEEI2CHQBRAghhJAe57zzzoOUUv9j8EVCCCGEEEIIIaTr8AUAIYQQQgghhBBCCCGEENIP4QsAQgghhBBCCCGEEEIIIaQfwhcAhBBCCCGEEEIIIYQQQkg/hEGACSGEkA3Ak08+idmzZ2Pp0qVYu3YttthiC4wbNw777bcfhgwZ0tS2wjDEI488glmzZmHZsmUYNmwYxowZgwMOOACjR4/ucv1PPfUUZs2ahSVLlgAAxo4di3322Qfbbrttl+seCHR0dODee+/Fiy++iNdffx3Dhg3D5MmTsf/++2P48OFNb2/p0qV46KGH8Morr2DZsmXYaKONsMUWW2CvvfbCxIkTm97ehmL+/Pl4+OGHsXjxYnR0dGD06NF4xzvegZ133rnpbdXrdfzrX//C888/j6VLl2LdunXYfPPNMXHiRLzrXe/CoEGDutzGc889h0cffRT/+c9/0NnZiTFjxuAd73gHdtpppyYcgZ96vY6HHnoICxYswJIlS1Cv17HTTjvhiCOOKCw7b948zJo1C6+99hreeustjBw5EltttRX2228/jBw5sin9W79+ve7fa6+9hjAMsfnmm2Py5MnYZ599UKvVGq67o6MDTz/9NJ555hksW7YMq1atwqBBgzB8+HCMHz8e22+/PSZNmtSU42gWUko89dRTmDNnDpYuXYpVq1Zh1KhRGDt2LPbff39stNFGXar/7bffxrPPPou5c+di2bJlWLNmDTbZZBOMGjUKe+yxB7bffvsuH8PKlSvxxBNPYN68eXjzzTexbt06DB06FJtuuikmTJiAqVOnYsstt+xyO4QQQgghxEASQgghJJP58+dLAPrfSSedVLrsihUr5FlnnSW32morqw7z3+DBg+XRRx8tn3766dL1XnfddVYd1113nZRSynq9Lq+44go5duxYb1tCCHnooYdWasvkN7/5jdx+++0zj+Wd73ynvO+++3T+8ePH633jx4/Prfvcc8+16po5c2Yqz4EHHpjZdt6/c889N1WXuf/AAw+sNA4nnXSSVX7+/Pmlyq1evVp+85vflCNHjvT2c9CgQfLTn/60fO2116SUUs6cObPwOLKo1+vyl7/8pXzHO94hhRCZYzNlyhR53XXXyXq9XmkMqtCV4/Dx4IMPyne+852Zx7TTTjvJm2++Wed3500V5s+fL08++eTMcwZADh06VJ5wwgnyxRdfbOh4/va3v8ndd989s/6dd95Z3nrrrQ0dT9Z1tWzZMnn66afL0aNHp9rbbbfdMutbuXKlPO+88+TEiRMz+1ur1eT06dOttaAqTz/9tPzQhz4kN9poo8x2RowYIb/whS/IV199tVLdS5YskaeccorcdNNNC9eOUaNGyeOOO07+7W9/a/hYmsHSpUvlqaeeKseMGZPZ17a2NvmBD3xAzpo1q1Ld8+bNk+edd57cZ599ZEtLS+54jB49Wp5//vly+fLllY/hsccekx/84AdlW1tb4bhPnDhRfuELX5DPPvusVYd7P67yr+w63ZV7AyGEEEJIb4UvAAghhJAcGn0BcM8998gtttii9I8TtVpNnnnmmaXq9r0AeOutt+R73/veUm0NHTq00g9aa9eulR/84AdL1S2EkJdddpmUki8ATF588UU5efLkUv3daqut5FNPPdXwD+f//ve/5W677VZpjPbZZx+5dOnSSuNQlma+ADj//PNlEASljumLX/yiDMOw4RcAF154YakfK9W/trY2+fOf/7x0/WEYylNOOaV0/V/5yleklF1/AfDEE0/kvpTMegFw++23V1rTAMjPfOYzsqOjo/SYdHR0yC984QulzzEAOXz4cPnnP/+5VP133XWX3GSTTSqvIe9617tKH0Oz+fnPfy6HDx9euq9BEMjzzz+/VN2333575bEAILfeemv5yCOPlD6GSy65pNI5Vf/OOussqx6+ACCEEEIIaQy6ACKEEEKazB133IFjjz0Wa9eutdIHDx6MCRMmYOjQoVi4cCFee+01va9er+Piiy/GK6+8gmuuuaZSex0dHTjiiCNw//3367QtttgCY8eORWdnJ1544QWsWrVK71u9ejWOPfZYPPPMMxg/fnxu3WEY4thjj8Wf//zn1L4xY8Zg6623xttvv4358+dj3bp1kFLitNNOa4qrof7Cf/7zH7znPe/BggULrPRarYaJEydixIgR+M9//oP//Oc/Ov9hhx2Gyy+/vHJbDz/8MI444gi8/vrr3rZGjhyJt99+Gy+++KI1Px966CHsu++++Oc//4nNN9+8+kFuAC6++GKce+65qfSRI0di/PjxWLduHebPn481a9YAAH784x9jiy22qNxOvV7HJz/5Sfzyl79M7dtss82w9dZbo62tDUuWLMHixYv1vvXr1+NTn/oUVqxYgVNPPbWwnS984Qv4yU9+kkofNWoUttlmG6xbtw4LFizQ1+4PfvCDLp+bhQsX4sMf/jCWLl2q07beemuMHj0aK1euxMsvv+wt99Of/hSf//znUa/XrfShQ4di/PjxGD58OJYvX44XX3wRYRha5V599VXccsstEELk9m316tX4r//6L9x5552pfaNHj8bo0aMRBAEWLVpk9X/lypU46qij8Lvf/Q4f+tCHMut/9tlnceSRR2LdunVW+qBBgzBhwgRssskmqNfreOutt/DSSy+ho6Mjt78bgnPOOQcXXXRRKn3jjTfGuHHjMGzYMCxdutRaW8IwxLnnnotly5bhhz/8YW797j0KAIYMGYJx48Zh+PDhEEJg2bJleOmll6zzunjxYkyfPh3/+te/MGXKlNw2rrnmGpxxxhmp9OHDh2PChAkYNmwY1qxZg+XLl2PRokWQUubWRwghhBBCGqCn30AQQgghvZmqFgAvv/yyHDFihFVms802kz/72c/kypUrrbwPPvig3G+//VJKxSuvvDK3DdcCYNttt9WfP/rRj8qnnnrKyr927Vp57bXXyo033tgqd9xxxxUe/2WXXZbq39FHH51qY8WKFfLqq6/WrlJGjBhhudhohgXAv/71Lzljxgw5Y8YMK++uu+6q033/XnjhhVRdZvnutgA47LDDrPxtbW3yvPPOS7kueeaZZ+R//dd/6XwTJkywyhUp55csWZJSaO+6667yd7/7XWrurVmzRt54441y0qRJVv73v//9MgzDSuNRRDMsAP7xj3+kXBntsccecubMmVZ/V61aJa+55hq52WabSQCypaVFbr311la5Ir71rW9Z+VtbW+WXv/zllDsSKaV8/vnn5Wc/+1mrby0tLfIf//hHbht//OMfU9fV/vvvLx988EHreNauXStvvPFGOW7cON0X18VXHu51teWWW0ogsjj6n//5H/ncc89Z+VevXi1nzJhhpf3f//1fSr195JFHynvuuSel7l+2bJn87ne/m1Ksf+c738ntp5RSnnjiiVaZjTbaSJ5zzjle10pPPvmkPPbYY638w4cPTx2Pyfvf/34r///7f/9P/vnPf5br1q1L5V2/fr18/PHH5be//W25yy679IgFwLXXXmv1VwghTzzxRPnoo4+mXHYtXrxYnnHGGbK1tdUqc+ONN+a2cdNNN8larSYPP/xwefXVV8vnnnvO6w5sxYoVXhdw/+///b/c9WLt2rUp91nHHHOM/Ne//uUtt2LFCnn33XfL0047TW655ZYpC4A1a9bodf1rX/uaVe/Xvva13PvAmjVrcsdC0ZV7AyGEEEJIb4UvAAghhJAcqr4AOOKII6z848aNkwsWLMjMX6/X5cc+9jGrzNChQ+XixYszy7gvANSPQz/72c9y+3bfffdZP+S1trbmun1ZsmSJHDp0qNVOkZuiF154weunuhkvAEy6+iPNhnoBcOONN1p5Bw0aJO++++7c+s8666zU+JX54dx90fCZz3xGrl+/PrfMG2+8kfKn/8c//jG3TFW6+gKgXq/LnXbaKfWiIu/YFixYkPrhv8wP5v/4xz+sa2TUqFHy0UcfLezjDTfcYJXbddddM/OuXbs2dY2ccMIJuXEYXn/9dTl16tTKx+NeV+oFxU033VR4TFJG88OMExAEgbzmmmsKyz377LNy88031+Xa2trkkiVLMvPfcMMNVh8nTZokn3/++cJ2Lr30UqvcBz7wAW++N9980/Jvv+OOO8rVq1cX1q+YM2dO6bzN4IUXXrDW3iFDhsi//OUvheXuvfdeOWTIEF1uiy22yP3h+8UXX8y9P7msWbMm9SIlr1933HGHlffEE08s3da6deu8L28VWbFwugpfABBCCCGkPxKAEEIIIU1h3rx5uOOOO/R2EAT4wx/+kOtmJwgCXHvttdhll1102urVq3HllVdWavtLX/oSPvWpT+Xm2X///S0XGR0dHbj77rsz819zzTVYvXq13n73u9+Nb3/727ltbLvttvj1r39dstf9n/b2dmv729/+Nt7znvfklrnoootw8MEHV2rnoYcewt/+9je9/b73vQ9XXXUVWltbc8uNGDECN998M4YPH67TLrvsskptdzczZszAs88+q7fHjBmDG264IffYxo8fjxtuuKFyWxdccIF2dRIEAf70pz/hHe94R2G5D3/4wzjttNP09lNPPYX/+7//8+b9wx/+gCVLlujtHXbYAddccw2CIPuxfLPNNsPNN99ceD7LcPrpp+PYY48tlfeqq67CK6+8ore//e1v4+STTy4sN3XqVPziF7/Q2+vXr8cVV1zhzSulxHnnnae3hw4dijvvvBOTJk0qbOdrX/uatabdfvvt+Pe//53KN3/+fHR2durtj3/84xgyZEhh/Yodd9yxdN5mcOmll1pr77XXXov3ve99heUOOOAAfP/739fbS5cuxW9+85vM/BMnTix0A2cyePBg/PrXv8Ymm2yi06677rrM/O65+PznP1+6rba2Nmy77bal8xNCCCGEkGz4AoAQQghpEtdcc43lv/gjH/kI9tprr8JyLS0t+N73vmel/exnPyvtC3nIkCE455xzSuX98Ic/bG0//vjjmXl/9atfWduXXHJJqTbe+973Vv4Buz8yZ84cPPTQQ3p76623xpe+9KVSZd35UMQPfvADa7u9vb3Q57pi9OjR1sujf/zjH3j11Vcrtd+dXHvttdb22Wefbb2wyGK//fbD0UcfXbqdOXPmWP7nP/zhD+Od73xn6fLf+MY30NKShNe6+eabvfnc6+r8889HW1tbYf077rgjPv7xj5fuj4+hQ4d6/bH7qNfr+PGPf6y3t9lmG+slRxHvf//7sfvuu+vtrPG48847MXfuXL395S9/udSP/4qzzz5bf5ZS4pZbbknlUXEhFM14kdJdLF++3Joj++67L44//vjS5T/96U9bsS+yxr1RRo4cab2MePDBBzPz9qVxJ4QQQgjpz/AFACGEENIk7r33Xmu7jFJWcfDBB2Ps2LF6+9VXX/UqWX0cdNBB2GyzzUrl/X//7/9Z2wsXLvTme+2116z2J02ahL333rtUGwBwwgknlM7bX7nnnnus7eOPP770D2C77bZb6lxlEYahpf7fa6+9sMMOO5TtJgDgkEMOsbbNgNI9jTmOra2tlX4MrfKD+V//+ldr+2Mf+1jpskCk0p82bZre9o1hGIb45z//qbeHDRuGo446qnQbXb2uDj/8cGy88cal8s6aNUsHpgaqzV+FOa/mzp2bCk4NAH/5y1+s7arjvuuuu1pBx33jvtVWW1nbv//973tFkF8f99xzj/XDedXxaG1txbvf/W69/eCDD1oBfJvBxIkT9efFixdbAe1N3HHPs0YghBBCCCHdB18AEEIIIU1g3bp1ePLJJ/V2a2sr9ttvv9LlgyCwfrQBYKnH8yjjokRhKkMB4K233vLm+9e//mVtV1FCN5K/P/LII49Y29OnT69Uvmz+p59+2jqPVeaDYptttrG258yZU7mO7uCll17C0qVL9fauu+6KkSNHli5/4IEHls7r/nDc1XGcO3duyopn3rx5WLlypd7eY489MHjw4NL177XXXpaVQVXKWCQpmj0egH9eme0MGzasIXc748aNy21j/PjxmDx5st5++OGHcdhhh+Wq13uKZo/7ihUrsHjx4sIyb775Jq655hp84hOfwB577IExY8Zg2LBhEEKk/rnWYL4XOwDwnve8B7VaTW+3t7fj85//PF588cXKx0QIIYQQQhqn8W8QhBBCCNG88sorWL9+vd7ecccdS7n1MNltt90s//kvv/xyqXLuj/p5DBs2zNp2XTQo3B+MpkyZUroNILIYaGtrs8ZkoDF//nxre+edd65U3owLkYf7g+dPfvIT/OQnP6nUlsvy5cu7VL5ZdHUMR4wYgXHjxmVaupi441jluvJRr9exYsUKy196V6+rwYMHY8KECXj++ecb6pOp3C7CHY/jjjuuoTZNfPPKbGfVqlW5sRAabQMAzjvvPHz0ox/V23//+9/x97//HRMmTMChhx6KAw88EO985zsr+cTvDtxxr/LSJovly5dbL0lMVq1ahfPPPx8/+tGPsG7duobqf/PNN73p48aNw8knn4yf/exnOu3KK6/ElVdeiWnTpuGggw7CAQccgH322afSiz1CCCGEEFINWgAQQgghTeCNN96wtkeNGlW5DreMW2cWVRTELllxBtwfdMwfMcsghCjtaqS/4o5hWTdNVfMvW7asUr1lyLIM2dB0dQyrlNkQ49jV6wqIXmo0SpVrckOMx6pVqxr+0blsG4r//u//xoUXXpiKjbFgwQJcffXV+O///m9MmDABEyZMwGc+8xn8/e9/Lx2HpZlsyOv59ddfx7777ovvfe97XToPeWV/9KMf4cgjj0ylP/bYY/jud7+Lww8/HKNGjcLuu++OM8880wr4TQghhBBCmgNfABBCCCFN4O2337a2XaV9GdwypquQDY37g05VawYAGDRoULO60ydx58TQoUMrlS87h7LUt12h2T7DG6WrYwj0rnHs6euqig//DTEe3dFG3o/2Z599Nv75z3/i/e9/v+WaxuSll17Cz372M7z3ve/FrrvuihkzZjS9j3lsyOv5Qx/6EJ5++mkrbdy4cTjxxBPxne98B7/5zW9w66234s4778SMGTP0vypxCQYPHow//elP+O1vf5sZ10RKiSeffBKXXHIJdt55ZxxxxBENW7kQQgghhJA0dAFECCGENIGNNtrI2l61alXlOtwyw4cP71KfuoKrTHZ/iC3DihUrmtWdPon7w/Pq1asrndOyc8j9UfwjH/lIpQDUPtzgnT2FbwyrUmUczTn717/+tUv+9gFYwWmBvnVdufPqO9/5jhXkuBF22mmn3DZGjhyJG2+8sUttFLH33nvjjjvuwJIlS3DXXXfhnnvuwX333ef1S//MM8/g0EMPxWWXXYZTTz21W/ulcMfkuuuuswLEN8Juu+2WSrvtttusANvDhw/HlVdeiY985COFbpjuvvvuSu0LIfCRj3wEH/nIRzB79mzMmDED99xzDx544AFv/IA77rgD9913H+644w7sv//+ldoihBBCCCFp+AKAEEIIaQKbbrqptd2IGwf3hxC3zg2J64/5P//5T6XyK1eubOjHzb5A2R+hXVctr7/+eqUXAGXnkOs6asSIETjooINKt9Ob8Y1hVaqMo/nj+h577NHlOAAuXb2uAGDJkiXN6k4u7ryaOHFi0+fViBEj0NLSgs7OTgBRTJINNXfHjBmDk046CSeddBKA6Fz8/e9/x6233orbbrsNHR0dACJ1+mmnnYZ9990X++yzT7f3yx33qVOnNiUOgMsNN9xgbV999dX4yEc+UqpsV2KETJ06FVOnTsWXv/xlSCkxd+5c3HXXXfjDH/6ABx54QOdbuXIljj32WLzwwgupF+yEEEIIIaQadAFECCGENIExY8ZY7jzmzp1bOQDurFmzrO2eDEY5depUa/uJJ56oVH7WrFk94j+7LGbchKxAyFm89tprpfJtu+221vYzzzxTqZ2nnnqqVD43sGt/cp3R1TF88803SwUABjbMOE6ZMsXyQV/1ulq0aFFDL0EaYUOMhxDCWufWrFnT0EuRZrDVVlvhhBNOwB/+8Ac899xz2HPPPfU+KSXa29s3SD821PX80EMP6c+bbbZZpSDPzfLTL4TAlClT8OUvfxn3338/7rvvPusFyNKlS/HrX/+6KW0RQgghhAxk+AKAEEIIaQJtbW3Yfffd9fb69estNWMRUkrLHQOADaI2zWLnnXe2XFHcf//9lQLD3nbbbd3RLY35I2ojLxrMYKivvvpq6XJhGOLxxx8vldf8AREA7r333tLtVMm/1157WefqwQcfxNq1ayu11VsZP368pcJ/+umnK6mPq4z5u9/9bmv773//e+myZdl0002x3Xbb6e3nn38e8+bNK12+u68rkw0xHhuynSqMHz8ev/3tb620Kut5V9hQ42Gue9ttt11mTASXFStW4LHHHuuWPu2///74zne+Y6Vljbvrpqg3v3AmhBBCCOlp+AKAEEIIaRIHHnigtf2LX/yidNkZM2ZYSuUxY8Zg++23b1bXKtPS0oL3ve99envdunW45pprSpVduXIlfvWrX3VX1wDYvuEb8Qtvqo5ffvnl0j8q//Wvfy3tg3369OnW9g033KDdihQxa9YsPPnkk6XytrW14T3veY/eXrVqFa677rpSZfsC5nXV0dGRcl2SR5Vr8LDDDrO2f/rTn5Y+X1X4wAc+YG3/7//+b6ly9XodV111VdP7k8Vee+1luSH7+9//jtmzZze9HXfcr7jiiqa30QjbbbcdttxyS729oSwvDjroICv2xA033NCQS7kizB/Mq1irXXvttd36gvFd73qXtZ017s2ID0IIIYQQMlDgCwBCCCGkSXzyk5+0lOnXX399KaVkvV7H17/+dSvtU5/6VNP7V5VPf/rT1vYFF1zgDZTp8rWvfa2Sqr4RTF/qCxYsqFx+jz320J+llLjpppsKy3R0dODcc88t3cbUqVOx99576+3FixfjRz/6UamyX/va10q348t/7rnn4uWXX65UR2/FDWh80UUXYeXKlYXlHnjgAdx6662l25k2bZqlvl64cCHOPvvs0uXL4l5XV155peWOJYvvfe97ePrpp5venyxaW1vxla98RW9LKfHZz3626S9Fjj76aMsq4uGHH8aVV17Z1DYaYf369dbLvg0Vk2XLLbfExz72Mb29atUqnHLKKU1vxwxQ/eyzz+LNN98sLLN48WKcf/75Te+LSdlYOG48jfnz53dbnwghhBBC+jp8AUAIIYQ0ie233x5HHHGE3g7DEMcccwwWLVqUWUZKiU996lOW//9hw4bhc5/7XLf2tQyHHHII9t9/f7391ltv4b3vfW+mMn39+vU47bTTcPXVVwOw3fQ0m5122kl/fv3111Puk4p4//vfb21fcMEFub79Ozs78ZnPfKay6wvzB1QAOOusszBz5szcMueccw5mzJhRqZ0DDjgAhx56qN5+7bXXcMghh2Du3Lml6wjDELfeeiu+8Y1vVGq7uznkkEMwZcoUvb1kyRIcf/zxuT9Ev/TSSzj++OMrt3XhhRdarkUuvfRSXHDBBZXciyxatAhf+9rX8Oijj3r377DDDjjhhBP0dmdnJw4//PBMVy9hGOKyyy7DmWeeCaB7ryuXL3/5y5YK/oEHHsCxxx5byR3YqlWr8KMf/SjTgqhWq+HCCy9Mtfuzn/2sUl///e9/4zOf+QwWL16c2vfb3/4Wl1xyCd54443S9f3v//6vFR9k2rRplfrTFc4++2zLrdeNN96Iz372s5WU+suXL8dFF12E22+/3bv/ne98p/68fv16nHHGGbn1vfbaazjiiCNKvShQnHPOOfjNb36jgzwXIaXEZZddZqVljbt5DwBgBW4mhBBCCCEOkhBCCCGZzJ8/XwLQ/0466aTc/AsXLpQjRoywyowaNUpec8018u2337by/vOf/5QHHHCAlReAvPLKK3PbuO6666z81113XaVjMsseeOCBuXnnzZsnhw4dapVpaWmRxxxzjPzpT38q//znP8sbb7xRnn322XLixIk6z2GHHSbHjx+vt8ePH5/bzrnnnmu1MXPmzNz87e3tVv4RI0bIb3zjG/L3v/+9vPPOO+WMGTP0vxdeeCFVvqOjQ2699dZWHVOmTJEzZ86UYRha+e666y65995763zmcQKQ8+fPz+3rQQcdZOVva2uT5513nly6dKmV79lnn5XHHHOMzjdhwgSr3LnnnpvbzquvvirHjRtnlRk6dKj88pe/LJ988knruBTLly+XM2bMkF/5yld02aI5UZWZM2dWOg4f9913nxRCWPVMmzYtdb5WrVolr732Wjlq1Cg9V93zXMQll1ySuianTZsmf/e738nly5en8nd2dsrZs2fLq6++Wh5yyCGypaWlcA6//vrrcsstt0y1c+ihh8orrrhC3nbbbfIPf/iDvOiii+TOO++s9++yyy7yne98Z+njqXpd+bjvvvtka2urVc/WW28tv//978uXXnrJW+bll1+WN910k/zoRz8qN95441Ln/bOf/WxqPN7znvfI22+/PbV2Sinl+vXr5ZNPPinb29vlfvvtp+eH73pU68XQoUPlMcccI3/729/KBQsWePsxb948ecopp6Tm2y233FI0VE3ld7/7XWo8tt9+e/nTn/5UvvLKK6n8YRjK559/Xv7qV7+SH/zgB+WQIUNy7w933nlnqv4TTzwxNS4rVqyQP//5z+Xo0aOttbLMvDrqqKMkALnFFlvIz33uc/Kvf/2rfP3111P56vW6vP/++1Nr5dChQ+WiRYsyx2i33XZLXac/+MEP5O23327dA2bMmCHXrFmTPdgGVe6PhBBCCCF9Bb4AIIQQQnKo+gJASin//Oc/y0GDBqV+XBkyZIicOnWqnDZtmtxiiy1S+wHIk08+ubD+DfkCQEop77rrLjl48GBvf33/Jk2aJJcuXWq9AJg0aVJuG1V/qFy2bJn+kbfoX9YPj3/4wx+8+bfYYgv5jne8Q+6yyy5y+PDh1r5vfvOb8qSTTrLSil4ALFy40BoL9a+lpUVOnjxZ7rnnnnLs2LGpH1hvuOGGyj+cP/XUU6mXAOrfJptsIqdOnSr33ntvudNOO8kxY8Z48/XGFwBSSnnBBRd4+7vZZpvJPfbYQ+600076R0/176KLLpIHHnhg6R/MFaeeeqq3rSAI5IQJE+S0adPktGnT5KRJk1IvyMrO4SeffFKOHDmy9HU1atQoOW/ePOt4arVabhvNeAEgZfRjdNYaMGbMGLnbbrvJvfbaS+6www5y0003rXQdKtavXy+PO+44b9mWlhY5adIkueeee8rdd99dTpw4Uba1tXnz5r0AcP+NGDFC7rjjjnKfffaRe+yxh9x88829+Y4//viGxq2rXHbZZTIIAm+fxo0bJ3fffXe55557ysmTJ6fWKvUv7/7w/ve/31tm2223lXvvvbfcYYcdUuP83//936XnlXoB4Jszu+yyi9xnn33kLrvsIjfaaCNvvqKX4b/61a9KXz9F67SiO9dCQgghhJCegi6ACCGEkCZz+OGH484778QWW2xhpa9ZswazZ8/GY489hqVLl1r7arUazjjjjNKBdjckBx98MGbOnImpU6cW5p0+fToeeOABbL755nj77bd1+iabbNLUPo0cORI333xzaoyrcMwxx+CCCy5IpS9duhT/+te/8PTTT1u+5k8//XRcfPHFldsZO3Ys7r77bkyaNMlK7+zsxHPPPYdHH33UchO11VZb4W9/+5vleqUsu+yyCx577DHLHZDirbfewuzZs/Hwww/j2WefxZIlS7x1bLPNNpXb3RCcc845+Na3vpVygbNs2TI8/vjjePbZZy2XLV/60pdw1llnNdTW5Zdfjl/+8pcYMWKElR6GIRYsWIDHHnsMjz32GF544QVv8NHhw4enyrrstttu+Mc//mG5YsnL+8ADD2D77bfv1usqi+OPP16377JkyRLMmjULjzzyCObNm+d1s1Or1bDVVlvlttHa2oobb7wR3/3udzFkyBBrX2dnJ1544QU8+uijeOKJJzB//nyvO5xRo0alyubx5ptvYu7cuXjooYfw+OOPe92AffrTn8avf/3r0nU2k69+9av4y1/+gjFjxqT2LVy4EE888QQeffRRPPfcc964GIMGDcpdI6+//nrstddeqfQXX3wRDz/8MObNm2eN8/HHH9+UAONLlizB008/jYceeghPP/20NacBYMiQIbjqqqsKXeF97GMfw9e//vUN6haLEEIIIaQvwhcAhBBCSDdw4IEH4vnnn8eZZ56Z+8PX4MGDcfTRR+OJJ55o6MflDcU+++yDJ554Atdffz2OOuooTJw4EYMHD8bgwYMxadIkfPSjH8Vf/vIXzJw5E6NHj0YYhpaf8O74ofKAAw7A3LlzccUVV+DII4/ExIkTMXz4cMuHexHnnHMObr/99pQ/aZPddtsNf/nLX/C9732v4R+aJk2a9P/bu5eQqN4/juMfzRtNXsacMiUx03Q0K8nC0PIC0UJblLWRCIvK6LIQpNrYBTcJtagWUkGUi2pTMARRizCz8hKCSSpGaCapOZpMUakj/X6LKP7z/5WNNuNler9gFuf4nOf5InMOw/mc8zxqbm7W0aNHf7mopb+/v/bu3avnz59r+fLlkxpHkkwmk+7du6dHjx5p8+bNMhgM47b38vJSSkqKjh07pubmZlVWVk56bHc7deqUampqtG7dul+2MZvNunXrls6dO/dHY+3cuVOvX79WWVnZT298/z+j0aht27apsrJSfX19WrVq1W+PSUhI0OPHj2WxWFRQUKDY2FgZDAb5+fkpKipKW7du1c2bN9XY2Kj4+HhJ3+Z2/26qAgDp21zsra2tqqysVFpamubMmTNue39/f+Xk5OjMmTPq7u7Wvn37nBrnyJEj6uzsVElJiVNhVHh4uHbs2KHbt2+rp6fnp8FZUVGRLBaL9uzZ47Dg8Hi1b9myRTU1Nbp06ZJ8fHycqt0dNm3apI6ODp0/f14rVqz47TVo3rx5ys3NVUVFhXp7e/+z3sn/CgkJ0aNHj1RaWjrudykpKUnXr1/XjRs35Ofn53Ttly9f1pUrV5Sfn+9UoBkaGqr9+/erra1NRUVFTo1RXl6upqYmlZSUKCMjQwsWLFBAQIDTNQIAAPwNvP75ZwKrmgEAgElpampSS0uL+vv7NTIyIpPJpMWLFysjI8NhsUdP8eLFCyUnJ//YLiwsdMmTo+7U1tamhoYG9ff3a2xsTIsWLdLatWudevNhIkZHR1VdXa2Ojg4NDAzIYDAoLi5OGzZsUGBgoEvHkiS73a6GhgZ1dnZqYGBAnz59ksFgkNFo1LJly5SYmOjWG8kPHz5Udnb2j+0TJ07o5MmTf9xvR0eH6urq1NPTI7vdrvDwcKWmpjp871zp7du3evbsmfr7+zU4OChvb28FBQUpMjJSZrNZS5cunVD4NBkfPnyQ0WjU169fJX174+Z3i0q7i81m+/H/HxgYkN1uV2BgoBYsWKCEhATFx8e75Ebsq1ev1NTUJKvVqqGhIfn4+Cg4OFhRUVEym82Kjo6ecJ9Wq1Wtra3q6OjQ+/fv9fnzZ82dO1dGo1EJCQlauXLlb4Oz6WK1WlVfX6++vj4NDg7q69evCgoKUnh4uMxms+Li4uTr6zvhfoeHh1VbW6u2tjYNDQ3Jz89PERERWrNmjVMBmDM6OzvV3t6urq4u2Ww2jY6Oat68eTKZTEpOTlZiYuK0hi2S4yLbmZmZE15gHgAAYCaa3l9YAAD8JVatWuXUE8Ge4sGDBw7bqamp01SJ88xms8xms9vH8fPz08aNG90+zne+vr5KT09Xenr6lI05FWJiYhQTEzNl40VGRioyMnLKxvuZqqqqHzf/pek9r4KDg3861ZSrxcbGOvXU/kSYTCZlZmYqMzPTpf1OBZPJpLy8PJf3GxAQoOzsbIewztWWLFmiJUuWuK1/AAAA/BxTAAEAAJcaGxtTRUWFwz5Pu/mMyTt16pS8vLwcPlevXp3usmaFCxcuOGxzXgGTFx0d/Z9rEQAAgCciAAAAAOOa6GyBpaWlam9v/7GdkpLyV739ADhjoufVxYsXHd6sWbhwoXJzc11dFgAAAAAPQwAAAADGVVBQoLNnzzosPvozNptNhw4d0unTpx32FxcXu7M8YFYqLi7W8ePH1dPTM2674eFhlZWV6cCBAw77Dx48OKm53gEAAAD8XVgEGAAAjCsrK0vV1dXy9fVVTk6O0tLSFB8fr5CQEI2MjKivr0+1tbWyWCyy2WwOx+bl5enOnTvTVDlmgqGhITU2No7bJikpSYsWLZqiimaGwsJCXbt2Td7e3srIyFB6eroSExMVGhqqsbExWa1WNTQ0yGKx6N27dw7HpqSkqL6+ngAA+ANPnjzRly9ffvl3o9Go1atXT2FFAAAA7kEAAAAAxvU9AJio9evXy2KxyGg0uqEqYHb7HgBMVFJSku7evauoqCg3VIXf6e3tVUtLi8v7Xb16NddKAAAAuIXPdBcAAABmtsjIyAm1NxgMOnz4sE6ePCl/f383VQXMbhEREfLy8nJ6LQBfX1/t3r1b5eXlCg4OdnN1+JX79+9r165dLu+3qqpKWVlZLu8XAAAA4A0AAADwWy9fvtT9+/dVV1en9vZ2vXnzRh8/fpTdbldISIjCwsK0cuVKZWVlafv27QoLC5vukoEZr7u7W/fu3dPTp0/V1tamrq4u2Ww2jY6OKigoSPPnz1diYqKysrKUn5/PU/8zwNWrVwkAAAAAMKsQAAAAAACAEwgAAAAAMNsQAAAAAAAAAAAA4IG8p7sAAAAAAAAAAADgegQAAAAAAAAAAAB4IAIAAAAAAAAAAAA8EAEAAAAAAAAAAAAeiAAAAAAAAAAAAAAPRAAAAAAAAAAAAIAHIgAAAAAAAAAAAMADEQAAAAAAAAAAAOCBCAAAAAAAAAAAAPBABAAAAAAAAAAAAHggAgAAAAAAAAAAADwQAQAAAAAAAAAAAB6IAAAAAAAAAAAAAA9EAAAAAAAAAAAAgAciAAAAAAAAAAAAwAMRAAAAAAAAAAAA4IEIAAAAAAAAAAAA8EAEAAAAAAAAAAAAeCACAAAAAAAAAAAAPNC/809MEUiwHucAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "image/png": { + "height": 575, + "width": 768 + } + }, + "output_type": "display_data" + } + ], + "source": [ + "# plot the mean 2m temperature of 1974 as example\n", + "t2m_1974 = ds_global.sel(time=slice('1974')).mean(dim='time')\n", + "_ = t2m_1974[list(t2m_1974.keys())[0]].plot()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "execution": {} + }, + "source": [ + "## Weekly Mortality Data (Optional)\n", + "\n", + "[The Organisation for Economic Co-operation and Development (OECD)](https://en.wikipedia.org/wiki/OECD) provides weekly mortality data for 38 countries. The list of countries can be found in [the OECD data explorer](https://data-explorer.oecd.org/vis?tm=weekly%20mortality&pg=0&hc[Measure]=Mortality&hc[Frequency%20of%20observation]=Weekly&snb=3&df[ds]=dsDisseminateFinalDMZ&df[id]=DSD_HEALTH_MORTALITY%40DF_MORTALITY&df[ag]=OECD.ELS.HD&df[vs]=1.0&pd=2023-W01%2C&dq=.W.M._T._T.&ly[rw]=TIME_PERIOD&ly[cl]=REF_AREA&to[TIME_PERIOD]=false) in the filters section, under *reference area*. This dataset can be used to analyze the impact of heatwaves on health through the general mortality of a country." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": {} + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 16168 entries, 0 to 16167\n", + "Data columns (total 16 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 STRUCTURE_NAME 16168 non-null object\n", + " 1 ACTION 16168 non-null object\n", + " 2 REF_AREA 16168 non-null object\n", + " 3 Reference area 16168 non-null object\n", + " 4 FREQ 16168 non-null object\n", + " 5 Frequency of observation 16168 non-null object\n", + " 6 MEASURE 16168 non-null object\n", + " 7 Measure 16168 non-null object\n", + " 8 AGE 16168 non-null object\n", + " 9 Age 16168 non-null object\n", + " 10 SEX 16168 non-null object\n", + " 11 Sex 16168 non-null object\n", + " 12 UNIT_MEASURE 16168 non-null object\n", + " 13 Unit of measure 16168 non-null object\n", + " 14 TIME_PERIOD 16168 non-null object\n", + " 15 OBS_VALUE 16168 non-null int64 \n", + "dtypes: int64(1), object(15)\n", + "memory usage: 2.0+ MB\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
STRUCTURE_NAMEACTIONREF_AREAReference areaFREQFrequency of observationMEASUREMeasureAGEAgeSEXSexUNIT_MEASUREUnit of measureTIME_PERIODOBS_VALUE
0Mortality by weekISWESwedenWWeeklyMMortality_TTotal_TTotalDTDeaths2015-W011927
1Mortality by weekISWESwedenWWeeklyMMortality_TTotal_TTotalDTDeaths2015-W021966
2Mortality by weekISWESwedenWWeeklyMMortality_TTotal_TTotalDTDeaths2015-W031935
3Mortality by weekISWESwedenWWeeklyMMortality_TTotal_TTotalDTDeaths2015-W041946
4Mortality by weekISWESwedenWWeeklyMMortality_TTotal_TTotalDTDeaths2015-W051975
\n", + "
" + ], + "text/plain": [ + " STRUCTURE_NAME ACTION REF_AREA Reference area FREQ \\\n", + "0 Mortality by week I SWE Sweden W \n", + "1 Mortality by week I SWE Sweden W \n", + "2 Mortality by week I SWE Sweden W \n", + "3 Mortality by week I SWE Sweden W \n", + "4 Mortality by week I SWE Sweden W \n", + "\n", + " Frequency of observation MEASURE Measure AGE Age SEX Sex \\\n", + "0 Weekly M Mortality _T Total _T Total \n", + "1 Weekly M Mortality _T Total _T Total \n", + "2 Weekly M Mortality _T Total _T Total \n", + "3 Weekly M Mortality _T Total _T Total \n", + "4 Weekly M Mortality _T Total _T Total \n", + "\n", + " UNIT_MEASURE Unit of measure TIME_PERIOD OBS_VALUE \n", + "0 DT Deaths 2015-W01 1927 \n", + "1 DT Deaths 2015-W02 1966 \n", + "2 DT Deaths 2015-W03 1935 \n", + "3 DT Deaths 2015-W04 1946 \n", + "4 DT Deaths 2015-W05 1975 " + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# read the mortality data from a csv file\n", + "link_id = \"rh3mp\"\n", + "url = f\"https://osf.io/download/{link_id}/\"\n", + "#data_mortality = pd.read_csv(\"Weekly_mortality_OECD.csv\")\n", + "data_mortality = pd.read_csv(url)\n", + "data_mortality.info()\n", + "data_mortality.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "execution": {} + }, + "source": [ + "# Hint for Q3\n", + "For this question you will calculate the percentiles, you can read more about percentiles [here](https://www.britannica.com/topic/percentile) and e.g. in W2D3 Tutorial 1. \n", + "Furthermore, as a recommendation for this question, a definition was given to calculate heatwaves, however, there is a great diversity of definitions, you can read about it in the following article: [Perkins & Alexandar (2013)](https://doi.org/10.1175/JCLI-D-12-00383.1)." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "execution": {} + }, + "source": [ + "# Hint for Q4\n", + "For Question 4, to understand the method of calculating the percentage of an area under heatwaves, please read the following article: [Silva et al. (2022)](https://doi.org/10.1016/j.jenvman.2022.116193)." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "execution": {} + }, + "source": [ + "# Hint for Q5\n", + "\n", + "The following articles will be helpful: [Heo & Bell (2019) (not open access) ](http://dx.doi.org/10.1038/s41370-018-0076-3) and [Smith et al. (2012)](https://doi.org/10.1007/s10584-012-0659-2)." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "execution": {} + }, + "source": [ + "# Hint for Q6\n", + "\n", + "The following article will be helpful: [Reddy et al. (2022)](https://iopscience.iop.org/article/10.1088/1748-9326/ac3e9a)." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "execution": {} + }, + "source": [ + "# Hint for Q7\n", + "The following article will help you learn about a method to determine the influence of heatwaves on health by analyzing mortality: [Nori-Sarma et al. (2019)](https://doi.org/10.3390/ijerph16122089)." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "execution": {} + }, + "source": [ + "# Further reading\n", + "\n", + "\n", + "* Geirinhas, J. et al. (2018) ‘Climatic and synoptic characterization of heat waves in Brazil’, International Journal of Climatology, 38(4), pp. 1760–1776. [doi: 10.1002/joc.5294](https://doi.org/10.1002/joc.5294) (not open access)\n", + " \n", + "\n", + "* Perkins-Kirkpatrick, S. et al. (2016) ‘Natural hazards in Australia: heatwaves’, Climatic Change. Climatic Change, 139(1), pp. 101–114. [doi: 10.1007/s10584-016-1650-0](https://doi.org/10.1007/s10584-016-1650-0) (not open access)\n", + "\n", + "\n", + "* Sutanto, S. et al. (2020) ‘Heatwaves, droughts, and fires: Exploring compound and cascading dry hazards at the pan-European scale’, Environment International. Elsevier, 134(March 2019), p. 105276. [doi: 10.1016/j.envint.2019.105276](https://doi.org/10.1016/j.envint.2019.105276)\n", + "\n", + "\n", + "* Lo, Y. et al. (2022) ‘Estimating heat-related mortality in near real time for national heatwave plans’, Environmental Research Letters, 17(2). [doi: 10.1088/1748-9326/ac4cf4](https://iopscience.iop.org/article/10.1088/1748-9326/ac4cf4)\n", + "\n", + "\n", + "* Wilks, D. (2020) 'Statistical Methods in the Atmospheric Sciences', Elsevier. Available at: [https://doi.org/10.1016/C2017-0-03921-6](https://doi.org/10.1016/C2017-0-03921-6) (not open access)\n", + "\n", + "\n", + "* World Meteorological Organization & World Health Organization. (2015) 'Heatwaves and Health\n", + "Guidance on Warning-System Development'. WMO-No. 1142. Available at: [https://library.wmo.int/idurl/4/54600](https://library.wmo.int/idurl/4/54600)\n", + "\n", + "* https://ecmwf-projects.github.io/copernicus-training-c3s/reanalysis-heatwave.html" + ] + } + ], + "metadata": { + "colab": { + "collapsed_sections": [], + "include_colab_link": true, + "name": "Heatwaves_2024", + "provenance": [], + "toc_visible": true + }, + "kernel": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.19" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/projects/project-notebooks/Ocean_acidification_2024.ipynb b/projects/project-notebooks/Ocean_acidification_2024.ipynb new file mode 100644 index 000000000..554b266d7 --- /dev/null +++ b/projects/project-notebooks/Ocean_acidification_2024.ipynb @@ -0,0 +1,1603 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "execution": {} + }, + "source": [ + "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/ClimateMatchAcademy/course-content/blob/main/projects/project-notebooks/Ocean_acidification.ipynb)   \"Open" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "execution": {} + }, + "source": [ + "# Ocean Acidification\n", + "\n", + "\n", + "**Content creators:** C. Gabriela Mayorga Adame, Lidia Krinova\n", + "\n", + "**Content reviewers:** Will Gregory, Paul Heubel, Laura Paccini, Jenna Pearson, Ohad Zivan\n", + "\n", + "**Content editors:** Paul Heubel\n", + "\n", + "**Production editors:** Paul Heubel, Konstantine Tsafatinos\n", + "\n", + "**Our 2024 Sponsors:** CMIP, NFDI4Earth" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "cellView": "form", + "execution": {}, + "tags": [] + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "8a5e84792d5843b8b86763755987168c", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Tab(children=(Output(), Output()), selected_index=0, titles=('Youtube', 'Bilibili'))" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# @title Project Background\n", + "\n", + "from ipywidgets import widgets\n", + "from IPython.display import YouTubeVideo\n", + "from IPython.display import IFrame\n", + "from IPython.display import display\n", + "\n", + "\n", + "class PlayVideo(IFrame):\n", + " def __init__(self, id, source, page=1, width=400, height=300, **kwargs):\n", + " self.id = id\n", + " if source == \"Bilibili\":\n", + " src = f\"https://player.bilibili.com/player.html?bvid={id}&page={page}\"\n", + " elif source == \"Osf\":\n", + " src = f\"https://mfr.ca-1.osf.io/render?url=https://osf.io/download/{id}/?direct%26mode=render\"\n", + " super(PlayVideo, self).__init__(src, width, height, **kwargs)\n", + "\n", + "\n", + "def display_videos(video_ids, W=400, H=300, fs=1):\n", + " tab_contents = []\n", + " for i, video_id in enumerate(video_ids):\n", + " out = widgets.Output()\n", + " with out:\n", + " if video_ids[i][0] == \"Youtube\":\n", + " video = YouTubeVideo(\n", + " id=video_ids[i][1], width=W, height=H, fs=fs, rel=0\n", + " )\n", + " print(f\"Video available at https://youtube.com/watch?v={video.id}\")\n", + " else:\n", + " video = PlayVideo(\n", + " id=video_ids[i][1],\n", + " source=video_ids[i][0],\n", + " width=W,\n", + " height=H,\n", + " fs=fs,\n", + " autoplay=False,\n", + " )\n", + " if video_ids[i][0] == \"Bilibili\":\n", + " print(\n", + " f\"Video available at https://www.bilibili.com/video/{video.id}\"\n", + " )\n", + " elif video_ids[i][0] == \"Osf\":\n", + " print(f\"Video available at https://osf.io/{video.id}\")\n", + " display(video)\n", + " tab_contents.append(out)\n", + " return tab_contents\n", + "\n", + "\n", + "video_ids = [('Youtube', 'NAgrB8HxMMk'), ('Bilibili', 'BV1fM4y1x7g8')]\n", + "tab_contents = display_videos(video_ids, W=730, H=410)\n", + "tabs = widgets.Tab()\n", + "tabs.children = tab_contents\n", + "for i in range(len(tab_contents)):\n", + " tabs.set_title(i, video_ids[i][0])\n", + "display(tabs)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "cellView": "form", + "execution": {} + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "If you want to download the slides: https://osf.io/download/n7wdy/\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# @title Tutorial slides\n", + "# @markdown These are the slides for the videos in all tutorials today\n", + "from IPython.display import IFrame\n", + "link_id = \"n7wdy\"\n", + "# or \"hbx8d\"\n", + "print(f\"If you want to download the slides: https://osf.io/download/{link_id}/\")\n", + "IFrame(src=f\"https://mfr.ca-1.osf.io/render?url=https://osf.io/{link_id}/?direct%26mode=render%26action=download%26mode=render\", width=854, height=480)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "execution": {} + }, + "source": [ + "Human activities release CO2 into the atmosphere, which leads to atmospheric warming and climate change. A portion of this CO2 released by human activities is absorbed into the oceans, which has a direct, chemical effect on seawater, known as ocean acidification. When CO2 combines with water in the ocean it forms carbonic acid, which makes the ocean more acidic and can have negative impacts on certain marine ecosystems (e.g., reduce the ability of calcifying organisms to form their shells and skeletons). The degree of ocean acidification is often expressed in terms of the pH of seawater, which is the measure of acidity or alkalinity such that a pH below 7 is considered acidic, and a pH greater than 7 is considered alkaline, or basic. Additional background information on ocean acidification can be found [here](https://coastadapt.com.au/ocean-acidification-and-its-effects). In this project, you will explore spatial and temporal patterns of and relationships between pH, CO2, and temperature to assess changes in ocean acidification and the impact on marine ecosystems.\n", + "\n", + "**In this project**, you will analyse ocean model and observational data from global databases to extract variables like pH, CO2, and temperature, and to investigate ocean acidification process in your region of interest. This project will also be an opportunity to investigate the relationships between these variables as well as their impact on the marine ecosystems." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "execution": {} + }, + "source": [ + "# Project Template\n", + "\n", + "\n", + "\n", + "*Note: The dashed boxes are socio-economic questions.*" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "execution": {} + }, + "source": [ + "# Data Exploration Notebook\n", + "## Project Setup\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": {}, + "tags": [ + "colab" + ] + }, + "outputs": [], + "source": [ + "# google colab installs\n", + "\n", + "# !mamaba install netCDF4" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": {}, + "tags": [] + }, + "outputs": [], + "source": [ + "# imports\n", + "\n", + "import random\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import xarray as xr\n", + "import pooch\n", + "import pandas as pd\n", + "import os\n", + "import tempfile" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": {} + }, + "outputs": [], + "source": [ + "# helper functions\n", + "\n", + "def pooch_load(filelocation=None,filename=None,processor=None):\n", + " shared_location='/home/jovyan/shared/Data/Projects/Ocean_Acidification' # this is different for each day\n", + " user_temp_cache=tempfile.gettempdir()\n", + "\n", + " if os.path.exists(os.path.join(shared_location,filename)):\n", + " file = os.path.join(shared_location,filename)\n", + " else:\n", + " file = pooch.retrieve(filelocation,known_hash=None,fname=os.path.join(user_temp_cache,filename),processor=processor)\n", + "\n", + " return file" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "execution": {} + }, + "source": [ + "## NOAA Ocean pH and Acidity" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "execution": {} + }, + "source": [ + "### Global surface ocean acidification indicators from 1750 to 2100 (NCEI Accession 0259391)\n", + "\n", + "This data package contains a hybrid surface ocean acidification (OA) data product that is produced based on three recent observational data products:\n", + "- Surface Ocean CO2 Atlas (SOCAT, version 2022)\n", + "- Global Ocean Data Analysis Product version 2 (GLODAPv2, version 2022)\n", + "- Coastal Ocean Data Analysis Product in North America (CODAP-NA, version 2021), and 14 Earth System Models from the sixth phase of the Coupled Model Intercomparison Project ([CMIP6](https://github.com/ClimateMatchAcademy/course-content/blob/main/tutorials/CMIP/CMIP_resource_bank.md)).\n", + "\n", + "The trajectories of ten OA indicators are included in this data product:\n", + "- Fugacity of carbon dioxide\n", + "- pH on Total Scale\n", + "- Total hydrogen ion content\n", + "- Free hydrogen ion content\n", + "- Carbonate ion content\n", + "- Aragonite saturation state\n", + "- Calcite saturation state\n", + "- Revelle Factor\n", + "- Total dissolved inorganic carbon content\n", + "- Total alkalinity content\n", + "\n", + "These OA trajectories are provided under preindustrial conditions, historical conditions, and future Shared Socioeconomic Pathways: SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 from 1750 to 2100 on a global surface ocean grid. These OA trajectories are improved relative to previous OA data products with respect to data quantity, spatial and temporal coverage, diversity of the underlying data and model simulations, and the provided SSPs over the 21st century.\n", + "\n", + "**Citation:**\n", + "Jiang, L.-Q., Dunne, J., Carter, B. R., Tjiputra, J. F., Terhaar, J., Sharp, J. D., et al. (2023). Global surface ocean acidification indicators from 1750 to 2100. Journal of Advances in Modeling Earth Systems, 15, e2022MS003563. https://doi.org/10.1029/2022MS003563\n", + "\n", + "**Dataset**: https://www.ncei.noaa.gov/data/oceans/ncei/ocads/metadata/0259391.html\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "execution": {} + }, + "source": [ + "We can load and visualize the **surface pH** as follows:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": {}, + "tags": [] + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'https://www.ncei.noaa.gov/data/oceans/ncei/ocads/data/0259391/nc/median/pHT_median_historical.nc' to file '/tmp/pHT_median_historical.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: 5a88450b240954e1db5771e06c54278d0dd3e1edbdfcd7b05f25bec3b2c47f1f\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.Dataset> Size: 10MB\n",
+       "Dimensions:    (time: 18, lat: 180, lon: 360)\n",
+       "Coordinates:\n",
+       "  * time       (time) float64 144B 1.75e+03 1.85e+03 1.86e+03 ... 2e+03 2.01e+03\n",
+       "Dimensions without coordinates: lat, lon\n",
+       "Data variables:\n",
+       "    pHT        (time, lat, lon) float64 9MB ...\n",
+       "    longitude  (lat, lon) float64 518kB ...\n",
+       "    latitude   (lat, lon) float64 518kB ...\n",
+       "Attributes:\n",
+       "    title:               Global surface ocean pH on total hydrogen ion scale ...\n",
+       "    comment:             This gridded data product contains pH on total hydro...\n",
+       "    reference:           Jiang, L-Q., J. Dunne, B. R. Carter, J. Tjiputra,\\n ...\n",
+       "    Fair_use_statement:  This data product is made freely available\\n   to th...\n",
+       "    created_by:          Li-Qing Jiang\n",
+       "    institution:         (a) Cooperative Institute for Satellite Earth System...\n",
+       "    contact:             <Liqing.Jiang@noaa.gov>\n",
+       "    creation_date:       August 14, 2022
" + ], + "text/plain": [ + " Size: 10MB\n", + "Dimensions: (time: 18, lat: 180, lon: 360)\n", + "Coordinates:\n", + " * time (time) float64 144B 1.75e+03 1.85e+03 1.86e+03 ... 2e+03 2.01e+03\n", + "Dimensions without coordinates: lat, lon\n", + "Data variables:\n", + " pHT (time, lat, lon) float64 9MB ...\n", + " longitude (lat, lon) float64 518kB ...\n", + " latitude (lat, lon) float64 518kB ...\n", + "Attributes:\n", + " title: Global surface ocean pH on total hydrogen ion scale ...\n", + " comment: This gridded data product contains pH on total hydro...\n", + " reference: Jiang, L-Q., J. Dunne, B. R. Carter, J. Tjiputra,\\n ...\n", + " Fair_use_statement: This data product is made freely available\\n to th...\n", + " created_by: Li-Qing Jiang\n", + " institution: (a) Cooperative Institute for Satellite Earth System...\n", + " contact: \n", + " creation_date: August 14, 2022" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# code to retrieve and load the data\n", + "# url_SurfacepH= 'https://www.ncei.noaa.gov/data/oceans/ncei/ocads/data/0206289/Surface_pH_1770_2100/Surface_pH_1770_2000.nc' $ old CMIP5 dataset\n", + "filename_SurfacepH='pHT_median_historical.nc'\n", + "url_SurfacepH='https://www.ncei.noaa.gov/data/oceans/ncei/ocads/data/0259391/nc/median/pHT_median_historical.nc'\n", + "ds_pH = xr.open_dataset(pooch_load(url_SurfacepH,filename_SurfacepH))\n", + "ds_pH" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "execution": {} + }, + "source": [ + "For those feeling adventurouts, there are also files of future projected changes under various scenarios (SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5, recall W2D1 tutorials):\n", + "* pHT_median_ssp119.nc\n", + "* pHT_median_ssp126.nc\n", + "* pHT_median_ssp245.nc\n", + "* pHT_median_ssp370.nc\n", + "* pHT_median_ssp585.nc\n", + "\n", + "To load them, replace the filename in the path/filename line above. These data were calculated from CMIP6 models. To learn more about CMIP please see our [CMIP Resource Bank](https://github.com/ClimateMatchAcademy/course-content/blob/main/tutorials/CMIP/CMIP_resource_bank.md) and the [CMIP website](https://wcrp-cmip.org/). " + ] + }, + { + "cell_type": "markdown", + "metadata": { + "execution": {} + }, + "source": [ + "For the advanced questions in red you can use **sea surface temperature** and **CO2 concentration** from [NOAA Global Monitoring Laboratory](https://gml.noaa.gov/ccgg/trends/gl_data.html)) which were previously introduced in the tutorials.\n", + "We can load and visualize this variables as follows:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": {}, + "tags": [] + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'https://gml.noaa.gov/webdata/ccgg/trends/co2/co2_mm_gl.csv' to file '/tmp/co2_mm_gl.csv'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: 4013d5c4fbd276601a05f148072ceda2ad49f4e80294a3f307b9e277cf656a53\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
198051980.375340.440.10338.880.07
0198061980.458339.990.09339.220.07
1198071980.542338.440.16339.280.07
2198081980.625337.210.19339.500.06
3198091980.708337.050.12339.440.06
41980101980.792337.830.07339.170.07
........................
5212023112023.875420.340.10420.500.06
5222023122023.958421.540.10420.900.06
523202412024.042422.220.10421.120.06
524202422024.125422.690.10421.280.06
525202432024.208423.160.10421.520.06
\n", + "

526 rows × 7 columns

\n", + "
" + ], + "text/plain": [ + " 1980 5 1980.375 340.44 0.10 338.88 0.07\n", + "0 1980 6 1980.458 339.99 0.09 339.22 0.07\n", + "1 1980 7 1980.542 338.44 0.16 339.28 0.07\n", + "2 1980 8 1980.625 337.21 0.19 339.50 0.06\n", + "3 1980 9 1980.708 337.05 0.12 339.44 0.06\n", + "4 1980 10 1980.792 337.83 0.07 339.17 0.07\n", + ".. ... .. ... ... ... ... ...\n", + "521 2023 11 2023.875 420.34 0.10 420.50 0.06\n", + "522 2023 12 2023.958 421.54 0.10 420.90 0.06\n", + "523 2024 1 2024.042 422.22 0.10 421.12 0.06\n", + "524 2024 2 2024.125 422.69 0.10 421.28 0.06\n", + "525 2024 3 2024.208 423.16 0.10 421.52 0.06\n", + "\n", + "[526 rows x 7 columns]" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "filename_CO2= 'co2_mm_gl.csv'\n", + "url_CO2= 'https://gml.noaa.gov/webdata/ccgg/trends/co2/co2_mm_gl.csv'\n", + "ds_CO2 = pd.read_csv(pooch_load(url_CO2,filename_CO2),header=55)\n", + "\n", + "ds_CO2" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": {}, + "tags": [] + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'https://osf.io/6pgc2/download/' to file '/tmp/sst.mon.mean.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: 577705b952b71abf66baf8710c38baaa87f00922b3f6a80109fdecb62b3e27c8\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.Dataset> Size: 2GB\n",
+       "Dimensions:  (time: 499, lat: 720, lon: 1440)\n",
+       "Coordinates:\n",
+       "  * time     (time) datetime64[ns] 4kB 1981-09-01 1981-10-01 ... 2023-03-01\n",
+       "  * lat      (lat) float32 3kB -89.88 -89.62 -89.38 -89.12 ... 89.38 89.62 89.88\n",
+       "  * lon      (lon) float32 6kB 0.125 0.375 0.625 0.875 ... 359.4 359.6 359.9\n",
+       "Data variables:\n",
+       "    sst      (time, lat, lon) float32 2GB ...\n",
+       "Attributes:\n",
+       "    Conventions:    CF-1.5\n",
+       "    title:          NOAA/NCEI 1/4 Degree Daily Optimum Interpolation Sea Surf...\n",
+       "    institution:    NOAA/National Centers for Environmental Information\n",
+       "    source:         NOAA/NCEI https://www.ncei.noaa.gov/data/sea-surface-temp...\n",
+       "    References:     https://www.psl.noaa.gov/data/gridded/data.noaa.oisst.v2....\n",
+       "    dataset_title:  NOAA Daily Optimum Interpolation Sea Surface Temperature\n",
+       "    version:        Version 2.1\n",
+       "    comment:        Reynolds, et al.(2007) Daily High-Resolution-Blended Anal...
" + ], + "text/plain": [ + " Size: 2GB\n", + "Dimensions: (time: 499, lat: 720, lon: 1440)\n", + "Coordinates:\n", + " * time (time) datetime64[ns] 4kB 1981-09-01 1981-10-01 ... 2023-03-01\n", + " * lat (lat) float32 3kB -89.88 -89.62 -89.38 -89.12 ... 89.38 89.62 89.88\n", + " * lon (lon) float32 6kB 0.125 0.375 0.625 0.875 ... 359.4 359.6 359.9\n", + "Data variables:\n", + " sst (time, lat, lon) float32 2GB ...\n", + "Attributes:\n", + " Conventions: CF-1.5\n", + " title: NOAA/NCEI 1/4 Degree Daily Optimum Interpolation Sea Surf...\n", + " institution: NOAA/National Centers for Environmental Information\n", + " source: NOAA/NCEI https://www.ncei.noaa.gov/data/sea-surface-temp...\n", + " References: https://www.psl.noaa.gov/data/gridded/data.noaa.oisst.v2....\n", + " dataset_title: NOAA Daily Optimum Interpolation Sea Surface Temperature\n", + " version: Version 2.1\n", + " comment: Reynolds, et al.(2007) Daily High-Resolution-Blended Anal..." + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# from W1D3 tutorial 6 we have Sea Surface Temprature from 1981 to the present:\n", + "# download the monthly sea surface temperature data from NOAA Physical System\n", + "# Laboratory. The data is processed using the OISST SST Climate Data Records\n", + "# from the NOAA CDR program.\n", + "# the data downloading may take 2-3 minutes to complete.\n", + "\n", + "filename_sst='sst.mon.mean.nc'\n", + "url_sst = \"https://osf.io/6pgc2/download/\"\n", + "\n", + "ds_SST = xr.open_dataset(pooch_load(url_sst,filename_sst))\n", + "ds_SST" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "execution": {} + }, + "source": [ + "**Hints for socio-economic question (dashed boxes):**\n", + "\n", + "Use the attached image (Figure 4 in [Kroaker et al., 2013]( https://doi.org/10.1111/gcb.12179) research paper) and this [mapping tool](https://mapper.obis.org/). Search for species of interest on the mapping tool to see their spatial global distribution and changes over time. Be critical about what you see." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "execution": {} + }, + "source": [ + "\n", + "![effects of ocean acidification](https://onlinelibrary.wiley.com/cms/asset/e3670b99-729f-42e6-9f5a-b2a67d5702ca/gcb12179-fig-0004-m.png)\n", + "\n", + "Summary of effects of acidification among key taxonomic groups. Effects are represented as either mean percent (+) increase or percent (−) decrease in a given response." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "execution": {} + }, + "source": [ + "# Further Reading\n", + "\n", + "- Understanding Ocean Acidification\", NOAA (https://www.fisheries.noaa.gov/insight/understanding-ocean-acidification)\n", + "- \"Ocean acidification and its effects\", CoastAdapt (https://coastadapt.com.au/ocean-acidification-and-its-effects)\n", + "- \"Scientists Pinpoint How Ocean Acidification Weakens Coral Skeletons\", WHOI (https://www.whoi.edu/press-room/news-release/scientists-identify-how-ocean-acidification-weakens-coral-skeletons/)\n", + "- \"Ocean acidification and reefs\", Smithonian Tropical Research Institute (https://stri.si.edu/story/ocean-acidification-and-reefs)\n", + "- Ocean Acidification | Learn Science at Scitable https://www.nature.com/scitable/knowledge/library/ocean-acidification-25822734/\n", + "- Henry, J., J. Patterson, and L. Krimsky. 2020. “Ocean Acidification: Calcifying Marine Organisms: FA220, 3/2020”. EDIS 2020 (2):4. https://doi.org/10.32473/edis-fa220-2020.\n", + "- Lauderdale, J. M., S. Dutkiewicz, R. G. Williams, and M. J. Follows (2016), Quantifying the drivers of ocean-atmosphere CO2 fluxes, Global Biogeochem. Cycles, 30 https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2016GB005400\n", + "- Increasingly Acidic Oceans Are Causing Fish to Behave Badly | Scientific American https://www.scientificamerican.com/article/increasingly-acidic-oceans-are-causing-fish-to-behave-badly/\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "execution": {} + }, + "source": [ + "# Other Resources\n", + "\n", + "This tutorial uses data from the simulations conducted as part of the [CMIP6](https://wcrp-cmip.org/) multi-model ensemble.\n", + "\n", + "For examples on how to access and analyze data, please visit the [Pangeo Cloud CMIP6 Gallery](https://gallery.pangeo.io/repos/pangeo-gallery/cmip6/index.html)\n", + "\n", + "For more information on what CMIP is and how to access the data, please see this [page](https://github.com/ClimateMatchAcademy/course-content/blob/main/tutorials/CMIP/CMIP_resource_bank.md)." + ] + } + ], + "metadata": { + "colab": { + "collapsed_sections": [], + "include_colab_link": true, + "name": "Ocean_acidification_2024", + "provenance": [ + { + "file_id": "1UrzuI288izT-KofHfuuvFa1qDvOP0NyL", + "timestamp": 1711244888691 + }, + { + "file_id": "https://github.com/ClimateMatchAcademy/course-content/blob/main/projects/project-notebooks/Ocean_acidification.ipynb", + "timestamp": 1711242692952 + } + ], + "toc_visible": true + }, + "kernel": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.19" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/projects/project-notebooks/Precipitation_variability_extreme_events_2024.ipynb b/projects/project-notebooks/Precipitation_variability_extreme_events_2024.ipynb new file mode 100644 index 000000000..f5ac34e5a --- /dev/null +++ b/projects/project-notebooks/Precipitation_variability_extreme_events_2024.ipynb @@ -0,0 +1,4512 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "ada5523b", + "metadata": { + "execution": {} + }, + "source": [ + "\"Open   \"Open" + ] + }, + { + "cell_type": "markdown", + "id": "045624d0", + "metadata": { + "execution": {} + }, + "source": [ + "# Precipitation Variability and Extreme Events\n", + "\n", + "**Content creators:** Will Gregory, Laura Paccini, Raphael Rocha\n", + "\n", + "**Content reviewers:** Paul Heubel, Jenna Pearson\n", + "\n", + "**Content editors:** Paul Heubel\n", + "\n", + "**Production editors:** Paul Heubel, Konstantine Tsafatinos\n", + "\n", + "**Our 2024 Sponsors:** CMIP, NFDI4Earth\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "64da422f", + "metadata": { + "cellView": "form", + "execution": {} + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "3a10a6ba095a404584a17e51d0b3733a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Tab(children=(Output(), Output()), selected_index=0, titles=('Youtube', 'Bilibili'))" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# @title Project Background\n", + "\n", + "from ipywidgets import widgets\n", + "from IPython.display import YouTubeVideo\n", + "from IPython.display import IFrame\n", + "from IPython.display import display\n", + "\n", + "class PlayVideo(IFrame):\n", + " def __init__(self, id, source, page=1, width=400, height=300, **kwargs):\n", + " self.id = id\n", + " if source == \"Bilibili\":\n", + " src = f\"https://player.bilibili.com/player.html?bvid={id}&page={page}\"\n", + " elif source == \"Osf\":\n", + " src = f\"https://mfr.ca-1.osf.io/render?url=https://osf.io/download/{id}/?direct%26mode=render\"\n", + " super(PlayVideo, self).__init__(src, width, height, **kwargs)\n", + "\n", + "\n", + "def display_videos(video_ids, W=400, H=300, fs=1):\n", + " tab_contents = []\n", + " for i, video_id in enumerate(video_ids):\n", + " out = widgets.Output()\n", + " with out:\n", + " if video_ids[i][0] == \"Youtube\":\n", + " video = YouTubeVideo(\n", + " id=video_ids[i][1], width=W, height=H, fs=fs, rel=0\n", + " )\n", + " print(f\"Video available at https://youtube.com/watch?v={video.id}\")\n", + " else:\n", + " video = PlayVideo(\n", + " id=video_ids[i][1],\n", + " source=video_ids[i][0],\n", + " width=W,\n", + " height=H,\n", + " fs=fs,\n", + " autoplay=False,\n", + " )\n", + " if video_ids[i][0] == \"Bilibili\":\n", + " print(\n", + " f\"Video available at https://www.bilibili.com/video/{video.id}\"\n", + " )\n", + " elif video_ids[i][0] == \"Osf\":\n", + " print(f\"Video available at https://osf.io/{video.id}\")\n", + " display(video)\n", + " tab_contents.append(out)\n", + " return tab_contents\n", + "\n", + "\n", + "video_ids = [('Youtube', '49XHRe61LI8'), ('Bilibili', 'BV1Au411L7fo')]\n", + "tab_contents = display_videos(video_ids, W=730, H=410)\n", + "tabs = widgets.Tab()\n", + "tabs.children = tab_contents\n", + "for i in range(len(tab_contents)):\n", + " tabs.set_title(i, video_ids[i][0])\n", + "display(tabs)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b52fef8b", + "metadata": { + "cellView": "form", + "execution": {} + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "79181962c56a48ee96b0c3a4980d5cf6", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Output()" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# @title Slides\n", + "# @markdown These are the slides for the video introduction to the project\n", + "\n", + "from ipywidgets import widgets\n", + "from IPython.display import IFrame\n", + "\n", + "link_id = \"djpgh\"\n", + "\n", + "download_link = f\"https://osf.io/download/{link_id}/\"\n", + "render_link = f\"https://mfr.ca-1.osf.io/render?url=https://osf.io/{link_id}/?direct%26mode=render%26action=download%26mode=render\"\n", + "# @markdown\n", + "out = widgets.Output()\n", + "with out:\n", + " print(f\"If you want to download the slides: {download_link}\")\n", + " display(IFrame(src=f\"{render_link}\", width=730, height=410))\n", + "display(out)" + ] + }, + { + "cell_type": "markdown", + "id": "63b697d5", + "metadata": { + "execution": {} + }, + "source": [ + "**In this project**, you will explore rain gauge and satellite data from the CHIRPS data set to extract rain estimates and land surface reflectance, respectively. These data will enable identification of extreme events in your region of interest. Besides investigating the relationships between these variables, you are encouraged to study the impact of extreme events on changes in vegetation." + ] + }, + { + "cell_type": "markdown", + "id": "ff7ae1c9", + "metadata": { + "execution": {} + }, + "source": [ + "# Project Template\n", + "\n", + "" + ] + }, + { + "cell_type": "markdown", + "id": "e114dfda-1ff2-4ec9-a338-8c5f5e8e17a0", + "metadata": { + "execution": {} + }, + "source": [ + "## Data Exploration Notebook" + ] + }, + { + "cell_type": "markdown", + "id": "8af2bd88-1cfe-46cd-82b3-5c58958ae6ad", + "metadata": { + "execution": {} + }, + "source": [ + "## Project Setup" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b68292ec", + "metadata": { + "execution": {} + }, + "outputs": [], + "source": [ + "# google colab installs\n", + "\n", + "# !pip install s3fs boto3 botocore --quiet" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "1e541a40", + "metadata": { + "execution": {} + }, + "outputs": [], + "source": [ + "# Imports\n", + "\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import xarray as xr\n", + "import pooch\n", + "import os\n", + "import tempfile\n", + "import pandas as pd\n", + "import s3fs\n", + "import boto3\n", + "import botocore\n", + "import datetime" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "3692a9ca", + "metadata": { + "cellView": "form", + "execution": {} + }, + "outputs": [], + "source": [ + "# @title Helper functions\n", + "\n", + "def pooch_load(filelocation=None,filename=None,processor=None):\n", + " shared_location='/home/jovyan/shared/Data/Projects/Precipitation' # this is different for each day\n", + " user_temp_cache=tempfile.gettempdir()\n", + "\n", + " if os.path.exists(os.path.join(shared_location,filename)):\n", + " file = os.path.join(shared_location,filename)\n", + " else:\n", + " file = pooch.retrieve(filelocation,known_hash=None,fname=os.path.join(user_temp_cache,filename),processor=processor)\n", + "\n", + " return file" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "07545499", + "metadata": { + "cellView": "form", + "execution": {} + }, + "outputs": [], + "source": [ + "# @title Figure settings\n", + "\n", + "import ipywidgets as widgets # interactive display\n", + "\n", + "%config InlineBackend.figure_format = 'retina'\n", + "plt.style.use(\"https://raw.githubusercontent.com/neuromatch/climate-course-content/main/cma.mplstyle\")" + ] + }, + { + "cell_type": "markdown", + "id": "02a3777f", + "metadata": { + "execution": {} + }, + "source": [ + "## CHIRPS Version 2.0 Global Daily 0.25°\n", + "\n", + "The Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) is a high-resolution precipitation dataset developed by the Climate Hazards Group at the University of California, Santa Barbara. It combines satellite-derived precipitation estimates with ground-based station data to provide gridded precipitation data at a quasi-global scale between 50°S-50°N. \n", + "\n", + "Read more about CHIRPS here:\n", + "\n", + "* [The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes](https://www.nature.com/articles/sdata201566)\n", + "\n", + "* [Climate Hazard Group CHG Wiki](https://wiki.chc.ucsb.edu/CHIRPS_FAQ)\n", + "\n", + "* [Data storage location](https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_daily/netcdf/p25/)" + ] + }, + { + "cell_type": "markdown", + "id": "3f36c1fa", + "metadata": { + "execution": {} + }, + "source": [ + "### Indices for Extreme Events\n", + "The Expert Team on Climate Change Detection and Indices ([ETCCDI](http://etccdi.pacificclimate.org/list_27_indices.shtml)) has defined various indices that focus on different aspects such as duration or intensity of extreme events. The following functions provide examples of how to compute indices for each category. You can modify these functions to suit your specific needs or create your own custom functions. Here are some tips you can use:\n", + "\n", + "- Most of the indices require daily data, so in order to select a specific season you can just use `xarray` to subset the data. Example:\n", + "\n", + "```python\n", + "daily_precip_DJF = data_chirps.sel(time=data_chirps['time.season']=='DJF')\n", + "```\n", + "\n", + "- A common threshold for a wet event is precipitation greater than or equal to $1 \\text{ mm}/\\text{day}$, while a dry (or non-precipitating) event is defined as precipitation less than $1 \\text{ mm}/\\text{day}$.\n", + "- Some of the indices are based on percentiles. You can define a base period climatology to calculate percentile thresholds, such as the 5th, 10th, 90th, and 95th percentiles, to determine extreme events (cf. in particular W2D3)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "e9697620", + "metadata": { + "execution": {} + }, + "outputs": [], + "source": [ + "def calculate_cdd_index(data):\n", + " \"\"\"\n", + " This function takes a daily precipitation dataset as input and calculates\n", + " the Consecutive Dry Days (CDD) index, which represents the longest sequence\n", + " of consecutive days with precipitation less than 1mm. The input data should\n", + " be a DataArray with time coordinates, and the function returns a DataArray\n", + " with the CDD values for each unique year in the input data.\n", + " Parameters:\n", + " ----------\n", + " - data (xarray.DataArray): The input daily precipitation data should be\n", + " a dataset (eg. for chirps_data the DataArray would be chirps_data.precip)\n", + " Returns:\n", + " -------\n", + " - cdd (xarray.DataArray): The calculated CDD index\n", + "\n", + " \"\"\"\n", + " # create a boolean array for dry days (PR < 1mm)\n", + " dry_days = data < 1\n", + " # initialize CDD array\n", + " cdd = np.zeros(len(data.groupby(\"time.year\")))\n", + " # get unique years as a list\n", + " unique_years = list(data.groupby(\"time.year\").groups.keys())\n", + " # iterate for each day\n", + " for i, year in enumerate(unique_years):\n", + " consecutive_trues = []\n", + " current_count = 0\n", + " for day in dry_days.sel(time=data[\"time.year\"] == year).values:\n", + " if day:\n", + " current_count += 1\n", + " else:\n", + " if current_count > 0:\n", + " consecutive_trues.append(current_count)\n", + " current_count = 0\n", + " if current_count > 0:\n", + " consecutive_trues.append(current_count)\n", + " # print(consecutive_trues)\n", + " # CDD is the largest number of consecutive days\n", + " cdd[i] = np.max(consecutive_trues)\n", + " # transform to dataset\n", + " cdd_da = xr.DataArray(cdd, coords={\"year\": unique_years}, dims=\"year\")\n", + " return cdd_da" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ad439e00", + "metadata": { + "execution": {} + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_daily/netcdf/p25/chirps-v2.0.1981.days_p25.nc' to file '/tmp/chirps-v2.0.1981.days_p25.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: abf5aa47db1a47b1bb0358591d02adb7cdc765af1de83834aa0a36157828f0cb\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_daily/netcdf/p25/chirps-v2.0.1982.days_p25.nc' to file '/tmp/chirps-v2.0.1982.days_p25.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: 5264a039135cbe00fff7c2b8296123ddc652db67a3086ac1d84bc7cfd91d1b3c\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_daily/netcdf/p25/chirps-v2.0.1983.days_p25.nc' to file '/tmp/chirps-v2.0.1983.days_p25.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: 8083ed549a4027fddad74e4a3be75c8587ad0830de3be0200c56b295d81cbe26\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_daily/netcdf/p25/chirps-v2.0.1984.days_p25.nc' to file '/tmp/chirps-v2.0.1984.days_p25.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: e1c3edab18b4bd69a659a42e95ca9a97051b7055738fdf4b63796ff199bbf2a4\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_daily/netcdf/p25/chirps-v2.0.1985.days_p25.nc' to file '/tmp/chirps-v2.0.1985.days_p25.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: 795f6ef239d5a88b0afc682875ad5567f61d694980346c656db5445af428b3ab\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_daily/netcdf/p25/chirps-v2.0.1986.days_p25.nc' to file '/tmp/chirps-v2.0.1986.days_p25.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: 3ad6497e71ee565d2ecdb895993f2ca9b4db6ed0efb702eb000b934b7ea4438f\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_daily/netcdf/p25/chirps-v2.0.1987.days_p25.nc' to file '/tmp/chirps-v2.0.1987.days_p25.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: a47dd1314d10589213b7d807fb8f1486972f2a0fcf081d899b414304c09aad8d\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_daily/netcdf/p25/chirps-v2.0.1988.days_p25.nc' to file '/tmp/chirps-v2.0.1988.days_p25.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: 07b7a89ac7e7f1e16cad1db1100217a60a124964b77693e6323b0c1316f813e3\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_daily/netcdf/p25/chirps-v2.0.1989.days_p25.nc' to file '/tmp/chirps-v2.0.1989.days_p25.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: a81c7a0916bf81e4047cda8d6320cc5c94720f758f232c50b80502a840702ab8\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_daily/netcdf/p25/chirps-v2.0.1990.days_p25.nc' to file '/tmp/chirps-v2.0.1990.days_p25.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: 10a95daa84df0e1934c462c3687cff0accff907557f92c6c1e7ee0d2077ed0d4\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_daily/netcdf/p25/chirps-v2.0.1991.days_p25.nc' to file '/tmp/chirps-v2.0.1991.days_p25.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: f549808c69601cf288b4f0f42b8ac5337c348f06d1fb55aa86b67e9bbd3837f9\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_daily/netcdf/p25/chirps-v2.0.1992.days_p25.nc' to file '/tmp/chirps-v2.0.1992.days_p25.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: ae26310b18369c1015e6b70db6dfb7ad1c138f846bd7c322e0b6794a26423f56\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_daily/netcdf/p25/chirps-v2.0.1993.days_p25.nc' to file '/tmp/chirps-v2.0.1993.days_p25.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: 292ff168ef7f4420d36606f7ed84aa5380dd979a90351762926ef4c569e90f56\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_daily/netcdf/p25/chirps-v2.0.1994.days_p25.nc' to file '/tmp/chirps-v2.0.1994.days_p25.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: f856963801db2a62fa5c35537810f1649f19d32c84f1c4f2bb3fd3dcc82ba7ec\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_daily/netcdf/p25/chirps-v2.0.1995.days_p25.nc' to file '/tmp/chirps-v2.0.1995.days_p25.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: 54c7a408d49112465479a06a3d1e5b37cb10b526c2cf20215f2b75579c8c2a0e\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_daily/netcdf/p25/chirps-v2.0.1996.days_p25.nc' to file '/tmp/chirps-v2.0.1996.days_p25.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: b0a4604e5a213671e6d591ad959c2156685ee026b54fbc8ad87860e35f3db4df\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_daily/netcdf/p25/chirps-v2.0.1997.days_p25.nc' to file '/tmp/chirps-v2.0.1997.days_p25.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: a04019a26e20988e35d8d14e88f1083aabb8104434c556c21e3d29e1c30ae731\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_daily/netcdf/p25/chirps-v2.0.1998.days_p25.nc' to file '/tmp/chirps-v2.0.1998.days_p25.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: 15f3e33707c14b3ef26b525cb116766b847f2295c60aa41c6ae73df10e748e98\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_daily/netcdf/p25/chirps-v2.0.1999.days_p25.nc' to file '/tmp/chirps-v2.0.1999.days_p25.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: dbb0a6a0ee1ff5e3ba5439101bedc24dad0951810a03a6f5cdc96e4b08c06716\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_daily/netcdf/p25/chirps-v2.0.2000.days_p25.nc' to file '/tmp/chirps-v2.0.2000.days_p25.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: 57014c9ff72c8997b5b141793c06ffd1a8d8f5c6d1308789ac8e12c3860e5790\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_daily/netcdf/p25/chirps-v2.0.2001.days_p25.nc' to file '/tmp/chirps-v2.0.2001.days_p25.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: 8550c96c7f8c29cbc6a1be3be56d7f769125d15b9ac7bc6c4f0fc4a76034f0fa\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_daily/netcdf/p25/chirps-v2.0.2002.days_p25.nc' to file '/tmp/chirps-v2.0.2002.days_p25.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: 8027aaf7e005d74073d2c744d9c8a0343ffade272c1d1f8c420972bcbade2231\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_daily/netcdf/p25/chirps-v2.0.2003.days_p25.nc' to file '/tmp/chirps-v2.0.2003.days_p25.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: 5b5a538e187ca651bc1fcc25eb445d31a05067b5a109bd8bb4651db11346cf6f\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_daily/netcdf/p25/chirps-v2.0.2004.days_p25.nc' to file '/tmp/chirps-v2.0.2004.days_p25.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: 5e671526f27567e9218d275f7a47b6c0d7e0acf718edfee64c5843f5ee497e93\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_daily/netcdf/p25/chirps-v2.0.2005.days_p25.nc' to file '/tmp/chirps-v2.0.2005.days_p25.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: 2185afd5c3d110da52a9a81eb97f25b37f30db5c0478e536a84c957351e44b53\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_daily/netcdf/p25/chirps-v2.0.2006.days_p25.nc' to file '/tmp/chirps-v2.0.2006.days_p25.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: 3f78d5e733ea38bef25e47af9b3a907a96e27b8334cc04e4898837239e6539e6\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_daily/netcdf/p25/chirps-v2.0.2007.days_p25.nc' to file '/tmp/chirps-v2.0.2007.days_p25.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: c4594aeaafd7b9e7065577563799bca461582723e6b32df332206b43cb853138\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_daily/netcdf/p25/chirps-v2.0.2008.days_p25.nc' to file '/tmp/chirps-v2.0.2008.days_p25.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: 6fe5dc8facd7750b6c08ecd0cadaaf19570acccd6a15f20efcbdd960230b5551\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_daily/netcdf/p25/chirps-v2.0.2009.days_p25.nc' to file '/tmp/chirps-v2.0.2009.days_p25.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: e6ccdc38aa146793f2c92858412122ef14a7a34332940bec03bd520cc77dc235\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_daily/netcdf/p25/chirps-v2.0.2010.days_p25.nc' to file '/tmp/chirps-v2.0.2010.days_p25.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: f6b6bd962626c038959a743b5f6e6c22b0bd6647b89b4a08b0f2305ac77f7277\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_daily/netcdf/p25/chirps-v2.0.2011.days_p25.nc' to file '/tmp/chirps-v2.0.2011.days_p25.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: 45f437d8f1c7237b7043ebf4fec800461252af02e7cbcc87a844ddf0d1a911d2\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_daily/netcdf/p25/chirps-v2.0.2012.days_p25.nc' to file '/tmp/chirps-v2.0.2012.days_p25.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: 27792b3d028ca5e745a8fe45c4f133a4183469512d2e55ead950d54a5a5a890b\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_daily/netcdf/p25/chirps-v2.0.2013.days_p25.nc' to file '/tmp/chirps-v2.0.2013.days_p25.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: d531a704ed1a40be2d509b1d984913194015f84721edc555f2de8c000bcab638\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_daily/netcdf/p25/chirps-v2.0.2014.days_p25.nc' to file '/tmp/chirps-v2.0.2014.days_p25.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: c3225de85da99422bc5fde9dbd1bdabff206fc2902d811944169348c8352d521\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_daily/netcdf/p25/chirps-v2.0.2015.days_p25.nc' to file '/tmp/chirps-v2.0.2015.days_p25.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: 0c770adf07884a25610ea00d66d5e221529159746d3d76d9affea69c77666233\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_daily/netcdf/p25/chirps-v2.0.2016.days_p25.nc' to file '/tmp/chirps-v2.0.2016.days_p25.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: 8ff4f6284c1d37b50e8b1e47dbd9f6e108a9ee3b17a6752bb18cc0b7384526d3\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_daily/netcdf/p25/chirps-v2.0.2017.days_p25.nc' to file '/tmp/chirps-v2.0.2017.days_p25.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: 9692ca1fee495b8091084b1e5d29ea618483e67886a281f82b4a03555861d6b8\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_daily/netcdf/p25/chirps-v2.0.2018.days_p25.nc' to file '/tmp/chirps-v2.0.2018.days_p25.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: 05b0850b8b8c16a2d5d33ddc6ba89d503084dc7374845214289be1b411a30d3f\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_daily/netcdf/p25/chirps-v2.0.2019.days_p25.nc' to file '/tmp/chirps-v2.0.2019.days_p25.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: 311723f2f8d2af3307da198ebafece0c081200f336444a4261516539348fed38\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_daily/netcdf/p25/chirps-v2.0.2020.days_p25.nc' to file '/tmp/chirps-v2.0.2020.days_p25.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: 2ab3b142141c5cfc708bc666dc89900005b7452b66324515fca1baa8dff00402\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_daily/netcdf/p25/chirps-v2.0.2021.days_p25.nc' to file '/tmp/chirps-v2.0.2021.days_p25.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: 1b2db33508896ed1932b9db7e6dad6136e90687d3fe630f08066dbd279e0dabb\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_daily/netcdf/p25/chirps-v2.0.2022.days_p25.nc' to file '/tmp/chirps-v2.0.2022.days_p25.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: 5f9b88f0623083759ba351a263bf23afd7fb26b13e23d051d5bb22a55aa0bcb9\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_daily/netcdf/p25/chirps-v2.0.2023.days_p25.nc' to file '/tmp/chirps-v2.0.2023.days_p25.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: 8430cc8afd1a69205ecf757a2d8d95f3e6fbc44544326b27b4d534a82ee9c14c\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + } + ], + "source": [ + "# code to retrieve and load the data\n", + "\n", + "years = range(1981,2024) # the years you want. we want 1981 till 2023\n", + "file_paths = ['https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_daily/netcdf/p25/chirps-v2.0.' + str(year) + '.days_p25.nc' for year in years] # the format of the files\n", + "filenames = ['chirps-v2.0.'+str(year)+'.days_p25.nc' for year in years] # the format of the files\n", + "\n", + "downloaded_files=[ pooch_load(fpath,fname) for (fpath,fname) in zip(file_paths,filenames)] # download all of the files\n", + "\n", + "#### open data via xarray\n", + "chirps_data = xr.open_mfdataset(\n", + " downloaded_files, combine=\"by_coords\"\n", + ") # open the files as one dataset" + ] + }, + { + "cell_type": "markdown", + "id": "660f8525", + "metadata": { + "execution": {} + }, + "source": [ + "We can now visualize the content of the dataset." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "114e4a72", + "metadata": { + "execution": {} + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.Dataset> Size: 36GB\n",
+       "Dimensions:    (latitude: 400, longitude: 1440, time: 15705)\n",
+       "Coordinates:\n",
+       "  * latitude   (latitude) float32 2kB -49.88 -49.62 -49.38 ... 49.38 49.62 49.88\n",
+       "  * longitude  (longitude) float32 6kB -179.9 -179.6 -179.4 ... 179.6 179.9\n",
+       "  * time       (time) datetime64[ns] 126kB 1981-01-01 1981-01-02 ... 2023-12-31\n",
+       "Data variables:\n",
+       "    precip     (time, latitude, longitude) float32 36GB dask.array<chunksize=(61, 67, 240), meta=np.ndarray>\n",
+       "Attributes: (12/15)\n",
+       "    Conventions:       CF-1.6\n",
+       "    title:             CHIRPS Version 2.0\n",
+       "    history:           created by Climate Hazards Group\n",
+       "    version:           Version 2.0\n",
+       "    date_created:      2015-10-07\n",
+       "    creator_name:      Pete Peterson\n",
+       "    ...                ...\n",
+       "    reference:         Funk, C.C., Peterson, P.J., Landsfeld, M.F., Pedreros,...\n",
+       "    comments:           time variable denotes the first day of the given day.\n",
+       "    acknowledgements:  The Climate Hazards Group InfraRed Precipitation with ...\n",
+       "    ftp_url:           ftp://chg-ftpout.geog.ucsb.edu/pub/org/chg/products/CH...\n",
+       "    website:           http://chg.geog.ucsb.edu/data/chirps/index.html\n",
+       "    faq:               http://chg-wiki.geog.ucsb.edu/wiki/CHIRPS_FAQ
" + ], + "text/plain": [ + " Size: 36GB\n", + "Dimensions: (latitude: 400, longitude: 1440, time: 15705)\n", + "Coordinates:\n", + " * latitude (latitude) float32 2kB -49.88 -49.62 -49.38 ... 49.38 49.62 49.88\n", + " * longitude (longitude) float32 6kB -179.9 -179.6 -179.4 ... 179.6 179.9\n", + " * time (time) datetime64[ns] 126kB 1981-01-01 1981-01-02 ... 2023-12-31\n", + "Data variables:\n", + " precip (time, latitude, longitude) float32 36GB dask.array\n", + "Attributes: (12/15)\n", + " Conventions: CF-1.6\n", + " title: CHIRPS Version 2.0\n", + " history: created by Climate Hazards Group\n", + " version: Version 2.0\n", + " date_created: 2015-10-07\n", + " creator_name: Pete Peterson\n", + " ... ...\n", + " reference: Funk, C.C., Peterson, P.J., Landsfeld, M.F., Pedreros,...\n", + " comments: time variable denotes the first day of the given day.\n", + " acknowledgements: The Climate Hazards Group InfraRed Precipitation with ...\n", + " ftp_url: ftp://chg-ftpout.geog.ucsb.edu/pub/org/chg/products/CH...\n", + " website: http://chg.geog.ucsb.edu/data/chirps/index.html\n", + " faq: http://chg-wiki.geog.ucsb.edu/wiki/CHIRPS_FAQ" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# code to print the shape, array names, etc of the dataset\n", + "chirps_data" + ] + }, + { + "cell_type": "markdown", + "id": "c3fb296a", + "metadata": { + "execution": {} + }, + "source": [ + "## NOAA Fundamental Climate Data Records (FCDR) AVHRR Land Bundle - Normalized Difference Vegetation Index\n", + "\n", + "As we learned in the W1D3 tutorials, all the National Atmospheric and Oceanic Administration Climate Data Record (NOAA-CDR) datasets are available both at NOAA National Centers for Environmental Information (NCEI) and commercial cloud platforms. See the link [here](https://registry.opendata.aws/noaa-cdr-terrestrial/). We are accessing the data directly via the [Amazon Web Service (AWS) cloud storage space](https://noaa-cdr-ndvi-pds.s3.amazonaws.com/index.html).\n", + "\n", + "For this project, we recommend using the Normalized Difference Vegetation Index (NDVI). It is one of the most commonly used remotely sensed indices. It measures the \"greenness\" of vegetation and is useful in understanding vegetation density and assessing changes in plant health. For example, NDVI can be used to study the impacts of droughts, heatwaves, and insect infestations on plants covering Earth's surface. A good overview of this index from this particular sensor can be accessed [here](https://digitalcommons.unl.edu/nasapub/217/).\n", + "\n", + "Recall what we learned in W1D3 Tutorial 3, the data files on AWS are named systematically:\n", + "\n", + "> Sensor name: `AVHRR` \n", + "> Product category: `Land` \n", + "> Product version: `v005` \n", + "> Product code: `AVH13C1` \n", + "> Satellite platform: `NOAA-07` \n", + "> Date of the data: `19810624` \n", + "> Processing time: `c20170610041337` (*This will change for each file based on when the file was processed*) \n", + "> File format: `.nc` (*netCDF-4 format*)\n", + "\n", + "In other words, if we are looking for the data of a specific day, we can easily locate where the file might be. \n", + "\n", + "For example, if we want to find the AVHRR data for the day of *2002-03-12 (or March 12, 2002)*, you can use:\n", + "\n", + "`s3://noaa-cdr-ndvi-pds/data/2002/AVHRR-Land_v005_AVH13C1_*_20020312_c*.nc`\n", + "\n", + "The reason that we put `*` in the above directory is that we are not sure about what satellite platform this data is from and when the data was processed. The `*` is called a **wildcard**, and is used because we want *all* the files that contain our specific criteria, but do not want to have to specify all the other pieces of the filename we are not sure about yet. It should return all the data satisfying that initial criteria and you can refine further once you see what is available. Essentially, this first step helps to narrow down the data search. You can then use this to create datasets from the timeframe of your choosing.\n", + "\n", + "*Note the download might take up to hours depending on your time frame of interest and your device. Choose your time frame wisely before taking action to avoid unnecessary data retrieval amounts.*" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "3e66216a", + "metadata": { + "execution": {} + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'http://s3.amazonaws.com/noaa-cdr-ndvi-pds/data/2001/AVHRR-Land_v005_AVH13C1_NOAA-16_20010101_c20170608112729.nc' to file '/tmp/noaa-cdr-ndvi-pds/data/2001/AVHRR-Land_v005_AVH13C1_NOAA-16_20010101_c20170608112729.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: bea1b2cfeead6742dd8e6006533d447a1cfd6f7311fbc8a662f5f0b58ac65500\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'http://s3.amazonaws.com/noaa-cdr-ndvi-pds/data/2001/AVHRR-Land_v005_AVH13C1_NOAA-16_20010102_c20170608114253.nc' to file '/tmp/noaa-cdr-ndvi-pds/data/2001/AVHRR-Land_v005_AVH13C1_NOAA-16_20010102_c20170608114253.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: 3b8037793f3699a79d3d2c6d5413966a356d4b1e27d853555231961616fe40b6\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'http://s3.amazonaws.com/noaa-cdr-ndvi-pds/data/2001/AVHRR-Land_v005_AVH13C1_NOAA-16_20010103_c20170608115841.nc' to file '/tmp/noaa-cdr-ndvi-pds/data/2001/AVHRR-Land_v005_AVH13C1_NOAA-16_20010103_c20170608115841.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: a92fd5e6188556cd35511394312fb4f5ecf4d7e7153fc4002f29d23316463340\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'http://s3.amazonaws.com/noaa-cdr-ndvi-pds/data/2001/AVHRR-Land_v005_AVH13C1_NOAA-16_20010104_c20170608121434.nc' to file '/tmp/noaa-cdr-ndvi-pds/data/2001/AVHRR-Land_v005_AVH13C1_NOAA-16_20010104_c20170608121434.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: 21c0f5e7b361eeed45bad648c12b3d88c670da77e81ed36d0c83e7daa59e0ece\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'http://s3.amazonaws.com/noaa-cdr-ndvi-pds/data/2001/AVHRR-Land_v005_AVH13C1_NOAA-16_20010105_c20170608123036.nc' to file '/tmp/noaa-cdr-ndvi-pds/data/2001/AVHRR-Land_v005_AVH13C1_NOAA-16_20010105_c20170608123036.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: fc7d244edf3dd0eec1609ed9aeca5d94c479f8115a38c9cf879efa889046a66d\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'http://s3.amazonaws.com/noaa-cdr-ndvi-pds/data/2001/AVHRR-Land_v005_AVH13C1_NOAA-16_20010106_c20170608124647.nc' to file '/tmp/noaa-cdr-ndvi-pds/data/2001/AVHRR-Land_v005_AVH13C1_NOAA-16_20010106_c20170608124647.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: 260c939a2b10f35eafe6ebd67c9b9d260062e7c455a1b7268f6bafaec4e9edf0\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'http://s3.amazonaws.com/noaa-cdr-ndvi-pds/data/2001/AVHRR-Land_v005_AVH13C1_NOAA-16_20010107_c20170608130258.nc' to file '/tmp/noaa-cdr-ndvi-pds/data/2001/AVHRR-Land_v005_AVH13C1_NOAA-16_20010107_c20170608130258.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: 85f0e58ce20cf1fcacdb8856b2bc805a073e7d349de2816c4c71d18c35f88de7\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'http://s3.amazonaws.com/noaa-cdr-ndvi-pds/data/2001/AVHRR-Land_v005_AVH13C1_NOAA-16_20010108_c20170608130658.nc' to file '/tmp/noaa-cdr-ndvi-pds/data/2001/AVHRR-Land_v005_AVH13C1_NOAA-16_20010108_c20170608130658.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: 3dc1a63efd5439b5c7c30421dfc3f19918d03719ee824c5bba9f28842a133748\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'http://s3.amazonaws.com/noaa-cdr-ndvi-pds/data/2001/AVHRR-Land_v005_AVH13C1_NOAA-16_20010109_c20170608131430.nc' to file '/tmp/noaa-cdr-ndvi-pds/data/2001/AVHRR-Land_v005_AVH13C1_NOAA-16_20010109_c20170608131430.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: 5c1ddfbe3f562b8fcd84a5f2c294aa5ae804f6a9c686ea21e7a019c2434b2ce1\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'http://s3.amazonaws.com/noaa-cdr-ndvi-pds/data/2001/AVHRR-Land_v005_AVH13C1_NOAA-16_20010110_c20170608133019.nc' to file '/tmp/noaa-cdr-ndvi-pds/data/2001/AVHRR-Land_v005_AVH13C1_NOAA-16_20010110_c20170608133019.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: 4c270d4cd8c43a3e8830477f681fdc7f492acdbeb517fbb9fa002246955d6468\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'http://s3.amazonaws.com/noaa-cdr-ndvi-pds/data/2001/AVHRR-Land_v005_AVH13C1_NOAA-16_20010111_c20170608134807.nc' to file '/tmp/noaa-cdr-ndvi-pds/data/2001/AVHRR-Land_v005_AVH13C1_NOAA-16_20010111_c20170608134807.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: dbb9c7c2a17fa376727a6d6efed7dba915222439678c9fe28fef8f93c283f9a0\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'http://s3.amazonaws.com/noaa-cdr-ndvi-pds/data/2001/AVHRR-Land_v005_AVH13C1_NOAA-16_20010112_c20170608140615.nc' to file '/tmp/noaa-cdr-ndvi-pds/data/2001/AVHRR-Land_v005_AVH13C1_NOAA-16_20010112_c20170608140615.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: 2443ca0d7294da9555a462c2c6af5620342688522ee9a6197606ca91551848b6\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'http://s3.amazonaws.com/noaa-cdr-ndvi-pds/data/2001/AVHRR-Land_v005_AVH13C1_NOAA-16_20010113_c20170608142322.nc' to file '/tmp/noaa-cdr-ndvi-pds/data/2001/AVHRR-Land_v005_AVH13C1_NOAA-16_20010113_c20170608142322.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: a91b0ccd4216729443aaba8875de29ddcf0968789ce86b2abf06984abcb1ab9b\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'http://s3.amazonaws.com/noaa-cdr-ndvi-pds/data/2001/AVHRR-Land_v005_AVH13C1_NOAA-16_20010114_c20170608144105.nc' to file '/tmp/noaa-cdr-ndvi-pds/data/2001/AVHRR-Land_v005_AVH13C1_NOAA-16_20010114_c20170608144105.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: 80aacb1b012bc917fd0ebbcccf793062f8a490031a21cede4f8e6ab6bd59f45e\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'http://s3.amazonaws.com/noaa-cdr-ndvi-pds/data/2001/AVHRR-Land_v005_AVH13C1_NOAA-16_20010115_c20170608145913.nc' to file '/tmp/noaa-cdr-ndvi-pds/data/2001/AVHRR-Land_v005_AVH13C1_NOAA-16_20010115_c20170608145913.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: e3b97d2052ece810cf14f3c7ad428d30e9e9acf98aa2082684f8f3986a6f05aa\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'http://s3.amazonaws.com/noaa-cdr-ndvi-pds/data/2001/AVHRR-Land_v005_AVH13C1_NOAA-16_20010116_c20170608151715.nc' to file '/tmp/noaa-cdr-ndvi-pds/data/2001/AVHRR-Land_v005_AVH13C1_NOAA-16_20010116_c20170608151715.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: 317ece4c8925f74e93d6111c15f8a5d78231da91f47c98b3432ad9a9d6dd5e0c\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'http://s3.amazonaws.com/noaa-cdr-ndvi-pds/data/2001/AVHRR-Land_v005_AVH13C1_NOAA-16_20010117_c20170608153425.nc' to file '/tmp/noaa-cdr-ndvi-pds/data/2001/AVHRR-Land_v005_AVH13C1_NOAA-16_20010117_c20170608153425.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: d1a98e00eb1cf5524eab70e5d0cefb793f789c653c010c5af5fd7b641a0453ec\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'http://s3.amazonaws.com/noaa-cdr-ndvi-pds/data/2001/AVHRR-Land_v005_AVH13C1_NOAA-16_20010118_c20170608155135.nc' to file '/tmp/noaa-cdr-ndvi-pds/data/2001/AVHRR-Land_v005_AVH13C1_NOAA-16_20010118_c20170608155135.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: 48710d5c1cc845f35ba23c528ac9e592fd4d9b7c9961d1ddb31ac1ce7880f829\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'http://s3.amazonaws.com/noaa-cdr-ndvi-pds/data/2001/AVHRR-Land_v005_AVH13C1_NOAA-16_20010119_c20170608160850.nc' to file '/tmp/noaa-cdr-ndvi-pds/data/2001/AVHRR-Land_v005_AVH13C1_NOAA-16_20010119_c20170608160850.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: 1a8dbe37b9f48e28e1ad24c7002cdc4e132413668e63f856ff30a34ab2e49bf5\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'http://s3.amazonaws.com/noaa-cdr-ndvi-pds/data/2001/AVHRR-Land_v005_AVH13C1_NOAA-16_20010120_c20170608162614.nc' to file '/tmp/noaa-cdr-ndvi-pds/data/2001/AVHRR-Land_v005_AVH13C1_NOAA-16_20010120_c20170608162614.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: 6419dc7f01e8725ebc3db108b770d64c6221fc61acb824959bbe5a246faec097\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'http://s3.amazonaws.com/noaa-cdr-ndvi-pds/data/2001/AVHRR-Land_v005_AVH13C1_NOAA-16_20010121_c20170608164215.nc' to file '/tmp/noaa-cdr-ndvi-pds/data/2001/AVHRR-Land_v005_AVH13C1_NOAA-16_20010121_c20170608164215.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: 365b748dce06c1731a03162855d25ee4467fcb94fa7c623f82f8c407fa4ea88e\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'http://s3.amazonaws.com/noaa-cdr-ndvi-pds/data/2001/AVHRR-Land_v005_AVH13C1_NOAA-16_20010122_c20170608165946.nc' to file '/tmp/noaa-cdr-ndvi-pds/data/2001/AVHRR-Land_v005_AVH13C1_NOAA-16_20010122_c20170608165946.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: 2d1904144d4459967c49f4b197a4e35ca1fea352f1eea41732daa679af81378f\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'http://s3.amazonaws.com/noaa-cdr-ndvi-pds/data/2001/AVHRR-Land_v005_AVH13C1_NOAA-16_20010123_c20170608171732.nc' to file '/tmp/noaa-cdr-ndvi-pds/data/2001/AVHRR-Land_v005_AVH13C1_NOAA-16_20010123_c20170608171732.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: 83d678770250b0fc8169c72b648da9ad6d11843b8c73250b4857c5ee18b5287c\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'http://s3.amazonaws.com/noaa-cdr-ndvi-pds/data/2001/AVHRR-Land_v005_AVH13C1_NOAA-16_20010124_c20170608173542.nc' to file '/tmp/noaa-cdr-ndvi-pds/data/2001/AVHRR-Land_v005_AVH13C1_NOAA-16_20010124_c20170608173542.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: 3cc82111ca3ce5f58948c31af1778d46401ed4ec61403b8a374d1d690ce7f9ec\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'http://s3.amazonaws.com/noaa-cdr-ndvi-pds/data/2001/AVHRR-Land_v005_AVH13C1_NOAA-16_20010125_c20170608175403.nc' to file '/tmp/noaa-cdr-ndvi-pds/data/2001/AVHRR-Land_v005_AVH13C1_NOAA-16_20010125_c20170608175403.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: 04618e326461457b9ec9495ad527a82845bd7e363f53705f4e47fdac6383d83d\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'http://s3.amazonaws.com/noaa-cdr-ndvi-pds/data/2001/AVHRR-Land_v005_AVH13C1_NOAA-16_20010126_c20170608181206.nc' to file '/tmp/noaa-cdr-ndvi-pds/data/2001/AVHRR-Land_v005_AVH13C1_NOAA-16_20010126_c20170608181206.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: 1022477d48371e7df468f8699bebd9716ea19ee104e397919ce61cd2b178bec2\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'http://s3.amazonaws.com/noaa-cdr-ndvi-pds/data/2001/AVHRR-Land_v005_AVH13C1_NOAA-16_20010127_c20170608182926.nc' to file '/tmp/noaa-cdr-ndvi-pds/data/2001/AVHRR-Land_v005_AVH13C1_NOAA-16_20010127_c20170608182926.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: 81f12834cf32df6171e65db33afd90fbfd65027330aa0b21cbd0ea6088c8280a\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'http://s3.amazonaws.com/noaa-cdr-ndvi-pds/data/2001/AVHRR-Land_v005_AVH13C1_NOAA-16_20010128_c20170608184655.nc' to file '/tmp/noaa-cdr-ndvi-pds/data/2001/AVHRR-Land_v005_AVH13C1_NOAA-16_20010128_c20170608184655.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: cf1b2f7bb2ede9ff76917f77681d8c0cf8c8e9b8cbaa43b315613e848ea2d6ab\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'http://s3.amazonaws.com/noaa-cdr-ndvi-pds/data/2001/AVHRR-Land_v005_AVH13C1_NOAA-16_20010129_c20170608190436.nc' to file '/tmp/noaa-cdr-ndvi-pds/data/2001/AVHRR-Land_v005_AVH13C1_NOAA-16_20010129_c20170608190436.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: 20b5d6c84a736057d6fa8def6857a7e507fd95ae5c265da893692788b59c7497\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'http://s3.amazonaws.com/noaa-cdr-ndvi-pds/data/2001/AVHRR-Land_v005_AVH13C1_NOAA-16_20010130_c20170608192209.nc' to file '/tmp/noaa-cdr-ndvi-pds/data/2001/AVHRR-Land_v005_AVH13C1_NOAA-16_20010130_c20170608192209.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: c2122ad87a08bf38ce1b38f6d03bdf783209431dcd45a1d37be07c4385f88eb5\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'http://s3.amazonaws.com/noaa-cdr-ndvi-pds/data/2001/AVHRR-Land_v005_AVH13C1_NOAA-16_20010131_c20170608193958.nc' to file '/tmp/noaa-cdr-ndvi-pds/data/2001/AVHRR-Land_v005_AVH13C1_NOAA-16_20010131_c20170608193958.nc'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: d5c1b61b554941b79caf7731fe49a6dfcddeed08777dd516c3cf6505c6834ad1\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.Dataset> Size: 11GB\n",
+       "Dimensions:    (latitude: 3600, longitude: 7200, time: 31, ncrs: 1, nv: 2)\n",
+       "Coordinates:\n",
+       "  * latitude   (latitude) float32 14kB 89.97 89.93 89.88 ... -89.93 -89.97\n",
+       "  * longitude  (longitude) float32 29kB -180.0 -179.9 -179.9 ... 179.9 180.0\n",
+       "  * time       (time) float32 124B 7.305e+03 7.306e+03 ... 7.334e+03 7.335e+03\n",
+       "Dimensions without coordinates: ncrs, nv\n",
+       "Data variables:\n",
+       "    crs        (time, ncrs) int16 62B dask.array<chunksize=(1, 1), meta=np.ndarray>\n",
+       "    lat_bnds   (time, latitude, nv) float32 893kB dask.array<chunksize=(1, 3600, 2), meta=np.ndarray>\n",
+       "    lon_bnds   (time, longitude, nv) float32 2MB dask.array<chunksize=(1, 7200, 2), meta=np.ndarray>\n",
+       "    NDVI       (time, latitude, longitude) float32 3GB dask.array<chunksize=(1, 1200, 2400), meta=np.ndarray>\n",
+       "    TIMEOFDAY  (time, latitude, longitude) float64 6GB dask.array<chunksize=(1, 1200, 2400), meta=np.ndarray>\n",
+       "    QA         (time, latitude, longitude) int16 2GB dask.array<chunksize=(1, 3600, 7200), meta=np.ndarray>\n",
+       "Attributes: (12/48)\n",
+       "    title:                                  Normalized Difference Vegetation ...\n",
+       "    institution:                            NASA/GSFC/SED/ESD/HBSL/TIS/MODIS-...\n",
+       "    Conventions:                            CF-1.6, ACDD-1.3\n",
+       "    standard_name_vocabulary:               CF Standard Name Table (v25, 05 J...\n",
+       "    naming_authority:                       gov.noaa.ncei\n",
+       "    license:                                See the Use Agreement for this CD...\n",
+       "    ...                                     ...\n",
+       "    PercentValidDaytimeData:                33.79\n",
+       "    PercentValidDaytimeLand:                33.79\n",
+       "    PercentValidClearDaytimeLand:           4.54\n",
+       "    PercentValidDaytimeLandInCloudShadow:   0.85\n",
+       "    PercentValidClearDaytimeWater:          0.00\n",
+       "    PercentValidDaytimeWaterInCloudShadow:  0.00
" + ], + "text/plain": [ + " Size: 11GB\n", + "Dimensions: (latitude: 3600, longitude: 7200, time: 31, ncrs: 1, nv: 2)\n", + "Coordinates:\n", + " * latitude (latitude) float32 14kB 89.97 89.93 89.88 ... -89.93 -89.97\n", + " * longitude (longitude) float32 29kB -180.0 -179.9 -179.9 ... 179.9 180.0\n", + " * time (time) float32 124B 7.305e+03 7.306e+03 ... 7.334e+03 7.335e+03\n", + "Dimensions without coordinates: ncrs, nv\n", + "Data variables:\n", + " crs (time, ncrs) int16 62B dask.array\n", + " lat_bnds (time, latitude, nv) float32 893kB dask.array\n", + " lon_bnds (time, longitude, nv) float32 2MB dask.array\n", + " NDVI (time, latitude, longitude) float32 3GB dask.array\n", + " TIMEOFDAY (time, latitude, longitude) float64 6GB dask.array\n", + " QA (time, latitude, longitude) int16 2GB dask.array\n", + "Attributes: (12/48)\n", + " title: Normalized Difference Vegetation ...\n", + " institution: NASA/GSFC/SED/ESD/HBSL/TIS/MODIS-...\n", + " Conventions: CF-1.6, ACDD-1.3\n", + " standard_name_vocabulary: CF Standard Name Table (v25, 05 J...\n", + " naming_authority: gov.noaa.ncei\n", + " license: See the Use Agreement for this CD...\n", + " ... ...\n", + " PercentValidDaytimeData: 33.79\n", + " PercentValidDaytimeLand: 33.79\n", + " PercentValidClearDaytimeLand: 4.54\n", + " PercentValidDaytimeLandInCloudShadow: 0.85\n", + " PercentValidClearDaytimeWater: 0.00\n", + " PercentValidDaytimeWaterInCloudShadow: 0.00" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# we can access the data similar to Tutorial 3 of W1D3\n", + "# to access the NDVI data from AWS S3 bucket, we first need to connect to s3 bucket\n", + "\n", + "fs = s3fs.S3FileSystem(anon=True)\n", + "client = boto3.client('s3', config=botocore.client.Config(signature_version=botocore.UNSIGNED)) # initialize aws s3 bucket client\n", + "# choose a date of interest, we pick its year or month while defining the file_location\n", + "date_sel = datetime.datetime(2001,1,1,0)\n", + "\n", + "file_location = fs.glob('s3://noaa-cdr-ndvi-pds/data/'\n", + " + date_sel.strftime('%Y')\n", + " + '/AVHRR-Land_v005_AVH13C1_*'\n", + " + date_sel.strftime(\"%Y%m\") # or \"%Y\" for the entire year\n", + " + '*_c*.nc') # the files we want for a whole year/month\n", + "files_for_pooch=[pooch_load('http://s3.amazonaws.com/'+file,file) for file in file_location]\n", + "\n", + "ds = xr.open_mfdataset(files_for_pooch, combine=\"by_coords\", decode_times=False) # open the file\n", + "ds" + ] + }, + { + "cell_type": "markdown", + "id": "a03b0a64-4564-4cfa-abed-16a40f63cf57", + "metadata": { + "execution": {} + }, + "source": [ + "If the above downloading procedure is not working as expected, please retrieve the following sample to execute the remaining cells of the notebook. Ask for the help of your project TA to download your data of interest.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8dc64b25-c2d7-4e1b-8023-6d551981f77e", + "metadata": { + "execution": {} + }, + "outputs": [], + "source": [ + "# uncomment to get a subsample of AVHRR-Land_v005_AVH13C1_NOAA-16 NDVI data if data retrieval above is not working properly\n", + "\n", + "#fname_ndvi_200101 = 'AVHRR-Land_v005_AVH13C1_NOAA-16_200101.nc'\n", + "#link_id_ndvi = \"a9v7h\"\n", + "#url_ndvi_200101 = f\"https://osf.io/download/{link_id_ndvi}/\"\n", + "#\n", + "#ds = xr.open_dataset(pooch_load(url_ndvi_200101, fname_ndvi_200101))\n", + "#ds" + ] + }, + { + "cell_type": "markdown", + "id": "658a800d-e83e-422b-ae96-e16bb235e609", + "metadata": { + "execution": {} + }, + "source": [ + "*Note that the downloaded satellite data is quality-controlled and flagged accordingly. Please refer to W1D3 Tutorial 3 and others to decipher it. Choose the feasible helper functions, e.g. `get_quality_info_AVHRR(QA)` depending on the sensor of interest. VIIRS is a state-of-the-art sensor that produces measurements that have been available since 2014. We provide an example of usage in the following.*" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "b9fb8e19-f723-474d-9b42-f2ce891ffad4", + "metadata": { + "execution": {} + }, + "outputs": [], + "source": [ + "# AVHRR: function to extract high-quality NDVI data\n", + "def get_quality_info_AVHRR(QA):\n", + " \"\"\"\n", + " QA: the QA value read in from the NDVI data\n", + "\n", + " High-quality NDVI should meet the following criteria:\n", + " Bit 7: 1 (All AVHRR channels have valid values)\n", + " Bit 2: 0 (The pixel is not covered by cloud shadow)\n", + " Bit 1: 0 (The pixel is not covered by cloud)\n", + " Bit 0:\n", + "\n", + " Output:\n", + " True: high quality\n", + " False: low quality\n", + " \"\"\"\n", + " # unpack quality assurance flag for cloud (byte: 1)\n", + " cld_flag = (QA % (2**2)) // 2\n", + " # unpack quality assurance flag for cloud shadow (byte: 2)\n", + " cld_shadow = (QA % (2**3)) // 2**2\n", + " # unpack quality assurance flag for AVHRR values (byte: 7)\n", + " value_valid = (QA % (2**8)) // 2**7\n", + "\n", + " mask = (cld_flag == 0) & (cld_shadow == 0) & (value_valid == 1)\n", + "\n", + " return mask" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "941c3c3d-06ac-427e-9f40-2ae9b3aafc89", + "metadata": { + "execution": {} + }, + "outputs": [], + "source": [ + "# get the quality assurance value from NDVI data\n", + "QA = ds.QA\n", + "\n", + "# create the high quality information mask\n", + "mask = get_quality_info_AVHRR(QA)\n", + "\n", + "# check the quality flag mask information\n", + "#mask" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "67f62201-5d28-4715-ad31-7a31ded86682", + "metadata": { + "execution": {} + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
<xarray.DataArray 'NDVI' (time: 31, latitude: 3600, longitude: 7200)> Size: 3GB\n",
+       "dask.array<where, shape=(31, 3600, 7200), dtype=float32, chunksize=(1, 1200, 2400), chunktype=numpy.ndarray>\n",
+       "Coordinates:\n",
+       "  * latitude   (latitude) float32 14kB 89.97 89.93 89.88 ... -89.93 -89.97\n",
+       "  * longitude  (longitude) float32 29kB -180.0 -179.9 -179.9 ... 179.9 180.0\n",
+       "  * time       (time) float32 124B 7.305e+03 7.306e+03 ... 7.334e+03 7.335e+03\n",
+       "Attributes:\n",
+       "    long_name:      NOAA Climate Data Record of Normalized Difference Vegetat...\n",
+       "    units:          1\n",
+       "    valid_range:    [-1000 10000]\n",
+       "    grid_mapping:   crs\n",
+       "    standard_name:  normalized_difference_vegetation_index
" + ], + "text/plain": [ + " Size: 3GB\n", + "dask.array\n", + "Coordinates:\n", + " * latitude (latitude) float32 14kB 89.97 89.93 89.88 ... -89.93 -89.97\n", + " * longitude (longitude) float32 29kB -180.0 -179.9 -179.9 ... 179.9 180.0\n", + " * time (time) float32 124B 7.305e+03 7.306e+03 ... 7.334e+03 7.335e+03\n", + "Attributes:\n", + " long_name: NOAA Climate Data Record of Normalized Difference Vegetat...\n", + " units: 1\n", + " valid_range: [-1000 10000]\n", + " grid_mapping: crs\n", + " standard_name: normalized_difference_vegetation_index" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# mask ndvi data\n", + "ndvi_masked = ds.NDVI.where(mask)\n", + "ndvi_masked" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "24e94e81-f3b8-40be-85d9-635c30bb9567", + "metadata": { + "execution": {} + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABisAAAR+CAYAAACh5AbUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd3wT9f8H8FeS7l3KKNAyy957SwFlKigiiMoUJ+4fX79unF8HLhAVBAQXqKioLHEwBdmbMgRaKB200EHpbnK/P0LuLr1Lc0mTpimv5+ORRz/95O7z+SS53F3uc5/3RycIggAiIiIiIiIiIiIiIiIP0Xu6AUREREREREREREREdH1jZwUREREREREREREREXkUOyuIiIiIiIiIiIiIiMij2FlBREREREREREREREQexc4KIiIiIiIiIiIiIiLyKHZWEBERERERERERERGRR7GzgoiIiIiIiIiIiIiIPIqdFURERERERERERERE5FHsrCAiIiIiIiIiIiIiIo9iZwUREREREREREREREXkUOyuIiIiIiIiIiIiIiMij2FlBREREREREREREREQexc4KIiIiIiIiIiIiIiLyKHZWEBERERERERERERGRR7GzgoiIiIiIiIiIiIiIPIqdFURERERERERERERE5FHsrCAiIiIiIiIiIiIiIo9iZwUREREREREREREREXkUOyuIiIiIiIiIiIiIiMijvK6z4uWXX4ZOp7N6EBERkVJSUpLimGnrsXnzZo+2a9myZVVWP3mv8tvNyy+/7OkmEREREVE10LlzZ02/e3j+SFS9+Xi6AURUfSUnJyMpKQnJycm4dOkSCgoKYDQaER4ejvDwcLRo0QKdOnVCYGCgy+suKyvD2bNncf78eSQnJyM3NxcFBQUwGAwIDw9HZGQk2rVrhzZt2sBgMLi8fvIeBQUF2L17N06ePIns7GwIgiBunz179kR4eLhb6jx9+jSSk5ORkpKCvLw8FBYWIiAgABEREahTpw46d+6Mxo0bu7xuIiKqWrm5udi5cyfS0tJw6dIllJaWIjw8HM2bN0f37t0RFRXl1vovX76Mffv24cKFC8jJyUFhYSFCQ0MRERGBuLg4dO7cGUFBQW5tQ02Qm5uL3bt3499//0VOTg70ej0iIyPRqlUr9OrVyy3nszXR6dOncfDgQSQnJyM/Px+BgYFo0KABOnbsiHbt2nm6edWap7fBCxcuYN++fUhMTMTVq1fh7++PevXqoX379ujcuTP0+up9L6vJZMKBAwdw9OhRZGRkoLi4GCEhIWjatCm6deuGmJgYt9bvid8crubpbeDo0aM4cuQIUlNTUVhYiODgYMTGxqJz586Ii4tza91E5EUELzN79mwBgNWDyNMSExMV26UrH0uXLnX7a7h48aLwww8/CE888YTQr18/ITw8XFPbDAaD0KdPH2HBggVCbm6u0/WfPHlSWLJkiTB9+nShc+fOgr+/v6b6AwMDhTFjxgg///yzUFZW5nT9U6ZMcdnnNWzYMKfbQdrt3r1buOOOO4SAgACbn4WPj48wYsQI4c8//3S6nrKyMmHXrl3C+++/L4wbN05o0aKFoNfrNW0LtWvXFh544AFh165dLnzl2jmyb9q0aZNH21UV+znyfuW3m9mzZ3u6SeRGly9fFjZs2CC88cYbwm233SY0atRIdf/lDqWlpcKSJUuEXr16CQaDwea+U6/XCwMGDBC+++47wWQyuaz+9PR04c033xRat26t6VysX79+wueffy4UFBS4pP6CggJhx44dwrx584TJkycL7dq1Uz32VeWxw1l//PGHMHz4cMHHx8fmexgQECCMHz9e2LNnj0vrTk1NFVavXi3Mnj1bGDVqlFCvXj1F3Y0bN3Zpne5QUFAgvPfee0KLFi0q3BZjYmKE2bNnC9nZ2S6ru6ysTDhy5IiwdOlSYebMmUKvXr1Uz/2q8/HAk9tgWVmZsGjRIqFz584VfnZRUVHCk08+KVy4cMGl9bvChQsXhCeeeEKIioqq8DV06dJFWLx4caV+E6qpqt8c7uLpbSArK0t46aWXhIYNG1ZYf4sWLYT33ntPKCwsdLquTp06afrdU533F0QkCG6/0r906VLFjiExMdHp8thZQdWRuzsrli1b5vbXMGHChEq3s06dOk63Ve3Hm6OPjh07Ctu3b3eqfnZWeI+ioiLhoYceEnQ6nUOfyx133OFUh9rx48ddsl2MHTtWSE5OdsM7Ypvavik2Nlbo1KmT4uHqH8eOtoudFaQFf2zWbEeOHBHeeust4Y477hCaNm2qef/qaps2bRKaNWvm8H6+d+/ewpkzZypVt9FoFObNmyeEhIQ4daxp0qSJsGHDBofrvXjxovDxxx8L06dPFzp27FjhRVX5ozp3VuTk5Ai33367Q++fTqcTHnnkEaG4uNipOv/55x/h1VdfFUaPHi00aNBAU53VvbPi77//Fho3buzQ+1inTh3hl19+caq+0tJS4csvvxQef/xxoV+/fkJQUJCmOqvj8cAT26BcQkKC0KFDB4fqDwkJET777DMXvHrXWLBggcP7w06dOgknTpyodN1V/ZvDHTy9DaxatUqoXbu2w8exHTt2OFXf+PHjVX/neMP+gogk7KwgcgF3d1acPHnS7a/BFZ0Vlse0adMEo9HoUP2u6KwAzHc4Llq0yOHXz84K73D16lXhhhtucPqzadeunZCRkeFQna7qrAAg1KpVi50C1bhdVP3xx2bN9vjjjzu1b3Wl+fPna75Qr/aIjIwUdu/e7VTdZWVlwl133eWS481HH33kUN2rVq1yqp7q2lmRnp4utGnTxun3Lz4+XsjPz3e43jFjxjhcV3XurPjxxx8FX19fp95DnU4nfPzxxw7XmZ2d7VR91e144Klt0GL79u1CaGio0/U//fTTLnw3nPPUU0853f6wsDBh586dTtftid8crubpbWDu3LkOd/RYHn5+fsLPP//soneC549E3oZzVhC5gJ+fHzp16lTpcpKTk5GVlWWVN2DAALRs2bLSZTsqPDwc3bt3R4sWLRAXF4datWohNDQUpaWlyMnJwfHjx7FlyxYcPnxYse7SpUvh6+uLhQsXOl1/w4YN0bVrV8TFxaFZs2YICwtDcHAwCgoKcOnSJRw9ehQbNmxASkqK1Xomkwn3338/goKCcNdddzldv6+vL9q2bevUus2bN3e6XrJNEATceeed2Lp1q+K5hg0b4u6770aLFi3g7++PxMRE/Pzzzzhw4IDVcseOHcPNN9+Mbdu2wc/Pz6l26HQ6tGnTBu3bt0dcXBwaNWqE0NBQ+Pn54erVq0hJScGBAwewYcMGXL161WrdrKwsDBkyBLt370arVq2cqp+IiNxj+fLleOSRRxT5Op0OAwcOxNChQxEbGwudToeUlBT8+eef2LhxI4xGo7hsdnY2hg0bhj179jh8PvD4449j+fLlqvUPGTIEN9xwAxo3boygoCDk5uYiISEBv/32GxISEhTrPProo6hTpw4mTJjgUBtqguLiYowaNQrHjx9XPNeyZUuMHz8ezZs3hyAIOHPmDL777jucPn3aarnNmzfj7rvvxqpVq6qq2dXOjh07cOedd6K0tNQqX6/X4+abb0b//v0RGxuLzMxMHDp0CCtWrEBBQYG4nCAIeOSRR1C/fn3cdtttVd18j/L0Nnj69GmMHDkSeXl5iucGDRqEm266CY0bNxb3I9988w2ys7OtlnvnnXdQv359PPHEEw7X7wpz5szB+++/r8gPDg7GxIkT0bFjR9SuXRvJycnYtm0b1q5dC0EQxOWuXLmCESNGYN++fWjatKlDdVeX3xyV4eltYOXKlXj88ccV+b6+vhg3bhx69OiB+vXrIy0tDbt378aPP/5ota8pKSnB+PHjsXXrVvTq1cvh+onIy7m7N8TVIyuIajK1uMRffPFFldQ9ffp0YdSoUcL8+fOFY8eOaY67vG/fPqFv376qd0Q4EoagU6dOwqRJk4Tly5drjpNpMpmEH374QYiNjVXUHRkZKaSnp2uuv/zIiup8l9v1at68earb2auvviqUlJSorrNq1SrVoeOO3Cl04sQJoVWrVsITTzwhrF+/XsjJydG0XkFBgfDWW2+pxrft16+fS2Ob21JdRzBU13YRkWfZGlnh5+cndO3aVbj//vuFiIgIxfOucOTIESEwMFBRdtu2bSscKXHo0CGha9euivW6dOniUNz0f/75R/UO1N69e9sNZ/LLL7+ojlCtW7eu5rkDbI2s0Ol0QosWLYSJEyeqhtKojiMr1O7G9vX1FT777DPVY6/RaBQWLlyoOqLmk08+cahuWyMrAgMDhT59+giPPvqo4rnqeM559epV1TliWrVqJSQkJKiuc/nyZWH06NGKdcLDw4W0tDTNdVc0sqJ+/frCzTffLIwcObJa3yntyW3QaDQK3bt3V5QTHR1tM1zu1atXhQceeEC1zYcOHXLqPaiMffv2qb4XY8aMEbKyslTXOXbsmNCyZUvVfaij59ye+s3hKp7eBi5cuKA6oqNPnz42f+cnJycLvXv3VqzTpEkTl8zFVJ33F0SkxM4Kompi27Ztqif3lRn+W1VKSkpUf5zEx8dXSf0pKSmqsaVffvllzWWws8Ix5d8vd5/wZWZmCmFhYYrPeN68eXbX3b17t+Dn56c48T516pRb22yxdetWRf0AhM2bN7u97uraKVBd20VEnvX4448LPj4+QseOHYXp06cLn3zyibB7926r2O1qsfNd4ZZbblGU2759e+Hy5ct2171y5YrQs2dPxfpz587VXP/48eMV6/fq1UvzRZrjx4+rduTMnz9f0/qWzoqmTZsKd9xxh/D2228Lf/31l1UHvVrIzOrWWZGQkKB6kVPL/Ak///yzYr3IyEibF0fVjBkzRvD39xe6d+8uPPjgg8KSJUuEQ4cOWXVcla+jOp5zPvfcc4p2xsXF2f0+lJWVqc7RMGXKFM11Wzor6tSpIwwfPlx44YUXhJ9//tnqIqfaNYbqcvHR09vgZ599piijVq1amq7BPPnkk4p1Bw4cqLluV1G7EW7cuHF2wwxfunRJiIuLq9Q5pjf/5rDw9DagFs6wb9++do9nBQUFqp+9K77b1XV/QUTq2FlBVE1MnTpV8V158MEHPd0szS5duiQEBwdbtV+v1wsXL16skvrXr1+veP/atWuneX12VjimqjsrXnzxRcXnO3ToUM3rv/7664r1p02b5sYWW/vvf/+rqH/mzJlur7e6dgpU13YRkWelpqbavZjhjs6KgwcPKsr09fUVDh8+rLmMM2fOKM6DoqOjhcLCQrvrFhcXq96Re+DAAYdex7vvvqso46abbtK0bnZ2tt0L0d7QWTFp0iRFG++77z7N68+YMUOx/iuvvKJ5/fPnz9u889qifPnV7ZwzOztbcbFWr9cL27Zt07T+pUuXFCN9DAaD5snny8rKhKSkpAqXqc6dFZ7cBsvKyoSmTZsq1v/mm280rV9UVCS0a9dOsf6WLVs0t7+y/vrrL0X90dHRmjqOBcF8k5Ber7daPy4uTvN8it7+m8PT28C///6reP+DgoKEf//9V9P6p06dUoxyjIiIqPSE5dV1f0FE6vQgIo/Ly8vDypUrFfkzZszwQGucExUVheHDh1vlmUwmnDhxokrqHzp0KOrUqWOVd/LkSZhMpiqpn9zHaDRi0aJFivw333xTcxmzZs1CVFSUVd6KFSuQm5tb6fZpcc899yjy1GKMExFdz+rXr4/AwMAqr/fHH39U5I0bNw4dOnTQXEazZs0wZcoUq7z09HT89NNPdte9cOGCYo6jNm3aoHPnzprrB4C7775bkXfy5ElN60ZERKBWrVoO1VfdZGdn47vvvrPK8/X1xWuvvaa5jNdeew0+PtbTOn722WeazydjY2Ph6+urub7q6JtvvsGVK1es8kaNGoX+/ftrWj8qKgr/+c9/rPJsncupMRgMaNy4sbbGVjOe3gZ/++03JCYmWuV17NhR8zx+/v7+eOWVVxT5n376qab1XUGtrv/85z+a908DBgzAyJEjrfJOnz6NP/74w+66NeE3h6e3gYULFyq21XvvvRdxcXGa1m/RogXuvfdeq7ycnBysWLFC0/pEVDNwgu1yzp8/j7179+LcuXPIz89HaGgo4uLi0LdvX0RGRmou5/jx4zhw4ADS0tJQUlKCunXronnz5ujfv7/i5MMVBEHAkSNHcObMGWRmZuLy5csIDg5GnTp10KRJE/To0cMt9ZJrrFixAvn5+VZ5nTp1Qrdu3TzUIueoTSSZlpZWJXXr9Xo0bdoUmZmZYl5ZWRkyMzNRr169KmmDu5w/fx6HDx9GZmYmMjMzYTAYULt2bTRo0AB9+vRBSEiIp5voVps3b0Z6erpVXo8ePdC1a1fNZfj7+2Pq1Kl47733xLyioiKsWrUKU6dOdVVTbfLkd6OqHD16FAkJCUhNTUVBQQEiIiLQsmVL9O7d263bqNFoxNmzZ3HixAmkpKTgypUrMBqNiIyMRGRkJFq3bo0OHTpAr68Z92dkZWXh8OHDOHPmDK5cuYL8/Hz4+fkhKCgIdevWRZMmTdCyZUtERESwnQ4ymUzYv38/jhw5goyMDOh0OtSuXRvNmjVD37593TZBZm5uLvbs2YOLFy/i8uXLyMvLQ3BwMGrVqoWWLVuibdu2CAsLc0ldRqMR+/fvx7lz55CZmYns7GyEhYWhTp06aNGiBbp06QKdTueSurzJX3/9pchT62S2Z9KkSfjkk0+s8r7++mu7F4kyMjIUeW3atHG4/ujoaERERCAnJ0fMu3jxosPleKuffvoJJSUlVnm33nqrQ+eB0dHRGDNmjFUHVkpKCrZu3Yr4+HhXNbVa+/bbbxV5Dz74oENlTJkyBc8//zyKi4vFvBUrVjh00dcbeXobVPvsHnjgAc11A8Do0aMRHR1tde79yy+/oKCgAEFBQQ6V5aj8/HysXr3aKi8gIMDhc/UHHngAa9asscpbsWIFhg0bVuF6NeE3h6e3AVfsPx544AHMnz/fKm/FihUOvw4i8mLuGK6hNkTY0YetYVmzZ892auj3wIEDrdYpH3fvu+++U52EyPLw9/cXJk2aJCQnJ9uso6ioSJg7d65qnETLIyIiQnj22WddNg/Bnj17hEmTJqlOqid/hIaGCmPHjhV27drlknrJtdTiHH/00UeebpbDHnvsMcXr+Omnn6qs/o4dOyrq1xrjtbqFgbpw4YLwf//3f6qTrssfvr6+woABA4Rvv/22SiZstqjKMFCzZs1SvO63337b4XL++ecfRTnjx493Q4uVsrKyFHV37NjR7fW6O9xSSUmJMGfOnAq3Uz8/P2HcuHFWk/NVtl0nT54U3nzzTWHo0KGKsCtqj/DwcGHcuHHCzp07HXp9AwYMsConJCREuHLlikNllKc2ie2HH35Y4TqFhYXCvHnzhB49emg6h9LpdELr1q2F+++/X/j999+F0tLSSrVZq6pop9bzRblNmzYp1pOHrsnNzRVeeumlCs+lgoODhalTpwrnz5+vxDskycnJEd544w2hZ8+egsFgqPB9MhgMQu/evYXXX3/d5sSU9vzxxx/CuHHjVOc0kD+ioqKEyZMnC8ePH3fJ63QHd4SBUgvB5EiMeIvi4mLB39/fqpyAgAC7oa327dunqP/OO+906rWU347Dw8OdKkdNdQ8DNW7cOEX7vvvuO4fLWbFihaIcV06SW75sT59zyuXk5Cj2SaGhoQ5NFm8xbNgwxWu1NTm3o6prGChPboMmk0moW7euYr309HSH61ebaHndunUOl+OoNWvWKOodMWKEw+WUlpYq9uvR0dF2fyt5+28OT28DR48eVazTpk0bp15Lq1atrMrx8fGp1Dl4ddxfEJFt131nRW5urjBq1CjN7QoPDxf++usvRfkJCQlC+/btNZcTFxdXqR+8SUlJwtixY516b8eOHStkZ2c7XTe51pEjRxSfUUBAgFd+Rn369FG8FvkFSnfKzc1VXCCoVauW5gv41aWzoqCgQJg1a5YQEBDg8He7Y8eOwpEjR6qknVXZWdGrVy/Fa92+fbvD5ZSUlChioNavX98NLVbasGGD4jXcdtttbq/XnZ0V+/fvd+i45+PjI/zvf/+rVLsuXbokdOnSpVLnF2PGjNG8f/32228V63/66aeVeNcEYejQoVblBQUFVdieTZs2qcYeduSxfv36SrVZi6pqZ/l1KttZsXXrVqFhw4aa2xgYGKhpklRbysrKhNdff91up4Gth8FgcOjGk8OHDwuDBw92qp4HHnhAKCoqcvq1uourOysKCwsV5YWGhrq0fRs3bqxwnUuXLgk6nc5qnX79+jlcd0FBgeJCc9euXZ19KQrVvbNCrcMxJSXF4XIuXLigKKdPnz4ua2f5sqtTZ4XaHHBa5z0pTy12/8KFC13SzuraWeHJbfD48eOKdVq0aOHU6/j6668VZT377LOa1lW7XqN1gnW1Od7eeOMNp17DjTfeqCjr5MmTFa5THX5zqJ0jaz3OeXob+PTTTxXrODJfi5za3C0bNmxwqixBYGcFkbepGTERnJSXl4dBgwZh7dq1mtfJzc3FLbfcgoMHD4p5Bw8exIABA3D06FHN5Zw+fRrx8fFOxS7cuXMnevbsqSkGrpqffvoJvXv3xunTp51an1xryZIliryxY8dWq9AYWmzbtg07d+60yqtfv75D8Z4rY968eVZDzQHgpptu8qpwFunp6YiPj8e7776LoqIih9c/fPgw+vbti3Xr1rmhdZ5hNBpx6NAhqzxfX190797d4bJ8fX3Ro0cPq7y0tLQqCcc0Z84cRd7QoUPdXq+77NmzB4MGDXLouFdWVobnnnsOzzzzjNP15uXl4cCBA06vD5iHsffs2RMXLlywu+zYsWNRv359q7zKxG1Wi5l855132tzfr1u3DsOHD1fEHq5uvKWd5a1ZswY33ngjUlJSNK9TWFiI22+/Hb/99pvD9WVlZWH48OF44YUXrML0OMJoNKKgoEDTsqtXr0afPn2wceNGp+pZuHAh4uPjVUMU1SRZWVmKvMqE3VL7Pu/bt6/CdaKiotCpUyervN27d6u2rSK///47jEajVd6QIUMcKsNbpaSkKEJeNWrUCA0aNHC4rIYNG6JRo0ZWeYcOHVK8tzWR2rbap08fp8rq27evpvJrCk9vgzXhs/Pka6gJvzk8vQ14un4iqjncMolBo0aNxBPurKwsJCcnWz3fpk0bu3F/o6Oj3dE0K5MnT8b+/fvF/7t164YRI0agadOmCAkJQXp6OjZu3IjVq1dbTRJUUFCAKVOmYP/+/bh06RJuvvlmXL58GYD5wDRo0CAMHjwYDRo0gI+PD5KSkvDLL79g165dVvWfPXsWzz77rCK2bUU2b96MESNGKC5k6vV6DBgwAH379kXTpk0RERGBwsJCXLhwAVu2bMFff/1ldXJz8uRJjBw5Env37nVZHGRyXElJCb766itFvjdNrA2YTxzGjx8PQRCs8p944okq6Sz44osvFBOB6XQ6PPnkk06XWVBQgDfffBN///03Tpw4gczMTBQXF6NWrVpiHPEbbrgBgwcPVlxgcMbFixfRu3dvnDt3TvFc+/btMXDgQLRr1068CJKRkYF//vkH69atQ15enrhsXl4ebr/9duzYsQNdunSpdLs8LSkpSbG/i42NdTp2fPPmzbF161arvJMnTyouSLtKaWkpnnjiCfz5559W+XXq1MGkSZPcUqe7nT17FkOHDlXtbO/YsSPGjBmDJk2aIDAwEKmpqdi8eTN+//13MYbz22+/jTp16rikLSEhIejRowfatGmDFi1aIDw8HKGhoSgpKUF2djYSEhKwadMmHD9+3Gq9f//9FxMmTMCWLVsqnM/J19cXDzzwAF5++WUx7/Dhw9ixY4fqjyh7Fi5cqNhPPvTQQ6rLXrp0CVOmTFF0wvr4+OCGG25A37590aRJE4SGhgIArly5goyMDBw7dgz79+/HiRMnHG6fM7ylneUdPHgQzz77rLhdBgYGYsiQIbjhhhsQHR0NHx8fJCcn4/fff1fMZ1BWVoYZM2bg2LFjCA8P11Rfbm4u+vXrp/p6fX190adPH8THx6Nhw4aIjIxEfn4+MjMzcfDgQezcuRNnz5516PUtX74ckyZNUkxy6efnh8GDB6NXr16IjY1FeHg4rl69iqSkJPz111/4+++/rZbfuXMnxo4di02bNnn9pMG2qE3oXVhY6HR5ap1J5fdBah5++GHcf//94v+lpaWYPXs2PvroI031FhcXY/bs2VZ5Pj4+NvcxNY3ad0vrhK5qmjdvjvPnz4v/FxQUIDk5GU2aNHG6TG/gyvdRbb4urRO+eyNPb4OurL9Ro0bw8fFBWVmZmFcVn50ntz9v/80BeH4b4P6DiFzG3UM31IZoJiYmOl2eq8JAycPFNG3aVPjjjz9srrt3717VIZ3Lly8XbrnlFvH/G2+8UTh16pTNcj7//HPF0Gy9Xl/hPBhyaWlpqu2YNm2acO7cuQrXPX36tGrc0HHjxmmqu7JcERrM2YfWYaee8N133yna27x58yqde8BZ+fn5wsaNG4Xp06erxtvu2bOnUFJS4rb6L126JHz33XfCkCFDVD/3J5980qHyKrON9u3bt1JhQYxGo2qYjr59+9qNsZ+dnS089dRTivARTZs2rXRs/YpUVRioP//8U/G+DBo0yOny1I4hS5YscWGLzRITE4X58+cLLVu2VNSn0+mEn3/+2eV12mpH+forEwbKZDIJgwYNUpRZv3594ddff7W5XlJSktVw/PJD47W2KzExUYiIiBAeeeQRYfPmzZr3Mdu3b1edl2rOnDl2101LSxN8fX2t1ps0aZKmeuWKioqE2rVrW5XTvXt3m8u/9tprivbedNNNdo/3FomJicL7778vtGjRwq1hoKq6neXrcjYMlDzU3qRJk4TU1NQK169Vq5aijDfffFPTazSZTFbni/J9wYwZMzTNQ3Hw4EHhP//5jxAeHm437M7Ro0eFoKAgq7p8fHyE//znP0JGRkaF6x44cEDo1q2boq2zZs3S9FqrgqvDQJlMJsV5jMFgcPocRi3EV/m58tSUlZWphtN87bXXBKPRWOG6WVlZwsiRIxXrvvrqq069BluqcxioxYsXK9o2bdo0p8tTe61qoYCdUb7c6hQGqn///or2bdmyxamyysrKFN+t2NhYl7SzOoaB8vQ2eM899yiW/+KLL5yuv/y+Vut+0dkwUMXFxYJer1ccu5yZL0UQ1I/9FZ2/VZffHJUJA+XpbSAmJkZRv9bzwfLU3ocBAwY4+1Kq3f6CiCp23YaBstwB2KZNG+zYsQM33nijzWW7deuGn376SXGH+BNPPIHVq1cDACZOnIj169ejRYsWNsuZNm2a4u5vk8mEL7/8UlObp0+fbjW01GAw4JtvvsHnn3+uGCZaXvPmzbF+/XpMmzbNKv+HH37A7t27NdVPrqcWAmr69OnVJnTRl19+ic6dO1s92rZti5iYGISGhmLw4MH4/PPPFUOSe/XqhfXr11f6LszHHntMUX+rVq1Qt25d1K5dGxMmTFDc8QoA999/P959991K1e2IHTt2YMyYMRg/fjyuXLni8PrvvvuuIkzHzJkz8ffff6NXr14VrhsREYH33ntPsS0lJiZWKlxNdZGenq7Ii42Ndbo8tXXLD9nXqm/fvlbbZqdOnRAXF4ewsDA0bdoUjzzyCE6dOmW1jp+fH5YsWYIxY8Y4VaenffXVV9i0aZNVXnR0NLZu3YpbbrnF5nqNGzfGb7/9hrFjxwJw/q7lBg0aIDU1FR999BEGDhyoeR/Tt29fbNu2DcOHD7fKnzdvntUdY2qio6Nx++23W+WtXLlSHFGp1cqVK3Hp0iWrvIrueP7ll1+s/m/dujVWr15t93hv0aRJEzz55JM4efIkBg4c6FBbHeEt7SzPcvfka6+9hi+//LLCOx3j4+Pxyy+/KI7NasdwNQsXLhTPFy38/f2xfPlyLFq0CA0bNrRbRqdOnfDOO+/g/Pnz6Nixo83lTCYT7rzzTqu7+4ODg/H777/jnXfesTuqqXPnztixYwduuukmq/x58+ZpCp3mjXQ6neIzMBqNToWcO336tGqILy3HGYPBgFWrVqFt27ZW+S+++CK6du2KTz/9FMeOHUNeXh7KysqQlZWF7du348UXX0Tr1q0VISDvv/9+vPDCCw6/Bm9Vnc8XvIkr30eDwaDYt9bk99DT26C76zcajYrzGFfKzMxUjAZs0KABDAaDU+VVt/fPXv2u4OltoPzrUzu+ahUTE6M476rJ+w8isnbddlYA5h+K3333naaQU3379sWIESOs8iwxfFu1aoXFixdXGErC4v/+7/8UsWzXr19vd709e/YolnvzzTdx11132V3XQqfTYeHChWjTpo1V/ltvvaW5DHKdc+fOKULDGAwGTJ061TMNUpGRkYFDhw5ZPY4fP46UlBTFySQA1KpVC2+88Qa2bduGWrVqVbr+s2fPKuo/deoUMjMzVZdv1aoVVq5ciYULF0Kvd83urVatWmjWrBnatm2L+vXrV3hxdOXKlejWrZvqiaItBQUFivkMRo0ahfnz5zvUaTVt2jRF+LAPPvhADHHirdTidYeEhDhdntq6jl50tjh8+LDVtnn48GGcOXPGKiyX3ODBg7Fr1y5Fp7E3mTt3riLv66+/1jTE22Aw4Ouvv0bTpk2drt/Pz081ZIsWAQEB+OKLLxAUFCTmWcL82DNz5kyr/4uKirB06VKH6i/feRgREYE777zT5vLlw/5MmjQJ/v7+DtUJmI/9zr5nWnhLO9WMHTtW88Xc/v3744477rDKO336NM6cOVPheqWlpXjzzTcV+R999FGFn78tYWFhFR5ff/zxR8VcMkuXLsWgQYM01+Hn54eVK1eidu3aYl5JSQnef/99h9vrLfr376/IW7NmjcPl2FpH6wW+evXqYefOnZgxY4bVecyhQ4fw8MMPo3379ggLC4Ovry+ioqLQv39/vP7661bzitStWxeff/45Fi5cWG1ufqkK1fl8wZu4+30sKSnB1atXnS6vOvP0Nujp+ivL0+33dP2u4MnXkJeXh9LSUqu8wMBApzubfHx8FOeT18M+mIjMruvOikmTJjk0+W/5OystXnrpJauLHxUJCAjAzTffbJV36NAhRQzr8t5++22r/+Pi4vDUU09pqlPO19cXzz33nFXe+vXrFbGmXc0yj4knHlrv7qxqS5cuVVzwHzFihFOTsHman58f/vvf/+LcuXN47rnnqjyudZ06dbBkyRIkJCRg3LhxlSqrQ4cOePbZZ7Fx40ZcunQJly9fxpkzZ3Ds2DGkpqYiLy8P27Ztw5NPPql6Anf69GnccsstmidA/fzzz60uYuj1es3xqct76aWXrC5MpKen459//nGqrOoiPz9fkVeZC5pq62r9rJzVsWNHbN26FX/99Rc6d+7s1rrcac+ePVbzPAHAbbfd5tDkrYGBgVU66qm8unXrKkZXlI/Rr6Z///6Kz05t/glbLPNcyE2ePLnCc4fynV5RUVGa6qpq3tLO8vR6Pd555x2H1rnnnnsUefYme/z222+tYo4DwLBhw3Dfffc5VLdW5c8X4+PjFZ0sWoSHh+Pxxx+3ylu1alWl2ladqe3HFi1apHoMsqWkpATz589Xfc6RckJDQ7Fo0SIcP34czzzzDCIjIzWtFxcXh88//xxJSUle3SnurJpwvlAd8H10nqffO0/Xb/Hyyy9DEASrx7Jly+yu5+n2e7p+iyZNmijeP63nm558Da6uW239mrrvICKl67qz4t5773VoebXJakNDQx3+EVi+nLy8PKSkpNhcvqioSHGn1tSpU53upR45cqSi/J07dzpVllavvvoqDh486JHHq6++6tbX5gyTyaR6V663TaxtUVJSgrfffhsdOnTA3Llzq/xu/szMTNx7773o168ffv31V6fKGDVqFPbs2YPDhw/jf//7HwYNGqR60c3f3x/9+/fH+++/j6SkJNXQN3v37sV///tfTfX+8MMPVv8PHjzY6TvPY2NjFR2wmzdvdqqs6qL8HTqAudPXWWonze7eXg8fPoxBgwZh/PjxOHTokFvrcie1UYDOXHAdM2aMphGN7lI+XKPW41/50RWnT59WjI6zZcGCBYq8Bx98sMJ1yu9/tHSqeIK3tLO8wYMHq07eWJGePXsq8uxN9qh2THr66acdqlerpKQkRedJZc4rRo0apSj/3LlzTpdXnU2YMEExYiU9PV3RYVOR5557zuZIG0ePM2lpafj888+xfPlyZGdna1rn9OnTePHFF/G///3PraFaqquacL5QHfB9dJ6n3ztP119Znm6/p+t3BU++BlfXrVZ/Td13EJGS/bhFNVRQUBC6d+/u0DqNGzdW5PXu3dvhu8ibNGmiyMvJyUFMTIzq8rt27VKMfOjXr59DdcrVqlUL4eHhyM3NFfMOHDhQpbGir3d//PGH4k7L6OhoxYUBT5s1axZmzZpllXf16lVkZ2fjyJEj2Lp1K7744gsx7FFSUhKeeOIJfP7551i5ciVatmxZqfrLd9IJgoDc3FxkZmZi//79+O233/Ddd9+J8e937tyJMWPGYNy4cVi2bBmCg4M11+XMnadRUVH49ddfce+99+Lzzz+3em7hwoV48skn0axZM5vrFxcXY9euXVZ5lfluA0DTpk1x+PBh8X97Mbf37t3r1MWs8tvvggUL8PPPPztczsGDBx1epzJhLdTW1Xq3UnnlwxiUlZUhJycHKSkp2LNnD1auXIk//vgDgiDAaDRi5cqVWLVqFV5++WU8//zzTtXpSeUv6oeEhGDo0KEOl2MwGDB69Gh89tlnLmlXSkoKduzYgcOHD+PUqVPIzc3FlStXUFhYqPrZlg/TVn5btuXuu+/G008/bXXh8NNPP1XE9i/v6tWr+Prrr63y4uPjFSEZy+vVq5fVfBDffPMN+vTpg4ceeqhahXbxlnaW58w5T7169RAcHGx196D8XKo8QRCwZcsWq7yGDRti8ODBDtetRfm6gModU9Q6zg8cOKB6PuztgoOD8cQTT+Cll16yyl+yZAmCgoLw3nvv2TzfNxqNmD17Nt577z2b5Wv9LgiCgPnz5+O///2v6tw+/v7+qFevHkJDQ5GTk4OLFy9azbuTkpKC119/HR9//DE+/fRTTJgwQVO9NVV1OV/wdnwfnefp987T9VeWp9vv6fpdwZOvobLngeXXv572HUTXu+u2s6Jx48aa5piQCw0NVeRpidOtpZyKfuxu375dkffwww/Dz8/P4botyg+hux7vwPIktUk5p0yZ4vA26QkhISEICQlBbGwsRo4ciddeew1vvPEG3njjDfEH8+HDhzFw4EBs2bKl0h0WcjqdDhEREYiIiECLFi0wYcIEvP3225g5c6bVCIUffvgBaWlp+OOPP6okBvrChQtx6NAhqztaS0tLMW/ePHz44Yc219u3b584yavF559/7tRFf4vyF17tfbevXr3qkrv9L1686JZJz9QuDjk7ObOtdSuzL5Xz8fFB7dq1Ubt2bXTq1AkzZszAwYMHMXXqVPE9LisrwwsvvIDLly97Xfz38ndsd+rUyekRft26dat0e3744Qd88skn2LJli+ocOlqpTYarJjAwENOnT7e6ILl69WqkpKRUOHng119/rQiVVNHE2hbTpk2z6gQQBAEzZ87EJ598gmnTpmHMmDFOnYO4mre0s7zyI2y0Cg8P19xZcebMGcUcS3379nWqXi3UzhdvvfVWl9ZRk88X//vf/2LNmjXYvXu3Vf5HH32E3377DY8++iiGDh0qTvqZmpqKv/76C/Pnz7eaJyQ6OlrRKarl7lJBEPDQQw9h4cKFVvkGgwF33XUX7r//fvTs2dPqmFVQUIC///4bH3/8sdUonuzsbNx5550Ojw7xZt50vlCd+fr6Km6SKywsdDru/fX0Pnp6G/R0/ZXl6fZ7un5X8ORrcHXdauvX1H0HESlV/yujbqI1/quc2g7YVeWoDZuzuHDhgiLv+PHjDtdbEU5WVHUuX75sdWHHwtGwZNWFr68vXn75ZbRp0wZ33XWXeNEwPT0dEyZMwK5du9x6YlG3bl2sXLkSjzzyCD7++GMxf/v27Zg1a5ZVnrv4+PjgrbfeUtxhvX79+go7K9S+28nJyUhOTnZZ27z9u60W09/VJ92OjMBxVOfOnfH333/jxhtvtBpF88EHH6BPnz5OjejxBEEQFBcpW7Vq5XR5rVu3dnrd1NRUTJo0CRs3bnS6DLmKLjaX9/DDD+ODDz4Q93NlZWVYtGgRXn75ZZvrlA8BVa9ePdx222126xozZgxuvfVWReflsWPHxFFvsbGx6N+/P3r06IG+ffuiW7duVd7p7S3tLK+iSaorUv4crqLzN7UOXEfmSnOU2jHF1aHnvP2YUhE/Pz/88MMPGDBggCLc1b///ovHHnvMbhn16tXDZ599htGjR1vlR0RE2F33nXfeUXRU1K1bFz/++KPqBOCA+Rg5dOhQDB06FKtWrcI999xjdUPSk08+iXbt2uHGG2+0W78nLFiwQDVMXkVGjx6tGuLV288XKmPkyJFITU11aJ3FixerRhkICgpye2dFdX0fK8vT26Cn668sT7ff0/W7gidfg6vrVlu/pu47iEjpup2zwlUTAFfFRMJV8cOwsgcS0u6rr75SxFscOHCg03d5VhcTJkzAAw88YJV38OBBfPnll1VS/9y5cxUXgRYsWIBTp05VSf1DhgxBvXr1rPJOnTqlevHIgt9t+9TmDSkffskRauu6e0LgkJAQfPfdd4pRPv/5z3+swndUZ1euXFGMXggPD3e6PGfXTUlJwcCBA13WUQHAoc+gWbNmigm6Fy9eDKPRqLr8P//8o7hYPGPGDM3nDt988w3uuusum88nJydjxYoVeOqpp9C7d29ERkZi7Nix+P777xUXm9zJW9opVxXnb1lZWYo8Z25y0YrHlMqLjY3F7t27nQqf1bx5c/z222+qHWH169evcN1z587hxRdftMrz8/PDmjVrbHZUlHfbbbfhm2++scoTBAH333+/zX2Up6Wnp+PQoUMOPWyF7qsJ5wvOSkhIcPh9tPXeuPt99PPzc7rjo7rz9Dbo6fory9Pt93T9ruDJ1xAWFqY4tyoqKnL6+FNWVqaIQFBd98FE5HrXbWeFN9E6sR55B7UQUN46qqK8559/XhFbsvxdgu5iMBjw7LPPWuWZTCYsWrSoSurX6XS44YYbFPkVxcOvDt/t+Ph4CILg8GPKlClW5cyePdupcuwp3wEEqN89rJXaqBW1OlytcePGmDRpklXeuXPnsGHDBrfX7QrlwxgBlbu7ydl1p06ditOnTyvyO3fujGeffRarVq3C/v37kZ6ejitXrqCkpESxzc2ePdvpdgPAI488YvV/SkqK6iTKgHlOCzm9Xo/7779fc11BQUH45ptvsGHDBsTHx9uN/Xv16lWsWrUKEyZMQPPmzbFw4cIqie/rLe2saleuXFHkufMiXXU4ptQEdevWxZYtW7B06dIK552y8PX1xUMPPYRDhw6hc+fOqqO17JUzb948xSidBx54AD169HCo7bfeeituvvlmq7zExETVEb01TU05X/A0V76PRqMRaWlpdsuvKTy9Dbq7fr1ej9q1aztdnj116tSBXm99eSotLc3pUJ/V7f2zV78reHobqFu3rtX/JpPJ4VFfFikpKYpzw5q8/yAia9dtGChvohZz//jx45UKo1HVXnrpJZsXc9zN1nBxT9i1a5dVXGPAHBpg3LhxHmqRazVs2BAdO3a0upN4//79uHLlCsLCwtxef/k7ngFg8+bNbq/XQu3OyfLxyuXUvtuffvopHnzwQZe2y5upTfBaPjyHI9Q6j9TqcIcRI0YoJpXevHkzRo0aVSX1V4baXEvyuP2OcmbdtWvX4s8//7TKq1u3Lr766iuHJvqu7J3hw4cPR1xcnFWnyaeffqoI7XT58mWsXLnSKm/kyJFo1KiRw3VawrycO3cOa9aswZYtW7B9+/YKfwCmpKTgwQcfxNq1a/HDDz9USZxfb2lnVVE77lXmDkd71I4phYWFmuZLIGsGgwFTp07F5MmTsW/fPvz55584evQoMjMzkZ2djYCAADRp0gR9+vTBbbfdZnX8VwvVai/819q1axV55W8K0GrKlClYs2aNVd6GDRswduxYp8rzFjXpfMGTmjZtqpj/5ty5cxgwYIDDZaWmpipGL9bk99DT26Ar6zeZTEhJSbHKi4mJceuoRD8/PzRo0MDq4nppaSlSU1MRExPjcHmefP+cqd8VPL0NNG3aVLHOuXPnEBsb63D91+s+mIjM2FnhBdR6r9VCC1Rn58+fd3ncZK06d+7skXrVqI2quOuuu6pkEuiq0qRJE6vP2mQy4dy5c26N020RGRmJ8PBwq7saz5496/Z6LdTuFq/owmhN+G67W+PGjREQEGA1DDg5ORklJSVOXdQ8c+aMIq+qOn6bNGmiyKvK7bMywsLCoNfrre5uc2Suh/KcWXfFihVW/xsMBqxevRo9e/Z0qJzKfsd0Oh0efvhhPPXUU2Len3/+idOnT1tNJL106VLF8HUtE2tXpHHjxpg5cyZmzpwJwHxs3bZtG7Zu3Yp169ap3j23evVqzJw5s8pGmXlTO91NLVyBO0c/2DqmNGjQwG111nR6vR49evRwaITD4cOHFXkVTaxeXFyMkydPWuX5+fmha9eu2hsq07t3b01tqg5efvnlCuf8cYTaPEpqI/G0Kn++EBgY6FRnc1VISkpyWVmufB89ec7lCZ7eBl1Z//nz5xWjvaris2vVqpXiHOH06dNOdVY4uv3VhN8cnt4GWrVqhb///ltRv9ZwhnLX2/6DiKwxDJQXUBvuVplefvKM/Px8fPvtt4r8mhICykLtDk61EDJVVX9V1q02iqKiobL8btvn4+ODjh07WuWVlJRg3759DpdVWlqKPXv2WOVFR0fbjSXuKp7+blSGTqdTbMvlL6454sSJEw6v88cff1j9P3z4cIc7KgDXdBBNmzbNaiJBQRCsQt6V/x8wd1apjf6qjEaNGuHuu+/GwoULkZycjE2bNqmOMlmyZAmOHTvm0rod4S3tdLXo6GhFnjsvGvOYUj3s3LnT6v+goCD06dPH5vJqHahRUVF2w6nZUqdOHU111DQxMTGKECTnzp1ThCHSIjU1VfHd6dSpEwwGQ6Xa6A26deumyPvnn3+cKmvHjh2KPGc74byBp7fBmvDZefI11ITfHJ7eBjxdPxHVHOys8AK9evVS5G3dutUDLaHK+P777xUXJrt06VLjDroZGRmKPHfGN5UzmUy4dOmSR+oG1EM/qF00sOjevbsiNiu/20pqoQfK37WjxYEDB1BQUGCVpzbPiLt48rvhCuV/gBw6dMjpSfMc/eFXXFyseP+cCUlhNBqxe/duh9crLyIiAnfffbdV3tKlS8XJoi0jLeQeeOABxffd1eLj47FhwwbFvBiCIGDVqlVurdsR3tLOymrWrJmiA0Htx7er8HzR8/bt24dTp05Z5d1yyy0VhuJSe64y4erKH+cAWHWu1mSuOl9QW6cqzxc8qU+fPooL4v/8849Tx/vr8X305DbYunVrxe+OU6dOqZ5/uqN+V3DV+2c0GhUXyevVq4eWLVtWSf2e+s3h6W3AVe+f2no+Pj4VdvwTUc3i9s4KHx9lpClnL25crwYNGqR4H9esWaMYlledLVu2zKnJd13xWLZsmadfPgD1EFAzZszwQEvcp7S0FPv371fkq91d6g579+5V7F+qqu6srCzF3ZQBAQEVnhTXqlVLcQH4xIkTSEhIcEsbvZXa3eg//PCDw+WorePqO90rUn77AKpu+3SF8qFFrl69qhjtoIXRaHR4DqPLly8r8mrVquVw3evWrXPZnAHlJ9q+fPkyvv/+ewDKibX9/Pwwffp0l9Srxf/+9z/FxabqGAbGW9pZGQMHDrT6PzU1FX/99Zdb6rrpppsUeT/99JNb6iJ1S5cuVeTZG0EbERGhOM/Pzc11OmSY2uixim6cqElqyvmCJ0VERCiO93l5efj9998dKicrKwubNm2yymvUqBHatGlT6TZWZ57cBnU6neqoxR9//NGhusvKyvDzzz9b5QUEBCiOZ+4QHx8Pf39/q7yNGzc6vD/csGGD4nxv2LBhdkesefs+xNPbQPv27dGwYUOrvISEBNUb+iqitk7fvn2rZA5MIqoe3N5ZoTYppzsnF6yJwsLCEB8fb5V34cIFfPXVV55pEDns5MmTisnqAgMDcdddd3moRe6xdu1aRSz6tm3bVtmJxfLlyxV5VXUHxrvvvqvoKImPj7c7H8mYMWMUeW+99ZZL2+btBg0apLg7effu3Th48KDmMkpKShQdlwEBAYpJkd1FEATVMHDedIfQiBEjFHnOzC+wevVqpKenO7SO2nww5UdRafH+++87vI4tHTt2VNxBtmDBAqSmpmL16tVW+bfffrsiNIQ7RUVFKS5OVmaOEXfxlnZWhto+Zs6cOW6pq23btmjRooVV3u7du7Fx40a31EfWjh49qgj/1qVLF9VOJDmdTmc13w1gPmasX7/eqXasW7dOkWfvbuKaYuzYsYrY8qtWrXLoruKLFy8qLtI1aNCgSi7UVhd33nmnIq/8tm3PF198oZi3aeLEiZVqlzfw9Dbois9u9erVitBVY8aMqZIRWiEhIbj55put8oqKivDFF184VI7aa9ay/dWE3xye3gZcUb+znx8R1Rxu76yIjIxU5HnLhKLVyQsvvKDImzVrFt9LL7F48WJF3u23346IiIiqb4yb5Ofn4+mnn1bkV9WJ2bFjx/DJJ594pP69e/fiww8/VOSPGzfO7rqPPPKIYjv4+uuva1QolMoyGAy47777FPnPPvus5jLef/99xZwid955Z5V9BxcvXowDBw5Y5fn7+6t2AFRXPXr0UISt++mnnxR3TlakqKgIs2bNcrju8PBwxQ8kR+/yXLx4MTZv3uxw3RUpP7pix44deOyxx1BWVmaVX9mJtR1VVFSkuAuxOt5Z7S3trIw77rgDzZo1s8rbsGGD2yYSf/755xV5M2bMuC7mLPCk/Px83HvvvYrv/rvvvqtp/WHDhiny3n77bYdHo+fm5mLevHmayq+JatWqhfHjx1vllZaWYvbs2ZrLmD17tmL0+v333+/2MH7VyT333KO44XD16tWaw9hlZWUpOmVtncvVNJ7eBocPH44mTZpY5R06dAjfffedprpLSkpU21qV5zFqdb3zzjuaR1ds374da9asscpr3ry53Y5joGb85vD0NqC2rS5evFjzdaszZ84orp2Eh4ezs4LoeiO42eXLlwUAVo8ZM2Y4Xd7s2bMV5WkxcOBAq3UGDhzoVP3l6549e7bDZWzatElRzqZNm+yud9NNNynWa9GihZCQkOD4CxEEobCwUFiwYIHw3nvvObU+aVNSUiLUrVtX8dlt3rzZ5XWVrwOAkJiYaHe9V199Vdi9e7fT9ebk5Ci+YwCEwMBATfU/9NBDwoULF5yu/9ixY0KDBg0U9Xfo0EEoKyurcN2zZ88KCxcuFIqLi52qe/fu3UK9evUUdbds2VIoLS3VVMYbb7yhWD8kJET4+eefnWqTIAjCunXrhAcffNDp9e2ZMmVKpfeFjsjIyBBCQ0MV79P8+fPtrrt3717B39/faj0fHx/hxIkTdtfdv3+/8M477wj5+flOt/37778XfH19FW1/6KGHnC5Tq8TEREW9S5cudbq8L774QlFegwYNhDNnzthdt6ysTLjjjjtU91Na2jV06FDFOmvXrtXU7vXr1wuBgYE263ZWaWmp6r5H/mjXrp3D5f7777/Cq6++KmRkZDjVrg8//FDRjnfeecepsiriiXY6cx7m7HmXmsaNG1uVM2XKFLvrLFmyRFG/v7+/8O233zpcf25urnD58mWbz5eVlQmtW7dW1NerVy8hJSXF4fosdb799tvCV1995dT6rlb+M3Dlzxl75wxqcnNzhQEDBijaNHXqVM1l7NixQ3X/4chxvLi4WHU/Wbt27Uodw+TKH/sr811yl6NHjwoGg8GqjTqdTli9erXddX/99VfF64uIiKjwO+eM8nU0btzYpeW7wjPPPKN6bpuVlVXhekajUfVYP2nSJJe2b+nSpU4dD6qCp7fBBQsWqO4HkpKS7K77f//3f4p1BwwYoLluQVC/XqPlWCnXu3dvRRkTJkwQjEZjhetdvnxZaNGihWLdJUuWaK7bU785LNTO3R09znl6G7jzzjtVyygsLKxwvcLCQqFfv36KdV988UWH6ldTXfcXRKTO7Z0VgiAofjQZDAbh/fffF3Jychwu63rurEhJSVG9KBISEiL873//0/R+mkwmYfv27cITTzwhXmCdOXOmw6+BtPvpp58Un1lcXJxb6lI7sdHSWWD5ftx0003CsmXLNH838/Pzhc8//1yoX7++at3/+9//NLfb399fmDx5srB27VqhpKRE03ppaWnCSy+9pDgptPwo2L59u90yDhw4IADmC64vvPCCcPDgQU11Z2RkCM8//7zqRWi9Xi+sW7dOUzmCYL7geeONN6q+hvvuu0/ThWBBEIRTp04Jb7zxhtCuXTsBcO4iqVZV3VkhCILwwQcfqL5Hr7/+us2OoV9++UX1B8esWbM01WnZX9etW1eYNWuWsGfPHs3tPXLkiDBx4kTV70a9evWE7OxszWU5y9WdFSaTSYiPj1eU2bBhQ2HNmjU21zt37pwwbNgwcXm1jgN77Vq8eLHq8W/lypU21ykoKBBeeeUVwc/PT1wnLCysUj8Ay3vllVdUP2PL46OPPnK4TMt+KSAgQLj77ruFn376SSgoKLC7XnFxsTBnzhzFfslgMAjnz5935uVVu3Y6cx7m6c4KQRCE22+/XXX/df/992vqrD9y5Ijw3//+VwgPD7fb9iNHjqju9+rWrSt8/PHHdi8WCIL5uPTHH38I9913nxAeHi4AEObMmaPptbqbOzsrRowYITz00EPCP//8Y/eiWFlZmfDVV1+pnpu3b99eyMvLc6juW265RXUfMmrUKOHs2bMVrrtv3z6hW7duquvPmzfPoXZUxBs6KwRBEB5//HFFO319fYXFixcLJpNJsbzJZBI+++wz1XM6LRcoHVW+jurYWZGXlyfExMQo2tq6dWvh+PHjqutkZWUJY8aMUawTFhbmdGepLdW5s0IQPLsNlpWVCV27dlWUU79+fWHHjh2q6+Tn5wsPPvigYh0fHx/Nv40sXNFZsXfvXkWHDwDhtttus3n+nJCQILRq1UqxTs+ePe3uz8vzxG8OC1d0Vnh6Gzh//rwQEhKiKKtfv3429wUXLlwQ+vTpo7p/dEWHe3XeXxCRkk4QBAFuNmfOHNXwMDqdDjExMQgPD1dMsPjggw/iwQcfVKzz8ssv45VXXrHK0/IS4uPjsWXLFvH/gQMHOhUOovykTLNnz8bLL7/sUBmbN2/GoEGDrPI2bdqkmJdCzd69exEfH4/8/HzFc8HBwejfvz/69u2L+vXrIzIyEoWFhcjJyUFqair279+Pffv2KSYqnTlzJubPn+/QayDtRo0apYgf/Oabb+KZZ55xeV1qk4YlJiYqhoKWV/774evri/bt26NLly5o1aoVIiMjERERAaPRiCtXriA5ORkHDhzAli1bbM5BM3HiRHz11VeK77aWdoeGhqJz587o0qULmjRpgoiICISFhaGwsBBXrlzBv//+i3379mHHjh2qIRJ0Oh3mz5+Phx9+2G7dBw8eRJcuXazyYmJi0LVrV3Ts2BH169dHeHg4/P39kZ2djZSUFOzYsQPbtm1TxOK1+OijjxThYezJzs5G3759ceLECcVzBoMB3bt3xw033ICmTZuiVq1aMJlMyMnJQWZmJg4fPox9+/YhKSnJar127drh6NGjDrVDq6lTp1rFj3VmX+goQRAwatQo1TjeMTExuPvuu9GiRQv4+/sjMTERP//8s+qE7926dcP27dsVE/ipUdtf16tXD127dkXnzp1Rv359REREICgoCFevXkV2djaOHj2KXbt22Xzvw8PD8dtvvykmsHSHpKQkNG3a1Cpv6dKlmDp1qtNlnj17Ft26dUNOTo7iuc6dO2P06NFo2rQp/P39kZaWhi1btmDDhg0oLi4Wl5szZw7+85//ONSu0tJStGnTBmfOnFE817VrV9xyyy2Ii4uDr68vMjIysG/fPqxZs8bqmNeuXTvcfPPNePvtt63Wr8ypUHp6Oho1aqQI2QCYj8upqakOz9ujtl8KDAwU94stWrRAREQEQkNDUVxcjPT0dBw6dAi//fabalzs559/Hq+//rpjL6yattOZ87DKnHeV16RJE5w7d078f8qUKYrY1GquXLmCPn36ICEhQfGcr68v+vbti0GDBqFBgwaIjIxEfn4+Ll26hMOHD2Pnzp04deqUQ21fvXo1xo4dqwhLBJgn0B04cCB69eqFunXrIjw8HPn5+cjJycH58+exb98+HDhwAFeuXLFab86cOU6FcXPUyJEjkZqaavP5hIQExfetU6dOFZa5bt06NGjQwG7d/fv3F+cYq1u3Lvr374+OHTsiJiYGYWFhKCgowMWLF3HkyBGsW7dONbxW06ZNsW3bNsUko/YkJSWhb9++ijjhgPk8YPDgwRgwYAAaNWqE4OBgXLlyBadPn8amTZuwc+dO1TKHDBmC9evXw9fXV1MbXnrpJfz66682nz9//rwiFEvz5s0REhJic51XX30Vo0eP1lS/qxQVFaFPnz6qceZbtWqFCRMmoFmzZhAEAWfPnsW3336Lf//9V7HsLbfcgl9++cXupLzlde7cucLnDx06ZPW/r68v2rZtW+E6jsTMd5Vt27Zh8ODBiv2IXq/HLbfcggEDBqBhw4a4dOkSDh06hBUrVqj+Rl25cqWm0Khyv/76K1566SWbz2dlZSE5Odkqr169eoiOjra5zujRo/Hqq6861A5neXobPHXqFHr06KHYjwPA4MGDMXToUDRq1Ai5ubk4fvw4vv76a9X92bvvvov/+7//c6hutes1Wo+Vcm+99ZZq+KWQkBDcdddd6NixI6KionDhwgVs3boVa9euhclkslo2PDwc+/btQ/PmzR2q2xO/OSzUzt0tbXKEJ7cBAPj2229VQzf5+fnhjjvuQI8ePRAdHY20tDTs3r0bP/zwg+LY7uvriy1btrhkjj9XXMcjoipUFT0i+fn54p2+Wh+2ejqv55EVFkeOHBFatmzp0PtZ0YMjK9znwoULirtCfHx8hLS0NLfUp/b5OjKywlWPhx56yKE7WFxZd2BgoENDfS13BrviERAQUKk78LKysoRRo0a5rD01bWSFIJjv9FMbHqz10aZNG+HixYua61PbX1fmERMTU6mQa45y9cgKi927d4t3Wzv6ePrpp51u1/79+4WgoCCn6m3YsKGQmJjo9HlERdSGuwMQ7rvvPqfKc+V+acKECZpHq3lDO8uv5y0jKwTBvI8fMmRIpd8rrW3fsmWLEB0d7bLPqKpGVqiNnKjsQ8u5kCAIlTq+AOY7eNPT051+7YcPH1YNHerMo2/fvg6P7lAbOVHZhyuOOc5IS0tTvcta6+OGG24Qrl696lTdrn4PgSr5ya7q+++/F3x8fJxqs06nE+bOnetUvWojJyr7cPTu/sry5DYoCIKwdetW1bvbtT6eeuopp+p1xcgKC7URKlofoaGhmkbZ21LVvzksXDGywsJT24DF+++/73Tdvr6+wo8//lip+uXKl8+RFUTVW5XMFBYUFIQNGzZomtSI7Gvfvj327NmDRx55BAEBAZUqq0ePHhg1apSLWkblLVu2THHn/8iRIyu868cTgoODXVJO27ZtsWnTJnzyyScOTURYfuJcZ40aNQrHjh3D9OnTXVKeI/r37499+/Zh5syZTpcRGRmJ1atX48MPP0S9evUq1Z7GjRtj2rRplSqjOgoJCcGff/6J+++/3+G7zMaOHYt//vkHdevW1bxOQECAptFB9vj6+uKJJ57A8ePH0aNHj0qX52k9evTAxo0b0a5dO83rGAwGvPbaa4pRDY7o0qULNmzYgPr16zu0Xu/evbFz5067o8ycZWsklbMTUgYFBSkmN3VUSEgI3nzzTaxYsULzXdWO8pZ2VheRkZH47bff8PLLLzv9vgUEBGgeqXPDDTdg//79uOeeeyq1H9PpdBg0aBAGDBjgdBk1XXBwMF555RVs3769UsfvDh064OjRo7j99tudLsPX1xcvv/wytmzZUuGIh5ouOjoa//zzD2699VaH1tPpdHjwwQfx+++/u+z82Jvdcccd+OuvvxAbG+vQelFRUfjxxx/x2GOPuall1Z+nt8EBAwbgn3/+cehcDTDvzz799FO89957TtftKh9++CHmz5/v8G/FDh06YOfOnejbt6/TdVf1bw538PQ28OSTT+KHH35AVFSUQ+s1btwYGzduxNixYytVPxF5saruHdm3b5/wzDPPCMOGDROaNGkiREREqN6twZEV2qSnpwsvvPCC0KVLF0Gv19vtoQ4MDBSGDBkivPnmm05PzE3amEwmoVmzZorP4Ndff3VbnWqfuZa7CU0mk7B3717h9ddfF4YNGybUqlVL810PsbGxwr333its3bpVNQarFkVFRcKGDRuE//u//xP69OkjBAQEaKrbYDAIbdu2FZ5//nnh5MmTTtVdWloqbN26VXj11VeFoUOHCnXq1NH82hs3bizMmDFD2Ldvn1N1V6SwsFD45JNPhEGDBml6P/R6vdC1a1fh6aefFjZv3uz0Z6GVp0ZWyO3atUu4/fbbVecssTx8fHyEYcOGCb///rvT9Vy+fFlYsWKFcO+99wrt2rXTtK+17G/79esnzJs3T7h06ZILX7l27hpZYVFSUiK88847FY728/X1FW677TZh//79LmtXRkaG8PTTTwsREREVfgbdu3cXvvjiC6uRXu4YWZGXl6eIM92rV69KlVlcXCz8/vvvwlNPPSX06tXLat6Nih5t2rQRXnnlFbeN4PN0O505D6suIyvkLl26JLz44otCx44dBZ1OV+F75efnJ8THxwsffPCB0xP9nj17VnjiiSeENm3aaPp8QkNDhZtvvln48MMPNU3I6UqeHFmxZ88e4ZlnnhG6deum6W7yli1bCq+88kqlRlPYcuDAAeHBBx/UNDpGp9MJrVu3Fl577bVKffdr0sgKuQ0bNgjDhg1TjYFvefj7+wvjxo1zyehHV7+HgOdGVljk5+cLc+bMEeLi4ipsZ8OGDYUXX3zR7kTc9tSEkRVyVb0NypWWlgqfffaZ0KlTpwrfn6ioKOHxxx8XkpOTK1WfK0dWWCQnJwuPPfaY3d+onTp1Ej777DOb80o4q6p+cwiCa0dWWFT1NlDe5cuXhRdffFF1jif5Iy4uTpgzZ46m+c8cVb4ujqwgqt6qZM4KqhrZ2dnYu3cvMjIycPnyZVy5ckW867F+/fpo1aoVmjVr5pK7hKnmO3/+PM6ePYtz584hJycH+fn50Ol0CAsLQ1hYGBo0aIDOnTs7fKeEFqWlpTh79iwSExORnJyMvLw8FBQUwM/PD+Hh4QgPD0eTJk3QsWNHl43KkEtLS8PZs2eRnJyMzMxMFBQUoLS0FKGhoYiMjESdOnXQtWvXSo9+0Kq4uBh79+5FSkoKLl++jOzsbPj4+CA0NBS1a9dGy5Yt0apVq0qPtPJWBQUF2LVrF06ePCnGWg0PD0dcXBx69eqFiIgIl9aXn5+Pf//9F4mJiUhPT8fVq1dRVFSE4OBghIWFISIiAq1bt0abNm08vr91x5wVthw5cgQJCQlITU1FYWEhwsPD0aJFC/Tu3dvhORu0MhqN2Lt3L44dO4ZLly6hrKwMoaGhaNq0Kbp3715lo9g+++wzPPDAA1Z5y5Ytw5QpU1xWR3FxMU6fPo0zZ84gNTUVeXl5KC4uRlBQkLhP7NSpE2rXru2yOmtyO6uT9PR07N+/HxkZGbh06RJKSkoQEhKC2rVro1WrVmjTpo1Lj3UXL17E/v37cenSJVy+fBlXr14V918NGzZE69at0bhxY4fvJK1pCgoKcPToUZw9exYXL17E1atXodPprLbjmJiYKmmLZa6wzMxM5OTkoLCwEKGhoYiIiEBMTAy6devm8mNdTZSTk4Ndu3bh9OnTyM3NBQDUqlULrVq1Qq9evdxyTlkTnTp1CgcPHkRycjIKCgoQEBCABg0aoGPHjujQoYOnm1eteXobtMxLlJSUhPz8fPj6+qJevXpo3749unbt6tDIeE8wGo04cOAAjh49iosXL6K0tBTBwcFo0qQJunfv7vAIIEdV9W8Od/DkNiAIAo4ePYrDhw8jNTUVRUVFCAoKQmxsrDjXmbtwzgoi78LOCiIiohqqKjsrrmfdunWzmlgxMjISqamp120HIhERERFRdcHOCiLvUr27zomIiIiqsR07dlh1VADA9OnT2VFBRERERERE5CAfTzeAiIiIqs5LL72EDz/8UJG/ePFidO/eveob5OXeeOMNq//1er3NCbeJiIiIiMg9JkyYgJMnT3q6GURUSeysICIiuo4kJycjOTlZkX/16lUPtMa7rV69GuvWrbPKGzt2LJo0aeKZBhERERERXadOnjyJQ4cOeboZRFRJDANFRERE5IDS0lJ89tlnuPvuu63yDQYDXn31VQ+1ioiIiIiIiMi7cWQFERERUQUWLFiABQsWADCPQDl//jxKS0sVyz344INo06ZNVTePiIiIiIiIqEZgZwUREVEN1aRJEwiC4OlmeL309HS7Q8rbtGmDt99+u4paREREREREcgcPHvR0E4jIBRgGioiIiKgSunbtij///BPBwcGebgoRERERERGR1+LICiIiIiIH+Pn5oXbt2ujatSvGjx+PiRMnwseHp1RERERERERElaETGB+CiIiIiIiIiIiIiIg8iGGgiIiIiIiIiIiIiIjIo9hZQUREREREREREREREHsXOCiIiIiIiIiIiIiIi8ih2VhARERERERERERERkUf5eLoBRNVNWVkZ0tPTAQDR0dHw8eHXhIiIiIiIiOh6Jb9O4M14jYOIqjvuoYjKSU9PR2xsLAAgOTkZMTExHm4REREREREREXmK/DqBN+M1DiKq7hgGioiIiIiIiIiIiIiIPIojK4iIiIiIiIiIiDS4DdEIgsHTzdCsAEasgveHsCKi6wM7K4iIiIiIiIiIiDQIggEhvJxGROQW3LsSERERERERERFpYABg0Hm6FdoZBE+3gIhIO85ZQUREREREREREREREHsXOCiIiIiIiIiIiIiIi8ih2VhARERERERERERERkUdxzgoiIiIiIiIiIiINDDodDDrvmbTCAB3AeSuIyEtwZAUREREREREREREREXkUOyuIiIiIiIiIiIiIiMij2FlBREREREREREREREQexTkriIiIiIiIiIiINNDrAIP3TFlhvkuZc1YQkZfgyAoiIiIiIiIiIiIiIvIodlYQEREREREREREREZFHMQwUERERERERERGRBgadDgad98SBMsB72kpExJEVRERERERERERERETkUeysICIiIiIiIiIiIiIij2JnBREREREREREREREReRTnrCAiIiIiIiIiItLAoDM/vIXB0w0gInIAR1YQEREREREREREREZFHsbOCiIiIiIiIiIiIiIg8ip0VRERERERERERERETkUZyzgoiIiIiIiIiISAO9TgeDznsmrdDDe9pKRMSRFURERERERERERERE5FHsrCAiIiIiIiIiIiIiIo9iGCgiIiIiIiIiIiINDDrzw1sYPN0AIiIHcGQFERERERERERERERF5FDsriIiIiIiIiIiIiIjIo9hZQUREREREREREREREHsU5K4iIiIiIiIiIiDQw6HQw6Lxn0goDvKetREQcWUFERERERERERERERB7FzgoiIiIiIiIiIiIiIvIodlYQEREREREREREREZFHcc4KIiIiIiIiIiIiDXTwrjt/OWMFEXkTb9q/EhERERERERERERFRDcTOCiIiIiIiIiIiIiIi8ih2VhARERERERERERERkUdxzgoiIiIiIiIiIiINDDodDDrvmQnCwFkriMiLcGQFERERERERERERERF5FDsriIiIiIiIiIiIiIjIoxgGijTJyMjAF198gb/++gtHjx5FVlYWTCYTIiMj0bp1awwYMADTpk1D06ZNHSp369atWLZsGXbs2IGUlBQYDAbExMRg0KBBmD59Orp06eKmV0RERERERERE5BgDAIMXRVYyCJ5uARGRdjpBELjbogp9+OGHeO6551BYWFjhcgaDAU899RTeeOMN+Pr6VrhsXl4eHn74YXz99dc2l9HpdHjqqafw5ptv2i3PlS5cuIDY2FgAQHJyMmJiYqqsbiIiIiIiIiKqXuTXCZ4JaIJwvffc+5trKsNbRUkAeI2DiKo/79m7kkc888wzePvtt63yGjRogLi4OOh0OiQmJuL8+fMAAKPRiDlz5iAxMRHff/89dDYmnCorK8OYMWOwadMmMS8sLAzt2rVDSUkJEhISUFhYCEEQ8N577yEzMxNffPGF+14kEREREREREREREXkU56wgm/7++2+rjoqWLVti8+bNSElJwZYtW7B582acO3cOe/bsQdeuXcXlfvjhhwo7F55//nmrjooXX3wRaWlp2LFjB/bu3Yvk5GTMmDFDfP7LL7/Ep59+6uJXR0RERERERERERETVBTsryKb58+eL6fDwcGzatAkDBw5ULNe9e3ds3LgRjRs3FvM+/vhj1TKTk5Mxd+5c8f8XX3wRr776KoKCgsS8qKgoLFq0CPfcc4+Y98orr6CgoKBSr4eIiIiIiIiIqDL0OsCg03nNQ+9F82sQEbGzgmzatm2bmJ40aRIaNGhgc9nw8HA88sgj4v/79u1DSUmJYrm5c+eiuLgYANCoUSO88MILNsucO3eu2Ilx8eJFLF261OHXQERERERERERERETVHzsryKbMzEwx3b59e7vLy5cRBAGXLl1SLLNq1SoxPX36dPj5+dksr1atWhg3bpzqukRERERERERERERUc7CzgmwKCQkR02qjJMqzjJgAAJ1Oh/DwcKvnT5w4gbNnz4r/Dx8+3G6ZI0aMENNbtmzB1atX7a5DRERERERERERERN6FnRVkU8+ePcX01q1b7S6/ZcsWMd2lSxcEBwdbPX/o0CEx7e/vbzUpty19+vQR02VlZUhISLC7DhERERERERGROxh03vcgIvIW7Kwgmx5++GEx/dNPP2Hjxo02lz148CAWLlwo/j9r1izFMsePHxfTsbGx8PX1tduG2NhYq1BRJ06csLsOEREREREREREREXkXH083gKqv0aNH49FHH8VHH30Ek8mEkSNH4qmnnsLEiRPRokUL6HQ6JCYm4scff8Rbb72FgoICAMDTTz+NiRMnKso7d+6cmG7UqJGmNuj1ejRs2BCJiYkAgKSkJIdfx4ULFxxaPi0tzeE6iIiIiIiIiIiIiMh57KygCs2bNw9xcXF4/fXXkZmZiTfffBNvvvmm6rKtW7fGc889h0mTJqk+n5eXJ6bLz2dRkbCwMNUytIqNjXV4HSIiIiIiIiKi8gw6HQw674mt5E1tJSJiGCiy67HHHsMPP/yAVq1a2VymXr16ePTRR3H77bfbXCY/P19MBwQEaK4/MDBQtQwiIiIiIiIiIiIiqhk4soIqdP78edx77734888/xbyYmBg0a9YMgiDg7NmzSElJwcWLFzFz5ky88cYbWLFiBW644QZFWaWlpWLax0f7pidftqSkxOHXkJyc7NDyaWlpVpOLExEREREREREREZF7sbOCbEpKSkL//v2RkpICAOjXrx/mzp2Lbt26WS23Z88ePPbYY9i5cydSU1MxfPhwbNq0Cb169bJaLigoSEwXFRVpbod82eDgYIdfR0xMjMPrEBEREREREREREVHVYRgosmny5MliR0X//v2xadMmRUcFAPTo0QNbtmxB3759AQCFhYWYNm0aTCaT1XIhISFiurCwUHM7LBN3ly+DiIiIiIiIiKgq6XWAwYseek5ZQURehJ0VpGrHjh3Ytm2b+P9HH30EX19fm8v7+fnho48+Ev8/fvy4VegoAIiKihLTaWlpmtuSnp6uWgYRERERERERERER1QzsrCBV8o6G2NhYdO7c2e46Xbt2tQq59Pfff1s9L5+g+/z585rakZ+fj6ysLNUyiIiIiIiIiIiIiKhmYGcFqbKEfwLMnRVayZeVj4gAgDZt2ojpzMxMTaMrDh48aLMMIiIiIiIiIiIiIqoZ2FlBqvz8/MS0s/NLyCfUBoCePXtalSsPM2WLfJmYmBg0a9ZMc1uIiIiIiIiIiFzJoNN53YOIyFuws4JUNWjQQEwnJCRYdULYUlBQgBMnTqiWAQChoaEYNGiQ+P8333xjt8zly5eL6VtuucXu8kRERERERERERETkfdhZQaoGDBggpouLi7Fw4UK763zyyScoLi4W/x84cKBimalTp4rptWvX4sCBAzbL+/XXX3HkyBHx/ylTpthtAxERERERERERERF5H3ZWkKo+ffpYTWb97LPPYu3atTaX/+WXX/D888+L/7dv3x49evRQLDd+/Hi0b98eAGA0GnH33Xerzl1x/PhxPPDAA+L/o0aNQq9evZx6LURERERERERErmDQed+DiMhb+Hi6AVQ9GQwGfPDBB7j55pthMplQXFyMW265BTfffDNuvfVWNGvWDIIg4OzZs/jpp5+wbt06cV0fHx/MnTsXer2yL0yv12PRokWIj49HcXExjh8/ji5duuDRRx9Fjx49UFpaiq1bt2LBggW4cuUKACAqKgpz586tstdORERERERERERERFVLJwiC4OlGUPW1ZMkSPPzwwygpKdG0fGBgIBYtWoS77767wuW+//57TJ482SpslJrw8HD8+uuvuOGGGzS3ubIuXLiA2NhYAEBycjJiYmKqrG4iIiIiIiIiql7k1wneCmuGSL2vh1ukXbapFM9cOQuA1ziIqPpjGCiq0L333ou9e/di3Lhx8PGxPRDH19cXd955J/bt22e3owIwh4Pas2cP4uPjodMpxyQaDAbccsstOHToUJV2VBARERERERERERFR1WMYKLKrQ4cOWLlyJa5cuYI9e/bg33//RU5ODgAgMjISLVq0QM+ePRESEuJwuZs2bUJiYiJ27tyJlJQUGAwGxMTEYMCAAYiOjnbDqyEiIiIiIiIico7ey+aB0HtRW4mI2FlBmoWFhWHIkCEYMmSIS8tt2rQpmjZt6tIyiYiIiIiIiIiIiMh7MAwUERERERERERERERF5FDsriIiIiIiIiIiIiIjIoxgGioiIiIiIiIiISAODTgeDznsmgvCmthIRcWQFERERERERERERERF5FDsriIiIiIiIiIiIiIjIoxgGioiIiIiIiIiISAMDAIMXRVYyeLoBREQO4MgKIiIiIiIiIiIiIiLyKHZWEBERERERERERERGRR7GzgoiIiIiIiIiIiIiIPIpzVhAREREREREREWmg1+lg0HnPpBV6L2orERFHVhARERERERERERERkUexs4KIiIiIiIiIiIiIiDyKnRVERERERERERERERORRnLOCiIiIiIiIiIhIA4PO/PAW3tRWIiKOrCAiIiIiIiIiIiIiIo9iZwUREREREREREREREXkUw0ARERERERERERFpYNDpYNB5T2wlb2orERFHVhARERERERERERERkUexs4KIiIiIiIiIiIiIiDyKnRVERERERERERERERORRnLOCiIiIiIiIiIhIA70OMHjRNBB6L2orERFHVhARERERERERERERkUexs4KIiIiIiIiIiIiIiDyKnRVERERERERERERERORRnLOCiIiIiIiIiIhIA4NOB4POeyaC8Ka2EhFxZAUREREREREREREREXkUOyuIiIiIiIiIiIiIiMij2FlBREREREREREREREQexTkriIiIiIiIiIiINNDrdNB70TwQ3tRWIiKOrCAiIiIiIiIiIiIiIo9iZwUREREREREREREREXkUw0ARERERERERERFpoNProDN4T2glneA9bSUi4sgKIiIiIiIiIiIicoutW7di+vTpaN26NUJDQxEREYH27dvj0UcfxYEDB1xaV1JSEnQ6XaUeSUlJLi37t99+c+lrJKrJOLKCiIiIiIiIiIiIXCovLw8PP/wwvv76a8Vzubm5OHbsGD7++GM89dRTePPNN+Hr6+uBVlrz8fFBeHi4p5tBdN1iZwURERERERERERG5TFlZGcaMGYNNmzaJeWFhYWjXrh1KSkqQkJCAwsJCCIKA9957D5mZmfjiiy8qXW9gYCCGDRumeXmTyYQ//vhD/H/YsGGIjIzUtK7WeurUqaO5PUTXO3ZWEBERERERERERaaA3AHovmrNCL3im3ueff96qo+LFF1/EM888g6CgIADA5cuX8cwzz2Dx4sUAgC+//BK9e/fGQw89VKl669Wr51DYpd9//92qs2LKlCma12V4JyLX45wVRERERERERERE5BLJycmYO3eu+P+LL76IV199VeyoAICoqCgsWrQI99xzj5j3yiuvoKCgoErbKh/NERkZidGjR1dp/URkjZ0VRERERERERERE5BJz585FcXExAKBRo0Z44YUXKlzW0olx8eJFLF26tEraCABXrlzBqlWrxP/vvPNO+Pv7V1n9RKTEzgoiIiIiIiIiIiJyCXkHwPTp0+Hn52dz2Vq1amHcuHGq67rbypUrUVhYKP7vSAgoInIPdlYQERERERERERFpYdBD50UPGKr20t+JEydw9uxZ8f/hw4fbXWfEiBFiesuWLbh69apb2laePARU69at0atXryqpl4hsY2cFERERERERERERVdqhQ4fEtL+/P7p27Wp3nT59+ojpsrIyJCQkuKVtcmfPnsXff/8t/s9RFUTVAzsriIiIiIiIiIiIqNKOHz8upmNjY+Hr62t3ndjYWKtQUSdOnHBL2+S+/PJLCIIAANDr9Zg0aZLDZUyePBktWrRAcHAwgoOD0ahRIwwfPhzvvPMOMjIyXN1kouuCj6cbQERERERERERE5A10eh10Bp2nm6GZziS1NS0tzeH1Y2JiHFr+3LlzYrpRo0aa1tHr9WjYsCESExMBAElJSQ7V6ShBEPDll1+K/994441o2LChw+V89dVXVv8XFBQgOTkZGzZswOzZszFr1iy8/PLLMBgMlW4z0fWCnRVEREREREREREQ1XM+ePR1exzL6QKu8vDwxHR4ernm9sLAw1TLcYdu2bWLHCOB8CKj69eujSZMmCAoKQnZ2NhISElBUVAQAKCoqwuuvv449e/Zg9erVmkaYEBHDQBEREREREREREZEL5Ofni+mAgADN6wUGBqqW4Q7yibXDwsJw2223aVpPp9OhZ8+eWLRoEVJTU5GamoodO3bgzz//xL59+5CTk4Ply5ejSZMm4jobNmzAY4895uqXQFRjcWQFERERERERERFRDbd7927Ur1/frXWUlpaKaR8f7Zcd5cuWlJS4tE1yBQUFWLlypfj/+PHjrTpKKtK4cWPs2rXL5vP+/v6YOHEihg8fjptuugn79u0DACxcuBAPPfQQOnbsWLnGE10H2FlBRERERERERESkgd6gg96L5qzQy+asqF+/vsNzUDgqKChITFtCImkhXzY4ONilbZJbtWqVVZgpZ0NAVSQyMhI//fQTWrVqhaKiIgiCgPnz5+Ozzz5zeV1ENQ07K4hqsN+adwEAhMWEinl9t2wV01/VbgMAqBUoxU4clXy4wrKGnzng8na6muV15ZaaxLwW9aSTnRvenSqml03+BADQrK50QhUVFymm/cP9AQCJm8+LeYER/mI6vLE5BmfP3za6oukOK9n2rWq+34A7AQBH7x4l5mWdzhbTN+zaAQDYddMgMa/JTe3F9IGFf4vp0PohAIB+f28T8wp//kBMB976pFNt94Tj00aL6TZLfwUAbO3VV8xrFN9CsY5vkDR0OfNwkpju/OMGN7SQiLzZmcfvFNPN5yr3zzsG3iCm5cdjqvkSJt8iphM3mScetXXO5a2+q9sWADAhI0HM2z18sJguzi0W0wWXCwEA7e/uIeZFtIwV04cX/QEASDySKebVqS3d9arTS9GMbzy2R9GWQ+NHiOkWd5jPdYLueFrrS3GpX+tL51ej044CADZ2lGLG1+1QR0y3/2atmP6znfm9ybtcIOYZZWHjO4xpBQC4miZdcOu2+g/N7ZKfI8rr9bTTj4wHAGQcSRfzko9fEtPy7cui+EqWmPYPqyWmN7TsCgAQZG+cvd8y8m2n0/frtTbbLUynd4rpk2/8T0xfOnEZgPQ7BVD/LbK9/wAxnXFaeo8CAqTLQC1uNm9HcfO/d0GLicxCQkLEdGFhoeb1Cgqk/Z28DFeTh4CKi4tD//793VJPo0aNcOedd2LZsmUAgD/+0L6PJrqecc4KIiIiIiIiIiIiqrSoqCgxnZaWpnm99HSpk1JehiulpKTgr7/+Ev+fPHmyW+qxiI+PF9NJSUluDW9FVFOws4KIiIiIiIiIiIgqrVWrVmL6/PnzFSwpyc/PR1aWNAJIXoYrffXVVzCZzBEYdDqd2zsrys8PcvnyZbfWR1QTMAwUUQWO3Xc3LgUFoPW9twIAAkY+5NkGabC+SScxfTHP3Gvf/p7uYt7m7n3EdGyTCACAwVfqt1wbK034lFUoTYxl0JnjXK6KbqfIAwC/IHMoKfnQ6oO3DxPTlpA5n0W2FvNaNAkX0xkp0hB2S/gmeRjQegFSqKoio/L5EpM0vDvQYH494b4GMa84T7qDIXD0Y2K6Y3vzxFqF2VJ8zO7rpDstLO9nRKMwqa1JuSjvyMSRYvrqxXwxLR927h9mHqpdVlQm5vX6Y5OiLDl52Ii2X65WPG8J9wQA/z40Tkyfmfo2ACC6c10xz0c25HvfLTcBACKaSiGvsk8li+mGPaWTqpTdyrthPBX6yRLGKbCu1O7UnYlius2d5pBOKX8fEfNqtWkkSzcW05bwB3U7SO+RwVd6j4Rr29nVFCkERWiMVO+mLr0AAIMO2J5grTzL+w44FqrBnhMzbhXT2WfN4b76bNyiuuzyOuYwHXdlKsMouMs/gweK6eIr0ncxfu8/YtryXTOWSOHbbk6VPkei6kq+fbefKoXWsxwDD8rCCLZsL4V7KTv0OwBg813Pi3lq4WwAoHjzNwAA//i7K2yLMXG/ar6hadcK11MjDxNoCTkCSKGL7B2fUl+XzpkavPCp5nqNR6VjsKH9EMXz8pA6kdfOIwb8s121LPlrsHe8dYcDtw4V0z6B0vGlVgvzsUR+TibfH9ojD19oCetYlc4+eZeYLrosnb81urZ9F62TPu+yQumcR77/r93KfMfspWPS9yPh271i2jfYDwAQ1y1azDt/4KKYDpa9n5b3sfCSFD6k8Q3Ssf/S/uPm5/8YK+YZ/KT1LeGGHAnNJg/jNPjwbkW+PE8ePtRy7lAqOxdM2SOdZ12SbROWczFjiVF6/qTsQt5nP2lur0XSf6W47Oe2Sud9h6+dG0RFSqEv/YKlc2+t5zqWUKwAcLVMOgcOl/3WsNSRdlkKDVMv1E9MF117b/xk5/ENmkvnX/LfOpZzhriRzcW8kIbSfjbvWuixcRePaWo/IJ2vO0v+vb8oC2MWcO11O/JdT/1qiWpZDXs0BAAkb5e+P9v69BPTlu+afL8T3ba2mJafI1rOTS3bJgDkpF0V0y2GNAEAXNiZKubFfyzt3wOG36/15dQoOr3eKhxddVfVbW3TRtoXZGZmIi0tze6k3gcPHrRZhivJQ0DFx8ejcePGFSxdefLQVoD1fB5EpM579q5ERERERERERERUbfXs2RN+flIn5LZt2ypYWrlMTEwMmjVr5vJ27d69GydOnBD/d8fE2uUlJEg3iPn7+yM8PLyCpYkIAHSCIAj2FyO6fly4cAGxseYJ/hZEtUCUwVe8eys7XxppECi7rT80ytw7fvi8dMe9/A4i+QgEy3pqk8O5whtB0gTBcSG+1+qU2pIiu8Mts9icruUn3bkkb2t0gJSfcO0OHfloBj+9/HXpFc+H+Ej1Fhqlu6Ut5BNgNwqS7t4Kr2W+82j3uStiXtsw6WTH8hqulknry0dR5Jaa70CTj7aQPy9vo/xztDgj+5y7RpjbkijLM8p2m0aVPaj8dcvfI0tV8tctrz/52kiWt0vOinmWic0BICVbugPN0sYAWfnyuuJCzO9XLdnE4umyu6TSr921dkX2HgbLthP5a2jR0DxB+7Fk6fOQf56W91m+Hck/Gwv5Z3CxWNoO6/lLd31ZtskOsgkD5dusZTuR59Xyk9pq+Tzk77H8+ULZB9aqk3lEhXzyzuj6ssngro222Se7U7Ot7G47R+7S00o+QuL0ujNi+vgVaVJS+XZtUSrbJnvUNu+PEmXrtI6RRgZdzjSP/ImIkO6ezMmRRhZlFkt3cD6Se9Kh9tvynL90x2PLEOm7rPZdSJaN6JK3Re27Kv/+qb0vKqsAkL4r8u1Bvqx8P1iRecZE+wtRjVKSkyGmN3Yzj5zYnSrdWd5KdnewZTtLL5K243atpIlfi699RxNSpH2zfDu+UiatZ9lWe9eSJhg+fVW6S92yKcvPPeTbtyVf/p2S77Plx7Wm1/ZzubI7v7Pkd3ZfSzeRHbfl30/LviVPNpmyvf3l+6EtFa8FkN4P+fdTfiyRjj/S686Sjc6ynA8A0udh61ikL7ccALQPl/aTl2TLWl6vvC75e1A/yvw5Fcj2w/LjouUYK9825OSvx3K8axkqHX/ko87mhLRUtFv+eVrOz2RFWi0rv/tdra3yc8HzBea2NAqSjRIJlLaDkmvvd5DsWCkfWSEfbXrm2vbbtZ10t/f+Y9IkynHXzgPS86XtvHH9UDF9IV363liOJbaO95btXv4ZWZ/7QsHqvFF2TmQ5tsq/q3X85eegJsXz1u+38vxIfp4uX8+ynTSNkr73mbnS8dqybTSU3T0vP1+1HMvk53Ty1yo/Blteg3xZeVvOXPscBreRPi/5SEjLbyD5OtGyEb21Zed6u7LM51Wxsm1Hvqz/tf3ouUzp/EterjzdNFh5Xij/nC2vR77vk58TnbhgPreVf4byZeXtOl9gfm/l+yjrfZPyey3fzhpde12nZfvGdrFSW+Qjr7Nk+w6LdNnzltclfy+ay0bFXLr2/bL1ecq3E8v2aes96BJnHtXyr2xkufw9eChHuvBb08mvEyxv0RF1fP3srFF9ZJaW4K5/zSMjk5OTERMT4/Y6hw8fjg0bzNEVRo8ejV9++aXC5Tt27IgjR8zHt4ceegiffPKJy9s0c+ZMsdzg4GCkp6e7dSJvQRDQuXNnHD5sfu/j4+OxaVPVj/Qk8jYcWUFERERERERERKSB3qDzukdVmzp1qpheu3YtDhw4YHPZX3/9VeyoANwz4qGkpATffvut+P+4cePc2lEBAB9//LHYUQEAt956q1vrI6op2FlBRERERERERERELjF+/Hi0b2+eZ8poNOLuu+9GWppyLsTjx4/jgQceEP8fNWoUevXqpVgOAJYtWwadTic+Nm/erLk9q1evtprA25kOkWPHjuHee+/FyZMVjz4XBAFz587FE088IeY1aNAA999/fc7xQuQohoEiKkc+vNOdQyTlkyG3+PQHt9RRHZVdkEJB+MS0q2DJmqGoUArdFBAYWMGSRDWXt30PLO2trm0tzZQm1PSt00jxvPz9NlxJF9O6MnP4EJ+G0oSFxXk5qnX4h0ZUspWU8e7jAIC6s+Z6uCXkLGPCZjFtaBsvpi/nFSiWjQqVJswsS/sXAOBTXwrNmZGbL6brhkshGq9XKdnm90MWuYzvCxFVa/LrBN+27uR1YaDuPHEIQNWFgQKAnTt3Ij4+HsXF5tBm9erVw6OPPooePXqgtLQUW7duxYIFC3DlijkkW1RUFHbt2oXmzZurlrds2TJMmzZN/H/Tpk2Ij4/X1JbRo0dj9erVAIDGjRsjMTEROo2hXy0OHjyILl3MYZq7deuGwYMHo1OnTqhbty4CAwORnZ2NAwcOYMWKFVZzY/j7++PPP/9E//79HaqP6HrlY38RIiIiIiIiIiIiIm169+6NL7/8EpMnT0ZxcTEuXryIF154QXXZ8PBw/PTTTzY7KiojIyMD69evF/+fPHmywx0V5e3btw/79u2zu1x0dDS++uordlQQOYCdFUQeYm80hbfdiazV9TCaQq4mfXZEzrL1PZDf1V+d7uS3tLe67ofVRlPIydtaUiJNSOsb3lSxrPx9LyySJm7dO3IIAKD7ur+cbWaNt3v4YABAz982qj7PERXqCn+dJ6YDRz9WZfUeGj8CANDp+/V2lpTIR1PIyUdRqJGPqLDgqAFrtf3MkzP7B4faWZKIqPrR6XXQeWAeCGfpjJ5r6/jx49GmTRs89thj2LJlC8oHdzEYDBg5ciQ++ugjNG7c2C1tWL58OcrKpEnqJ0+e7FQ59evXx8SJE7Fp0yakp6dXuGy9evVw33334fHHH0ft2rWdqo/oesXOCiIiIiIiIiIiInK5Dh06YNOmTUhMTMTOnTuRkpICg8GAmJgYDBgwANHR0ZrKmTp1qtXE3Vo98cQTVvNHOKtevXpYvnw5AHM4rWPHjuH8+fPIzs5GaWkpQkNDUbt2bXTp0gVt2rSp9OgNousVOyuIiIiIiIiIiIjIbZo2bYqmTZUjfb1RbGysOIcJEbkWOyuIXCD92qSJ0S4c4l+dQo44q3TXz2Lat9etAIBdNw0S83r9samKW0RacSJQ9yu+mium/UPCPdiSqiUPNRRYjUI/qakJ+2G/cO3DzgMDAsQ0wz/ZZyv8E1VMLfRTUYF0zAkIko45ufnmUGz+W5ZJz498yKl6HQn/pKbswjFFniOhLTOvSJNy1wmrOIyUnCUcnbfujwq+e1NMB014Vkw7E/6pNP2MmPaNdn1Mc29QlecOVRkKUT5pvb0wazVVdQ09SUREVNXYWUFERERERERERKSBzqCDzqD3dDM086b5NYiIvGfvSkRERERERERERERENRJHVhC5gCvDP3kTteHKZ5+8S8w7t1kart/rmePmv1UY+ulqgdQ+H9nNJDpjiZhWG0IvD4EUUZoNAPCrHeOGFlYvBYVSeB556CdLyIHrKVSRXLpse3Dld/16fT/loYZyrkphHyJCrs+wD+7G0BpUnVmO0yFB6vvW8GDzuYWpdQ8x7+I7j4rpek9/pLmugpXvAACC7nja4XYCjoV8UuNI6Cc5rw8HM/rJCp+2hPoCAH+dSUwb8jIAAL71pNjmgp/0XhTn5ciWvWh+3sdfzPOt20RMS9uZl7+XqNpzh6rc9hw5PsnPHQKu3S0uyCaxlZ9neBOv/64TERG5CDsriIiIiIiIiIiINNAZdNB7UWglhoEiIm/CzgoisnJl6UtiOmzaqxUuWyzdAAfLPUyNJk8W85p9MNyVTXOY7TvoKr5zST6q4HKe+cQuNPeSmGfIviClm3R2un3VTVCg+p1olrv4ivPzpDwnJsb0BinZ0iiKhpHm7eB6HTlVFTiawv04moKqM3t3ulsmtTbWayXm1Zr2H+n5fWsBAMWnDoh5wRNfENPGpINi2jKiwnhim5hnaD1ATJf88yMAwK/P7aptSfrvFDHd5O0vKmy3Pfbu9JdPonxV8AUAhF9NUV3Wp34LAEBhkTQ6sjrdWW7r3MLCMnoGsB4RqwuuBQAoyUoV8/SF0vsilBaLaZOf+TitL5XWNyYfEdMhsR0cbXa1Ih/5au/9lJ+rwWQEAPiHRrijWR7jyLmD5fsu/64TERFR9cY5K4iIiIiIiIiIiIiIyKPYWUFERERERERERERERB6lEwRB8HQjiKqTCxcuIDY2FgCQnJyMmBjvmli5NCNJTMsnF6wuigqkMDsBsgk11SbrrgqlFxMBWE+6rctJUyxXFtNRTBuuZkr5kY0Ueb51Grm8nVVBLQSSnCOfUYksbJaFX3jtSrSu6ller7dOeOip75QjytL+FdOWUCZUeSXbvhXTfgPu9GBLiBxnmQgbAHxvuAOANIEyAJSlJYlpfUgEAEBXq75UgOynTcHWn8W0T5g5pGHgrRVP+FxdyY+rJb7KY7SnJo8uyU4X036R0Yrni69kScv6SG0MVWmv2jHBEgoMAExBkWJaZywT0/qCbACAMfW0mGeIaSmmBZ35/jxdWanqa6hOIT0dCflkj1VIqGuMel8xrYf0XfHEeULZgd/EtE8X50LHpuWYz13rR2gP2Sn/LVJgNId7rXUdh0wsyTFPZu8XUdfDLan+5NcJfujSDXX9/T3cIu0yiosx7sA+AN55jYOIri8cWUFERERERERERERERB7FzgoiIiIiIiIiIiIiIvIohoEiKsfbw0A5w3R2r5g2hkpDgE3+IWLaP6wWAKAs5biY59OwTRW0rnqwhIsCrMMQ6AtzzHkBYWJevk4atn89Dysnqk7shTkjcpeMXGnbqxvuum3PdHqnmNbH9XZZuZ5WnJcjpn2yzgEAdKWFqsuWXTxvft5POu7qQ6VjNAJCxaSQaw514tNpqKua6jRLeB5dsSxMj95HTNoLxyIPl4RrYSxzw5uqLhtammMu/lqoJADwiWnnSHNdpuTSBTHtV1t5fl2aeV5MC37Xzp9kYToFH+lzLpWFlLKEwDKd2i7mmYIixLTxWshOn3P7VNul8zfXpW/e0+5r8CaW0LCCj5+Y51ergZjOK5C+V/7FueaELLwW5OvV0BBBaiGQ5Nuhp0O7eurcRR6+zfIbkBgGioioqvjYX4SIiIiIiIiIiIj0Bj30Bu8JVOJNbSUiYmcFEVmNptDnS3fSGPIypIWu3VWjKy0Ws6rT5LjpsjtXo524c9XehIby90g+MThCIwAAhUXS+r4m2eSesnL90xMAAIK/tL5Pg1YOt1Uu52qBmI4I8ewoDqs7PWUs20Z1ulONrj8cTUGe4srRFHLy0RSmM7sBAGXh0l3TaneuewOdqUyRZ5KPkJDdXa8PjjL/zb8s5cneF2PifjFtGVFR9PsSMc+veQdpvSq8q94/+NrrCQ6teEEb1M65omTpkqxUadls82gGW6/PePQvMW1oP0RT/SXbvxfTfv3Ga1oHsN4mM6+Yz1/qhMnOXQSTrGHSiAoLfdEVMR2YnyQtqjeY/9ZqLObJz2EN2dfOP4LlE3RLk22nRZpHCteRTRZu1W6VicPdxZXnSr51m1T4vNUk5x6aoN3T1EaM2Hvf5aO//K/9DnAXT527mPyUvynkE7YXyS4jhQdfn9sOERG5D7tXiYiIiIiIiIiIiIjIoziygoiIiIiIiIiISAOdQQedQefpZmjmTW0lImJnBdF14KpsAr0QlWHeVsOdZWnLpHMAYLgWSkE+ubQxTBoW746dSdG6T8V0wMiHFM+X/POjmI7uc7vmco0ntonp4sY9AAC+uSnSAoHNFetYhX5SoS+RwjH56aRBazpZGAPxvbsWrsAVPBX6qUQWKsESHsFeKDAt4QyMyUcAAIbYDnaWrD4soSyAcuEsVMi3PVOtWDFtCdUg/87V1Mks6fpi7/jjKcZzh8S0oXEnD7bENUrqe2bCZHeQTwRtDK0DwHpSYLn8Fa8DAHxj4qT1A8PFtE/Trop1fOo0FNOmqznSes41V7OignxFnl42cbhfeO0K1y++mium/UPCFc/LQz+ZAqTnjSHm8J3y1ycP26gLleq1fC/sfSdshX4qTT9jThh8xTz5sd8y4TMA1Ll23JPvI/xkk4zrSsz5ujIpnKZ8YvDifHngKzN5ODDBT9rfWEKL6Yqvqra7tuHaeyR7j3WlUr2lZdK5nLvDWDpSvtrk0M6yTKhsbzJledgwOa0hxOSKCqXPPiBQ+/GhsiFQ5aFbi8tMinLk26k8lJZl+84Pri/mmWRlBQaYQ9RdzpPaFxXq2RCtaufrWlhei5xeFlotPFr5W4mIiMhVGAaKHHLx4kV8/PHHuOmmm9C8eXMEBQUhMDAQjRs3xogRI/D2229j9+7dMJlMdssSBAFr167FhAkT0KJFCwQFBaF27dro0qULnn32WZw6daoKXhEREREREREREREReZpOEATB/mJ0vTMajZg7dy5eeukl5Ocr7wwr799//0VcXJzN5y9evIgpU6Zgw4YNNpfx9fXFG2+8gVmzZkGnq7phixcuXEBsrPmO5+TkZMTEeOcEla5gTNgs/XNtUkLLXY6A7Tsd3c1yR5WzowrsTYxnTDoopgvrmifA9iuVtnvDtckq5c/7CtKEoPI7++R3ZFnuqpRPHqp2d2RVypBNTC6fBNbeeyQfASBcuxPS3t14WsgnlrTw1sm41e6iLbNxj4B/nvnON/nIJXdP2lhdye/4tTdah0iLot8+E9MBw+/3YEtcqyz1pCJP8PEX0/Ljj2Vf767Jvj3Fcqez/lKSmCdESucmlrvzAWmko3w/q8tJE9OGtvEV1nXy/rFiutVnPznVXnew3BHvIxshKh+dKI52kDElbFcty3/w5Eq1xVKX8aB0972u/wQpXSRN0Av9teOh7AYn+QTclsnRjaGyUQMGaeSFT5Z0vmDKyTQnopvJypeWtZynQPZ7Qu2OeV/Z3eLy8xx5XaX1zOd9/k5Ojq46sbiT5MdLi8oeNy0jXAH3j3K1NZrUci5YXc//5BNNi5O3w3rkD9VM8usEq3r1RF1/fztrVB8ZxcW4bdduALzGQUTVH8NAkV2lpaUYN24cfv31V6v8uLg4NGjQAIIgIDU1FWfPnoWWvq8rV65g8ODBSEhIEPNq166N1q1bIy8vDwkJCSgtLUVpaSmefvpp5OXl4dVXX3X56yIiIiIiIiIicoRO72VzVui9p61ERAwDRXbdc889YkeFr68v/vvf/+L8+fP4999/sWXLFmzduhWnT59GVlYWVqxYgZtuugl6ve1N67777hM7Knx9fTF//nykpqZi27ZtOHjwIM6ePYtbbrlFXP61117DunXr3PsiiYiIiIiIiIiIiMhjGAaKKvTVV19h8mTzkPCgoCCsXbsW8fHxTpe3Z88e9OzZU/x/yZIlmD59umI5o9GIIUOGYMuWLQCADh064NChQ1USDqqmh4Equ3BMTAs+5snTfB2YJK30YqKYNskmsfTNPA0A0DeXPt+CQmnSuaBA5URttliGVzs7xP7o3aMAAO2/WevU+nKWUFjy8BDykAqW967kkhQayrjzFzEdePNMRZmmM7ulspKlIfz+8XdXur3VmXzYvE42qajc9TSptDwEl+Ha3U6hxVlinjwcBhE5xpGJ772VJfwPIIUX9NZ9aFnKcTEtGPzEtHiMlU0e7ZOTKlvWPJGzKeOctE6P0WLaeGKbtOy1iaRLo5qKeWqTyFYFeahFC2dD/+Xmm4+nBaVSOKW6F3YqlpNPgFy2Tzo/0gVKocHK0s0hbRwJByU/tlvO20ynpfr1cb2lZWXbLHabz5V84rqIWfLzSnnITAt5mDNdsVSvZUJxvSxPbTuSUzuXk4eiNOSmKtYBrF+Pu1kmHw8JUp982nJO74rwQ5bQlT4npe8M6sRK6cxk89+6jcUs+WdkL2RUocpE1N5KHi62rJYUqsoV4VDdqST3kpj2C6/twZZ4L/l1gp/79ELdAC8KA1VUjFv/2QWgZl7jIKKahSMryKa8vDw89dRT4v8ffvhhpToqAODtt98W071791btqAAAg8GATz/9VPz/yJEjHF1BREREREREREREVEOxs4JsWr58OS5dMt+B0bp1a8yYMaNS5RUVFWH9+vXi/w8++GCFy7dp0wY33HCD+P+qVasqVT8RERERERERUWXoDTroDXovenDOCiLyHpxgm2xasmSJmL7nnnsqHYJp8+bNKCiQwjIMHz7c7jojRozA1q1bAQBr11Y+pA8BpqBIMe1Xq4HD6/vWa6r+RFhPRZYjoZ/k1MI/leRkiGl7YS7shX9yZCi6JfyTPESFb8M2iuWsQvaohH4CgNKMJACAvlj6HhjCoyqsvzqRhwBT2w7kYS3k4Swsw+XlBxxDk86qdVhCRFT3ofSuUDdcCr1hee/0Jfk2liatLCFRACA8WD10BtV8IZsXi+mCYllIwjue9kRz3KIm7Sd9VI6rcpawlQBgyr4oPVE/DoB16Ke8L18W00EDb5PK8DPvc/3OSiGKjLI65OEe3U0t5FNZmhQW0qd+C81lWfZz4fLMiCGqy4rldxslpgt+fFdM6wwGc97Kd8Q8+XemdNfPAADfXreKeWrnbHn1O0ntkz9xLWwXAPg0MJ9HlCVJ4Un1spBU+jrm8ypBvo7sfbEKNVV87dhpLJXyWvYT05ZzOPl2phZmyreOFNLHmC8LWSVIIbaMifvNL6VpV8X6WliO9/L6bYXkUQv/JA9xF6kz33doFUZN9l0xhprPlwOCZOcb8vBxJVJZvoXZ5vVl53c+DVqJ6axw5XlfaH6amDaovgJJdQr9JA/3Jf/MLYo3fyOmde0HimnLub5Odq7mTfthhn4iIiJvwZEVpConJwd79+4V/x80aFClyzx06JCYbtq0KerVq2d3nT59+ojp9PR0ZGRkVLA0EREREREREREREXkjjqwgVXv37oV87vUOHcyTpm3duhWLFi3C9u3bkZqaiuDgYDRu3BhDhgzBjBkz0KpVK1tF4vhx6a6f5s21TehcfrkTJ06gbl3vnDyyujAFRtpfSIUrJ/FzhisnDXXm7i753Xj5K14X08ETX1AsW3bgNzFdcvqwmPZrZn7vjAXSBJCGOg0dbostjow+cYbNUTXX2Joc1NYoCtUyvOgONVcS3zvZe1iSnS6m/SKjq7ZBXoyjKWqG7E+fEdORD73l8PqBox9zZXM8wnIHN+D8Xdzeriz1JADAX3aHN2SjAiwj9ywjFwEguPdNYrpo7x9iOuj2WeaEyp3U1YHJV9p3yff/hmsTild2GzCd2S2l/aU77cX3RaZk27fqhTTT1gb5ftjWqEtcG8lijJYmstannxLTwrVRA0KWdPe+qVQaOQeddM+dUGg+rzLVlX43CLLJ1U3R5u1HPhrDx95E2bIR5ZZROQAgJJt/z9j6PFKyzXfdN4yUTVx+QRo9YqptbqPRJP3O0sm2X9+6TSpsVp2wIDFtvGx+P4y11Ldpy4gK+QT1eqM0osMYUkdMW0YNyCdMh2zERpjl85BNci74Ve54qzbJuatZJg6Xjy6Rj6awjBqWn+P6x9+teB6Q9jcG2agduo4ZdNB5U2glb2orEV332FlBqg4fli6whoSEwM/PD/fddx8WL15stVxxcTGysrJw4MABfPDBB3jqqafw1ltvQa9XDto5d+6cmG7USNsPxQYNGsDHxwdlZeYT66SkJKt5LLS4cOGCQ8unpaXZX4iIiIiIiIiIiIiIXIadFaTq8uXLYjokJATTp0/H8uXLAQAGgwEdOnRAZGQkLly4gH//NcfYNRqNmDNnDtLS0vDVV18pyszLk+7UCQ8PVzyvRq/XIzg4GLm5uYoytIqNjXV4HSIiIiIiIiIiIiKqOuysIFWWzgHAPFeEpaNi4sSJeP/99xEdLYUkOXToEGbMmCHOcfH1119j4MCBmDFjhlWZ+fnSZGQBDoThCQwMFNsjL4Oc43vptPRPbAfN61nCP9kczl8NaQmjY1nG5vPbvzc/32+8mOcbEyemi377DABgkr0vphJpMteA1t2kspLMw+n94jqKeUKo6ya7q2zoJ0cmHi/bJ01ibmpsnkhTXyx1JtqbLNVmuddCfsgndbyeMPQTkZkzoZ9sKf5zqZj2v3Gay8p1t+s19JOc5VhQuudXMU8+mbYlzKDV5L6yMDp+IcpjbKkDIXeqktWEz7K0ve1A63FT37ynVLwsvI98Ym9LKCq/AXeqlqE2GbE8vJS8DjEvX7oBypQhhXkqPmYOyWQYIJ1flWWkiGlD6LVzfh9pgm1TrlSWPjxKTOuCzDdBGa5Ix1CjbFkh3RwOTKgrhd60hAeS8714UkyX/ntAym/QRKpLVq+F/Nhdz/J6I6WwqfJJr31yzSO4A+WhNYOk8u2Rh2nyvbad6Ips3Mx1bUJlv1oNxCyridyzkqRyw+qb83KSpfXzc8SkofUA8/qyUKd6f9m5oqwOrdwV+klOHv7JQj4hue+189WiQinEWECgFN7KXghUIiIicj12VpCqItlFS4u77roL33zzjSK/U6dO2LhxI3r37o2EhAQAwCuvvIIpU6bA11f6gVFaWiqmfXy0b3ryZUtKSjSvZ5GcnGx/IZm0tDT07Kn8sUVERERERERE1ze9Tge93nvmgdDrvKetRETsrCBVwcHWd6EEBgZi3rx5NpcPDQ3FBx98gGHDhgEwzxPx559/YsSIEeIyQUHShHBqnSG2yJct3y4tYmJiHF6HiIiIiIiIiIiIiKoOOytIVUhIiNX/I0aMQFSUctiz3E033YS6desiIyMDALB161arzgp5mYWyobb2FBQU2GwXOc7gQOgnNbZCPxX9vgQAEDD03kqV70pawuioLZORK4UGCOlqDjfhJ3te16KHmC77yzzayCALC1CUdlFMy4MpGSLNYZpKz50Q8wI7DbXbxsqQD3W3F5pJXyJ910rzMsS0JexD2aHfxTxdbVkn4PG/zeXLwkak5yrDK0SHS52NtsIdXa/hnywY+omuZ4U/fyCmA2990mXlykM/5eabzz/CgwNtLe7VSnKkfXdlQwNWheIrWQAA/7BaFS4nD/3kCLVjiiFHCjVkkqX1Lfs5VYer2AtJZeuzdea4qcu7JKYt4X0AoOTSBfNfOyEJjYn7pfVloZ+Kr5rDtvqHSHPT6bOkEc6mUmmEtE9v82da4CctG9K0vZgu+9dchyGqvpiX33qwmA7OPS+9nhxzaKWydClPHxwmPX8tXJE8zFT6F1J4uIazXjMvJ5ik9tWT5rwzykJ9GqLNYYEKCqWbqYJk71HRLnPIMkv4VKDy4Y5KLyZKZeWmiumyui2uJaT3VVdWXGFZpkDp/ZZvR7pzhwAAQo50DqurJb33ptPmsF0+XYY70vRqSe18WB76yRJaDeB5KRERkSfoPd0Aqp5q17aO8du1q/24yTqdDl26dBH/T0xMtHpe3tmRlpamqR15eXlWnRX2OkyIiIiIiIiIiIiIyPtwZAWpat26tdX/WjsJ5MtlZWVZPdeqVSusWbMGAHD+/HloUX6+iVateHdLVXLkzqLqNKKismrlJYlp+Z1xFsVh0iSCfs2Uz9e+eaZqubqkgwAA4XKK6vPuYG80hensXjHt36y77BnlXa4+slEghb9KYeF8Y1sqlpWPorCwmryQIwhQmintB43Byn2s/A5P/+DQKmkTUVUp+PFdMZ17ynxzQ/1nP3Z7vd40oqIkS7qD2k/j5LXeMJpCzt6ICnfw9AgKZ9n7bOXHc73V8VxJPprCKj/jtDJT5Xhta9Jvy4gK49G/pMwQ6fimN0ojAIRLSean82W/F4qlUZk+0eZRnboA6Xwi+MRGMS0f7aAPNC/jI5tAWxcoHTeFUvNoA1NetpjXYPQoMV22/UdzOS2lm670IRHS82lJYvr8N98BAOLmfw81AcPvB2A98sKn5KrUFh9/AI4d1+WjIXSl0k1cuHaeID9fEPyU+zjjtfNPAPC7Nik9YD3Ztk6vv5aXJLVb3ob65nM90761Ul6R9Hn59RuPmsJdoykso47VzpHJ++gMeugM3nPvrze1laqP6dOni+mnn35acZ2QyF3YWUGq2rWzvgBbXFzxkGIL+fwSgYHWJ8tt2kgXTY8dO4aysjK7E20fOHBATBsMBrRo0UJTO4iIiIiIiIiIiMhxy5Ytg+7a5Oz33HOPzc4KdmqQq7F7lVQ1atQITZo0Ef8vH9LJlqSkJDFdr149q+cGDJDu4iooKMD+/fthz7Zt28R079694efnV8HSREREREREREREVFmCINhdZtmyZfjiiy/wxRdfIDU11e7yRPZwZAXZdNttt+GDD8yTXf7xxx92l7948SIOHz4s/t+7d2+r51u2bIlWrVrh5ElzaKFvvvkGPXv2hC0lJSX44YcfxP9Hj3ZuckVyjHxC5uuVWugnuZAg2aihPrcDsA5xJGe8NmEhABiuDb0v2LVeqqvbqPKruJQ8FIOh/RDF8/ZCRQCA6dR2AIBQVirmBY5+TFGHVdiH4Eip3mvhIgICvSf8SlWwCutgKgNgPSmpK1mF4OLnQFXIsv8AgNILZ8S0MV8Ki+IXGlSlbfIWWkM/EQGAoJPuQTMmbJaeCIoAIJ2DlCcPHyX/jloY2sZrbkPZod8BADp/2XHm2h2ZAGAMk0JK6YvMk3EjV5o4XKgVI62WZZ7su/T8KaktUbKQVCajlL4WwsiYnSnVlXRCKsvHFwDgGyNNdK2Lkr5f+mbm8E+6AilMlClACtOkD40Q07HjxkAL31wp5Kcl9BMA+IfXVlu8Qlbh0pwInSb/7MsuHBPTaue7htgOYro0XdoedKXm8wh3n7fWZAz/RETeSCc7jldEEATNyxLZw5EVZNO0adOgv3byn5CQgF9//bXC5d99912UlZkvuPn5+WH48OGKZaZOnSqmly5dipQU27H7FyxYgMuXL4vlTZw40dGXQERERERERETkMnqDzuseRI4KCgoSR1YUFBRUuCw7KsiVOLKCbOrQoQPuuusufP311wCAGTNm4M8//0THjh0Vy3777bfiKAwAmDJlCho0UN4R+Oijj+KDDz5ARkYG8vLycNddd2HNmjUIDbWeZO7vv//Gc889J/5/3333ITY21lUvjSpgd0LmM7vFtPxOMUPjTm5rU3Vgb4SC/G51+cTJQoQ02aPh2t+gCc+6voE2qLUVkEZ82PrcSi5dkJZN2K143k92R6NQah5xYWqs3DcA0uu2NWG7fJvSN7c92qomyM2XRjiEu2kUhRqOpiBPkU9mbDywVUzLJ3osSDdPsBuw4nUxL3jiC1XQuqpXuEaaRDzw5pkOr89RUmSLfNJr0+mdUvqy+cagssvSDULyu+OLE3aJaWe2STld+LVJwGUXLATfANVlTenmELO6BtJ8dPJzA+O1kRXy0RSmqzlSuSXSPHmW0ReWibYBQB8k+21x7ZylLEN6D3wbyybgvmAeVWzykcLN6kql+fp0sny1iaTl50x+tc2jQ3yjmyuWqw50xjLNy8pfgzH5iMN1cX9FROTdateujfPnzdc2Dh06hJtvvtnDLaLrBUdWUIXmzJmDRo0aAQAyMzPRs2dPPPLII/j111+xbds2LF++HLfddhsmTpwIo9H8Q6B58+Z45513VMsLDg7GggULxF7XrVu3onPnzvjwww/x119/4ZdffsHDDz+MG2+8Efn5+WJ5r7zyShW8WiIiIiIiIiIioutb9+7mkNGCIGD+/Pk4ffq0h1tE1wuOrKAKRUdHY+3atRg+fDhSUlJQXFyMjz/+GB9//LHq8q1atcKaNWsQERFhs8zbbrsN7733HmbNmgWTyYSzZ8/iySefVF22QYMGWL16NaKiolzxcoiIiIiIiIiInKbT66DzotBKOr33tJWqj9tuuw0//fQTdDodLl68iPbt2yM+Ph7t2rVDWFiYauinL7/8En///bfL2vDSSy+5rCzyHjpBy9TudN3Lzs7G008/jeXLl6vGqgsJCcHMmTPx7LPPIjxcW2iTrVu34sknn8T+/fsVz/n7+2PChAl4//33q7yj4sKFC2LIqeTkZMTExNhZg7yZJVSCPq53xcvVgFBFpRlJYtq3bpNKlSUPByCfjLHC+mXhsfSySSzLIqUQb/5OTBwpZwmzFB7sXeEGLO+Nb51Gbq/raoH5PbKaKJ6oil2e/x8xXZJnPq8Iqhsp5vnJjv2Bt6rf0FAd5S6RwleF3/t6BUsSudblPOn8POKSNLm0KcN8fLFMMg0AuihZiEobE29XpCzluJiWhw+1hEPSlRUr1gEA/aUkMW2ZTFuXkya1Nf+KtOy1kE6WUJMAoPOXQkqVJkltMBXmW60DAKa8HMV6Oj9pfV2AtKyhVQ/z+oW5Yl6xLASm/L0LGPmQ6muriYwntolpQ+sBLivXsv3YCz3rDeQhwCwsocDKK931MwDAt9etbmwRuZP8OsFvw29AvSD1MHfV0cWCIgz/zRyOk9c4SCuTyYSuXbvi8OHD0Ol0NifRll9WdvXcFZYILnR94cgK0iQyMhKLFi3CBx98gM2bN+P8+fPIyclBrVq10KpVK/Tr1w9+fn72C5K54YYbsG/fPiQkJGD//v1ITU1FYGAgYmJiMGjQoApHZxAREREREREREZHr6fV6rFmzBiNHjsTRo0erdBJtWx0jdH1gZwU5JCQkxOWT6rRt2xZt27Z1aZlERERERERERETknJiYGOzduxeLFy/GV199hf3796NUNuqxPAbvIVdgGCiichgGitzNePQvMS0PQ2AvFJUryUM4WNgajl98JQuA/RBNJf/8KKb9+txe4bLykFSGq5fEtFB01ZzXNr7C9anyLCHQgKrd9ohqmoLv3hTT/r1HimlD406eaA5RtSI/3gu+UsiUEn9z2Fj/IxvEPHm4JaHMfCHEmJ0h5gUMv19My49hFrl//CwtW7+eVFZxkTkhKx8mk1TvtTBRfs3aSU9fCy0FAHpZWB9D064AgLIDv4l5Pl2GK9pSFcouHDPXH9POzpLqHAkPWpZ6EoB12C6eqzkmLce8TdWPCLazJFVX8usEG0bFe10YqGFrNwPgNQ6qnNLSUiQmJiInJwdFRUUwmUwYPHiwOApizpw56Natm8vqGzhwoMvKIu/BkRVEREREREREREREZJOvry9atmxp8/nOnTuzg4EqjZ0VRERuZDx3SExb7rI1tB+iumxRoXni44BA90x8XHxVmjgS4Q0AWE8maUw6KKaFXOlORsO1uw/L6kgTYZclSHc0Wu5ElI+mUJuQXH4XpPHsMTGti4oW0z7dRml8NZVXfG3yTf/QiCqrszrhaAqqLop++wwAYIisK+Z50wSkPjHNxTRHUxBZs3XHvjjTnY3vumXkgj44TPV5tWNYpCyv8OcPpGUtx3kfaX49+WTc+qBQANbnZ8Zt30rpUGnfZLj211OjKeRMwVGalrM1gsLeaAo5nwatzAnLXwfZmpT9esIRFURERNqws4KIiIiIiIiIiIiIHNKoUSMxDFSgm268pOsLOyuIiIiIiIiIiIg00BkAvUHn6WZopjPYX4bIWUlJSZ5uAtUw7KwgIionK69AkVcrNEjz+sbE/WK6rHYzMW3vHNFd4Z8s/EPCxbRlokQ5Y5gU5sCvSWfF86ZT28W0b4suYjqjljkkQJ2EzbLyE8W0IcAcXsFHFp5BOPqPmNY3aa2l+S5nCf9UkitN8O0XXtsjbSG6HqRk56vm17426a1gMop5xqN/iWlbofM8zbJP9Os33sMtIVvk25FFdd2eagJLOEs5e+c2lkmiAUBfLO0jLGGWyg79LuaV/POjbL0zYtr32nmEKfeymCcYpf2J3s88Ca4+NFLMK71wWkwbouoDAIwbv5TyWvWQ2lK7ek5E6xcZXeHzltBLvjbCLhll520W7po0+3oI/VSSlQoA8KvVwMMtISIi8m56TzeAiIiIiIiIiIiIiIiubxxZQUREREREREREpIFOr4NO70VhoLyorVRznDx58v/ZO+8wKaqsjb/VaXJiYMhZERVFAQETAqKy6ipGMCGoGFddzAFdBV13RV11dV0DooiumFCUFfEDQVRcI6gERWBgBoY0TE6d6vujuu69TVdP98z0TE/PvL/n4eHMrRtOVVdXVde95z34/PPP8fXXX2P79u0oKSlBRUUFMjIykJOTg969e2PkyJEYNWoUBgwYEG93SSuCkxWEEHIAVpJP3qJNwnZ0Pbje9va+Q6StlJvh9s0VYq9Su3QOAMB5yDDpS+/BwrZVGtJHtgHHS//y1wjbveELYZsSJ0F1FemALllpRhv9MFGWpOxj3YrXAQRLAKRMmB79zjQzlH4ipGXonpMmbM9uKRXnHDc1Hu40GfWaGCvq/m+usJMS9Li0Jij51LI0Rs7S0eNwy/K68v0AAHvHnqLMpTxH+Je8IGwtIPOkJcnxU8+7TfYV+F7ZAvKPhi0lofylewxfuveXfiWobFHQ82qEfVCfR91fvmWUReg/EST64gXlnwghxGDRokV4/PHH8cUXXwSV67oubDMh99y5xj161KhRuPXWW3HmmWe2nKOk1UIZKEIIIYQQQgghhBBCCCGNoqysDBdffDHOOeccfPHFF9B1PWSCwvxnYtZZuXIlzj77bFxyySUoKyuLh/ukFcHICkIIiQI1msJMoAcAmqcOAODs3NeynZoM0nXsec3kXSj2nE7G/0o0hWdPvrCdFiuC7UpSbc/61SHbfdvWCluvqw3Z7sqWCbrVsfRa66S6JrXVcntyalo9Nds+anJ2NUKHkESj+u1HAQCpF9xhuT3cNbM94v1+sbB9SoJgQlTcZfuE3R4iAjWf2zB0vyjzbVwlbNcAeY/0bPk5pL3/ty9lu+JdAIKjldy//yTHSjaePWwp8hmkZtHTwk4566YG+98SePZuBwA4O/USZbrd2ai+zCjaSKjRFHvLq4XdKTM0Krm94d/yHQDA1m9YhJqEENL2qKysxCmnnILvv/8euq6LSYkDJyysMCcvdF3Hm2++iU2bNuGzzz5DWlr7fjfQnuFkBSGEEEIIIYQQQgghUWCz2WCzJ45Qic2WOL6SxGTixIn47jtj0tacpEhNTcWECRNw8sknY/DgwejYsSPS0tJQVVWFffv2Ye3atVi+fDkWLlyI6upq0e7777/HpEmT8OGHH8Z5r0i84GQFIYQQQgghhBBCCCGEkAbx0Ucf4eOPPw6KkLj22mvx8MMPIycnJ6R+bm4uevXqhSFDhmDq1KkoLS3FjBkz8Nxzz4kJi//+979YvHgxzjjjjJbeHdIK0PRI8TiEtDMKCwvRs6eRzK+goAA9evSIs0ckkfFv/kbYtv7D4+hJ01ElEZIGHSfsaMPdfQVSpsHe8whh11WUhtRNUpJgkoaxp8yQ1crLij5stq6qQthJaRkx94m0D/b+Y7qwO03/B4Dw3/tI+PLXyHaKRF1LUfn6TGGnX3K/ZZ3qBY8AAFIn3t0sPqjHwCQex4KQ5sC878TynlPz/j+EnTJhej01Ac+uzcL2frcEAKBXlYsy1/FnCTtcEvBY4d5XKMftGPvfHZ5vFwnbeYzcL1WqVOtnyGqpEn28BhESjPqeYNm5J6NLWkqcPYqeXVU1OPm9ZQD4joPEnuOOOw5ff/01ACOq4vnnn8dVV13V4H5efvllTJs2DYAx4XHsscfiyy+/jNCKtEUYC0YIIYQQQgghhBBCCCEkavbt24dvvvlG5Ki46qqrGjVRAQBXXHEFrrrqKpHj4n//+x/27dsXoRVpi1AGihBCGkhQouq8PiHb1RVydkeSLC8xEjy6cro0m2+xou7/5grbTEhZu0MmFk85q+HJA9VV1epqvSSu0osp0UZUVFbXCNvp9zWXO6QdYUZTqEQTTWFeG23VJaLM0czXhZLn7hJ2znV/C9mePHCosMMl2rWKqNgViGxS6aJ8J819BQB70Ubj/8NGi7Lqdx8TdtLhI4TtKy4y6vJ6SdoIzRHFp0ZTeP73fsh254gJ8g9NrtmzJRvJof1KXa1yf4y9C09joyk8u7cCCI6GsMKmJOAOGvfY82RfgUgTNdrCkddT2P7KUgCAb9ta2abTQcLWl74AIHJESzjUKNtEiq5Vk75rLmOVPRNstw80uwbNrsXbjahJJF9JYvHll1/C7zfuoJqm4a677orQon7uuusuvPjii0IO6quvvsJZZ50VuSFpUzCyghBCCCGEEEIIIYQQQkjU7NplLMTRNA29e/dG3771T6BHom/fvujTp4+IrigqKmqyjyTx4GQFIYQQQgghhBBCCCGEkKjZv19GInbq1Ckmfar9lJSU1FOTtFUoA0UIIQ3ESvpJJSicX7Htgf/VpI7OLv1j6FnsMKWfVKykUgDAu3YpAMAx+NSo+/fmrxN2e5I1USVg4i0H5nLLpNqap1bY3i0yKTw6GhIQju6HtphfJHHxFm0Stla8HQBgH3RyxHZl9kwAQKfu9X8n6irLhJ2UntUYF1E+10iW7fN4RFnt0jnCTj71SgCAv1p+P1Tpp5qPnpXlZ94Q0r8q+VRdUxuyPeh7H7DVZN72rFxpDzxR2lY7QwiA2mpDeiw5NToJwNaMu3SPsF3ZeSHbvYXy2QE2+TPW0e2QkLpaQNoJAPzdDzPaB55XAEAPyBoBgO3IMUbZD3K7+v1rTZifNwAkR5B/MonmOUs8j4Z5LrVa4Rh0XWqk/JNJIkk/qbTW84Q0P5rdBs2eOGt/E8lXklhkZclncnXioimo/WRmZsakT5JY8IpFCCGEEEIIIYQQQgghJGo6d+4MANB1Hfn5+UIWqrHs2rULW7duhaZpQf2T9gUnKwghhBBCCCGEEEIIIYREzfDhwwEYOSv8fj+eeeaZJvX3zDPPwO/3i5wVI0aMaLKPJPGgDBQhhLQQtTU1AIDkGEo/eXdsEHa8pHqs5J/8v38tbNtBI0O2J42+pFl9aknc+3cK29WhW7114y39BEgZDc0lJUM0t5SV8JXsFbbD6TLKPHWyg8AqFwDwpxhhv5pXbreS4yBtF9/6FcJ2HDZa2BvuuRUAkNX/HVHWbcZzln10yky1LD+Qxko/qThSU4z/09NFmSn9pOI6cZJl+7qdO4SdEvjfXbZPtsvqKOzUlOR6fXGvehMA4OzaR5TZc+N/jSCJRVuQfzKxkn5ScfQ4vN7t3p2/ClvvLJ+1THnOXc4cUZZXLJ+fbAF5T+f4q0VZ3fJ5sq9aRXrp9Ovq9aG5acjnbcqOtlbJUUIIIYlPz549MWjQIKxbtw66rmP27Nk46aSTcMoppzS4r+XLl2P27NnQNA26ruPwww9Hjx49IjckbQ5GVhBCCCGEEEIIIYQQEgWaZoNmS6B/Gl/9kebjz3/+M3Rdh6Zp8Hg8OOuss/Dkk0/C7/dH1d7v9+Ppp5/GmWeeCa/XK/qaPr1p+ZBI4sLICkIIiQFq0kd/slz9qybbTk5JQaxRoyn8m2ViZFv/4TEfqyFYRVO0VSJFU6h49uQLW41G0MqNpKJqosaGRGw0Bn+qXGHqLJWrxW3d+kh7wPEh7dQkypGSzZO2j12JpjAjBQCZyDGta+6BTVoE9+p3he069jxh1+03knTnXPe3qPuqfvtRYTvSZLSEGVGhRlM0BDN6w7f1B1Fm7ztE2Or1wiRe37lIiY8JaSzhIpNMfAU/C9ve8whhq1EUZkRfpMi+LllKVELWsHrrJo2dXO/2RCDeERV1lWXCjhQZF3S92/YTAMB5zFmyr3KZbDUps0NsHCSEEBITpk6dimeffRZr1qyBpmmoq6vDrbfeiqeffhqTJ0/G2LFjceSRRyI7O1u0KSsrw9q1a7F8+XLMnz8fW7duFZMUmqZhyJAhmDp1avx2isQVTlYQQgghhBBCCCGEEEIIaRCapmHRokU47rjjUFBQIGSc8vPzMWvWLMyaNQsAYLPZkJqaiurq6qCoCzM/hdmud+/e+OCDD+KyL6R1wFgwQgghhBBCCCGEEEIIIQ2me/fuWLlyJYYPHx4UIaHruvjn8/lQUVEBn88XVK7WHTFiBJYvX45u3WKvLEASB0ZWEEJIDIiU9BGIraSHKcmhynF4c2Vfrkb12jyYEg6qfENTKauqEXZWWkpIuVrWEDx7twvb2alXI70LT9jP20K6QtskZb0wYkK9/fry1wjb3ucoAID3+8WizDH0DGkHzlVd2VfdXSvtHPlg6A/Im0VzfhOiJqXuf/AxAKKTIamY9wAAIGPyAzHzxdGpu2V5Q+SfTFIvuEPYxc/cLuz0Rso/HYgq/aTSmmTWKP1EmotIMmrqs4Nv21phO3oPbtK4vl+WCdtfVWGUHSGTgTpKC6UdQV4qXtRVlAIANJ9blNkrdgvbl2bI8DWHlGQ0RJJ+UlGvd/4K4xlXlQBLiuEzZHPh/+1LANYSmqTtYbNrsNkTZ+2vza7F2wXSDujTpw++/PJLPPnkk3j66adRUFAgtmla6DloRlTouo5evXrh5ptvxs033wybLXG+W6R54GQFIYQQQgghhBBCCCGEkEZjt9tx6623Yvr06fjkk0+wcuVK/O9//8O2bdtQUlKCyspKpKenIycnB71798bIkSNx0kkn4dRTT+UkBRFoujmVRQgBABQWFqJnz54AgIKCAvTo0SNCC0KsEz3GGjUJpX3HL8b/SnLb2uoqWXnFPABA8unXNYsv7QHP7q0AAGfnvs3Sv7kCD7BehVe3fJ6wmyPRp7pi0bvpR2nvlhEXSQOOBgDofp8oUxNeEpII+NavELZ6zSSEkHBUv/2oZbkaadVaCJd82nxujBS90hAiJUQP8isQ+QEASRnZ9db1/rhE2LrXiBRJhOeNuv+bK+ykcUwE29ZR3xN8fukf0CU9Nc4eRc+uymqMmv8xAL7jIIS0fhhZQQghhBBCCCGEEEJINNht0BJIBgqJ5CshpN3DKxYhhBBCCCGEEEIIIYQQQuIKIysIISQGaHVVkSs1kaBw+6zRIduTU9OEXeP1AAiWGoIjSZj+pEBdm7wNOLoebDludY2RfDk1JbmhLofFvX+nsOOV+NFETXyuJnhsLvknk0gJGBsr/VT73+cAAPYhp4oyqyTHQQnPq0otxzWPja1abick1hQ9cgMAoOvdzzaqvbdoE4Dw1zBKP7UvamprhZ2SHLv7FmlftEa5p3Co0k8qsZR/akyfkaSfVPy9jxS2vub/6q1bWV0j7PTUlKjHaA4o/UQIIYTEHkZWEEIIIYQQQgghhBBCCCEkrjCyghBCCCGEEEIIIYSQKNBsiZWzQrMljq+EEMLJCkIIiQWKDFTNoqeFnXLWTcL27tgAAHB0P7TZ3bGlZxuGIv0Eb53c7vcCAPypOaLMt22tsO29Bws7lvJPJvGWflJRpZ/CSUJFvX3XZrndQnopHEFyXQGqv10m7PRL7o+6r+TTr4u6rol94ImW5Vb7SEis6XDMsCa1Dyf/VB/VCx4RdurEu5s0PmldUPopMairqjAMv0+UNUQ2iMQfU4IPAHxpuQCCJalql7wg7OTxV9fbl71ir7D1gSPqrRtv6SdCCCGENC+cXiWEEEIIIYQQQgghhBBCSFxhZAUhhMQAdWV6Upgw25aIqBA+BJIk+zd/Y7lddxsJSB0HHdJiPsULd+keYbuy8+qtGymSIOL2BkRTqPhKjBWFzhETRJn/y0+k/fvXwrYdNLJRYzQn3p2/CtvRre2fUyS2xCNBqRpN4fl2kbDdv/8EAPDVukVZ5tSZLecYIe0EW1UxAEbwAUB1jUwK3xzRrM2FGtVmCzxven7dJcrCRVO4V78LAHAde54oUyN6rYgU2UoIIYSQtgMnKwghhBBCCCGEEEIIiQLNZkuoPBCJ5CshhPCKRQghhBBCCCGEEEIIIYSQuMLICkIIiTG2AccL25e/Rtj2PkeF1BUJJgEkpWXE3pf+w2PeZ6IRSfqpNWDKP6nnS/qJpwvbSvqpNUkiUPqJJBq7H71R2FlHHiFsv8cLAHCkp7e4TyT21JXvF7aa+JfEB1WWEQ4XgOAkzf6kNGG7OnSL2bievdsBAM5OvWLWZyxJJOmncJjPm770rRHrqvJPJt7CdcJ29Dg8ZHu8n3MIIYQQ0nJwsoIQQgghhBBCCCGEkCjQ7DZodnu83YgazU5RFUJI4sArFiGEEEIIIYQQQgghhBBC4gojKwghpBmxkn5ScezbIv9IGxzz8Ws+elbYKWfeIGzftrUAAHvv2I/Z1nCX7RO2K6tjs44V6XxRaYgkQvW7jwk79bzbGuARIW2LsjkzAAA5x0q5Pn9FibCdXXoCAJJPvVKUVS94RNipE+9ubhebhHv/TmHHUkYnUaH0U+uixinlLlPcZQCCpZ+gNc86utYq/9QWcXbuG3XdIClUC+knQgghhLRPGFlBCCGEEEIIIYQQQgghhJC4wsgKQghpITy7jaSD6qqz5o5sUKMp1CSWDotx/Zu/ETYTc0vCRVPUVZQCAJIysps8hm/rDwAAXVlh2tSk1WafAKMpSPumYt4Dwq4tNlZzu4qLRFnKhOn1tm/t0RQqrSGawkxqzagGciBZaSnCdnsCq+p9XlkhTsvofAU/AwDsPY+IjwPtAO/apcIuWf4xAMDmlK8iKpW6GRcb1+TWcD0jJBxGzorEWfubSL4SQgivWIQQQgghhBBCCCGEEEIIiSucrCCEEEIIIYQQQgghhBBCSFyhDBQhhLQQ+m//M4wwyQe9hesAAI5mSjKo250hZf4t38ntjiRhm5IIgJRFaMlE04lALOSfTOx9h8Ssr+bsk5DWTPEztwtb9/uF7S6vFrYrM9UwHC5RVrPoaWGnnHVTM3rYtvD+uETYjqPHCzuS/JO7ZJewXTldYu8YSVxs8qepe18hAEDzeURZQ5I3W+HLXyP/0DRh6nb+JG5ufCV7hZ2cmwUAyJj8QJy8IYTEg88//xyvvPIKvvrqK+zYsQN2ux09evTAmDFjcMUVV+Doo4+O6XgrVqzAmDFjGtxuw4YNGDhwYNT1W3q/WpKxY8fGdXxN07Bs2bK4+kDiA5/MCCGEEEIIIYQQQgiJAptmg82WOEIlNi1+vlZUVOD666/H/PnzQ7aVlZVh3bp1ePbZZ3HLLbfgkUcegdMZusCuNdJW90tlxYoV0JTJ/ZZE1/W4jU3iDycrCCGkhXCdOKne7c0VUWHizOsTUmbrNyzq9oymIIS0RvY9fSsAoGL7HlGWlJ0ubGdasrB1nxFxUbVliyhL7cxrW6No5EsaNZrC/9uXhqFE/ul2GfWi+dxGmUsmZmYS5LaBKzsPAODZky/KdL88pzR/IPF2DF9U2PscVe92M8IVaP5nsnbHkD8I0zXszDg6QghpSbxeL84++2x89tlnoiwzMxOHH3443G431q9fj5qaGui6jscffxx79+7Fq6++GnM/kpOTcdJJJ0VVNz09PWKd1rJfrRFd14P+jmbCoTFtSNsmoScr+vXrF28XQtA0DfPnz8exxx4bb1cIIYQQQgghhBBCCGlx7r333qAX+vfddx/uuusupKYaspzFxcW466678NJLLwEA5s2bh5EjR+K6666LqR+dO3fGkiVLIleMktayXy3BgRMJ0aBONkTT/sD6jRmTtC0SerIiPz8fmqa1qhNZ0zTU1NTE2w1CCCGEEEIIIYQQQlqcgoICPPXUU+Lv++67DzNnzgyqk5ubixdffBG1tbVCTunBBx/E5ZdfLl78tzba6n5Z4VdywEXDypUrMXXqVGzbtg26rqNLly6YNGkSRo8ejSOOOAK5ublIS0tDVVUViouL8dNPP2HlypX4z3/+g927d0PTNPTt2xdz587FqFGjmmmvSCKQ0JMVJq0lRKg1TZoQQtoG/t+/Vv7wCdM24Pg4eEMIIa0PT1UtAMDulI+1fo83ZDsAZB/cCwBQumm7KOt409319l+75AVhO/scKmz7wBOj8q9WWcSSnJJST83EwjH4VGHXrXhd2EmjL2lSv5q7Sv4RkIfSlcTL/i3fCTuSlGFFtTz2Se6KkL4iJQMnzY8/OVP+YaWprpS59+8Utq1OnifiM9XlSxVnl/4hXUVK7k7pp+bDv0JquqecdVMcPQnGXWrIB5qyZIREi2a3QbMnTs6KePj61FNPoa6uDgDQq1cvzJgxo9667733Hqqrq7F7927MnTsXN9xwQ0u52iDa6n41lQULFmDy5Mnwer1wOBz4y1/+gttuuw0ulyukbmZmJjIzM9G3b1+cffbZ+Nvf/obZs2dj5syZyM/PxymnnIL58+fjggsuiMOekNZAm5isAIC8vDwkJydHrthMbNu2LW5jE0IIIYQQQgghhBDSGli4cKGwr7jiCsuX1iYdOnTA+eefj3nz5om2rfWlflvdr6bw888/4/LLL4fH44HT6cQHH3yA8ePHR93e5XLh3nvvxdChQ3HWWWfB4/Fg8uTJOPTQQzFo0KBm9Jy0VtrMZMXrr7+OsWPHxm18m83WaiI8CCGEEEIIIYQQQghpaTZu3IgtW7aIv6N5cf2HP/xBvNRfuXIlKisro0p23ZK01f1qKrfffjvcbjc0TcMdd9zRoIkKlfHjx+OOO+7AX//6V7jdbtx+++34+OOPY+wtSQTazGQFIYS0RXS3lC9RZaAIIaS9UL3gEQBA6kRruaaudz8LANj7j+miTJV+UqUPtCQjCjf55sdFmfdHmXDRX10OAPCV7JV97d0t2zucwo5WBqotST+Fo9HST3Zn/dtNWR9VHsjvta5rQUaqPPbu6mIAgE2X54ZnT7mwnXl9ou6XxI5wUlzufZWG4VRWrPrcwtTVc8dCite9r1DYro49jP8V6Sdv4TpZ2Rb6k9jR7ZB6/SYNw37C+fF2wRLKP5HGQhmo+lm7dq2wk5KSMGTIkIhtjj32WGF7vV6sX78ew4cPbxb/Gktb3a+msHPnTnz66acAjEXcN954Y5P6u+mmm/D3v/8dPp8PS5cuRVFREbp27RoLV0kCkThXV0IIIYQQQgghhBBCSKtlw4YNwu7ZsyeczgiLEwL1VEmljRs3xsyf0tJSXHjhhejTpw9SUlKQkZGBvn37YsKECXjmmWdQXl4euRO0vv1qDXz11VfQdV0kx87La9okcF5eHvr27Sv+/uKLL5rqIklAEj6ywvxStAZaky+EkMTF/9uXyh+MpiCEtG/CRVQcSG2x/KGZ2VeuwPK75Up8zWVEVmSsXyrKvCV75PbkNON/JYLCmdtR2Pac9rMK17NXJiF3durVLGPoNUbSazjkj3jNmSS3OwzbVrlPlqkRhw1A83miqucuk2O5sjrWU5M0J/7UHACAzVNjuV1Xzhn4/ZZ1TMS5rJwDml1pb0bwKFE7QZEXKoEoDEZeNAxXh27xdkFQVCqTs3fNToujJ4TEh6Kioga36dGjR4Pqqzlde/WK7hnCZrOhe/fu2Lp1KwAgPz+/QWPWR1lZGd5+++2gssrKSuTn5+ODDz7AjBkzMGvWrIhRAa1tv1oD6jHJycmJSZ9qP9u3b6+nJmmrJPRkxahRo8TkQKy+FG3BF0IIIYQQQgghhBBCVBojQaRbyO3VR0VFhbCzsrKibpeZmWnZRyzo06cPunfvjqSkJOzbtw/r16+H12tMUpeVleGmm27CmjVrMGfOnLB9tMb9ijfmMdR1Hbt27YpJn2o/Zv+kfZHQkxUrVqyItwuC1uQLIYQQQgghhBBCCGkGNA2aLYFU1VtYAaSqSkYwJScnR90uRcnzpfbRGGw2G8aNG4epU6di/Pjx6NAhOEdSZWUl5s+fj/vuuw/79hlRlS+//DIGDBiAO++807LP1rBfrQ01n0RhYSF+++03DBgwoNH9/frrrygoKBCLwbt06RKhBWmLJPRkBSGEJCJ1K14XtpqU1LvWkCWxZcgHKU1JICnkMkjCYcqKUFKEkOaj50NyJZyZlPtA/BWlAKQcFAA4OnWX26uN66xfkRpKOeumWLqZMMRS+ilI3tAqqbZXJk6GIsGFqhLj/6RU2XzQ8fWOpco4aXWVwjYTMusu2ZdN2W7Snq/Tnt2GRIWzc98INZsHd4lcSZkcSIbt3l8mK6iJ1hXb1cGQZ1OTakN5iagH0jRqupSL0lXlqEBfWrhE7mp5oKF3h9QtV3F0P9SynLQeKP1E2jvffPNNsycs9nik7J7DEf1rR7Wu2+2up2ZkRo0aJRI/W5Geno5rr70WZ5xxBkaNGiXkmWbOnIkpU6agc+fOIW1aw361Ng4//HAAEJMLM2fOxPz58xvd38yZMwFImf1BgwY13UmScHCyghBCCCGEEEIIIYSQNk7Xrl0bnIOioaSmyoUBtbXR55pS66altczEYs+ePfHmm29i5MiRAIDq6mrMmTMH99xzT0jdRNqvlmLo0KHo378/tmzZAl3X8Z///AeDBg3CXXfd1eC+HnnkEfznP/+BpmnQdR39+vXD0KFDm8Fr0tpJoLg1QgghhBBCCCGEEEJIayU9PV3YNTU1Uberrq627KO5GTFiBEaPHi3+DheRkWj71VLcc889IhJC13Xce++9mDBhAn799deo2m/cuBFnn302ZsyYIfrQNM1ywoi0DxhZQQghLUzFTz8IW5WBsqUFEm8p2gS2/g1PgNba8BauAwA4ehweZ0+ah7qArAwAJGVkW9Zpz7IihDSGimr5AzAjNaWemta4y6Rsnu6T19T0IcaqOe/u7XK7X27XTAkiv6/BYxID/5bvAAC2fsNEme6Un6Fevk+pbBx7LUnKculeKbEg5Lq0+tdXeXZtlm1sdmn7ZF+6zfjZo3nl6kY9Qr/tDc1nSFP4Cn4WZfaeRzTrmHXl++X4NkUmo3QPAEB3yHPDFiTrpdTdv9MwlDL4QhNy6kr/QertZuJYVRsqjOSUqKOUqf2a8lC63SXKnF36h/jSWMxnKqDtPlcRkghodhs0e+LcQ1ra19zcXGEXFRVF3U5NrKz20RKMHj1a5KL97bffLOsk4n61BFOnTsV7772HxYsXi8mGDz/8EB9++CGGDh2K0aNHY9CgQcjNzUVqaiqqq6uxb98+/PLLL1i5ciW+//57AFL6CQD+8Ic/YOrUqfHcLRJHOFlBCCGEEEIIIYQQQghpMocccoiwt2/fXk9NSVVVFfbvlxPYah8tgZrHw0y4fSCJuF8txTvvvINzzz0XH3/8sZhw0HUd3333nZiMsEIPLBjQNE1MdJx22ml45513WsRv0jrhZAUhhLQwHW963LLcXE1qH3hiS7oTNY1dzdfWV/6Fi6YghDQev97wNvuevlXYjuQkYduT5Qpnz3ZjpZyvRobj25zlwnaXGiu3c677W8MdAOBdu1T6MPhUAECtIhOQnNLwKJGGYCZIBuKXJLn2++UAgFQlssLed4iwPd8uErZ539OUBNtq8nPNYZGM2wJfZhc5VrlcvRi0kj6QMFmrk58HkyEH4+hmvEBRk5RXz3tA2MnjpxiGLr+gTT3PkjI7CFsd14xgCIqmcMpzIygB9gFtAAAO+b0PSuBuhflSJVw0hYWtJus2I1KCurTyLwaoz1RtPXKVEJK4HHqovL/u3bsXRUVFEZN6r1mzJmwfLYEq1aTmplBJxP1qKZKSkrBo0SLMnj0bM2fORG1trZi0AOSkhIo5QWFuT0pKwn333Yc77rijQQnMSdujXX76xcXFWLZsGX744QcUFBSgrKwMNTU1ll+e+tA0DcuWLWsmLwkhhBBCCCGEEEJIa4IyUPUzfPhwuFwuuN3GZO6qVatw4YUX1ttm1apVwu7Rowf69evXrD4eyPr164Wdl5dnWScR96slsdvtuOuuu3DxxRfjueeew6uvvhokgXUg5jvYzp07Y8qUKbj22mvRu3fvlnKXtGLa1WRFQUEB7rjjDixcuBAejydyg3pQtdQIIYQQQgghhBBCCGnvZGRkYMyYMfjkk08AAK+//nrEl/pvvPGGsP/4xz82q38HUlNTg0WLZOTncccdZ1kv0fYrXvTq1QuPPPIIHnnkEWzcuBHffPMNtm7ditLSUlRWViItLQ3Z2dno168fjjnmmDYbbUIaT7uZrFi6dCkuuOACVFZWBmmiEUJIS1FXWQYASErPstzeWuWfTFSZAd9WmSRclfcghJBYkJXWcLkkzSZXDdqc8hHXVyslWmqLdwAAknPldVhLkXIxpvzT3n9MF2Wdpv8jah9M6ScVVfpJlblxZXWMut9oUSV5av/7nPTh9OtiPlY4vJWGbE/53PtFWebUmcK2Z8nEkv6aKgCA5pSfgb+iVNi6WZ5RfzLK5NQ0YXsq5HkQJM9jykBZJF4OR0smmo6EmbgZaJx8lZmwGkCQrJHmlrIXzk69AASfm67JD4T6UrTJ0jb78mV3r7f/cOgOKd+mBT4m3SW/y0EyTYrEF+zOQJs6WabKMJnXBn+YBNqmpJPdGVoGAH5faDt1u4rF9qZ+dv7fv7bekGL9PEkIIa2BKVOmiJf6ixcvxo8//oijjz7asu6iRYvw88/ynnv55Ze3iI8m9913H3bv3i3+njBhQti6ibRfrYGBAwdi4MCB8XaDJBiJE7fWBNatW4dzzz0XFRUVQRERuq43+h8hhBBCCCGEEEIIISSYCy+8EIMGDQIA+Hw+XHLJJSgqKgqpt2HDBlxzzTXi7zPOOAMjRoyw7POVV14ReQ40TcOKFSss6y1duhS33norCgsL6/XR4/HgrrvuwuOPy5ySQ4YMwVlnndWi+5XILF68GEOGDBH/li9fHm+Xmo2KigoUFhZi+/btQgqMNA/tIrLitttuQ3V1tZik0DQNF154ISZOnIijjjoKeXl5YRPoEEJIzPjmA+P/sZPrraauUnR0Pbg5PQoed+evluVmwk1f/hrrdkzwKKislolb01ObN5EuIYlGXfl+YatJdSO2C6y0j5TMPu0geb10HXyUsMuWvidsZyBiQ13pb4UaTVH97mPCTj3vtkjuCjy7Nhtjdukv/WqGaIpwaMlpkSs1A5GOrZoM27/TWDGuRlvY0jKErdfVAgA0W2n0Digr2s37FyBXt+v26H/+xDuaQqWpycBd2VJ/W33O8Dsbfq9Sn03M8xwAHL0HAwB8JUqScyXRtWdPviwPREYEJapWoh10l/HbTI3MgEv+XlPbIRBRYZVQPRxWybSD+lS3q1rvvoCUcFDkhnJOhYu4MF0NPGup52Y4zOeuoOPSgLEIIc2HzWaDLYFyVthsLe+rzWbDiy++iNGjR6Ourg4bNmzA0UcfjRtvvBHHHHMMPB4PPv/8c/z73/9GeXk5ACA3NxdPPfVUk8eurq7GE088gSeffBLHH388TjrpJAwaNAgdO3aEy+XCvn378M033+D1119HQUGBaNehQwe88cYb9aqwxHO/WiPr1q0TScRTUlJw/PHHx9ehGLJ8+XK8++67WLVqFTZu3AifT0Zafvrppxg7dmxIm++//x5VVUbkcHZ2No488sgW87ct0eYnK3bv3o2lS5dC0zTouo6srCx8+OGHOOGEE+LtGiGEEEIIIYQQQgghbY6RI0di3rx5mDx5Murq6rB7927MmDHDsm5WVhbee+899O/f33J7Y/D7/Vi1alVQkutwHHzwwViwYAEOOSTyZHK896s1YbfbARiLwnv16oWkpKQILVo/X3/9Na677jr89NNPABCirlPfZNaCBQtEpE5mZiaKioqQnJzcfM62URJnKriRfP7550K6SdM0PPnkk5yoIIQQQgghhBBCCCGkGbnwwgvx7bffYvTo0ZYvee12O/74xz9i7dq1GDVqVEzGHDhwICZMmICcnJyIdfv06YNHH3203twTVsRjv1ojXbt2FXZGRkY9NRODp556CieddBJ++umnBk1SmNx0002w2+3QdR3l5eV49913m8vVNk2bj6xQtePS0tJw8cUXx9EbQkh7Zt+qLwEANe99JMq6jRkubFNexFZd0rKOBYgkSWDvc1TLOJJg1FVVCDs9rf4HNDXBqSrJQUh7oCHST7VLXhC25jJWI3kOk2Hl/jQpG1T7liHTlHXlQ5Z95Vw33LK8PkorpfRMdgOkn1S8Xy8CADgnTLfcbspiNei4VFcJW00q7V27FACwr488Rl0iSA7GC1tdpbCdoy8BAHi+XSTKtCS5+syWYeyjv6w46v5V2S3P7q2y34Bkju5s+9Kv6n6rSddNGiIx6VYknVw5XUK22zzyu2ImJLfZlYTpyndVd8rPVvMaWs/hZLk0b21gALm2Tv2uqLJyZt2wMk6mrSnblUTrQjJKlVtS/ApKyh6oozuUVZKqlJVFWRANkW6qDTxfOGTi7yDZrLqqA1sQQkir5IgjjsBnn32GrVu34uuvv8aOHTtgt9vRo0cPnHjiiejSJfT+YsWUKVMwZcqUiPUGDhyIhQsXAgA2b96MDRs2oLCwEKWlpfD5fMjMzEReXh6OOeYY9OvXL+77lcj06dNH2Lt27QpfMQF4+eWXMX268dxuTkzY7XYMHToUvXr1wttvvx2xjx49emDs2LFYutR4Nl+0aBEuueSS5nO6jdLmJytMrTBN09C/f384nc4ILQghhBBCCCGEEEIICUWzadDikAeisWi2yCvCW4K+ffuib9/QSfTmpH///s0uwRSP/WotjBw5El26dMGuXbuwY8cObNmypUkTQPEiPz8f119/fVCu49tuuw133nknOnQwFku8/fbbUUVXnHfeeVi6dCl0XceyZcua1e+2SuJcXRtJbq5czeNwtPm5GUIIIYQQQgghhBBCCGlWbDZbUOTAP/7xjzh603juv/9+uN1ukULgjTfewN///ncxUdEQTjzxRGGXlJRg8+bNsXS1XdDm394PHjwYgJEQpbCwMM7eEELaM53GjgEAbF/wnihLVeRF/Ju/AQDY+jdcsqSl8f/+dUiZ7vUI2z7wxJDtbYHqmlphp6YYEhBJEaSfVCj9RNobla/PFLazax9hJ0WQKNLd8rvm2bPTMAq3iLKaPVIuL++2p5roZSjZ6dZSQZuuO1/YBz/3Tr19pISRfzKJJP9kdb1RpZ9qFj0tbEfg2Hba8a3sIGt0vf1HoviZ24Wd+6fZTepLxd57cEiZrWMPub3vEGGb90X1/lK7dI6wk0+9sv6xqqR8lO4MJHz0yuPqLdoktzuM7c5OvertU8WzS/74VOWnmpu6ilJhmxJIVhJNgJSEUuWg3Pt3CtufnCVs8/wK6l+RHTIloVT5IT3FQg9ckXuCRx5vOKQ8lJBZ8iuySMoqZVN6SVekmVS/bQEZKQDQbeZPWkWuyab8zPUr5RZjwUKZSVP6h6pZHTgemk/ZrspHBcZ1dj9UlJnyWABg73lE6GBhMJ+lzO+BOj4gz1lCCCEkntxzzz144403UFRUhOeffx5jx47FOeecE2+3osbtduO9994TURNXX301Lrzwwkb3N2DAAKSmpqK62pDK3LBhQ5tNsN5ctPnIiuHDh6NHD+MH0J49e7Bu3bo4e9R2yM/PR3p6OjRNE/8eeOCBBvXx448/4sYbb8SgQYOQnZ2NjIwMDBw4EFdccQVWrlzZPI4TQgghhBBCCCGENALNbku4f4Q0Fzk5OVi8eDHy8vLg9XoxadIkzJgxA5WVlZEbtwK+/PJLVFdXi4Tat99+e4QW9WOz2YISj+/YsaNJ/bVH2nxkhaZpuPPOO3HjjTcCAB599FG8+uqrcfaqbXDdddeJnCANxePx4O6778YTTzwhLggmv/76K3799VfMnTsXl156Kf71r38hIyP6lcuEtFZcJ04CAHTeulGUqStEXX0GtrhPjcV20Ehh+38zEoe31WgKFXN1MyGkfvY9fSsAIDlXrtq2pWXW26bu/+bKuunZwnbY7ACA2oICUebKlBEGhX+ZBgDo8eCLjXc4StRoig1TzwIAHDp3Ubjq9eLeF4j4VVabq9FXka43KWfdJOy65fMAAM5jzmqUL9ULHhG27vcBAOwumeet6JEbhN317mcb3L/nf+8L2zliQsh2NZrCvfpdYfuKjZX86v1RV1e8R8CfIs8/b1Y3AIBjf76soKxSb0hEhWgTIZqiuSIvkjKy691ulVQ7CCUSQPPWCbuuvC60rpIs2zxeunJc1cgH2J0hfarnN6w+O4toioYiEmQrERK6+ivXbxE6oSTQFpEZqi9BkRVWoRfWL/7MSBdf/hqlsGla8WrErW/jKqXb2L18NKNmwkXoEEIIIeH4/PPPAQCPPfYYbr/9duzevRuPPPIInnrqKZxxxhkYPnw4+vbti8zMzAbnER41alRzuBzE1q1bhd29e/eY5B/Jzs4Wdnl5eZP7a2+0+ckKALj++uuxcOFCLF++HPPnz8fo0aMxderUeLuV0LzxxhtYsmRJo9tfeeWVeO2118TfqampOOyww+BwOLB+/XrxZZ4/fz527tyJTz75hDlHCCGEEEIIIYQQQghpJYwePToo8bSmadB1HVVVVXj77bfx9ttvN6pfTdPg9TZuIUND2Lt3rxhPjYiIFX6rRROkXtpFLJimaVi4cCFOOOEE6LqOadOm4dZbb0VJSUnkxiSE/fv3489//jMAYODAgejWrVuD2j/33HNBExVXX301CgsL8e2332L16tXYuXMnZsyYIbYvX74c9957b0x8J4QQQgghhBBCCCGExA5VNcWUijfLG/uvJUhKkjmg3O7oI3jro7hY5k3Lzc2NSZ/tiYReqj5v3rwG1Z88eTJ27tyJLVu24Mknn8Tzzz+PcePGYdiwYcjLy0NycsPlPSZPrj9BZFvk1ltvFTOP//73v3H55ZdH3baqqioor8Vll12G559/PqhOWloaZs2aBQB46KGHAABPP/00brrpJnTv3r2J3hMSP6r+Y5zP+36SshB1n68RduehRqLPnAHHW7YXkiEAXEoy0nhgygUAAPIOBgC4wtQlscW7dikAwDH41Dh7Qkh4XBmGTFPVjr2iTLP9ImwrKSBVLiZp9CXCrlvxulGWVyPrKiuUOvbq00RvG4czzXhuDJd0u7TSSKoXLll3U6/jqlySv9z4QaQmxdbVY3TT4/X2lTrxbmGXvnAPAMBbK6V8sg89SNjlc+8HAFTtkj/CIklDWX7eCjXv/0PYjq4y9N6WasiA+krkeaRK9ZiSOOFkCGuz5DFOT00BAHhLrNdqmUmMfWnyB6WaRFlTkjRHmyQ5kvSTKhVk73NUVH1Gg7t0j7BNabGgpNmK3JKaQFtIG9msfyJqbuOc1pXvqqauFjSllVR5It1iu4riiyopZfqlHvegRNjhxjA3W/Qb1JfPo1TWQvsPyKGFdmz0pSvHSFOStmseCymtJr5r8W/5TvbvShG2N7cPgNg8f+kOylwS0hASLQ9EIvlKEhNzYqGlJhhiSV6e8ayk63pM8kuUlpZi+/btYrLG7J9ET0JPVkyZMiUo1ChazJCk6upqfPjhh/jwww8b7UN7m6xYvnw5XnnlFQDA5ZdfjpNOOqlB7efOnYs9e4wfUKmpqXjyySfD1r3vvvvw6quvoqCgALW1tXjyyScxe/bsxrpOCCGEEEIIIYQQQgiJEX/5y1/i7UKTOOgguSinuLgYGzduxMCBjc8n+sknnwjpJ03TcMwxxzTZx/ZGQk9WmDRk5s6c3DhwkqOhfei63qiJkkSmtrYW11xzDQCgQ4cOeOyxxxrcx3vvvSfsCy+8EB06dAhb1+VyYerUqZg5cyYAYOHChZysIIQQQgghhBBCCCGkFZDokxXDhg1Dhw4dRKqAF198EY8/Xn9Ucn2o70oHDBjQLHkw2joJP1nR0BCjWIQkJWJYUyyYOXMmfv/9dwDAo48+io4dOzaofUVFBVatWiX+Hj9+fMQ2f/jDH8RkxebNm/Hrr7/ikEMOadC4hLQWir78CQDgc0sZgoyenYVdsX03ACBHaePev1PYQfIFEfDsyTfaKDIHjq4HN8TdevF/u1jYyadeGbN+2yu+rT+ElKmft63/cGFT/om0VrZMv1jYSdmGfI8qRaTZ7PW2V6WfVBwduxh9VZeLsuTTr2u0nwey8aoJwh740vtRtzvombcAAEWP3GC53ZR/MiUAASDtohmWdRuD69jzhF399qNGWWaaKMuY/ICwTWmn7Kv/atlX7ZIXhJ0+YnS942ouQ8rQXVHVIH/rI2XCdGF7/ve+sB1degEAvHtkSL5eIXPO2VIzje3fy3uSY+gZwk7ev0XYpvyTblckjBSZJ39KVkiZlbwQAPgKfgYQvRxUOFTpJyvppsZi1V6rq5S2sl+6VQpDZbsp/QQo8k+qTJRmcYzCHLcgTJkmm7U0ifArTFJKS/kqtb1aZo6hdqW2N3/aWfRTb7mJck6Z/Tb23PD/9qXSrxNA8DOAipX8U02tlKRKiSBxXFe+X9hJmeEXkBFCCCFtGZvNhrPPPhtz584FADz77LO49NJLcfTRRze4r1mzZuH7778HYCx0v+yyy2Lqa3shoScrzBOJND8///yzmB084YQTcMUVVzS4j/Xr18PrlS/fjj322IhthgwZApfLJZLcrF27lpMVhBBCCCGEEEIIiQuaZoMWZrK1NaJFmnQlpJ1z//334/XXX4fH44Hb7cb48eOxaNEijBgxIqr2Pp8PM2bMwKOPPirUeLKzs3HjjTc2s+dtk4SerGhIYmfSePx+P6ZNmwaPxwOHw4HnnnuuURJYGzZsELbL5ULPnj0jtjHrbd5srOLbuHFjg8clpLVQtacCAJDZS0YlmQlaASCtq5HUU11Vaut1uLD1wAo7APDuML5Pju6HWo7lzOtj9BWIsFDb1NcuWhhNEVu8m9cCAJy9BogyW5hE64S0VtRV/Z7q2pDtNXvlKt6imycJu8+0aYahRF5oDnm9c29ZZxjhEt42kYZEU1gRKbl0pGgKd9k+YbuyGha1apJ6wR0AgH1P3yrK6hTbkZwU0saMDgCA5PFXy/JApJcaYaDXyigKW46xaj+tn1yZ7tu2Vtj23oOj9tuzd3ugAxkFqCbjNpOra3Z5bgQld04xzjlfiYxKUFGTLCMQGa0mQNadynGxepGjrr4Ps8LfxLvzV2E7ujV8YU1ToylU3CW7ZL85RmRSNAndRXSHciz0pHRZIXBOaB7l+92QCAcLgj4ji3ZaNFEagTpq0ms1YkOMESY63hwjyNdwfpuJv4MiM6TdmIgK9fkMqdnCtLlrQrZbnb/qM12kaAoVq2iK4goZSZObkRp1X4QQQkgi07t3b8yYMQP3338/NE3D3r17ccIJJ2DSpEm47LLLMHToUAAQKQF8Ph/27duH33//HcuXL8cLL7yAgoICocSjaRqeeuopZGRkxHO3EpaEnqwgLcOzzz6L//3vfwCAW2+9FYMGDWpUP9u2bRN2jx49op7w6NWrl5isyM/Pb/C4hYWFDapfVFTU4DEIIYQQQgghhBBCCCGJx4wZM/D7779j3rx5YkLijTfewBtvvBFUT9f1EFl7dZJC13VMnz4dl156aYv53tbgZAWpl8LCQtx7770AgD59+uD+++9vdF8VFRXCzsrKirpdZmamZR/REk0EByGEEEIIIYQQQkgkNLsNNnv9ubhaE5qdMlAkPtTW1uLbb7/F9u3bUVJSgoqKCmRkZCAnJwe9e/fGsGHDkNyAqMDm5uWXX0bv3r3x8MMPiwkIdSLC5MBcxuYkhaZp+Otf/4o777yz5Zxug3CygtTLDTfcICYI/vnPfyI1tfHhwFVVUkKgIRejlJQUyz4ISTQGv/UxgOBkrtn9uwu7fKsR1VNV9LEoy7t+iOxAkclQE4TWSzPJppDGYUqaAIDuljIaZuJgSj+RRKa2uEzYjrSUkO1uRV4kb+hAYWsu45kg3Plv25kPIHwC7up3jZxapRs2i7JuM56L0utgCv9iSFL1ePDFRrVvDOGkn9yr35V1lGTaVpjHwKkcd2+NlItxZYWGoOv7ZNJqvyItYyW746+Rz1/2LEOy0NFJ3r9sDZB+UnF2CiTQViSUVEz5J19ZsRwrVdmXtGwAgGvgiZbtVUkqzy7j/LDVyPM0SO7IlBBSk0urnanHxRd6b22M9FNzYUo/AVLaSZWZspKJOrCOiZDqUgn7bBE4RspxDUrmbZX02hdB5ilIiivMuKZklF+V/VLGMvsIIymlW7QPkpRSo8HNdxNK3aBxG4Eq4+Qt2iSHcob6rSsSeU2V9LSC0k+EEEKaSl1dHd544w288MIL+P777+GzeG4ycTgcGDZsGK6++mpcdNFFcLmifM/RTNhsNjz44IM47bTTMHPmTCxdutSynjlxoU5ojBkzBrNmzcJxxx3XYv62VdrFZEW/fv0AGCfT/Pnzo0rsHI6vvvpKhPJomibkidoi77zzDhYtWgQAOPfcc3HmmWc2qT+PR75odTiiP/XUumai7YZQUFDQoPpFRUUYPnx4g8chhBBCCCGEEEIIIaQ98sknn+DKK68U8uoHRiAciMfjwddff42vv/4aM2bMwMsvv4xTTjmlJVytl+OOOw5LlizBxo0b8fHHH2PVqlXYsGEDiouLUVpaitTUVHTs2BF9+/bFmDFjMH78eAwZMiRyxyQq2sVkhZnnQNM01NTUNKmvmpqaoP7aKmVlZbjpppsAAOnp6Xjqqaea3KcalVFbG5p4Mxxq3bS0tHpqWtOjR+SEgoS0JDX75OpiV7ZMXJlcZVyfSn6TE2ydvUoiRYdMBGquRo1IhMSW4TATrAKAvW90N91YJvBua9QtnwdArkgGAN0rJ3B93oZPxBLS2kjOlRKPdaVGVKbNKVcB68oK6updcqV8srlq/vevRZlfWUlvz+kUMlbBjCuF7UgzIjMaG02h0pIRFZGIFE2h4quqBAA4FelMv1smNPfV1YW0sSnJdfUwK+FN7DmhK+7VCD/fxlXSDiS7boj/ulNGhLj3yVxjjs6GlKcaTaFGWfgKfzP8iyKpse4yxvCr+6quiBcJ3pVk3laRFwDgPLBm68WMlqirklKqmrJfaoJ3kTzaE+Y5PZpk1wfUUxOiuzp0E7aI2AjXp+ljUDSGNJ15fUKaqBE6lhGodnk9ChrXfJGiRtWoURZWz1Lhzg0LzKgeAHB26V9vXbUvf2ZXAICtSp7zVhE8tcrv2+SU0Kg2QgghpCWYNWsWHnjggSDZJFMeKRxqhMKOHTswfvx4zJw5U8jRx5uBAwdi4MCBmD59elzGNxfftyZiEQgQiXYxWQG07YmF5uCOO+4QM6EzZ86MyQv/9HT5UrYhk0bV1fLFrtoHIYQQQgghhBBCSEui2W0JlQcikXwlicm//vUv/OUvfwEQPAGRkpKCYcOGYfDgwejYsSPS0tJQVVWFffv2Ye3atfjuu+9QU1MT1Ob+++9Hbm4urr322rjtT2shPz8/4oRPSxOLQIBItJvJChI969evx4svGisLjzrqKBFh0VRyc+WKYnMiJBp27ZK6umofhBBCCCGEEEIIIYSQ+LB9+3bceuutQRMOXbp0wQMPPICLLroIGRmhudNMKisr8cYbb+DBBx9EUVGReDF/yy234PTTT0evXlEqSrRxWssC/JaaNOFkRQNR8y44FWmDtsSePXvECbhmzZoG5Zd48MEH8eCDD4q/t27dij59+gAADjlEhi0XFxejuro6qoTdas4JtQ9CEpWsvjKZatlmmeA0vbshdZKaVynKgiQoIkg6eXZvFbazc1/DUG5qWkOkhizGUpNDWya6VaQL1ASRjq4HRz2sKeHQmhKVNpba/0pJGlPyyZYmJVqcIyZIu8W8IqT58LulbIop/9Th0N6irGL7bmGrklD+ilLjf0WmxpEnkzd78g2JOU/Bs6IsJS9b2B1veryJnscXMwEyYJ3gOBocHYz7hyqZZc+ViZO1pOTQRj75TGsl/RRO5kbzuUO2a04pU2gm3vatXyF9OWy0sD178mW/TsMvlyJtqG43k66rd6TG/njRfIHzM0j+R5H9qTPOP3+ylDPToCSEVO+LreQHY0NISpMvCurKlc/eq0g++S3Og0jST8qxMM8TV8fIEdm6PVBXlYZSPnuTcLKXqnyVmaRelX6yK9JJvrTAYqcw8lSWz0dqAu0IidgjYa8uibqu1bkV6ZmI0k+EEELiyf3334+6ujrxQn3s2LF47733kKnIk4YjPT1dJNc+//zz8emnn0LTNNTV1eGBBx7Ayy+/3NzuJwx5eXlITrZ4pm8htm3b1mJjcbKigagRAfXNDpJQDj00WMN+zZo1OO644+pts2PHDuzduzdsH4QQQgghhBBCCCGEkJbF6/Vi4cKFIiJi0KBB+Pjjjxu8uDsjIwMfffQRhg4dinXr1kHXdbz33nt48cUXYbe3TJaw7du3CzsnJ6dR73wrKipQUiIXKcQyMuT111/H2LFjY9ZfQ7HZbC0W4cHJigby0UcfATBCcNpqOJLT6WyQ3FJJSQn8gZVYKSkpQdES6kWlX79+6N69O3bsMFaSf/HFFxEnK1atkgkbk5KSMHz48Kj9IoQQQgghhBBCCIklmi3BclbYEsdXklh89dVXqKgwolM1TcPjjz/eaBUap9OJxx9/HKeddhoA48X/V199hRNPPDFm/obj448/xplnnin+/u6773D00Uc3uJ/ffvsNxxxzjHipv2zZMowePTpWbrYb2sxkhToDVh+7d++Oui5g6HFVV1dj69ateOedd7Bw4UKxbciQIQ32MxE4/vjjsW/fvsgVA/Tp00eEA91xxx144IEHLOtpmoYzzzwTzz//PABjVvCOO+6ot+/XX5eyM2PHjmWCbdLm8NVK6YGavcYMvM8jpQecXfpbtqsr3w8ASMrsIAuVWW5fwc9G+55HRO/LtrXCtvc5KmS7Kv3kXv2usF3HngegYXJPQeMGfAUArSwgh9IGZKA0lwzR1N2GzIYq0WJKXgFtQ/aKEG9tnbBtLuNHSvEvW0SZKXV3INW/rgcAJHftLMp8imyRa4DxQ8F20EhR1pZETxor/aSScuYNAIDiZ24XZakBGU4ASBk7OaSNeV0CAC05TZY7QsPLVakgf5khr2PLkgtb1L70utrQ/jd/I2ybKtVjca9R8ezaDCD8vbAhmFKK6nowmyrPE5D3UfdfSF4BB8hAJd5LH/O5AQh+dlBlyIDA84cie2speaWWWWgXq3JOzrw+sjzweQKAZgtdJalKM1lKUimY0k+AlMEUEpgAvEWKLF3gc/anKBJfHnm9Mtup/kH9HqhyYaY8lCKNZiUJpT7b2PsNq3dfVNTj5S4x8vZZSV4RQgghrYGtW6UUdXZ2NsaNG9ek/saNG4ecnBwRnbBly5YWmax48cUXhRz+ySef3KiJCgAYOnQoTjrpJKxcuRIA8NJLL3GyohG0mcmKPn361BuOYp50l156aczGvPDCC2PWV3vh8ssvF5MVP/30Ez788EP88Y9/tKz7ww8/4OOPPw5qSwghhBBCCCGEEEIIiS979hiLHjRNi/heNho0TUPv3r3FZIUqC99ceDwekSsDAC666KIm9XfppZeKyYqPP/4Yuq436bg0tX0saSlf2sxkhUmkzORNyVyuaZrQYTvllFNwyimnNLqv9sqxxx6L008/Hf/9738BANdccw0OPvhgDBw4MKjezp07cckll8DnMxIbHnHEEZwcIm2Gfv94Q9jlc+8XtruiCgDgTJWr+XY+dJ2wu82QCZuDIioCaEqyVBNv4TphO3ocHrLdl79G2OFWuJp9qO3NaApAJtNubGSFf6dcyaj7je+8/uMSUeY4enyj+o033r0yebotxVi17E+Tn5s3WyYgbXM3Y9Iu0RTpR1dGash2rxJJln2oXClvfj/suV1lXw4ZPm5+l1wHxc7X5uLXq88V9iEvvNekvooeuUHYudc/CCD8qmpz1Xxyrlw57t4t86xZRaL4ymQCYofLIppCSTBc8+3/CduWZiRLdHjlPceWkR06gCo5ESmZt4KZdBsAXDlGknDvjg1yu7LiXV1JHwndZZyTNneVLFOiP/wdehqGXZ57Wl1lRB9bO+bqfE2JBAiKplA/j0DEiK4eA+U8MCMfwiXFNuuqCdmDsIhI8eyVEe+uMMm0I2F1Hlg9k1S8cI+wM045X9jeHcZ54Owuc+OZ0RoAACUKxBFtlE+Zcox7RtcEOCD6xIwGUj4DKNcA39YfAAQ/W6iRGRFdrKqR3aa1pXg1QpofzWZLKGmlRPKVJBaq9LvHE/o+ojGY7wEBI09Cc7N27VpUVRnPh5qmCRmqxjJ+vHx/UVpail9++QVHHBG94oXKqFGjxORATk5Ok/xqKi3pC9+PNABd1+F0OnHZZZfhySefjLc7CcvTTz+Nr7/+Gvv370dRURFGjBiB66+/HieeeCLsdju+/fZbPPPMM9i9ezcAIDk5GS+++GKrmUkkhBBCCCGEEEIIIaQ9k5dnyJnquo5t27bB4/E0OmcFYEx45Ofnh/TfnGzYIBfFdOrUCd27d29Sf927d0enTp1EVMj69esbPVmxYsWKJvkSS1rSlzYzWVGfRNCrr74qXnSfcsop6Nq1a9i6B2Kz2ZCWloYOHTrg8MMPx+jRo9Gpk7XmMomO/v37Y+HChTjrrLNQVlaG8vJy/O1vf8Pf/va3kLpJSUl49dVXMWLEiDh4SgghhBBCCCGEEEIIOZCDD5aRjJWVlfjwww9x7rnn1tOifj788EORsPvA/psLc1JB0zR06dIlJn127dpV9Ltr166Y9NmeaDOTFXPnzg277dVXXxX2HXfcgbFjx7aES6QeRo0ahZ9++gk33ngjFi9eHBTmBRgXiVGjRuGf//xno2cgCUkEtn78rbC7DDM0TtK6yqSlHiVEX02ALZJEKtJ2qrSGSBzplu1VzOTOarySKrPhUKQQrOSjVHRHUr3brfBtXCXb++X330zM6lfK6la8rjhpyMgkjZva4DFjTc2ipwEAukdK26gyNmkXzRB22RzDtqfLye7kVJnQlpC2RmqeERrsSFMSzfuUa5QSMm5KrPhrpDyPXUnerMrONTcbr5oAABj40vuNau+pqotcKUq63v1s1HV9TkPiSFMTFKPWurLZplj+cLIpCbZtGYHWP68WZSUbtwk7Z2DvwFhy1Zx6HTTln9QEykEJuBWJAP2XZYE2ioTYYaOlj2aSYkX6yeaW0kzegGSgpqzgsw86GVaY8om+nVIe0btHyvXZs43rt+aplmW9B1v2lUjYy4zPWZV6rKsoFbaV1FWQ7JByPzafLVTpJxVT/knzWn8PIsl2WfXrT8m29tUuf8bqgaTtVhKZKhl/kBrUQVJVAVuVpFLPSVUqy6zjjCBZFe48jISaTN58LlOlz8znNwCweQLPeMpnpMpXRTrelH4ihBDSVIYPH47c3Fzs378fuq7j1ltvxbhx45CZmdngvsrLy3HbbbcJ+f0OHTpg+PDhzeB1MLW18jk1OTk2Up9JSfIdiSkxRaKnzUxWRKI1JSRpa6ghWg2hV69e+OCDD7Br1y6sWrUKhYWF8Pl86N69O0aOHIm+faPXISaEEEIIIYQQQghpbjS7DZo9cfJAJJKvJLHQNA0TJ07Ev/71L2iahm3btmHMmDFYtGhRg+SUdu7cibPPPlu8X9Q0DRdddFGLvMft0EEudti3b19M+iwulrnhMjIyYtJne6JdTFaoUReHH17/CmHS8nTp0gUXXHBBvN0ghBBCCCGEEEIIIYREyV/+8he89tprqKyshKZp+PHHHzFw4EDccsstmDJlSr0LkfPz8/HKK6/giSeeQFVVlYiqyMjIwP33398i/nfs2BGAsch9+/btKCsrQ1ZWVqP7Ky0txbZt28REC1MJNJw2P1mxadMmlJWVib+Li4vRuXPnOHpECCGSwW99LOwdD14DAMg5cago827/TdglH8wTdtZFNxuGX5HTsEv5D7/LCO23KdIFvvw1wjbXJ6iyEKq0gLdok7AdXevXiYwkhWCJV5EM8fvC10OwvIe/uhwAUP32o6Is9YI7Gj5+I6le8Iiw6/Yb9xZV5gYoEpYpEwUA9mTjs9E2fiH7OnK8sFNTYhNuSkg86fvYayFl6nd1/y/yupLeXV4DXDnGdcyZKzVifWVyNVK0D6vuEilrtPNvdwq7z99fDam757GbhV1XKqVlUjvlhGzPu+2pKD0ABr2+OOq6scQdkNhKH3CUKLMV5YfU83y7SNjV2wuEnaLIODnyegAIlm7K7CMl7jSXcb3yK9ttimSOLc1YPab7FdkvpwyF15JluT8gR6R7FQkwxV97z1ApUG+hlHHScoxzpuZLuV+qsI13l5T18VcaY0GRynINOl5uD0gBqfJAfkWWyJnXJ8SXREC9z5skZWQL21NTKmzdPDa6sgJXXYxrSk8qEpSqRJKricdIPcbufYUAgmW5VOknddwg2SoLfFt/MJr3HRK1L0GSUJo8CLrWcquTbbUBzW5NkY9QJbYCMpw2RR6rLUiXEUIISSw6deqEF198ERdffLFQtamqqsJDDz2Ehx56CL1798aRRx6Jjh07Ii0tDVVVVSguLsbatWuxbZshNWq203UddrsdL730kphEaG6OPPJIAEY0h8/nw4cffohLL7200f0tWrRISN1rmoZDDz00QgtyIG1+smLJkiWYPn06AOMk2bx5c5w9IoQQQgghhBBCCCGEkMTnwgsvRFlZGf70pz/B6/WKiQfAiJ4wJyVUdDX/ZqC+0+nEs88+i/PPP7/FfB8wYAB69uyJwsJC6LqOBx98EBMnToRTWTQZLW63G7NmzRL707lzZwwezIUEDaXNT1ZUVlaKL0D37t3Ru3fvOHtECCHWuDLNBKlKotDOMmrBWamsrDOjEZQVfppPiVYwy5WVh0FRFMrKVBNHt0OE7dm1OdQukG2cx5xVz55YY65sBIITrAYR2C/dE1oGBCfgNald8oKwk8df3WC/VKr+85CwfbXG8XTm5MjtO/cI20wW7Ax8bgBgS5FJav1KAlNbslHHyn9C2jJlv8sfJt5aeY3KvvqvDe6r+t3HhJ163m0h2105MjLDKppCRY2WUKOgUs66qcF+tQay041rTM22jaLMUyw1d83YLfXanavY+56+VdgZgeTmaRfNEGVFj9wg7JzOMsrCxJYlV775k4zroLra3R90r/Iq7QI/RdQowI2rZMfJRpSGev9Skw2b97r0S6RMgP+3L4Xt2S2jR5zdjcTF9oOUvpSIRDOhsuZTIhaD4jzaKGoCbTPqUY14VBNNm3a47QHMqAgAcHXs0ST3XB26WZarY2g+I8rHXSbP+aBk3KnGfdzfgOTTjYoajQHq+SvK0qSWtuaukXbge9PYaAo10boabUMIiYxm0xIqD4RmY/5W0vxMmzYNQ4cOxZQpU/DLL78AQL05J8xtuq5D13UceeSRmDt3Lo4++ugW8Vdl0qRJmD17NjRNw5YtW3DZZZfhzTffbHA/l112mVgkb+bzSDR27dqFpUuXir8nT57c4j4kztW1kZjaYJqmoVs364ddQgghhBBCCCGEEEIIIY1jyJAh+Omnn7BkyRJccMEFyMvLE5MRVv/y8vJw4YUXYunSpVizZk1cJioA4I477kB6ejoAY/Lk7bffxujRo7Fly5ao2m/evBmjR4/GO++8IyZhUlNTcffddzebz83FunXrMGXKFEydOhVTp06Niw9tPrJCnaBQc1cQQgghhBBCCCGEEEIIiR2nnnoqTj31VADAtm3bsG3bNpSUlKCyshLp6enIyclB7969W436TW5uLmbPno3rrrtOSDh9/vnnOOSQQ/CHP/wBp59+OoYNG4a8vDykp6ejsrISe/bswXfffYf//ve/+Pjjj+H3+4Wyj6ZpmD17NvLy8uK8Z43HzCMSD9r8ZMXIkSPhdDrh8XiQn5+PqqoqpKWlRW5ICCEtjN9jSGPotTKZpKO3TMaUkhSahFm3KzqKarJJUxLKFuYyH5DO8BX8LIqsEpmqdVX5kIYk4A7xCYAerpKVxIQqAxU4Nn63lBFR99CUcVLlS8IhEv8q/XurZcJYMyn27tVrRFlqp2xhJ+UY8iQOJSmwX0kKnDpRrqKofH0mAEArl9tdv30unRl8akR/CUlEut79rLD3/mN61O1UaSb3XkN+zWUhP6QSJDWnJHS2VZdKe8DxOBBTHkjtoyGJeFuSmvf/IeyUCaHH054jfxA1RNKq402Ph5RVL3jEsq6ZOFsdS70XWSY7VuSW1ATWsBn3F80jkwZrNhn4bbNIDq3KDjm6GPdIjyLvoymSOUmnTpHlgcTEQeMr901R5JDnTksmU44b6mcXOEbqfT0o0bQpkaUcF6vE402VfoqmD3W76aMq/aS5Q2UXNVVuLH+NsK2SkMcL3avoYKZkAjjg++GSKeRt/YY1aSx7eZH8gzJQhDQIzWYLul+1dhLJV9L2aE2TEvVxzTXXYMOGDXj66afFS3qfz4fFixdj8eLF9bY1X+ybEx3Tp0/Htdde2xJut0na/BWrQ4cOOO200wAYiU7eeeedOHtECCGEEEIIIYQQQgghpLXw5JNP4h//+AccDkdQZEF9UlaATBDucrnwz3/+E4899lh9w5AItPnICgC4++67xSzYvffei9NPP13ksiCEkNZC5zv+CQComPeAKEvr1k/YupKc2WZGKShheTaPjMhAYOUr1ASnW76T2wMr89RVo2qUhdMiyqIx0RRBhImW0OtkNIPmNFbf6l4lWbiCzWVEl+i+auvtKfVHzqkJek0f/MoqRjVio6rIiIJwJCsrgv1yVaark7Gq2Fcik257KqRfMu02YA+sWEzU5L2ExILa4nJhq9c5Rwfjmaxi42+iTE3GndW/OwBAc4VGlwHKtcsi0S8A6Enpst+1RrI4hxrN5JAry9WIjNaIGk2hRj5UjjeuLXknTmpUv/l3Xi5sZ6pxnDvd9KAoy1zyUv0d6Eq8nD80WsEqggEAUFEc2KwkeU7JELbnf+8bZb0Ol/5Z3H/Cfm7qvcaMmFB80e0W7ezy55GatL01UVe+X9hJmUYkSWW1TLycnpoS0iYcZjQFIKNOPHvyZQX1szUjLZXk1J5dm4Xt7CKjlJobNeLDKhm2+syiuY17c1Dy9FYaNWM/bHSLjaW7Yq82ULt0jrDLf/pJ2LnnyWvMpoeNaNOBL70f8/EJIYSQpnLzzTdj3LhxePjhh/H222/D51OeU5X3L+ZEha7rcDgcmDRpEu6++24ceuihIX2ShtEuJiuOPfZYPPLII7jrrrtQVFSEsWPH4q233uIJRAghhBBCCCGEEEIIIQQAcPjhh+ONN97AE088gWXLlmHVqlXYvHkz9u/fj4qKCmRkZKBDhw44+OCDceKJJ+Lkk09O6PwUrY12MVkBGJnds7OzMX36dKxbtw5HH300Jk2ahEmTJmH48OHo0KFD5E4IIYQQQgghhBBCSLtFs9mhhYnobI0kkq8k8diyZQuuuuoq8fesWbNw/PGheeIi8cUXX+D+++8HYEQwvPrqq+jRo+l5sJpCly5dcMkll+CSSy6Jqx9XXHFFi41VVFQUuVIz0y4mK/r1kzIqDoexy263G6+99hpee+01AEB6ejoyMzPhdDot+7BC0zRs3rw5ckVCCGkA7nIp91S3eIGwM48+RlYyZSzU5NNOVXjIwK4km7QdNFI2NxNLqtIcihSKd+evsm5AOkMGPAZjJjZVZSFU/L99afTjlnJPfneo9BMA6B53SF1vyV5hV+2QtkmqotKResTJIdtV6SdflTwe9jRDGkYVgtDsobIQNqe8VWb07ibs2h07Q9pkX/3XkPYAsP/HdQCA7mdZbiakzbJhqjzpU/JyhK1+bxydDJmn9DopY6NeA+xZuQCA5FOvtBzDlK6xuStkoSr/oySkRceeAIKvcVpmRzlWDyk31NpJnXi3tJvYV1Yfmbw89eBDAARLILkumiHsqv88FNJe80nZLvPzCEq0rX4eqmRTWk7IdnjkeWDrYtxX7Ir0k5oY2Z+abYyl+KInSxkpeOR5JOSd1PueIlklki+HkSFsKo2VUnSX7QMA2Crl/U9Ll3K23h+XAACCRNKOHi9MUy5JlUoKknlS5ZDEsVHK1Bdcgc8pKOm2kqDbva8QQGwSbEfCSvpJRfPKz143P3v1PFPwFhr3aEcCff9jQaRj2BjU63TyqdZ1UjsZ3/smy4sSQghpFfz73//GihUroGkaevXqhZEjR0ZuZMHIkSOxefNmFBYazxMvvfQSHnjggRh6mri88sorQRJUzY2ZgyNetIvJivz8fHGgzezsAIIOfEVFBSoqKsJ1YUlLniiEEEIIIYQQQgghhBDSWnjnnXeEfdlll8Fub1wkj8PhwGWXXYa//tVYAPjWW29xsuIA1ITebZnWmVmsmTjwwzQnLhrzjxBCCCGEEEIIIYQQQtojW7ZsQX5+vvh7woQJTerv3HPPFfavv/6KnTt3Nqm/toa6+L45/8WbdhFZ0atXL04wEEIShtw/zRZ22RwpvVG3daOwHSV7AACuo8eIMn+SIn0RuMH4q2TEmO/bRcK2pWUCAOyHjbb0wbNLStxp3jqjS7uUawqSUAlISJhyUABgqy6RnQVkNnSPR7ZRZCW8ZbuU8tA5dF+tO2S7PVn6Ulcq9zGlxpDQ8ij76ikttey/eoehxejKSBNluk9KgiRlGzJRzjQpIVO3v0z6Fdifjtc9HuIzEPzZdf/L85Z1CGnr5B4u5eGqdu0X9v5f5PWi28ChAADXQUeKMi1JkW4KyPqEkwwx5YbUaxTUFV2KzI0paxckB5MkrwHmta08o6co65DRVJGl1k/OdX+rd/vuR28UdsczzwMA6OlKvjdVWskXOLY+ec2Hp06YNrWuaptFXtlOr9kNAPDXfSnK/JldQts4FDlBm/x5o9mVnzo+L+ol4IvaV5BckvrDLXAPa4iMTqNlbgJ+aWW7ZVn+z9LuO9hwSbnv+tavELYzcJ93l8h7LZLSpa1IeJn3a0357HTlGIpfU0FSWvK7pGmh93BVMirS8VKPtzOvj+FegdxXe88jLNuZMk62Oimjae8/XLr4+9eGoZwb6j5odca5QVmiyLj3y5dGrg7d6qkJrJ/8R2H3f+ZVYfd6ZG7sHSOkpbHZgmXyWjsWv7EIiQW//PKLsJOTk3HUUUc1qb/BgwcjOTkZtbWGnONPP/2Ebt3qv9+0B5xOJ7xeL3RdR3p6Om699dZmG2vLli0iZUK8aBeTFeosHyGEEEIIIYQQQgghhJDGs23bNgDGiv/evXvD1sSJMbvdjj59+mDjRmOh5tatWyO0aF42btyIgoIClJWVoaamplFRB5MnT26yH0ceeSR++OEHAEBVVRVuvvlmZGdnN7lfK5YtW8bJCkIIIcHU/Z9ccZZ1pUxk6l27VNq7CwAA+v4i2bCrjKywuY1E0lpGtigLSnBdVQ4AKH3mdlGmRnQ4u/QXthlloXmqRZmmrJL1p2QZZcrqTE1ZsShu52oy8Bq5+lFNZmrW1VwyVairs0z86kg1yt2lMlG2R4m88O42VnCaCXuB4GgJNbLC7zZWUnqqZDJXNYojOdfYLzWKQ62b2lkm5bVC/ewIaW+sOe80AEBW3zxRpibV7nTs0bI8JRDZkJIpO1BXaAeiJDS3vAYFYSZJbkgUrbIaUv3JYV7HMsu3iTJPrYy8aI6EtIlA5oB+wtaSApEmSqSCuhLfRI2QCCoP+myN5Mz+XfKHqL2jXD2nJQciAJR7ir1cRgh4uhoJkZOUe11QBIHqYyACx4wWBAC/S362Yh+UH6HOzjIySI04BIzzJyjRtHIM1HtoY/Du2CBHCtxv9brQpPMA4C8w6up5yrnpV+6xJhZRLACCow1gRinJyKagiCV/4DuofoZqJEvg2KqRluoxVBFRDKpfSl8i6XWYaAqVSImxxXOKW97D1auFJ3+90c/BR8MK/28ysse8dtgOalzy0EQnXDTF5psnAQBSu+Rabt/vTxJ2V8sahBBCEhE1929WVlZM+lT7KS8vj0mfDeGTTz7BCy+8gKVLl6K6OszvjwYQi8mKESNG4Pvvvxd/f/vttzjllFOa3G9rhbFghBBCCCGEEEIIIYQQQqImNVXKpcZqYkGdAGlssu7GUFpaigkTJuD000/H+++/j6qqqiblfIhl7ofhww15SzPFwbfffhuzvlsjjKwghBBCCCGEEEIIISQabLbEygORSL6ShKJTp04AjBfzO3bsgK7rTcoZ7Pf7UVBQIP7u2LF+NYNYUV1djdNOOw3fffed2AdN0xo94RDrJNXmZIXJN998E9P+WxucrCCEkFZG0ripluVadmdh1333uVHmcIoyh5qQNpAwVq9Vkk0OOlnagf/TiqVchnv1u8J2HXuesG2m/JNfkWpQklhqgbFUGaggvwMPx7qahE5NyKlIPsmdUZKlVsikoX5PIAlmbV1IE0Dur1/Zb7WuXZGE8nnqT7ZqSj6p0lB+pU3NXiNZcNtPvUtIdBT+ZZqwOwwwpEI6DjlUlPkVKbqgZNrmNUCVjwu6XgTKlR/aatJd2Uj5UaBerxxKgm1TZibMj3atLtBOuZ7pTotrVDuj4vd8YScdeaJhqMdQvZ6aEkHKZ6g5pQSM1b1AV+QA/clS0tCUHNTc8pruz5DSYrbawAo+RQZKU/oKOqcC95WgBNxW0khKWZDMk90ZWkc559S+TBkkVQLJlDUyfDQko+x9jgodHwdILwWOp9ZRkTfcs/3AJvBuk9JRmroK0Uy23e0wWabKNkZIPK5KJ4n9VmWg1ETVeuj3R5W0UmWerBJY+/LXCDvcsWkMtirjfm0bcLwca+MqOZYpq+WTzyaq7JdNkagLl+TbxLvzVwCAo9shjXc4ASn+dQ8AoHzbflF29PtLw1UnhBDSRujdu7ewKyoqsHr1ahx33HGN7u/rr78Oiqzo0aNHk/yLlkceeQTffvtt0CRFcnIyTj31VBx11FHIy8tDWlpa5I6aiYEDByIrKwvl5eXQdb1FIiuaMunUVDhZoVBZWYmKigpkZGQgPT093u4QQgghhBBCCCGEEEJIq2PEiBFITU1FTY2xuOGJJ55o0mTFE088IWyXy4Xjjz++ntqxwe1248knnwyKpJg2bRr+/ve/N1sS68YwbNgwLFu2DACwa9cu7NixA927d4/QqvE0NUqmKbTbyYqKigq88cYb+Pzzz/H111+joKAAPmU1jd1uR69evTBy5EicdNJJuOiiiziBQQiJK/beg4Wd3PuHkO3eXXKlpbOHkdzTpkRTqKsb/fnGqmSbkqRTU1a7BiWTdAYiNpQoDjWiQw+spFRXG6qrIzVbYNWmGk2RJFcq+8uLhW1Lzzb6VJOB18qkVt4qWW6FuULbp0SMqAm23UrEhRoxYeJQkmnrgZXZOUri8fK59wvb1V2uIiGkvVL99qPCVhPYdzxqAIDgaAp7mrJiPlk+U5kr3c0EyEahEiVhpVXrD5Ms2CRc5ETgeqUuqLdcXa92VblX2L6SQunCPsN2HnNW/b5EIP/Oy4Wd1Uemns2YcKWwrVahNzcbr5og7NzDlSTJZoJqJdJAd8hruhllF3SfUJM4K/cCPRCZp36eZjSFMUbgs1fuT7aaMtle+CCTSwcl0HYqEYeRMM+DML4GJXA3z89w506gXI2mCNrsMvxy75Pnk6ujXDloq61QKht9+Xb+LsuU4+HJN+7t6j3cnttF2N49OwyjhxLNpDrjtYiKVCIndOVzNpOQB0VSWkRZOLrLiCoz0gAIPo89e/IBAM68PrK5EoHTEHy/LAsM4LKuEPgcPf97XxSpzz/m840awaOev+rzjWXUjLKPQed6G6T0hXuEnX31X4U9fMnyeLhDSPyw2YOj2Fo7tgTylSQUTqcTY8eOxUcffQQAWLhwId566y1ceOGFDe5rwYIFeO+998QL8tGjRyMlpQHPco3kiy++QFVVlYiqmDJlCp5//vlmH7ehXHLJJUHvpffu3dsskxUnnHACtm7dGvN+G0LbfpqyoLq6GjNmzMBLL72EqirjgdRKS8zr9WLLli3YunUr/vOf/+C2227DtGnTMGvWrBb5shBCCCGEEEIIIYQQQkhr5e6778ZHH30kIhMuv/xyVFZW4oorroi6jzlz5uBPf/qT6EPTNNx9993N6LXk99+NBSG6rsNms+Hhhx9ukXEbypQpUzBlypRmHycpKSlI3isetKssO2vXrsVRRx2Fp556CpWVlWKSwpw9s/oHGCdsRUUF/vGPf+Coo47C2rVr47kbhBBCCCGEEEIIIYQQEleOPfZYnHvuuWKSoa6uDtOmTcOYMWOwcOFCVFdXW7arrq7Ge++9h9GjR+Pqq69GXV0gV5mm4ayzzsKoUaNaxP/i4mIx7kEHHYQuXbpEaEGam3YTWfHrr79i3LhxQSehrutiwiIjIwO5ublIS0tDVVUViouLg5K6mPU3bdqEU045WoJxuwABAABJREFUBV9++SUOPrjlQ/IJIQQAtDQj2aNeVS7KHN2kJIEprRGU2HJfgTBtycZ2W3Yn2aZGkZ1QMaUQFJkOId0BKdnh2yqlqYLkXMw2gYSixlhSakENS/aVGHIrmlPKL/jdsi+fx+hDTXTtrVES4QbG8JbKBI+qDJRP6csekHxKyc0SZe5y6Ven6f8I2YfMqTNDyghpz9Ttk9+1nMP6C9vZZyAAYN//fSLK8s6WPzhUaRnd7jAN2bEq82TaaiSsIsljtteUa0xQe1WqJyAHo2mhZWpdLSjZt5KQWZG/aar8k0nesMOF7Tr+bDmuIq/jLdoEAPBlyh9PSYqsVnOQM6CnsNN6SHkqPZBsWPUvSLrJRD2uykcbdGwD9wpbZgdZoVJKA2qpgeuzMpaveKfstoNxPIJkeJTk1MHSYhZrtFQfpVOK387Q7QCgh7YLOh5mH3ZrWSJx/iuyRaYsEgAgRd6X7AEZMvW+ad4rAaBk4zYAQHKuTAKdVCc/D0e2cWxt33wg+x92huKM8r0S+67INqrSIVYJthUiSSCZ5zEgpaiCZCOVY28+U9j7DrHu6/vF8g9TxgkWklYA/FXG841fOYZacqrSWeDZoqJUbk+ylv815Z/Uz0tTjoezS/8Dm7QJ9j19KwCg402Px9kTQgghrZFXXnkFGzduxPr168X7088//xyff/45bDYbDjnkEOTl5SE9PR2VlZXYs2cPfv31V/gDz+zmRIeu6xg0aBDmzZvXYr6r6jk5OTktNi4JT7uYrPB4PDjrrLNQXFwcFC0xcuRIXHHFFTj55JPRt2/fkHZbt27F8uXL8fLLL2P16tWi7b59+3DWWWfh559/hsPRLg4hIYQQQgghhBBCCLHZEysPRCL5ShKS9PR0fPLJJzj33HPx7bffBr179fl8WL9+PTZskAspVTl+U9nGfE/7zjvvICOjeRflqBx00EHCNhe4k/jSLmSgnn32WWzatEmc/BkZGXjzzTfx1Vdf4aqrrrKcqACAvn374sorr8SXX36Jt956C5mZcsXSb7/9hmeffbaldoEQQgghhBBCCCGEEEJaHd27d8cXX3yBO++8E6mpqSHS+yoHSu+np6djxowZ+Pzzz9GtW7cW9XvUqFFwuVzQdR1bt25FSUlJi45PQmkXYQH/+te/xERFamoqli9fjiFDrEOKw3H++efjoIMOwgknnICamhrouo5nn30WN998czN5TQgh4XEdex4AoPa/z4kyzSXDF31JxkoEzSdlUbQkuV03wy0V6Q5VHsGWnivrmrIO6vS2KpPhMDYESbAokgh6naFRqXulPIOWImWkUK3ITwUkOfyKtFNdqdzurbWWeDiwffUu6xURqnyUv8qwVZmobjOeC2lDCAlPUl5HaR86TNie7b8BAHJHnSQrp8hFHyqaL/BdtCtyS/BbVFSknxT5HHm9Ua5BtjDrccS1S9muhbEDOLofat1XAG/hOvmHIvvj6BqdXGjqBXfIvhSZnCBfvLVG9+W7RJFv72ZZNSBPZes/PKoxAaC0UuoHZ6enhmx3l8vtSUccW39nVrJA6ipOdbsizWTeN9R7gu5KC62r3sssPnutTt6/9BTl542mSouFSjcFy0SFnnNB0k4W8oZB+6XKW5l+KW2CJJJMOTJPbZi+pK/eXfkAAFuWvC+7d25TmhntavaUirKK7XuE3W28kSBRlWJMys4TdpD8VGCRY7BUl9xs+qgIR0VEdyTJ5t5QuTB7n6OE7d/8Tch238ZVsu7AExW/5DGy2ZONuoqMkyl3qdbVq6V0pqdS1nUddCQAoPqbZaIsY7IilWWBM6+PZbn5HY70/XeXys/IpXwerRXKPxFCCIkGp9OJRx55BHfccQdeeuklLF26FF9//TWqqqpC6qanp+PYY4/F+PHjccUVVyArK8uix+YnMzMTF198MV555RX4/X689tpruOmmm+LiCzFo85EVmzZtEpndNU3Dgw8+2OCJCpOjjjoKDzzwgJgd3Lx5MzZt2hShFSGEEEIIIYQQQgghhLR9cnJycPvtt+PTTz9FaWkpCgoKsHbtWnzxxRdYu3YtCgoKUFJSgk8++QTTp0+P20SFyV//+ld06GDk+Zo1axby8/Pj6k97p81HVvz4448AjLAil8uFK6+8skn9XXXVVbj33nvhCSR5XbNmDRNtE0LihrrSUq+tFLa/Yz8AgKNsh6ysRDb4a42VDTZlZaLmSo4wmLLq2ausBjWjNBxKIlKLBagqaqJQ3aNESwT68JYq25XIB0cgKXZSttSwTBtzrrCrPnvPcMmizYGkdjUeRrhakJDG48jrIWz1u2zPNRIf2/J6y8pKtIPukNcbcT1RI7LUKAuLyAurlfxB1yC1PELS36C6Zr9KG+8Oqa9rFWXh6CETZKtRFr6CnwOGvM6qq8gjoV5nxUp39dqrRpoEIutUX9Wk19ueehQAsOuHQlHW6TC5mlt77DVhp5UbdTqfcbrsP0NG0GjmvUTJ26Y75ep5US9c1ILFZ+dP6xBSBgBaTWB/lUTXtozs0H7DfcZBUTOB/5UojaDICYs2ltEUgDj2avRi0Hlm+qXst5qcXSQBD3Nc1LpaerZhKEnjvVXKeRCgtrhM2D4litBMxm1TErKXvnCPsNMmXC3H8pvfNeW+aRFxEpbAPqgJz33Z8hrh3Pu77DbwffZv+a7eLvW6GmF7f1wibFuGTIDprzDkGvxlxUo79TnFIqpGeeZxbzR8SBl7Qb2+REO0EVWJEE1BCKkHmy2x8kCEizglpAWw2+3o3r07unfvHm9XwtKlSxcsXLgQf/jDH1BcXIyTTz4Z77zzDo4++uh4u9YuafNXrD17jBBbTdPQt29fZGdnN6m/7Oxs9OvXT/y9e/fuJvVHCCGEEEIIIYQQQgghJD6ceOKJ+Pzzz9GvXz9s3boVI0aMwMUXX4z3338fhYWFcLsjSFI3A2PHjhX/zMX48aIlfWnzkRWVlXKlsZoguymoWemtdNcIIYQQQgghhBBCCCGEtG7s9uBIKU3T4PV6sWDBAixYsKDR/Zr9NJYVK1aIROTxTvzdkr60+cmKjh2NsHVd17Fjx44ItaNj586dws7Nza2nJiGENDNK+LEqeWAvLwIA+Ap/k1XVZJOBur4qmWwSStJSh5KM27wh6U7rYDwhg6HLlJuqdIaZ8FL1z6dINfiq5KSyPcVI8qopocrONOlLznV/Cxm/5Lm75Lh2o53dKW9vnab/w9JvQkgMCJJ/k5I49txuAAC/mgxZlclRZG5MeRvNr8jkKO10V2jy5yCsZGqsEj5DyimFTRBskRhZlXHy5a9R6gaujfYIj9PKjx9VJsqUjwpKqq3K/0RI+Ay7ageOl5rQWZFm6jnpQqPM/6b0pUaOlb5P3ivMY2/rOVAZWPElcK3XFGlB3Vm/jKAqawQLuaSgRNSKBJEvvVOgA2tpJlu18UNJc8vFQzZVHkvxS3cG7iWKpJQqCSX8CtpX630wfdTVvlRZRYvPznIfdfVMtJaE8ldXAAC8hTKhevUe+QOxepdxPy0vlDJQqnxi5Tbj9096356izOeW+1275BVhp5w8sV6/RYJtVbLNKoG20sZZvEVuV463PzmwiExNjq7KTwW+N1qSlDPT1WcW1UfznFWkMTXl+ci7e3tgUPkZ6VUVwjaT3Pt+kQm2oci7RaK2RkpVJaek1FOTENJW0Gy2oN8rrZ1E8pW0PXbs2IH9+/ejrKwMfr8fgwcPjnuOigPR1XcZptynpgWVxwtd14VP8aalfGnzkxXdunUTdlFREX755RcMGjSo0f2tW7cuaLJC7Z8QQgghhBBCCCGEEELaI263G/Pnz8e7776Lr776CuXlwYsNPv30U4wdOzak3eLFi1FcbCzCyMvLw/jx41vEXxNzciIWExSxnOhoLRMVQMv50uYnK44//ng4HA74AqviHnjgAbzzzjuN7u+BBx4QtsPhwAknnNBUFwkhhBBCCCGEEEIIISRheeedd3DjjTeK/MEHvrCv72X3mjVrcP/99wMAkpKSUFRU1GIRGKNGjWpVkwLtnTY/WZGVlYUTTzwRn332GQBg4cKFmDlzpvgCNISHH34Y7777rjiBR40aFbM8GIQQ0hhcx54nbN/GVcI2JRrU7Z5vFwlbcxrSFb5yKcekSkr5iqW0hb2bIR9lJYGhjuVQJBN8BT/L7QHZBV2RiFHlYhyZ8gHEE9A+9NUqUij2+sOWVWko9+p3jT63rAtXnRASQ2wuKbOjSrAIeRyb9aNmkEyOKU3gt5bBsUIPIwsUcSyrMgt5nqD+deXaFYTNoi8L6SZVJko5Hp5dm0Pa6w5FTilIjsgf4qvms5AVUvrXvFJ6D90PBgD0mTZNuqrI4Kg+Wh3PIPkp84ecKnvkljI4pnyPrmr/epXjqUpdmbJCPmU7FMkoc7viiz9JkTQM7K+9YresUCNX72nqD2SzL1W6SUHso3IvVPcxCJvdulx0Vr+El/mZa3VSBjGSnJgp5wQE3yOTso1ceilVUi6prlzaVbv2G9vzckSZKq/o9yjn0U5Dkkw/eKQos1UoUo09jwjxy7N7q7DFuax+7z3yPFSPvb3MiFQPejZIke3ca780/t9dJMoqtsvPudtlV8p2Scb3Ri+WddVzxpSjtKfJvINaijyPPHsNmShfP7nf6if8yYAhOJDTfvtB2JR+IoQQQoDp06fj6aefFhMU6sv/aCINrr/+evz1r39FTU0N6urqsGDBAlx99dXN6rPJihUrWmScpnDppZciObl+6dXmhjJQMeQvf/kLPvvsM/HlePDBB/HDDz/g8ccfR//+/SO237JlC2677TZ88MEHog9N0xo14UEIIYQQQgghhBBCEhTNHnniujWhJZCvJCGZNWsWnnrqKQByYqJTp04YM2YMevXqhdmzZ0fsIycnB+PHj8fChQsBAB999FGLTVYkArt27Yrr+C2Zw6NdTFaMGjUKl156KebPny8O7ocffoiPPvoIJ5xwAsaOHYsjjzwSHTt2RFpaGqqqqlBcXIy1a9di+fLl+OKLL4RumaZp0DQNl156KU488cR47xohhEiSlRWDgZWx7tI9ssyqjbpqVLE920MTc2sduooyPUmO5cw7BADg3bFBjlVVGtLeX6L4kqQkPVUSbztSjdWJNpe8PaVfEv3EsBlJokaUEEJijxmpZc/JE2W6suLd7wwkxVZ+yKvJdYMiCMyV/JpFouwwqFEDmiewijwo6a+yet4qAXdQZ6Gr/q2iMUIQ0Q5hVhdF+zCvW0eUBEUzWKxY1/TqkK6CoinUcrN9lvy87Kkyqs1qb/Uw0S1mAm5x3MPhC5NwWr3vOIz9CYrc05WfJ6YPTplkXVdsV4dAIvfKvbKNkvgbVhE04ZKvB7YHfWpB51ToSjZd/TzU/TLHDRchZI4VJpoiKNqmpipke9ZB3YXtTDe+d4406V/ZZhmFUVdqRNCoERQ2p/W47t9/MsZXnwFG/MF6H4SDFmdPmO+Peg0Qic6VyIqgqJvAd1hNFm5PllGdO155UdjdJl0MAPCVyWhRLUlGOzg7G8nFPbsLRJn6bOEu2wcASE6V1zCVMV9/JP8IEy1GCCGEtFd+/vlnPPjgg2LFfXJyMh577DFMmzYNjsCz3uzZs6NakX/OOedg4cKF0HUdK1euhM/ng93OyTagdeWuaG7azdPWnDlzUFRUhGXLlokP2O/3Y9WqVVi1alW9bdVJCl3Xccopp2DOnDkt4TYhhBBCCCGEEEIIIYS0Ou677z74A1KoLpcLS5YsafTi7uOOO07YlZWV2LRpEwYOHBgTPxORXr16tcpJipRmlsBsN5MVTqcTixcvxt13340nn3wySGervjAWdZLCZrPhlltuwcMPPyxmBwkhhBBCCCGEEEIIIaQ9UVVVhSVLloj3q7fddluTVGj69euHjIwMVFQYkaEbNmxo15MV+fn58XYhLrSrN+4ulwuPP/44LrroIjzxxBN477334Ha7622j6zpcLhfOP/98TJ8+HUOHDm0hbwkhpIGoCawCyU41t5QJsed2E7ZeG0iYqSSD9SkyTbpSbibIdvSVCSbVQEwzMaVNld5QbD1g2ztJ2Qq/ItVg66ok/RwxwWLHCCEtjWdPPgDAmdfHcrstLRNAGOknQEq8qLIvDUiErVtJI6nJpdWkvOZ2pU1Q8ukgxx3BbQ7sN5K0UZDDZkLmcFI/UcpPqX4HJftWE0GHjqEeb/PYiUTbADRPqCSUe+1KYTt7Kz/8OvaUtnnsnLIvS1kfdZWXegxM+Sd1ezhZrcD++gMJkAHApiRBlsdY3lPs5TKJMjKyje4VaR5dkZ+y+dT7UuDOpda1WUhOKcc9nBSW+TmFlQsL9BucmFzattpAEnCbteyX6pf5XUvvLe+hScNPE7Z/zzYAQE6gHgCkKsm0q4qM+60qp6TbpF2zt0TYpsySmoA7tcfhIbvn3lcod0vdR/N4q99lReoqKJF74DusJSv7XSuTeWsBCUlV+iklV0qXZVx6rRy3zHh+UaWfqpUf96l9+gAAbMnKNUol4O/ecvnM1ClT+X4p1xP46r+OEULaCTZbYuWsCPesQkgTWbVqlXivqmka/vSnPzW5zy5duojJinjnaTDZsWMH9u/fj7KyMvj9fgwePBhZWVmRG5JG0a4mK0yGDRuGN954A2VlZVi9ejX+97//Ydu2bSgpKUFlZSXS09ORk5OD3r17Y+TIkRg5ciRPQkIIIYQQQgghhBBCCAFQWGgsYNA0DX369EGXLl2a3Gd2drawy8vLm9xfY3C73Zg/fz7effddfPXVVyF+fPrppxg7dmxIu8WLF6O42FgokpeXh/Hjx7eIv22NdjlZYZKVlYXx48fz5CGEtAnsvQcL2//bl0ZZhYyW8GXIxKq2wOpFTVll6FNXtrpkok7nMWcZ27ettRzXXKcTtGIyTa7qRJWxKkJdLWv2SQhpOWqrjUS94ZLIqviTM0PKvDt/lX9kdgJgnXQYALQ643sPq5XrIYOZyYZd1tsDq56Doh4sV/qrCakjJLdWE/la9aUm8lMTaKtJlM2hwiTc1XwWib/VuhZJs8Ml2xYpsNX9CpeM26IvzSLCTcvuLKuqzZzGZ6o7kpR9USJZAsfOTLSt9m8MErrSNCgRteqrN3CM1AgDt5I8PbBqVY048ScrkRdmPXUlvxrRon5eAVtNQq670qUtIniUNvYw56z4HJSxlBW2uh4aNRMc+eMJFCnRFmpUjUtGCHgDkYjOE89TulKigbodbGzvfogoc3RWvqv4GgCQ3Ke/KKnN3yzbW6y2zbryoZCycOjOJOUP85xWzgH1nFU/p0BkkOaR0QxBx6DaeCmQMfmBiD4UvjQNAJB79GGiTI0Oqdu5I6SNGmOhbTKOUfoRp1r27+zUS9hmMm5CCCGEAPv2yftiXl5ePTWjx+uVzwO2OEQFvfPOO7jxxhuxZ4/xLuXA1AH15ZBYs2YN7r//fgBAUlISioqKuPi9ETAWjBBCCCGEEEIIIYSQKNBstoT7R0hzkJYmF0FVVVXFpE91AiQ3NzcmfUbL9OnTMXHiROzevbtBkxQm119/PZKTk6HrOurq6rBgwYLmcrVNwysWIYQQQgghhBBCCCGEkKgxoyl0XUdBQUGT+9uzZw8KCgrExEAsZKWiZdasWXjqqaeg67oYv1OnTpg4cSJuv/32kMkLK3JycoLUez766KNm87ct065loAghpC1RXSOlLSyFWYISygZkLhS5DJtDJhVNveAOYXu+XQQAsGfJVQ26S66gsPc5yqgXSLR94FhaoF/7oJMj7kMiUf3uYwCA1PNui7MnhERHeUDJx5m/RpTt+c+Lws699j5ZOSDv5C3aJMtU2SHzGqBI5mhqMmNT9iecrJFabiWjFE4ySrRRZZp8Fn0q263GVZMsByVBdoe2sYfxO4KveuDaF5T0WpW5MWWW1OMW7hhZDmCRmDuM7JAps6Qp1/lwUlmmX6Yc1IF+aRaJ0lVJKFHPG0FqC4pkk3Iv8lWWygoBCSSHIl8Fv5T3MbH1Gyb73LjKcixzH4IkqRQJIiFppqya07yK9FiQtFHAX836PBMSYGH22x+QedJKZdJIryLF6A/sNwC4BgwxysKdDxYJ6FUpLXe5scpR3yy/y65sKX+lJrC2klzaettlwu772GsAgKq3n7HsK2n0RGMs3fo8trxGKOhJ8tki+fTrQraHw5VhiDqV/PKbKHMo++WtNcZ1pslzum75POn32MnG9ijGslUFPpusjlH7RwghhLRVDj30UGGXl5fjhx9+wJAhQxrd36JFxrsHXddhs9kwYsSIJvsYDT///DMefPBBMUmRnJyMxx57DNOmTYPDYTyzzJ49O6roinPOOQcLFy6ErutYuXIlfD4f7BYyqSQ8jKwghBBCCCGEEEIIIYQQEjVHHnkkunbtKl7iP/PMMxFahMfj8eCxxx6DpmnQNA1HHHFEi8lA3XffffD7/dB1HU6nE0uWLMF1110nJioawnHHHSfsyspKbNq0qZ7axIp2G1mxd+9efP/99ygoKEBZWRlqamqiCuk5EDNxCiGEEEIIIYQQQghp49jswRF3rZ1E8pUkHBMnTsSTTz4JAJg3bx4mTZqEU089tcH93HjjjfjtNyNKUtM0XHXVVbF0MyxVVVVYsmSJmHC57bbbcOKJJza6v379+iEjIwMVFRUAgA0bNmDgwIEx8bW90K4mK/x+P1588UW88MILWLNmTUz65GQFIaS1kJoi5Q28qdkAAM3rEWX2ij1K5Sxju0dudw0catmv85izAAA+RTrGlH5SCZbLkLcXx9AzIvqeKJjST4CUf9pTJhOJ5WWlhbQhpLUgzs+so0RZp8tvErYjR2rCevbkAzhAIklB89SEFkaSdgrqwKJfVWZKldQRkjvWYde6Mym4HoKllyL6pcjniD58iqSOXWmj+m3Vl+pDQFZIyD0BQKiCUnA/qsSSuogm0K/mlfI+QrYIUtooSGbHAr1Wyh4FHc8gvwPHTj0GrlTZzFu/xJFASeap+1WJJEUeyqyTIq+dmiJhBIuEoJpH3mu8OzYAABzdpQQBkjPkuLUV0g6cJ+HOB1PeKuicD5J+Uj4PIb0kZdB0deWd+XkEfZ4Wx0uRz9Jr5L3EeaiUPPCbxz7c8Q6Mod7vNaXflLwcAED51iJRlty1s6zrkvtghSn9pKJKR3mrlXNy+X8AAI6cTqLMddCRwnbnb5Tt9u4IrTvwmHp98a5dKmzHYPkSJO+2pwAAJc/dJcqqdkkpLdPfpGx5bvhVuTELzGsgADjz+shxux1SbztCCCGkvXHPPfdgzpw5qKyshN/vx7nnnou5c+figgsuiKp9SUkJbrjhBixYsACapkHXdXTt2hXTpk1rZs8NVq1aBbfbeD7VNA1/+tOfmtxnly5dxGTFrl27ItQmB9JuJiu2b9+Oc889Fz/++CMABEVRRKM5diBqwhVCCCGEEEIIIYQQQghpT3Ts2BFPPPEEpk2bBk3TUF1djUmTJuGpp57C5MmTMXSosSjSfI9aWFiI7777Dr///juWL1+ON998E1VVVeI9rd1ux9y5c+FyheZEaw4KCwsBGO+G+/TpE5Ok3tnZ2cIuLy9vcn/tjXYxWVFcXIyTTz4ZW7ZsEV8Oc7YOQKPknwghpDVjrrC0SoQKyGSkDUlcZBVNoaKuHg6KsmhDlPwi9SZrim4HAKQrK1TBZNskwQi7SjiwYjxcYmSxIj1CwtyIibIBuWI8XDJu0b915IU5rt9ilXzYvsKMJZIva0pSYDXqQO3CbBcmKbbZLugpM6iuHjwm6jneFmhWybSDkoWrkQ3G8XB07SPK/KW7ZdVsZaV9IDG2uprcXbZPtgskQdbcSnSNZh05YbU9yK9ApIjmklEiWrKM4hDYw6Q+tjjn1HuVf8t3ckMgIkNXk4xbfHaq/0FRMRaLlDQlMTh8nnrrWp6HShJyvVZGVviTZNJqy+TpVpFHShSJd/d2YdtTQo+nrkRVpl5wR6hfEcicOlPYex67WdhmFEfNtm3Sl5K9wi7ZIMttzkD0iV1GfHRTkmqbCbDtuUrE1zYZmaFGVogyJYG2SnIgosKZk2O5vW7F6wCApNGXiDL1/Pf/9qX0e8Dxln0QQggh7Zkrr7wS+fn5ePjhh8X71tWrV2P16tVB9XRdx9SpU0PK1Pe0s2fPximnnNJivu/bJ59z8/LyYtKn1yt/i9gsIoVJ/bSLyYr7778fmzdvDjr5e/TogXPPPRdHHXUU8vLykJZG6Q5CCCGEEEIIIYQQUg82W2LlgeDLUtICzJo1C/369cONN96I6mpDetRcHK4q0xyodGO+p01NTcWcOXMwceLEFvVbfR9cVVVVT83oUSdAWipJeFuizU9WVFdXY86cOeLkt9lsmDVrFu68807Y7Ql0cyGEEEIIIYQQQgghhJBWyNSpUzF69Gj8/e9/x2uvvYaaGiMSV520OFDpxuFw4LLLLsOMGTPQt2/fFvfZjKbQdR0FBQVN7m/Pnj0oKCgQEzSxkJVqb7T5yYqVK1fC7XaLL8Qdd9yBe+65J95uEUJIs2LKYHh2bxVltmJFlqFwHQDA0ePwmI0ZJP2kyGh4d/5qjNUGklJm9JJSKZ4q48HLnmW9UsK9+l1h2/oYCUYdXQ9uRu8IiR1WEnJBkjjmDw5VIslCzihcgu6gsSJIH4l+laTZemMSeAMyGbGyf5H6CtpuJdkU5hhYiYwGSQxF2ge1nSlRpIzlV6WAwkj+HYg/JUv+USYTEAetuLQ4dq6sjsJ2l+4Jqad5ZOJuy89TXU3nSqm3rpakbLdIih10zgVs9/6d0tcO3YRtSh4CMhm3+hmq57QpvWSrLlGcCZP03SoZd5AsV2gbK+kmvU4mp3Z0lT/OLb836jFQkozrxUaiak1JUu7s3l/Ynh2bAQC5I4bKNmoS8yZiJreOhvQI21XZLlP+ybN1nSjb8X9SSmL/v94XtqfSkLXqNrKPKEvKVqS07Mbx1H0ymbimrIi2pcnE21ao0k/ufYautatjj3rbNBf+zd8I29Z/eFx8IIQQQuqjb9+++Pe//41HHnkEK1aswKpVq7BhwwYUFxejtLQUqamp6NixI/r27YsxY8Zg3LhxMZNfagyHHnqosMvLy/HDDz9gyJAhje5v0aJFACAWzI8YMaLJPrY32vxkRX5+PgA5W3fnnXfG1yFCCCGEEEIIIYQQkpBoNju0BFLq0BJJsoq0GXJycnDOOefgnHPOibcr9XLkkUeia9eu2LVrFwDgmWeewcsvv9yovjweDx577DERVXHEEUdQBqoRtHnhupISY3WUpmkYMGAAsrKyIrQghBBCCCGEEEIIIYQQEg8WL17cYmNNnDgRuq5D13XMmzcPS5cubVQ/N954I3777Tchc3XVVVfF0s12Q5uPrEhPT7e0CSGkPeDsLGUlvIpMhz859hO3QZImdqf0Ia9PzMeKF5lTZwq76JEbAAC+kr2WdV3Hnidsz97tzesYIbHGlKFR5YX8ioSKKUmjytUoq/Z0PVCuSuOEk8yJ6ItW71jCr2j6D1ynwspTWe23Khtk0S6sjFWgrubzyPaKlJWsp0gkhZUVCsgGWclQqX5HQpUiSkqW5WV75FApOQCAuvL9oiwps4PcLmS55HUempQggqcm1Cd1Qafqd0COSHPIvvQamdhQyECFkWOyQsg9AXB0P9TStqKy2vDb5aiut14QyjHQrWSe1DL1PAgcQ1tud1Hm/ulzYTu7SBkny3NZWc2rpWXW66ItPduo55Tnnmv81ZZ1q99+FACQesEdoszz7SLp1zFn1TtWQ/DsyTf82y+1oTVFjsxfWQoAKPnlN1FWWVQmbLtTHoPqWuOzqyqS52xGr1A5CU9pqbCTuspj35AVx/GSfzLxK9/LNr/qkBBCSLvkgw8+wKxZs/Djjz/Cp0g4Nif33HMP5syZg8rKSvj9fpx77rmYO3cuLrjggqjal5SU4IYbbsCCBQtETo6uXbti2rRpzex526TNP+MMHDhQ2Hv27KmnJiGEEEIIIYQQQgghhJCW5N1338XRRx+Nc889Fz/88EOLjt2xY0c88cQT0HUdmqahuroakyZNwgknnIAXXngB33//PQCZKLywsBDfffcd3nzzTVx99dXo3bs3FixYIKIz7HY75s6dC5fLYqFSM/D777/HvE+/348ZM2bEvN9oaPORFaNGjUJaWhqqqqqwbds27Nq1i5nYCSHtEjWZtrtsX8z69f/2JQDArqxM9GV0Dle9zVBbXA4AyBlcf2JOAHB26tXc7hDSZDy7NgtbrPUPkyDYcrW3HppSOigZcphyy/4t7OCoA9mbWMUe2qNRrkYABKIwtHB1zaiBMKv3Na+SmDgQJWHVf5BfYfcrnBdWda0iXbyh29U2SjJvq/3Rc5RE1DVlIdvDRYyIcofy48ujfM6B4xKU9NsiSgQAtKRUo6hOSdDtVI6nGY2gJnd3qBEdFvtlFb0SBu/OX4XtMpOPR0g2DshzTd1Hy2ThEcbXlX2xpSr3EuW7CCVCUvRbJ6NPdPOcU+7B/tqqA5vAntMpgjcyoqJsjvxh6syUkRuxjKwwoy5rvlooyrzl8jz01Rrnb81emfDcW2OdSD6jqxE9r/vlVcBsr9rJuTKqtLZQRnSk5sQvqWdDcRw9Pt4uEEIA415hS6C1v4nkK2l3LFiwAA8//DDWrVsnJgPiwZVXXon8/Hw8/PDDIjpi9erVWL16dVA9XdcxderUkDJN00S72bNn45RTTmkx34cOHYrnnnsOF198cUz6KygowEUXXYTVq1fjoYceikmfDaHNX7GSk5ODwm5eeOGFOHpDCCGEEEIIIYQQQgghiYnX68WqVaswd+5czJ49G4899hhee+01rF+/Pqr2uq7j9ddfx2GHHYaLL74Yv/zyS9ALfwBwOFp+ff2sWbMwZ84cpKSkBPmq+mZOSJj/AIiylJQU/Oc//8Gf//znFvW7oqICl112Ga688krU1NQ0qa+FCxfiqKOOwldffRUj7xpOm5+sAIAHHngAvXr1gq7rePTRR1s8nIgQQgghhBBCCCGEEEISld27d+NPf/oTcnJyMHr0aFx11VW46667cOedd2LKlCk44ogjMGjQICxcuDBsHx9//DEGDRqEyZMnY+PGjSFRCQ6HA1dccQU2bNgQto/mZOrUqfj5559x9dVXIzlZ5ng7cHJCLbfb7aLdxIkTW9xnk1deeQXDhg3DL7/80uC2brcbN9xwA84//3yUlJREbtCMtHkZKADIzMzEf//7X5x88snYvXs3TjvtNLz88sv44x//GG/XCCGkxfAWbRK2q+vBMevXNuB4o38lqak/NSdm/bdWNLsx31+1ZYsoU9LVomDGlcLu+dCclnKLkMajJjE2i4K2Kw/lpvSRInsUNpm2WaRI5lhK9QS1jySRFJqUOkhySk2KrSalNiWl1LH8oYn71ATHnt1brX0w+7BKPB4L1L4Ckk7hZLUs5YqU/Rbbw8gx6Q716hUoU+WtFFxZHQEA7v07rf0226vHXZGk0nze0DrqMUyRckjiPAnz2ZrlmleRvArjdyQfzWPkyrGWi62ukRJgjjpDBlDXLY6xansU2TCnrGurDvwAVMa3ZeXK5kryc/Fd9NSJMn/pXlk3xUhuriYmV+3SwCKtzndMFmW1S+U9yV8hf4zaAsm6ndnZ0m+vTAxe+fpMo15yqihLPe82NAV3cbH02yc/570/Gom1bS55jPyKzJMrTX7OjmSjTkpHa1lGf6Bfd7k8Lq5MmRTedex5jfI9HqjPco4YPssRQgghkfj2229x5plnYt++ffXKNa1fvx7nn38+/vznP+Pxxx8X5eXl5bj66qvx9ttvh7z013UdLpcLU6dOxV133YXevXs3785EoG/fvvj3v/+NRx55BCtWrMCqVauwYcMGFBcXo7S0FKmpqejYsSP69u2LMWPGYNy4ccjLi7+spK7r2LBhA4YPH44nnngC1157bVTtNm7ciEmTJuHnn38Wk0e6rgflgW5J2sVkxfbt25Geno4333wTV155JbZs2YIJEyZg+PDhmDhxIoYNG4a8vLygGbNo6dWLOuSEEEIIIYQQQggh7QKbPShXUKsnkXwlrZLCwkKccsopKC83FmxoERYW6bqOJ598EgMGDMA111yDgoICnHLKKdi0aZN4GW7WS0pKEhEa3bt3b/Z9aQg5OTk455xzcM4558TblXpZuHAhrrzySuzfvx+apqG2thY33HADli1bhpdeeglZWVlh27788su4+eabUV1dHTRRMXXqVPzzn/9swb2QaHo8s5e0EDabLeSLpH45GoumafB6rRO9kcSlsLAQPXv2BGAklenRo0ecPSIk9vi2rQUA6C65OpIr9GKLL3+NsL356wAA/nK5glRNppo0LjhBFyHxIGwEgYn63GSxUl/zyRXYkaIdgroNRFwEbVd/VFtEMKir2C3bR7MPAcxEv4ByDJR66n5ZrvBXfVEiCERUgLovFlEcYVHGsnmqQ7f71cgIV4gvlpEu6vYwCbD1JOPapN4f6pxyFXpGqqHhq0ZWqKv+zSTkQZE0QcdISUqtHluzrhoV47CIklAjgCyOsa4k/nZ1kEnETTx78i3H1wNJvJ2dmn8hknme2auUqAK31BfWXIpOsjOQXLxC1vWV7BG2Ldn4bHwVpaJMTabtGHxqyPh1/zfX0i9fWXHAFyWKpJPy0iBwnP3VFaLI2V1GITU1+XPN+/8QdsXv+QCA/Ru3iTJPlfx+1ZXJc84XSPDe4SAZnZKSJyM8/W7jnHNmynM6rYus68wx6qZMmG7pl7tkV71+h4vGaSr+Ld8Zhnot6D9c2P87ZQwAIDlHLrgb/NbHzeILIST4PcHm959Hj7zcCC1aD4V7itF/wjUA4veO4/PPP8crr7yCr776Cjt27IDdbkePHj0wZswYXHHFFTj66KNjPmZpaSmWLVuGzz77DGvWrMGmTZtQUlKCpKQk5Obm4uijj8app56Kyy67DOnp6VH1uWLFCowZM6bBvmzYsCFuq9RjwVlnnYWPPvooaJIBAOx2O3Jzc6HrOvbv3w+fz3jWNV945+bmYsOGDRg9erTIZ2FuS05OxrXXXovbb78dXbt2jc+OwTg3n3zySfH3LbfcghNOOCFu/jSWgoICXHzxxfjyyy/FMdY0Db1798Z//vMfjBgxIqh+ZWUlrr76aixYsCBokiIjIwP//ve/cdFFF8VpT9pJzgoTdV5G/YI15R8hhBBCCCGEEEIIISQYM/HvSSedhLlz5+LXX39FZWUlysrKsG7dOjzzzDMYOnQobrvtNng8oYsYGsPGjRtx5plnIi8vD+effz6effZZfPnll9izZw88Hg8qKyuxbds2vP/++7j++uvRo0cPvPLKKzEZuy2ydetWLF68OCix9LHHHov//ve/qKiowK5du7B7926Ul5fjo48+wsiRI8XL7/379+OMM87A+vXrg/JSXHbZZdi0aROeeOKJuE5UAIa81fvvv48PPvgA//3vf3HkkUfG1Z/G0rNnT6xcuRL33HNPUKLy/Px8jBo1Co8++qio++233+Koo44KmagYNmwYfvzxx7hOVADtRAZKhRMMhBBCCCGEEEIIIaQxaDYbtASSVtJs8Vmn7PV6cfbZZ+Ozzz4TZZmZmTj88MPhdruxfv161NTUQNd1PP7449i7dy9effXVJo/7yy+/YPHixUFldrsdBx10EDp37gyfz4cNGzZg//79AICysjJMnToVmzdvxqxZs6IeJzk5GSeddFJUdaON3GiNqC+0NU3DxIkT8dprr8FuD/4OpKSk4PTTT8dpp52GSy65BG+99RY0TcN3330nXoZnZ2dj/vz5OP300+O0N6GY0SC6rqNXr17IzMyMs0eNx2az4aGHHsKYMWMwefJkFBUVQdM0eDwe3H333Vi+fDlOPPFEzJo1C263O2hS45ZbbsHf/vY3OBzxnyqIvwctwOWXXx5vFwghpFVhymTEQvrJ8+0iAIDzmLOa3Fdbwp/WQdimJEfS6EtEmXftUmG7v3wLAOA6/sIW8o6QCARkR3RFjkaV75GFiiSPhQxTkPyPtzZkO4DgRNAHjG/YoQtNVIkhyzZhfLSSr1JlgSIn9q6/LzVxuJmg2tJXpV2QXJKalNpKckqV3Yr03iHC5wHFV80q8bZS5tIt9kFtXycTF5vJrnW7dfLpoHKzTJFuCtpHIQGmHmOr80U5R5S6voKfpZ1iSP1o4aSwfC33IsfZuS8AwLtDfic0U+4JgN9CNqvu59Vyu5L0OmnAUQAAR0cpRaS56s/DpyUpMlN1NaHl6vFWxoItVJLNWyTl43T3+wAA54gJ9Y6vUrd8nrALP/lS2LWlFtJnCtn9pPxK1R5Dlsrnsf6uaXbjeHqr5PGu2SsTiztzO9Y7lirz5Nm73WjTAnJhdb98BQCwpWeLsiRFBqr7cQcBACq277ZsX1ppHMPs9FTL7YQQ0tzce++9QRMV9913H+666y6kphrXpeLiYtx111146aWXAADz5s3DyJEjcd1118VkfIfDgTPPPBNTpkzBmDFjgl5C67qORYsW4YYbbsCOHTsAAA899BCGDx+OP/7xj1H137lzZyxZsiQmvrZmvvvOkCU0ZZ1eeumlkIkKFbvdjjlz5mDZsmViQsjMTbF06VIMGzasRfyOFjOyQ9M05OTkRKidGJx88slYs2YNLrvsMixdulRMFn366af49NNPg6IpOnXqhFdeeQV/+MMf4u22oF1MVsyda63LSgghhBBCCCGEEEIIiR0FBQV46qmnxN/33XcfZs6cGVQnNzcXL774ImprazF//nwAwIMPPojLL79cTGg0BqfTiauuugr33XcfevWynlzWNA1nn302hgwZguHDh2PXLiM/0T333BP1ZEV74eefjcUfmqZh0qRJUX02aWlpmDRpEp599lmxev/qq69udRMVAIJyuOzduzeOnsSWTp06YcmSJXj00UcxY8YM+Hy+ELWhsWPH4rXXXou7FNeBtKucFYQQQgghhBBCCCGEkObjqaeeQl1dHQCgV69emDFjRr11zRfgu3fvbvKC47PPPhsvvvhi2IkKlZ49e+LBBx8Uf//yyy/YvHlzk8Zva5SUyGjE4cOH11MzGLOu+YJ84sSJsXUsRhx//PHIzs6GruvYtm0bioqK4u1SzNB1HeXl5fAHomZV2ScAGDduXKubqADaSWQFIYSQYBzdD21S+9qlc4RtaqC6V78rylzHntek/tsCqkSExxeaLM4x+NSWdIcQS4IkkFRMGRpVDkaVpjFlotQyTZESCpRrnpqQsrCo2s+KzIyQS7KSKrLy+QA7SGbJbKeOpa4wMsstxgespa6C5ZrsoeVq/+Gkqiz6CsIcV90XtV2gXJWhsh5AOUbKWP6kNFklIOME838AuktuN3FlSekcT22FbB/YX02RD1LlxIKOgamhHebcEOeX3drvSOeUKf0ERJYOM4+9Z7cia6T4rUoBxQpftlzJZy/ZLn3x1MlKAYkt18Choqjqu8+FbUower9XtLkdoedB7X+fk/0ny89TdyvybIHzXlc++4oNG4TtyjTa2Zzye+DM6yb3oZPcHyu8O2Rf5nNI0tjJ0scX3xR25e7AfqfJfck9TI5VVyLPOU+l4W9qrtyvqqJi6ZfL8DcpO0OUJedmKX53r9dvleaQfyqYcaWwk3OlREnG4YMABB8jFXe5cYxS8qwlKyj/REgzotnkPSwRiKgdGXsWLlwo7CuuuAIuV/hnlA4dOuD888/HvHnzRNsbbrih2X00+eMf/4hrrrlG/L1x40b079+/xcZv7ZSVlQm7U6dOUbfr2DFYZvHwww+PmU+xxOVy4YILLsCLL74IAHj++efxwAMPxNepGLBjxw5cdNFF+PJLKbNpThyZElD33nsvVq5ciXnz5jXos21uEujqmlgsW7YMdrsddru9VSQnIYQQQgghhBBCCCGkOdm4cSO2bNki/h4/fnzENqpe/sqVK1FZWdksvlnRoUOHoL/Ly8tbbOxEwOPxiNX49U06HciBdbOyssLUjD/333+/8G/27NlYvXp1hBatmw8//BBHHXUUvvzySzFBoes6zjvvPIwfPz4oZ8XSpUsxePBgLF++PM5eS/gWvRk5UAuMEEJaG76Nq4RtH3hi1O2ST5WrACtfN7RHnd2jX33i/VEmIrMpq3Nt/VqfhqXK5psnCbtmn7Gq01MlVw8f/f7SkDYA4OwSemyKK2Ty0NwMrn4kLYeZIBbAASvt649m0C1W5WnhVrmb0URhVvJbro63iEAKGcOygsXq/EgRDMpYQftlNgvTPsgXc6W+umJf7ctqSVCYiA/pTIR9DdOXblVmEQkTlEA83GOqueJK8S/SZ6AryaFRbVFXba8mIQ+XfPxAwq0ItUqIrq509avnnF6vL+bnGPS5KHXd+wqF7epYfwRBtCSlyZX+/h2lclgl2kFLMer49u4QZWpkQ/W7jxl9DRkryux9hwhb3OeVqB9/pRzLU7xP2M5OnY32uVIOIEOx/RWGDITmVJKrO5zC9u7eZvi/RSY2r9mySdjZV/9Vln/0rFG3yvqFkBlR4UqX/XcY2FvYhZ/9KH0IRN5UF8tE70mZyjlp+lcrI0a8NTJ6xTy2arLvcNEMzYGnSkag5Rwq99F7wsX1tvMF9qfo2wJR1ie2rhFCSKNYu3atsJOSkjBkyJB6ahsce+yxwvZ6vVi/fn2DJIeawrZt24L+bk0rzEnL0L17d7z99tuYMGECqqurMX78eDz++OO46qqr4u1ag/B6vbj99tvx9NNPiwkJwPgePvHEE7j22msBGBMyM2bMgNdrPPfu2rULp556Ku68807MmjULtjhHjnGyghBCCCGEEEIIIYQQ0mQ2KBKCPXv2hNPprKe2rOdyueB2GxOxGzdubLHJivfee0/YDocDQ4cOrae2pLS0FBdeeCG++eYb7N69Gw6HAx07dsTgwYMxbtw4TJ48GZmZmZE7InFn+/btGDBgAObPn4/rrrsOu3fvxjXXXIOHH34YEydOxPDhw9G3b19kZmZGdT6rRJM7JRZs2bIFEydOxA8//BAUOXHIIYdgwYIFOPLII0Xd22+/HSeddBImTZqE/Px8aJoGv9+Pv/3tb1ixYgXefPNN9OzZs0X8toKTFYQQQgghhBBCCCGERIFms0NT81+1clRfG5M8uEePhkUUqpEK0b6otdls6N69O7ZuNXJH5efnN2jMxlJVVYVnnnlG/H3aaachJ8c6F9CBlJWV4e233w4qq6ysRH5+Pj744APMmDEDs2bNwo033hhTn0ns6dOnT1DiafNF/7Zt2zB79uxG96tpmoheaE7efPNNXHvttaioqAiaqLj88svx7LPPigT2KsOHD8fatWsxbdo0vPXWW6LN6tWrMXjwYLz00ks499xzm913KzhZQQgh7RhV+qmufL+wkzI7WFW3JP2S+wEAvvw1Ubep2/idsG1pcrVJSiuSgfq/w48BAGR0SxdleYPlg3pyjpHIM6WjDJEsekQmgut697P19k/pJ9IqUBNJK5iyP34rKSFAyuOESR4t6qpSQmpyaAvJprCSUhY4uh0ibJEQWZUE0pQXCL4GSCtZ+WKxHUCw/JMYt36/LaWfwvVv1Vc4qasoE2cGyV8pycI1nyplpYVsV8eqqzIk8FQJI1Vuyeqz1zUloXNQUvYI+9hUqawI7YJ8sUqerp6/nkaOGyW2AccL2736XWGbZ7LuUSSMqqRMlCMzVP9ZlVo0k2XvW/2tKEvKlve1zCPkKjtTKspfLpNTe0pKhO0MvLzR6+T4nopS6WtWLgBAU6QDUgbIZJq1S+fI8jON+2X124+KstQ8+TxQV7YXAJCcLe+Vrs5Skqp6n0wWmd7NOBc9VfIY+d3y2qalGf5UFcnnHL8nVHYutWUWPobQefhhwk67aEbU7fyBa1u/M46MUJMQQiSNiVZoqMR5RUWFsBuSp0CNQlD7aE5uu+027NhhyAFqmoaZM2c2qH2fPn3QvXt3JCUlYd++fVi/fr14OV1WVoabbroJa9aswZw5cyL0lBhoVhKcbQhVOsn8PxEk/i+++OKgzyYtLQ3/+te/cOmll9bbLiMjA2+++SZOPvlk/PnPf0ZtrfGMV1paigsuuADXXHMN/vWvfzWr71YwwTYhhBBCCCGEEEIIIaTJVFXJHELJyclRt0tJSbHso7l4/fXX8e9//1v8fcstt0TMr2Gz2TBu3Di8/vrrKC4uxtatW/HFF19g2bJlWLt2LUpKSvDcc8+hY0eZl/Hll1/G3//+92bbj5ZC13WMGzcOdrs9qn+nnnpqUNto25n/HI74rK/XdT3oXyKh6zoGDx6M77//PuJEhcq0adPwzTff4NBDDw2KzHj++eeb0dvwMLKCEEIIIYQQQgghhJA2zjfffIOuXbtGrtgEPEr0WkNeOKt1zdwVzcWqVatw5ZVXir+HDh2Kv/71rxHbjRo1Cp9++mnY7enp6bj22mtxxhlnYNSoUULOaubMmZgyZQo6d+7cZN/jSVNe3rfmF/+XX355vF1oMrqu44YbbsDjjz8Ol8vV4PaHH344vvvuO9x000146aWXmsHD6OFkBSGEEAANk36ywt7nqKjrag5586zeXiDsFKvKcSL3YEPuouMgmViqeo+Uw/DVGg/hzrQkUVZbXC7smkVPy84CUjspE6Y3i6+ENJpwodymHJIvVColJsMqkjy6KbUTTsrIotxbtEn+YSHfo6I75HfU/C6qP5WsJJ+C5IHUDVayRKqckip9ZJZHkpSKRtbIrNOAY2TZjVpP1eX11sk6VnJIynbhiyID5eooJfJ8VcWhbcL5GrCDjrfPrdjeUJ+CpLACn6SqGx4kXabIOHlrg/oEAN0lJYZ0i2MYdJ6q51Ez4Pl2kbAduV3khsC+OXv0F0XJikyTiV66R9haklzF6q81VqZ2PPYY64GV+7Fv9/aQ9q7uvWXdgKSU7pMSS75a+XnZkmsMX/scKpvs3SF9KQv121dTLeyafVLywxeQ3UrOlfIhmkv61e24AcKuLS4DANSVy3POruS+NPutK1dffMmxsg82/k8566YQ/1qChkg/qdjsxjkbSXaSENIM2GzB957WjiLP17Vr1wbnoGgoqj6+KSsTDWrdtLS0emo2jbVr1+KPf/wj6uqM+0a/fv3w4YcfNuoFbzh69uyJN998EyNHjgQAVFdXY86cObjnnntiNkZL05ISUC09sTF37twWHS/WZGdn4+WXX8aECROa1E9ycjJeeOEFjBs3DldffXWLybEdCGWgSL2Ulpbi3XffxZ/+9CeccMIJ6Ny5M1wuFzIyMtCnTx+cc845eO6551BZWdmo/j///HNcccUVGDhwIDIyMpCdnY1BgwbhxhtvxI8//hjjvSGEEEIIIYQQQgghzUV6usyNVFNTE3W76mo5ga32EUt+/fVXnHrqqSgrMya6u3Xrhk8//bRZok1GjBiB0aNHi7/ri8ho7RwojdTc/0jDWLNmTZMnKlQuvPBC/Pjjj43KcRMLGFlBLNm4cSNuu+02LF26NCiEz8Tj8aCyshLbtm3D+++/j7vvvhtPPvkkpkyZElX/FRUVuP766zF//vyQbWVlZVi3bh2effZZ3HLLLXjkkUfgdDoteiGEJCqpF9wh7Tj6UR/ONOO6k79soyjrrySx7DbjOQDAxqsmiLLkZLkaZ+9qOeFatctYTXooIytIayCKlfxWq+sj9WGZgFtZra5brKgP6tIeZjWbWVddzaUmBjfLo4kusEqgrUZLBPY7aEV9uCgLMyogzLFSIwTq86VB25uaXDrcMbL6PNUoEb/SLlIkizOw+j3MD02rJONBZeqxt1tEp1glGde10LIDbPMzFX3igHPSaoWs6oszes3txuA85ixhe9cuFbaWZMQc2geeKMpSlGTcvl+WGYbiv5Yk76z2jEA0kZIUOyjyokRGZOiB75U9O0/WtSv9JncCANT99I3sX7nv1RTtNvall4x6UP0q2ZgvbNNDNUG4t1aeB2aURHr3Top/yudpl5+dJ5BwXE2q7fbJunaX4YOulOl+eX56q432Qcm+leeUxlCnJB5PyshuUl/hOPi5d5qlX0IIaSq5ubnCLioqirrdrl27LPuIFVu3bsW4ceOwZ49x7+vYsSM+/fRT9OvXL+ZjmYwePRorVqwAAPz222/NNk5zsnXr1ni7QCLQq1evmPfZt29frFq1Kub9RgMnK4glv/zyCxYvXhxUZrfbcdBBB6Fz587w+XzYsGED9u/fD8CYYJg6dSo2b96MWbNm1du31+vF2Wefjc8++0yUZWZm4vDDD4fb7cb69etRU1MDXdfx+OOPY+/evXj11Vdjv5OEEEIIIYQQQgghDcFmC5JWavW0sK+HHHKIsLdv3x5Vm6qqKvF+6cA+YkFhYSFOPvlkFBYWAjDeQS1ZsgSHHXZYTMc5EDViY9++fc06VnPRu3fvyJVImyReSc4T6OpK4oHD4cCECRPw/vvvY//+/di4cSNWrlyJL774Avv27cP777+P7t27i/oPPfQQPvzww3r7vPfee4MmKu677z4UFRXhq6++wnfffYeCggJcddVVYvu8efPw3HPPxX7nCCGEEEIIIYQQQkjMOPRQmbto7969/8/eeYdHUbVt/J7dzaY3EhIIoQSk996riAiCWD4EUVAQeLGgKCoqImDH9qKoKCrKKyhSBQEB6UV6lV5CDwFCets23x+zc85Zdjabspv6/K6Liydnzpx5Zne2zTnPfeeruuLQoUMuxygqiYmJ6N27N6sQCAgIwKpVq9C6dWuPHcMVorSV6OVBEMVNeno6rly5gkuXLnndwL6oUGUFoYmPjw+efvppvPXWWy7LiSRJwgMPPIBWrVqhXbt2rGTvjTfewIABAzT3uXz5MmbOnMn+fuuttzB9+nSHPhEREZgzZw5ycnKYTNS0adMwYsQIenMniDKC7fQOFusEuYrSSFI6/wIZEczfY5rMV6rLTLeusDbrrj+c9m/w/XLNceMnPsH3s0tTHB3aj7WlXeZmVZ23K+WVlqsnWJuhmue+oBOES7QkdRy2axvpSbZ8ShS5kH5yKfmkuZ89B1FWSJTsUdvFVB2kgDTkiFzJCqmb82FkzeSfXPR1J6XlViZKa1xRLimfptoOfbXMqV2N5UYvOD2La1AHB/jz3exG1LrsVGEobXNq9THSkoZyyMvF88WknSBcD7a8n1sI156D3Jc6hrCPzdd75p55IedkOccXDrE28+n9LDZUVhYN6QK5tJPlxmW+f7ZisC1bBFlXC7/2ZBOXh9L5O5+vbDY5xYYAbUms0M53K9tb9mVtopBrtT6jnPbxF+QR9Qu5lrclW7kmfCtxmSidIKfkI5yvb7hi9m5K1zZxzUhUHgOdIB1lyuCPh9VkN3K3eO6Hu7eknwiCIMoC7dq1g9FoZDdEt23bhsGDB+e5jyg3Exsb6zFpptu3b+Oee+7BqVOnAAC+vr5Yvnw5unTp4pHx3XH8+HEWR0VF5dGTKK3cvn2bKcukpqbCZrPh3nvvRXR0dEmnlicbN27EkiVLsG3bNpw8eRJWK5fLXL9+PXr16uW0z/79+5GZqXxvCgsLQ7NmzZz6FAc0WUFo8sADD+CBBx7IV9/q1atj2rRpGDt2LABFQurcuXOoU6eOU9+ZM2ciN1fRoK1RowYmT57sctyZM2di6dKlyMrKQmJiIubOnYtnn322EGdDEARBEARBEARBEARBeJvg4GD07NkTa9euBQDMnz/f7WTFggULWOxq8WtBSUtLw7333oujR48CUJRDfv/9d9xzzz0eGd8d2dnZWLFiBfu7U6dOxXJcoujcuHEDs2bNwpIlS3Dy5Emn7evXr9ecrJg7dy4uX1YWjcTExDioxhQXu3btwrhx43DkyBEAcDIsl1wsRgOAhQsX4tNPPwWgSKUlJCTAz8+7vm1a0GQF4REGDBjAJisAxaBba7Ji2bJlLB45ciSMRtcrKytVqoRHHnkE8+bNY/vSZIX3yVryCYsDHp5YgpkQpZlTYx5icf3vlgJwNAQVV2qaVisybjb76k7A+9eWVn6uMNvyXj1sjIzlf9yf//egag/0Z/HNjYr0XfbNZNaWdYuvSt7Usj0AoPsiXnlGEF7DXTUFhBXrspvV+y7MjLWO5VBNIbb7KKvuJXOu0Jevx1Zz8YnilZ7mRMHoTz2uePiCGFG7MgHX2q5VEeLuMRTPxWrW6Fg4VVYHA2yNKg9Nw3OHAfgPFdldJYtDJY1yXB8Xv3Mks/LeJgvPp2TglRWiUbWkZeytZW7u7poVcnU0T+cryNSxXBq9szFEU21ebVecK+V92g9icfaKL5TjR1RhbX5ChYJpx+8AAEmoitAFBPPB/JR28XPZmpqkeVxrplLxJxmFH6VCFZOcY6/SEK4HfahggCoa3xeCsDpc1zv5fIr9WMKYQmzw49eUj73SQ6yWEM26c5KdKy58Q/j+13YqhqfplxJZW/2hBc2eIIiKhKTTQ9Lr3XcsJUi64s/1ySefZJMVq1atwsGDB9GyZUvNvitWrGATCgAwYsSIIh8/KysL/fv3x759+wAAOp0O//vf/zBw4MAij51f3nrrLSQm8s+WQYMGFduxicLz8ccfY8qUKTCZTE43+oG8b/ZnZGRg6tSpkCQJer0eAwYMKNYKjJkzZ+LVV1+FxWKBLMsOuUqSpHk+IuPHj8d///tfWCwWpKWlYcmSJRg2bJi303aCPCsIj1CpUiWHv9PS0pz6nDx5EufPn2d/9+3b16nPndx3330s3rJlCzIyMoqQJUEQBEEQBEEQBEEQBOFNBg8ejCZNmgAArFYrhg0bpuldceLECYeFr/3790f79u01x/zpp58gSRL7t3nzZs1+ubm5eOCBB7B9+3YAyk3a77//HkOGDCnSOa1btw4vv/wyM+l2hdlsxqRJk9gKdQBo1apVsU6UEAXHarXioYcewqRJk5gijEhekxQqo0aNQkhICGRZhtVqdagY8jY//vgjJkyYALOZL97Q6/Vo3749/u///s/tRAWgSLCJ8lBiZVBxQpUVhEe4ePGiw9+VK1d26nP48GEW+/r6olWrVm7H7dixI4stFguOHz+Odu3aFSFTgiAIgiAIgiAIgiAIwlvodDrMmTMHPXr0QG5uLk6cOIGWLVvi+eefR9u2bWE2m7F161bMnj2bLXaNiIhw8DgtLDNnzsTff//N/g4LC8PChQuxcOHCfO3/+OOP4/HHH3dqz8rKwmeffYb//ve/6Ny5M7p3744mTZogMjISRqMRt27dwp49ezB//nwmBQQoi3sXLFiQr5vdRMnx7LPPYvny5QB4FULLli3Rp08f1KhRI19KLwEBARgwYADmz58PAFi9ejUmTJjgZq+ic+HCBTzzzDPsGpMkCRMnTsRrr73GFpcvWrQoX9fgww8/jHXr1kGWZWzYsMGrebuCJisIj7B0KZdZMRgMaN26tVOfEye4cWz16tXh4+Pj1OdOqlev7mDMdPLkSZqs8DKiPI/1+GYW6xv1KP5kiFJLQFQ4iy+9/hQAoNp/XmRt1vh/WWyI5tItbPtJbqAmC/JQoilnUQisGuG+kx1/g3eKDI1d+cqd9J9/AwCYM7l5p184l9nQ+yg56O7q4JVcCMIBVxJJGpI5royN1e1SQYyqhdgnOo7F5puX7Nv5l2cH+TW13/VzmmOpRtWyIW95IQdcyQppyQ65HEOVS3LTzeK8MitfuYio7VoG3wXB4VxdSEKo14ELyQjJjQmxul0O4SaSkilbu7M9H10u/xxwkM2yS065OlfNduEcHYy7VQkvUdbIzWNo1nOpIG2LcO/jP3C8U1vu33Od2myCtJMo46TKP4nm0ZJOMBEXzBbNaYqZt86Yztp0gVxSKuvKNQCAwZ8/GoYI/nzpQvP/2atFZAe+kCk1/joAICeJG7XrI3heKeeustg/IgQAYAwSctHz9xPfkDAAQPo1XqGtN/LrICtJuT4lPYkOEARBeJIOHTpg3rx5GD58OHJzc5GYmOjStzQ0NBRLly7VlBMvKFlZWQ5/JycnM0mq/NChQ96/yWw2G7Zt2+ZgCu6KunXrYuHChahfv36+j08UP9u3b8d3333HbuZHRkbip59+clB7efbZZ/N1s3/QoEGYP38+ZFnGjh07YDKZ8pTA9wSqbBWgTBQuWLDArU+MK7p27cri5ORkl57E3oQmK4gik5mZiVmzZrG/7733XoSHhzv1E6svatRwvnmphU6nQ7Vq1RAfr2hTX7hwocD5uSvRuxOt0kSCIAiCIAiCIAiCIAjo9C4n9UslJZjr4MGD0bBhQ4wfPx5btmxxkqLR6/Xo168fvvzyS9SsWbOEsswfDRo0wKBBg7BlyxYkJyfn2bdWrVp45pln8MwzzyAwMDDPvkTJM2XKFACKGXVISAi2bNmCBg0aFGosUcYsNzcXp06dQtOmTT2SpxYmkwlLly5lEyljxowp9EQFANSrVw8BAQFs0u/EiRM0WUGUPSZOnIirV5XVTZIkYfr06Zr90tP5aqjQ0NB8jx8SEqI5Rn6pXr16gfchCIIgCIIgCIIgCIIgikbTpk2xadMmxMfHY9euXbh69Sr0ej1iY2PRtWtXVKlSJV/jPPnkk3jyySfd9ps6dSqmTp1atKQ1aNCgAZYtWwYAOHfuHE6cOIErV64gJSUFVqsVISEhiIqKQtu2bVG7dm2PH5/wDsnJydi2bRu72T958uRCT1QAiu9DeHg4m9A6efKkVycrduzYwSYWJEnCK6+8UqTxdDodqlatinPnlKp29X5vcUKTFUSRmD9/PmbPns3+fumll1x6UWRm8hJ/Pz8/zT5a+Pv7a45BeB9r8g0Wl6F1I0QxEFSN+9LcPnkBAHD9p69ZmyjDlJmgSFNEtG3B2kSJCn1EVRabdvwOADB2LvxKAABIOsErqpzFZBwJDfR306PoxHRuBgAIeYpP5ibN4l8idHrlFZa18APWdmn9bhbrffjHtc2qSJzU/47L7xFEgRDknuBCpskt7vq62W66JVQ9qpJSLvqq8k8O0k6ivI+6v9WFPFFBcmUyUEI24uPlsJ/zJ6OYo6x1Xm5ksxwQzzG/+7gaX81FGFMuwCpLSSOXXOFQ4rc6fc3mAADzjQt8f0HmyeG87DJMckGuPXfyV+KKTXePt56PpUpViTJUQQHe/3woMvbnUfzOJn7GSj6K7IAtW/s7tKTn10HG1Zv2Nv5Y+frysUzpyg9h/2j+HUA8VoHeQzTwv59rQVc6pMhJ3j4Wz9r8Ivhip+wbfEWrwU85x+zkHL7/XZEslu2fm1YTvx5EmShVljE3zY1kG0EQBFEk4uLiEBcX575jGaBOnTrFvtqc8A7bt2+H1S6Lqdfr8fTTTxd5zKioKDZZcePGDTe9i4aqRAMA1apV88hrLCwsjMWqp0xxQpMVXiImJgYjRowo6TS8yrZt2zBq1Cj2d+vWrfH++++77C860hsM+b/0xL6qBltBEI2N8kNCQgL5YhAEQRAEQRAEQRAE4YxOV8ZkoMiThyBcce2a4sklSRJq167tcKO+sIhqMoVRiCkIN2/aF5tIEqpWreqmd8Gx2dx4AXoBmqzwEg0bNsTcuc7md+WFw4cPY8CAAcjNVVYg1a5dGytXrszTNCYgIIDFOTk5Lvvdidi3MFp/sbHu1lUTrhCNkXM3zgMA+PYaXlLpEKWI8HEfsjj73XEAHFdiGiMqsVhtt2XyD2lZMAIVKao5p0rz39ew+J9e3VncceMWj4xfUMSKCpWI5z7Oc5/IxJdZfPPgGRabMpWJ38ODudmXeL4E4Q7H1fXCV0GtH91CVYFb02rNg4mr+/lKZsnKFzCoZtvmRL4qyMFMWwt3K+YLUoEgxurjIbtwzXZzY0LLsFmsGnCoUFBjFwbbWo+3nB8zbi20DNNdnSPrK2wXK03s7b5S3sf3iarFYmv8bT6UVbj+1GO5eFwLYyKu+RgD/Ll19XhrVbKUUmQLf/1I9tPSBYfx7bn8u7NV/bwVDbb9tL9PqxUI6v/K+EKlib2q0rdtH9ZmieSr93RB+Zd5dYdaoXnj4HnWJpptp1zksWx1vpbNmfwx8Al0ruiWxMqKMKWCJrZbk3znJ75fqe9hBEEQBEGUPW7f5t9TK1WqlEfP/KPeKwUAHx+fPHoWHV9fXxYXZoG3FklJ/H5NRIRn7tEUBJqscEFWVhb+97//Yfv27bh16xbCw8PRunVrPPbYY16ZqSpLnDp1Cn369EFqqvIjISYmBuvXr3f7uAQFBbE4Ozs738dTtdfuHIMgCIIgCIIgCIIgCIIgCKIweKMKQpR+ioyMzKNn0YmKigKgmIN7wl8iJSUFly5dYh4e6vjFSYWYrDhx4gR+/fVX9vfIkSNRq1Ytl/137NiBRx55xElXbOHChZg6dSo+++wzjB492lvplmri4+PRu3dv9thERkZi/fr1+TIPEmfjEhIS8n3M69eva45BEARBEARBEARBEARBEARRGCpXVipHZVnGxYsXYbPZoCuCdNrly5cd7nnGxMQUOce8uOuuu1iclJSEkydPFskgfO3atUz6SZIktG3btsg5FpQKMVnxzTff4KuvvgIAREdHY8qUKS77njt3Dv369WOzaZJQ9i7LMjIzM/Gf//wHkiR5xHSlLHHlyhXcfffduHJFMcUMCQnBX3/9hUaNGuVr//r167P40qVL+donMzPToSRLHIPwPrq7OrDYV4iJ8oPl6gkWG6o1LNQYqlTDrSNnWVtILV5p5VdTMR6zCtJPDuafvtzAVJSKyi/xE59gcWaC8n7RZP4q1pabpl0KmTZX+SzQkmgqbra27wQAMPjxj+WGQzqx2D8qnMW6ZOUxEg22zXtXsNin7UCv5UmUDwwx/LPUQW5Jw0jaQYpIy8DahUyP7MaoWhzXcu0UAMBHyMuSwKXPZC0JIy0pHyEXB+klLbkkF2OpUkCiybKWkbYD7jSr3cotuZCkEvVh1R9MrgzRtc7RjTyWK9kjZrwt5C1ZcoXtyuPsF5B/aU7Zh5enS4KEkZq3LBpdu5O3EvJmfV3JfonXhMa16iBJZd9uCwh36lfa0IfzFW7MWFvwhpP8+XOjsz+fsonLIsk53GxbtvLXZUBVRfrAksOfb/GzW++vSLpazh9hbb61WhTqHNwh2a95UWLSJ5B/XzAGculZm122SqeThL78e4beT7n+RHkro7Bd/DzNL/pMUc6yZGWgbGd3sVhH39cJoliQdDr2PlUWKEu5EkRx07x5cxZnZWVhx44d6Nq1a6HHW7RoEYv1ej06dPDuZ3ObNm1QqVIlZug9Z84cfPrpp4Ue75NPPmFxvXr1SkRdqEK8Y61atQqy/QfX448/nqe584svvoj09HRIkgRJkiDLMvsHgLW9+OKLBTZuLsskJiaid+/ezGU+ICAAq1atQuvWrfM9RsOG/EbozZs381VdcejQIZdjEARBEARBEARBEARBEARBFIZ69eohLi6OLVb/7LPPCj1WWloaPv/8c3ZPuW3btggODvZUqprodDo88MAD7N71V199hYMHDxZqrHfeeQf79+8HoNz/fuKJJ9zs4R3KfWXFjRs3EB8fzy66fv36uex7/PhxrFq1ik1IREZG4sMPP0Tnzp1x69YtfPLJJ/jjjz8gSRKys7Px0UcfYdasWcV1KiXG7du3cc899+DUKWXlo6+vL5YvX44uXboUaJx27drBaDQyw5dt27Zh8ODBee6zbds2FsfGxuZLboogiPxT2GoKkdBR7wIAUl9/irUlHeGrtUPiFN8Z3ypVWJsuRJB0E8w7dX7Kqs3s5Z+zNv9BE/Kdi97ovMK5x75/NPsaQkLyPW5RUU2+xSoPMa/w2mEAAL0Pzz/lHNebtAqrXCs1rAmAV4YAgE8E18E8OVT5nLOa+GrZ+k/xagv/+58t3EkQ5RJJq1pCRDQgFlehG4xO22U9X+msudJdqEBwKGyw/yFWUzgYI+udj+WA/VhuqynEMVxs1zR0LoiptStTanWzmKMaaFUKALyaAsJjK+yvOVZBTLfFx1gcy15FIT4WDs+t/RimZC7TKRv4KnVfweiZIe5v5u9nbqsoNKpPtAziHfJzVemiPjdihY9w/dv8lB+SmvmXMnzaD2KxeeEHAAC98FnqUMtjN9YWKxrFx8CWmcZi3zDlMbDmCI+LmT/ePvaKDn1978sBqFWPmT91Y23mTO55Zwzi53v7rLKSsFqHGnx/ocIz/VIiACAoht8sqNSgJh9393IAQOJqXpUZO21OnvnpardxfxJe5sy4RwAAdSa+WsKZEARBEETZZvjw4Zg2bRoAYMWKFfj5558xYsSIAo1htVoxfPhw5hshSRKeeeYZj+eqxZQpUzB//nyYzWaYTCb07dsXK1asQPv27fO1v9VqxeTJkzFjxgx2TzwsLAzPP/+8lzPXptxXVhw/fhyAIuHkTmtr/vz5Dn2XLVuGkSNHon79+ujcuTOWLVuGu+++m81WLVy4kOl4lVfS0tJw77334ujRowAAg8GA33//Hffcc0+BxwoODkbPnj3Z3+rjnRcLFixg8YABAwp8TIIgCIIgCIIgCIIgCIIgCC0mTpyIqKgodqP+6aefxscffwyr1VkmV4uTJ0+iV69eWLlyJauqqFevHh577DEvZ65Qs2ZNTJ48md3PvnnzJrp06YInnngC69atQ1KSIl+pqgZZrVbcunULu3btwvvvv486depgxowZ7H63JEmYOXOm16tCXFHuKysuXLjA4tjYWAQGutbXXbNmDQBl9qtLly7o3LmzU5+3334bGzZsAKBUHBw/fhxNmjTxbNKlhKysLPTv3x/79u0DoJQW/e9//8PAgYXXQ3/yySexdu1aAIo818GDB9GyZUvNvitWrGCTJAAKPKtJEARBEARBEARBEAThUSS9e8+q0oQ7/y2CqOAEBgbi+++/x4MPPgibzQar1YpJkybh66+/xtChQ5kEvnojf//+/bh9+zbOnj2LjRs3YuPGjQ4WAv7+/liwYIGDD7K3mTx5Ms6ePYt58+ZBkiRYrVYsWLDAYRG4eg59+/Z1agO49cGECRPw+OOPF1vud1LuJytUgxFJklCpUqU8+x0+fJhdSI888ohmv86dOyMoKAgZGRkAgKNHj5bLyYrc3Fw88MAD2L59OwDl8fv+++8xZMiQIo07ePBgvPfee/j3339htVoxbNgwbNiwwcmw5cSJExg7diz7u3///vkuXyIIomSo8cFcFluuHGPxxY/fAQD4Xr3J2io14pJuhhhuTGnLVQxAb+37l7VVH5T3cXOSUvlxcxS5it338Cqu9us3ae4X8PDEvAf2ILX7NgPATUDvpOmvq/Pc/+xzXDKv8oTP8+gJNB04HoCjTFRBpJ+up3Lj1Sqh+TfQJcoOlqsn+B+ivI6WubNouu0gFeQsH6UlK2e+cUE4lmDY7CAvpYylKcF0Z14aeat5uZQUEmWWVANtV0bVzBjcjdySw/huVlw5/EjRkJQSjyU+BhpSWrILI2lZI+98SyyJuYibXRh/q8eSzNyw2eF6cCOjJPvy9xXJpMj6yAbR0Nz5HB3MwMWqZr3G4+HK0FwdS5B+kg2C8bcpW6t7qSf3tvIZGFSLv/6Y6TYAyc/+eAvPkSQ83qI8lGRTZBtFGcLg6tzM2ydSudY9ISGZX0yZZs12YzDP25Sh9MlN5p9fKSbuLWi1S1lFNqvD2oKbcDNNnf2aDRekoS5PHsVi0Zhb/K5T0uiMyvuFrk67Es6EIAiCIBw5efIkdu7ciYMHD+LWrVtISUlBbm6u+x0FJElii8WLg/vvvx9fffUVk26SZRkXL17ERx995NBPlmVMmjTJqU29n+zj44O5c+e6XJjtTX788UfUrFkT7733HpuAECcixHxF1EkKSZLw/vvv47XXXiu+pDUo95MVWVlZLPb393fZb9euXQ5PYJ8+fTT7SZKEuLg4tuL/5s2bmv3KOjNnzsTff//N/g4LC8PChQuxcOHCfO3/+OOPa87C6XQ6zJkzBz169EBubi5OnDiBli1b4vnnn0fbtm1hNpuxdetWzJ49G2lpioZuREQEZs6c6ZkTIwiCIAiCIAiCIAiCIAjCo/zxxx/48MMPsWfPniKNI978L07GjBmDOnXq4IknnsD169dZDnfmI97sV2WfZFlGdHQ0Fi1aVGCPX0+h0+kwbdo03HvvvZg+fTrWrVun2U88L/X/nj174p133kGnTp2KLV9XlPvJCl9fvmIqMzPTZb+tW7eyODIyEvXr13fZV5SSUissyhviJA+gVJ6o8k35oUOHDnlumzdvHoYPH47c3FwkJiZi8uTJmn1DQ0OxdOlS1KlTR3M7QRAEQRAEQRAEQRBEsSFJmpWApZYSuOlLVCysVivGjh2LuXOVCkTx5v6dN/bvxN324ubuu+/GiRMn8M0332DWrFm4du0aAOdqBBVZlhEeHo4XX3wRL7zwAkJCQoozXU06deqEv/76CydPnsSaNWuwbds2nDhxAklJSUhJSUFAQAAiIyMRFxeHnj17om/fvmjVqlVJp80o95MVYWFhAJSLR/SvuBO1ikD1q8gLcdLDaDQWOceKyODBg9GwYUOMHz8eW7ZscXrR6/V69OvXD19++SVq1qzpYhSCIEorhtjGLK7aSZFauL6Le9DcOnSaxfqTF1gcXCMaAGDO5HIcBwc5V7r5hXP5h9tnkp22+4bw9+bNbTqyODeNl57ee/pA3ifhQaJf/bJI+9816/cC7xPy1PRCHasM/ewqt1iunWKxIcb14onCIpnzUYJtl/1xJQXEmnz4ohBLwhm+wS7b40qKSFNyqrAXnyoR5OqmgYaEkUsK8gNJ69zEFVd2SScHCSPNY7qQYxL305DIcivzJKI+n6IEkjimhqyW1v4OuQjyV7KBj5WQonxPrhrGF/cYqtZlsfnmJX4od9JL9uOKuUoWvg+TovLhnwkuH0/1MRCvf6GvmGNZwmY3frSl889CfUQVvj0zXQlEbXUXOuvWHOX6CKtTjbWJEkh+/cYVOd+CIn6ey4IEmPp9AQCi05XrwJTJr+9q3bnMU8YVpRLe4CfIfvnz61POVq5ZQ2V+3n4RSSwOqsPlKksTKeeVHA8Pvo+1Nf99TUmlQxAEQVRgXnzxRfz4448AnFft5yU/lJ/tJUFoaCgmTZqEV199FYcPH3Z7s79du3YwGErfLfYGDRqgQYMGmDBhQkmnUiBK3yPpYcQKifT0dE1D5/j4eOzfv5+9QHr06JHnmLdu3WJxaGio55ItRUydOhVTp0716jGaNm2KTZs2IT4+Hrt27cLVq1eh1+sRGxuLrl27okqVKu4HIQiCIAiCIAiCIAiCIAii2NmyZQu++uordk/VaDTilVdeweOPP45atWrBz8+Pbfv777/RpUsX3L59G8eOHcPGjRvx448/IjExEZIkoVGjRpg/fz6aN2+e1yGLDZ1Oh5YtW5aI/0RFptxPVrRs2RJGoxFms2K89uGHHzr5LnzyyScAeJnSPffc43K827dvIyEhgb3QaNV/0YmLi0NcXOlcsUQQRNEJePR1AEBM6HesLTv+PIszr/PVi7eOnAUAVOnCSxAjmqSw+Pru4wCAoGqVWZskGKzePKasnqzRqwlr2/UpN+Xq+7u25BzBiSJT7RLH5s8XQoir0H0q1/DMAXLSWSgJlREOaK2utzhXZOhrt9Hc3XLlmDKMVgUFAFkvrJSHvd2dQbYrM3B1TO29IVnFCgXlvGRXptbqai6hwMJldQnrK3bWMMUWqwKsglmwZmWGi8oPLRNxN/trGYO7qixxGNei5Cj7apt9S5YcpzZ9Gl/V71u5ktP42TncjNtH4zoSj69pMi4+90LFiYMxN2vUrk5RrwN9rRbO+5Rh1GoD07WLrM1t3bdYWWFzvo7Uz2IAMAbzz4TwQmVYNKq2rcViScevuci7e7PYJ3A7ACBxH6/atGTz60x9jMQqEdFk3JalvCdak66zNrEK49Kfm1lcf+D4Ap+Dt1C/61Se8HkJZ0IQBEFUZD744AMAyj1Vg8GAlStXonfv3i77G41GVKlSBVWqVMHdd9+Nt99+G5MnT8ann36KEydOoFu3bvjzzz/RtWvXIufWq1cvFn/66ac06VBGKPeTFUFBQejXrx+WL18OAFi8eDFGjhyJcePGwcfHB7/88gu++eYbNvnQokULNGjQwOV4e/fuBcAnNvLytiAIgiAIgiAIgiAIgiDKEZKujHlWlKFciTJFZmYmNmzYwO6pjhkzJs+JCi2MRiNmzJiBOnXqYNy4cUhPT8eDDz6IY8eOITo62v0AebB582aWW3Kys3y0Ck1qlC7K/WQFAEyePBkrVqyALMuQZRk///wzfv75Z4c+6uTDq6++mudYf/zxB4ujo6OpsoIgCIIgCIIgCIIgCIIgiArFrl27YLX7Z0mShP/85z+FHmvs2LHYuHEjFi1ahOTkZLz11lv47rvv3O/oBtHs2xX5ndQgiocKMVnRqlUrvPvuu3jjjTc0jV4kSYIsyxgwYAAeffRRl+NYrVYsXbqUjeHOiJsgCILg+PUdw2Oh3TBvKotTz10FACT/y416Q+Kqsrj6vZ2ctldp14jFaVd2AQBCW7VmbQGVdrJYtnJDWBVRnsTfz89pO0EUN8bwvD2bTCk3eN+wqAKPL0qpOCBKFKkyMYIkj2hu63IMO4bYxgC4HBQgyD1BW8ZJsgjH1wsyNRomy7KWibIoVeTC1Jrtp2FY7YBgHl0g020BloNgFOiQlzuDbHerIDVMsR0eF1ESSm1yaeYtjqVxvoIxNzOoFqWEBGmnQEl4Hu2I760mX8F4OztVSUXMxcD7ynpFqkdn7+eUt3rNGLTfu2WjcKyoWpp9yjqmtCwAgG9YMGtTZY0AQPKzPwbiNS2+1oT2tPgEAIBfBJeii502x5PpFpioNo1ZLFv4dagPDmOxxW4Mnnkji7WlXeCSTuH1qgMArCZ+3rb0FGFcpV0njOkXGMLi7L8Psjhj/nQAgH/rnjyXBkWXqcgvNz55gcWyhoQXQRAEQRQnFy9yGcrQ0FA0adIkj95Abq6zHKjIm2++iUWLFkGWZcyfPx9ffPEF/Ir4G93dRIVKfiY1iOKhwtSCTZo0CXPmzEF4eLiDu7wsy9DpdBg9erSTl8Wd/Pbbb7hx4wbbv3///l7NmSAIgiAIgiAIgiAIgiAIorRx+/ZtAMqEQI0a2v56BgNfJJQjLBTUolmzZkz6KScnBzt37syzvzuCgoLYPdz09PQ8+5bGiQq9Xl+i/8TnrjipEJUVKqNGjcITTzyBDRs24PTp08jOzkZMTAx69eqF2NhYt/ufOnUKDzzwAPv7/vvv92a6BEEQBEEQBEEQBEEQRClClnSO1YylnLKUK1G2sFh41XBgYKBmn+DgYCQnJ0OSJNy4cUOzj0hsbCwSExMBKPdhRT+JghIdHY2MjAwAwJ49exzu6ZYFxMX2FYkKNVkBKMYt9913H+67774C7zt9+nQvZEQQBFGxCR4+lcU+634AANzasYu3RXJTLb9+4wAACVuH8LYILtXgG+ILADjw7g+sTafnKyTOzFnA4sz3vgcApF/L0MwrprUixdNo3sp8nglBFA+FkX4SkUUJGIuzZI+C0i4Zedm1O+knEVX+SWfK5sd1Jb2kfgkXVjOJP6qZZJQ72SR32130FSWpNH8OuPqNoOYo/oiwmTW2C3m5it2hdZNBQ9LJ1bm4ksXinYXe9udBsvCVb1J2Gt9ul2YS85dNQt8cZdVajt7I2vz8/fl24ZrQkvDSuqEi+wjXoSBXxs4rh6+Uk43CsZxGKr/kpvDHQO/ry2LJ4OPUV5RAsgnvAernaeUJn3shw8JxY98xzfZaQyez+PLE9wAAmYmZrE2UfTRGVAIA6CO4rKQoI2XLUfaTs/n+lsTLLPaP4DdfDs5aCwDo+s+U/J+EB4maOJPFiTOeBwCcfHoQa2vw/fJizoggCIKoyISGculIdVLgTsLCwpgPhCgb5QqbIHOYkpJSpPzat2+Pc+fOQZZlzJo1C/feey+6detWpDGLG9W6oKD7uMKd3FVpmCCpcJMVBEEQBEEQBEEQBEEQBEEQROFRpZ9kWWaSUHfSoEEDxMfHAwB2796d53hWqxVnzpxhN9N9hQUYhWHIkCFYsGABJElCeno6evbsibp166Jx48YICQnRvGn/8ccf45dffinScVUkScIPP/zgvqMLunXrVmB5qrNnz+Lq1atOkxzVq1dHREQEAgMDkZmZiaSkJFy+zBdnqMeJjY1FnTp1Cp2zJ6DJCoIgCKLU4NdnFAAg1v6/K+rM/I3FV6eNZXFIjUgAgDGQm7GGxvLKi9QrfHWw3qiYwxr8tT8KbVZlRcflyTyX6u8W/osGQRQG0z9L+B92I1xj58FFG1Qw1HUwnRfNWu1VFA6rskVDZXuVhO3cHt5Upx2LmQmzYLwsiS81YdW+rJojC3lpfSUXDbohVHmwig1xpb9QxSFZhRxUs24Xcghspb6blf4OfTWMrgEA9u0OFSVaxuJWF2bgemE/9ViuqlM0DLalglRxOPRVjylcJ+K1YbGbGAvXg3gdGVKuAADM/nylncOh/AQjaPt1ID4GkmDmLUOpzhCrMTRNxB2uU/4YGarW1cyhPOFvN8NOOnaetQXWcJa3lQL4ZyGEygqxYiqo7l2eT7CI1ProZ7d9LNnK9WOzaq8EFCt/GA7vZ0psy+EG3frQCBbbzBahq/J4mXcvZ20+7Qe5zdEbZCcp32mSTiaVyPEJokIj6bSrHksrZSlXokzRuHFjFl+7dg0ZGRkICgpy6NOiRQusWbMGsixj+/btuHbtGmJiYjTHW7ZsGavQkCQJVatW1eyXX+6//3706tULGzduZDfvT58+jTNnzjj1VW/sr1u3rkjHFMcr6mTF5s2bC9T/vffew44dO9i5Dho0CE8++SS6d+/uUAWjkpqaii1btmDu3Ln4448/IEkSEhMTMW7cOLz++uuFzruo0DsWQRAEQRAEQRAEQRAEQRAEkW9q1aqFKlWqsL/37dvn1GfQoEEAlMkHi8WCcePGOXhdqJw/fx4vvPCCQyVB586di5zjkiVLcM8997DJiNJopO0JXnzxRUyZMgVWqxUxMTHYtm0bli5dioEDB2pOVACKjNfAgQOxbNkybN26FTExMTCbzZg8eTJeeumlYj4DToWdrJBlGXv37sVnn32G0aNH4+GHH0bv3r3Rq1cvHDx4sKTTIwiCIAiCIAiCIAiCIAiCKLWIBtirV6922t62bVs0bdqU/f3nn3+idevW+PLLL7Fu3Tr8+eefmDRpElq1aoXr16+zioRu3boxmamiEBoairVr1+LPP//Eo48+iurVq0OWZYd/InduK+y/4mTZsmX44osvIMsyIiIisHPnzgJP9HTp0gXbt29HZGQkZFnGzJkz8ccff3gp47ypcDJQZrMZX3/9NWbOnOlk7KK+IFTjlzsZO3Ys1q9fDwCoWbMmNm3a5PV8CYIgiLyp9va3LD415iEAQEgtXi7qG87LUDNu8Mnodn9tdBprfcPWLL68Q5EykW2CzqMH8i1LnH1OkRu6a9bvJZxJxUUSpEp0VYumHWo5rJQ0Sz7c+NhhXZHeWdZHlP+R9FxqR1e7DQDAenKb5rH0ca2ctouyRKLBry6kkr2DsIbGKkg6qe0OEkui9JKGxJGDNJNwlvbzkhwkr/jKLi3JJ0kwinZAQwbKweDaPpbY5mB0bdPKm7/fiNJIssHoeMz8IPbVMLJ2JQkhyjAxBKkgW2aafUircz9wU0QpUjDSBpd+ksyCGbd6jqIEmEU4vhtjcdVMWzZwPWOfqFqaeZVXwsd9CAC4NPg+1iYZuSG5TpUzEt5LJH9uGG1JusXbdYKRehkiMFo5H1XeEQACq3IZJ516vsK1pZpqK+2KybgoiWVN5dJKOh/+k9k3RHktHp72JWtrs3pQEbIvPD4ByvNss7qReSMIgiAIL/LQQw9hwYIFAIBFixbho48+cqpemDVrFnr06AFAufd69OhRvPjiiw59RONnHx8ffPTRRx7Ns1+/fujXrx8AIDc3F6mpqcjJyYHNZkPt2rXZsX/55Rd06tTJo8f2NlOmTAGgVI3MmDED1asX7s5FzZo18dFHH2HUqFGQZRmTJ0/GAw884MlU80WFmqw4e/YsHn30URw6dMip/Cc/s16PPvoo5syZA0BxsN+9ezfat2/vvYQJgiAIgiAIgiAIgiCI0oMkOS6GKO2UpVyJMkf//v3RqlUr5OYqPnFaq/q7du2Kr7/+Gs8884zmfVhJkpjPgo+PD7777ju0a9cO3sLX1xdRUVGa26Kjo1GzZk2vHdvTHDt2DMeOHQMA+Pv7Y8iQIUUab8iQIXjuueeQnZ2N48eP49ixYw7eJMVBhZmsOH/+PLp06YKbN2+y2TqxNOdOl3QtevXqhfr16+PUqVMAgIULF9JkBUEQRCkiJE6pqDD48ZXQAdGRLI5pz1emX3htBAAg+VQCaxNXVfoEKmOE1or2TrJlAN+wYPedCK/iSeNWQ/M+AADb6R2sTXaxUF+s6FARDbRV9A26au5vPb5ZCcTV9z589bvkIxgia5g/y1pG0g79BCNpDYNqR3NqYdW+arAtji9Wj6gm3sJ3QvHboaRlVG3VrjCQ1IdQzE98PNQKAVeVF1pVBVrG4gBke/WHuL9DhYLG/o7JilUrzucj21eeK+landogxkbnxygni69i96vMy/kt15TqCyk302kfgFdhqBUUAD9XAMgNVjSSgwL8UdHR+wjXhmAoLecqsS44jLWJlRfmTLECpmzS/Pc1AIDd9/Rkbf6Vw1mcdeUaACCsRzPWZrl1ncW2jBQAgPlmImszCNeUaqoNAAZ/5XUX1bI2a7v0+lMsrvHB3MKdRCGIfHkGAKDa21yHOmvJJ7yD/XUZ8GjJGWQSBEEQ5R9fX19Nr4o7GTt2LOrVq4eXX34Zhw4dctim3o/t2LEjPvnkE3Ts2NEbqeaJWNlRllAfe0mSEBcXBz8/Pzd75I2/vz9q167NJkD27dtHkxXewGQyoV+/frhx4wa78GrWrIkJEyagT58+qF69OoKCgvJ1UT788MN4//33AQBr1671at4EQRAEQRAEQRAEQRAEQRBlnZ49e+LAgQM4c+YMdu3ahcTERMiyjCpVqqBTp06oU6dosreFpVu3buyecHh4uJvepYvr1/kCDF9f3zx65h9xHHH84qJCTFZ8/fXXOH36NLvwHnzwQfzyyy/w9y/4Kqz77rsP77//PmRZxsmTJ5GUlISIiAj3OxIEQRAEQRAEQRAEQRAEQVRg6tati7p163r9OHq7J58kSVi3bp2DGbjI5s2bvZ6Lt/CxV6zLsuzkzVxYxHF8xIr4YqJCTFb897//ZRMVrVq1wm+//VboB7tFixYOklHHjx9H167aEggEQRBE8VL19a8AAOnzprI2myBPYgwOYHGlZvUBALU++pm1/RnTlMV+4Ur5ZGSb4i15LE1Uf/eHkk6BKE60DJNdmSif3QXAUZJHNdUGuMyMg1SQKKEkyEypkjWSgX83E2td3UpC2XWaHCSQrGZoYu/jILckjq9lRG11UXmbrhgTi5I6EEzIYXOWeXJAS+bJRV/1fGSZ5+qQlXoONm3JKSZ/BRfff8XjqmbVllxhfOfny5rEV1npI6rwY9mfR5vwuOrMXGooJ5uft95+LNF0W5Twko2KMTIzGAdgrBTD4uL/6VR6aTJ/FYsTZzzP4rBWYQAAa/JN1iZes7kpGSwOaeuoL13WCIvjKyFDnprutN2043cWS76CCTnCADheT+knT/O+ggxU2F3KtR4QxY8VNub9QudcFBLeGQ/A8XvMvhlLWax+jwndsJe11f+Oby8PqBJzfgGBbnoShIfRSa6lFUsjurInbUMQniA//sRA/ic1SiPVqlVj8e3bt7Ft27Yi3afesmULkpKS2N8xMTF59PYOZejdtXCcOHECly5dYhfoe++9V6RZocDAQIcL4dy5c0XOkSAIgiAIgiAIgiAIgiAIgvAc+ZH8Vz2N8zu5UZpQvZTVhfUvv/wyrC489dxhsVgwceJEh7YOHToUOceCUu4nKw4ePMjioKAg9O7du8hjivplKSkpRR6PIAiCIAiCIAiCIAiCIAiiLKHX66HX62EwGLBx48YijbVhwwaH8YqKTqiAcjcRURbNtQGgVq1azJBckiTs378fDz74IDIzMws0TmZmJh588EHs378fkiRBkiR07NgRtWrV8kLWeVPuZaBu3lRKnlVXdJ0HSvUCAriMSFZWVpHHIwiCIDxL8PCpLM789V0WmzO51Iik1+NOQqoHs9iUociuBDw80akfQZRlRGkmUXpJNgkrcFTZH/8QzTF0dzmvsLH+u4GP66dIckhG7g8mm7gUkJa8lCwoGIk/FVgsSjsJskRMTkmQMpLNucJm4UeKXcIIgqwQYNbsy9pEaSVBukn9uWPL5j8EdP4FkCJRJaNECSbhcZFtzs+TJEgzycJzI1ns5yU+t2Le9mO4ktcS+6rtkvgYC+PKZrskVa7wfirICqnXl2Q1OR1fORY37FOPZQ2tqp2XfT9jaCSI/HP+ryMsbtmkEQBAtgmvjxx+zYpyRtakBABlV14rqmW9PLcn79jG4uhXv2Rx9oovAACymV+zaRcSWFzrqRFOY6Xv4WOdGfcIi+t+s7gAGRcN2ao8p7vv6cna2r39BIsPf67IXpU36ScRS/lfe0mUUmRJB1lLzrGUUpZyJcoenq5G8OR4oaGhSE5OhiRJuHXrlsfGLW188skn6Nq1K6sOWbVqFerXr4+33noLjz76KMLCwlzum5KSgt9++w3vvvsuEhISWIWGTqfDxx9/XHwnIVDuJytycvgPKU+5oqemprI4JET7RzxBEARBEARBEARBEARBEER5prRWJcTGxiI5ORkAsHbtWjz66KMlnJF36NixI6ZMmYKpU6eyyYZr167hmWeewQsvvIBmzZqhSZMmiIiIQEBAALKysnDr1i38+++/OHr0KMxmM2RZdnge33rrLVaxUdyU+8mKypUrs9gTs2hWqxWXL19mf0dG0kovgiCI0kzg0Mk8Ftoz5ivmm8nfTGJtBj/nj0XLwb/49pZ9PZ9gAbFcOebUZoituCbgRMExX+LGsaIxslgVoK6al1wYbGuhb3K3U5v1JF99LOeKlRV8lbcuUKloEld+Ow5iX8kvmnXb+GIUViUh5ipWKIhj6ZwrqmDhq6ll+3aHqgHBiFesRFGPqzMK1RbCOWhVaThUtai5OFRTuKiysFe9OJh5i1q0auWEWE0h4mZFpWzgC3qYmbdJML0WVpyrj5e+Mvdwk4RKFcvNqwAAQ046PxX/UCFvoUrDz17NJq6gE34kGYMq5Zk3oU3HjVtYnP3nV0ogXE+mmzc097Nlpmu2Fxfi51thPtfCx32Y53bxNZm15BPhwPZqIOE9MLhGNItl4bFL/Ud5bDOu8t+VIXG8Mqg4ifvkfwCAqut+YG1+fUaxWPpiEQDH7znuHqOyRlCAv/tOBEEQRIWla9euOHr0KGRZxrx581CrVi2MGTMGVapUcb9zGWPKlCkwGAx466232KSDLMswmUzYt28f9u/f77SPWMWiTnJIkoTp06dj8uTJTv2Li3I/WVG1qvLlUZZlXLx4EampqQgNDXWzl2v27dvnoPtVr17e5cYEQRAEQRAEQRAEQRAEQRCEa0wmvkDGE+o4Y8aMwddffw1JkmCz2TBt2jRMmzYNYWFhCAkJ0awIefzxx+Hn56cxWsGRJAnnzp3zyFj54Y033kCPHj0wZswYHD9+nOXgCnFSQ5ZlNGzYEN9++y26dOlSLPm6otxPVnTq1AkGgwFWqxWyLGPx4sUYNWqU+x1d8O2337I4LCwMrVq18kSaBEEQBEEQBEEQBEEQRKlH57ZqsXRRlnIlKjKXLl1icXBwcB4980ezZs3w0ksv4bPPPnO4MZ+cnMzkoVTUKoPr168X+bgqJSGP1alTJxw9ehTr16/Hjz/+iM2bN+PGDe2qWgCIiopC9+7dMXLkSPTp06dUSHqV+8mK0NBQdOrUCVu3bgUAfPDBBxg6dKiDSXZ+2bVrF3755Rf2xN13330ezZUgCIIoPoKGTQEApP7AyxtjO9Vh8bm/lJUI8d99z9rqflN8MlC5G+exWJSmsCUrXzQc5GD0XILFULWu95MjyjR+fcewWJRC8Ym9i8Vc7qhoVrv6Bl1Z7CAJJZhSM2kkLYkmEVEWSZBAkqCswFKNn5WxNEy14cIAWziug9yR2parLYfExhLzFqWT1PyM2iuzWF6uzsuHv67V40q+/PurloG2g1m31k0UwaBbEn4FaBpviuclylNpyFfZstKEY5icxxSktsTjpkJ5bCqHFPx7OZE/dEFhAIC0g/tYm2rMDAA+gVxGR7Y4X//FibclDaMmzmRx0qxXWHz7WDwAoGqXZqwtqDqXgco9fYjFCf+cAACYMvj7TUynII/nmh9UY3BRkk0kPE6RUTs+fwdr6zzO+3kRBEEQRGH5/fffASg3+WvXru2RMT/++GNUqlQJ7777roOvsXhT/k45JE/gaePxgiBJEvr06YM+ffoAUCaB4uPjkZKSgoyMDAQGBiIsLAy1a9dGjRo1SixPV5T7yQoAePnll7F161ZIkoT4+HgMGzYMv//+O3x88v8D/NChQ3j44YdZhYZOp8OkSZPc70gQBEEQBEEQBEEQBEEQBFEGUReAu+Pw4cMwGPJ/q1mWZWRlZSE+Ph5LlizB5s2b2ba2bdsWNE1NJEnCG2+8gXHjxuH333/HP//8g9OnTyMlJQU5OTnMNkCdpIiKivKYDFRpoUaNGqVyUsIVFWKyYsCAAejevTu2bNkCSZKwYsUKtG/fHh9//DHuvtvZDFLk6tWrmDVrFr788ktkZWUBUC70YcOGoUmTJsWRPkEQBEEQBEEQBEEQBEEQRLHTo0ePPCsO1CqCiRMneuyYQ4cO9dhYABAeHo6xY8di7NixTtt0QlX2/Pnz0atXL48emygYFWKyAlBKidq3b4+LFy8CUCol+vTpgypVqjDfCdX1/P3338dnn32Gs2fP4syZMw7bZFlG06ZNMXv27BI7F4IgCMJzpJ69yuLoe3qy+MpOxQir7jeLiz0nALBlpLDYN5bLU1nskjmp+3aztsq9nyq2vIjyhS44nMWiBIzNLtPk23pYoca1XDkG4A5ZF0E2SIRJHImyR2JfVXbIwLeLUkKSzlnCSJRTErFlpitDBgZr9hUlo7SQhByYfJVNkH4SJKOgSmlZuFyMg8yU0K6FWDjOHhurKHUlyFfZx+LyXXCUgbLLP8minJMpm8e+gjyWKCWlhf25cXisNCS8JCs/V33GTZ5KZS435in5J+vloyy+HsQlA6qFa8h+VTB8eyiv4ZA29/O2oFAWi1JwAQ977gZDSXPtXa53FDP5G6ftviOnszjt0YEAgOoRVXgH4T3o9oEjLM5NVV5LoTX5e2dJkXlB+V0bOXA8a8uYz88rN015jde8uwFrc/e4EASRT6Qy5llRlnIlSjXupI2KIn0kToY8/vjj6NixY6HHIso2FWayonLlyli7di0eeOABnDx5kk08JCQkYPXq1ayfLMvYtGkTi1XU/i1btsSKFSvg7+/vdAyCIAiCIAiCIAiCIAiCIIjyhLc9GGRZRmRkJMaPH4833njDq8dydfzSYC5NVKDJCgCoW7cu9u/fj5deegk//PADLBYLuxC1LkjRKV6v12PUqFH4/PPPy512GUEQREWmxgdzWbxbqKwwZSorlff05SWg7f7a6JUcLrw2Qvl/w2nWVqdvIxYHXb3G4sAmLQAA/lF8Vae6PwDU+uhnr+RIlE9sqUks1gWHsdiaqFQW2c5zU15d7TYsNv2zBIDjSn6ftgP5wIkXAAAW+/+AY7WEWKGgmjdrmVsDQlWBsHpfrKawCWbdbLteqDoQqgls6cn2sYQVhsJ29XxsQtWAQ7WCBg6VGUK1hKTR5rCfi0oThkl4vOznIwue2mJ1CVsFbnOzclI0UBYrVUSz7jvHvCO2ZdmrUwJ4dYpoXG5JuaEEQoWGLUBYhS5UXJiSrwMAjOHCinattK+e4LmaBZNw+1iSsGK0sjVZ2JMqK1TEagqR8lRNIRIQlXflQ1AAX3jWeuV6AEDuxnmsTXw/zE3ZyWKbTblRE96wJmuLHP9pkXItCDnZvCJK67jH/7eZxY1HKN9fDs9ex9o6bcmf5jhBEARBiLz99tsut02bNo3dP3388ccLZIyt0+kQGBiISpUqoXHjxmjZsmWBPC88hXh+njL2JgpPhZqsAAB/f3988803ePPNNzFr1iysWbMG//77r8sZwrvuugt9+/bFhAkTEBcXV8zZEgRBEARBEARBEARBEKUGkoEiKhjuJitURowYUSb9HvI6v7LI0aNHsWbNGhw4cACXL19GamoqsrOzC1wdI0kSzp0756UsXVPhJitUYmNj8eGHH+LDDz9ESkoKTp06haSkJKSkpCAgIACRkZGIi4tDtWrVSjpVgiAIgiAIgiAIgiAIgiCIUoe3JaKI/LF//34899xz2LNnj0N7YZ+fkpLFqrCTFSJhYWFo3759SadBEARBlDCxXeqx+MxKxVBTNdP0NFfeHu3UVrMHN55Njb/O4sqduPxO0vZtAABLJpepyUlKzfdxLQlnAACynkvbbOs9mMWdP+Pmm75k3F3uCfi/V1ls2vE736BKH7kwW5Y0DJUt+1exmMkoidJPRi6jKZp5s+2iLJGPIL1kH0OUY7Klp2jmxRDMuh2w5+3KSNun/SAAjo+FpON5S77COajG4KLklDCW+hhoPVYi4nmJklEOhuesr3Be4rjqeYkyVMK3fNYu7iM8N7LZ+X1ONAs3J1zghwoKAwBYk2/wYwkyUKq8lCjXZAvk2yWrIDllv77MNy/x7aZMIVYkb3RmLn0j+wbxWKfxU0bDcJ2oGIhSjm1+/CLf+7HXu/CaEGXt4oS46rofAAB+fUYVNs0iIa+fw/8QjLVV4u5tzuKkI8pKyJBYLtm2tl4rFt97+oAXMiQIgiAqGqrvLwA0b948j56EN/n5558xevRoWK1WNjmRl/WBO0pyAoomKwiCIAiCIAiCIAiCIAiCIIgC0b1795JOocKzY8cOPP3007BarZAkCZIkQZZlyLIMg8GAsLAwBAaWHS83mqwgCIIgCDvWHL6S2cdP+Yg0ZWqb/nqSgMphAIC0Cwn8+IG+LLYk32Rx9g3FPDaqTQPWdvs0N+DWImP+dBYHDZsCADj08L2s7a7+jVlM1RQVF1tmOotV092c1d+wNr867VjMKhDsRtsAYE3n16lq5OzXj1fqWA7+xY+Vo2GK7VAp4CfEzpUJDhUI9tXQOqNYARHAY8GAW60AECszxIoP678bAAD68CinY7rMxSxWM/AqCbUiQ+tcHRALDYRqCocqCo3tyBQMsDXz0qhecVVxYnMey5aVxpoM0dX5uDlZSluVGrxNqMJQH09JqMqRLM6m2AAg2zW0ZYPw3ImPgX0M2YebITug5ipUWxgrxWj3Jco97dfzlZ2XXuefZTU+mJvnfsbOSnWh7ewut8coqYoKFX1E3mb0lSd8zuILr40AAOj0vNpIrLIgCKLwyJLEPsPKAnIJSbkQREkzcuRIh78lScIPP/zgtp+ncHU8TzNx4kQ2USHLMgICAvD888/j0UcfRZMmTUrEtLwolK1svUh6ejpSU1Nhs9lQpUoVGI0ufswRBEEQBEEQBEEQBEEQBEEQpZaffvqJSSDJsuxy8kDs5ynyOp4nuXjxInbv3s0mKqpVq4aNGzeibt26Xj2uN6mwkxUbN27EkiVLsG3bNpw8eRJWK19Rtn79ek33+v379yMzU1kdFxYWhmbNmhVbvgRBEARBEARBEARBEARBEAQBADt37gTAJ0e++uqrMj1RAVTAyYpdu3Zh3LhxOHJEMU690zAkr5m0hQsX4tNPPwUAhISEICEhAX5+fi77EwRBEGWL3BQug1OldTUAwNk1p1nbji5dWdzZbnRdWFLOcummqJaKsXZgtcqszZyWxWJJMIy1mRXNmJTTl1lbQETe+pOq9JNIiyVrWby5TUcWJ+zjBqWipAZR/hHlTawXDiltgoyTiOXwOiUQ5IPE/XM3zgMA5Kz7QXO7KB8Fu6STLBpNZ3IJIk1JJtFEWZQwUvfPzXJqAwB9aITTPqIMFGsTZKQcTMbFY9mNtV1az9lzdGew7coQWjQBl+2LanSCkbXNoi0/xTsIMkx+yvmIck3icXWBIfxYqmyVsL9VkKJjiJJUomSV+hjZuL6VLuMWH184L1W6S5R5krRM3d09hoRLVNPpivB+rr7vAO6ln7QQ5chKE+nzprI4ePhUV90AAPv63c3iOgPaAuDykQBgybY47UMQBEEQnsRms2HdunXYuXMnDh48iFu3biElJQW5ubnudxaQJAnnzp0rcj75NYouSUPponD9+nUWh4WFYcCAASWYjWeoUJMVM2fOxKuvvgqLxcJmnFTUcpm8GD9+PP773//CYrEgLS0NS5YswbBhw7ydNkEQBEEQBEEQBEEQBFEakHTKv7JCWcqVKNPMnDkTn376Ka5everQXpiJAE/IMsXHx3u0X2lEnQSSJAm1a9f2uJxVSVBhJit+/PFHTJgwAQC/4PV6PVq3bo0aNWpg0aJFbseIjY1Fr169sG6dsppwxYoVNFlBEARBEARBEARBEARBEESFJCsrC4MGDcKGDRvYxMSdXhH5Qe3rqSqHmjVrerRfaSQqilehWyzlo4KyQkxWXLhwAc888wx7cUiShIkTJ+K1115DpUqVAACLFi3K14vn4Ycfxrp16yDLMjZs2ODVvAmCIIjipe43i1msSmfofbj8SECkv9M+IvsH3MPi1ivXO22/9i6X1IloUovFkl5Z7ZR85BJrM2VyiRVRnirzhhIHVIlgbVFtGuSZl0j2ii8AAJaU26xN78NXW0W3qpHvsYjyi75Wizy3W5OUcmPJh8v/WPavcu6oIdEEOEoj2ax2WSBB1kgXEMw765Svq7Ipm++TmsQ3B4c7jy9IOzlIH/krckd6UVZIkDOS/BSZJVnPz0sS5IwczkcdQ/A9k8Wx7Ntt6VyCRfIV5I5UCSThvMVcxXY1R5soX+UrSNbY7LmIknHZmSzW249lSeCrxnSh/D1ElJfijXwsa1ICb7ZLRom56gL586WOa77Cy/ZtKTd4LtH8PUaV5ZL0goyVVThvg699AO3rCFryV4QD7uSfribz66RaeN6SgqUd317Di7S/u/e9ksKd9JNIxg0ugZdyTlnVenErl43se+6gx/IiCIIgCJXhw4fj77//BsCVa3Q6HaKiopCQwL9HRkVFQZIkJCcnO8hCqfdjIyMjERhYtr+PFDdt2rQBoEz0XL582U3vskGFqAWbMmUKTCYTm6FbsGABPvroIzZRURC6duV65cnJyR7RTyMIgiAIgiAIgiAIgiAIgihL/PHHH1i6dCkkSYIkSQgPD8f333+P1NRUJzmo+fPn49q1a8jOzsaZM2fw7bffokWLFqySQq/XY/bs2YiPjy/T0kzFSbNmzVC/fn0Ayn3qvXv3lnBGRafcV1aYTCb2ogGAMWPGYPDgwYUer169eggICEBWlrJq5cSJE6hTp45HciUIgiBKD+pq1L8bt2VtyedTWLynby8AQFAUX/kRfhc3yBbNuAOjBbNeO9Ft7mJxqn31o83KjWWjWtZmcczkb1h8fsJjyphV+apocyZfce4O/4HjAfAKCwDo+s8OFh8d2o/FqvF2j33/5Ht8ovyS+sNkFvuEKKvrsxISWVtY5168s72qQKxwcDDVFrFXDUjC6nyxYoMZXItVBUIlgGxvl3T8WDbBoFvsy6okxBX5orG3WlGhFyovrIKRtFCRIfnZV/0jg++fw1c1q8Xr4vFF02o1b1syrzoQx2dG1+BVDJJgTq1WgQC82sGhokTY32Lfz6FaQziWaKCtVofoArjpdtZ1XskS3kNZvWW+yhfsiFUakt1s25aewtr0lavxvqKhuf0xkM18ZZ1YicKqZvx5LlpI4nNEFIgqaWf5H+HNSy4RwiNofV5n3yj7RpsEUeqQJOVfWaEs5UqUOWbMmAFAWdnv7++PjRs3olmzZm73q1OnDurUqYPRo0fj66+/xssvv4wbN25gwIABWLBgAR555BFvp15umDJlCrMpmDZtGv78888SzqholPvKih07diArK4vN0r3yyitFGk+n06Fq1ars7ztnCQmCIAiCIAiCIAiCIAiCIMozKSkp2LVrF6uqmDBhQr4mKu7kmWeeYfL8FosFI0aMwNmzZ93vSAAAhg4disceewyyLGPNmjWYNm1aSadUJMp9ZYVYNlStWjXExcUVecywsDAWp6Wlue5IEARBEARBEARBEARBEARRzvjnn38cDLVHjhxZ6LHuv/9+jBkzBrNnz0ZOTg4mT56M3377zVOp5gur1Ypjx47h/PnzSEhIQEZGBkwmE3x9fREUFISYmBjUqVMHDRs2hE5Xutb/z507FzabDb/99humT5+OI0eO4L333kODBvn3tywtlPvJips3lbJ2SZIcKiI8hU0o5ycIgiDKH2bB6Lp2Hy77l3VDkX6JalOPtUWO/5T3FcZQzbpr92vB2nKS+GS3JUc5RqWG3Hg2/RKX17n0+lMsVuWfZEEySjxu8jeTAADh4z7M67RgFSRaRPzCuGSVTq/02dSyPWvreXB3nuMSFYOA/3sVAJA8bSxrc5A7UqWNRCNrUcbJwGWerBkpTvvLwnbJV7kmZTN/LeoECSR2DAfzaxc/HkTzZhXR3FlS9nMw2Ja5nJLNTzD+TlKqa2WTaIqtLRnF9hdMr3XBYUognKso3ZR7g0szGcM1+orHVaWshPM2CNJLqhm36ewR3iZKWgnSTJKf8njb0m6ztsoTPnc6F/PVr/h5Zabz2C7j5BN7l9M+So56p1gWHhdRKksdSy8+n6rpNgBZtpuv+zhL7RGO5GRzuUA/f270rq9J0k/llePDFfknUybJpBGEx5F07DtDmaAs5UqUKUS1mcjISNSuXTuP3kBOTk6e21966SXMnj0bsixj2bJlSEtLQ0hI3nKgRSUtLQ3z5s3D8uXLsWPHDphM7j83fX190bVrVzz00EMYNmwYgoKCvJqjO6ZPnw4AaNCgAWrXro3z589j+fLlWL58OZo2bYo2bdogKioKfn5+bkZyZsqUKZ5O1y3lfrLC15f/oMnPBZcfkpK4bm9EREQePQmCIAiCIAiCIAiCIAiCIMoXt28ri1skSUK1atU0+/j4+MBiUXzj3E1W3HXXXYiNjcWVK1dgsViwc+dO9O3b17NJ28nOzsYHH3yAzz//nPkSq1Ui7sjJycHff/+Nv//+G6+++ipeeeUVvPLKKw73oIuTqVOnMq9mQHk+1HM5cuQIjh49WuixS2KyotxPr0ZFRQFQLjhP+EukpKTg0qVL7CJQxycIgiAIgiAIgiAIgiAIgqhouFq1HxISwm6cX79+3e04oiqOt3wrTp48idatW+O9995DZmamg5RVfv/JsgxZlpGeno63334b7dq1w7lz57ySb2EQcy0M+Z248QblvrLirrt4CXpSUhJOnjxZJL2utWvXMuknSZLQtm3bIudIEARBlF7uu3BYs/3CayMAABlXb7G2SDdjXdr4L4tDYkNZnHEt3amv2KY38o9rQ6DyJdA3hq9cuSpI8ejsfRM+eJYfqxb/whc4dDIAwCe6umaOCQeusTi0ppKjTl+4LzhE+SJ01LtObaosGQAkrV7G4qDqVZz66qO5zJls5nJMkl3SyZp802kfgEsYidsNUcLKLbv8kzWdSwlJFj6+NYn/KDLEOHuXSToNSU+bhecqyC1BkE+zZfBYC5u9ryix5NjB6tyUKcrD5bLY1y6RJY6lSiQBgC1HWQ2mE2WiDPwxkNVjidJPfoLkW3AlPlbqLafxtdBHCM+xcC7q42VN5ZXI+vDK/LiiXJi6n8ZjAQCy/Xl0eA6E5xYBYQAAnyp1QOSNKP1ElF8OPXwvi4OqKp/hjeatZG3Wy3xlpb560+JLjCAIgiiXhIby37Tp6c6/aQEgPDycKdScP3/e7Zi5ufw7sDd8gv/991/06tULSUlJkGWZ3cy/8+a8JEkICQlBUFAQ0tPTkZ6e7tBHnASQZRlHjx5F165dsXnzZtSrVw/FTUlOLniacj9Z0aZNG1SqVAnJycoPrjlz5uDTTz91s5drPvnkExbXq1fPKz4YBEEQBEEQBEEQBEEQROlDlnSQy5APRFnKlShbxMUpC4FkWWaewXfSqFEjViGxc+fOPMfLzc3F6dOn2URAQIBnfclSUlLwwAMP4NatWw4VEgDQvHlzPPTQQ2jfvj1at26NSpUqOU1I3Lp1C/v378eePXuwZMkSJq+kjnP9+nUMHDgQ+/btK1Yfi02bNhXbsYqDcj9ZodPp8MADD2Du3LkAgK+++gqPP/44WrZsWeCx3nnnHezfvx+AciE+8cQTHs2VIAiCKHv4R7g3/Gq/3vnLw56+vVicmaisCPcN1da4zEnmK8aDa0QDcFz1HN6kLovNKSkAHFfBb2zWjsW97JUVhip8lbtYmRHdnK+WvrD5AgAgIIJW5FZULFdPsFhK51VE+gZdAQCmtEynfQAg9fwVAIAxmP/ACBIMn8WV8jb7CnybsGJezuVmwPrQCKd9RENm1Sxe8uFG2eKqfgejabtRs7hdJ670D1QqEyQrr6wwnT/G+wZwg23VDFsSzL4dzbaV85EMPC8xVitFJME82prjwl/NReUBG9c+hsPxfXkVhs5ekeFgpO3DqzBEdCFKlYUxNO9aMTlXeA7TkpzbRUN1o1DJJVZh2E3TZYuG8Tn44yVb+T46sbrEN9BpH6JgiK9xQ7WGJZiJ97BcUV7DhtjGJZyJ94luw1UFqr7+FQButA04VlkQBEEQRFFp3Jh/tt68eRO3b99GpUqVHPq0atUKK1asgCzL2LNnD86cOYO6deveORQAYN68eczXQpIkxMbGejTfSZMmIT4+3qGaol27dpgxYwa6deuW576SJKFy5cro27cv+vbtiylTpmDz5s147bXXsHfvXjZhcebMGbz55puYOXOmR3PPi+7duxfbsYqDCjG9OmXKFBiNRkiSBJPJhL59+2L37t353t9qteL11193MCwJCwvD888/762UCYIgCIIgCIIgCIIgCIIgSiXVqlVDzZo12d979uxx6vPII48AUG7222w2jBgxAqmpqU79du3ahVdeecWhmqFr164ey/X8+fP4/vvvHaopxo8fj+3bt7udqHBFjx49sGPHDjz//PNMUkqWZXzzzTe4ePGix3KvaFSIyYqaNWti8uTJ7MK5efMmunTpgieeeALr1q1j2mnqxWq1WnHr1i3s2rUL77//PurUqYMZM2Yw8xRJkjBz5kwEBwfndViCIAiCIAiCIAiCIAiCIIhySe/evVm8evVqp+2NGjVikw6SJGH37t1o2LAhXn75ZXz33XeYNWsWhgwZgm7duiEtLY3ddx0wYACio6M9lucXX3zh4EE8dOhQ/Pe//4XBUDTRIYPBgJkzZ2Lo0KEO95VnzZpV5JwrKpJcnhw43PDkk09i3rx5bKbrTu0xlTud0kVXeFmW8dJLLzl4VxDliytXrqB6dUWu4PLlyx4vOyMIggCAff3uZrHVrHxpqnQXNyvOSclisc3KP6Pi7msLAAh5ajpry17xBR/YbqB74MPfWFPn7dvyzGX/gHv4cZMFaRerklftvk1YW8Lusyxus3pDnuMS5ZfMXxWZMVNKBmuzmrWlfFT8K4ezWDV6B4D0eVMBANk3uLSZbOOm16FNGgEA9KKMlCgbZJcVkgRzafMFLm1jrOcs/SmaPIuSUupYNkFOSRJMqa1JCbyv/XhyFjf+E+WKVPkqV8dihuGCLJJVMBTMTeEmhUF3KdIuumD+GIpScEzeSchVjLWktBzkqQJDnNplHy7/pq/ZHHdi2b+Kxee+/YHFOSmKhFeDMYP5/hHc400XHMZiNR/xcRGfW12gsjDIQWpLz59na3AUAMAYSd/ViPLB7XT+2V8puOA63eJ3C/UzWpSBqvP1Lyz2DeKmqARBuEe8T3DuyF7EVosp4Yzyz5Wr11CnmfIbgu5xEJ5m7dq1uO+++wAAlStXxuXLl2E0OsqNHj16FG3btoXZ/nvhznuyYpssywgODsbevXs9ZlQtyzKqVauGxMREyLKMGjVq4MSJE/D395zccVZWFho1aoTLly9DlmXExMTgypUrHhu/IlEhKitUfvzxR7z11ltOkxTqC0I0VxH/qf0lScIHH3xAExUEQRAEQRAEQRAEQRAEQVRoevfujYceegj9+/dHu3btcPDgQac+TZs2xeLFi2E0Gh3us6r3XQG+QDwkJASLFy/22EQFABw8eBDXr19nxxk/frxHJyoAxQxclYMCgISEBBw6dMijx6golHuDbRGdTodp06bh3nvvxfTp07Fu3TrNfuKLRv2/Z8+eeOedd9CpU6diy5cgCIIoX2xtzz9D/MIFo1u98rmTlcRXFxsD+arnoGqVWZyTpOh7SvOmsjadD/84z7icCADITeMrtEX+jGkKAPAJ4uOH1eSrK8V2nU7J69QS/oWz1xGuQ3rp9acAADU+mKt5LKL8og9XVrQbzNyI2kfvvApYNI/WCav3rf/yqhxDJeX69skUq3p4tUHm+fMAgGD7McXjA4BkVH5oWG/ylUv6CG4UL5ppqxUGsHAja0tCPIvNt5TXT/DwqawtZx2vGhANqlVkoaID1myn7RCqRGw5fNU01MdGeIz0QjWETag0kQKUx85y/ZIwrlDFoVadCPtLeh6rFQxqpQIAyGbn6hRlR1/lP4v2ewhLP5RXgvlH8PeQKu0bOW2XLdrG4ayKQ6zy0KoOkYT1VUJfS6BiAq5tFU4QZY/CVFOIaFU8iqbaph2/8w2dBzv1JQiCIIiCotfrsXjxYrf97r//fhw5cgSvvfYaVq9eDZOJfz+UZRlGoxEPP/ww3nnnHdSuXdujOW7fvp0dx9fXF6NHj/bo+CqjR4/Gm2++ySpItm3bhhYtWnjlWOWZCjVZodKpUyf89ddfOHnyJNasWYNt27bhxIkTSEpKQkpKCgICAhAZGYm4uDj07NkTffv2RatWrUo6bYIgCIIgCIIgCIIgCKIkkXSOE+mlnbKUK1GuqVu3LpYuXYrMzEwcOHCAyTJVqVIFrVu3RkBA0SbtXXH06FEAyuL0Fi1aeM2DOCQkBC1btsTu3bshSRI7LlEwKuRkhUqDBg3QoEEDTJgwoaRTIQiCIAiCIAiCIAiCIAiCKNcEBgYy0+3i4NSpUyzu0KGDV4/VoUMH7N692+m4RcHTlSb5RZIknDt3rtiPW+4nKw4ePIj//e9/7O/HHnsMbdq0KcGMCIIgiIpKt907WbyjC/9ypkpCxXRswNrSLnAjX/+oMBb7BCqSN/rAINYmyr3cOKh8mfAN8WVtBwf1ccpF3J51SzD0rFuJxarZduXGkawt4YNnWazKP+3s3o21OUhKBSrHCKjC5WCqvf2tUy5E2cOv7xglcCGRZEtTpJdsmdx82px0i8U+1UQDa2W1n28lfu2IptRMciq6JmvT1Xb+LqfVBgCWa/xHwu0FXwMAjCF8fFMal1/TGZWvxuJaK9HI2prJDcUNYcprRRciyB0Jkk62jBRluyBrpPPjq8VsdmkkVeLpzmOZBVmsq38oZtbh9WqwNp8QYayECwAEmSsAuqAw4SQUmSc5V3jcfQUpOlHeyr76UnazCjNrt7acqk9YmGY7SyU9hR/K/jxLvlwz2MHw/I6cAMDmw887wN9Zlosgygtr6ymV/feePpBnv6vJ/DVTLTwwj56AkaSfCIIgiAqI6lcBwKNeGFrUrVuXxQkJCXn0zD8XLlxgnh7FyZ0m6MVFuZ+s2LJlC/773/9CkiTo9Xq8/vrrJZ0SQRAEQRAEQRAEQRAEQRAE4WVu3eKLpkJDQ/PoWXTC7At3ZFlGUlJS3p0LSHFOHhT3xIhIuZ+syMlRVpDJsozY2FhUrlzZzR4EQRAEQRAEQRAEQRAEoQF5VhBEmSI7O5vF4eHhXj1WmFBlnJWV5bpjASnJyYPiptxPVlSpUgWAMvsUFRVVwtkQBEEQhDM6vbJC4vaJi6wt7K5qmn3NmcoXLZ8QLh2Tc4OvFEm5kAoAyE0zsbbO27exuKWbXM4+xyUiZKsNAJB+jUvfpFw4xOKq9mLFmr0asrbk01dYXPebxQCArEUz3ByVKKv4xNZhsfmKs56pZDCy2BDA5ZBsJi5HpK+sXOuW5Ju8r8GHD2KPXck8uUM2cMmz1HNXAQDR7RqxtrCOnVl8+felAIDAP7/i+wu55qak87x9lXF10VyayZrFZa9ksxmAo6SVAznOP150gfx1nXGVPx6yTXktZt3gMlHBfvyxZfuLEkoBXMxKlX+yCjJQeh2XjIIuR4jtz5O/IE91bg9P+9BWAIBPdHXWVjmQH0t9PkVEmSlR8klSn2fhJoqcy39MsjYTb9PbLMKWOk59iYrB/gH3sLj1yvUlmIln+btxWxa7k39ScSf9RBAEQRDFweXLl3Hw4EGcP38eCQkJyMjIgMlkgq+vL4KCghATE4M6deqgZcuWiImJKdbcTCYTq0rw9fV107toiOObTKY8euafTZs2eWScskK5n6wQXwC3b98uwUwIgiAIgiAIgiAIgiAIgiDKPmfOnMG3336L5cuXIz4+Pt/73XXXXXjooYcwevToYjGPlmW5xPwXPEH37t1LOoVipdxPVnTu3BkBAQHIyspCfHw8bt++jUqVKrnfkSAIgiC8iKTnX5ZCaiqfS1k3+KpsSTDq9Q3jq5ZVM+CshETWlnL6stP4OmH8zW06srjHvn8AAOa9K1jb3omfsDiub1MWRza7CwAQNuZ91nZqzEMs3mZfkW7J4SudxfhGs3YAgF5H+Kpsonyhb9SDxZYbV1ks2ysMxFX2vj2G5TlWyna+Yii8+8MsNsQ2LlKOPlG1WBw3+R0AgC47VbNvUDVFLjT50L+sLbQOPweDH18pZc3NBQD4hXOJUctN/hioBtaSYLAtVhjIdrNt2WLmCdiNsAHH6qrcZKW6yZTOqzHE131YPaXKIfMKN/ELFs22/Z2rMCQfXr0imlpLQnUHb+TvR4aoWOV/obJCrKphxt72ahAAkPT8MYAvXwUu59qPK5y3Q18VC1+VpmvQ1Xk7UeEoT9UUe/r2YrHVzF8LqsF26+d6srbI8Z8WX2IEQRAE4YLExES88sorWLBgAWRZLrBE0ZkzZzBjxgx88sknGDFiBD788ENERkZ6KVuirFHuhesCAwMxcOBAAIDNZsP//ve/Es6IIAiCIAiCIAiCIAiCKJOonhVl6R9BeIht27ahefPmmD9/Pmw2G6ta0PoHwOU2WZZhtVoxd+5ctGjRArt27SrhMyNKC+W+sgIA3nrrLSxduhRmsxnTpk1Dv379ULdu3ZJOiyAIgiAIgiAIgiAIgiAIotSzZcsW9O/fnxlHqxMSYmVFUFAQIiIiEBYWhqCgIKSnpyM1NRW3bt1CZqZQzSvse+3aNdxzzz1Yt24dOnbsCG+SmJiIS5cueXV8omhIcgWxE58/fz5GjBgBm82GqlWr4ueff0bv3r1LOi2iFHLlyhVUr65IG1y+fBmxsbElnBFBEOWdE08pFYCi3ExIXFUW20xcWun2ScWE+8wKLlPjE6hhtCvIQEk6HlvNijSLKgcFuDYqzd04DwCwb8ocYX8uUWHKUORroptxGZymv65m8Ua7DFTH6UNZm6Ezl/fxqcyNiYnyhfX4ZgCOMlGlAdvpHcr/AWGsTTLnsth0dDsAQBfCJZRkwTTbr984FqfPm6rsk8Z/dPkEcvPonCRFaiqkCZexsqWn8OPaZZhkK39NZcRzaSdLDpc+StynyCwZ/Pk6o4AoLtekGoab07hMlCGQS04FD1dyVZ8XwPG5uTptLIurDh2u5BrIZVMlQYZJX7O5sl0w3balcV84dl5mLm+lEwy4ZaNgBpyjGJaLptqiAbfaLoVwWQB9XCsQREXg4KA+AICWy9eVcCYEQQCO9wnOHTuM2GrFaxBcFK5cvYY6jZXPb7rHQRSWa9euoUWLFrh165bDRINOp8OAAQPw0EMPoX379qhXr57LMU6ePIk9e/Zg8eLFWL16NWw2m8NYVatWxcGDBxEVFeXR3HU6HavmKC7vCvVYVuG7PpE/Kkwt2LBhw7By5UpER0cjISEB9957L7p3747Zs2fjwIEDSE5OpguIIAiCIAiCIAiCIAiCcIksSZAlXRn6V3aNhYnSw4svvug0UfHggw/izJkzWLZsGZ544ok8JyoAoEGDBhg+fDhWrFiB06dPY9CgQQ5VGdevX8dLL73k1fNQPTa8+Y8oGhVCBkp/h1GfOpu2fft2bN++vdDjSpIEi8XiviNBEARBEARBEARBEARBEEQZ4/Dhw1i8eLFDdcJnn32GF198sdBj1q5dG0uXLsXnn3+Ol19+mY3966+/4o033kCjRo08dwJ2iquqgigaFWKyQpzVEg1e7txGEARBEN5gcxtFd1OUXjr3whAW63yUj2NjSABrE6Wf0i9x3csTCw8p+xj5RLxstbG4Ul1FuiX5fApr67F7J4v/btwWALCqejPW1v/yEc28JV9FRqbVxIdY2+53f2dx48cVmaecJC6TY7lyjMXhtcMAAJdWb2Nt9QdN0DwWUb4obfJPKrp6nZX/hTZRGsmnWh1leyiXgXJlSqlKK2XMn87asm8ks9icmQMAuLl9N2vzjwpjsTFYkUOSbfz1K+n5sXJTMoR25XtrRiKXnDL48a/xt44oMlHh9apr5pq94gvlWGZBzunGVRZXGc5loGBV+uhy+bFkH18WW66dUnIy8DbYeHWybFXOQX3/AADZwiWhJF0O3y1Tee+Qhf0lYZGRLUuRiULNFjxvp7MjiPIJyT8RBEEQpYUvv/wSAJc2mjBhQpEmKkQmTJiAK1eu4PPPP2f3ar/88kt88803Hhlfhe7/lh0qjAyUODlR1NIcmokjCIIgCIIgCIIgCIIgCKI8Y7FYsHTpUnYvtGHDhpgxY4ZHjzFjxgw0bNgQgHLfdvHixR6V6rfZbCXyj+wGCkeFqKzo1q0bTTAQBEEQJYbeR1kbcHz4ANbmG85NZtOvKEa8wTW4Oa66KhsATi05yGKbVZloF1cbiCuszRn2VdGCwbZqdA0AeqOyp28IXxX9V52WLO74Rn8W+8UpmqMnf1rD2sTqkLX1FKPbFk935rnEcjPh0zuvAACiqnFz3TpC5YXOxE11dbXbgCBKArEKRK0MklOu87ZbPPax8gqB7P2bAADGe0eyNusfs1msvoYNRqHCQKiCUg24xcoKq1BRJVZZ+IX72/fnC20yhSqL3DTFJDzjyi3W5h/JX3eVGtQCAPhGctNsETnlBo919soIHyNv8+XvVza7QbZO5nnrwqN53xylIkQy+PA2U45mbLPHkk6oFMvl2/XhirmiPsyzJotExcRy9QSLDdUalmAmBEGUeSSdy8rLUklZypUodezZswcpKSmQJAmSJOHFF1+ETufZa0qv1+PFF1/E2LFKte/t27exd+9edOjQwaPHIcoGFWKyYvPmzSWdAkEQBEEQBEEQBEEQBEEQRJlhx44dAJSKh4CAADzxxBNeOc7w4cMxYcIEZGdns+PSZEXFhKZXCYIgCIIgCIIgCIIgCIIgCAeOHVMqjyVJQps2beDr6+tmj8Lh6+uLNm3aMMn+f//91yvHIUo/FaKygiAIgiBKEtVoOvUKN6IOFuRg0hMU2ZQL67lEUnBMEItNmVx6RsVHkH6SbVwaJjtZkVCxCXIxYmzNUWRm7j19wG3e2zoq8k5VWlTV3K6Okfv3XM3tDXrUBMBlsADAFhDOYlEyiiBKBYkXAADmJEH6qT6XKLP6Bt25B4yRsXx7ZS5XZM5UVoWpRtoAkHk9yWl/gx+XWzKlcSk4a04uiyV7qb1/ZABrs5m4Bu6tU8q4fuFccsrgz2WYko6dBwDEdA3lY/rw7dbkG0K7ko8+ogpPUpSPsOci63nekNOF7c4W2LJZeA+zcZknVf5JFxzG+woyUNboukouTiMSRMEpC9JPm1q2Z3HPg7tLMBOCIAiCUDhz5gyLO3bs6NVjdejQAVu3bnU6LlGxoMkKgiAIgiAIgiAIgiAIgsgPkqT8KyuUpVyJUsf163wRT82aNb16rFq1amkel6hY0GQFQRAEQXiZgChlNXPy+RTWZjXzyoqwmsr2DMEwV+ybnWlisdFHWWPsH+nP2vyF1dRqZYVs4yuZRQNf1aDXenIba9M36KqZt1qxUfebxZrbVXx7P6XZ3vx3xZj75NODWNv1j99kccz4N1hsqFo3z2MQRLFQ9S4Ajl+QLfG8BF3nz6skDJWrAQByVn/D2sRqBLWn/8DxrM086xUW+wQqr2FTOn/dW83cYFusyLBkK+8BvmHcNFs16BYxZ/DXfZpQyWUMVKoorLm8WkMvVDvIFudYL1RI6HJ45YQuK1kJbLyyQ0Q11hbHFKs45Fzn/WyZPFd9Jf4YphlCAADatuAEUf7ovHkVi/cPuAcA0Hrl+pJKhyAIgiCQlMQrg8PCwrx6LHV8WZYdjktULMizgihxtm7dipEjR6JBgwYIDg5GWFgYmjRpgueffx4HDx4s6fQIgiAIgiAIgiAIgiCIQlLS9328cXxZlrFq1So8+uijqFu3LgICAhAZGYmWLVvi9ddfx+nTpz18FiVDrrDYJTw8PI+eRUecDMnJyXHdkSjXUGUFUWKkp6fjmWeewS+//OK0LTU1FceOHcNXX32Fl156CR988AF8hFV5BEEQBEEQBEEQBEEQxY6kc/RzKu2UYK4lfd/HW8dPTEzEiBEjsHbtWof27OxsJCUl4dChQ/j000/x3nvvYeLEiZDKsBRXbm4uy9/b9+XE8U0mUx49ifJMhZis6NWrl0fHMxgMCA0NRWhoKGrWrIk2bdqgffv2qFSJitTzi8ViwQMPPIBNmzaxtpCQEDRu3BgmkwnHjx9HdnY2ZFnGp59+ips3b+Lnn38uwYwJgiAKxtp6rVhcq0ctAI5G2Fm3uJFugN001ywYaWfdymax4I8Nk9nq1DfDbtANAKF2SSmzhik3APQ9l/+VQ91278x337y4eewmi7v+s5zF1nj3Jt8EUZzIl084tVkTL7HY0P4+Fkux9ZU2wbTXcngdH8sus5T567usLeK5j1mcPm8qAMCcqb1qzDeMm3mrxtyi9JMsvDEEV1X6moTXvVUw4DZE+Dvt7xPJpZekgBC+n/18rYLkld4ueQUAtlQlF314Zd4WFMnHylVkrSThxojsQjLKlp5sH4sbk6dXacriSoH+TvsQhCewXjzMYn3N5iWYiSPGUP5aUuWfLrw2grXV+qhov4dupHLZuajQwDx6EgRBFJ2Svu/jreOnpaWhV69eOH78OGuLjIxEgwYNkJ6ejuPHj8NsNsNsNuPVV19Feno6pk+f7rHzIojyToWYrNi8ebPXZzENBgMGDhyIF154AV26dPHqscoDb775psMHxltvvYVJkyYhIEC5YZeUlIRJkybh+++/BwDMmzcPHTp0wLhx40okX4IgCIIgCIIgCIIgCCJ/lPR9H28df/To0WyiwsfHB59//jnGjBnDqgKuXLmCZ555BitXrgQAvPPOO+jQoQP69evnkfMiiPJOGapb8wyyLDv8K+g+rrabzWYsXboUPXr0wAsvvEDlSnlw+fJlzJw5k/391ltvYfr06ewDAwAiIiIwZ84cPP7446xt2rRpyMrKAkEQBEEQBEEQBEEQBFE6Ken7Pt46/t69e/H777+zv2fPno1nn33WQb4oNjYWy5YtQ/fu3VnbpEmT8n0PkiAqOhWisgKAw5uCWGWRnzeL/PRX+9hsNsyaNQuJiYn47bffCptuuWbmzJnMoKdGjRqYPHlynn2XLl2KrKwsJCYmYu7cuXj22WeLK1WCIIhCE147jMW3zyqyKaYMLtGi99GzOOmksj03jZuX2YTPG71QHGi07+cb4sva/ML9WFzpLkVCIiOBy720WMLlnHZ06QoA6Lx9m2be+/rdzeI2qzdo9smLZVUas/jB68fsuXCZKkvCGRbrZFuBxycIb6KLrgUAkCxcmsmafIPFlrNcRs1ql0NC7Yt8/+Aw3jfhAgBAtmlf55JeWTMUEMWNCnV6vo4o/XIii/0iFHk3nY5vz7qZzGKbXRJKfC/wC+MSSjazBQDgI8gqpZ/ipo/BjZvwvLMUCTopKYG1ma+cZbHBLglly+QyUoY4Qa5JlX8SXt+ymS/iYY8bAFuOcjNAqtOWtYWS9BPhJawXDrFYX6tFieWRX/7ppdzk6rhxS579crK5bKSfv/Pr59wLQ1gc9u6PmmOo3w0CIvn+LZev0+xLEAQgSzrIZcizoiRyLen7Pt46/kcffcTiDh06YOTIkZr99Ho9vvnmGzRq1AgAcPToUaxevRr9+/cv7CmVCg4fPgyDwXu3kg8fPuy+E+GWo0ePYs2aNThw4AAuX76M1NRUJnlWECRJwrlz57yUpWsqxGSFzf4jcevWrXjqqadw4cIFyLKMevXqYdiwYejUqRMaNmyIsLAw+Pr6Ii0tDdeuXcOhQ4ewYsUKrFy5Ejk5OdDpdPjPf/6Dzz77DBaLBbdv38aRI0ewYcMG/Pzzz0hOToYkSZBlGYsWLUL79u0xYcKEEj770seyZctYPHLkSBiNRpd9K1WqhEceeQTz5s1j+9JkBUEQBEEQBEEQBEEQROmkpO/7eOP4OTk5WLNmDfv7P//5T545NGzYEN26dcPWrVvZuGV5skKWZUycONHrx1HvqxIFZ//+/XjuueewZ88eh/bCPp4lZQxfISYrAGDRokV4/PHHYbFYEBQUhM8//9zlDGh4eDjCw8PRuHFjDBs2DJcuXcK4ceOwZs0azJ49G4cOHcK6detQvXp1VK9eHf3798e0adPwn//8B7/++it7YX3wwQcYO3asQ5lZRefkyZM4f/48+7tv375u97nvvvvYh8aWLVuQkZGBoKAgN3sRBFGRyU27zWLfkEolkkNQFDeuTLdXFljN3GQ2O5mv3DZnKquOrSa+ElknfDHIsPD24Ahfp/1Vc10AyElWzDODqoZq5uWqooKNFau9X16sb9hayI9/5q2q3gwAUKkuXzluC+AxbBYWlp21aUR5Jne38gM0+eQF1hbRsR2LdaERLPbt/RQAwHLwL9YmVmGofYP6jmFtotm2NUd53dtM/HXgMq/kdABAYFV+fPV9AwCMQYr0gFixZUrn7xFqVdetI7xCwjcsmMWV+4xicdK0sQCAgBw+viGQV2xIvsrKa8mPv9YlK+8r+yjbZQuvJJN8+A0CW0YKi33a3KuMH8YNtgnCW5SFagoRdxUVKtvbdGOxwZ//vO+x7x8AQHS7RqwtKFj7d6n6PaX1ur80txMEQRSEkr7v463jb9682UEiKr/jqpMVq1atylf+pZXimkQoqRvkZZ2ff/4Zo0ePhtVqZc+T+lgW5jEtyQmjCjFZ8e+//+KJJ56A2WxGYGAg/v77b7Rt29b9jnZq1KiBP//8E48//jh+/fVX7Nq1C08//TR+/fVX1ic4OBjz58+HyWTCkiVLAChmPYsXL8bw4cM9fk5lFbGky9fXF61atXK7T8eOHVlssVhw/PhxtGvXLo89CIIgCIIgCIIgCIIgiOKmpO/7eOv44rhxcXGIjo4u0LjXr1/HjRs3EBVVdhdp0ERC6WTHjh14+umnYbVaIUkSm1iSZRkGgwFhYWEIDAx0P1ApoUJMVrz66qswmUyQJAlTpkwp0ESFiiRJmD17NjZt2oTr16/j999/x/jx4x3eeABg1qxZWLVqFdPG27RpE01WCJw4cYLF1atXdzAhckX16tVhNBqZafnJkydpsoIgCIIgCIIgCIIgiBJA4h5NZYLivcFc0vd9vHV8cdw6derkK5c7+508ebLMTVbUqFGDJilKORMnTmQTFbIsIyAgAM8//zweffRRNGnSxKs+I96gbGVbCBISErB27VoAgMFgwNNPP13osYKDg/HYY4/hs88+AwD89NNPTpMV0dHRGDBgABYtWgRJkrBv377CJ18OuXiRm1DWqFEjX/vodDpUq1YN8fHxAIALFy4U6JhXrlwpUP+EhAT3nQiCKNWUlPSTiH9UGIuv7r0GAJCtvJTSbOKyKao5riQ4aVsF6acgA/8x5BuiyKmIRryV6ldhcdJx5VhpV9JZ210FyDsjId19pzsQpWdSb2SyONQuhSXmIu9dyWKDXUYHAKwXlZVK+prNC3x8gsgv2cs/BwD4D9L2FNOFKz8eqzzMf5zasvk1Lefw0n/z7uXK/4L5dMDDzjq+uZvnszhwKDd3zFryibJ/SgprMwbzFU9+lfh7RG6K8hoypQmvr1p8Nd/1g8r3K1ESzprJZedU01y9ny9rswgyTzc+eYHFOqPy8yDj6k3e5sN/MkRExQAA0vftZm2VHnqSxZJVkX+SLdqm2rAJcnhhyndBLkhFEGUP60kur6hv0LVIY5lvXmKxT+X8/VbqfWyvZvvtdOX96sjnXF+9x7Apmn27f658Hv8Zx9/7Hkk8lq/jEwRRtijM/Y7Y2NgC9S+J+z7FcfzCjBsTEwODwQCLxcLG7datm5u9ShdFeS4I73Px4kXs3r2bTVRUq1YNGzduRN26dUs6tUJT7icrduzYAVmWIUkSatWqhfDwcPc75UGbNm1YvH37ds0+Xbt2xaJFiyDLMm7dulWk45U30tP5DavQ0PzrooeEhGiOkR+qV69eoP4EQRAEQRAEQRAEQRDljcJUKxRUu74k7vsUx/ELM65Op0NgYCBSU1NdjksQRWHnzp0AwO59f/XVV2V6ogKoAJMV4sxnUScqAP6GJMsyLl26pNknJiaGxcnJyUU+ZnkiM5OvCPTz88ujpyP+/v6aYxAEQYhYrp0CABhi6hfbMf8d1p/F9b6ay2JrTi7PK1tZSSMaX9qsvIpCs4g8WzCf1juX3QZGc5PM7Bsp/LhmpSIjN40f/686LVnc99xBraMxWq9cn+d2LXod2ZPn9j9jmrJ46/OzWHz3n41Z/O/rbwMAolrWZm1VX/+qwLkQRF64qqhQMdZWrknTaf460UdUZbEtnX+vM9ZTXleWm1fzHNOSEM/itM/58dXKhoAo7e+nopm2WllhM/P3BV9he0z7Og79AMCUKRhc2yuxxMoM33BezxDaogVvt1c8XbUbbQNA2gW+CtMv4gwAoPKEz1mbee8KFusrKZVespkf35aewmKfNn1Y7B/Av98RRFnFXTWF7Rz/jNTVyfsmYX6rKfJDJbuZtmq0nRf+A8cDAB6x/08QRN7IkgS5DMniFHeuJX3fx1vHL8q46mQF3c8iPM3169dZHBYWhgEDBpRgNp6h3E9WqKVWsiwjMTGxyOPduHHDaew7EU1LdLqypGPofczCD9eCaKaJfU2CdEp+uHz5coH6JyQkkCcGQRAEQRAEQRAEQRDlij179qBq1aruOxaBkrjvUxzHL+nzIggtVM9kSZJQu3btcuEvUu4nK6pU4Trely5dQnx8POLi4go93qZNm1gcHR2t2UedMQWAoKAgzT4VlYAAvhI4Jycn3/uJfQvqYF9QfUWCIAiCIAiCIAiCIIjyRtWqVb1+j6Qk7vsUx/FL+ryIglO7dm33nbyIJEk4d+6cV48hGra7WlRf1ij3kxUNGzYEADaz9NFHH2H27NmFGis+Pp4ZZ4tj38n58+fZMelGuSPi5E12dna+98vK4oaWNAFEEIQrMkIUj5qwYjxmk/mrNNsDqnCJFp1RMaC2mmyaffVGpQrPJhhw643ctNovnJcZyzalT/q1DNZWtXU1FqvCLu3X88n1C6+NyPMcRHbf05PF4hha/N24LQDX5p4qoTW5/mtOCv+yLsphhNSIBADcOHietWmt+TLt+J3Fxs6D8zwuQRQUVdJJMvo5tQGAT3Wu/6pKRekCuJxS6g/cQDt01LsAAN/u/8faAgWJuqRZrwAAzJn8+5B/ZS4JlSkYXJvsRrnB1flCGUs2X5mnyjuZ0vj3pYiG/Dsok5Ey8R8wolSdr2B2r5J9k0teiZJSuSnKe8+Vt0eztthpc1isSt5IvvwxFB/P1FC+aIi/SxJE+cWd9FNZ4ujQfiz2j+C/ye6a9btWd4IgKiglfd/HW8cv6fMiCs6FCxeY8XRJUBxVDqq3sizLBVaWKa2Ue42idu3asQkDWZbx/fff44cffijwOMnJyXjkkUeQnZ3NLvJHHnlEs++ePVyXtKybmniaiAj+szQhISGPno6IGmziGARBEARBEARBEARBEMWGDMhl6B+K+T5tSd/38dbxCzNuenq6w2QF3c8qGSRJyte/gvZ3NUZxSjE1a9YM9esrC6KSk5Oxd2/eCwnLAuV+sgIAJk6cyFzRbTYbxowZg6efftrhjSgvli9fjtatW+PQoUPs4ouNjcXQoUOd+mZlZWHdunXswmzfvr1Hz6Wso76AALg0KL+TzMxM3L59W3MMgiAIgiAIgiAIgiAIonRQ0vd9vHX8wox750p3up9VvNSoUaNA/2rWrImwsDC2SF2WZfZPp9MhNDQUMTExCA0NhU6nc9iuEh4ezsaqUaNGsZznlClTWDxt2rRiOaY3KfcyUADw/PPPY+HChfjnn39Y+c/cuXMxb9489OjRA506dULDhg0RGhoKo9GIjIwMXLt2DQcPHsTq1atx7do1NtkhyzL0ej1mz57toFen8uuvv7JZU0mS0Lt37+I+3VKNKJ118+ZNJCQkuDV3OnTokMsxCIIgRMKCnN+Xvc2yKo1Z/OD1Y5p99D6KpJM+kK8RsORwORZJp7TrhSUExnAfFhv8+Me1wV+JfUN8Wdu5dWdZ3H3Ws07Hr/XRz3mfhIA76ScRLfmnzW06sjgzUZGmkQV5q2rt+Ht++rypLL6yQ5F/Eh+Xre07sbjb7p0AANOFk6zN2DnfqRJEvrAl3wAAyBYue+RTvR6LDc37sDjn3+kAAJ1fJmvT+QgGireuAACMGtJPAOBfVZF0yrrKV+bJNptmbAxW3ttybnNfNBH1PcQYwt8Db/3Lf0RbspXXVVAMl6zSGbV/Blx7d5xyrGR+XgERXF9ZlaTKSdLORTYo7016QfrGWuUaiyOCi/99miAIz9Doww9YvH/shBLMhCCI0kxJ3/fx1vHFtmPHjsFisbg12j548CCL9Xo9qa8UMxcuXChQ//nz5+O5555j939btmyJESNGoEePHmjUqJHD822xWHDs2DFs2bIFP/30E1vgLssy3nvvPTz22GMePhvXDB06FKtWrcKCBQuwZs0aTJs2DW+//XaxHd/TVIjJCkmSsHr1atxzzz3Yt28fq3qwWCzYsGEDNmzY4HJfdXZMveB0Oh1+/PFH3HfffZr9f/vtN9SsWROAYuzcrFkzD59N2aZdu3YwGo0wmRSd5W3btmHw4Lw1x7dt28bi2NjYEjfIIQiCIAiCIAiCIAiCIJwp6fs+3jp+165dWZyVlYUDBw6gXbu8fYnEcTt06ACj0ZivcyCKn08//RSvvvoqAMVb5JtvvslzwsFgMKB58+Zo3rw5xo8fj/nz5+PZZ59FamoqnnjiCdy4cQMvvvhiMWUPzJ07FzabDb/99humT5+OI0eO4L333kODBg2KLQdPUSEmKwAgNDQUmzdvxqRJk/D111/DZrM5aIhpma2okk9qSU/dunUxZ84cdOvWzeVx1q9f75X8ywvBwcHo2bMn1q5dC0CZtXT3obFgwQIWDxgwwKv5EQRBFBRX1RQ2M68Q8A1RvpQGx3BDtdtnuHmtpFc+j0QDbp9AXlmhrooGAKO93Ueotrj39IFC5e4Neuz7h8VqZURsp1qsreaoUSy+vf5PFvvbTcTbrHa9gAAA9n7CDc17DpuSR0+CKDi2bKWawFCFl2xnHdrJ4gCds4JqwMMTed8ln7DYGBnr1DeoUVMWW+1VHD6B/qwt5TSXClBNsQHAN4xXRKioptoAYM5UjOv1QrWEWH0VGKXsb8nhptzGYF4tIWKxj+UTyPc3Z3IzbsleAiaafYvoazZ3ajNWitHsSxClifMT+A2J2p8vyKOneyz7+WeVbLOy2KftwCKNq8WOLvzmWeft25y2/924LYs77N3K4qAA/t6z+56eAIDmf/DPZb8A/h6xp28vAEC7vzayNnMGr0BL+e4NAEDYmPfd5pu7cR4AwBBVjbXpm9ztdj+CKE3YIMNWQoa9hcFWzKYVJX3fx1vHr1evHurXr49Tp06xcfOarDCZTFi8eDH7e+BAz38GEJ5h69atePXVVyHLMgIDA7F582a0bNmyQGMMGzYMjRo1Qrdu3ZCZmYmJEyeiTZs26NKli5ey5kyfrlR8N2jQALVr18b58+exfPlyLF++HE2bNkWbNm0QFRUFPz+/Ao8tSkwVFxVmsgIAAgIC8MUXX+Dpp5/Gl19+iYULFyIjI8Nlf3UCo3Xr1hg9ejRGjBgBX19fl/2J/PHkk0+yD41Vq1bh4MGDLt8EVqxYgaNHj7K/R4wYUSw5EgRBEARBEARBEARBEAWnpO/7eOv4Tz75JF5//XUAykr2V199FdWqVdPsO3v2bCQlJQEAjEajpu8tUTqYNGkSk/9/5513CjxRodKyZUtMmzYNEydOhM1mw2uvvYYdO3Z4OFtnpk6d6mQQrt7TPnLkiMP1XVBKYrKiQhhs30mzZs0wZ84cJCUlYc+ePfj666/x5ptv4tlnn8XTTz+Nl19+Ge+99x6WLVuGq1evYu/evRgzZgxNVHiIwYMHo0mTJgAAq9WKYcOGISEhwanfiRMnMHbsWPZ3//79ybCcIAiCIAiCIAiCIAiiFOON+z4//fQTU0CRJAmbN28u1uMDiiduVFQUACA9PR2PPfYY0tPTnfpt374db7zxBvt79OjRqF69ustxiZLj/Pnz2LVrFwDAx8cHI0eOLNJ4o0aNYnJfu3btwvnz54ucY2EQXyuFQUuBqLioUJUVd+Lj44M2bdqgTZs2JZ1KhUKn02HOnDno0aMHcnNzceLECbRs2RLPP/882rZtC7PZjK1bt2L27NlIS0sDAERERGDmzJklnDlBEIQziTOeZ3FaPP8CfPP4DRabMxWphLQr/IusKv0EAHqjYsAdXjuMtYnSTyJmuwF19d6tWZsoPaNK0qiSDED+ZBk8hfn6ORa3frEfACD55EXWJko95C76jcWmTC4nobJ/wD0sDohU5Cq6fPem55IliDvwqaGYaZsFI3fRiFo02Dam3QYApM3lq41Sz11lsSVNafeteRdry714lsUZV28CAAKiwllbpUZcH/nWodMsVg20HeTlBGmonCTlvSU7iUtD+YVziRdVukk04BYloa5O4z/Sfex90i7x9zC/cC4Ho44VFFsZBFGeKKr0k4ihdX+PjeUOLeknkd7H9rodo/36TXluF+WfVEyZ/D1ElKXTQut7CkEQ5ZuSvu/jreMHBgZi9uzZePjhhyHLMrZu3YoWLVrg+eefR9OmTZGRkYG1a9fixx9/RG6uIqNZp04dTJs2zSPnRXgedaJCkiTExcUhJCSkSOOFhoYiLi6OyYXt2rWrWLx3S3JywdNU6MkKouTo0KED5s2bh+HDhyM3NxeJiYmYPHmyZt/Q0FAsXboUderUKeYsCYIgCIIgCIIgCIIgOLL9X1mhpHIt6fs+3jr+gw8+iE8//ZRJ/Zw/fx4TJkzQ7BsTE4OVK1ciIiKiSOdCeI+rV/lio+BgZ5+4wiCOI47vLTZtynvRQVmDJiuIEmPw4MFo2LAhxo8fjy1btjjNAur1evTr1w9ffvklatasWUJZEgRBEARBEARBEARBEAWlpO/7eOv4EyZMQOvWrTFhwgQcOHDAabuvry8effRRfPbZZzRRUUaQZRlXrlzxyFieGie/dO/evViP521osoIoUZo2bYpNmzYhPj4eu3btwtWrV6HX6xEbG4uuXbuiSpUqJZ0iQRBEnkTcO4DFN2fwsuHAaC6bknUr22m/kFheXpp5w1k+QZV7AgBjoJHFlZvEAgAS9xznOTTmZaXJdjmX6IEP5u8EPIxPFb4aKSMlAwAQOekLzb6x0+bwWGN765XrWbz7np4AgMyDu1hbWNuBRUmVIJywJivSTKocFACk7eWmeLpFM1isD1dkkEKems7a5B/4ar3cFEWayZrDX6vZSaksrtROkSH16zOKteX89R2Lg2tEszjrRjIAwJTO3ytsJv4eYbPaADjKx+Xqc1msykiJ+AhtotQV2z+NS7wEVq3EYt+wIPuxcp32IYiyQk42/1z28/fPoydguXKMxYbYxl7LqazR8+Du/He2cKlHy9UTAADTzpWaXQP+79Ui5VUQ1tRqDgDo9f2LrO12m8EsrhoWeOcuBEEUAk/d93nyySfx5JNPltjx76Rbt27Yv38/jh8/jgMHDuDatWvw9/dHbGwsevbsibCwsEKNSxQvokF6YmIiDh06hBYtWhR6vAMHDuD69evMKyImJqaoKVY4KuxkRVpaGtauXYtt27bhxIkTuH37NlJTUyHLMn755Rd07NixpFOsUMTFxSEuLq6k0yAIgiAIgiAIgiAIgnCJTVb+lRVKS64lfd/HW8dv1KgRGjVq5PFxieKhZcuWAMAmF1577TWsXbu20OO9/vrrAJRKDUmS0KpVq6InWcGocJMVycnJmD59On788UdkZGQ4bFMvpOxs5xWwADBkyBAsWrQIAFCjRg3Ex8d7PV+CIAiidGO+yI14A6JCWSwade7s3g2AY4WF1ZTGYtWw1uDHP5Z1er7qOSc5h8U3/1VKSiMa8RUat45w016/CCUHQ8u+BT0Vl5yf8BiLC2JAGj7uQwCAJeEMb/SvW6gcgqsqq7nPLhdWci7nZt1tVm8o1LgEIaJWOWTM59USPoF81bUhVtAxtlmd9g8d9S6Lr7w9Wtmniq/msW7tUKqEYoXKiqtruIlt5Ra8uiP13DUAQHCNKNaWI1RpWOyVWHqjnrXp9JIQ2w267RUYAGDw43n5CWbdVrOyAjqqeQ1hfF5lwcfkx0qc8TyLo1/90qkvQZQ23FVTiJSmagrrv/yzTt/kbqfta+vxGyL3nnaWJRFRv5sAQI0e9QE4VjwWBPP1cwAcqyst+1exOODR1532MfxfQxbnuPj97W3uu3AYAHBqzEOs7egwbgb+SOIxp30IgiCI8kXDhg3RtGlT/Pvvv5BlGX///TfGjRuHr7/+mk1g5AdZlvHMM89g/fr1bL+mTZuiYcOGbvYk7sS5Jrwcs3PnTrRo0QJffPEF0tPTC+yU/sorr0CWZciyjEuXLmHDBroxQhAEQRAEQRAEQRAEQRAEoSLLMg4cOID58+fjyy+/xLvvvovp06fjwoULJZ2aE++99x5bwC7LMr777ju0adMGa9eudXvvWJZl/PXXX2jdujW+++47NgYAvPvuu3nuS2hTYSor9u3bhz59+jhVTUiShIiICNy8edPtGK1bt0arVq2Yec7ixYtx993OK1oIgiAIgiAIgiAIgiAIgiAqEocPH8ann36KP/74w0nRBgC6dOmCWrVqObXPmDEDJ08qqgU1atTA1KlTvZwp5/7778fo0aMxZ84cNtlw8OBB9OvXD9HR0ejSpQuaNGmCiIgIBAQEICsrC7du3cK///6L7du348aNG2yCQq2qGDlyJO6///5iOwct0tPTsWvXLuzatQuXLl1CcnIy0tPTERwcjPDwcNSsWRMdOnRA+/btERwc7H7AYqJCTFZkZGRg4MCByMrKYhddhw4d8Prrr+Puu+9GQEAAdDpdvsp7Hn74YRw4cACyLGPdunXFkD1BEARRmpH8uPmib5j2B3xummJEawzyYW3ddu9k8eY2ik+S1cwlWgIiuUSF3ofLrahjWXO4uW3qxWQWmzOV9sOD72NtzX9fk59TcUlBpJ+0MFQtnPSTSKN5ihHn1vadWFtozVBX3QmiSAQNm8Ji0z9LWGy5dJrFvu3uzXOMwCoRALg5NgDYzNwAW7ZLMqXPm8radD78PSLtQgKLQ+IU40fVtBvg8nGAo/yTStNfV7P40utPAXA0+M68nsTi8IY1+bg5yrh6P6PmsUzpWQCAoGqVWVtwVKTT8QmC8Dxa0k9/1WnJ4iotopy2uyJM+AxV5Z+SZr3C2iKe+zj/iV08ak+Ay0DZstJddHZGS5bLlHqLxcZQ777H1P9uqRB79VBEOUGWUWCljpKkDKVKlGFMJhMmTJiA2bNnA9B+jeR137VKlSqYNGkSJEmCJEl48sknNSc1vIWatzphASjncP36dSxZsgRLlizR3O/OSQpZljFq1Ch8913JfaAcOnQIn3/+OX7//XeYTM5yrnfi6+uLRx99FC+++CKaN29eDBnmTYWQgfr4448dnNiff/55bN++HQMGDEBAQECBxurduzeLL1y4gOvXr3s0V4IgCIIgCIIgCIIgCIIgiLJAVlYWunfvjtmzZxd4kkLlscceQ+XKlZn8/vz5872RqkskScK3336LBQsWsDzUiRMVNTfxHMVJisjISPzyyy8OEx7FicViwRtvvIG2bdvil19+QW5urlO+Iuq2nJwczJs3D23atMGbb74Ji8Wi2b+4qBCVFd9++y27SHr16oWZM2cWeqxmzZpBr9fDalVMFY8fP44qVap4JE+CIAii7KCaRqcdOcLazFncCHtNLb4iwSdQWaHc8yA3hz46tB+LQ2OVigwfwWA761YWi8WKC2OgsvI6onFt1pZ46BqLA+yLD5PPpxTgbEo/194dBwCo0YNXafiGBbH4zLhHAAB1v1lcvIkR5R59cBj/QzDYztq2AgAQHNcKWqiVC64May9PVoy1U89dZW03/+Vxu7+42XbyN5MA8GoNAEjcf5LFNqvyA0QWDLTF6qqACKUCzJpjZm2+4bwqTKz40PkYnMYSDbbNaZlKPyN/v7q0ZjuLGzw8EQRBeB/b+X0AgL7nDhZqf7ViUaRA1RQCPu0HObUZuw4p1FhsfxfVFPsH3MPi1ivXF+kYKquqN2NxbMdqLG74wlM8n86DPXIsgiCI8sjQoUOxe/dudu9VkiQMGjQIffr0QfXq1fMlh2QwGPDggw+yioQ1a9bgzTff9GreWgwZMgT3338/5s+fj7lz52Lfvn2w2WxO/dQJAJ1OhzZt2mDkyJEYNmwYgoKCnPoWBxaLBQ888AD++usvh2oPNc6rGkx93qxWKz788EMcPnwYf/zxB/R65+rt4qDcT1YcOHAAN27cAKA8+NOnTy/SeL6+voiNjcXFixcBAPHx8UXOkSAIgiAIgiAIgiAIgiAIoiyxcuVKrFy5kt3wrlu3LpYsWYImTZo49MtPpcGAAQPw3XffQZZl7NmzB9nZ2fDXkAr0NkFBQRg7dizGjh2LzMxM7N+/H/Hx8UhJSUFGRgYCAwMRFhaG2rVro3Xr1ggMDHQ/qJcZO3Ys1qxR5J/VSQpZltGpUyfcfffdaN68OSIjIxEYGIjMzEzcunULhw8fxsaNG7Fjxw6H/dasWYOxY8fi+++/L5FzKfeTFcePH2dxeHg4OnbsWOQxw8LC2GRFamqqm94EQRAEQRAEQRAEQRBEecAmK//KCmUpV6Ls8c477wBQVu5XqVIFmzdvRtWqVQs1Vtu2bVlstVpx4sQJtGqlXcVcXAQGBqJbt27o1q1bieaRFzt27MDcuXMdJKnuu+8+fPbZZ6hfv77L/R566CFMmzYNp06dwssvv4zVq1ezCYu5c+di1KhRHrmPXlDK/WSFWFVRs2ZNN73zh5+fH4tzc3Pz6EkQBEGUVySLIvkU2qo1a4vqNZzF13bxLzOdtmwF4CjLYjNZWdxy+Tqn7QZ//hFd92H+pS2w7zAAwNm3X2dtVmGs7GQlr04zJxTofEo7MZO/AQDs68fNRUXTX09JQRDEnYiGtmIhtLFz3vtJOuX6vPL2aNYmSkJVf/cHAMCF10awtkp3acueWM2KfFNOUhpra/D9chYfHNQHAGDOEeScdHz1mi1MWZGm9+MG3j4BfJVaZgI321YloXIEM+4AQX4qNV75bp0Wzw3AQ+tw2RSCIIqHxIVzAQBVX2/D2tT3AoB/tyhviJ/36vl68lxV2TwA2D7uExb3OkIyUARBEHeSmJiI/fv3s5vk77zzTqEnKgAgKioKlStXxs2bNwEAp06dKvHJirLA1KlTAYD5bEyePLlAykL169fHn3/+ibfffhvvvPMOm7CYOnUq1q5d66WsXVPuDbZVbwkAHtPaSk5OZnFYWJhHxiQIgiAIgiAIgiAIgiAIgigL7Nixg8kNGQwGDBlSNL8iAIiM5It3bt26VeTxyjtpaWnYsmULMwMfNGhQoS0Qpk2bhgcffJD5W2zevBnp6emeTDdflPvJiqioKADK7FJiYmKRxzOZTEwCCnB8EREEQRAEQRAEQRAEQRDlG7kM/SMIb3H9+nUAiprNXXfd5RHvhpCQEBZnZGQUebzyzvbt22GxWNgEw7Rp04o0nri/xWLB9u3bizReYSj3MlDVqvGy9CtXruDGjRtsAqMw7Nixw0H6qXHjxkXKjyAIgiibyDrlI1QXyL9MnXuBryRRpZ9EUi9yWRWb1fmnQ3C1cBYb/HxZfPsEnyS/sPYlp7FCa4Y6HWPDsPdY230Xyr50wf4B9wAAbILobrvVJP1ElDxJs15hccRzH7NYZ1TeI6q+/lWe+9f66GcWn32Ov1ZPPDWQxRa7vFNglTDNMSS9Unqv9+FVxDo9l4HKScm2b9cJ2/kqKUMglzhV5Z+u7b3C2irdlcliY6AiJXXj4HnW1mJJ8ZeHE0RF5+q2kwCAqlwV0kEOKX3eVABA8PCpxZdUAbCe3MbjJC4rZ+yc/+8s6vn+3ZjLZfY+trfAuYQJ36OS42+zuNeRPSw+PnwAAKDRvJUFHp8gCKK8Ivr4ipMMRSEzk3/vLAlzbZWzZ89i2bJl2LZtG06cOIHbt2+z8123bh169erltE9CQgLMdvlWf39/VK5c2et5Xrt2jcUxMTFOxuYFpUmTJqhWrRquXr0KAOz/4qTcV1Z07twZvr6+TD9t/vz5RRpv1qxZLI6KikKjRo2KNB5BEARBEARBEARBEARBEERZIjycL7YTJy6KglqtAQARERF59PQO58+fx4MPPogGDRpg0qRJWLVqFc6dO4fk5GTYbDZWwaDF1KlTERcXh7i4ODRt2tTBmsBbqFJZkiQhJibGI2OKviNJSUl59PQO5b6ywt/fHz179sRff/0FAPjoo48wfPjwQl3wK1euxPLly9nEx6BBgzyZKkEQBFGGkPVGAIAupg5ri2rdQLPv5jYdAQD+4Xz1siWbG+Hazikr92p/vkBz/1NjHmJx89/XOIwJALfP8FWAPQ/uBgDsvqdnPs6i9CGeV499/zhtF02Dt3XkDsdd/9nh1bxsp/n4unpunJWJCoVYTSHirqJCi+Aa0SxOv8TlSy05Sgm8bLOxtpNPD2KxbK/Ukq18u9nMf0hFximypWmX+I8N2ZbFYr8IE4utJuW9KbI+/64sGnMbQ5Ty/oZz/5evcyKIio45MZ7FPtFxHhu3zeoNeW4viYqK7JwcFvv7+eXRE9A36Mpjje3qdyMA0NVpl+dYxiCfPLefn/AYixP2XmZxeoLy3tr6uR6srfKEzzXHoIoKgiAIZ6Kjle+usiwjPj4eJpMJRqOx0OOdOXPGwaeievXqRc6xICxZsgSjRo1Ceno6M6tWUU2n8+Lll1/G999/D1mWcfPmTfz555944IEHvJqzKL3lqQmjtLQ0FgcEBHhkzIJQ7isrAODNN98EoFxYN2/exMCBA5GSklKgMdasWYPHH38cAJhxzGuvvebpVAmCIAiCIAiCIAiCIIhSik0ue/8Iwhu0adOGxSaTCRs3bizSeKIajtFoRIcOHYo0XkFYvXo1hgwZ4nCjXpZlREdHo23btm4nKgCgXr166NyZL2xbunSpV3IVEb2aL1y4UOD73XeSkpKC+Ph4NlFTFCuFwlIhJis6d+6MRx55hF1Yu3btQpMmTfDDDz/kadZitVqxc+dODB06FAMHDnSYWRs/fjxq1apVTGdAEARBEARBEARBEARBEARROqhevToaNWrEbmx/9NFHhR4rISEBX375JSRJgiRJ6NKlC/zcVOl5ips3b2Lo0KGwWq2sguL//u//cPjwYVy7dg27dyvqBWKlhSsefvhhAMrkwd9//+3VvAGgZcuWAJTczGYzfvzxxyKN9+OPP8JsNrN76Or4xUm5l4FS+emnn3D+/HkcOHAAkiTh2rVrGDNmDJ555hnUq1cPANhExAsvvABZlnHx4kVkZWU5bJNlGT169CjSC5AgCIIo++jMyueDzY+bMvrVb8Hiw4PvY3H9h1sBAE4tOcDaRKNb07mjyv4uZA6CPuJyK6Z/ljhtt5q49Mumlu0BcDmosoaW9BPA5W30Ri4WUaVFVc2++eXK26NZHDttTp59c47yvAJIBorwEtGvfsljje2pP0xm8fmVXCJFNdiW9Px9RTZzqblbJxTtX1F+LjgmSDOHgChFe9iSw6WhgqpFsticqci8XHhtBGvT6fhxa3wwV3NcgihPFETayZPST6Udd9JPBcGd9JNIt90789wuymyersNvulRtXQWAa+knLf7p1Z3FHTduyfd+BEEQ5ZXRo0djwoQJkCQJW7duxXvvvccUbvJLeno6HnnkESQnJwNQbry/+OKLXshWm3feeQfp6ens7xkzZmDixImFGqtnTy7HfP36dVy6dAk1atQoco6uqFevHurUqYPz589DlmW8/fbb6N27N5o1a1bgsY4ePYq3336b3f+uXbs2u2denFSIygpA0dhas2YNevTo4TDxYDabcezYMdZPlmUcP34cx48fR2ZmJptJUvv369cPy5Ytc/hRRhAEQRAEQRAEQRAEQRAEUZF45plnmPKMLMuYMmUKnn322Xz7J6xduxbt2rXDrl27WFVF27Zt0b9/fy9mzbHZbPjll1/YsR955JFCT1QAQKNGjRx8O06cOOGJNPNk7Nix7F53ZmYmevTogeXLlxdojBUrVqBnz57IyspiY40bN847CbuhQt1xr1y5MjZs2IAPPvjAwbFevSDVf2IboLzYQkND8cEHH2DlypUICQkpkfwJgiAIgiAIgiAIgiCIkkOW5TL3jyC8hY+PD3799Vf4+fmxhd6zZ89GbGwsHnvsMXz66acAwK7DVatW4ZNPPsF//vMf1KtXD/369cOpU6dYn/DwcPz666/Flv+uXbuQkpLC8ps8ebKbPfLGYDCgWrVq7O9Lly4Vabz8MH78eMTFKZWckiQhJSUFDz/8MLp164affvrJZQ6XLl3CTz/9hB49euDBBx/E7du32bbatWvj+eef93ruWlQYGSgVSZLw2muvYfz48Zg3bx5Wr16NHTt2ODwhKv7+/ujcuTP69u2Lp59+miYpCIIgCIa+elMAgHxVWCnhF8DC5r+vYfG2jopskG8IX2Ehsm6EIj8wMGEUaxNlpMSx/nnzCwBA+8mDedsU/mVOlYTa2r4Ta3Mnj1AWCIwOBACYMs2sre43iws11vkJjwEADH6++d7HIhitmVJuAACMYcVvNkZUTE6NeQgAUP87btIXcmQIi1Vppty0XNZmyeGST74hyrUuykDZrPzGReb1JBYb/Jzfp7JvpLDYPypMOVYK932zgSAqFhVB2ikjK5vFQQH+AIDkbyaxtvBxH3rsWFkLP2BxwKOve2xcLfqeO1ik/VPOp7B4c5uOLHYlY0kQBFERaN++PX777TcMGTIEOTnK99LMzEwsXLgQCxcuZP1kWcZ///tfh78BrmYTGhqKxYsXsxvvxcGZM2dYHBUVhaZNmxZ5zLCwMBbnt8KkKBiNRqxYsQLdunVDSkoKezx37NiBHTt2AABCQkIQERGBwMBAZGZmIikpyclMXN2vUqVK+OOPP+Dj4+P13LWocJMVKv7+/hg7dizGjh0LAEhMTERSUhJSUlIQEBCAyMhIVKlSBQZDhX2ICIIgCIIgCIIgCIIgCIIg8mTAgAHYs2cPhgwZgmPHjjmYUYuxOEEhKto0btwYS5YsKXaPhJs3b7J8YmNjPTKmeC/ZYrHk0dNzNG7cGGvXrsX//d//4eLFiw6PLaBMmriaOFGfC1mWUatWLSxatAiNGjUqlry1oDvxdqKjoxEdrWVlSBAEQRCuMVRryGJraqJmn5wUZXWJj5mvWDYG8lUK1dooRtHrG7Zmbfec2M/ijc24yWRIbDAAwH/QBNaW++JPLFYrEAx+/CO+pFb+qXn3OrLHTU/3qBUVYpVJYVGNNq9OG8va3K0WtZmL50smQWghVlSo1Jn5G4v39O0FAGj310anNoC/bkRjWLXaAgD0Pvz9wmpSrnWDP3+/0gvVFqnnrgJwNOA2Z/KYIIiyy43UTBZHhQY6bT+9dDeL23tQxtrb1RSe5L4LhzXb1Srarv/sKM50iBLChrJVVViWciXKNo0bN8ahQ4ewaNEizJw5E3v27HEpQ6a2N2nSBK+88gqGDRtWIv7A4jFtNs+8WkT1HtGGwNu0adMGR48exeuvv465c+ciKysLgONk0Z2oUnGBgYEYOXIk3nvvPQQFBRVXyprQZAVBEARBEARBEARBEARBEARRJPR6PYYMGYIhQ4bg9u3b2L59O06cOOGkZhMXF4eePXsiJiamRPOtXLkyAOWm/fXr14s8XlZWlkNlgzp+cREUFIQvv/wS7777LhYsWIAtW7Zg9+7duHz5ssNkjE6nQ/Xq1dGhQwd0794dQ4cORWhoaLHm6gqarCAIgiAIgiAIgiAIgiAIgiA8RqVKlTBw4EAMHDiwpFNxSa1atVh8/fp1XLx4ETVr1iz0eJs2bWLST5IkoUWLFkXMsHCEhoZi3LhxGDeOl0KmpqYiIyMDQUFBpWZiQguarCAIgiAIDyH5coNt0SxSlXQSZZ5E2ZToFspqEp2el2f+3bgti3sf25vncYOqOpdpiua63pJ+Ml8/BwDwqVJHc3vDoW012/NLwgfPsrhSPc+tuMn+8ysAQLW3v833PsbQYP6HTMX0ROnCP9wPADePd4UxkMs52UxWFluyuXG9Tu9cfq8lgxZerzqLo1/9Mv/JEgRRYpgT41m8oz9/v1C/J4jST/sH3MPi1ivXAwBSLnrOJNS8dwWLfdqW3ptY+UWVf/p3WH/W1mT+qpJKhyAIgsgnHTp0QFBQEDIzFSnEn376CW+//Xahx/v8889ZXKNGDdSuXbvIOXqK0NDQUj1JoVL8YmAEQRAEQRAEQRAEQRAEUQaR5bL3jyC8xaVLl9g/k6loPmYmk8lhvOLAx8cHffv2Zd4Nn332GS5cuFCosb7//nts3LiRGVYPHjzYs8lWEMp0ZUWvXr3cd/IikiRhw4YNJZoDQRAEUXrQ1eFG2AFCrIUpg69kTr+SDADISOTGllYzX/W8qWV7FmcmKiZZoTVDWJto5rijS1cAQOd/tuV5fMt+vtrP0Lp/Hj2BnOxsFvv5+7PYVUWFStXXlQoGMf+eB7k559b2nVjcbfdOAMCZcY+wtrrfLM5z/MLif79SsZH6w2TWphMMhoOHT3Xax6c7/6KZ6aM89kanXgTBOT58AADAPyqMtcV98r8899l9T08Wt1+/Kd/HCq6haOGmX7rJ2kSzbZXctFwW/z979x0eRbX+Afw7u+m9kQAhgQDSi4AUFQGpNooi2KiCBetVkR9Y0YtgA7Fw9V5UJIgIWBCVIkgxCIIovQsJEEqA9J7s7vz+mOw5s+ymb7Ip38/z8Pjm7MyZszG72cw5532tK6UBIO1/L4j44q7DAADfRqGizVIgd1Z4Bmm7jAqz88o8PiIqmwtp8nNAyN/fAgA8+4+rVJ/Wws8A0GnjRhHrd12mfjwdAFCYLX/f698jxPkTr6/UWPSqczdFRd9by+Po5BEAbHdTFPf5h4ioLmnWrJmoz7Bhw4ZK3auNi4vD4MGDAWj3XK3plKraq6++iu+++w6qqiIzMxNDhgzB+vXrbVJElea///0vnn76aSiKAlVV4ePjg6lTp1bdoOuwWj1ZsWXLlhIrmlclVVVddm0iIiIiIiIiIiIiV3PmPVLVBVuB2rdvjylTpmDBggVQFAUnTpxAx44d8a9//Qtjx45Fq1atbI63PteLFy9i06ZN+Oijj7Bz504xdkVRMHPmzGovrl1X1OrJioq4+oe+LC+mipxDREREREREREREVJfVhfuk8+fPx4kTJ/DLL79AURRkZ2dj9uzZmD17Nnx9tZpO1kmZ0aNHIzc3F7m6DATWx1RVxejRo7mrohJq/WRFRWbc9C+ispx/9fGumOUjIqLapfBSgojdw5sBACxm+fvD6GEU8ZWjKQAAN2/5a7lQlybKL1wWvDQHa8Wd9amfdvTvW+7xlZb6SU+f+qki9MW+l4S1FXGYn0ykZE3RUNH0DNZCoPo0N1E3XSPjWZ/ZneMRKtPcGBtElti/PuVVUIVGSHWN+ewBAIAxqqPDxxWj9vkx+0JKmfsMbFpywTt94daglrLofLO3Fpd4njW9WkATf4ePBz08W8QpR7Siu/rUT6Y8+brKT8sCAPhFcqUYkbM1CpK/7/MtZrvHHRWlXteii2i75eQeu3McpYoEAIvZIq+VoeUYH3joz5LHV5TesSqZ9qwDALh1ucVpfeZcyXFaX8Xxbah9ptCnmGTqp7rLomr/aovaNFYiVzEajfj+++/x6KOPYsmSJeJesKqqyMrKEhMRqqoiOTnZ5lz9sY888gg+/PBDp4zp6pRaxZUjqKoyCa4qf1CrJyssFkvpB+ls3boVEydOxOnTp6GqKho2bIh7770X/fr1Q8eOHREaGgpfX19kZ2cjOTkZ+/fvx9atW7Fs2TIkJSVBURTExMRg0aJF6NOnTxU9KyIiIiIiIiIiIqL6Iy9P1kTz8vKq9ut7e3tj8eLFuO222/Daa6/h6NGjAORkhKMdJNYJjJYtW+Lf//437rnnHqeNR1/+oKRUW1VRJsGV5Q8MLrmqCyxfvhyDBw/G6dOn4ebmhlmzZiEhIQHz5s3DsGHDEBMTg4CAABiNRgQEBCAmJgbDhw/HvHnzcPr0afz73/+Gm5sbEhISMGjQIKxcudLVT4mIiIiIiIiIiIio1jt58qSIAwICXDaOe+65B4cPH8batWvx5JNPonPnzvDw8BATE6qqwmg0onnz5pg8eTK++eYbHD161KkTFfVZrd5ZUVYHDhzA+PHjUVhYCHd3d/zwww+45Zaybyv18PDAiy++iG7dumHYsGEoLCzEuHHj0LZtW3To0KEKR05ERLWWLn3D5feeAQAY3WXqJ7jL0FCULsbdS/5a1qeEyk2VK0zyiuKfGsvUM8HNg0RckK2lctjQtptoG3Tkr4o8A6dx95Xpntq1DBHx5cNXROxW9Nz3jb5VtHVesVbEZ1+aBAAozJZ5QZu/95WIvYO1lTfmQvl916d+yln5thxQ0f8bxVOu1lELZdotRy6lZ4s4PNC3hCOpvjAd2w3ANg3UkYnDRNx2kZau5cB9t5W5zzafriqxrw5LfxZtu28bIOImDvrSn29w115f7r6eoi1+6lgRW3Q//4pBW8vU5KHH5fnNrxOx9fk4Sq1GRM7jOXCiXVvicrlgLqYoDZSj1E96m7v0FLGH7vfxDZ+9IWJju34VHabTWdM/WX/vA5V/vylPOqaK/r53NMY9IwaL+PxfFwEAt5/dX+Y+qQarbenBa9NYqd4ym81YsmQJAG0Hw9VFrV1hyJAhGDJkiPg6JycHaWlp8PHxQVBQULWMoazvNbXqPakU9WKy4vnnn0dBQQEURcG0adPKNVGhd8stt2DatGmYPXs2CgoK8Pzzz2Pt2rWln0hERERERERERERUy8TGxpbpuF9++QWJiYll7ldVVeTk5CA+Ph6rV6/GiRMnxGO9evUq9zirmo+PD3x8fKrtemUtf1DeMgk1naLWpakXB86fP4+oqCixRefcuXMIDw+vcH+XLl1CZGQkzGYzFEVBYmIiGjVq5MQRk6slJiYiKioKAHD27Fk0aeJovSIRUckKUs6LWDFpux2shbYBudsCAA4t/QMAYCmQuwL0haL1PAO0ldEGXYHuwqLdFADgFaTtFtDvtmgz9UkRO7NgZVltbN9dxPqdD/qdJkYPbTV3REf5O1pfENNakLzLql9E27GH7xKxpVArBpx04LJo6zDuBt215FYWo5e2sjRg4usljtsc/7fDdmNM1xLPIyqOtRA8AHT7cUOZj23UsyUAoPFLH4u2o5NHiDg7SVsJbN2lBQDeYfIPKeuOjcPjhsrHw4NE7OEvj81LSQcAGL3kLozSCngTUfWz/KN9djC0LPlmzq5bZNHNHus2VemYaqpNnXqIuP/+XS4Zw89RnQBwZ0Vtpr9PsGv/UTSKjHTxiMruwrlz6NGpDQDe46CKMRgMxdYv0N9WrkyNA2uNBFVVYTAYsHfvXmazqafqfM2K7du3ix/4mJiYSk1UAEB4eDhiYmLE19u2bavsEImIiIiIiIiIiIhqLH3NBtVBOjRHj5flHwAxUQFoGXI4UVF/1fk0UKdPnxZxcHCwU/rU93PmzBmn9ElERERERERERDWbpehfbVGbxko1V1Um5rH23blzZzz33HMYM2ZMlV3LkebNm4vY398fX3zxBbp06VKhvrZv3y7GryiKTdFwKps6P1lhMmlpIVRVxcWLF53Sp74fa/9EREQ2FLl5UXXXUjP988Ro0dbyoxUi7nnNAgDA3nmyrTBP/n7Rp4fyjdCKPaaeShNtXsGyULTBqF3Xt5EsZK1P/XRhjlY0t9GMBeV5NhWyvW8f7fq6YuE+Yd4iVs3yA29g0wAAtumtLBb5uCXP/vdtYbZMlXWpKP2TX2M/0ZZ55pLuWvJ76BUaqJ3/0fNyXE0ai9h7hJaiK3/3Rvn4qGl21ycqr9JSP+lZX+sAkLjtGACgse5xfTFuR/Qpn6xFsa2F7AGgYT+ZOub8hjgRWwq011phdp5oO/jA7SJ283Yv0/WJqGplN+4MAPAv5Ti/8LIXia5rrKmX9Cny1reSqRytn69uTdhX5WOpbPon0/ljInZr3LqywyEiKpdFixY5bFdVFQ8++KBI/zR16lS0a9euzP0aDAb4+voiJCQE7du3R4MGDZwy3vJKSEiw2dnRt29fLF++HLfeemu5+8rNzUVCQgKAyqXFKg/9QvqGDRvCw8Ojwn0VFBTY3PeOjo6u1Ngqos5PVujrSSQmJuL48eOVqih/7NgxnD17VvzANWzYsNJjJCIiIiIiIiIiIqppxo8fX+xjDz74oIiHDBmC/v37F3tsTWe915uVlYXhw4fjo48+wsMPP+ziUZWuWbNmYuwbNmyo1P+DuLg4DB48GID2/XDFIv06X7Oiffv2AOQP3Ouvl1xMszTW862zbcyhRkRERERERERERPWRo/oVtZW17rHJZMKUKVPwwgsvuHpIZeLM739xNUmqS53fWdGtWze0aNECp06dgqqqWLZsGTp06IDp06eXu685c+Zg2bJlYmtQ8+bN0a1btyoYNRER1XYewXLnnenCCQBA5ODeDo/1vkNLzXR90X8B2zQFngGeIramf1J0KQ38wn1EnHY6AwCQ+Psp0ZY3cZiI2y5aXfYnUUk3bP0NAHBmxkTRFj3H8RZia4qsrAvpos0nVKaM6rD0ZwBA/NSxok3VpYmypsIyGOT3RTHKNRluXnIrbH5aFgDAL1JuM9anicqMnaldv+tNDsdKVB3ST8vXgmeA/VbuPSMGi7jLql+KbQOAvSOHAAAaXd9WtJ1ctkbXv3ytWcxaZmufBrJGm7lQrqiKeXdJOZ4FEVUVfx/v0g8C0C72xyoeSc1VWuqlzV16VtNIKo+pn2oWFUBtui9bi4ZKtVB8fLyI60L2mZtvvhmbN28W937feustnDlzBosWLYK7u7urh1es6ko5VR3q/M4KAHjhhRfEzJiqqnjxxRcxYsQIHDt2rPSTARw9ehTDhw/HSy+9JPpQFKXWzK4REREREREREREROVPTpk3FP09Pz9JPqKGsuwhefPFFLFiwAAaDQdwDXrZsGQYPHoz09PRSeiFnqPM7KwBg4sSJ+O677/Dzzz+LH7Qff/wRP/74I7p164Z+/fqhQ4cOCA0NhY+PD3JycnDlyhUcPHgQW7duxV9//QVAbgUCgFtvvRUTJ04s6bJEREQ28s6dF3HholdEHDDRPkWhu64QbkF2YYn9psaniVgxaOsQwtqEijZ9IWtXSNx+UsTH23cXccNrw0Xs7qt9sDXlyhXcHr5yNbm1WLB+hai+6K+V/nt15UCiiBvfIOtVFWRmAwDy0zLltSKbitiSlwMAMHYYUPyTIqoC1l09ANBzw+YSj9XvnCipDZCvK3NegWgz6HYepZ9OFfF1a34FAOR8+65oO7N2m4hPPn0vAKDF+1+XOD4iqntOPXO/iBv1lb/PvUc844rhVNrNe3a6eghERFRD6HcmTJkyBVFRUbjvvvuQk5MDVVXx22+/4cYbb8TatWsRFRXlwpFWrby8PBF7eXm5ZAz1YrICAL755hvcddddWLt2rfgBVFUVu3fvFpMRjlhn1hRFERMdQ4YMwTfffFMt4yYiIiIiIiIioprBoqqw1KI8ULVprEQ1xR133IEtW7bgjjvuwKVLlwAAhw8fRq9evfDTTz+hS5cuLh5h1Th5Ui40DAgIcMkY6kUaKADw9PTE6tWrMXv2bHh6eopdEvqJi6v/AbaTFB4eHpg1axZ+/PFHl80uEREREREREREREVHV6datG3bs2IFWrVqJ+8gXLlxA3759sXbtWlcPz+nMZjOWLNHq0ymKglatWpVyRtWoNzsrAMBoNGL69Om4//778fHHH2Px4sW4ePFiscdbJywiIiIwYcIEPProo2jatGmxxxMRETmiKtraAN97/yXaTJu+LPGc/vt3iXijLnVSYbaWxkVfMNrNW/46NxQV3vYOl8Vxm721WMRJbz8JAIiY9mGZx19Z1kLbALCuhVyBYi0WDgCh14QAAHzCZLFwD13R3+xLMmWTlXeYv4jTiwqLu/vJomcWXQHu7HOXRewXHaEd6yv7zz15QvaVcEE77oFinxKR0yT833gRh1/X3uExv/W8AQDQZ+f2Mvf7e29ZIL7jpJsB2KY+y8/Id3ietdh9y49WiDbjxj9E7Cj9U+KrD4m4yWsLyzxGIqod9o2+FQAQEB3m8PGc5XMAAPkpMpd38JQ3RVx4Ua7SdG/YotzXz98UK2LP/uPKfX5F5a35WMRet02ptusSEdVmaWlp+Prrr7F9+3bs2bMHV65cQVpaGgoKCko/WUdRFJhMptIPrGLNmjXDjh07MGzYMGzbtg2KoiArKwvDhw/HggUL8NBDD5XeiRPExsaWfhCAX375BYmJiaUfWERVVeTk5CA+Ph6rV6/GiRPy7+JevXqVe5zOUK8mK6yio6MxZ84czJkzB0ePHsWuXbsQHx+PtLQ0ZGVlwdfXF0FBQWjevDm6d++Otm3bunrIRERERERERERERDVOfn4+pk+fjoULFyI3NxeAXARe2wUFBWHjxo0YN24cVqxYISZSHn30USQkJOCNN96o8jFMmDDBpq7G1azf63feeafC19DXalYUBWPHjq1wX5VRLycr9Nq0aYM2bdq4ehhERFSHKWZtFYlq9pRtRmOZz1ctFhFbd1FYd1AAQL/dO0RsXYHtGeQn2rZcd73DYytr5yBttXZphYD1bjm5x2H70ckjAMgC4QCQmZgmYqXo+R6ZOEy0eQT42D2u5x0sUzbqCwgbPLTvoVeQ3JmRcjRBxA17dSjpKRA5xZ4RgwEA0QM7i7aUg3Ilk88oeax1R8WB+24TbRln5S6JG7fFAQB23yaLwnsGyN1XSbsOA5A/+4Dta8boId+PjF7yfcpKv7PJ+lpt8+kq0cbdFER1W+cVWqoL/U4wfVHtjEWvlHh+RXZT6CX+sEbEQYcPiDj0iYrfkCkL7qag4qhF/2qL2jRWqp0uX76MAQMG4NChQzY3vAHbwtX6lPuO1OTJDQ8PD3z99deIjo7Gu+++K0oGvPnmmzhz5gw+//xzuLu7l95RJZX2Paro91BfBgEAnn/+eXTo4Jq/i+v9ZAURERERERERERERlY/ZbMbIkSNx8OBBABA3vBs1aiRSKFnbO3XqBB8fH6SkpCA+Ph6FhYXiMQCIiYlBdHS0a55IGb399tto1qwZnn76aVgsFqiqiq+++grnzp3D999/X6XXrsrJHGvfnTt3xnPPPYcxY8ZU2bVKw8kKIiIiIiIiIiIiIiqXpUuXiloOgFbjYeHChejfvz8AwGAwiMfmzZsn2vPy8hAXF4cFCxZg9erVUBQFFy9exAsvvIBJkya55smU0WOPPYaoqCjcd999yM3Nhaqq2Lp1K3r37o1nnnmm9A4qYNGiRQ7bVVXFgw8+KL7HU6dORbt27crcr8FggK+vL0JCQtC+fXs0aNDAKeOtDE5WEBERVTG3SK32UeGlBNGmeMgURdbClD73zHB4/o2v3yNin1HTANgWz9Wnhonspa1EST4or3X95rUljs98VqZUMEZ1LPFYvXZj+5b52NJYC4ebC8yizd1XbqPtsPRnALZpbgzu8mNMRqKWpia4eZBoM7rL1DbufjIljlWWrui2T8NQEfve91K5x09UXl1W/WLXdvk9+cdN6sfTRWwtVJuWIIvXmvJkwcG4628EYJv6zJoyDgCu+fgbAMDhcUMdjkWfEko1a69Ba0FdrU2u4spLzXXYhytYC3szDRVR1bK+H/g1CnT4uNFL+x2r/72aOWOiiN11aRsbzVhQpmuemHK3iC1mmQ5TnxqTiIhcb+7cuQC0m+bBwcHYsmULoqKiSj3Py8sLgwYNwqBBg7BmzRqMHTsWqampePjhh5GdnY2nnnqqqodeKUOHDsWWLVswdOhQXLp0CQBw6NAhTJkyxSadkrOMHz++2McefPBBEQ8ZMkRMCNVWhtIPISIiIiIiIiIiIota+/4RVYWkpCQcOHBA1DuYPn16mSYqrnbbbbdh7dq18PT0hKqqeO655/D3339XwYid67rrrsP27dvRqlUrUavDmtqquqmqWqNrfpRHrZ6sOHPmjPhXUFDAsRARERERERERERFVsZ07dwKQ9Q5Kq3NQ0s30Hj164LnnngMAWCwWvPjii04aZdWKiYnBjh070Lt3b7vi4tUlPj5e/Lvxxhur/frOVqvTQDVr1kz8EGzYsMGl21xq0liIiKiGUuQaAcP1d4o4b+UHAIDMt58UbRHTPhSxNfWT3o3b4kS86xb5Oyf1VBoAoOXQzqIt5SP5Qc9R+oUry/7n8Lql8R83065NP5Ye6zaVeH5mrDzfJzwAAFCYnSfaUk+linjvyCEAAL/G/qLNYJTfzwbtwgAA+Rn5Dq/loUsplXYquejY86JNnz6qUYmjJqo6WeeuiDioRaTd4/rUTzfv2Wn3+G89bxCxPg2aVbvYH0W8c9DNDsdgfQ36hsvXWsuPVpQ0bJdx9/Uq/SAichrFIH/vnn1J5hOPmvUZAKDwfy+IttxkmbbOO9Rx+qiShLSPEXHoE++I+J8nRos4rNy9EhGRM128eFHEjRo1QqNGJf8llZeXV+LjU6ZMwZw5c6CqKjZs2IArV64gLKzq3+2jo6PFPV1vb+9ynx8UFISNGzdi3LhxWLGi+j83N23atNqvWZVq9WQFAJfNWjlSk8ZCREREREREREREVBVSUlIAAIqiICIiwuExHh4eIjVSbm7Jtc8iIyPRrFkzxMfHQ1VVbN++HcOGDXPuoB1ISEiodB8eHh74+uuvcffddyM7O7vyg6rHav1kRU2aHKhJYyEioppHNep+7aqyQKR19aFfZIMK9avfwWBdWZ1y5IxoM3rIFdZpE7UPe20XrZaPe9kXn64ofYFsq3OvPSLiU+sOirjhtXLlTUai9j3wDJBj0RcLNuVqK8rzID/ghrRqLB//R9stoX+uualy5Y5PmFwh4xvhCwAIbBos2lL+kSvaicojY9ErIg6Y+HqJx1p3CAGAUrQzKE/3c9pzw2YRp+lWKFs52k0BAD9HdQIAhFwjf6av37TV7jh9gfqCLJm21CdMFr9189Zegy3e/7qYZ1FzWHeC/d77JtGm33VGRBV34L7bRGwwan/nFmTmiLbm730lYusuC88gP9Gm300R9PDscl8/Py3LYXtusuN2omqlArUqNXxtGivVKm5u8u9bT09Ph8cEBATgypUrUBQF58+fd3iMXoMGDRAfHw8A4r+1yd133+3qIdR6tbpmBRERERERERERERFVr6CgIBFnZGQ4PEafxumff/4ptU/9rgTuUKifav3OCqt9+/bZzOi5AtNAERERERERERERUV3XokULANr9UH39Cr0OHTrg6NGjAIC4uJJ3wGZmZuLYsWPi3qq/v3+Jx5NjaWlp+Prrr7F9+3bs2bMHV65cQVpaGgoKCko/WUdRFJhMptIPdLI6MVmhqiqmTp3q0jEoilJiVXsiIiLVTaY1Ukwy9YujotelSdIV4979oUz3Yk1xlH1JpmrQF5e2mO1/V4U9NbfEazkqolkcR6lnUo6eFbFnoNwe7KVLEXHNx98AsE074eblZhfrU+a4B8jUNdbnqH9++tRPBnfZlzXdVkbCBdHW9v4+xT8pohKUlvpJ79pv14tYX4zeEUdpU/QFtPvs3C7iJtdrxbiN7iVvms7PkH+g+DeW6Vo8fGX6tYzTKXbnHZkocwXrU8jVFPkZ+a4eAlGtc/Lpe0XceJCWSs37jsdFmzX9IgD4hGvvF57Bjm8auRUVu3dmWsnGL33ssL39ay+KOO8X7TOJ1+BJDo8lqioWqLDUotxKtWmsVLt06NBBxKmpqUhKSrKrXdG9e3d88803UFUV+/fvx19//YVu3bo57G/BggXi5riiKHWucHRVy8/Px/Tp07Fw4UJRH6Q23quuE2mgrBMFrvxHREREREREREREVB80aNAArVu3Fl9v377d7pjRo0dDURRx7/aBBx7A6dOn7Y5buXIlZs6cKXZVGI1G9OnDBWVldfnyZXTv3h0ffPABcnJybB6zfv/12YD0bY4ed6Vav7OipkwU1JRxEBFRzeUZECLignT7gs7mswdErBTIQtKGFj3sjrUWlgWAmxrIAr/W3QK5l1JFW2q8XCmtXylpVdqq6dJ2U+gdHjdUxO1ifwQAdFy2RrTpV5MHtogU8bGH7wJgW6DbWoAYkDsnQlrLlTr6HSnxfbUPsqY8+fyMHvL8gmxZkDOlqBi3Qde//7iZJT8xIifrsW4TAGB737L/EebfSO6G0BfLzkjMBAC4eTv+aG8t7G0ulK8v/S4PfV85yfK9x8q3YWiZx+gKxT1vIipei/e/FnHO8jkAAPNRmZ4jMCbM7hyDwfFaR+vvU9ViEW2+XXpVanwZi15x2K7fzaacTwAA5K2RuzC8bptSqesSEVH5DBo0CMeOHQMArFmzBnfeeafN402bNsXQoUOxevVqKIqC48ePo127drjlllvQunVrFBQUYNu2bfjzzz/FvVVFUXDffffZ1MSoCKPRaPN1cWmNrj7OWaorjZLZbMbIkSNx8OBBcV1VVdGoUSM0a9YMO3bsEO2dOnWCj48PUlJSEB8fj8LCQvEYAMTExCA6OrrKx1ySWv3J/tVXX3X1EFBnLO8AAQAASURBVBxq3ry5q4dAREREREREREREVGVGjx6Njz76CKqqYuXKlXjvvffg5+dnc8wHH3yArVu3IiMjA4qiIDc3F6tWrRKP6ycpVFVFREQE3nzzzUqPrawLy2v7AvSlS5di27ZtYsKhWbNmWLhwIfr31xYKGgwG8di8efNEe15eHuLi4rBgwQIxmXTx4kW88MILmDTJdSkWOVlBRERERERERERUBqqq/astatNYqfbp3bs3nnvuOeTlabUFT5w4gS5dutgcEx0djfXr1+O2225DSkqKXboh69eqqqJJkyZYvXo1GjVq5JTx6fsu7ThnTVpUd13juXO1GpSqqiI4OBhbtmxBVFRUqed5eXlh0KBBGDRoENasWYOxY8ciNTUVDz/8MLKzs/HUU09V9dAdqtWTFURERLWVquhSFKVeBAAY0y+JNlN6sojNh/4Qsfcw+w8M+pQIiUVpmFo9I4tkZs96T8QGg30eysQ/zom4bdmGXyxr6idAprdpckML0eauK5qtL3BtKdS2x6q6AtmqWaassZYFDm3fQLRZU0cBgNFD27qrTwdjbQMAVVdY2JoKS//4P0+MFnHLj1Y4fnJU7xWknBexR0jjSvVlTZkW1DTQ4eNJbz8p4uSDCXaPZ12SuWitP/cN2sm0LfrUTtbH9UW59fSvG31he6vsi8l2bTXBhrZaccb2D9inyiMizeX3nhHx+R1HRRzZu52IfZtpBUzNqfJzSFinliLOOncZgG16Rn2aJmthbQ9/X3nObvl+4/HPfnmt+14q07j11zJ6+4j40rtPizh86vsAHKfWrGtMf/1s1+bW7XYXjISIyN4777xT6jE9evTA8ePHMWvWLKxYsQLnz5+3eTwyMhLjxo3D1KlTERwc7JRx9enTp0x1GMp6XE2UlJSEAwcOiPFPnz69TBMVV7vtttuwdu1a9O3bF/n5+XjuuefQu3dvdO3a1dlDLhUnK4iIiIiIiIiIiIioyoSEhGDevHmYN28ezp49i6SkJKiqioYNG1boBntptmzZ4tTjaqKdO3cC0HZVKIqCMWPGlHh8STs+evTogeeeew6zZ8+GxWLBiy++iLVr1zp1vGXhuEIWEREREREREREREZGTRUVF4brrrkP37t2rZKKivrh48aKIGzVqVGr6LGu6ruJMmTJFpLHasGEDrlyp/t2L3FlBRETkAp4BISIuTIoHAJgbthZtSrhJxN43NhNx/sZF2vkDJzrs98zviQCAdrG3iLaMRJkmylEamEFH/irP0IU9IwZr4wuT6RnafLpKxDds/Q2ATHcD2KabubzvtIi7rPqlxGvtG30rACDzbJLDx62pawqyZbqn3FT5QSwjMUPEPqHaeL2DvUSbZ5B/iden+qvgSqL8wih/fi3/aOnZsrevE20Z8TK1mU+4tn09eIosDnj2JVmozitU+5lr/t5XDq9ryi2wawtqGeHwWEtR+jR3X/kzbS7MFPF1a9Y7PM/q2m9Lftw73Dlb8Z2tzchrAQD7F8lUeY3LlmGGqN5QzRYRB8aEOzzG4BcEACg4dUi0FWRmi9j6fuYRKH9X+twzQ8TWtHUeLWXqqLzEsyJWPOR7k+XkLu2aLUpO3+Y/bqbsa83HIramftLzCAyza6trmPKpZrGo2r/aojaNlYjKJyUlBYBWJyMiwvHfCh4eHigsLAQA5ObmlthfZGQkmjVrhvj4eKiqiu3bt2PYsGHOHXQpuLOCiIiIiIiIiIiIiKgWcXOTi6k8PT0dHhMQECDSP11dK8SRBg1kncj4+PhKjrD8uLOCiIjIxdwjYgDYruBWDfJXtDlhr4iNodq2zpzlc0SbfnXjLSf32PVfXFFdRzZ1kisd++/fVeKxpe2GcCTnilzJ4eHrLuK4628EABh0BTVDrpGrub2CvAEAlgK540S1yNWipXH39RBxQJS2MrQgq1C0eYcHlbkvqr+UfLnSWM3TYoO7fK0Gt5PF5H1GTbM7P2rWZyJOfPUhu8fjp46V/esKzJsLzXbHGnQF4lGgPW7WvT56btjs+EmUwlq4viBT7kwyF9hfvzqcmHI3ACD8ujaiLXDSLBEn/KoVC3b0vkdE9sKvay/i/CspIrbkaDuxPFt2Em1+D4wQcWbsTO2/p+UNjoL/vSBixaD97va6bYpoy/14ujw2WXetP7TdaH6l7Kwo/HO1iPX96t87m7y2sMQ+6qqcb98FAPiMnOqS6/81dJCIu/24wSVjICIiTVBQkIgzMjIcHhMWFibSOf3zzz+l9pmdne0wri7cWUFERERERERERFQGqlr7/hFR3dSihbZYSlVVm/oVeh06dBBxXFxcif1lZmbi2LFjUBQFAODvX/3pkrmzgoiIiIiIiIiIiIgqJTk5GRs3bsSePXtw5swZZGRkIDc3V6QhKitFUfDrr79W0SjrDv1ERGpqKpKSkuxqV3Tv3h3ffPMNVFXF/v378ddff6Fbt24O+1uwYAFMJm23tqIoaNq0adUNvhicrCAiIqohPMKaiLggRaZaMAc2FLFR1VIf6VM/lUfu6g8AAPHfyG37Fl3xTWuh3uLo09TEvLsEAPBbzxtEm6OUU/r+fcNlMW5TnkxZ46Mr0m2lTxnlG+GrnVMoz1F0KaMMRsWun9RTaSJ295IfeUy5Wh/6AtthT821uz7R1RSLya7No7n8A8G954gSzz/32iMiNnppqcn0RbdN2fJnXl/03T9ayxubl5wu2nzD5ePW14KHv2+J1y+L83+eAwAENQ0UbfqUU9v79gEA3LD1t0pfqzSR/bU0MY5SagHATTt+r/IxENV21vcaAChITROxd0xzEVsLYOvfw/LW/U/EyYe0fNUhbeQNC30qRs9g7f0oVZf6KS8tU8QBzRo5PK8k7t1lMc+CuK9F3KDvTWU6vy6zpn8qSLsk2jyCHBdPd5ZvImQKsegujgu4ElH9Fh8fj2nTpuHHH38UxZwrSlVVsbK/Ml5//fVK91FZr7zySpX236BBA7Ru3RrHjh0DAGzfvh133nmnzTGjR4/G9Ona72hVVfHAAw9g/fr1dhMRK1euxMyZM6EoClRVhdFoRJ8+fap0/I5wsoKIiIiIiIiIiIiIyu3777/HmDFjkJeXJ3ZQOGOyobKsN95dqaonKwBg0KBBYrJizZo1dpMVTZs2xdChQ7F69WooioLjx4+jXbt2uOWWW9C6dWsUFBRg27Zt+PPPP23+/9133302NTGqCycriIiIiIiIiIiIysACFRbUnkIQtWmsVPv8/vvvuOeee2xSB6mqWu60T3WNs3aHlMXo0aPx0UcfQVVVrFy5Eu+99x78/Pxsjvnggw+wdetWZGRkQFEU5ObmYtWqVTbjBeT/v4iICLz55pvVMv6rcbKCiIioBvIIaSzi/IwUEVtTQinHZfoTQ6sb7c7Xp2KwmM0iDn3iHQBAu2FPObxuB4etUkAzmZLq2MN3AXCc+knPqEsho0/9lJ2UY3esZ4BMV6FP82Tl7itTN+nT5ORe0frSp3syusvzfSNkeii3omM8ArxLHDcRAMCg+zlUZGzJzS53V/qfaUuB9lqImvWZaDszY6KICzJl/0YvTwBAm09XOTw253IqACCsU8syj2VH/74ivn7TVhHfvGen3bGHxw0VsVpKqjinspjtms7PmiLixi99XH1jIaplcpbPsWsLeni2w8ctJi1dh6f+YN3rL6hFpF1fiu690freVqhLZecdKlPJKW7ydztMBSWO27RnHQDArcstoi1z318i9mvXscTz65OqTv0EAOtbddWuZZA33Hqs21Tl1yWi2uOxxx6DyWQSN7k9PDwwfvx4DB8+HB07dkRoaCi8vV33d1d9mDTp3bs3nnvuOeTl5QEATpw4gS5dutgcEx0djfXr1+O2225DSkqK3USK9WtVVdGkSROsXr0ajRo1gitwsoKIiIiIiIiIiIiIyuzAgQM4cOCAmKiw3hBv3bq1q4cGANi8ebOrh1Bt3nnnnVKP6dGjB44fP45Zs2ZhxYoVOH/+vM3jkZGRGDduHKZOnYrg4OCqGmqpOFlBRERUwxnys0SsFq3stviGyAP++UMe27IXAMC3w7WiLVVXhHbf6FsBAJ1XrK3QWM5u3i9i/Y6JkmQkyiKbbrqdD27eMi7I0lZaZl6QzzWsTai8lrt2rE1RbXd5fkBT7fuRmZgqH9cdqx9DzKC22jUzy78ynuo31SB/5gz+2gd4NTtDtJnOH9MdrBWRdYtsK5psVhoX/Xzqd0gU5shVyeYCuQtJ/7NuFT1nkV3biSl3izhwkt3DNkJahpZ8gE672B/LfGxlpX/2kogDJ82ye7wg035HFhHZ87lnBgDAtEjmys79aYHd4/p2fSFr/e4xr+hmAAC1IE+0KW7udte0+R3tIXdC6ndpWN879cxH4+za8tbInVM+zZqJWD8GqnoGo7bSNstUtsLoRFS//PnnnwBkyqPPPvusxkxUAEDfvn1LP6ieCQkJwbx58zBv3jycPXsWSUlJUFUVDRs2RFRUlKuHB4CTFVSCtLQ0/Prrr9i8eTP27t2LEydOIDU1FZ6enggNDUWXLl0wePBgjB071i4XWln99ttv+OKLL7B9+3acO3cORqMRTZo0wc0334wHH3zQbtsSEREREREREZHLqECtyixTm8ZKtcqlS5dEHB4ejgEDBrhwNFReUVFRNWaCQo+TFWTn6NGjmDp1Kn755RcUFhbaPV5YWIisrCycPn0aq1atwowZMzB//nxMmDChzNfIzMzEY489hi+//NLusfT0dBw6dAgLFizAs88+izlz5sDd3X7lDhEREREREREREVU/T0+t2pGiKIiOjnbxaKiu4GQF2Tl48CB+/vlnmzaj0YiWLVsiIiICZrMZR44cQUqKVvA1PT0dEydOxMmTJ/Hvf/+71P5NJhOGDx9ukzsuICAA7du3R0FBAQ4fPozc3Fyoqoq5c+fi8uXLWLx4sXOfJBFRLeLeQH7wK0i9CABQ3WWRMjX1vN05+vQNEdM+FHHKxGEAgM1deoq2qBubirjlRytKHMu1364X8bnXHil17AAQ2FSmvtEXCN47coiIe27QfidsbN9dtOVckSlxfBsG2fUb+ep/RWxNpePmpUs5pUsz5ddY7gA05Wkpp9JOJZdp/FTP6YpqwyBTnxnb3AQAsJzcJdrUDLm6DJ6+dl35duoq4uz9f2uHBcufTa/QAPn4xRQR+0WGAQAuvfu0aAuf+r5d/166NFMZutQvV/b/AwBw85Llc1v/7zu782sCfeqnxFcfAgA0eW2haHPz8rA7h4jsWd+bPBo1kW26tHXmw1tE7H3H4wBsUy8ZvOV7mFpUgNvgF+T4Whn2v0/TjsWL2DNIvs/5BmtFoXO+fVe0+YycKuLsZdp7gD5dlHV8VP1y0/IBAAHuZUv9SUT1S/PmzUWclZVVwpFUlX777TcRd+7cGYGBgSUcXbL09HTs27dPfN2nT59Kja0i6v1kRUpKirjxnp6eDovFgiFDhiAiIsLVQ3M5Nzc33HHHHZgwYQJuvvlmBATIP6BVVcXq1avx+OOP49y5cwCAWbNmoUePHhg6dGiJ/b744os2ExUvv/wypk+fDh8fHwBAcnIypk+fjk8//RQAEBsbi169emHKlCnOfopERERERERERGVmUVVYalEeqNo0VqpdevfuDTc3N5hMJsTHxyM3Nxfe3t6ln0hO1a9fPyiKVmNow4YN6N+/f4X72r17NwYPHgxA2zFjMplKOcP56uVkxaVLl/DRRx/h22+/xdGjR+0e37Bhg8PJikWLFuHs2bMAgMaNG2Py5MlVPlZXcHd3x+TJk/Hyyy8Xu41LURQMHz4cXbt2RY8ePXDxorbS94UXXihxsuLs2bN4/325EvDll1/G66+/bnNMaGgoFi5ciLy8PJEm6rXXXsP48ePFhAYRUb1ldvBhwc++UK7XYFld99Qz94s4sEUkACDtdLpoy02u2CoY/c6Gknj4y/fuhP8bL+KCbJlq8OTT9wIAgpsHibacK7KQbsYZbdWmh69cVa1fOW4tNrxz0M2iLaCJv4jNBbK4Z8aZKwAAzwCu0KbSeQQ3FHFBitzFZD5dtOLIqPs5sontV6EmrZU7k6y7KPybNhZt+SnydekfHS7isKfm2vWV9r8XRGzK01a+5qdl2h0HABE92gEAfO+TxautuxYAIC9ZXre03VWuVpCRXfpBRPVU/palIlaK0ujqC2EbA+XnBWO7fiI2H/zVri9FVyBb7LIwOF5dbygqoK14yd0YIaHyvTN9/wERWz+f5G9cJNqsuykAoCCt6DNJmvxsor/tlffLZ3Z9UdUZduGgq4dARDVYaGgo7rzzTqxcuRL5+fn45ptvMHbsWFcPq16yFjl3Vl+uVO8mK9555x288sorKCgocPjNL+l/bFZWFmbOnAlFUWA0GjF06NA6uQNj+PDhGD58eJmOjYqKwmuvvYZHHtFSgRw8eBAnT55EixYtHB7//vvvIz9f+4M6OjoaL730ksPjrMd+9913yMnJQVJSEhYtWoTHH+cWYCIiIiIiIiIiIld78803sW7dOmRlZeGFF17A4MGD69y90vz8fKSlpYn7meVRXbU8nDVRURMYSj+kbjCbzbjrrrswffp0hz9cZfmfOmnSJAQEBEBVVZjNZnz11VdVMdRa5+qdFI52q1h9//33In7wwQfh4VH8qtaQkBDcfffdDs8lIiIiIiIiIiIi14mJicFXX30Fd3d3nD9/HgMHDsSRI0dcPaxKOXr0KKZPn44+ffrA398fPj4+aNy4MWJiYsr1T1/TozZy1QRIvdlZ8fjjj2PVqlUAtG+2qqro0qULBg8ejOjo6DKt2Pfx8cHQoUOxdKm2vXbNmjV45plnqnLYtUJISIjN1xkZGQ6PO3r0KE6dOiW+vuWWW0rt+9Zbb0VsbCwAYOvWrcjKyoKfn18pZxER1V2KRUsDpbrJyV7VQyZIKEzSClq6R8SItubvycn1sy9pKROu37RVtB0eV3KtoeIce/guAMUX6rX22y72R4ePp+kKbFuLXdsUxY6Q6STyMwrszr/0l5wcTz6kbTfWF/POz5CLE3xC9X1phbvNhRaH4yIqlkX+zFi8tZ81Q06aXRsAGDOT7E6PmvWZXZuePtllZuxMEVtTpBTo0qIET3lTxElvPwnANoXThTnys21hhpZSzfc+2b9vQ5kORl/Y29X06d0Ug7au6syMiaJN/35GRLYUT5m6SbGmbCpD6nBjhwEAAHPqZdFmydWlXCssKrDtrVtoZtCte/QsuoguTVRe/HF5qLv83Z780fMAgNAn3pGn68Zi/W2tfy/QK0/qJ2sRcX3KKyJnMKuAuRZ9jDSzZAVVsdtvvx3r16/Hvffei0OHDqFr16645557MHLkSHTt2hUNGjQocbFyTXHlyhU89NBDWL16tWhzdUqk6padLX//u6r+SL3YWbFt2zb873//g6IoUBQFYWFh+Pnnn/HXX39hzpw5onBzWWaMRowYAUD7Yf39999RUGB/86S+OX36tM3XDRo0cHicvpq8p6cnunbtWmrf119/vYhNJhMOHz5cwVESERERERERERGRs/Xt2xf79u1D27ZtkZ+fjyVLlmDEiBGIjo6Gt7c3jEZjuf65uVXv+vqTJ0+ic+fOWL16tZigsP7Xej/56vvG+nZHj9dG+mw5QUFBLhlDvdhZ8cor2qoMVVUREBCArVu3ok2bNhXqq2fPniLOz8/HsWPH0LFjR6eMs7b67ju5otbNzQ3dunVzeJx+G1hUVBTc3d0dHqcXFRUFDw8PMSl09OhR9OjRo5IjJiIiIiIiIiIiImf4+uuv8fzzz+P8+fMio01tkZeXh+HDh+PChQtiwkFRFPTs2RMxMTFYtmyZaBs8eDBCQkKQkpKCQ4cO4dy5c+IxAGjTpo3NvePaJD09HZ9//jkA7flU9N55ZdX5yYrU1FTExcWJH5qXXnqpUt/sJk2aIDg4GKmpqQC0m+f1ebIiOzsbH330kfh6yJAhCA4OdnisfgdGWQvMGAwGREZGIj5eS2uSkJBQ7jEmJiaW6/gLFy6U+xpERNXGurrDbBJNSkGuiC2BgXan6DlKQ1NcmqbSOEr/ZE0NBQAeAdq20RNTZP0hU57ckejmpf8Yoj0fS4FZtOSm5onY6KGllvDw1aW/0u2/z0/L1P6rS/1kdJcbSA0e9h95AqLD7NqIKkO5eELEhs6DSzw2f4uWVhQW+TPv2X+ciP3HzRSxNR2KPvWTPkWKX5RWxNCaLgoAGs1YIOJzrz0CQKZfAQBVl9IqL9lxCk9X0L9Wremp9OliiKh4Rv8gEatFqZuMwXLXuyn5Yonne9x0r4gLdnwrHzBpfSlucrGZqnvvUjy8iq4pf8d7NooUsXuQTCmhFsjf7SUJmPi6iPPWfCxic3qyiH3ve6nEPmpT+qeclW+L2GfUNBeOhIio/KZNm4a5c+fa7USwKs/EhSsmOhYuXIjDhw+LMXfr1g3Lli1Dy5YtAQDLli0Tj02bNg39+/cX5544cQILFizAxx9/jMLCQhw/fhwjR47Ev//9b6eO8fXXXy/9IACxsbHYtm1bmftVVRU5OTmIj4/Hr7/+irS0NPFY7969yztMp6jzkxXbtm2D2ax9kDIajZg8eXKl+wwPDxeTFZcuXap0f7XZ1KlTbWYRS3rxZGZmijiwlJtpegEBMo+yvo+yioqKKvc5RERERERERERXs6gqLLVo1XhtGivVPl988QXeffddAHJ3gaqqMBgMaNasGUJDQ+Hj41NSFy73/vvvi0mSyMhIbNy4scz3La+55hrMnz8fEyZMwIgRI3DmzBnMnj0b+fn5ePvtt0vvoIxmzpxZYpop6wTPkiVLKnwNVVXFNdzd3TFu3LhSzqgadX6y4vz58wC0F0zz5s2dkm9L/wNbkZvndcXSpUvxySefiK+fffbZEutQ6Iu0eHl5FXvc1fQFXfR9EBHVa7oVjfqiviavIC1IOS/aPEIaV9eoUJApV0xaiqr5BcaEi7a8tBy7xwG5y8KUJ3eMFGQXithQ1N5zw2bRtmeEXLnu10ib2FbNcpeJSbfzosX7X4vYWow4YtqHZXtSREU8wpqIuOCKtnNTddeVhjXJn1nTvl8AAG7F7LAwJ53RztfvrCjmuu4NtJ0TpsRDos2vzx0itqRpRXHTd2wRbZf/b7w8NlLbReTmLa+QeUYWAM++IFcq/zV0EACg248bihmN8x184HYRR/aWO5a5o4KofKyFsgHAtGcdANudDB7Xjyzx/MI/ZUFRRVcsG17ajgpV9x5n3U0BAJasNC3QnaN4+YrY6CMXn5kuxNtdV+w0041XzZE7vvIuyPcrL91CtJzlcwAAPvfMKOYZacynZe1EY9POJR7rKvrdFPFTxwIAYt6t+A0nIqLqYDab8cILLwCQOyLat2+Pl19+Gbfffjt8fX1L6cH1zpw5g1OnTondIC+//HK5FlhbXXvttdi4cSO6d++O9PR0zJ07F0OGDMGAAQNKP7mGsP4/VBQFc+fORUxMjEvGUecnK1JSUkQcEhLilD7z82WKibLUXaiL4uLiMGnSJPF1t27dMHv27BLPKSyUH27LUyhHf2xFCpqfPXu2XMdfuHCBdTGIiIiIiIiIiIiKERcXh4sXL4rV+P369cOaNWvKtUDZ1f78808AclfBqFGjSjy+pBRVLVu2xEsvvYTnn9dSr7766qtOnawoS3qsyqTQ8vPzw4ABA/DMM8+gT58+Fe6nsur8ZEVV7ILQp34KC6uefNc//fQThg4d6vR+Fy1ahAkTJpTrnH379mHo0KFi0qZ58+b48ccf4eHhUeJ5+m1feXlly1V69bEVmZVt0qRJ6QcREREREREREZXCoqow16LUSkwDRVXlwIEDAOSN/k8++aRWTVQAtvd4o6Kiiq3Da5Wbm1vi4xMmTMD06dNhNpuxY8cOJCYmOuW+5ObNmx22q6qK/v37iwmjd955B926dStzvwaDAb6+vggJCUHTpk1LTDVVXer8ZEWDBlpBMVVVcfr0aVgsFhgMhlLOKt7Zs2dtCjA3blx9qTVqgmPHjmHw4MFIT08HoD3/DRs2oFGjRqWe6+fnJ+LSXtx6OTkyZYi+DyKiek2VKY4MeXIy3sNicnS0UJikpV9wj6iaLZ0FWXIXXUATbcFAzgW5y1FfNNu/kXxPt6Z/0hfd9vC13724o39fEftFyAlsa3opayHuq52fNUWeF9nA4TFE5eJeVFDWJHfcGsKj5ePZaQBkOijANiVUfor2WcrNV/5Bpy+wavD1F7H3HY8DACyndos2i5d8HNDSQOnTJnnEzrQbsluAXMTjmSFTa3o3CBJxbvJ+rcf3nhFtfjHyeXmPkO3O0mHpzw7brYXBI1/9r9OvSVTXuXW5pdznKG5y8ZmjQtj6NtWk2/Fe9Pe1YvN3tu53uC49lDFYSw1pTeEE2KZxKojT0jaqujRTnoWO008ZfPTvg8WrqamfiuPhry3y23Ld9aKt3+4drhoOUa3022+/4YsvvsD27dtx7tw5GI1GNGnSBDfffDMefPBBdOnSpUqum5aWhl9//RWbN2/G3r17ceLECaSmpsLT0xOhoaHo0qULBg8ejLFjx5b5/taWLVtw8803l3ssR44cQZs2bcp9XnnoU7U3a9YMrVq1qtLrVQVrQWlFUcQ95Kt5eXmJBdulpacPDQ1FTEwM/vnnHwDAH3/8gbvvvrvS4+zbt2/pB0FLR1XWY2uqOj9Z0bmz/GCSk5OD33//HTfddFOF+1u5cqWIjUYjevXqVanxlZWXlxciIiKc3q++HkRp4uPjMXDgQDHrGBYWhg0bNqB58+ZlOj80NFTE+gmf0ly8eNFhH0RERERERERERICWUeWxxx7Dl19+afdYeno6Dh06hAULFuDZZ5/FnDlznJba/ejRo5g6dSp++eUXmxToVoWFhcjKysLp06exatUqzJgxQxRlrs0aNmwIoOQb/TWdPktMcSnrAwICcOnSJSiKgnPnzpXaZ2hoqJisKG9q+oqqTPqnmqbOT1a0atUKMTExSEhIAADMmzevwpMVGRkZeO+998SWmO7du8Pfv2yrOSpr4MCBNjftq1tiYiIGDBiAxEStmGRAQADWrVuHdu3albmP1q1bi/jMmTNlOic7O9um7oi+DyIiIiIiIiIiIpPJhOHDh9ukywkICED79u1RUFCAw4cPIzc3F6qqYu7cubh8+TIWL17slGsfPHgQP/9su1PUaDSiZcuWiIiIgNlsxpEjR8T9rfT0dEycOBEnT57Ev//97zJfx8vLq8yr5qsjM0l0tNx9q793V5vo0z5Zs8hcLTw8XCzcPnbsWKl9WndrAOXLLFNRFoul9INqkTo/WQEA48aNw2uvvQYAWL16NRYvXozx48eXqw+z2Yxx48aJGTRFUfDYY485faw1UVJSEgYOHIj4eC11iI+PD37++edy5UADgLZt24r48uXLuHDhQqnpo/bu3VtsH0RE9ZqiS7VglOkVlKKUUMaYrg5PKy3909mXJtm1Rc36zOGxu2/TioVdt+ZX0ebhJ1cnpcZrH1gDmgSINp9QuaMvT5cSSjFqCwE8AzxFmz42emjPNztJpgbsuGyNiBP+T/u93uwt+QfH3pFDRJx7OVXEIddVzbZvqqd0r0VVF1vTjurXOOX+tEA+7qF9DDd6y5pePqOmiThv3f/sLmVOPi/PD5O5b02tbtT+u+Zj2VdXuTjH2MG+sJ9+b+3RySNE7BuuLcS5uEv+IeZ37oqIY+ShVaJgx7ci9gy2/yP7xBS5jf6aj7+p2sEQVQPLP3+I2NCyanft61PJGZpfJ9uP/w4AUDx1ecZ1KZ2s6Z8UL/l+ZclMk4f6ar/nzcly97whUO6IV7MzZJynpc9QfOVng/wtS0WsFH2mUXSrnY3BcrWu58CJjp9cCfJ+kZ9jvAbbf86pafLTtM9yLW/v4OKRUHEsau2qA2GpPUOtlBdffNFmouLll1/G9OnTRf3U5ORkTJ8+HZ9++ikAIDY2Fr169cKUKVMc9lcRbm5uuOOOOzBhwgTcfPPNCAiQ73WqqmL16tV4/PHHxb3FWbNmoUePHmWuURsREYF169Y5bbyVddNNNyEkJAQpKSk4deoULl++XOt2WFgXRauqivPnzzs8plOnTjh48CBUVcXWrVtL7O/y5cs4ceKEWOiur6VMZVPx4g21yNSpUxEeHg5FUaCqKiZPnox33nkHZrO5TOcfPXoU/fv3x48//ghFUaAoClq1aoX777+/ikfueikpKRg0aJCYOfT09MSqVavQu3fvcvfVo0cPm+1VcXFxpZ6jP6ZJkyZlTjlFRERERERERER139mzZ/H++++Lr19++WW8/vrrYqIC0FLzLFy4EGPGjBFtr732mk2d1Ipyd3fH5MmTcfLkSXz//fcYPny4zUQFoC16Hj58OHbs2CHSJwHACy+8UOnru4q7uzvGjRsHQLvZ/8knn7h4ROXXoUMHMbGQmZkpMsro6UsAnDhxAhs2bCi2v7fffhsWi0WkZWrZsqWTR1z31YudFb6+vvj0009x5513wmKxwGw2Y/r06fjPf/6D++67T+wQsFav/+uvv5CSkoJ//vkHmzZtwqZNm6CqqvhB8/b2xldffVUjKqRXpYyMDAwZMgQHDhwAoM0Qr1ixAoMGDapQf/7+/rj55puxfv16AMDSpUsxevToEs/56quvRFzWmWYiorpMKSqgrRrkr3CLu/wQ7h7VAgBgPntAtBmjOpbYZ9bS10Wclyy3vjpatfx7b7laO6yd/aqZ1FNpIvYN1wpg52fIAsR+jXQFfgNkMXBzoRbri3Nad1Pouet2bjgqtr29bx/Rpi/Q7d1Abu/1uuVhu36JyssjMAwAUFCo2yFklq9LQ9FuB/1PsTlZpvRUDElaYHG8eMa9SQsRm/7S0gpYsjPl493l7inr3qp8XeFZ0yWZT9fy5+qic4Y5vFabT1eJ+NK7TwMA8v46Icedl3/1KU6l39EVECN33RqLVlbHTx0r2tx8y15vjahW0L0HWF/rAODW7XandG/a94uIDd6+Do9RTUX51XWFsBV3+2Lbap7uhp7uWHN6stbkL3/XOtp5AQBK0bXENQEY9bswiq5l8JXplpUGkfJaR+ViNmObsqV3zks4KWKvEo6rKZq/p/0NnP7ZS6JN/z5Z3I5Xovrs/fffFwWQo6Oj8dJLL5V47HfffYecnBwkJSVh0aJFePzxxyt1/eHDh2P48OFlOjYqKgqvvfYaHnnkEQBaCqmTJ0+iRYsWpZxZM7366qv4/vvvcfr0abz55pvo378/brzxRlcPq8wCAwPRuXNnkdll69ateOCBB2yOGT16NJ555hkxCTF+/HisWrUKPXr0EMdYLBbMnTsX8+bNE4vlvby8KlU3ubIuX76MuLg4kYIsPT0dFosF06ZNq/Li65VRL3ZWAMAdd9yBBQsWiJ0Rqqri9OnTeOutt2xumKuqiunTp+Oee+7Biy++iF9//dUm95e7uzsWLVqELl3qdgqJnJwc3H777di9W9sqbDAYsGTJEgwb5viP3LLSFw/6+eefsWfPnmKPXb16tZgoAVDu1F1ERERERERERFS3ff/99yJ+8MEHbbJ6XC0kJAR33y3TSurPrS5XL8Y9evRotY/BWQIDA7F+/Xo0bdoUubm5uPXWW7Fw4cJaVfB58ODBIr669gig1awYO3asWOR+8eJFXH/99ejWrRvuv/9+3H333YiOjsb06dPFYndFUTB58mSb3T3V5YcffkCfPn3QsGFDjBo1Cq+88grmz5+PRYsWYfHixcWmu5o+fTr69++P/v37Y+LE8qdddJZ6sbPC6uGHH0aLFi0wduxYXLx4UeyMsP4QWelfUPrJjYiICKxcubJCKZBqk/z8fAwfPhzbtm0DoH0PPv30U9x7772V7nv06NF44403cPDgQZjNZjzwwAP49ddf7WpXHDlyRMwyA8Dtt9+Onj17Vvr6REREREREREQVZbZo/2qL2jTWijh69ChOnTolvr7llltKPefWW29FbGwsAG0lfVZWVrUUpLYKCQmx+TojI6OYI2u+3377DQDw7rvv4vnnn0dCQgIeffRRzJ49G3feeSe6deuGBg0awMur/Hvb+vTpU/pBTnDvvffi7bffhqqqWLVqFa5cuYKwsDCbY9555x1s2LAB58+fF/eJ9+zZI3ZkWO8lWx+75pprMGvWrGoZv1VycjImTJiANWvWOByTNS5Or1698Pbbb4vjpk6divbt21fxqO3Vq8kKABgwYACOHDmCjz/+GB999JGYTSpuxk9VVQQHB+Nf//oXnn76abucc3XR+++/j40bN4qvg4KCsHz5cixfvrxM548ZM8YmB6CewWDAwoUL0a9fP+Tn5+PIkSPo0qULnnzySXTv3h2FhYX47bff8Mknn4g369DQUJvcg0REVDzTuSMAZJqFsvB74BUR+8aXXGDuxm0y/cJfQ7W0gJs6ye2vDdrLD3XJJ7Si1oFNZCqH/NRsEfs0kh/SG3XStj0fXSoLlpkL5V9W1gLcPdZtcjiuXbf0BwAE6K6V8o8squ0THmx3DpFTGHUfp3UFts3xf2uBLlWKJStNxAETtfRruaveE225qz8QsXukLhWAm5YOyVp49upjlaLHjaFy8Ycp6Yw8vyjNjL7At/cdjtMdhE/VPnNlPCF3Hhvcq+ZPBvE90lF1d1SCp7yp/bdKrk7kOvp0T5Y8+XvR4OP8vzXdOsvVotZC2sBVr7+i9whzw1aiyXhJpk6ypn9SdTUf9SmlLKYCAIDHTXJxW2FR+jnANuWTON8vSD5eoEunV5TOzthhgGgr+H2FfNxNl56q6Puo6lJpOUp3F/TwbLu22iBwkrzJZfroeReOhKhm27dvn4g9PT3RtWvXEo7WXH/99SI2mUw4fPiwTUqfqnb69Gmbr2tbUWq9fv362dwA12ezqcy9PEVRYDKZSj/QCa699lp8+OGHyMvTfh9dvnzZbrIiNDQUW7ZswW233WZTQFs/XuuuimuvvRY//PAD/P39UV2uXLmCG264ASdPnnS4KF8/YVGc4cOHIyoqCmfPngWgpeZ/4403qnTcjtS7yQpA26I0ffp0TJs2Dfv27RP5u5KTk5GWlgYfHx+EhYUhJiYGN998M3r06AE3t/rzrbq6uFBqaqqoM1EW+sIzxT0eGxuLcePGIT8/H0lJScXmEwwMDMR3331Xa3P3ERERERERERFR1Thy5IiIo6Ki4O7uXsLR8jgPDw8UFGiTrUePHq3WyYrvvvtOxG5ubqKWbmnS0tIwevRo7Nq1C0lJSXBzc0NYWBg6d+6MgQMHYty4cS5bZK2/QV5c9pqarCx1S1q0aIGDBw/i448/xvLly/Hnn3+KCRU3Nzf07NkT48aNw8SJE6v1PrKqqhg2bBj++ecf8b338/PD5MmTMXjwYERFRaFDhw6l9qMoCkaOHIn58+cDANavX8/JiupmMBjQpUuXOl9/oiYaPXo02rZti6eeegpbt261e/MyGo247bbb8OGHH6Jp06YuGiURUQ2m6nYdWOxXnKiejotobrlOW0XUdvR1os1cULEVK91+3GDTJwCkJcgC3f6NtK3UFrPjD6iX9p0V8ZktWjHfPju3izbrbomyMBi0D2VBLRuLtoDocDmWGwbYnUPkFGb5+tEXvrf+iabkZ4k296aykF3+lqXa47qi2JZcucJaX1zXuotCf6xbRLQcQuolAEDesb2izbfXIBGn/rIKAOAZXPbVXXm6XVBewY7fTyrLGKOtfNQXiz33mkwDai5aSXx2837Rdu23ZV9AQ1RTWXQ7CWx2UxiqtqSkoZUseGr55w8ZF+2YMF48LtpU/ftRRJTWpqvlaAmJErFneDMAgPngr/J83XPU7zAz+AcBsH0/U3SPW78H5rOydqGbrsC26fI5OYaiMRZXOLwuCX3iHVcPgXQsqgpLLbkBC8BmrBcuXCj3+U2aNHHmcJxOv0shOjq6hCMlg8GAyMhIxMfHAwASEhKqYmgOZWdn46OPPhJfDxkyBMHBZdtHmp6ejpUrV9q0ZWVlISEhAT/88ANeeukl/Pvf/8aTTz7p1DGXxnpPr7ZMTFSGu7s7nnrqKTz11FNQVRXJyclQVRWhoaEwVPHv8eLExsbijz/+EBMVN9xwA7799ltERETYHFdSCiir22+/HfPnz4eqqti7dy8yMzOrdYcIUM8nK8ixmTNnYubMmVV+nY4dO2Lz5s2Ij4/HH3/8gXPnzsFoNKJJkya46aab0LBhwyofAxERERERERFRfVCR3QM1/QZ0ZmamiAMDA8t8nn4Hgr6PqjZ16lScO6dNvCqKgtdff71c5zdr1gyRkZHw9PTElStXcPjwYbG6Pz09HU899RT27t2Lzz77rJSenOPVV1+tluvURIqi2KWLcgVrnQlVVdGyZUusWbOmwjts9Lt8VFXF4cOHq72GMCcryOViYmIQExPj6mEQEREREREREVEtkp2t2w1ajiLO3t7eDvuoSkuXLsUnn3wivn722WdLrbFhMBgwcOBATJw4Ebfccotdce6srCx8+eWXePnll3HlyhUAwOeff45WrVrh//7v/5z/JK5SnycraoKEhAQcOXJE7JqYPXt2pVKBBQUFoVGjRmIX1vHjxzlZQURERMVTjUU5WHXFJPVFfUV6KF2aKH2qh+ibtMnhS3tk4cxG17cVcda5K+UeU7/dO0R87OG7RFyYnQ8AyEuVqSDaxf7osI/NXbQPQP/oivo27d9exBHTPixxDO2+1YpsGnd+K9o8+z1Q6tiJKssmDZu+uKC13SjzJiue3rq46I9p3WvZzV+mANAXlFULC+yOtWTKAvJetzysBb/IFXSF5xNE7B2hFW30GTWttKcjdFgqCwCfmTGxzOeVx54RWuFfxSi/b60nyuK4KX9p6Z+MHkYQ1SUe148UsU3qJF0Ba2fRF9K2pl4DYPN+orgXFa3WpWNSdKmV9OmfhNMyPRuK0kDpi2Kbde9hBi9dX0XpofRpoPQpo4y+oVpQmC/P16WvMmSvk08hzzk3F1M/ni7i4ClvOqVPoppq165daNSokauH4VSFhYUiLk+dAP2x1toVVSkuLg6TJk0SX3fr1g2zZ88u9bw+ffpgw4YNxT7u5+eHRx99FLfffjv69OkjUlq9/vrrmDBhgl0qIKpbdu3aBUDbBeHt7Y1hw4aVckbpQkJCxGRFampqKUc7HycriIiIiIiIiIiIysCiqjDX8NRIevqaFY0aNaqWGhQ//fQThg4d6vR+Fy1ahAkTJti0+fj4iDgvLw9lpT/W17dqa9/s27cPQ4cORX6+NhHbvHlz/Pjjj/Dw8HDaNaKiovD111+jV69eAICcnBx89tlneOGFF5x2Dap5Ll3SatcpioLmzZs75WfKz89PxNW160ivVk9W/Pbbb64eAvr06ePqIRAREREREREREdU7+hurubm5ZT4vJyfHYR/OduzYMQwePBjp6ekAgMaNG2PDhg1VssOlZ8+e6NevH7Zs2QIA2LBhAycr6risrCwRO+vnWF/Dpaon8hyp1ZMV/fr1K1Ml86qiKIooYkNERFQtilZGKaqDlAyASAmlmAvs2gDg4t+JAIAG7cJFW9hTc0WcOXVspYaXFi+3iXoGaKs6LJbSV57dvGcnAGDvyCGireVHK4o73I6Pd1E6CaZ+omqmmGXqAX36NdWgfcy2SROlS7tiDNRSnVj0aVfcZMooQ1ADERckHNXavOTKQUuO/CMiM3am1qe3fNytYbTsy9e/TM+lOGFd25Z+UAV0WfULAODCnMdFW05R6gIAiHz1vwCAy7r3BaLazJywFwCgJp8TbQb/IBErBuelPLOmf7L5PKBjk9rJ+t6kTzHp5lHi4/o0Tlamv352/Lj+vKL3OX1aPOjHUvTeqepS6FlO7nLYlzVWTbr34XLIWakVJHUP8CnlSCIqLy8vrypJP6SvM2EVGhoqYmvqmrK4ePGiwz6cKT4+HgMHDhSr38PCwrBhwwY0b968Sq4HwGay4vjx41V2nbps//79WLt2Lfbs2YMzZ84gIyMDubm55S42rygKTp48WfqBlaD/2U1JSXFKn9YC8ABcUkC8Vk9WWJX3h4WIiIiIiIiIiIicb+DAgTaTAVWpdevWIj5z5kyZzsnOzra5savvw1kSExMxYMAAJCZqi8UCAgKwbt06tGvXzunX0tPv2LAW3Kay2b59O55++mn8/fffNu0Vve9cHQvsGzZsCEAbY3x8PHJycmxSo5XX/v37xS4gAIiJian0GMur1k9WVOQHxtEPi6N+ynocERFRdRErJB0V1YZuNXeB3AKd9/eWEvs8MeVuEbsHlH+bp/781FNpIvZvpG1DLcyTK8v1OydSTshdGAXZ2qrIW07ucXiNn6M6AQBuP7vf4eNENYHNCuaiFdI2nxz1q6aLVgTrVx+7dbnFccd/FBWU1a0e1q8ktu6oKK6Adtr/tO3/9uugi5f46kMiDv/Xv8txZtmdfPpeAIBqlu9hjXQ7qqw7Lq79dn2VXJ+o2ln/vtS/F+h2EFh/hzvlUkXvR4aWvUSb5dRu+bi7p4jNmdrvY/37kcFbPm79nGHJzhBNbp0Hy/OtRcKL2Slmw8EuCMXdwffAID/nmC4myHH5Bclj87V88579xzm+VinOb9W+H02GcfcWlY8FQBk2DtcYxezHrjPatpU7QC9fvowLFy6UmmJp7969xfbhDElJSRg4cCDi4+MBaHU1fv75Z3Tr1s2p13FEn96qMjet65sPPvgAzz77LFRVFfd+rfeFKzLpUF33j3v16iXGZzab8fPPP2PUqFEV7m/RokUi9vX1RY8ePSo9xvKq1ZMVr776armOV1UVsbGxOH36tPjazc0NHTp0QMeOHREaGgpfX19kZ2cjOTkZ+/fvx6FDh2AymcT/+JiYGIwbV7EPQ0REREREREREROQcPXr0gIeHBwoKtEnauLg4jB49usRz4uLiRNykSROnpmVKSUnBoEGDcOzYMQCAp6cnVq1ahd69ezvtGiU5fPiwiMPDw0s4smRXf0+KS2lUVSmtqiOFktXq1avxr3/9S1xXURQxaeHu7o6goKAaO/HToEEDdOvWDbt374aiKJg9ezbuuusuGI3lTy157NgxLFy4UNwD79+/f4X6qax6M1mRkZGBUaNG4fTp01BVFQ0aNMCLL76IBx54oMTcdMnJyfjyyy8xe/ZsXL58GQkJCfjjjz+wYsUK+PtXLv8vERERERERERERVYy/vz9uvvlmrF+v7cRcunRpqZMVX331lYiHDh3qtLFkZGRgyJAhOHDgAADAzc0NK1aswKBBg5x2jZLk5uZi9erV4usbbrihwn0lJCSIm/ZA8bsLrj7OWaqzRrF+osJ6z/iZZ57B8OHD0bp1axh0u/1qoieeeAITJkwAoKVxevLJJ/Gf//ynXH0kJiZixIgRYmeOoih4/vnnnT3UMqnVkxVlZTabMXToUGzbtg2ANjP07bffIjAwsNRzQ0ND8fTTT2PChAkYOXIkNm3ahF9++QVDhw7Fpk2bavwPLBER1VH6AtsOim2ruvQLacfiRezhq7UXZueLtnaxP5Z4qYMP3C7iDkt/tnv8mo+/EXFCW7m1uSBbW92Uc0WmpOq3e4fDa8Rdf6Nd27oWXUTcfGCzEsdI5CqqLiWbzZ9U1jRP+ten7nOj9c85Q6AsWqcvImtOkXmerWmSFF+ZokUtlKlU9ClUHMm5pKV4yX/7SdEWMe3DEs8JbBEpv1Cq5vNui/e/BmCbSu7KB89VybWIaoTsovSH+r8hq+j1ZfHSFtbpe7d5vzLJzwEG76IUkPr0VGb5HmPx11bmKnnZsu347/YX1T0vRbcSUzXrC3cXvV95yrSTqr98HzTkFuXJlhkkYQzVpXMxyXR7xsDKFcRtqUs7R1QeZosKcy3KA1WbxlpREyZMEJMVP//8M/bs2YMuXbo4PHb16tViMgEAxo8f75Qx5OTk4Pbbb8fu3VqKOYPBgCVLlmDYsGFO6b8sXn75ZSQlJYmvR4wYUek+yzoR4czJhepMwb9z506bCZeOHTvi119/dUlh6YoaO3Ys5s2bhwMHDkBVVfz3v//F2bNnMW/ePFxzzTUlnltQUIBFixbh1VdfxeXLl8X/xyFDhuDGG+3/Rq8O9WKyYu7cuYiLi4OiKOjYsSPWrl0L91L+qLtaYGAg1qxZgx49emD//v2Ii4vD3LlzXTbLREREREREREREVN+NHj0ab7zxBg4ePAiz2YwHHngAv/76q13tiiNHjuCRRx4RX99+++3o2bNnsf1+8cUXmDhxovh68+bN6Nevn91x+fn5GD58uFgkrSgKPv30U9x7772Vel6//PIL1q9fj2eeeQZNmjQp9rjCwkK8/PLLmDt3rmjr2rVrpSZKoqOjyzQBUdbjaqr9+7WaiKqqQlEUfPbZZ7VqogLQft5WrlyJG2+8EcnJyQCANWvWiPvY1113HQD5HD///HN89913+Oeff7B9+3ZkZ2eLx1RVRXR0NJYsWeKy51PnJyvMZrPNi3XevHnlnqiw8vDwwNy5czFo0CCoqop3330Xzz33HHdXEBERERERERERuYDBYMDChQvRr18/5Ofn48iRI+jSpQuefPJJdO/eHYWFhfjtt9/wySefICMjA4CWSeX99993yvXff/99bNy4UXwdFBSE5cuXY/ny5WU6f8yYMRgzZoxde05ODubNm4f58+fjxhtvRN++fdGhQweEhYXBw8MDV65cwa5du7B06VKcPXtWnBcSEoKvvvqqUpMICQkJTj2uprpy5YqImzRpIm7s1zbXXHMNfvzxRwwfPhyXLl0SEw+7du3Crl1y97aqqli2bJnN14DcQRMVFYWffvqpxJIJVa3OT1b88ccfuHz5MgAgODgY/fv3r1R//fv3R0hICFJSUnDlyhXs2LHDZdtiiIio/lHMWvoDfSoH1V1X7MtBSih9OpezW48CAIxepU/cW9M/FWYXOnx878ghAIBrv10v2ryCdGlqiracN7w2otRr3bTDPp1E79fvFLHChQFUU+lfiwb50VqB9rqxSbuiT7FSkKf9191Ttulev4bwpiJ2O6cVFzRnZ4q2tOPyD9Imry0EACR/JHf8unnLfs152vtG45c+LvXpZC19HQDgP25mqcc6S/QouerPnCzTX7k1jK62MRBVB7WwKIWRRb7W9e8b+vcAa5ol1TtAtBmjOpb5Wm5N2gMATOeOiDZF935kyZUpncR4DDJdkxgrAIMhuWisutRO7t7y/KL3M8XdQ15Ll45SvN/p6dNf6b4HqvVY/bWyM+RpnvJzRmnyfvkMAJD619+irdGMBXbHnXtNrrL2CQ8WcfCUN8t8LSJyvV69eiE2Nhbjxo1Dfn4+kpKS8NJLLzk8NjAwEN999x1atGjhlGtb8/xbpaamirRUZdGrV68SH7dYLIiLi7MpDF6ca665BsuXL0fr1q3LfP36zFo4W1EUu504tU3Pnj2xb98+m7RoVsVNXOmLiQ8ZMgSxsbFo0KBBdQy3WHX+L/+DBw8C0L75TZs2LeXo0l3dj7V/IiIiIiIiIiKq21RVhaUW/avO/P+uNnr0aPz555/o16+fw5uzRqMRQ4cOxb59+9CnTx8XjLB82rRpgxEjRiA4OLjUY5s1a4a33367xHodZK9Vq1YiTk9Pd+FInCMiIgJr167Fjh07MHr0aAQEBIjJCEf/vL29cccdd2Dr1q1Yu3atyycqgHqwsyIlJUXEhYWOV4aWl74fff9ERERVzWYFZhHFYrJ7XCl0UDgTgGeAtuqx9f++c9j/7tsG2LUV5sn+9cW2FaPB7hxzoVwV6heurVLp9uMG0ba5i8wJe/OenQ7HYHVh234R64t4E9Uo+t0S+p1N1lXFusKyqq6grHWlsap7rVqLcgMAdIVsxflm2b9+x9SFOY8DALyC/EWbX8+bRZwR/1XJz0HH74FXynyss3j2Hyfi/Az52dojIKTax0LkbOaDv4rYuvNAzZc7DYzNrpXHnt4nYotPUNFJZV9fqN9F4RbZ1ua/AGA5tVserCuADQfjsnk/Kor1uyXUXLnbAW5yR4V4XLd7RP8+qXj5aY/bHmz3uJ4lM1V25SXfRxWPkndZeA2eBABoVPTf4ngGy2tyNwVR7dexY0ds3rwZ8fHx+OOPP3Du3DkYjUY0adIEN910Exo2bFjmviZMmIAJEyaUetzMmTMxc+bMig+6GG3atMH3338PADh58iSOHDmCxMREpKWlwWw2IyAgAOHh4ejevTuaN2/u9OvXB71794aXlxfy8vJw8uRJpKenIzAw0NXDqrSePXvi66+/hqqqOHDgAI4cOYLk5GSkpaXBx8cHYWFhiImJQY8ePSpcLqGq1PnJioAAbdusqqqIj49Hfn4+PD09SzmrePn5+Th16pSYofX39y/lDCIiIiIiIiIiIqouMTExiImJcfUwnKZFixZOS1tFkr+/P8aMGYNPP/0UZrMZsbGxePLJJ109LKdRFAWdOnVCp06dXD2UMqvzaaCaNGki4pycHHzzTeVWZq5cuRI5OTliG11UVFSl+iMiIiIiIiIiIiKi6jdr1ixERGh1FmfOnInjx4+7eET1m6LW8eR16enpiIiIQGFhIVRVRUREBPbs2VOubV9WFy5cQNeuXXHp0iWoqgpPT09cvHixTmwPIikxMVFMQp09e9ZmwouIyNVM549pgb6orz5203YPGi8eE22Z22UKiv2fbQEAuPvKrZ5eAXLHocFDpmrIuaIVijPq2gKayEKflgItLUTWJZmupse6TeV4NiXL+fZdEfuMnOq0fomcqeBKooj1KdmUgqLXhf71aZSpUowZWiFp1aRLU6pLlWJOviBiS2aa1pZ6SbSZcmS6loIM7Vp5yTIti2eQTGtibbfo0rI0e2txSU+LiKpAwe8rANimL1J0r3tDYKg8uCito0WXPk6f0qkizPGy0DTy5e9uNT9XC3TvR/pC1mpROjuDr/wMYJMmSgywmAwGJpnuzuIXZv+4Pg2USSvsrRTmOryWvrC3Maar4+sRVQH9fYJFm/5GWMPGLh5R2V25eB4T+2uvF97jIHLszz//xODBg5Geno5GjRohNjYWAwbYp0imqlfn00AFBgZixIgRWLFiBRRFQVJSEm688UasXLkSXbuW/cPNX3/9hdGjRyMpKQmAto1m+PDhnKggIiIiIiIiIiKiOiM2NtbVQ8C4ceNKP8hJunfvjh07dmDUqFE4dOgQBg8ejN69e+Puu+9G165d0aBBA3h5lVwryZHo6OgqGG3dVud3VgDAuXPn0L59e2RmZgLQ6lcYDAaMGjUKY8eORd++feHr62t3XlZWFn777TfExsbim2++gcVigaIoUFUVAQEBOHToECIjI+3Oo9qNOyuIqCZzuLPCKHdJKEWrFw15maIt5adlIk5YtxcA4BkoVz96+MsPXXlpciWjKVdbJV6QXSDa/CJ0Kzy9tDUPbRetdjhWazHt0gppE9UVhZfPiNi6s0K/m0IxF+geL3qt6YrUqoXycXPqZRFb0i4VPS5XPZtzc0ScczHZbiz+LZqK+MruQ9qlktNFW+v/fSfi/I2LROw5cKL9EyMip8jfshQAoOgKWRp85G4Fg4Oi8oYWPapkLOajcSJWc4t2Weh2MOh3VsjBGB3HDijujndZmP3Diy4qb0MYcmQBbfH5Rvc5Bt7ye6Qa5XpLQ06a1lagK1jewX4VrH4HnEcY/7ajiuHOCqpvDAaDqNfrKmazg118Vez8+fMYNGgQjhw5UunnrygKTCZT6QeSjTq/swIAIiMj8dVXX+Huu+9Gfn4+FEWBxWLBihUrxI6L6OhohIaGwsfHBzk5Obhy5QrOnj0ralOoqiomKjw9PfHVV19xooKIiIiIiIiIiIjqpOpe42699+qKiZI333wTb7zxBnJycsQ4aoPXX3/dqf25ubkhMDAQgYGBaNq0Kbp27epwkX9VqReTFQBw22234aeffsKYMWNw8eJF8UOvqipUVUVCQgISEhIc/jAqiiLaw8PDsXTpUuYtIyIiIiIiIiKqZyyqCkstuYkJoFaNlWoWV9ysd9U177//fqxYscJmoqS2TFjMnDmzSid3DAYDOnbsiEmTJmHs2LEICAgo/aRKqDeTFQDQv39/HDlyBDNmzMDixYuRm6ttv7/6f6j+a+tkhpeXF8aPH4/Zs2cjODi4WsdNREQkWNMj6Av56gtTFqWZUXXpFxK3HhRxUHOteKdnkL9oSzl+XsQ+oXLFRF6almbGXOh4+63BXfsYkfjqQ6KtyWsLRcz0T1TvmPXFsu0/ZlsLx9q0ucl0MGq+TGViU1DWugVen6LFKFPBWRm9ZMqprPizIi7I1FK86FM/6TH1E1H18Oz3AACZDgoAYLB/LQNVl/7JytjmJrs2018/l3iOPlWdnuJZVPRaVwxcVRw/L3GOLi2eTUqpoptCNu+N+pRRusLg1vP0BcsdYeonIqLyW7RoUekH1RHvvvsuli9fDsB2giIiIgLt27cXmXhqg+ImVxxNZpR2rPVxs9mMvXv34qmnnsJrr72G//73v7jzzjudNGJ79WqyAtAKbv/nP//BnDlzsGzZMmzZsgW7du3C6dOnbf4nKYqCpk2bonv37ujXrx/uu+8+BAUFuW7gRERERERERERERFVs/Pjxrh5CtcjLy8OcOXPEJIWqqhg4cCBmzZqFHj2qduGAM119T/vq9rJOYli/B46OUVUVV65cwd1334133nkHzz77rFPGfrV6N1lhFRgYiEcffRSPPvooAO0bnpGRgaysLPj6+iIwMNDlhWSIiIiIiIiIiKjmMFtUmC01PzWMVW0aK1F127JlC9LS0kQJgJEjR2L58uW16p7w5s2bAQCXLl3C9OnTkZCQAFVVYTAY0K9fP9xwww1o27YtgoKC4OnpiYyMDJw/fx579+7Fzz//jIsXLwLQ0j09+uijGD16NLKyspCSkoL9+/fj119/xd69e20mLaZNm4a2bdvi1ltvdfrzqbeTFVdTFEUUDyEiIqpJLKd2yy+KUiwoujRQqtHDPtalXwhq2VDEpmwtBWL2xWTR5uErUy2YC2W/RnctvYJngEwpZTHLP3bMeVrKm+QjiaLt8ojBIu6y6pcSnxdRnWOUryUUaq81/WtRn+5F0aeMckSfBqogz+5hgy5Fileo9vlVNcuUcG6h8jNt1rnLJV5Kn5LGmqaGiKqOwVtXpNIiX7fQpXU0JR6yO8+tSftKXbfw4kkRuzdsIa+1Z53dsSL9nG6MirsuNVOh7j3MmuLON0g+XkoaKH06S4f05+u+L44YWt1Ycl9ERETFOHr0KACIm/vz58+vVRMVANC3b18cPnwY48aNQ2JiIlRVxZgxYzB79mw0aVJyKkSLxYJvvvkGzz//PM6ePYtPPvkEHh4eeO+992yOi4uLw0MPPYTjx49DURRYLBZMmzatSiYrSvkEQURERERERERERERUt+Tn5wPQFrG3bNkSjRs3dvGIyi8lJQVDhgzB2bNazbr//Oc/iI2NLXWiAtB2U4wePRq7d+9G586doaoqPvjgA8yZM8fmuJtuugm7du1C+/Zy4cThw4exZs0a5z4ZcGcFERFRjacvlm3dUaEU5js81tpu0RW5LMyQxSgNHtqvfg9/WSCsIDNHxD4NgkWcn5YJwLbAtpuX/OjQ5OauAIDjK38Xbd1+3FDq8yGqD/Q7nkSbmywCa32tqvpV1fqdF7qV18bAUACAJTtTPu4p+7KudbaY5ErntOOywLZXaMk7h7mbgqh6ufccIWL9rgb9Liq3lr0AAJbj8ndspa+r301x7oiI5Y4J3c4J/c4KR236wuBu9u93Ngy62w6l7bgwFhXbtr+8Ngbd5x9rEW79DlRD8+tK7p+IiEhHPzlRW2sVv/jiizh37hwURcGDDz4oSh6UR4MGDbBy5Up06tQJeXl5mDlzJu6//340bdpUHBMQEIAlS5aga9euYvfJhg0bcNtttzntuQCcrCAiIiIiIiIiIioTVVVhKaZYbU1UXGFdovL4+OOPcfmyTC3ap08f9OvXr9L9/vbbb9iyZYv4ulGjRnjooYcq3W9ZNW/eXMSXLl2qtus6S3Z2NhYvXiy+njFjRoX7atmyJUaNGoUlS5bAZDJh4cKFmDVrls0x1157Lfr3749NmzZBURT8/rvzFlVYcbKCiIiIiIiIiIiIiOxs2rQJjz/+uFhN36pVKzzzzDNO6bt79+549tlnsWfPHtHWqVMn9OzZ0yn9l+b6669HZGQkzp07h9OnT+Ps2bOIioqqlms7Q1xcHPLy8qAoCqKiomwmXyqif//+WLJkCQBt18TVkxUAMGDAAGzatAmqquLChQuVup4j9WKyorL/o4qjKApOnjxZ+oFERESVYbIvxKvqCvnapJYp0Ir66tNEKUaZcqHRDZ0BAJmnz4u2zHOpIs46f0bEre+9CQDgP26maIufOlbEl/ccBwDkZ8hrHXv4Lnn+/74DAKT97wXRFvTwbLvnQlRXuDeIFrH59D4AgKpLj6LoCsqqRWlRFF2hbEWfVkX3ulfztdQwBn1fuvOsiaT8hj0l2jLnPC7iRjMWlOt5EFH1MQSGidiSmSLjk7u0x6uoeLT18wIAGDsMAACY/vpZNzCjLrZP3aS4696Pih4vdu22/r2v6H1MKTDYtQGAIV+mrnQ4Fpt+tVxRhqKUWUREVDWmTp0KQNul4+vri1WrVsHf398pfXt7e2P58uXo0qULsrOzoaoqpk6diri4OKf0XxqDwYDJkyfjtddeAwDMnTsX8+fPr5ZrO8Px48dFHBERUen+wsPDAWj/r0+cOOHwmBYtZFrJlJQUh8dURr2YrEhISICiKE7f+lbbqsMTERERERERERERlcWOHTuwd+9ecQ/0X//6F1q3bu3Ua7Ro0QKvvPIKpk2bBgDYvn079uzZgy5dujj1OsWZPn06fvjhB+zduxcLFixAnz59cNddd5V+Yg2QlZUl4vT09Er3l5GRIeLsbAcLCAAEBsp6eCaTyeExlVEvJiusnDG5oKpqlUx8EBERFUtfjFItWkOtL8RrkgU5rUV9Taf2i7bGfWWxSUNRod60X/8UbT6hspCvEi5XyOh3VFi5ecnVj8aiOKipLPpr3U2hx90UVB8ppqIdRxZZJdbRzgrV3dv+HNgW2DYU7bKwZMpdUGqe7o+Homvkrv5ANJnzCkR86pn7AQDN3/uq/E+EiKqUqvsdr9+tYC0kbfnnD9lm1BWyLjrP4hMkmtzDm5X9up6+9m269yv9e5fBN6AoMDp8XLVon00U3a4I1cvxilulUPvMYvN+qPseWGObv9xtdp3J9zbrX+SFf64Wbe7dhzm8LpEzmQGYa9EtoWLq1ROVibUegqqqCAsLw//93/9VyXWefPJJzJs3DxcvXgQAfPHFF9U2WeHp6Yl169bh9ttvx19//YV77rkH06ZNw//93/8hICCgWsZQUWFh2g5NVVURHx+PtLS0ShUK3717t4hDQ0MdHpOTkyNiX1/7zxOVVS8mK6Kjo8s9UZGTk4PU1FQxQ2Q9Pzg4uMb/oBIRERERERERERFVxk8//STuid53333w8/Orkut4enri3nvvxfz586GqKlatWoX333+/Sq51tdjYWADA5MmTkZycjISEBLz55pv48MMPMXDgQHTr1g0NGjSAl5dXKT3ZGzdunLOHayMmJgaAdt/aZDLh888/x7PPPluhvrKysvDVV1+J/9/Wvq927tw5cU1npJ66Wr2YrEhISKjQeWazGXv37sXXX3+N//3vf8jMzITBYMDHH3+MW265xbmDJCIiIiIiIiIiIqoBzp8/j/PntVqHiqJg2LCq3b02dOhQUS8iMTERSUlJVXIz/GoTJkywWeRuzaiTlZWFH374AT/88EOF+67qyYo+ffrA398fWVlZUFUVM2fOxM0331yhXSmPPfaYKJitKAruuOMOh8f99ddfItbXr3CWejFZUVFGoxHdunVDt27d8MQTT+Cuu+7Cnj17MGzYMHz99de1Jn8ZERHVbmr6JREb/IIAABbFUx5g0P06N2ipGNzCI0WTOVWeb0lPBgB4BMjtmn6Rsrhn1rkrIj770iStS3fZf9Ssz+zGlz6RKReIrqbmaunRFC/d1mh9qhP3otew/vWrSzOqeFhEbPDV0qmo+vQnBbr0b2YtwYMpVaaJ8m0ot203eW1hRZ4CEVUDxSxf1/D0EaE1DZSNXJlH2pKtxYrbRfl4OdJAOSLSPQFQ8+V7jD7lU0nUopR1JVEKiwp7W+R7nAIZi1RTZt3j+vRS+s6KCnMb/D1AVJ0sqgpLLUoNXpvGSjXL33//LWKj0Yh+/fpV6fVuuukmuLm5iSw3f/31F2677bYqvaaeNfU/YF9KoDzlAKyTHdVR69jT0xPjxo3DggULoCgKsrKy0L9/f3z44YcYM2ZMmfq4cOECHnvsMaxevVqM3dvb2+FEi8Viwbp168TX3bp1c9pzsTKUfggBQNOmTbFu3To0adIEJpMJY8eOtam4TkRERERERERERFQXXLokF701aNAARqOxhKMrz83NDeHh4eLrpKSkKr2ennUyQlVVh/8q0ld1eeONN9CwYUMA2kRJeno6xo8fjw4dOmD27NnYsmULkpKSkJeXB4vFgoyMDBw9ehTLli3DAw88gGuuuQarV68Wz1VRFMycORORkZF219qwYQOSkpLERExVTGBxZ0U5NGjQAK+99homTZqEvLw8TJs2DatWrXL1sIiIiIiIiIiIiIicJrVo166iKGjUqFG1XLNhw4Yi9VRKSkq1XHPRokXVcp2qEhAQgLVr12LQoEFITk4WuyMOHz6Ml19+udTzrRMU1vMmT56MqVOnOjx2zpw54pywsDD07dvXqc8F4GRFuY0aNQqPPvooCgsL8dNPP1Vb/jQiIqq/LDmZItanaHDo4ikAQO5RmUfS53q5dfbkO28CAAJbyFUSvo3l6pXMM3L1irlQ235bmJ0r2o5OHiFiU66W7sHN293hUPaMGKz1UyDTR2RdyhFxv907Sn4uRLWYscMAAID58BbRpnjpChIa7dOWqG7ytaRYTDL21tJAGfRpWQxyZZtq0dLAGDzk6ys/Tb5vEFHNZWjZS8TmhL3yATctVVz+gW2iSdG9R7g30XJEmzPTynwtff8G3XuM5dRuAICxXT95rP69q+i6lmz5vqJ46oqMFqWJ0o9PKZCfHaDKlE4Wz6LUePq0dyZdWju3on5149NTPHTXNWrX06fMMu2RqSncurDOJBFRZeTlyfdns7lsKQErS3+d/HwHKRGrwPjx46vlOlWpc+fO2Lp1K8aMGYM9e/aInQ+l7fLQT1J4eHjg5Zdfxosvvljs8YsXLxaxl5cXDAbnJ21iGqhy8vPzQ/PmzQFo/8Pj4uJcPCIiIiIiIiIiIqoOFgtgsai16J+rv2NUW/n6ahPMqqrapISqSpcvXxaxj49PCUfS1dq2bYtdu3bh/fffR8uWLe0mKqwTE/paGtZJinvvvRd79uwpcaIC0MokWP9V1eJ97qyogMDAQBGfPn3ahSMhIqL6QM2WBTVV/yAAgOImVxZavOWHOKVotbXBS7ZlbPxOxHlp2spr06F4+XjCBdm/rqBlyjFtl0XkTW1EW0GmXLnt10QrzJ2fKldannrmfhEbPLSxdFn1i2jb2L67o6dIVHfpC9PqVwpbi+rqCmwrZvm4qivGbd1loV/JrOgK2VpXM+tfi3nJ8n2DiGoJ3Q4EKNrvULcGciek6fI5ERckHAUAGPyCKtS/qnvvsbmu9fK6Yt8wF+2kLGangvmogwV8xeyMsO6cULJkag9LYEN53TwHu8J074f65ZZq0Q41NU3e2DIly4LjvNlBRFQ51joIAHDlyhXk5ubC29u7yq6Xm5uLS5cuiZvp1ZHJZs+ePViyZIn4+v7778d1111X5detKkajEU8++SSefPJJ/PHHH9i2bRt2796Nc+fOIS0tDfn5+QgMDERISAjatWuHHj16YPDgwQgNDXX10AX+/q4A/SyftUI9ERERERERERERUV1wzTXXiNhkMuHXX3/FHXfcUWXX27Rpk7jPqiiKzfWrytatWzF//nwoigKj0YgZM2ZU+TWrS69evdCrV6/SD6xhmAaqnE6ePIn4+HgxyxcWFubiERERERERERERERE5T+fOneHl5SXugX7//fdVer3vvpMZATw9PdG5c+cqvR4g63KoqoomTZqgQYMGVX5NKhl3VpSDqqp45plnRKwoCtq3b+/iURERUV2nePvK2Ksob6jucUOeLt1L0bGWPJmuKeuc3BGoGLQPmqmn0kSbb4TsXy+oubYVtNGMBaKtkYPjTky5W8SZ51JFXJilpbmxFtoGgJZ3tHN4LaK6yqYYrD61k7UgrFvZE0mrugLbFl16OGvaE33qp6hZn5V3qERUkxSlkDOER4smQ6b8HWvJ0dIlWTKSRVvhzlUidu85osTuFX2aJpN9AVNDix5lHqrqF6IFaTIFk/XzitaZPt2d9tlAcfeUj+tSPykOUuSpeVm6vozy2KL/mvOyRZvX4EllHjdRRVlUwFxyzdoaxVKLxko1i5ubGwYOHIiffvoJALBkyRJMmzYNrVu3dvq1jh07hiVLloiJkf79+8Pd3d3p17maNdWVoigIDw+v8utR6bizooxOnDiBO+64Az/99JPNroqePXu6eGREREREREREREREzvXAAw8A0G7mm0wmPPLIIygsLCzlrPIpLCzEo48+CpPJJIpCjx071qnXKE7jxo1FnJKSUsKRVF3qxc6K119/vULn5ebmIikpCXv27MH+/ftFu3VXxYwZM2wqqBMRERERERERERHVBaNGjcKLL76I+Ph4AEBcXBzuuecerFy5EkajsZSzS2c2m3H//fdj69atUBQFqqqiWbNmGDVqVKX7Losbb7wRPj4+yMnJQXx8PFJSUhASElIt165qly9fRlxcHI4cOYKUlBSkp6fDYrFg2rRpaNOmjauHV6x6MVkxc+bMSk0qWGf1FEURL5zbb78dTz31lLOGSEREVCxzqkzjZAzUUjMpPvJXuCU1ScZFqRAMutQzRi8PEV86oPXVoL2sudRx2RoR61M6tfxoBQBg56CbRVvPDZvtxpeTLNMvWArMIramkUo/LdNWNHtrsd35RHWZodWNIjYf3iJixU3b1q4qjjc6K6pMD6WatNVr5nSZ7sWaIgYA8lO1FCqK0XFf5oS9AABjs2vLPG4iqn761z2KYlWfQkmXFrLwrHbTyD1U/j7PObhbxIGO0kDp3m8sKRdEbAgqW37u9OxcEfuf+1s+kJmmjdVNl66jQKatg2+wvFa2tmpV1T1ukzJK994mHtf1a8nVfebQvycWyV39gYi9h/HvdaoaFlWFRa09uZVq01ip5jEYDHjvvfcwfPhwcU/0hx9+QPfu3fHFF1+gU6dOFe77wIEDmDBhAvbu3Sv6VhQF7733HgyG6kkG5Ovri2HDhuHrr7+GxWLBkiVL8PTTT1fLtavKDz/8gLlz5+L33393+PiYMWMcTlZMnz4du3btAgA0bdoUixYtqtJxFodpoMpAP0mhKAqeeOIJrFy5stpeOERERERERERERETVbejQoXjkkUfEfVFVVbF37150794do0ePxi+//CIWepdGVVVs3LgR99xzD6677jrs3bvXZpH45MmTMWzYsKp8OnZefvlleHhoC/xee+01nDhxolqv7yzJyckYOnQo7rrrLvz+++9QVVV8b/VxcXr16oUtW7Zgy5YtiI2NxaFDh6pj2Hbqxc4KAGV+0TiiKApatWqF2267DZMmTUK7diwOSkRE1Ue/mlo1aysO9fsFDcERIrYknQYAmLJkMUpLgSyi6dfYDwBQkOU4z+jFvXKlpeXhuwAAXsFeDo+1CoyRhchMulWXBRla7Bkgd3akf/aSPG/SrBL7JaprVN2KYMW6S8paTBaAavTQHSxXWFuKiuoWJJ6S5+t2UeSnaa/3gswch9dN/kZbFRU+9f2KDp2IqoF+p6TB+h6hey8wXTwjYreAAABAYfIVeY67/PM+75fPANgWnFZTZQHswgsJIlYun9OOLaWodqCvt/xCt2tMPb1P+2+abqdndoYcl263hPir3FBM6pCiduuOMgBQPOR1FXfZbsko2qWRLz97GPyCSnwORERUMR9++CHOnTtnU8u3sLAQ3377Lb799lv4+Pjg2muvRZcuXRAeHo6goCD4+voiOzsb6enpuHTpEvbs2YM9e/YgJ0f7zGqd/NBnsVmwYEG1P7e2bdvis88+w/jx45GWloZ+/fph8eLFGDhwYLWPpaKuXLmCG264ASdPnhTfVyv9JFNJhg8fjqioKJw9exYA8NVXX+GNN96o0nE7Ui8mKzZvtk9ZURpFUeDl5YWAgABERUXB19e39JOIiIiIiIiIiIiI6hA3Nzd89913mDZtGubPn28zyQAA2dnZ2L59O7Zv315iP/ob5tYb6qqq4qmnnsI777wDNzfX3Kp+4IEHEBISggcffBAXLlzAkCFD0Lt3b9x3333o0aMHYmJiEBAQ4JQ6Hc6mqiqGDRuGf/75R3xP/fz8MHnyZAwePBhRUVHo0KFDqf0oioKRI0di/vz5AID169dzsqKq9O3b19VDICIiIiIiIiKiWs6sqjDXojoQtWmsVLO5ublh3rx56N+/Px5++GFcvHjRrkZwSav3rRMc+mMjIiLw3//+t9pTP+ldPQFhnYTZtm0btm3bVuF+FUWByWQq/cBKio2NxR9//CG+tzfccAO+/fZbRERE2BxXlnrOt99+O+bPny9SfWVmZsLf379Kxl2cejFZQUREVJtZi+cCgEeOFht0RTbzj+8VsTG0IQCgIFOXbkaXLsbDVytSee236x1ey5QnP0y1/t93ZRpfaPsYEZ9e/6fd4wbd9Zn6ieob0551IrboC84WpUgx+IeIJtVTt5PXJP9oMvhrxWndwxuLtoyDMoesNf1Tevwl0bbrlv4i7rFuU0WHT0QuIgpQeweINo/mclWkKUlLCeUZ2ki2XYgXcX5RAW59Ike3LrfoYueN1di0MwDAUviHHEtRiiYAsFhkKitreitVlyZKT80vet661FHWVHhFnYlQ8fLRrl/02QewLcZd+OdqAIB7d9fdACMiqovuuOMOJCQkIDY2Fu+99x6OHDli87ijm+JX10xo06YNnn32WYwbN07Ui3AVR7s99Ls+arq3334bgDbWli1bYs2aNQgICCjlLMe6desmYlVVcfjwYfTs2dMp4ywrTlYQERERERERERERUZl4eHhg8uTJmDx5Mo4ePYq4uDjExcXh6NGjSElJQUpKiliVHxISgpCQELRp0wY33XQTbrrpJrRp08bVT8GGdTeFMyYnylIfwlkSEhJw5MgRMbkye/bsCk9UAEBQUBAaNWqECxe0WpbHjx/nZEVV+O2330TcuXNnBAYGVriv9PR07Nu3T3zdp0+fSo2NiIioNHnJcvWhf1HBSXPqZdHm0by9iM3JWvHMwmy5gjsvOV3Eqln70HTgvttEW8dla0R8856d5R6f/7iZIvbdP1bEMe8uAQCcfPrecvdJVFdYml0rYuWfXbI9Kw3AVcVgL54UoapbVWxOvWTzXwDIOiffA6ysO6cAoPOKtRUdMhG5iKLbNWndIaC/1aGaCmScp+2gdIuItmvT2vV7KqqHJTNNxAYfmTJC/34G63PQ7YBQC+Xzsu4Yse7A0Br1xbbl8zL42t+MseTqdpa6uXalLhFRfdGmTRu0adMGDz30kKuHUiF9+vQpU4qkmmjXLu3vC1VV4e3t7ZR0WiEhIWKyIjU1tZSjna9eTFb069dP/NBt2LAB/fv3L+WM4u3evRuDBw8GUH25x4iIiIiIiIiIyPUsFhUWS81PDWNVm8ZK5Apbtmxx9RAq7NIlbTGToiho3ry5U1Jq+fn5iTg7O7uEI6tGvZisALQZJmfNktWGfGVEREREREREREREVDdlZWWJWD/JUBmZmbJmpq+vbwlHVo16M1lRW7fzEBERuXnL1RGFif8AANybtZUH6ItQFhWs9AkPFm2qWRajvHJESxPlHeYj2rb3lSkNb9gqUydaHZ08QsRtPl1V4litqZ/0Wrz/dYnnENVlHsGy8GvOKVkU29ggEgBgvnJetOnTPKXukWlHCzO0Atr6IrX5afIPk5wruQCAbj9ucNawicjFrOmMFA95k0BfKNoYUpT2IT9HtBn8g6pncMWw6NJQ6VM3GYMbiFjx0p6PTYFt3bHWzzT6Qtn61E4wGERoTR9lkw5Kn3LK07tc4yciIqptQkNl2sSUlBSn9Hnu3DkRh4WFOaXP8qg3kxVVgRMgRERERERERET1hwWAuRYl3LCUfggR1VING2oLo1RVRXx8PHJycuDj41PKWcXbv38/0tNlzcuYmJhKj7G8DKUfQnr6XF3e3lypQURERERERERERETVq1evXlAUBYqiwGw24+eff65Uf4sWLRKxr68vevToUdkhlht3VpTT0aNHRRwUFOS6gRARUb1hLjDJOE9LeeAVKLd7WtMgAIBbUWoZtSBPtOWnypyT7l7ar/681Fx5jrf8OLD7tgEivm7NrwAAzyB/h+M6MlFLR9F20eqyPhWi+s1glHFRqhL9a1UvuHMHEatF6Z9yEhJEW7O3Fjt/fETkUub0ZBGrRamPPDsPdnisoYX9zQOjg+Oqk8f1I0Vc+Kfus4GbTGepFqWKUoxytOasNBEb/LU0loru/dKSIz/HGPRpnvyCtMd1KaXMl2XqCpuUmURERBVkMpmQlJSE1NRUZGZmwt/fH8HBwYiIiICbm2tvrTdo0ADdunXD7t27oSgKZs+ejbvuugtGY/k/FRw7dgwLFy4UmYT69+9foX4qizsryiE9PR2ff/45AC0FVJs2bVw8IiIiIiIiIiIiIiJylpMnT2LGjBm48cYbERAQgOjoaHTu3Bm9e/dG586dER0djYCAAPTu3Rsvvvgi4uPjXTbWJ554QsT79+/Hk08+We4+EhMTMWLECOTk5EBVtTx3zz//vNPGWB51ZmfF66+/XqbjYmNjsW3btjL3q6oqcnJyEB8fj19//RVpaWnisd69e5d3mERERGVy7OG7ROwdGihig0fRr27dikM1TxbXtK7KNATInRfASRH5hPsBALIu2O+2AABzgVyxuHPQzQCAnhs2Oxwjd1QQlY/PqGkizvvlMwCAe6Nmos3QsleJ5zMBKVHddmbpchFH9GgHAPB01WAqyWaHg64wuGnPOgBA4ekjos0YEW13fsE/++XjRbtGAdti2kpRAW1LZqpo8xw4UY7haJx2zb9kSgy3breX41kQOWZRVVjU2lO0ojaNlcjVLl68iMceewyrV68WN+3VYl5DeXl52LFjB3bs2IG33noLI0aMwEcffSTqSFSXsWPHYt68eThw4ABUVcV///tfnD17FvPmzcM111xT4rkFBQVYtGgRXn31VVy+fFnsqhgyZAhuvPHG6hi+nTozWTFz5swSC15bf7CWLFlS4Wuoqiqu4e7ujnHjxlW4LyIiIiIiIiIiIiJyvQ0bNuD+++9HSkqKuI9srQcB2E5a6O9Bq6oKVVXx/fffY+vWrVi2bBkGDhxYbeNWFAUrV67EjTfeiORkbfHimjVrsGbNGvTo0QPXXXedGKeiKPj888/x3Xff4Z9//sH27duRnZ0tHlNVFdHR0ZW6f15ZdWayojpY/6cpioK5c+e6pCI6ERERERERERERETnH77//jhEjRiA3V6vtaL0HrKoq3Nzc0KZNG4SFhcHX1xfZ2dm4cuUKjh07hsLCQpvjk5OTMWLECGzYsAHXX399tY3/mmuuwY8//ojhw4fj0qVLYjy7du3Crl27xHGqqmLZsmU2X+vHHxUVhZ9++gmhoaF216gudWqyorhtOeU9pjh+fn4YMGAAnnnmGfTp06fC/RAREZUm+dgVETfs6iViawFt6ApMGnTFtmHQylGppkLR5B0eLOKcy2kAgLR4mTLBK9jLYZyfkV/iGM/M0FItRM9ZVOJxRGTPa/AkVw+BiGqYlh+tEHHOt++6cCSV53XbFBHnb4oVseKpfc6wFBUQBwA3XWpLa5pLtyYtZJOPTP1kyZPnmRL/0Y5tLBcRWk7KGzKif6Z+IiKiEmRnZ2PUqFHIzc0VN+0B4N5778WDDz6IPn36wMPDw+68goICxMXF4bPPPsPy5cvFboucnByMGjUKx48fh4+PT7U9j549e2Lfvn2YMGEC1q9fb/NYcdmI9JMyQ4YMQWxsLBo0aFAdwy1WnZms2LzZcT5tVVXRv39/8T/lnXfeQbdu3crcr8FggK+vL0JCQtC0adMSU00REREREREREVHdZVZVmGtRHYjaNFYiV3j77bdx8eJFceM+MjISK1euRK9eJdeT8/DwwIABAzBgwAD861//wqhRo5CYmAgAuHDhAt555x28+uqrlR6f2WyG0Wgs/UAAERERWLt2LXbu3In33nsP69evR3p6erHH+/j4oH///nj++edx0003VXqszlBnJiv69u1bpuOuvfbaMh9LRERERERERERERHXT559/LiYqQkND8fvvvyM6OrpcffTo0QNxcXG47rrrkJycDFVV8emnnzplsiIyMhIPPPAAxo0bh86dO5fpnJ49e+Lrr7+Gqqo4cOAAjhw5guTkZKSlpcHHxwdhYWGIiYlBjx494O7uXukxOlOdmawoTWXSPxEREVW3gCb+Ii7IzBGxW0SUFuhTJpgKRKi4adtT1Tx5Ts7FZBG7+2jpF3zD5XZUg9Egj72SazeWE1PulpfKk9cKadu09CdCRERE5eYzcqqrh+A0p5Z8I+KogVqRT6Ov/JyjFuSJ2JyufWZRPGRaSmNwuIx1N1QKks4AAAoTT4o291Yyi4Lp7AntnDZyLHm/fCZipuMjIqL9+/fj3LlzopD2W2+9Ve6JCqvo6GjMmTMHDz30EADg/Pnz2L9/Pzp16lSpMV66dAnz58/H/Pnz0alTJ0yYMAEPPPAAwsLCSj1XURR06tSp0mOoTobSD6n9LBaL+Ne/f39XD4eIiIiIiIiIiGohi0WFuRb9s1i4eJeoOIcOHQKgLXL38vLCvffeW6n+7rvvPnh7e9v17wyqqmLfvn149tlnERkZieHDh+P777+HyWRy2jVqgnqzs4KIiKg28W0UIuKCDFlM0rpjwuAvH4eH/DCkWLQPKpacDNFmcJe/7g1mi/Zf3W6KrEuyfz2fUK3f/Az73RYAkHLkNAAg84nRok1fHJSIiIio7aLVIs5ZPgcA4D3iGdGWu/oDEVt3URh85M4LxVPuBlVzM0Vs8AsCAFh0u0nN547LOPkCACB/4yLRxt0UREQ1W3JyMpYuXYovvvgCf//9d5Vf79KlSwC0HQgxMTGVLojt4+ODmJgYHD582KZ/Z7DWUVZVFYWFhfjpp5/w008/ISQkBPfffz/GjRtXrjrNNVW92FlBRERERERERERERDWLyWTCqlWrcOeddyIyMhLPPPMM9u3bVy3XzsuTqQj1OyIqw8tLpjLMz8+vdH8rV67EHXfcATc3N6iqKlJWAdrERXJyMj766CP06NEDHTt2xNy5c5GUlFTp67oKJyuIiIiIiIiIiIiIqNrs2bMHTz/9NBo3boyRI0di9erVKCgoqNa6ww0aNACg3fQ/c+aMU/o8e/asiMtSV6I0I0eOxA8//IBz587hvffeQ5cuXaCqqs3EhfXrQ4cOYdq0aYiKisLtt9+Ob775BgUFBaVfpAZhGigiIqIa4reeN4g4rHWoiPMz5GoMtaiYtmqUBSZhkGsPlELtv/pilB4BvvL8ojRQ3uFB8nQPXbFuHa/QQABA5pnLos1ilh8cPQOcs/KEiIiI6gefe2bYtVmydakri9I/mXJlikr9TQtLjkwDpZq0Dz3G0IaiLXnLJhF7+GupPEJ1xcpTP54u4uApb5Z3+EQAIGpB1Ba1aaxU9126dAlffvklFi9ejIMHDwKAmJzQ33ivLlFRUSK+cuUKdu7ciZ49e1a4v507d+LyZfn3c0WLdTsSFhaGp59+Gk8//TQOHz6ML774Al999RXOnz8PwDZNlMlkwrp167Bu3ToEBQXh3nvvxbhx4yr13KpLrd5ZYTQabf65uTmee7n6OGf9K+56RERERERERERERPVdYWEhvvnmGwwdOhRNmjTB888/jwMHDjicpFBVFT169MC8efOqZWy9e/eGl5eXuNE/ffr0Us4o2YwZclLe09MTvXv3rlR/xWnXrh3efvttnDlzBuvWrcN9990HLy8vm+8poE1cpKam4pNPPsENN9yAtm3b4q233hITHDVRrb7bXtaZtuqckSMiIqqo7CS5ijC4eZCI3bzlr2vFzUMLbHZT6PJgFhXYhsUsmjwiGonYurPC4CH7dPeVOTVzL6XK84pWJPpFyl0e+mLfViyqTURERBUlPttAt3NC9zkm8+QJEXtFNhZxdsJpAPKzDQAEtmwq4pwL9vm6uZuCiKj6/Pnnn/jiiy+wfPlypKZqf2fq79Hqd1F07NgR9957L+69917ExMRU2xi9vb0xePBgrF69GgDw22+/YdKkSVi4cCEMhrKv8VdVFY8++ii2bNkiJgqGDBliU7+iKhgMBgwePBiDBw9GVlYWVqxYgdjYWMTFxYk0UdbxAcCxY8fwwgsv4KWXXkL//v0xceJEjBgxosrHWR61emcFAJuiIqUd58xrEhEREREREREREZHmwoULePvtt9G+fXv06tULn3zyCVJSUux2USiKghYtWuCll17CwYMHsW/fPsyYMaNaJyqsXnvtNRgMBjF58sUXX6B79+7YvHlzmc7fsmULevTogU8//VT0YTAY8Prrr1fxyG35+fnhwQcfxJYtW3Dq1CnMnDkTLVq0cLiDxWw2Y+PGjXjggQfQqFEjPPLII/j999+rdbzFqdU7K/r06VOmiYOyHkdERERERERERFQc1qwgspWfn4/vv/8eixcvxsaNG2GxWIpN8WSNFUXB8ePHXTxyTefOnfHcc8/hnXfeEePbs2cPBg4ciOjoaNx8883o1KkTwsLC4Ovri+zsbCQnJ2Pfvn3YsmULTp8u2umnK3j93HPPoWPHji57Tk2bNsUrr7yCV155BTt27MAXX3yBlStXIi0tDYBtmqj09HR8+umn+PTTT9GiRQuMHz8eY8eOdWq9jfJQVOZIIrKRmJgoCuycPXsWTZo0cfGIiKi+2NC2m4jDO8oC2YVZBSLuNOMhAICxQaRoU9w9Razm52htbrIAd+H5BBFbMpLtrmtNowAAhdl5IjYYDXZtim4rrJu3lrYhYtqHxT4nIiIiorJK/+wlAIDRS6aG8mjeXsSqrhi3tcD2xc1yJWh+qizA3bh3JwDA5T3yZljz975y8oipvtDfJ3hhxW8ICm9Uyhk1R9qlC5g9ug8A3uMg57LeBF+xYgUyMrT3Z0c1ExRFQe/evdG+fXt88skn4nGz2ey4YxcZP348lixZYpc6qaQF8I6e77hx4/DFF19U7WAroKCgAKtWrcKSJUuwfv16mEwmm+d29QRTv379sHHjxmofZ61PA0WukZCQAD8/P5vtWzNnzix3P3v27MGTTz6JDh06ICgoCP7+/mjTpg0efPBBbN261fkDJyIiIiIiIiIionJLTEzE7Nmz0bp1a/Tu3Ruffvop0tPTHd60b9u2Ld544w3Ex8dj69atGDlypCuHXqrFixfj/fffF4Wq9aUHrDtD9P8A250jXl5e+PDDD2vkRAUAeHh4YPTo0fjxxx+RmJiIuXPnonPnzja7XqzPxWKxlDkNlrPV6jRQ5DpTpkxBdrZ9kdWyKiwsxIwZMzBv3jy7AujHjh3DsWPHsGjRIowZMwb/+c9/4O/vX9khExERERERERERUTnk5ubi22+/xeLFi7F58+Zib9arqopGjRrhvvvuw5gxY3Dttde6duAV8OSTT+Kuu+7CggUL8Pnnn+PSpUvFHmv9HkRERGDSpEmYMmUKIiMjiz2+JgkPD8czzzyDZ555BgcPHsSHH36IhQsX2vz/dBVOVlC5ffXVV1i3bl2l+pg0aRKWLFkivvbx8UG7du3g5uaGw4cPi+1jX375Jc6fP4/169fDzY0/rkRUtxndjSJ295Lveamn0kSsFm2V1adjgiJjxcNLOy5PTii7NZS5Jk0ikKml/Nq0E3H+2XgR5yWnAwA8/H1Emz4lVPBN/Up6OkRERETl4h4UBAC4uO1v0dbIP0geYNB9Vuo6EAAQGH9KtOXqPrP49hoEAPAfN9P5A6V6zaLWrjoQtWioVANNmjQJ33zzDbKysgDYpgqyTlD4+/vjzjvvxJgxYzBgwIBaXzc4MjISs2fPxuzZs3H06FHs3LkTp0+fRmpqKrKysuDn54fg4GA0bdoUvXr1QuvWrV095ArbuHEjFi9ejFWrVtWY/2/14u5vbGysiIcMGYKIiIgK93Xx4kX88ssv4utx48ZVamy1TUpKCv71r38BANq0aYOMjAycP3++XH18/PHHNhMVDz/8MN58800EBwcDALKzs/Hmm29i1qxZAIBNmzbhxRdfxFtvveWcJ0FEREREREREREQlWrRokcOV9kajEUOGDMGYMWMwfPhweHl5uWiEVatNmzZo06aNq4fhVEeOHMHixYuxdOlScU/XmgaqJqgXkxUTJkwQ3/ANGzZUarLi0KFDNv3Vt8mK5557DpcvXwYAfPLJJxg/fny5zs/OzrapbTF27Fj897//tTnG19cX//73vwFATFh88MEHeOqpp2rNdioioopo0D5MxEGtZOE77/AgESvGohWFRllAW81Jl497+Wpt+mJlhXKXhfV8S4FFtBl8Zao964pGrQ/tmIz4C6ItuG1TEXtcX7NzjhIREVHt4jNyKgCgue4jxpkZE0WcsOmYiPvsfBwA4BkSKNr8e/UTsaHVjVU0yrotP1sWKff0ZTpmIpIURcG1116LSZMm4Z577kFoaKirh0RllJycjGXLlmHx4sX4+29t96KjVF4A4OXlheHDh2PChAkuGWu9mKwAnD9DVJNmnKrLpk2bRJGY8ePHo2/fvuXuY9GiRSLfm4+PD+bPn1/ssS+//DIWL16Ms2fPIi8vD/Pnz8c777xTkaETEREREREREVWa2aLWqjRQtWmsVHNZb2afOHECO3fuRKtWrepEyqe6zGQy4ccff0RsbCzWrl2LwsJCmx0y+uLhANCrVy9MmDAB99xzDwIDAx32WR0MpR9SN/DFUzl5eXl45JFHAAAhISF49913K9TPd999J+LRo0cjJCSk2GM9PDwwcaJcRfP9999X6JpERERERERERERUcYqiIDs7G19++SWGDBmCJk2aYOrUqdizZ4+rh0Y6u3btwhNPPIGGDRvi7rvvxurVq1FQUCAW3usnKSIjIzFjxgwcO3YM27dvx8MPP+zSiQqgHu2scBZHM1D1weuvv45//vkHAPD2228jLCyslDPsZWZmIi4uTnx9yy23lHrOrbfeitdffx0AcPLkSRw7dqxWF64hIipJWoJM55R6ap+I++zcLmLTnnUAANUgf4Ur3nKLviVNS9WnL0BpycmQFzHYr1NQc2WaKPeb7haxT3gzAEBQGcdPRERE5GzRcxbJ2MHjPvfMqL7B1ANM/UREev/5z3+wePFi7Ny5E4DtavwLFy7gvffew3vvvYc2bdpgzJgxuP/++9G0adOSuqQqkJiYiCVLliA2NhbHjx8H4DjNk6qq8Pb2xp133okJEybUyN0xnKwop6ysLBH7+vq6cCTV58CBA2InRe/evfHggw9WqJ/Dhw/DZDKJr6+//vpSz+natSs8PDxQUFAAANi3bx8nK4iIiIiIiIiIiKrYo48+ikcffRTHjx/HokWL8OWXX+LcuXMAbCcujhw5gpdeegkvv/wybrjhBowdOxajRo1CkK4moqtkZGSUflAVCQgIqLK+c3Jy8M033yA2NhZbtmwRkxFWV6d56t27N8aPH4/Ro0fD37/mTkxzsqKc9u/fL+Lg4GAXjqR6WCwWPPTQQygsLISbmxs+/vjjCs+4HTlyRMQeHh6Iiooq9RzrcSdPngQAHD16tELXJiIiIiIiIiKqLNasoPqoVatWmDNnDmbPno2NGzdi0aJF+OGHH5CbmwsANiv3f//9d/z+++948sknceutt2Ls2LG44447XDb2oKAgl+weUBTFZtG2s2zatAmLFy/G999/j+xsLUuCfheF9WtVVdG0aVOMHTsWEyZMQPPmzZ0+lqrAyYpyiI+Px//+9z/xP75du3YuHlHVW7Bggdjq9dxzz6FDhw4V7uv06dMibtKkSZnfKKKjo8VkRUJCQrmvm5iYWK7jL1y4UO5rEBE5Q9YFuXvPO8zH8UFFaZyUwlzRpFos8mH/IK3NVCjbdKerBXlam7fcHWj5f/buOz6qKv//+HvSC6EEpCYQehcBpYhAQFQUURREUARkbaviquuqKyDVxbJ+Fcuii3RBsCFNRVSqLL1KABUChBAggISQhLS5vz/45ZJJJslMMpPJJK/n4zGPx7k3557zuTN3huF+5pyTexqo/z/1EwAAQFlz5LkH8u1r9M5Cu3UzzxzNt4/vOQBQMhaLRbfccotuueUWJScna9GiRZo7d642bdpk/l26crM8IyNDy5Yt07Jly1SlShVdd911Hos794gDb3To0CHNmzdPn376qXmfs6BpnkJDQ3Xvvfdq5MiR6tWrlyfDLpZyk6xwdGqit956S59++qnD7RqGodTUVMXGxmr37t3Kzs42FyTxxhfcGSdOnNCYMWMkSVFRUXr11VdL1F5ycrJZdmaxltxDpnK34ShHRnAAAAAAAAAAcExYWJgeffRRPfroo/rjjz80Z84cffrppzp+/Lgk28TFhQsXtG7dOvOmuiTFxcWV2j07d4+syLlXnHvbVTp37qzt27fbtJt3oWyLxaKePXtqxIgRuu+++7x66YJyk6yYM2dOoRdezov5ww8/FKv9vMNpKlWqpOHDhxerLW/x1FNPmcmB999/XyEhBfzK10E5Q5MkKSgoyOHjgoOD7bYBAOVNk9ubmuX4bfF261j8AyTZjpzIvZh2zigLi5//1b9bs6/+PSvj/x9zdbxFQFSLYscMAABQWjJTLpvl5v/9utC6OaMoso/tcWdIAABJTZo00ZQpUzRlyhT9/PPPmj17tpYsWaLU1FRJtsmCnIRFVFSUunTpogceeED33Xefatas6ZbY6tev7/ZkRWZmpk6ePOmWfrZt22aW865D0bBhQw0fPlwjRoxQVFSUy/v2hHKTrHC33BdDUFCQZs+erVq1ank4Kvf58ssvtWzZMknSvffe65K55TIzr95Y8/Nz/NLLXTdnoW1nxMXFOVU/ISFBnTp1crofAAAAAABQvlm9bM0KqxfFivKhd+/e6t27ty5duqTPP/9cc+fO1caNG21GH+QkLDZv3qzNmzfr2WefVXR0tIYMGaKBAwe6dGHu4kwp7yir1ar58+dr4sSJbutDsl0TpFKlSrrvvvs0YsQI9ejRw639ekK5SlY4MsSmuMNwfH191axZM91666168skn1bRp06IPcqEVK1aof//+Lm939uzZGjlypM2+pKQkPfPMM5KujCCZNm2aS/rKPTLj8uXLhdS0lbtucYYxRUREOH0MAAAAAAAAgOKpVKmSRo0apVGjRik2NlZz5szR/PnzzeRB7h+GZ2dn6+eff9bPP/+sp556SrfddpuWLl3qweiL9tVXX+nVV1/VwYMHJeUf9TBgwACX9te7d2+NGDFCAwcOLPHsN2VZuUlWxMbG2t1vGIYaNWpkXjCffvqpbrzxRofb9fHxUWhoqCpXruzUaABv9uKLL5qLTE+aNMllN/srVapkltPS0gqpaStnyFjeNgCgvIn75bhZtmbbT677toqWJGXH7jT3WbKvjjozp4fKNTWU/AKu1g24MiWUJdc+m7oAAABllL2pn06/Odos13rxfbOc8tkUSVLo0LHuD6yM++Wm7ma528YNHowEQEXVsGFDTZw4URMnTtS6des0e/Zsff3117p06ZKk/Atzr1ixwpPhFuq7777T2LFjtXv3bptlA3LKt9xyi1577TVdf/31Lulv8uTJGj58eIVZk7fc3H1v0KCBQ/Vq1arlcN2yJCgoyC3TTuVeD0KSYmJiNGPGDEnSddddZ46wcIXq1aub5ZxkiCNOnTpltw0AAAAAAIDSlG141zRQ2S5c6BdwhZ49e6pnz576z3/+oy+++ELz5s3T2rVrzWmiXLk4tSutX79eY8aM0aZNmyTJJl7DMNStWze99tprLp+aacyYMS5tr6wrN8mKwuReSCXvzXlv0adPH5ub9u5y5swZ80Nh9+7dTo0mycmQ5oiNjbVZ3KV58+Zm+dy5c0pNTXVo2FLuNSdytwEA5U3vvVuLrGP97ZcrhYBc0+L5XP2stvj8/8W0cy2qbQm4+m+fb4srv6zL2vPD1TaDwq425VTEAAAAnnHg4bskSQGVr/6fMmPsX8xyZsqV0fyNhpZuXGVRRsrVUbhJM6+ONKnylymeCAcAJF2ZLn7EiBEaMWKEjh8/bk4TdfjwYU+HZmP79u0aM2aMfvzxR0lXkxQ5iYr27dtrypQpuv322z0caflQIe5JHD16VLGxsYqNjVXXrl09HU6F1bJlS5vt3bt3F3lMfHy8EhMTC2wDAAAAAAAAgPeqX7++Xn31Vf3+++9at26dRo0a5emQtH//ft17773q3Lmzfvzxx3xTPjVv3lyff/65duzYQaLChSrEyAo4zt/f36mplv78809ZrVZJV0at5B4p4etrOwd6o0aNVK9ePcXHx0uSNm7cWOT6IRs2XJ1PMzAwUJ06dXI4NgAAAAAAAADeo3v37urevXvRFd3k8OHDGj9+vBYvXiyr1ZpvJEVUVJQmTJigYcOGycenQowDKFUkK2CjW7duOnv2rMP1o6KidOzYMUlXFuaeMGFCgXUtFovuvPNOffzxx5KkBQsW6MUXXyy0/QULFpjl3r17s8A2gArPp1k3SVLWru/Nfbln9PQJq3qlYMn1pcmala8dv3a3uiE6AACA0uEfGiRJOrn16rTBze7pYJZrdLlSPvve36/ue+btUoqubOm1a4tZTv3iTbOceerKVCv+tRuXekzeLNvqZWtWeFGsQI69e/fq2muvLdU+4+PjNWnSJM2ZM0dZWVn5khR16tTR2LFj9cgjj8jf379UY6tISP+gVI0YMcIs7927V8uXLy+w7s6dO/Xdd9/ZPRYAAAAAAABA+XD27FlNmzZNHTp0UIcOHYo+wEUSExP13HPPqWnTpvrkk0+UmZkp6ep0T+Hh4XrzzTd1+PBh/fWvfyVR4WYVfmTFuXPndPbsWV24cEHp6elOH+/qFd7Lu65du+qOO+7Qt99+K0l6/PHH1bRpU7Vo0cKm3smTJ/Xggw8qO/vKArFt27bV4MGDSz1eAAAAAAAAAK6XlZWlFStWaM6cOfruu+9sRjS4W1JSkt566y299957SklJyTeSIiwsTM8//7yef/55hYWFuT0eXFEhkxWrVq3S7NmztWnTJnP9hOKwWCzKyso/tQYK995772nz5s06f/68EhIS1LlzZz355JPq3r27fH19tW3bNn3wwQc6ffq0JCkoKEgzZswolQ8qAPBKRc2TmWtKKOtvv0iSjKxMc59vq2h3RAUAAOA2TT74XJJ0pufVHxBeik80y8HXVJMkVb6h8HUSK5xc3xuZ/gmAp+zcuVNz587VZ599pnPnzkmSuYC1u6Wmpurdd9/Vv//9byUlJeVbODs4OFhPPfWUXn75ZYWHh5dKTLiqQiUrDh06pAceeEC7d++WVHpvAthq3LixlixZorvuuktJSUm6ePGiXn/9db3++uv56gYGBmru3Lnq3LmzByIFAAAAAAC4yupla1ZYvShWlG9nzpzR/PnzNXfuXO3fv1+SbBIFOckCSfLzc/0t64yMDE2fPl1Tp05VYmJiviSFn5+fHn30UY0dO1a1a9d2ef9wTIVJVmzfvl29evVSampqvuFEuct5Exh5f81PgsM1evToob1792r06NFauXKlOd1TDovFoh49euj9999X27ZtPRQlAJRdltzzZPr4mkXjcsqVv4dUubrP92pdIzD0yiHpKW6OEAAAwP2CqwWZ5bMxp81ynRvbSZICug4s9ZjKspCBL3g6BAAVSGZmppYuXao5c+bohx9+UHZ2dr4EhSTzXm2PHj00ZMgQ3XfffS6LITs7W7NmzdLkyZMVHx+fL0nh4+OjYcOGafz48YqKinJZvyieCpGsuHDhgu655x6lpKSYb4LKlSvr9ttvV8OGDTV16lRJVy7Shx56SPXq1dP58+e1f/9+7dixQ5cvXzaPa9WqlUvfMN7u6NGjxT62fv36Wrp0qU6dOqUNGzboxIkTys7OVr169dSlSxc1bNjQdYECAAAAAAAAcLutW7dq7ty5WrRokS5cuCDJ9gfguUdRXH/99Ro6dKjuv/9+1a1b1+WxtGjRQkeOHMmXpJCkQYMGadKkSfnW0oXnVIhkxfvvv6/4+Hgz4XDHHXdo/vz5qlbtyhyWU6dONf82YsQI9e7d2zw2OTlZM2fO1KRJk3ThwgUdOHBAhw8f1qxZs9wyJKkiql27NgkgAAAAAABQ5mVZDWV50dRK3hQrvFtCQoLmzZunuXPn6tChQ5LyT/OUe9/kyZM1ZMgQNW7s3vVzDh8+nG+aqW7dumnKlClq3769JOnixYtu6bty5cpuabc8qxB326dPn25ekM2bN9fXX3+tgIAAh44NCwvTs88+q/vuu0933nmn9uzZowULFshqterTTz91c+QAABTNElTJLPs0ur7QutYj26/Ua9zJrTEBAACUhsDKgWY583KWWT6z86AkKer+Ug8JACqM9PR0LVmyRHPmzNFPP/0kq9Vqdx2KvFPyS9KYMWM8EbIMw9CmTZtsfqzuDhaLRVlZWUVXhA0fTwfgbr///rtOnTol6cpF8uqrrzqcqMitXr16+uGHH1S7dm0ZhqHPPvtMn3/+uavDBQAAAAAAAIAya9OmTXr88cdVu3ZtPfjgg1q9erW5HkXuJIXFYlGvXr00c+ZMffnllx5fCzhvAsXdDziv3Ccrdu7cKUnmgil33XVXofWtVmuBf7vmmms0efJkc3vKlCmuCRIAAAAAAABAia1fv16jRo1SixYtFBYWpqpVq6pNmzYaPXq0du3a5ZY+165da94Id+Zx8ODBMn9uOeLi4vTaa6+pefPm6t69uz755BMlJSXZjKSQrtyDbdu2rd58800dO3ZMP/30kx5++OEyNSVScV4rZx4ovnI/DdTZs2clXbkIGzRooNDQ0ELrp6WlFfr3+++/X0899ZQyMjK0f/9+/fHHH2rSpInL4gUAoDBZe36QJPkE2//3LDv2SpLet2EHc1/m6Viz7F/ENFEAAADepNW85Wb57Ht/N8s1nnnbE+GUmrXXdzXL/kFXb+20erCbJKnaX18392VsWGSWA7oPKYXoyrdsq6FsL1oHwptiLank5GQ9+eSTdqdtT0pK0v79+/Xhhx/q+eef19SpU+Xv7++BKIvHU+eWlpamr776SnPmzNHatWttRgzkHaUQERGhBx54QMOGDVObNm1c0r8r1K9fnwSCFyn3yYqkpCSzXL16dbt1QkJClJqaKovFokuXLhXaXqVKldSwYUNzoZht27aRrAAAAAAAAAA8JCsrS3fffbfWrFlj7qtcubJat26tjIwMxcTEKC0tTYZh6O2331ZiYqLmzp3rlliCgoLUs2dPh+pWqlSpyDqePLdatWopJSVFku1i2TkJiipVqmjQoEF68MEHFR0d7ZI+Xe3o0aOeDgFOKPfJiuDgYLNc0FxhlStXVmpqqiTpxIkTRbZZtWpVs3zy5MmSBQgAgBMsvr5XCr5Xfylj+F9dWNI3sm2+Y3zSkvLtAwAAKG/K+2iK3Gq2qmGWqzaLMMuBNcLz1WU0BSqCMWPG2NzMHzdunF5++WWFhIRIks6dO6eXX35Zn3zyiSRp3rx56tKli/7617+6PJZatWrp+++/d1l7njy3S5cu2aw/YRiG/P39dfvtt2vYsGHq379/sdYGBgpS7tesyD2aIjk52W6dOnXqmOWYmJgi20xMTDTLGRkZJYgOAAAAAAAAQHHFxcVp2rRp5va4ceM0adIk82a+dOX+4IwZMzRs2DBz38SJE80fL5dVZe3cunfvrt9//11LlizRwIEDSVTA5cp9sqJFixaSroyqiIuLs1unXbt2Zp3cmUp7jh8/riNHjphznVWrVs2F0QIAAAAAAKCsshpX163whkdFWLJi2rRpSk9Pl3RlfYKxY8cWWjfnRv/p06c1e/bsUomxuMrKueXcB924caNatmypYcOG6fvvv5fVanVZH4BUAZIVrVu3lp/fldmu0tLSdOTIkXx1brrpJrMcFxenRYsW5auT49VXX5V0dUqpli1bujJcAAAKZQkIkiUgSEZ6qvnwjWxrPuzxjbrOfAAAAMB7HXj4Lh14+C6F1Ak3H+kXLpmPkPteVMh9L3o6TKBULVmyxCyPGjWq0F/7h4eHa9CgQXaPLYs8fW6BgYE2i2pLUmpqqj777DP169dPdevW1bPPPqutW7eWuC9AqgDJitDQUF1//fXm9s8//5yvzsCBAxUYGGjOvfbEE0/o888/t3kjXrx4UU899ZTmzZtnZhOrVKmirl27uv8kAAAAAAAAANg4ePCgzQ+T+/btW+Qxt99+u1let26dLl265JbYSqosnNupU6f0n//8R126dDGTFjn3RQ3D0JkzZ/T++++ra9euat68uSZPnmz3h+KAo8p9skKyfTMvX74839+rVKmi0aNHm2+4ixcvaujQoapVq5ZuvPFGXX/99apVq5Y++ugjSTLrPfPMM8zNBgAoVT7NusmnWTcZaSnmI7eMC2eUceGMzienmg8AAACUD8E1qym4ZjVFvTHXfDT893zzAffLNgyve5Rne/bsMcuBgYHq0KFDkcfk/uFxVlaWQ+vXekJZOLcqVaroiSee0KZNm3Tw4EG99NJLqlevnvkD79yJi99//10TJkxQ06ZNdeONN2r69Ok6d+5cifpHxVMhkhVDhw6VdOWN891339ldu2LChAlq06aNzer2Z8+e1ZYtW7Rz506lp6fbZA87deqkMWPGlOp5AAAAAAAAALjiwIEDZjkyMlL+/v5FHhMZGWnz4+ODBw+6NKYLFy5o8ODBioqKUnBwsMLCwtSwYUMNGDBAH3zwgS5evOhQO2Xt3Jo1a6apU6fq2LFjWrVqlYYOHaqgoCCbxEXO6IstW7bo6aefVt26ddW/f38tXry4zC9mjrLBz9MBlIamTZtq+fLlunz5siTZXfwlJCREa9as0aBBg7Ru3TpJV7ODubOEhmHojjvu0IIFCxz6kAAAAAAAAAA8LSEhweljIiIi3BCJ6xw7dsws169f36FjfHx8VK9ePcXGxkqSjh496tKYkpKS9MUXX9jsu3Tpko4ePaqlS5dq7Nixmjx5skaPHl1oO2Xx3KQr90lvueUW3XLLLUpOTtaiRYs0b948/fLLL+bfpSv3UTMzM/Xtt9/q22+/la+vr5nQAApSIZIVktSvX78i61SvXl1r1qzR8uXLtWjRIm3evFmnT5+WYRiqXbu2brzxRg0fPly33HJLKUQMAKjIMs6fNMsB4XXz/d0SXscsWw9fXczM50KiJCm8Y9H/7gEAAMC7/L7sV0lS1BtX9+0acKtZbv/ND6UdErxIp06dnD6mrN9YTk5ONstVqlRx+LjKlSvbbcNVoqKiVK9ePQUGBurs2bOKiYlRVlaWpCvJjGeeeUa7d+/WzJkzC2yjrJ5bbmFhYXr00Uf16KOP6vDhw5ozZ47mz5+v48ePS7JNXGRlZZnbkjRlyhTdf//9atq0qVtjhHepMMkKZ/Tv31/9+/f3dBgAAAAAAAAoQ7KthrKtZfsGfm7eFGtxpKRcXcMvKCjI4eOCg4PttlFcPj4+6tOnjx5++GH17dtX4eHhNn+/dOmSPv30U40bN05nz56VJM2aNUvNmjXTSy+9ZLfNsnJujmrcuLEmT56syZMn6+eff9acOXO0ZMkSM4a8M9iMHz9e48ePV/v27TV06FDdf//9ZX4kD9yPZAUAAAAAAABQzm3dulV16tQpuqIXyczMNMt+fo7f5sxdNyMjo8Rx9OjRQ6tXry7w75UqVdITTzyhfv36qUePHub0TJMmTdLIkSNVq1atfMeUlXMrjt69e6t3795KSUnR4sWLNW/ePG3YsMFmPeCcUTs7d+7Url279NJLL6lr16564IEHNGjQIF1zzTUeiR2eRbICAIAyyCf1z6sbdqaBMvwDzbLl8tUvoD5Vqrs1LgAAAHiOX9CV2zhrr+9q7jOy86/LCdhTp06dUvnl+ooVK9wyY8ns2bM1cuRIm30hISFmOWetWkfkrhsaGlri2BwVGRmpRYsWqUuXLpKk1NRUzZw5U6+88kq+ut52bvaEhoZq1KhRGjVqlGJjYzV37lzNnz/fXFMj7zrBmzZt0qZNm/Tss88qPT3dk6HDQ3w8HQAAAAAAAAAAOKtSpUpmOS0tzeHjUlNT7bZRGjp37qzo6Ghzu6ARGd54boVp2LChJkyYoMOHD2vNmjUaMWKEQkNDzREWede3QMXEyAoAAMogv4jWdvdnH9195e9R15n7rEe2m2Xj8iV3hgUAAAAP6rVriyRpyy29zH2dV6/xVDgVktXL1qyweiDWoKAgu9MalVTutRhyVK9+dWR5QkKCw22dOnXKbhulJTo6WmvXrpUk/fbbb3breOu5OaJnz57q2bOnPvzwQ3355ZeaO3eu1q5dW+YXdIf7kawAAAAAAAAA4BJ9+vSxuWHuTs2bNzfLx48fd+iYlJQUnT9/3m4bpSX32iE5C27n5a3n5oyQkBANHz5cw4cP1/HjxzV37lzNnTvXnCYKFY9XJytGjRrl0f4tFotmzpzp0RgAAAAAAACAiqhly5ZmOTExUQkJCUUuIr579+4C2ygtuadqyr02RW7eem7FVb9+fY0bN07jxo3TL7/84ulw4CFenayYM2eOOZ9ZactZvZ5kBQCgpNKTL0iSAsOqmvuydn1vlo2IVmbZP9f0T+bfU5PMsrVG1JVC3D5zn29kW5fECQAAgLKBqZ88J9vLpoHypliLo1OnTgoICFBGRoYkacOGDRo8eHChx2zYsMEsR0REqFGjRm6N0Z6YmBizXLNmTbt1vPXcXKFbt26eDgEe4tXJCgAAAAAAAAAVU1hYmHr16qVVq1ZJkhYsWFDkDf2FCxea5f79+7s1PnvS0tK0bNkyc/vGG2+0W8+bzu3y5cvasmWLDhw4oPPnz+v8+fNKTk5WWFiYwsPDFR4erpYtW6pTp0521x4Bcnh9soKFVwAA3i73iIocfu37Ony8JTjMLPukX1lg27dBuxLHBQAAAABl3ciRI80b+itXrtSuXbvUvn17u3WXLVumffuujkIfMWJEqcSY27hx43T69Glze8CAAQXWLcvnduHCBf33v//VV199pd27dysrK6vIY/z8/HTddddp4MCBeuyxx1S1alW3xgjvYzG8+G7/sWPHPB2CGjRo4OkQ4GInTpxQZGSkJCkuLk4REREejggACmc9vNUsG36BkkhWAAAAAK6S+z7BoPe+VWj1Wh6OyHEp507ry2fukFR+73FYrVa1a9dOv/76q6Qr6zT89NNP+dZ3OHDggHr37m0u/t2vXz+tWLGiwHbnzJmjhx9+2Nxes2aNoqOj89X74YcftGrVKj333HOFPr+ZmZkaN26c3njjDXNfhw4dtH379gKnuXfXuZVEUlKSxowZo7lz5yo1NbVYPyS3WCwKDg7WyJEjNWXKFJIWMHn1yAoSBQAAAAAAACgt2YZV2Varp8NwWLbhPbEWl4+Pj2bMmKHo6Gilp6frwIEDat++vUaPHq0bbrhBmZmZWr9+vT766CNdvHhRklS9enVNmzbNJf2npqbq//7v//Tuu++qW7du6tmzp9q0aaMaNWooICBAZ8+e1datW7VgwQLFxcWZx4WHh2vhwoWFrsfr6XPLa926dRo+fLhOnDhhJikKij9nvd+C/paamqrp06dr2bJlmjt3rnr16uWWmOFdvDpZAQBAeZVx4YxZDqiaf8G17Ji1VzfCqptFw+LjzrAAAAAAoMzp0qWL5s2bp+HDhys9PV2nT5/W2LFj7datUqWKvv76azVu3NilMVitVm3YsMFmkeuCNG3aVIsXL1bz5s2LrFsWzk2S3nvvPf39739Xdna2pKtJitwjK0JDQ1WzZk1VqVJFoaGhSklJUVJSks6cOaOUlBSzXu5jT5w4oVtuuUVvvfWWnnvuOZfHDe/CHQ0AAAAAAAAAXm3w4MHatm2boqOj7f6i39fXV/3799eePXvUo0cPl/XbokULDRgwQNWqVSuyblRUlN58881C156wx1PnlmPGjBl69tlnlZ2dLYvFIovFIsMw5O/vr3vvvVcLFizQwYMHlZycrMOHD2vnzp3asGGDdu7cqcOHDys5OVkHDx7UggULdO+998rf398ceWGxWGS1WvXCCy/o448/dnns8C5evWYF4A6sWQGgLCjpyAq/iNZuiw0AAACoSHLfJ7hn2gqFhnvRmhXnT2vJ3+6UVLHuccTGxmrz5s2Kj4+Xr6+vIiIi1L17d9WuXdut/R4+fFgHDhzQiRMndOHCBWVnZ6ty5cqqWbOmbrjhBjVq1KjEfZT2ue3cuVNdu3Y1F9A2DEO+vr4aPXq0xo4dq/DwcKfbPH/+vKZMmaL3339f1v8/rVpO8mPTpk3q2LGjS88B3oNpoAAAKItyTeeUtWOlWfbr2O9KIbjy1aqZ6VfL7o8MAAAAqLCsVkPZVu/53a/Vi2J1pYYNG6phw4al3m/jxo3dMgVTbqV9bo899pgyMzPN0RQRERFavny52rVrV+w2w8PD9X//938aPny47r77bp04cUIWi0WZmZl67LHHtGPHDheeAbwJ00ABAAAAAAAAAGx888032rlzp5moaNSokTZu3FiiREVu1113ndavX2+TfNm9e7eWLl3qkvbhfUhWAABQFlmzzIdPWFXzkcOSnWE+rElnzYfh4yfDh4GTAAAAAICSmTlzpqSrUz99+umnql+/vkv7aNCggebPn2+uXyFdWSMDFRPJCgAAAAAAAMAB2f9/GihvegDFkZ6erh9//NFMIgwfPlxdunRxS19du3bVQw89JMMwZBiGfvzxR6Wnpxd9IModkhUAAAAAAAAAANOOHTuUnp4uw7iS8Bo+fLhb+xs5cqRZzszM1Pbt293aH8om5okAAKAMCqhW2yxn/rbZLJu/Msg11VPu6aGsSWfcHBkAAAAAoLz7/fffzXJwcLB69uzp1v569OihkJAQpaWlmf1369bNrX2i7GFkBQAAAAAAAADAlJiYKEmyWCyqW7eu2/vL6SdnJMfZs2fd3ifKHkZWAAAAAAAAAA7IskpZXrQORJbV0xHAW+VeMyI8PLxU+qxWrZrd/lFxkKwAAKCM8+88wCxn//qTJMnIzLxawZptFv069iutsAAAAAAA5VRwcLAkyTAMnT59ulT6zBnNkbt/VCxMAwUAAAAAAAAAMNWufXUdxVOnTikz9w/m3CAzM1MJCQmyWCySpFq1arm1P5RNjKwAAMCL+La5WZKU8cvn5r6AboM9FQ4AAAAAoBxq3ry5Wc7IyND333+v/v37u62/77//3pz6yWKx2PSPioORFQAAAAAAAIADrFZD2V70sHrR+hooW6677jqFhoaaIx1mzpzp1v4++eQTsxwSEqL27du7tT+UTSQrAAAAAAAAAAAmX19f3XnnnTIMQ4ZhaPny5Vq2bJlb+lq6dKmWL18ui8Uii8Wifv36ydfX1y19oWwjWQEAgBdJX7tA6WsXSD6+Vx8AAAAAALjYE088IenKtEyGYegvf/mLdu7c6dI+duzYob/85S9mH7n7RcVDsgIAAAAAAAAAYKNnz566+eabZRiGLBaLzp07p5tvvlnLly93SfvLly9Xnz599Oeff5p9REdHKzo62iXtw/uwwDYAAB52OS1NkhQUHFxk3cDoB90ay+G/DTHLdW7qIEkKue9Ft/YJAAAAeIts48paEN4i2/CeWFE2TZ8+XR07dtSlS5dksViUlJSkAQMG6O6779bkyZPVunVrp9v89ddf9eqrr2rp0qVmkkKSQkND9fHHH7v6FOBFSFYAAAAAAAAAAPJp0qSJ5s+fr4EDB8pqtZrTNS1dulRLly5Vhw4dNHDgQHXs2FHt27dXjRo18rVx7tw57dq1S9u3b9dXX31lTiWVk6gwDEO+vr6aP3++mjRpUtqniDKEZAUAAAAAAAAAwK677rpLCxcu1MiRI3X58mWb9SV27Nhhs46Fr6+vKleurNDQUKWkpOjixYvKzs42/27kGu2T005QUJBmz56tu+++u/ROCmUSyQoAADzMkemfCpN9bI9Z9m3QrkRtNZ62yCyf++AfkqTkN0eb+2q9+H6J2gcAAAC8WbbVy6aB8qJYUbbdd999at26tR544AHt3bvXnLpJsk1AZGVl6fz58zp//rzddvIe17ZtWy1cuLBY00mh/GGBbQAAAAAAAABAoVq1aqVt27Zp6tSpqlu3rgzDMKdycvSRc0ydOnX0r3/9S9u2bSNRARPJCgAAAAAAAABAkfz9/fXSSy8pNjZWCxcu1MCBA1WrVi0zCVHYo2bNmrr33nu1YMECHT16VC+//LICAgI8fUooQ5gGCgCAMi7tm3fMsl+XuyRJ/rUbm/tKOvVTQao//ZZb2gUAAAAAeDc/Pz8NGTJEQ4YMkSQdOXJEBw8eNKeASk5OVlhYmMLDwxUeHq7mzZurcePGRbSKio5kBQAAAAAAAOAAq5etWWH1oljh3Ro1aqRGjRp5Ogx4OZIVAACUccEDnsu3L/Wrf5vlP3/93SzXG/9xqcQEAAAAAADgSqxZAQAAAAAAAAAAPIpkBQAAAAAAAAAA8CimgQIAwAsFtu5slhMXrjbLx3v3lCR1/XldqccEAAAAlHfZXrZmhTfFCgAkKwAAAAAAAAAANi5evOixvitXruyxvuE5JCsAAAAAAAAAADaqVq0qi8VS6v1aLBZlZWWVer/wPJIVAAB4oV3PTzDLmZevfolj+icAAADAfQzDkOFFUysZhvfEirKJawiliWQFAAAAAAAAACAfd4+sMAzDpg+SIxUbyQoAALzQ9d/+5OkQAAAAAADlWP369d2erMjMzNTJkyc9Mt0Uyh6SFQAAAAAAAAAAG0ePHnVb21arVfPnz9fEiRPd1ge8D8kKAAAAAAAAwAFWqyGrF61Z4U2xouL46quv9Oqrr+rgwYOSrk41lTMF1IABAzwVGjzMx9MBAAAAAAAAAADKt++++04dO3bU4MGDdeDAATM5YRiGDMPQLbfcoq1bt+qrr77ycKTwFEZWAAAAAAAAAADcYv369RozZow2bdok6eqi2jlJim7duum1115Tjx49PBwpPI1kBQAAAAAAAADApbZv364xY8boxx9/lHQ1SZGTqGjfvr2mTJmi22+/3cORoqwgWQEAAAAAAAA44v//EtxreFOsKDf279+vcePGaenSpZLyJylatGihSZMmadCgQR6OFGUNyQoAAAAAAAAAQIkcPnxY48eP1+LFi2W1WvMlKaKiojRhwgQNGzZMPj4spYz8SFYAAAAAAAAAAIolPj5ekyZN0pw5c5SVlZUvSVGnTh2NHTtWjzzyiPz9/T0dLsowkhUAAAAAAACAAwyrZFi9Z2olw+rpCFCeJSYm6l//+pc+/vhjpaen50tSVK9eXS+99JKefvppBQUFeTpceAGSFQAAAAAAAAAAhyQlJemtt97Se++9p5SUlHxJirCwMD3//PN6/vnnFRYW5ulw4UVIVgAAAAAAAAAACpWamqp3331X//73v5WUlGQuNp+TpAgODtZTTz2ll19+WeHh4R6OFt6IZAUAAAAAAAAAwK6MjAxNnz5dU6dOVWJiYr4khZ+fnx599FGNHTtWtWvX9nC08GYkKwAAAAAAAAAHWK2GrF60ZoU3xYqyJzs7W7NmzdLkyZMVHx+fL0nh4+OjYcOGafz48YqKivJssCgXSFYAAAAAAAAAAGy0aNFCR44cyZekkKRBgwZp0qRJatGihSdDRDlDsgIAAAAAAAAAYOPw4cM2C2dLUrdu3TRlyhS1b99eknTx4kW39F25cmW3tIuyjWQFAAAAAAAAAKBQhmFo06ZN6t27t1v7sVgsysrKcmsfKJtIVsBhp0+f1pdffqlvvvlGR44cUUJCggzDUM2aNdWqVStFR0erV69euv766+Xj41Nke4Zh6Ntvv9W8efO0c+dOxcfHKyQkRJGRkerbt68efvhhNWvWrBTODAAAAAAAoGiGIRlWT0fhOIMlK+AiFotFkswRFoA7kKxAkbKzszVt2jS9+uqrSklJyff348eP6/jx4/r+++8lSb///ruaNGlSaJunT5/WiBEjtGrVKpv9aWlpOnfunHbv3q23335br732ml544QXzAxEAAAAAAACAZ7j7Hh3JkIqNZAUKlZmZqUGDBmnZsmU2+5s0aaK6devKMAydPHnSZrGdoly8eFG9e/dWTEyMua9GjRpq0aKFkpOTFRMTo8zMTGVmZurFF19UcnKyJk2a5NLzAgAAAAAAAFCw+vXr8wNilCqSFSjUsGHDzESFv7+/nn/+eT311FOKjIy0qXfhwgV9//33mjVrVpFTQD366KNmosLf31/vvPOOHnvsMfn7+0uSTpw4oSeffFLLly+XJE2ePFldunTRHXfc4erTAwAAAAAAcJhhGF71y29vihVlz9GjRz0dAiqYohcWQIU1f/58ff7555KkkJAQ/fDDD3r99dfzJSokqWrVqhoyZIh++OEHNWrUqMA2t23bZrYpSR999JGeeuopM1EhSREREVqyZIl69uxp7nv55Zf5BxYAAAAAAAAAyimSFbArOTlZzz//vLn97rvvKjo6usTtvvHGG2a5S5cuGjVqlN16vr6+mj59urm9b98+ffvttyXuHwAAAAAAAABQ9pCsgF0LFy7U2bNnJUktWrTQI488UuI2L1++rO+++87cfuKJJwqt37JlS/Xo0cPcXrJkSYljAAAAAAAAAACUPaxZAbtmzpxplocNG+aSxXTWrl2r1NRUc7tv375FHnP77bdr/fr1kqSVK1eWOAYAAAAAAIDisloNWa3eM021N8UKAIysQD4XLlzQ9u3bze1evXq5pN09e/aY5YYNG6pWrVpFHtO1a1ezfOrUKZ05c8YlsQAAAAAAAAAAyg6SFchn+/btNotZt23bVpK0fv16PfTQQ2rUqJGCgoJUvXp1dejQQf/4xz906NChIts9cOCAWW7cuLFDseStd/DgQYeOAwAAAAAAAAB4D6aBQj579+41y5UqVVJAQIAeffRRffLJJzb10tPTdf78ee3atUvvvPOOnn/+eb3++uvy8bGfAzt27JhZrl+/vkOx1K1bV35+fsrKypIkHT161GYdC0ecOHHCqfoJCQlO1QcAAAAAAAAAlAzJCuRz7tw5s1ypUiWNGjVKCxculCT5+vqqbdu2qlatmk6cOKHff/9dkpSdna233npLCQkJmj9/vt12k5OTzXKVKlUcisXHx0ehoaFKSkrK14ajIiMjnT4GAAAAAAAgL8NqyPCidSC8KVYAYBoo5JOTGJCurBORk6gYOnSoTpw4oV27dunnn3/Wb7/9pt27d+v6668363/66af5RmDkSElJMctBQUEOxxMcHGy3DQAAAAAAAABA+cDICuRz+fLlfPseeOABLViwIN/+du3a6eeff1aXLl0UExMjSZo4caJGjBghf39/m7qZmZlm2c/P8Usvd92MjAyHj8sRFxfnVP2EhAR16tTJ6X4AAAAAAAAAAMVDssJLrFixQv3793d5u7Nnz9bIkSNt9oWGhtpsBwcH67333iuwjbCwML3zzju67bbbJF1ZI+LHH3/U7bffblMvJCTELNtLiBQkd928sTkiIiLC6WMAAAAAAADy8bJpoORNsQKo8JgGCvlUqlTJZvv2229X9erVCz3mlltuUc2aNc3t9evXF9puWlqaw/GkpqYWGBsAAAAAAAAAwPsxssJLBAUFqVatWi5vN/d6EDlq1Khhs92hQ4ci27FYLGrfvr1WrVolSYqNjc1XJ3fCIyEhwaH4kpOTbZIVRSVNAAAAAAAAAADeh2SFl+jTp49OnTpVKn21aNHCZtvRBEHueufPn8/39+bNm2vFihWSpOPHjzvUZt71Jpo3b+7QcQAAAAAAAAAA70GyAvm0bt3aZjs9Pd2h43KvLWFvxEbLli3N8v79+5WVlVXkQtu7du0yy76+vmratKlDsQAAAAAAALia1TBkNbxnHQhvihUAWLMC+dSvX19RUVHmtr0pnew5evSoWbY3ZVX37t3Ncmpqqnbu3Flkmxs2bDDLXbp0UUBAgEOxAAAAAAAAAAC8B8kK2HXPPfeY5dWrVxdZ//Tp09q7d6+53aVLl3x1mjVrZjON04IFCwptMyMjQ19++aW5fddddxUZBwAAAAAAAADA+5CsgF0PP/ywfHyuXB4xMTFatmxZofX//e9/KysrS5IUEBCgvn372q03cuRIszx79mzFx8cX2OZHH32kc+fOmW0OHTrUmVMAAAAAAAAAAHgJkhWwq23btnrggQfM7UceecRm5ERuixYt0jvvvGNujxgxQnXr1rVbd/To0apZs6YkKTk5WQ888ICSk5Pz1du4caNeeeUVc/vRRx9VZGRksc4FAAAAAADAFQzDkGH1ogdrVgDwIiywjQK99dZbWr9+vY4fP67ExER16tRJjzzyiG699VZVq1ZNcXFx+uKLL/TNN9+YxzRu3FhvvvlmgW2Ghobqo48+0sCBA2UYhtavX6/rrrtOo0ePVtu2bXXp0iWtWrVKs2bNMhf2bty4sSZOnOju0wUAAAAAAAAAeIjFIMWKQvz666/q27dvodM15WjevLlWrFihJk2aFFn3nXfe0QsvvCCr1Vpovbp16+rHH39Uy5YtHY65pE6cOGGO4oiLi1NERESp9Q0AAAAAAMqW3PcJ2j47XwGVr/FwRI7LuJiofe8+JIl7HADKPqaBQqHatGmjffv26ZFHHlFISIjdOpUqVdJLL72kLVu2OJSokKTnnntOa9asUYcOHez+PTAwUMOHD9fevXtLNVEBAAAAAAAAACh9TAOFIlWrVk0zZszQO++8o7Vr1+r48eO6cOGCwsPD1bx5c3Xr1k0BAQFOt9ujRw/t2LFDMTEx2rlzp06ePKng4GBFRESoV69eqlq1qutPBgAAAAAAoJhy1oLwFt4UKwCQrIDDKlWqpDvvvNPl7bZq1UqtWrVyebsAAAAAAAAAAO/ANFAAAAAAAAAAAMCjGFkBAAAAAAAAOMBqlaxeNLWS1erpCADAcYysAAAAAAAAAAAAHkWyAgAAAAAAAAAAeBTJCgAAAAAAAAAA4FGsWQEAAAAAAAA4wDAMGYb3rFnhTbECACMrAAAAAAAAAACAR5GsAAAAAAAAAAAAHkWyAgAAAAAAAAAAeBRrVgAAAAAAAAAOMKxXHt7Cm2IFAEZWAAAAAAAAAAAAjyJZAQAAAAAAAAAAPIppoAAAAAAAAAAHGIYhq9XwdBgOMwzviRUAGFkBAAAAAAAAAAA8imQFAAAAAAAAAADwKJIVAAAAAAAAAADAo1izAgAAAAAAAHCAYTVkeNOaFV4UKwAwsgIAAAAAAABAubB+/XqNGjVKLVq0UFhYmKpWrao2bdpo9OjR2rVrl8v7O3r0qCwWS4keR48edWnb33//vcvPEygNjKwAAAAAAAAA4NWSk5P15JNP6tNPP833t6SkJO3fv18ffvihnn/+eU2dOlX+/v4eiDI/Pz8/ValSxdNhAGUCyQoAAAAAAAAAXisrK0t333231qxZY+6rXLmyWrdurYyMDMXExCgtLU2GYejtt99WYmKi5s6d65K+g4ODddtttzlc32q1avXq1eb2bbfdpmrVqjl0rKP9XHPNNQ7HA5QlJCsAAAAAAAAAB7BmRdk0ZswYm0TFuHHj9PLLLyskJESSdO7cOb388sv65JNPJEnz5s1Tly5d9Ne//rXEfdeqVcupaZd++OEHm2TFiBEjHD6W6Z1Q3rFmBQAAAAAAAACvFBcXp2nTppnb48aN06RJk8xEhSRVr15dM2bM0LBhw8x9EydOVGpqaqnGKslmREe1atV01113lXoMQFlFsgIAAAAAAACAV5o2bZrS09MlSfXr19fYsWMLrZuTxDh9+rRmz55dKjHmuHjxopYsWWJuDxkyRIGBgaUaA1CWkawAAAAAAAAAHGA1DK97lHe5b/6PGjVKAQEBBdYNDw/XoEGD7B5bGr744gulpaWZ285MAQVUBCQrAAAAAAAAAHidgwcP6siRI+Z23759izzm9ttvN8vr1q3TpUuX3BKbPbmngGrRooU6d+5can0D3oBkBQAAAAAAAACvs2fPHrMcGBioDh06FHlM165dzXJWVpZiYmLcElteR44c0caNG81tRlUA+ZGsAAAAAAAAAOB1Dhw4YJYjIyPl7+9f5DGRkZE2U0UdPHjQLbHlNW/ePBn/f1ouHx8fPfTQQ063MXz4cDVt2lShoaEKDQ1V/fr11bdvX7355ps6c+aMq0MGSp2fpwMAAAAAAAAAvIFhNWRYvWcdiNyxJiQkOH18RESEK8NxuWPHjpnl+vXrO3SMj4+P6tWrp9jYWEnS0aNH3RGaDcMwNG/ePHO7T58+qlevntPtzJ8/32Y7NTVVcXFxWrVqlcaPH68XXnhBEyZMkK+vb4ljBjyBZAUAAAAAAABQznXq1MnpY4wyvkB3cnKyWa5SpYrDx1WuXNluG+6yYcMGMzkiFX8KqDp16igqKkohISH6888/FRMTo8uXL0uSLl++rClTpmjbtm1avny5Q6NMgLKGaaAAAAAAAAAAeJ2UlBSzHBQU5PBxwcHBdttwl9wLa1euXFn33HOPQ8dZLBZ16tRJM2bM0MmTJ3Xy5Elt2rRJP/74o3bs2KELFy5o4cKFioqKMo9ZtWqVnnnmGVefAlAqGFkBAAAAAAAAlHNbt25VnTp1PB2GS2VmZpplPz/Hb3PmrpuRkeHSmPJKTU3VF198YW4PHjzYJllSmAYNGmjLli0F/j0wMFBDhw5V3759dcstt2jHjh2SpI8//lh//etfde2115YseKCUkawAAAAAAAAAHGAYXrZmRa5pnOrUqVMqa1CsWLFC/fv3d3m7s2fP1siRI232hYSEmOWc6ZAckbtuaGhoiWMrzJIlS2ymmiruFFCFqVatmr7++ms1b95cly9flmEY+uCDD/Tf//7X5X0B7sQ0UAAAAAAAAAC8TqVKlcxyWlqaw8elpqbabcMdck8B1aRJE910001u6ad+/foaMmSIub169Wq39AO4EyMrAAAAAAAAALhEUFCQatWq5fJ27U2dVL16dbOckJDgcFunTp2y24arxcfH66effjK3hw8f7ra+JCk6Olpz5syRJB09elQZGRkKCAhwa5+AK5GsAAAAAAAAABxgWA1ZvWkaKA/E2qdPH5tkgDs1b97cLB8/ftyhY1JSUnT+/Hm7bbja/PnzZbVaJV1ZLNvdyYq8a5KcO3eu3K1TgvKNaaAAAAAAAAAAeJ2WLVua5cTERIdGV+zevbvANlwt9xRQ0dHRatCggdv6kmynt5Js1/QAvAHJCgAAAAAAAABep1OnTjbTHG3YsKHIY3LXiYiIUKNGjdwS29atW3Xw4EFz2x0La+cVExNjlgMDA1WlShW39wm4EskKAAAAAAAAAF4nLCxMvXr1MrcXLFhQ5DELFy40y/3793dLXJLtqIrQ0FANHDjQbX1JkmEYWrx4sbndtWtXt/YHuAPJCgAAAAAAAMABhnHlprD3PDz9jLnfyJEjzfLKlSu1a9euAusuW7ZM+/btM7fdNdohIyNDixYtMrcHDRqkSpUquaWvHB9++KH27t1rbg8YMMCt/QHuQLICAAAAAAAAgFcaPHiw2rRpI0nKzs7Wgw8+aHftigMHDujxxx83t/v166fOnTsX2O6cOXNksVjMx9q1ax2Oafny5TaLeBcnKbJ//3795S9/0aFDhwqtZxiGpk2bpmeffdbcV7duXT322GNO9wl4mp+nAwAAAAAAAACA4vDx8dGMGTMUHR2t9PR0HThwQO3bt9fo0aN1ww03KDMzU+vXr9dHH32kixcvSpKqV6+uadOmuS2m3FNANWjQQNHR0U63kZmZqVmzZmnWrFnq2LGjevfurXbt2qlmzZoKDg7Wn3/+qV27dumzzz6zWRsjMDBQixcvVnBwsCtOBShVJCsAAAAAAAAAeK0uXbpo3rx5Gj58uNLT03X69GmNHTvWbt0qVaro66+/VuPGjd0Sy5kzZ/Tdd9+Z28OHD5fFYilRmzt27NCOHTuKrFe7dm3Nnz9fN910U4n6AzyFaaAAAAAAAAAABxhWw+seFcXgwYO1bds2RUdH200O+Pr6qn///tqzZ4969OjhtjgWLlyorKwsc3v48OHFaqdOnToaOnSoateuXWTdWrVqaezYsdq3b5/69OlTrP6AssBiGBVhqR3AcSdOnFBkZKQkKS4uThERER6OCAAAAAAAeEru+wT1H/xYfpWqezgix2VdOqfjC66s01CR7nHExsZq8+bNio+Pl6+vryIiItS9e3eHbvyXRXFxcdq/f7+OHz+uP//8U5mZmQoLC1ONGjXUvn17tWzZssSjN4CygGmgAAAAAAAAAJQbDRs2VMOGDT0dhstERkaaCTOgPCNZAQAAAAAAADjAajVk9aKplbwpVgBgzQoAAAAAAAAAAOBRJCsAAAAAAAAAAIBHkawAAAAAAAAAAAAexZoVAAAAAAAAgAMMI1uGNdvTYTjMMLwnVgBgZAUAAAAAAAAAAPAokhUAAAAAAAAAAMCjSFYAAAAAAAAAAACPYs0KAAAAAAAAwAGG1cvWrPCiWAGAkRUAAAAAAAAAAMCjSFYAAAAAAAAAAACPIlkBAAAAAAAAAAA8ijUrAKACe6tSM7P8j0u/eTASAAAAACj7DKvVq9aBMKxWT4cAAA5jZAUAAAAAAAAAAPAokhUAAAAAAAAAAMCjmAYKACowpn4CAAAAAMcZ2dkysr1oGigvihUAGFkBAAAAAAAAAAA8imQFAAAAAAAAAADwKJIVAAAAAAAAAADAo1izAgAAAAAAAHCEkS3D6kXrQBheFCuACo+RFQAAAAAAAAAAwKNIVgAAAAAAAAAAAI8iWQEAAAAAAAAAADyKNSsAAAAAAAAABxhWq1etWWFYrZ4OAQAcxsgKAAAAAAAAAADgUSQrAAAAAAAAAACARzENFAAAAAAAAOAAw5rtZdNAeU+sAMDICgAAAAAAAAAA4FGMrAAAAAAAAHCz5NQ0sxwWEuzBSAAAKJsYWQEAAAAAAAAAADyKkRUAAAAAAACAA1izAgDch2QFAAAAAACAm2VmG0XWif8zRZJUr1qou8MBAKDMYRooFOnMmTN666231LdvX0VERCgkJERBQUGqU6eOevXqpVdffVWxsbHFanv9+vUaNWqUWrRoobCwMFWtWlVt2rTR6NGjtWvXLhefCQAAAAAAAACgLGJkBQr17rvv6pVXXlFaWlq+v506dUqnTp3S2rVr9a9//UvPP/+8XnvtNfn7+xfZbnJysp588kl9+umn+f6WlJSk/fv368MPP9Tzzz+vqVOnOtQmAAAAAABlVXhYSJF1gvwspRAJAABlE8kKFOjll1/WG2+8YbOvbt26atKkiSwWi2JjY3X8+HFJUnZ2tt566y3Fxsbq888/l8VS8BesrKws3X333VqzZo25r3LlymrdurUyMjIUExOjtLQ0GYaht99+W4mJiZo7d657ThIAAAAAAMBBhtXqVetAGFarp0MAAIcxDRTs2rhxo02iolmzZlq7dq3i4+O1bt06rV27VseOHdO2bdvUoUMHs96XX35ZZGJhzJgxNomKcePGKSEhQZs2bdL27dsVFxenRx55xPz7vHnzNH36dBeeHQAAAAAAAACgLCFZAbs++OADs1ylShWtWbNGPXv2zFfv+uuv188//6wGDRqY+z788MMC242Li9O0adPM7XHjxmnSpEkKCbk6HLZ69eqaMWOGhg0bZu6bOHGiUlNTi30+AAAAAACUddXDQlTdgemiAAAoj0hWwK4NGzaY5Yceekh169YtsG6VKlX09NNPm9s7duxQRkaG3brTpk1Tenq6JKl+/foaO3Zsge1OmzbNTGKcPn1as2fPduocAAAAAAAAXMlqZMtq9aKH4T1TVgEAyQrYlZiYaJbbtGlTZP3cdQzD0NmzZ+3WW7JkiVkeNWqUAgICCmwzPDxcgwYNsnssAAAAAAAAAKD8IFkBuypVqmSWCxolkVvOaAlJslgsqlKlSr46Bw8e1JEjR8ztvn37Ftnu7bffbpbXrVunS5cuFXkMAAAAAAAAAMC7kKyAXZ06dTLL69evL7L+unXrzHL79u0VGhqar86ePXvMcmBgoM3C3AXp2rWrWc7KylJMTEyRxwAAAAAAAAAAvAvJCtj15JNPmuWvv/5aP//8c4F1d+/erY8//tjcfuGFF+zWO3DggFmOjIyUv79/kXFERkbaTBV18ODBIo8BAAAAAABwB8Oa7XUPAPAWfp4OAGXTXXfdpdGjR+v999+X1WrVHXfcoeeff15Dhw5V06ZNZbFYFBsbq6+++kqvv/66UlNTJUkvvviihg4darfNY8eOmeX69es7FIePj4/q1aun2NhYSdLRo0edPpcTJ044VT8hIcHpPgAAAAAAAAAAxUeyAgV677331KRJE02ZMkWJiYmaOnWqpk6darduixYt9Morr+ihhx4qsL3k5GSzbG9Ni4JUrlzZbhuOioyMdPoYAAAAAAAAAEDpYRooFOqZZ57Rl19+qebNmxdYp1atWho9erQGDhxYaFspKSlmOSgoyOEYgoOD7bYBAAAAAAAAACgfGFmBAh0/flx/+ctf9OOPP5r7IiIi1KhRIxmGoSNHjig+Pl6nT5/WU089pddee02fffaZevToYbe9zMxMs+zn5/ill7tuRkaG0+cRFxfnVP2EhASbBcYBAAAAAAAkybBavWodCMNq9XQIAOAwkhVeYsWKFerfv7/L2509e7ZGjhyZb//Ro0d10003KT4+XpLUrVs3TZs2TR07drSpt23bNj3zzDPavHmzTp48qb59+2rNmjXq3LlzvjZDQkLM8uXLlx2OMXfd0NBQh4/LERER4fQxAAAAAAAAAIDSwzRQsGv48OFmouKmm27SmjVr8iUqJOmGG27QunXrdOONN0qS0tLS9PDDD8tqJ3NfqVIls5yWluZwLDmLd+dtAwAAAAAAAABQPjCywksEBQWpVq1aLm8393oQOTZt2qQNGzaY2++//778/f0LbCMgIEDvv/++mcw4cOCAfvzxR91666029apXr26WExISHI7x1KlTdtsAAAAAAAAoVdnZMrK9ZxooeVOsACo8khVeok+fPjY37d0p9xoVkZGRuu6664o8pkOHDoqIiNCJEyckSRs3bsyXrMi9SPfx48cdiiUlJUXnz5+32wYAAAAAAAAAoHxgGijkkzP9k3QlWeGo3HXtJVZatmxplhMTEx0aXbF79+4C2wAAAAAAAAAAlA8kK5BPQECAWS7u2hK5F9PO0alTJ5u2c081VZDcdSIiItSoUSOH4wEAAAAAAAAAeAeSFcinbt26ZjkmJsYmCVGQ1NRUHTx40G4bOcLCwtSrVy9ze8GCBUW2u3DhQrPcv3//IusDAAAAAAC4i2Fky7B60cNgzQoA3oNkBfLp3r27WU5PT9fHH39c5DH/+c9/lJ6ebm737NnTbr2RI0ea5ZUrV2rXrl0Ftrls2TLt27fP3B4xYkSRcQAAAAAAAAAAvA/JCuTTtWtXm4Ws//nPf2rlypUF1l+6dKnGjBljbrdp00Y33HCD3bqDBw9WmzZtJEnZ2dl68MEH7a5dceDAAT3++OPmdr9+/dS5c2enzwUAAAAAAAAAUPb5eToAlD2+vr565513dOedd8pqtSo9PV39+/fXnXfeqQEDBqhRo0YyDENHjhzR119/rW+//dY81s/PT9OmTZOPj/08mI+Pj2bMmKHo6Gilp6frwIEDat++vUaPHq0bbrhBmZmZWr9+vT766CNdvHhRklS9enVNmzatVM4dAAAAAAAAAFD6LIZhGJ4OAmXTzJkz9eSTTyojI8Oh+sHBwZoxY4YefPDBIut+/vnnGj58uM3UUfZUqVJFy5YtU48ePRyKwRVOnDihyMhISVJcXJwiIiJKrW8AAAAAAFC25L5PULn7s/IJquzhiBxnvXxRFze8K4l7HADKPqaBQoH+8pe/aPv27Ro0aJD8/AoehOPv768hQ4Zox44dDiUqpCvTQW3btk3R0dGyWCz5/u7r66v+/ftrz549pZqoAAAAAAAAAACUPqaBQqHatm2rL774QhcvXtS2bdv0+++/68KFC5KkatWqqWnTpurUqZMqVapUrLbXrFmj2NhYbd68WfHx8fL19VVERIS6d++u2rVru/hsAAAAAAAAAABlEckKOKRy5cq6+eabdfPNN7u87YYNG6phw4YubxcAAAAAAMCVDGu2DGu2p8NwmDfFCgBMAwUAAAAAAAAAADyKZAUAAAAAAAAAAPAokhUAAAAAAAAAAMCjWLMCAAAAAAAAcIBhtcqwWj0dhsO8KVYAYGQFAAAAAAAAAADwKJIVAAAAAAAAAADAo0hWAAAAAAAAAAAAj2LNCgAAAAAAAMABhmGVYc32dBgOMwzWrADgPRhZAQAAAAAAAAAAPIpkBQAAAAAAAAAA8CimgQIAAAAAAAAcYFizvWsaKC+KFQAYWQEAAAAAAAAAADyKZAUAAAAAAAAAAPAokhUAAAAAAAAAAMCjWLMCAAAAAAAAcIDVmi150ToQVi+KFQAYWQEAAAAAAAAAADyKZAUAAAAAAAAAAPAokhUAAAAAAAAAAMCjWLMCAAAAAAAAcES2VUa2F60DkW31dAQA4DBGVgAAAAAAAAAAAI8iWQEAAAAAAAAAADyKZAUAAAAAAAAAAPAo1qwAAAAAAAAAHGAY2ZLVe9asMAzviRUAGFkBAAAAAAAAAAA8imQFAAAAAAAAAADwKKaBAgAAAAAAABxgWL1sGigvihUAGFkBAAAAAAAAAAA8imQFAAAAAAAAAADwKJIVAAAAAAAAAADAo1izAgAAAAAAAHCAYbV62ZoVVk+HAAAOY2QFAAAAAAAAAADwKJIVAAAAAAAAAADAo0hWAAAAAAAAAAAAj2LNCgAAAAAAAMABhjXby9as8J5YAYBkBZBHVlaWWU5ISPBgJAAAAAAAlF21a9eWn1/FurVkZKV6OgSneFu8ACq2ivUvCuCAxMREs9ypUycPRgIAAAAAQNkVFxeniIgIT4dRqrJ/W+HpEACg3GLNCgAAAAAAAAAA4FEWwzAMTwcBlCWXL1/Wvn37JEnXXHNNhRvS6goJCQnmqJStW7eqTp06Ho4IZQXXBgrCtYGCcG2gIFwbKAzXBwrCteFaFWUaqKysLJ06dcrTYZRYRXm9AHgvPqGAPIKCgnTDDTd4Ooxyo06dOhVuWDAcw7WBgnBtoCBcGygI1wYKw/WBgnBtwFF+fn5cKwBQCpgGCgAAAAAAAAAAeBTJCgAAAAAAAAAA4FEkKwAAAAAAAAAAgEeRrAAAAAAAAAAAAB5FsgIAAAAAAAAAAHgUyQoAAAAAAAAAAOBRJCsAAAAAAAAAAIBHkawAAAAAAAAAAAAeRbICAAAAAAAAAAB4FMkKAAAAAAAAAADgUSQrAAAAAAAAAACAR1kMwzA8HQQAAAAAAAAAAKi4GFkBAAAAAAAAAAA8imQFAAAAAAAAAADwKJIVAAAAAAAAAADAo0hWAAAAAAAAAAAAjyJZAQAAAAAAAAAAPIpkBQAAAAAAAAAA8CiSFQAAAAAAAAAAwKNIVgAAAAAAAAAAAI8iWQEAAAAAAAAAADyKZAUAAAAAAAAAAPAokhUAihQfH69vvvlGY8eO1W233abq1avLYrGYj7Vr1zrV3tq1a22Od/Rx8OBBp/pZv369Ro0apRYtWigsLExVq1ZVmzZtNHr0aO3atcuptmCfq6+NvNzxGhqGoZUrV+r+++9X06ZNFRISoho1aqh9+/b65z//qd9++61EMcM5fB6gMLxu5VtpvP+5hsoed3534HuD93Pl9cF3DAAAvJABAAXYuXOnUbt2bUNSoY81a9Y41e6aNWuKbNPe48CBAw61f/HiRWPYsGGFtmWxWIy///3vRkZGRjGeGbjr2sjhrtfw1KlTxm233VZou/7+/sabb75pWK3WYsUO5/B5AHt43SoGd77/uYbKHnd+d+B7g/dzx/XBdwwAALyPnwCgAElJSTp16pRb+wgKClLPnj0dqlupUqUi62RlZenuu+/WmjVrzH2VK1dW69atlZGRoZiYGKWlpckwDL399ttKTEzU3Llzix1/ReXOa8Ndr+HFixfVu3dvxcTEmPtq1KihFi1aKDk5WTExMcrMzFRmZqZefPFFJScna9KkSW45R9jH5wEkXreKypXvf66hssld3x343lA+uPv/HXzHAADAS3gwUQKgjMv9a6S6desad999tzF58mRj1qxZJfoFXO52GzRo4NKYX3zxRZvYxo0bZ6SkpJh/P3v2rPHII4/Y1PnPf/7j0hgqAnddG4bhvtdw8ODBNr+C/OCDD2x+5RYXF2f079/fpt2VK1c6HT+cw+cB8uJ1qzjc9f7nGiqb3PXdge8N5YM7rg++YwAA4H1IVgAo0IkTJ4xly5YZCQkJNvtjY2PLZLLi+PHjRmBgoM1/GgqSe8h2rVq1bP5zgaK569pw12u4detWm7hmzpxpt15WVpbRs2dPs17btm2Z1sHN+DxAbrxuFYs73v9cQ2WXO7478L2h/HDH9cF3DAAAvA8LbAMoUL169dS/f3/Vrl3b06E4ZNq0aUpPT5ck1a9fX2PHji20bkhIiCTp9OnTmj17dqnEWF6469pw12v4xhtvmOUuXbpo1KhRduv5+vpq+vTp5va+ffv07bffOnUOKBv4PPBOvG4oKa6hsssd3x343lB+eNP/O/icAQDAfUhWACg3lixZYpZHjRqlgICAAuuGh4dr0KBBdo+F57jjNbx8+bK+++47c/uJJ54oNIaWLVuqR48eRbaLso3PA+/E64aS4hqqWPjeAE/gcwYAAPchWQGgXDh48KCOHDlibvft27fIY26//XazvG7dOl26dMktscEx7noN165dq9TU1GK3u3LlyiLro2zh88A78bqhpLiGKha+N8AT+JwBAMC9SFYAKBf27NljlgMDA9WhQ4cij+natatZzsrKUkxMjFtig2Pc9Rrmbrdhw4aqVauWU+2eOnVKZ86cKfIYlB18HngnXjeUFNdQxcL3BngCnzMAALgXyQoAHnXhwgUNHjxYUVFRCg4OVlhYmBo2bKgBAwbogw8+0MWLFx1q58CBA2Y5MjJS/v7+RR4TGRlpM2z74MGDzp8AXMZdr2Hudhs3buxQLHnrcW2UDj4PKjZet4rNFe9/rqGKhe8NcAbfMQAA8A4kKwB4VFJSkr744gsdO3ZMly9f1qVLl3T06FEtXbpUo0ePVv369fX+++8X2c6xY8fMcv369R3q28fHR/Xq1TO3jx496nT8cB13vYbFabdu3bry8/MrtF24Hp8HFRuvW8Xmivc/11DFwvcGOIPvGAAAeAe/oqsAgHtFRUWpXr16CgwM1NmzZxUTE6OsrCxJV/5j8cwzz2j37t2aOXNmgW0kJyeb5SpVqjjcd+XKle22gdLnrtewOO36+PgoNDRUSUlJBbYL9+DzoOLidUNJ3/9cQxUL3xvgLL5jAABQ9jGyAkCp8/HxUZ8+fbRgwQKdO3dOsbGx2rhxo3766Sft2bNHf/75p6ZPn64aNWqYx8yaNUtvvPFGgW2mpKSY5aCgIIdjCQ4OttsGSp+7XkOujbKNzwPk4HWreFz9/ucaqlj43oCi8B0DAADvQ7ICQKnr0aOHVq9erQceeEDh4eH5/l6pUiU98cQT2rlzp6Kiosz9kyZN0unTp+22mZmZaZZzD8MvSu66GRkZDh8H13PXa8i1UbbxeYAcvG4Vj6vf/1xDFQvfG1AUvmMAAOB9SFYAXmTFihWyWCwuf8yZM8fTp2ZXZGSkFi1aZG6npqYWOCw7JCTELF++fNnhPnLXDQ0NLUaUZUN5uDbc9RpW9GvDWWX1WuLzoPzjdUNBHH3/cw1VLHxvgKvwHQMAgLKDZAWAMq1z586Kjo42t1evXm23XqVKlcxyWlqaw+2npqbabQOlz12vIddG+cHnQfnG64bCOPL+5xqqWPjeAFfiOwYAAGUDC2wDXiQoKEi1atVyebu551Ati6Kjo7V27VpJ0m+//Wa3TvXq1c1yQkKCw22fOnXKbhvepjxcG+56DYvTbnJyss1/Kr352nBWWb+W+Dwov3jdUJSi3v9cQxUL3xvganzHAADA80hWAF6kT58+Nl90K4o6deqY5bNnz9qt07x5c7N8/Phxh9pNSUnR+fPn7bbhbcrDteGu17B58+ZasWKFU+3GxcUVGFt5V9avJT4Pyi9eNxSlqPc/11DFwvcGuBrfMQAA8DymgQJQ5uX+pVrueWJza9mypVlOTEx06JdOu3fvLrANlD53vYa59+3fv19ZWVlFtrtr1y6z7Ovrq6ZNmxZ5DEoHnwflF68bilLU+59rqGLhewNcje8YAAB4HskKAGVeTEyMWa5Zs6bdOp06dVJAQIC5vWHDhiLbzV0nIiJCjRo1KkGUKCl3vYbdu3c3y6mpqdq5c6dT7Xbp0sUmLngWnwflF68bilLU+59rqGLhewNcje8YAAB4HskKAGVaWlqali1bZm7feOONduuFhYWpV69e5vaCBQuKbHvhwoVmuX///iWIEq7grtewWbNmNsPti2o3IyNDX375pbl91113FRkHSgefB+UbrxsK48j7n2uoYuF7A1yJ7xgAAJQNJCsAlGnjxo3T6dOnze0BAwYUWHfkyJFmeeXKlTZD8vNatmyZ9u3bZ26PGDGiRHHCNdz1GuZud/bs2YqPjy+w7kcffaRz585JkgICAjR06FAHIkdp4POg/ON1Q0Ecff9zDVUsfG+Aq/AdAwCAMsIAACfFxsYakszHmjVrHD521apVxvPPP2/ExcUVWi8jI8N46aWXbPrp0KGDYbVaCzwmOzvbaNOmjVm/ZcuWxsmTJ/PVi4mJMWrXrm3W69evn8Pxo3AluTYMw32v4aVLl4yaNWua9Xv06GFcvHgxX70NGzYYoaGhZr2nnnrKqfjhHD4PkBevW8Xhrvc/15D3Kcl3B743lH/FvT74jgEAgHeyGIZhuCbtAaA8uvXWW7V+/XqbfYZhKCMjw9z29/eXj4/tQK0ePXrohx9+yNfeN998o3vuuUc+Pj7q1q2bevbsqTZt2qhGjRoKCAjQ2bNntXXrVi1YsEBxcXHmceHh4dq0aZPNsHx7Nm/erOjoaKWnp0uSatWqpdGjR+uGG25QZmam1q9fr48++kgXL16UJFWvXl1btmxR48aNnXti4PJrI4e7XsMlS5Zo4MCByvlnr1GjRho9erTatm2rS5cuadWqVZo1a5bZb+PGjbVlyxZVr17dwWcEzuLzAPbwulUM7nz/cw2VXe747sD3hvLDldcH3zEAAPBSnsuTAPAGPXv2tPmlkaOPnj172m1vyZIlTrfVtGlTY+fOnQ7HvHjxYiMwMLDIdqtUqWKsW7fORc9UxePqayM3d72G//d//2f4+PgU2W7dunWNmJiYEjw7cASfBygIr1v55+73P9dQ2eSu7w58bygfXHl98B0DAADvxJoVAEpVixYtNGDAAFWrVq3IulFRUXrzzTe1a9cutW/f3uE+Bg8erG3btik6OloWiyXf3319fdW/f3/t2bNHPXr0cCp+lA53vYbPPfec1qxZow4dOtj9e2BgoIYPH669e/eqZcuWxY4fjuHzAAXhdSv/3P3+5xqqWPjegLz4jgEAgHdiGigAHnP48GEdOHBAJ06c0IULF5Sdna3KlSurZs2auuGGG9SoUaMS9xEbG6vNmzcrPj5evr6+ioiIUPfu3VW7dm0XnAFKg7tew5iYGO3cuVMnT55UcHCwIiIi1KtXL1WtWtU1gcMpfB6gILxu5Z+73/9cQxUL3xuQF98xAADwHiQrAAAAAAAAAACARzENFAAAAAAAAAAA8CiSFQAAAAAAAAAAwKNIVgAAAAAAAAAAAI8iWQEAAAAAAAAAADyKZAUAAAAAAAAAAPAokhUAAAAAAAAAAMCjSFYAAAAAAAAAAACPIlkBAAAAAAAAAAA8imQFAAAAAAAAAADwKJIVAAAAAAAAAADAo0hWAAAAAAAAAAAAjyJZAQAAAAAAAAAAPIpkBQAAAAAAAAAA8CiSFQAAAAAAAAAAwKNIVgAAAAAAAAAAAI8iWQEAAAAAAAAAADyKZAUAwGscPXpUFovFfIwcOdLTIZVLEyZMsHme165d6+mQPG7t2rU2z8mECRM8HVKx5D0Pe485c+a4rf/o6GibvgBAkqKiogr9XIqOjvZ0iAAAACgFJCsAAAAAAAAAAIBHkawAAAAAAAAAAAAe5efpAAAAgHfLPZ1Pz549mTbKizz00EMaPny4zb7WrVt7KBoA3mjOnDl6+OGHze3Zs2c7PU3jggULlJaWZrPvlltucUV4AAAA8CIkKwAAACqoRo0aqU+fPp4OA0AF161bN0+HAAAAgDKAaaAAAICNCRMmyDAM88HCpgAAAAAAwN1IVgAAAAAAAAAAAI8iWQEAAAAAAAAAADyKZAUAAAAAAAAAAPAoFtgGAFQ4u3fvVkxMjM6cOaPLly+rZs2aioyM1E033aTg4GCX9mW1WrV161bt2bNH586dU2hoqOrUqaMePXqodu3aJW5/79692rNnjxISEiRJERER6tKlixo1alTitiuCzMxMrVu3TkeOHNHZs2cVGhqqpk2bqnv37goLC3N5f2fOnNHmzZt16tQpnTt3TpUqVVLNmjXVqVMnNWzY0OX9lZbY2Fht2bJF8fHxyszMVO3atXX99derTZs2Lu8rOztb27dv1x9//KEzZ84oPT1d11xzjRo2bKhu3bopMDCwxH38/vvv2rZtm06ePKmsrCzVqVNH119/vVq3bu2CM7AvOztbmzdv1tGjR5WQkKDs7Gy1bt1ad955Z5HHHjp0SHv27FFiYqKSkpIUHh6uunXr6qabblJ4eLhL4svIyDDjS0xMlNVq1TXXXKOmTZuqS5cu8vX1LXbbmZmZ2rdvn3799VedO3dOKSkpCgwMVFhYmBo0aKBmzZqpcePGLjkPVzEMQ3v37tWBAwd05swZpaSkqEaNGoqIiFD37t1VqVKlErV/6dIl7d+/XwcPHtS5c+eUlpamKlWqqEaNGurQoYOaNWtW4nNITk7Wrl27dOjQIV24cEHp6ekKCQlRtWrVFBUVpVatWqlWrVol7gcAAABwmAEAgJeIjY01JJmPESNGOHzsxYsXjTFjxhh169a1aSP3IygoyBgwYICxb98+h9udPXu2TRuzZ882DMMwsrOzjQ8++MCIiIiw25fFYjFuu+02p/rK7dNPPzWaNWtW4LnceOONxvr16836DRo0MP/WoEGDQtseP368TVtr1qzJV6dnz54F9l3YY/z48fnayv33nj17OvU8jBgxwub42NhYh45LTU01Xn75ZSM8PNxunIGBgcajjz5qJCYmGoZhGGvWrCnyPAqSnZ1tzJ0717j++usNi8VS4HPTsmVLY/bs2UZ2drZTz4EzSnIe9mzatMm48cYbCzyn1q1bG1999ZVZP+9144zY2Fhj1KhRBb5mkoyQkBBj2LBhxpEjR4p1Pt9//73Rvn37Attv06aN8c033xTrfAp6X507d8544YUXjNq1a+frr127dgW2l5ycbEyYMMFo2LBhgfH6+voa0dHRNp8Fztq3b59x3333GZUqVSqwn6pVqxpPP/20cfr0aafaTkhIMJ566imjWrVqRX521KhRwxg8eLDx/fffF/tcXOHMmTPGc889Z9SpU6fAWAMCAoy77rrL2LNnj1NtHzp0yJgwYYLRpUsXw8/Pr9Dno3bt2sbEiRON8+fPO30OO3bsMO655x4jICCgyOe9YcOGxtNPP23s37/fpo28/x4783D0c7ok/zYAAADAO5GsAAB4jeImK9auXWvUrFnT4Rspvr6+xiuvvOJQ2/aSFUlJScbNN9/sUF8hISFO3Xy7fPmycc899zjUtsViMd5++23DMEhW5HbkyBGjadOmDsVbt25dY+/evcW+yf/bb78Z7dq1c+o56tKli3HmzBmnngdHuTJZMXHiRMPHx8ehcxo9erRhtVqLnayYPHmyQzdWcx4BAQHGJ5984nD7VqvVeOqppxxu/9lnnzUMo+TJil27dhWaQC0oWbF8+XKnPtMkGY899piRmZnp8HOSmZlpPP300w6/xpKMsLAwY8WKFQ61/8MPPxhVqlRx+jOkW7duDp+Dq33yySdGWFiYw7H6+PgYEydOdKjt5cuXO/1cSDLq1atnbN261eFzmDp1qlOvac5jzJgxNu2QrAAAAIA7MA0UAKBcW7lypQYNGqTLly/b7A8KClJUVJRCQkIUFxenxMRE82/Z2dn617/+pVOnTmnmzJlO9ZeZmak777xTGzZsMPfVrFlTERERysrK0uHDh5WSkmL+LTU1VYMGDdKvv/6qBg0aFNq21WrVoEGDtGLFinx/q1OnjurVq6dLly4pNjZW6enpMgxDf//7310y3VR5cfLkSfXu3VtHjx612e/r66uGDRuqatWqOnnypE6ePGnW79u3r/7v//7P6b62bNmiO++8U2fPnrXbV3h4uC5duqQjR47YXJ+bN29W165d9b///U/XXHON8ydZCv71r39p/Pjx+faHh4erQYMGSk9PV2xsrNLS0iRJ77//vmrWrOl0P9nZ2frLX/6iuXPn5vtb9erVVa9ePQUEBCghIUHx8fHm3zIyMvTII4/o4sWLeu6554rs5+mnn9Z//vOffPtr1Kih+vXrKz09XUePHjXfu++++26JX5u4uDjdf//9OnPmjLmvXr16ql27tpKTk3X8+HG7x/33v//Vk08+qezsbJv9ISEhatCggcLCwnT+/HkdOXJEVqvV5rjTp09ryZIlslgshcaWmpqqe++9V6tWrcr3t9q1a6t27dry8fHRiRMnbOJPTk7W3Xffrc8++0z33Xdfge3v379f/fv3V3p6us3+wMBARUVFqUqVKsrOzlZSUpKOHTumzMzMQuMtDePGjdOUKVPy7a9cubIiIyMVGhqqM2fO2Hy2WK1WjR8/XufOndO0adMKbT/vv1GSFBwcrMjISIWFhclisejcuXM6duyYzesaHx+v6Ohobd++XS1btiy0j5kzZ+qf//xnvv1hYWGKiopSaGio0tLSdP78eZ04cUKGYRTaHgAAAOByns6WAADgKGdHVhw/ftyoWrWqzTHVq1c3ZsyYYSQnJ9vU3bRpk3HTTTfl+wXo9OnTC+0j78iKRo0ameUHH3zQ2Lt3r039y5cvG7NmzTIqV65sc9zgwYOLPP+33347X3wDBgzI18fFixeNjz/+2Jwup2rVqjbTrLhiZMX27duN1atXG6tXr7ape+2115r77T0OHz6cr63cx7t7ZEXfvn1t6gcEBBgTJkzIN33Nr7/+atx7771mvaioKJvjihqRkJCQkO+X79dee63x2Wef5bv20tLSjMWLFxuNGze2qX/HHXcYVqvVqeejKK4YWfHLL7/km86qQ4cOxpo1a2ziTUlJMWbOnGlUr17dkGT4+fkZ9erVszmuKK+++qpNfX9/f+Nvf/tbvilpDMMw/vjjD+Pxxx+3ic3Pz8/45ZdfCu3j66+/zve+6t69u7Fp0yab87l8+bKxePFiIzIy0owl7zRvhcn7vqpVq5YhXRnJ9de//tX4/fffbeqnpqYaq1evttn3448/5vtVfP/+/Y21a9fmGzVx7tw544033sg3EuD1118vNE7DMIzhw4fbHFOpUiVj3LhxdqfX2r17tzFo0CCb+mFhYfnOJ7c77rjDpv51111nrFixwkhPT89XNyMjw9i5c6fx2muvGW3btvXIyIpZs2bZxGuxWIzhw4cb27ZtyzdtW3x8vPHPf/7T8Pf3tzlm8eLFhfbxxRdfGL6+vka/fv2Mjz/+2Pj999/tTgl38eJFu9MAXnfddYV+Xly+fDnfFGoDBw40tm/fbve4ixcvGj/99JPx97//3ahVq1a+kRVpaWnm5/o//vEPm3b/8Y9/FPrvQFpaWqHPRY6S/NsAAAAA70SyAgDgNZxNVtx555029SMjI42jR48WWD87O9t46KGHbI4JCQkx4uPjCzwmb7Ii50bWjBkzCo1t/fr1Njcd/f39C536JyEhwQgJCbHpp6ipqg4fPmx3XnVXJCtyK+kNpdJKVixevNimbmBgoPHTTz8V2v6YMWPyPX+O3OTPmxR57LHHjIyMjEKP+fPPP/Ot//D1118XeoyzSpqsyM7ONlq3bp0vqVLYuR09ejRfksKRm/u//PKLzXukRo0axrZt24qMcdGiRTbHXXvttQXWvXz5cr73yLBhwwpdN+Ts2bNGq1atnD6fvO+rnGTKF198UeQ5GcaV6yP3uhY+Pj7GzJkzizxu//79xjXXXGMeFxAQYCQkJBRYf9GiRTYxNm7c2Pjjjz+K7OfNN9+0Oe6uu+6yW+/ChQs26zG0aNHCSE1NLbL9HAcOHHC4riscPnzY5rM3ODjY+Pbbb4s8bt26dUZwcLB5XM2aNQu9SX/kyJFC/33KKy0tLV/Sp7C4Vq5caVN3+PDhDveVnp5uN9Gco6C1m0qKZAUAAEDF4yMAAMqhQ4cOaeXKlea2j4+Pvvzyy0KnWvLx8dGsWbPUtm1bc19qaqqmT5/uVN/PPPOMHnnkkULrdO/e3WaalMzMTP30008F1p85c6ZSU1PN7V69eum1114rtI9GjRpp/vz5DkZd/r3zzjs226+99pp69+5d6DFTpkzRLbfc4lQ/mzdv1vfff29u33777froo4/k7+9f6HFVq1bVV199pbCwMHPf22+/7VTf7rZ69Wrt37/f3K5Tp44WLVpU6Lk1aNBAixYtcrqvSZMmmdPd+Pj4aOnSpbr++uuLPO7+++/X3//+d3N77969+vHHH+3W/fLLL5WQkGBuN2/eXDNnzpSPT8FfkatXr66vvvqqyNfTES+88IIGDRrkUN2PPvpIp06dMrdfe+01jRo1qsjjWrVqpTlz5pjbGRkZ+uCDD+zWNQxDEyZMMLdDQkK0atUqNW7cuMh+/vGPf9h8pi1fvly//fZbvnqxsbHKysoyt0eOHKng4OAi28/RokULh+u6wptvvmnz2Ttr1izdfvvtRR7Xo0cP/fvf/za3z5w5o08//bTA+g0bNixyKsDcgoKCNH/+fFWpUsXcN3v27ALr530tnnzySYf7CggIUKNGjRyuDwAAABQXyQoAQLk0c+ZMm/m2hw4dqk6dOhV5nJ+fn9566y2bfTNmzHB47u7g4GCNGzfOobr333+/zfbOnTsLrDtv3jyb7alTpzrUx8033+z0zfby6MCBA9q8ebO5Xa9ePT3zzDMOHZv3eijKu+++a7P9zjvvFLlGQI7atWvbJLp++eUXnT592qn+3WnWrFk222PHjrVJrhTkpptu0oABAxzu58CBAzbrJdx///268cYbHT7+pZdekp/f1aXZvvrqK7v18r6vJk6cqICAgCLbb9GihUaOHOlwPPaEhITYXT/AnuzsbL3//vvmdv369W0SMkW544471L59e3O7oOdj1apVOnjwoLn9t7/9zaFERY6xY8eaZcMwtGTJknx1ctYxyeGKpI+7nD9/3uYa6dq1q4YMGeLw8Y8++qjNWi0FPe/FFR4ebpM42bRpU4F1vel5BwAAQMVFsgIAUC6tW7fOZtuRXyDnuOWWWxQREWFunz592u4vhO3p06ePqlev7lDd6667zmY7Li7Obr3ExESb/hs3bqzOnTs71IckDRs2zOG65dXatWtttocMGeLwzbp27drle60KYrVabUZVdOrUSc2bN3c0TEnSrbfearOde7F2T8v9PPr7+zt149aZm/vfffedzfZDDz3k8LHSldEPHTt2NLftPYdWq1X/+9//zO3Q0FDdfffdDvdR0vdVv379VLlyZYfq7tmzx1z0XXLu+s2R+7o6ePBgvoXfJenbb7+12Xb2eb/22mtVu3Ztc9ve8163bl2b7c8//7xMLKBtz9q1a21u8jv7fPj7+6tXr17m9qZNm2wWx3aFhg0bmuX4+HglJibarZf3eS9slAcAAADgKSQrAADlTnp6unbv3m1u+/v766abbnL4eB8fH5sbTJJsfpVfGEemqcmR+xe3kpSUlGS33vbt2222nfmFeXHql0dbt2612Y6OjnbqeEfr79u3z+Z1dOZ6yFG/fn2b7QMHDjjdhjscO3ZMZ86cMbevvfZahYeHO3x8z549Ha6b9yZ3SZ/HgwcP5hsddejQISUnJ5vbHTp0UFBQkMPtd+rUyWb0hrMcGemVw9XPh2T/usrdT2hoaLGmXIqMjCy0jwYNGqhp06bm9pYtW9S3b99CRwV4iquf94sXLyo+Pr7IYy5cuKCZM2fq4YcfVocOHVSnTh2FhobKYrHke+QdZWcvCSVJvXv3lq+vr7n9zjvv6Mknn9SRI0ecPicAAADAXYr/PywAAMqoU6dOKSMjw9xu0aKFQ1O75NauXTub9R6OHz/u0HF5ExCFCQ0NtdnOO01Hjrw3t1q2bOlwH9KVkRgBAQE2z0lFExsba7Pdpk0bp47PvY5JYfLenP3Pf/6j//znP071ldf58+dLdLyrlPQ5rFq1qiIjIwscQZRb3ufRmfeVPdnZ2bp48aLN/P4lfV8FBQUpKipKf/zxR7Fiyv2L+KLkfT4GDx5crD5zs3dd5e4nJSWl0LU7ituHJE2YMEEPPviguf3zzz/r559/VlRUlG677Tb17NlTN954o1NrOLhD3ufdmQRTQc6fP2+T0MktJSVFEydO1Hvvvaf09PRitX/hwgW7+yMjIzVq1CjNmDHD3Dd9+nRNnz5dHTt2VJ8+fdSjRw916dLFqSQkAAAA4EqMrAAAlDt//vmnzXaNGjWcbiPvMXnbLIgzv8zOq6B1MfLefMp9w9URFovF4elmyqu8z6GjU3U5W//cuXNOteuIgkbclLaSPofOHFMaz2NJ31fSlQRMcTnzniyN5yMlJaXYN8gd7SPHAw88oMmTJ+dby+Xo0aP6+OOP9cADDygqKkpRUVF67LHH9PPPPzu8bpArleb7+ezZs+rataveeuutEr0OhR373nvvqX///vn279ixQ2+88Yb69eunGjVqqH379nrllVe0f//+YscBAAAAFAfJCgBAuXPp0iWb7bwjGByR95jc08WUtrw3n5wdJSJJgYGBrgrHK+W9JkJCQpw63tFrqKBfNZeEq+e4L66SPodS2XoePf2+cmbNidJ4PtzRR2EJhrFjx+p///uf7rjjDpvpiXI7duyYZsyYoZtvvlnXXnutVq9e7fIYC1Oa7+f77rtP+/bts9kXGRmp4cOH6/XXX9enn36qb775RqtWrdLq1avNhzPraAQFBWnp0qVauHBhgevwGIah3bt3a+rUqWrTpo3uvPPOYo8eAgAAAJzFNFAAgHKnUqVKNtspKSlOt5H3mLCwsBLFVBJ5f/Gd96axIy5evOiqcLxS3pvkqampTr2mjl5DeW/gDx061KnF3e3JuzCup9h7Dp3lzPOY+5r97rvvSrQ+hCSbhZ8l73pf5b2uXn/9dZsFxIujdevWhfYRHh6uxYsXl6iPonTu3FkrV65UQkKCfvjhB61du1br16+3u47Cr7/+qttuu01vv/22nnvuObfGlSPvczJ79mxFRESUqM127drl27ds2TKbxevDwsI0ffp0DR06tMipuH766Sen+rdYLBo6dKiGDh2qmJgYrV69WmvXrtXGjRvtrnexcuVKrV+/XitXrlT37t2d6gsAAABwFskKAEC5U61aNZvt4kzlkfemTd42S1Pe+cNPnjzp1PHJycnFuhHrDRy9YZ53up6zZ886laxw9BrKO31Y1apV1adPH4f7KcvsPYfOcuZ5zJ0I6NChQ4nXrcirpO8rSUpISHBVOIXKe101bNjQ5ddV1apV5efnp6ysLElX1tAprWu3Tp06GjFihEaMGCHpymvx888/65tvvtGyZcuUmZkp6cqv/v/+97+ra9eu6tKli9vjyvu8t2rVyiXrVuS1aNEim+2PP/5YQ4cOdejYkqxp06pVK7Vq1Up/+9vfZBiGDh48qB9++EFffvmlNm7caNZLTk7WoEGDdPjw4Xw/BgAAAABciWmgAADlTp06dWymdDl48KDTi0vv2bPHZtuTC722atXKZnvXrl1OHb9nzx6PzPfuqNzrfBS0yHhBEhMTHarXqFEjm+1ff/3VqX727t3rUL28iyaXp+lTSvocXrhwwaHFtaXSeR5btmxps2aCs++rEydOFCthUxyl8XxYLBabz7m0tLRiJXBcoW7duho2bJi+/PJL/f7777rhhhvMvxmGoXfeeadU4iit9/PmzZvNcvXq1Z1aQN1V60pYLBa1bNlSf/vb37RhwwatX7/eJllz5swZzZ8/3yV9AQAAAAUhWQEAKHcCAgLUvn17czsjI8PmV6JFMQzDZkoOSaXyK96CtGnTxmY6kg0bNji16PKyZcvcEZYp9w3f4iRFci80fPr0aYePs1qt2rlzp0N1c9/slKR169Y53I8z9Tt16mTzWm3atEmXL192qq+yqkGDBjajG/bt2+fUr7qdec579epls/3zzz87fKyjqlWrpiZNmpjbf/zxhw4dOuTw8e5+X+VWGs9HafbjjAYNGmjhwoU2+5z5PC+J0no+cn/uNWnSpMA1PPK6ePGiduzY4ZaYunfvrtdff91mX0HPe96pqspychwAAABlG8kKAEC51LNnT5vtOXPmOHzs6tWrbX4BXqdOHTVr1sxVoTnNz89Pt99+u7mdnp6umTNnOnRscnKy5s2b567QJNmuZVCcdQxy/5r7+PHjDt8A/+677xxeMyA6Otpme9GiRebUMkXZs2ePdu/e7VDdgIAA9e7d29xOSUnR7NmzHTrWG+R+X2VmZuabvqYwzrwH+/bta7P93//+1+HXyxl33XWXzfaHH37o0HHZ2dn66KOPXB5PQTp16mQzFd3PP/+smJgYl/eT93n/4IMPXN5HcTRp0kS1atUyt0trREufPn1s1kpZtGhRsaYVLErum/vOjAKcNWuWW5Oh3bp1s9ku6Hl3xXo2AAAAgESyAgBQTv3lL3+x+cX/ggULHPoFanZ2tl588UWbfY888ojL43PWo48+arM9adIku4vQ5vWPf/zDqdEKxZF77v+jR486fXyHDh3MsmEY+uKLL4o8JjMzU+PHj3e4j1atWqlz587mdnx8vN577z2Hjv3HP/7hcD/26o8fP17Hjx93qo2yKu9i4VOmTFFycnKRx23cuFHffPONw/107NjR5lftcXFxGjt2rMPHOyrv+2r69Ok2U/IU5K233tK+fftcHk9B/P399eyzz5rbhmHo8ccfd3kCZ8CAATajTbZs2aLp06e7tI/iyMjIsElMltYaQrVq1dJDDz1kbqekpOipp55yeT+5F3/fv3+/Lly4UOQx8fHxmjhxostjyc3RtZvyrv8SGxvrtpgAAABQvpGsAACUS82aNdOdd95pblutVg0cOFAnTpwo8BjDMPTII4/YrFcRGhqqJ554wq2xOuLWW29V9+7dze2kpCTdfPPNBf7iPyMjQ3//+9/18ccfS7KdqsnVWrdubZbPnj2bbwqtotxxxx0225MmTSp0LYqsrCw99thjTk9/kvtmrySNGTNGa9asKfSYcePGafXq1U7106NHD912223mdmJiom699VYdPHjQ4TasVqu++eYbvfTSS0717W633nqrWrZsaW4nJCRoyJAhhd40P3bsmIYMGeJ0X5MnT7aZXubNN9/UpEmTnJpi5sSJE/rHP/6hbdu22f178+bNNWzYMHM7KytL/fr1K3C6H6vVqrfffluvvPKKJPe+r/L629/+ZjO6YOPGjRo0aJBTU8KlpKTovffeK3Bklq+vryZPnpyv3xkzZjgV62+//abHHntM8fHx+f62cOFCTZ06VX/++afD7X344Yc269l07NjRqXhKYuzYsTZTuy1evFiPP/64UyMgzp8/rylTpmj58uV2/37jjTea5YyMDP3zn/8stL3ExETdeeedDiU1cowbN06ffvqpuYB6UQzD0Ntvv22zr6DnPfe/AZJsFkUHAAAAnGIAAOAlYmNjDUnmY8SIEYXWj4uLM6pWrWpzTI0aNYyZM2caly5dsqn7v//9z+jRo4dNXUnG9OnTC+1j9uzZNvVnz57t1DnlPrZnz56F1j106JAREhJic4yfn58xcOBA47///a+xYsUKY/HixcbYsWONhg0bmnX69u1rNGjQwNxu0KBBof2MHz/epo81a9YUWv+dd96xqV+1alXjpZdeMj7//HNj1apVxurVq83H4cOH8x2fmZlp1KtXz6aNli1bGmvWrDGsVqtNvR9++MHo3LmzWS/3eUoyYmNjC421T58+NvUDAgKMCRMmGGfOnLGpt3//fmPgwIFmvaioKJvjxo8fX2g/p0+fNiIjI22OCQkJMf72t78Zu3fvtjmvHOfPnzdWr15tPPvss+axRV0TzlqzZo1T52HP+vXrDYvFYtNOx44d871eKSkpxqxZs4waNWqY12re17koU6dOzfee7Nixo/HZZ58Z58+fz1c/KyvLiImJMT7++GPj1ltvNfz8/Iq8hs+ePWvUqlUrXz+33Xab8cEHHxjLli0zvvzyS2PKlClGmzZtzL+3bdvWuPHGGx0+H2ffV/asX7/e8Pf3t2mnXr16xr///W/j2LFjdo85fvy48cUXXxgPPvigUblyZYde98cffzzf89G7d29j+fLl+T47DcMwMjIyjN27dxvvvPOOcdNNN5nXh733Y87nRUhIiDFw4EBj4cKFxtGjR+3GcejQIeOpp57Kd70tWbKkqKfKpT777LN8z0ezZs2M//73v8apU6fy1bdarcYff/xhzJs3z7jnnnuM4ODgQv99WLVqVb72hw8fnu95uXjxovHJJ58YtWvXtvmsdOS6uvvuuw1JRs2aNY0nnnjC+O6774yzZ8/mq5ednW1s2LAh32dlSEiIceLEiQKfo3bt2uV7n7777rvG8uXLbf4NWL16tZGWllbwk52LM/8+AgAAoHwgWQEA8BrOJisMwzBWrFhhBAYG5rsRFBwcbLRq1cro2LGjUbNmzXx/l2SMGjWqyPZLM1lhGIbxww8/GEFBQXbjtfdo3LixcebMGZtkRePGjQvtw9mbqufOnTNvSBf1KOgm6Zdffmm3fs2aNY3rr7/eaNu2rREWFmbzt5dfftkYMWKEzb6ikhVxcXE2z0XOw8/Pz2jatKlxww03GBEREfluBi9atMjpm/x79+7Nl7DIeVSpUsVo1aqV0blzZ6N169ZGnTp17NYri8kKwzCMSZMm2Y23evXqRocOHYzWrVubN2hzHlOmTDF69uzp8M39HM8995zdvnx8fIyoqCijY8eORseOHY3GjRvnS+Y5eg3v3r3bCA8Pd/h9VaNGDePQoUM25+Pr61toH65IVhjGlRvnBX0G1KlTx2jXrp3RqVMno3nz5ka1atWceh/myMjIMAYPHmz3WD8/P6Nx48bGDTfcYLRv395o2LChERAQYLduYcmKvI+qVasaLVq0MLp06WJ06NDBuOaaa+zWGzJkSLGet5J6++23DR8fH7sxRUZGGu3btzduuOEGo2nTpvk+q3Iehf37cMcdd9g9plGjRkbnzp2N5s2b53ueH3jgAYevq5xkhb1rpm3btkaXLl2Mtm3bGpUqVbJbr6jE/bx58xx+/xT1OZ3DnZ+FAAAAKJuYBgoAUK7169dPq1atUs2aNW32p6WlKSYmRjt27NCZM2ds/ubr66t//vOfDi9iXZpuueUWrVmzRq1atSqybnR0tDZu3KhrrrlGly5dMvdXqVLFpTGFh4frq6++yvccO2PgwIGaNGlSvv1nzpzR9u3btW/fPpu1EV544QX961//crqfiIgI/fTTT2rcuLHN/qysLP3+++/atm2bzVRhdevW1ffff28z/Y6j2rZtqx07dthMCZUjKSlJMTEx2rJli/bv36+EhAS7bdSvX9/pfkvDuHHj9Oqrr+abBuncuXPauXOn9u/fbzNtzzPPPKMxY8YUq6//+7//09y5c1W1alWb/VarVUePHtWOHTu0Y8cOHT582O7CvmFhYfmOzatdu3b65ZdfbKbjKazuxo0b1axZM7e+rwoyZMgQs/+8EhIStGfPHm3dulWHDh2yO9WSr6+v6tatW2gf/v7+Wrx4sd544w0FBwfb/C0rK0uHDx/Wtm3btGvXLsXGxtqdEqlGjRr5ji3MhQsXdPDgQW3evFk7d+60OxXco48+qvnz5zvcpis9//zz+vbbb1WnTp18f4uLi9OuXbu0bds2/f7773bXcQkMDCz0M3LBggXq1KlTvv1HjhzRli1bdOjQIZvneciQIZo9e3Yxz+aqhIQE7du3T5s3b9a+fftsrmlJCg4O1kcffVTkdIgPPfSQXnzxxVKdGg0AAADlD8kKAEC517NnT/3xxx965ZVXCr1JFxQUpAEDBmjXrl3FuhFeWrp06aJdu3ZpwYIFuvvuu9WwYUMFBQUpKChIjRs31oMPPqhvv/1Wa9asUe3atWW1Wm3mtXfHTdUePXro4MGD+uCDD9S/f381bNhQYWFhNmsOFGXcuHFavnx5vvnPc2vXrp2+/fZbvfXWW8W+Kda4cWPt3btXL730UoELxgYGBurRRx/Vnj171KZNm2L1I0nXXHONvv/+e61fv179+/dXaGhoofUtFovat2+vl19+WXv37tW8efOK3be7TZw4URs2bFDXrl0LrNOyZUt99dVXmjZtWon6Gj58uI4eParJkyfbvUmfV7Vq1TRo0CDNmzdPp06d0nXXXVfkMS1atNDGjRu1dOlSPfDAA2rSpIlCQ0MVEBCg+vXr695779WiRYu0Y8cONW/eXNKVtQhylFayQrqydkBMTIzmzZunLl26yNfXt9D6gYGB6t27t/79738rLi5Ojz32mEP9vPjii4qNjdULL7zgUOKsdu3aGjZsmL7++mudPHnSbpLv8ccf19KlS/XII4/YLOZdWOz33HOPNmzYoP/+97/y8/NzKHZ3uO2223TkyBG99957uvbaa4v8DKpUqZL69eun6dOnKyEhId/6PLlVrVpV69ev17hx4wq9llq3bq2FCxfqs88+U0BAgMOxz5gxQ7NmzdLAgQMdSr6Gh4friSee0IEDB/T444871Mcbb7yh3bt364UXXtBNN92kmjVrKigoyOEYAQAAAIthOLFKIQAA5cDu3bu1f/9+nTlzRunp6brmmmsUGRmpm266yWYh1fLi119/Vdu2bc3tkSNHuuQXue504MABbd26VWfOnFFWVpbq1KmjTp06OTSixBkZGRlat26djhw5orNnzyo0NFRNmzZVjx49FBYW5tK+JCkzM1Nbt25VbGyszp49q5SUFIWGhqpatWpq1qyZWrVq5dab3mvXrlWvXr3M7fHjx2vChAklbvfIkSPavHmzTp48qczMTNWuXVvXX3+9zXXnSvHx8dq2bZvOnDmjc+fOycfHR5UrV1a9evXUsmVLNW7c2KlEWXFcvHhR1apVk9VqlXRlJFNRC7a7S1JSkvn8nz17VpmZmQoLC1PNmjXVokULNW/e3CU3jf/44w/t3r1biYmJ+vPPP+Xn56cqVaqofv36atmypaKiopxuMzExUTExMTpy5IjOnz+v1NRUhYSEqFq1amrRooXatWtXZJLPUxITE7VlyxadOnVK586dk9VqVeXKlVW7dm21bNlSTZs2lb+/v9PtXr58Wf/73/904MAB/fnnnwoICFDdunV1ww03OJSsc0RsbKwOHTqkY8eOKSkpSRkZGapUqZKuueYatW3bVq1atfJoYkiyXcC+Z8+eWrt2reeCAQAAQKnw7DdQAAA84LrrrnPol9blxU8//WSzff3113soEse1bNlSLVu2dHs/AQEBuuWWW9zeTw5/f39169ZN3bp1K7U+S0OjRo3UqFGjUuuvXr16qlevXqn1Z8+aNWvMRIXk2fdVlSpV7E435mpNmjRxaDSEM6655hr17NlTPXv2dGm7peGaa67RnXfe6fJ2g4KC1KtXL5vEoqs1bNhQDRs2dFv7AAAAQHEwDRQAAOVYVlaWpk+fbrOvvN0oR/FNnDhRFovF5jFnzhxPh+UV3n//fZtt3ldA8UVFReX7LAIAAEDFQ7ICAAAv4uzsjePGjdOhQ4fM7fbt21eoUSWAI5x9X3388cc2I5Zq1aqlfv36uTosAAAAAKhQSFYAAOBFHnjgAb399ts2C/vak5SUpKefflqvv/66zf7nnnvOneEBXum5557Tq6++qpMnTxZa7/Lly5o8ebKefPJJm/1PPfVUsdYmAAAAAABcxQLbAAB4kejoaK1bt07+/v7q3bu3unTpoubNm6tq1apKT0/XqVOn9L///U9Lly5VUlKSzbF33nmnli9f7qHIURb8+eef2rFjR6F1WrdurTp16pRSRGXDyJEjNXfuXPn4+Oimm25St27d1KpVK4WHhysrK0uJiYnaunWrli5dqtOnT9sc2759e23ZsoVkBVACv/zyi9LS0gr8e7Vq1dSxY8dSjAgAAACeQLICAAAvkpOscFb37t21dOlSVatWzQ1RAd4tJ1nhrNatW+vbb79V/fr13RAVipKQkKD9+/e7vN2OHTvyWQkAAAB4gJ+nAwAAAI6rV6+eU/VDQ0M1evRoTZgwQYGBgW6KCvBudevWlcVicXjtCn9/f40aNUpvvPGGqlSp4uboUJBVq1bp4Ycfdnm7a9asUXR0tMvbBQAAAFA4RlYAAOBlfvvtN61atUqbN2/WoUOHdPz4cSUnJyszM1NVq1ZVjRo11K5dO0VHR+u+++5TjRo1PB0yUObFxcXp+++/16ZNm3TgwAEdO3ZMSUlJysjIUOXKlVW9enW1atVK0dHRGjhwIKMpyoA5c+aQrAAAAADKEZIVAAAAALwOyQoAAACgfCFZAQAAAAAAAAAAPMrH0wEAAAAAAAAAAICKjWQFAAAAAAAAAADwKJIVAAAAAAAAAADAo0hWAAAAAAAAAAAAjyJZAQAAAAAAAAAAPIpkBQAAAAAAAAAA8CiSFQAAAAAAAAAAwKNIVgAAAAAAAAAAAI8iWQEAAAAAAAAAADyKZAUAAAAAAAAAAPAokhUAAAAAAAAAAMCjSFYAAAAAAAAAAACPIlmB/9eeHQsAAAAADPK3Hsae0ggAAAAAAFayAgAAAAAAWMkKAAAAAABgJSsAAAA0/2SIAAAAIUlEQVQAAICVrAAAAAAAAFayAgAAAAAAWMkKAAAAAABgFSW32gaqKhpCAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "image/png": { + "height": 575, + "width": 789 + } + }, + "output_type": "display_data" + } + ], + "source": [ + "# draw data to an example plot\n", + "ndvi_masked.isel(time=30).coarsen(latitude=10).mean().coarsen(longitude=20).mean().plot()" + ] + }, + { + "cell_type": "markdown", + "id": "1d4ab262", + "metadata": { + "execution": {} + }, + "source": [ + "## FAO Data: Cereal Production\n", + "\n", + "Cereal production is a crucial component of global agriculture and food security. The [Food and Agriculture Organization](https://www.fao.org/faostat/en/#data/QCL) collects and provides data on cereal production, which includes crops such as wheat, rice, maize, barley, oats, rye, sorghum, millet, and mixed grains. The data covers various indicators such as production quantity, area harvested, yield, and production value.\n", + "\n", + "The FAO also collects data on \"area harvested\", which refers to the area of land that is being used to grow cereal crops. This information can be valuable for assessing the productivity and efficiency of cereal production systems in different regions, as well as identifying potential areas for improvement. Overall, the FAO's data on cereal production and land under cereals production is an important resource for policymakers, researchers, and other stakeholders who are interested in understanding global trends in agriculture and food security." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a2359308", + "metadata": { + "execution": {} + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Downloading data from 'https://raw.githubusercontent.com/Sshamekh/Heatwave/f85f43997e3d6ae61e5d729bf77cfcc188fbf2fd/data_cereal_land.csv' to file '/tmp/data_cereal_land.csv'.\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "SHA256 hash of downloaded file: 0d71645aeeb9e1cca8abe179c525c496f3b2b02867119069679762c0f9f1da47\n", + "Use this value as the 'known_hash' argument of 'pooch.retrieve' to ensure that the file hasn't changed if it is downloaded again in the future.\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Country NameCountry CodeSeries NameSeries Code1972 [YR1972]1973 [YR1973]1974 [YR1974]1975 [YR1975]1976 [YR1976]1977 [YR1977]...2012 [YR2012]2013 [YR2013]2014 [YR2014]2015 [YR2015]2016 [YR2016]2017 [YR2017]2018 [YR2018]2019 [YR2019]2020 [YR2020]2021 [YR2021]
0AfghanistanAFGCereal production (metric tons)AG.PRD.CREL.MT395000042700004351000448100046240004147000...637900065203296748023.2858082885532695.424892953.974133051.85558346160259774663880.79
1AfghanistanAFGLand under cereal production (hectares)AG.LND.CREL.HA392310033370003342000340400033940003388000...3143000318292233447332724070279369424192131911652264191130435892164537
2AlbaniaALBCereal production (metric tons)AG.PRD.CREL.MT585830625498646200666500857000910400...697400702870700370695000698430701734678196666065684023691126.7
3AlbaniaALBLand under cereal production (hectares)AG.LND.CREL.HA331220339400334040328500350500357000...142800142000143149142600148084145799140110132203131310134337
4AlgeriaDZACereal production (metric tons)AG.PRD.CREL.MT236262515959941480275268045223131861142509...5137455491255134355353761229.63445227.373478175.146066252.825633596.784393336.752784017.29
\n", + "

5 rows × 54 columns

\n", + "
" + ], + "text/plain": [ + " Country Name Country Code Series Name \\\n", + "0 Afghanistan AFG Cereal production (metric tons) \n", + "1 Afghanistan AFG Land under cereal production (hectares) \n", + "2 Albania ALB Cereal production (metric tons) \n", + "3 Albania ALB Land under cereal production (hectares) \n", + "4 Algeria DZA Cereal production (metric tons) \n", + "\n", + " Series Code 1972 [YR1972] 1973 [YR1973] 1974 [YR1974] 1975 [YR1975] \\\n", + "0 AG.PRD.CREL.MT 3950000 4270000 4351000 4481000 \n", + "1 AG.LND.CREL.HA 3923100 3337000 3342000 3404000 \n", + "2 AG.PRD.CREL.MT 585830 625498 646200 666500 \n", + "3 AG.LND.CREL.HA 331220 339400 334040 328500 \n", + "4 AG.PRD.CREL.MT 2362625 1595994 1480275 2680452 \n", + "\n", + " 1976 [YR1976] 1977 [YR1977] ... 2012 [YR2012] 2013 [YR2013] 2014 [YR2014] \\\n", + "0 4624000 4147000 ... 6379000 6520329 6748023.28 \n", + "1 3394000 3388000 ... 3143000 3182922 3344733 \n", + "2 857000 910400 ... 697400 702870 700370 \n", + "3 350500 357000 ... 142800 142000 143149 \n", + "4 2313186 1142509 ... 5137455 4912551 3435535 \n", + "\n", + " 2015 [YR2015] 2016 [YR2016] 2017 [YR2017] 2018 [YR2018] 2019 [YR2019] \\\n", + "0 5808288 5532695.42 4892953.97 4133051.85 5583461 \n", + "1 2724070 2793694 2419213 1911652 2641911 \n", + "2 695000 698430 701734 678196 666065 \n", + "3 142600 148084 145799 140110 132203 \n", + "4 3761229.6 3445227.37 3478175.14 6066252.82 5633596.78 \n", + "\n", + " 2020 [YR2020] 2021 [YR2021] \n", + "0 6025977 4663880.79 \n", + "1 3043589 2164537 \n", + "2 684023 691126.7 \n", + "3 131310 134337 \n", + "4 4393336.75 2784017.29 \n", + "\n", + "[5 rows x 54 columns]" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "filename_cereal = 'data_cereal_land.csv'\n", + "\n", + "url_cereal = 'https://raw.githubusercontent.com/Sshamekh/Heatwave/f85f43997e3d6ae61e5d729bf77cfcc188fbf2fd/data_cereal_land.csv'\n", + "\n", + "path_cereal = 'shared/data/'\n", + "if os.path.exists(path_cereal + filename_cereal):\n", + " ds_cereal_land = pd.read_csv(path_cereal + filename_cereal)\n", + "else:\n", + " ds_cereal_land = pd.read_csv(pooch_load(url_cereal,filename_cereal))\n", + "\n", + "ds_cereal_land.head()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "396c635a", + "metadata": { + "execution": {} + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
0
1972 [YR1972]22703928
1973 [YR1973]23721606
1974 [YR1974]26240014
1975 [YR1975]26238419
1976 [YR1976]31143200
\n", + "
" + ], + "text/plain": [ + " 0\n", + "1972 [YR1972] 22703928\n", + "1973 [YR1973] 23721606\n", + "1974 [YR1974] 26240014\n", + "1975 [YR1975] 26238419\n", + "1976 [YR1976] 31143200" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# example\n", + "country = 'Brazil'\n", + "unit = 'MT' # metric tons\n", + "\n", + "ds_cereal_land_brazil = ds_cereal_land[\n", + "(ds_cereal_land[\"Country Name\"] == country) & (ds_cereal_land[\"Series Code\"] == f'AG.PRD.CREL.{unit}')\n", + "].drop(\n", + " ['Country Name', 'Country Code', 'Series Name', 'Series Code'], axis=1\n", + ").reset_index( drop=True ).transpose()\n", + "\n", + "ds_cereal_land_brazil.head()" + ] + }, + { + "cell_type": "markdown", + "id": "73f4f21b", + "metadata": { + "execution": {} + }, + "source": [ + "We can now visualize the content of the dataset." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "dfbed1e8-0dec-486b-b2bb-2c8506c1a9bc", + "metadata": { + "execution": {} + }, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Cereal production (MT)')" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABg4AAAR+CAYAAAAIkM5AAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAB7CAAAewgFu0HU+AAEAAElEQVR4nOzdd3yV9d3/8fc5Jyd7kYSdkLARERAZ4gDEOoqzt1brxNFx11bbn1U7nHVUW+u2ttY6b7W2Uq2DOtrKEsQyZDjYJCQhkEXGyc451+8PmkOu62SeneT1fDx43Of6nmt8QwVvz/t8Ph+bYRiGAAAAAAAAAAAAJNkjvQEAAAAAAAAAABA9CA4AAAAAAAAAAIAXwQEAAAAAAAAAAPAiOAAAAAAAAAAAAF4EBwAAAAAAAAAAwIvgAAAAAAAAAAAAeBEcAAAAAAAAAAAAL4IDAAAAAAAAAADgRXAAAAAAAAAAAAC8CA4AAAAAAAAAAIAXwQEAAAAAAAAAAPAiOAAAAAAAAAAAAF4EBwAAAAAAAAAAwIvgAAAAAAAAAAAAeBEcAAAAAAAAAAAAL4IDAAAAAAAAAADgRXAAAAAAAAAAAAC8CA4AAAAAAAAAAIAXwQEAAAAAAAAAAPAiOAAAAACAfuCuu+6SzWYz/QrldQAAAOi/CA4AAAAAAAAAAIBXTKQ3AAAAACB65Ofna/To0b26xm63Kzk5WampqRo5cqSmTZumWbNm6X/+53+UkZERop0CAAAACBUqDgAAAAAExOPxqKamRkVFRfr000/1xz/+Ud/5znc0fPhwfetb31JBQUGktwgAAACgFwgOAAAAAIREc3Oz/vKXv2jy5Ml66aWXIr0dAAAAAD1EqyIAAAAAXUpKStK4ceM6fb+lpUXV1dUqKSmRx+Pxeb++vl5XXXWV3G63rr766lBuFQAAAEAQ2AzDMCK9CQAAAADRoaMZB/Pnz9fy5cu7vba+vl5r167Vs88+qz//+c+y/qdGUlKSvvjiC+Xm5gZzywjQXXfdpV/+8pemNf4zEQAAYGCjVREAAACAoEhMTNTChQv1yiuvaOnSpYqPjze9X1dXp/vvvz9CuwMAAADQUwQHAAAAAILu61//uu6++26f9b///e8dtjMCAAAAED0IDgAAAACExPe+9z05nU7T2sGDB7V///4I7QgAAABATzAcGQAAAEBIpKamasKECfriiy9M6wcOHFB2dnbA93e73dq0aZO+/PJLHTx4UI2NjUpKStLUqVN16qmn9uj6PXv2aNu2bSouLlZNTY3cbrcGDRqkQYMGadKkSTrmmGNkt/N9KwAAAAwsBAcAAAAAQiY1NdVnrbtWRcuXL9cpp5xiWlu2bJkWLFggSdq3b59+85vf6NVXX9WhQ4d8rp8/f36nwcGOHTv0xhtvaNmyZVq9erXq6uq63EtaWppOO+003XTTTZozZ06X51otWLBAK1as6NU13Vm8eLFeeOGFDt9jyDEAAACCheAAAAAAQMiUl5f7rA0ePNjv+z377LO64YYbVF9f36vrKioqdNppp+mzzz7r1XXV1dVasmSJlixZovPOO08vvPCC0tPTe3UPAAAAoK+h5hYAAABASBw4cEC7du0yraWlpSkvL8+v+z344IP69re/3evQQJJqa2t7HRpYvfXWW5o9e7aKiooCug8AAAAQ7ag4AAAAABASDzzwgE+rnPPPP182m63X9/rwww/1wAMPeI/j4uJ0yimnaMGCBRo2bJhiYmJUVFSkTz/9VC6Xq9v7JScna9asWTrqqKM0fvx4paWlKSUlRc3NzTp06JC+/PJLLVu2TF999ZXpup07d+riiy/WihUrFBPT9X9OjRs3TlVVVb3+WduUlJSotLTU7+sBAAAAfxEcAAAAAAgqwzD08MMP67HHHjOtx8bG6pZbbvHrnr/5zW+8IcQFF1ygRx55RDk5OR2e29jY2OF6enq6Lr/8cl144YU64YQT5HQ6u33umjVr9KMf/Ujr1683rT366KO66aaburz2T3/6U7f378yuXbt0wgkn+Kz3ds4CAAAA4A+CAwAAAAABaWlpUW1trXbt2qU1a9bohRde0ObNm33Oe/zxxzV58mS/nuF2uyVJN9xwg08gYRUfH++zNmLECO3fv18JCQm9eu4JJ5ygVatW6Rvf+Ibef/997/rjjz+uH//4x91WHfijtLRUZ555psrKykzrP/7xj/X9738/6M8DAAAArAgOAAAAAHRpxYoVfrUXapOdna0nnnhC559/fkD7mD17th5++GG/ro2NjfX7ufHx8XrxxRc1evRo73yFwsJCffjhh1q0aJHf9+2Iy+XSokWLtHv3btP6xRdf7PfPDgAAAPQWw5EBAAAAhMRJJ52kN954Q3v37g04NJAOD0d2OByBb8wPQ4YM0Zlnnmla+/jjj4P6jJaWFl1wwQXasGGDaX3hwoV66aWXAgpvAAAAgN6g4gAAAABASHz88cfatWuXNm3apBtuuEGZmZl+32v8+PGaN29eEHfn3x7aW7t2bdDubRiGrrnmGn344Yem9WnTpunNN98MqGICAAAA6C2CAwAAAABdSkpK0rhx47o8x+Vy6dChQ6qsrDStHzhwQHfffbf+8Ic/6Nlnn9XZZ5/t1x4WLFjg13VdKS4u1po1a7Rlyxbt2LFD1dXVqqmpUUNDg3cQc3sHDhwwHe/bty9oe7nlllv08ssvm9by8vL03nvvKTU1NWjPAQAAAHqC4AARUVxcrHXr1mn9+vXe/9v+PzKXLVsWkv849EdjY6Nef/11vf322/rss89UWlqqxsZGpaamKi8vT3PmzNHll1+uuXPnRnqrAAAAITFz5kwtX768R+eWlJToo48+0h/+8AdTK5/S0lKdf/75eumll3TppZf2eg8zZszo9TWdWbJkiZ566imtWLFCHo/H7/tUVVUFZT+PPvqofvvb35rWMjMz9f7772v48OFBeQYAAADQGwQHCKvPPvtMixYt8vm2VrT617/+pWuuuUaFhYU+71VUVKiiokIbNmzQU089pbPOOkvPPvushg4dGoGdAgAARIfhw4frsssu02WXXaYnnnhCP/rRj7zf3ne73brmmms0bdo0HX300b2675AhQwLe2/79+3XFFVfoo48+CvheklRdXR3wPf7yl7/oxhtvNK0lJibq3Xff1cSJEwO+PwAAAOAPhiMjrKqrq/tMaPDuu+/q61//uik0SE1N1fHHH6+FCxdq8uTJstuP/BFaunSp5s+fr/Ly8khsFwAAIOpcf/31uvnmm01rTU1Nuv7663t9r0Db9RQXF2v+/PlBCw0kqbW1NaDrP/roI1155ZWmtkgOh0N/+ctfdPzxxwe6PQAAAMBvBAeImBEjRui8887TPffco+eeey7S2zGpqqrSNddc4/2PwZSUFD333HMqLy/XJ598on//+9/64osvVFBQYCq13759u2666aZIbRsAACDq/OIXv1BiYqJpbdmyZfr88897dZ+YmMCKpa+66irt2rXLZ3369On6+c9/rjfffFMbN27UgQMHVFNTo+bmZhmGYfp15513BrSH9jZt2qRvfOMbam5uNq0//fTTfs+BAAAAAIKFVkUIq/Hjx+vtt9/WrFmzNGzYMO96fn5+5DbVgddee01lZWWm40WLFvmcl52drVdeeUX19fX6+9//Lkl69dVX9eijjyo9PT1MuwUAAIheaWlpOvnkk/XBBx+Y1j/44ANNmTIlLHtYunSp/vWvf5nWhgwZov/7v//T6aef3uP7NDQ0BGU/+fn5WrRokWpqakzrd999t6699tqgPAMAAAAIBBUHCKuRI0fqnHPOMYUG0WjVqlXe11OmTOkwNGjv1ltv9b5uaWnRunXrQrY3AACAvmb8+PE+a5s3bw7b8//85z+bjh0Oh955551ehQaSVFlZGfBeysvLdcYZZ6ikpMS0/r3vfU+33357wPcHAAAAgoHgAP2Kx+PRkiVLdMUVV2jChAlKS0tTQkKC8vLy9M1vflOvvfaaPB5Pt/dpX23Qk2/CWc9pfz0AAMBA19F8gnDOhfrnP/9pOj7zzDM1e/bsXt9nz549Ae2jvr5eZ599tnbs2GFaP//88/W73/0uoHsDAAAAwUSrIvQbn376qb7zne9o69atPu8VFBSooKBAS5Ys0a9//Wu9/vrrGjduXKf3Sk5O9r629p3tSFNTk+l40KBBvdg5AABA/1ZdXe2z5nA4wvLspqYmlZaWmtZOPvnkXt/H7XbrP//5j9/7aG1t1UUXXaRPP/3UtH7iiSfq1VdfDdvvBwAAANATVBygX1i6dKlOOeUUU2gwdOhQnXDCCZo/f75GjBjhXd+0aZNOPPFEbd++vdP7tf8G2ieffOIdktyZFStWeF87nU6/vsEGAADQX23bts1nLVytKysqKnzWMjIyen2ff/zjH3K5XH7v43vf+56WLl1qWps8ebLeeecdJSQk+H1fAAAAIBQIDtDn7dixQxdffLF3WN1JJ52k1atX68CBA1q9erWWL1+u4uJiffTRR94qg9LSUl166aVqaWnp8J6LFy9WYmKiJKmkpET33Xdfp8+vqqrSz3/+c+/x1VdfrczMzGD9eAAAAH3aoUOHtHr1ap/1o446KizPT0pK8lnzp03Sww8/7PcebrvtNj333HOmtZEjR+r999+nUhUAAABRieAAfd61116ruro6SdIFF1yg5cuX64QTTvA575RTTtGaNWuUk5MjSdq4caPPoLw2w4cP17PPPiun0ylJuuuuu/Stb31LK1euVG1trVpbW1VUVKQXXnhBxx13nL788ktJ0qmnnqrf/va3ofgxAQAA+qR77rlHjY2NPuvnnntuWJ6flpbm/UJImw8//LBX9/jTn/6k5cuX+/X83//+9z5fQklPT9f777/v/f9LAQAAgGhDcIA+7ZNPPtHHH38sSRoyZIief/75LvvDDh48WA899JD3+Pe//32n537rW9/SBx984P023F/+8hfNnz9fqampcjqdysnJ0dVXX609e/Zo8ODBuvXWW/Xee+8pJSUlSD8dAABA3/boo4/qkUce8VlfuHBhl/Omgu2kk04yHS9fvlz/+Mc/enTt+++/rxtuuMGv577xxhv64Q9/aFqLi4vT3//+d02ZMsWvewIAAADhQHCAPu3ll1/2vr766qt79KH9+eef7/3W2bp167rsVXvKKado6dKlWrRoUafnOJ1OXXPNNfr+97/vrVAAAAAYqEpKSvTyyy/rxBNP1P/7f//P532n06knnngirHu66KKLfNYuvvhiLVmypNNrGhoadPfdd+u8887ztsRMTU3t8TM3btyoyy67TB6Px7tmt9v18ssva/78+b3YPQAAABB+MZHeABCItmoD6fCH/D3hdDo1YcIEbdq0SW63W5s3b9aJJ57oc15DQ4Nuvvlm/eEPf5Db7ZZ0uKz8qKOOUnx8vPbv368dO3aopaVFv/71r/XYY4/pt7/9rX7wgx8E54cDAACIEuvXr9f06dO7PKeurk6VlZWqrKzs9JyYmBi98sormjx5cpB32LUrr7xS999/v3bv3u1dc7lc+uY3v6kZM2bonHPO0bhx4+R0OlVaWqoNGzbo3XffNQ1WPvroo3X22Wfr17/+dY+euWXLFp8WTfHx8br33nt17733+v2znHvuubr77rv9vh4AAADoCYID9FmGYeiLL77wHt9zzz0dlsJ3pKCgwPu6o+F4zc3NOuuss7Rs2TJJh4fXPfHEEzrvvPNktx8p1CksLNQdd9yhF154QY2NjfrhD38oj8ej66+/3t8fCwAAIOrU1dVp8+bNAd1j2LBheuaZZ3T22WcHaVc953Q69frrr+ukk05SfX296b2NGzdq48aNXV4/cuRIvfvuu3rhhRcC2kd9fX3Av4/dBTgAAABAMBAcoM+qrq72VgJI0urVq/2+j9W9997rDQ0GDx6sNWvWaNSoUT7n5eTk6Pnnn1dmZqZ3dsLNN9+sc845R3l5eX7tBwAAoD/JysrSVVddpdtuu01paWkR28exxx6rDz74QBdddJFKSkp6fN3xxx+v119/XdnZ2SHcHQAAABBdmHGAPquuri4o92nfd1aSGhsb9dhjj3mPf/GLX3QYGrR3zz33aMiQIZKkpqYm/fGPfwzK3gAAAPqK2NhYZWVlaezYsTrjjDP085//XO+8847279+vBx98MKKhQZuTTjpJmzdv1i233KL09PQuz505c6ZefPFFrV69mtAAAAAAA47NMAwj0psA8vPzNXr0aO/xsmXLtGDBgi6vcblcpmHIn332WVBKt1euXGkaWLd7926NGTOm2+uuuOIK77Dmk08+WStXrgx4LwAAAAgNt9ut9evX64svvlB5eblaW1uVkpKi0aNHa+bMmRo2bFiktwgAAABEDK2K0GclJycrMTHR26e2tLQ0KPctLi42Hefk5PTouvbnHThwICh7AQAAQGg4HA7NmTNHc+bMifRWAAAAgKhDqyL0ae3/Q2/t2rVBuWdsbKzpuKGhoUfXtR+0l5iYGJS9AAAAAAAAAEC4ERygTzv99NO9r19++WWfeQX+GDFihOl4/fr1Pbpuw4YNnd4DAAAAAAAAAPoKggP0ad/5zneUlJQkSdq5c6d+85vfBHzP4447zlQx0H5QcmfWrVunjz/+2HvcfkYCAAAAAAAAAPQlBAfo0zIzM3Xrrbd6j2+99Vbdd999am1t7fK6gwcP6r777tMNN9zg815sbKwuueQS7/Hbb7+tO+64Q53NEd+2bZu++c1veo/j4uJ06aWX9vZHAQAAAAAAAICoYDM6+zQUCJHTTz9dK1euNK0ZhqHm5mbvsdPplN1uzrXmzZunDz/80Od+hmHoG9/4ht566y3vWl5eni655BLNmjVLWVlZam5uVnl5ubZu3arVq1dr1apVcrvduvjii/Xaa6/53LO4uFjHHnusysrKvGvTp0/XlVdeqSlTpig+Pl4lJSX65z//qZdfflmNjY3e8375y1/qjjvu6P1vDAAAAAAAAABEgZhIbwADT3Nzs5qamro8p6WlpcPrOmKz2fT666/rhz/8of74xz9KkvLz83X//ff7vceRI0dq6dKlOvfcc3XgwAFJ0qZNm7Rp06Yur7v++usJDQAAAAAAAAD0abQqQr/gdDr19NNPa9myZVq4cKFPtUJ7DodDc+fO1UMPPaQnnnii0/NmzZqlrVu36kc/+pHS09O7fP7JJ5+s9957T48//ri/PwIAAAAAAAAARAVaFaFfOnTokD7++GMVFRXp0KFDcjqdysjI0IQJEzR16lSlpaX16n4tLS3atGmTtm7dqoqKCjU3NystLU2jRo3S7NmzNWzYsBD9JAAAAAAAAAAQXgQHAAAAAAAAAADAi1ZFAAAAAAAAAADAi+AAAAAAAAAAAAB4ERwAAAAAAAAAAAAvggMAAAAAAAAAAOAVE+kNoH9qbW3VgQMHJEnDhg1TTAz/qAEAAAAAAABAX0DFAULiwIEDysnJUU5OjjdAAAAAAAAAAABEP4IDAAAAAAAAAADgRXAAAAAAAAAAAAC8CA4AAAAAAAAAAIAXwQEAAAAAAAAAAPAiOAAAAAAAAAAAAF4EBwAAAAAAAAAAwIvgAAAAAAAAAAAAeBEcAAAAAAAAAAAAL4IDAAAAAAAAAADgRXAAAAAAAAAAAAC8CA4AAAAAAAAAAIAXwQEAAAAAAAAAAPAiOAAAAAAAAAAAAF4EBwAAAAAAAAAAwIvgAAAAAAAAAAAAeBEcAAAAAAAAAAAAL4IDAAAAAAAAAADgRXAAAAAAAAAAAAC8CA4AAAAAAAAAAIAXwQEAAAAAAAAAAPAiOAAAAAAAAAAAAF4EBwAAAAAAAAAAwIvgAAAAAAAAAAAAeBEcAAAAAAAAAAAAL4IDAAAAAAAAAADgRXAAAAAAAAAAAAC8CA4AAAAAAAAAAIAXwQEAAAAAAAAAAPAiOAAAAAAAAAAAAF4EBwAAAAAAAAAAwIvgAAAAAAAAAAAAeBEcAAAAAAAAAAAAL4IDAAAAAAAAAADgRXAAAAAAAAAAAAC8CA4AAAAAAAAAAIAXwQEAAAAAAAAAAPAiOAAAAAAAAAAAAF4EBwAAAAAAAAAAwIvgAAAAAAAAAAAAeBEcAAAAAAAAAAAAL4IDAAAAAAAAAEBIrNlVrj//Z5+q61sivRX0QkykNwAAAAAAAAAA6H9+t2yXHvxguyTpiX/v1L9/skAJsY4I7wo9QcUBAAAAAAAAACCoPt1Tod9+uN17vL+6Uf/YWhLBHaE3CA4AAAAAAAAAAEFT3dCiG/+6WYZhXl9fUBmZDaHXCA4AAAAAAAAAAEFz+98/V3FVg8/6+vxDEdgN/EFwAAAAAAAAAAAIir9/Vqy3N+/v8L2dpS5V1TeHeUfwB8EBAAAAAAAAACBghZX1uv3vn3d5zoYCqg76AoIDAAAAAAAAAEBAWt0e/b+/bFJtU6tpfVCi03S8nuCgTyA4AAAAAAAAAAAE5PfLd/uEAhfMyNalc0aZ1tbnMyC5LyA4AAAAAAAAAAD4bVNhlR79907TWk5Ggu46d7Jm5mWY1jcXVaup1R3O7cEPBAcAAAAAAAAAAL/UNbXqR699JrfH8K457DY9evGxSol3asaoQbLZjpzf3OrR58XVEdgpeoPgAAAAAAAAAADgl1++84UKKupNaz88ZZyOyx0kSUpLcGrCkBTT++vzmXMQ7QgOAAAAAAAAAAC99t7WEv11fZFp7dhR6bp+4TjT2sy8QaZjBiRHP4IDAAAAAAAAAECvHKhu1M/e2GpaS4p16LGLj1WMw/yxszU42FBwSIZhCNGL4AAAAAAAAAAA0GMej6GfvL5J1Q0tpvVfnjdFozITfc6fmWsekFxZ16w95XUh3SMCQ3AAAAAAAAAAAOixZz/eq9W7KkxrZx0zXBfMGNnh+dmDEjQ0Nc60toE5B1GN4AAAAAAAAAAA0CNf7K/Wgx9sN60NT4vXfd+YIpvN1uE1NpvNp+pgXX5lyPaIwBEcAAAAAAAAAAC61dji1o9e26Rmt8e7ZrNJD100TemJsV1e29GcA0QvggMAAAAAAAAAQLfu/8dX2lXqMq19d94YnTA2q9trrRUHe8rrVOFqCur+EDwEBwAAAAAAAACALi3bVqoXPykwrU0ZmaqfnDaxR9cfNTxFibEO09p6qg6iFsEBAAAAAAAAAKBT5a4m3bxks2kt3mnXoxcfq9iYnn3EHOOw69hR6aY12hVFL4IDAAAAAAAAAECHDMPQLUu2qNzVbFq/7azJGjckuVf3Oo4ByX0GwQEAAAAAAAAAoEMvf7pPH20rNa197aghumzOqF7fa2aueUDy58XVamxxB7Q/hAbBAQAAAAAAAADAx67SWt377pemtazkOD1wwVTZbLZe3+/YUemyt7usxW1oS1F1oNtECBAcAAAAAAAAAABMmlrduuHPm9TU6jGtP/jNqcpKjvPrninxTk0almpao11RdCI4AAAAAAAAAACYPPzhDn1ZUmNau+qEPJ0ycUhA952VZ25XxIDk6ERwAAAAAAAAAADwWrOrXH9ctce0NmFosn729UkB3/u4PPOA5A0Fh+TxGAHfF8FFcAAAAAAAAAAAkCRV1Tfrxr9ultHus/xYh12PXnys4p2OgO9vHZBc3dCiXWWugO+L4CI4AAAAAAAAAADIMAz94s2tOlDTaFq/5cyJmjwitZOremdEeoJGpieY1tbn064o2hAcAAAAAAAAAAC0ZEOR/rH1gGntpHFZuubE0UF9znGWqoP1DEiOOgQHAAAAAAAAADDAFVTU6a63vzCtpSc69dBF02S324L6rJmWAcnrGZAcdQgOAAAAAAAAAGAAa3F79KPXNqmu2W1af+B/pmpoanzQnzcz1zwgeV9lvUot7ZEQWQQHAAAAAAAAADCAPfHRLm0qrDKtfWtWjs6cMiwkz5s4LEUpcTGmNaoOogvBAQAAAAAAAAAMUBsKKvXkRztNa3mZibr97Mkhe6bDbtP0UemmNQYkRxeCAwAAAAAAAAAYgGobW/Sj1zbJYxxZi7Hb9Ni3jlWSpSIg2GblmdsVbShgQHI0ITgAAAAAAAAAgAHozre/UNGhBtPaj782XtNy0kP+7Jm55gHJn++vUX1za8ifi54hOAAAAAAAAACAAeadzfv1xsZi09qsvEH6/oJxYXn+9FHpctht3mO3x/CZs4DIITgIQHFxsf7+97/rtttu0xlnnKHMzEzZbDbvr+XLl4fs2XV1dfrHP/6hm266SQsXLtSIESMUHx+vpKQk5eTkaNGiRfrtb3+r8vLykO0BAAAAAAAAQN9TXNWgW9/calpLiYvRIxdPN32YH0qJsTE6ekSqaW0Dcw6iRmgbVfVTn332mRYtWqQDBw6E/dkHDx7UDTfcoHfffVf19fUdnlNfX6+ioiK99957uv322/XLX/5SN910k+x2ciIAAAAAAABgoPvV0q9U02huC3TvN6Yoe1BiWPdxXO4gbSmq9h6vKyA4iBZ8kuyH6urqiIQGklRYWKi//vWvptDAZrNp7NixOvHEEzVv3jwNHz7c+15jY6N++tOf6uqrr5ZhGB3dEgAAAAAAAMAA4fYY+tdXB01r508fofOmjwz7XqwDkj8rOCS3h88wowHBQYBGjBih8847T/fcc4+ee+65sD3XZrPp1FNP1SuvvKLS0lLt2rVLH3/8sVasWKH9+/dr+fLlmjx5svf8l156SU8++WTY9gcAAAAAAAAg+hRU1Kmp1WNa+8VZR0VkL9YBybVNrdp+oDYie4EZrYr8MH78eL399tuaNWuWhg0b5l3Pz88P+bPtdrsuuOAC3X333aZgwGr+/Plas2aNTjjhBH355ZeSpLvuukv/+7//K6fTGfJ9AgAAAAAAAIg+Ow6aP5jPSo7TkJT4iOxlSGq8cjISVFjZ4F3bUFCpyZbZBwg/Kg78MHLkSJ1zzjmm0CBcZsyYoSVLlnQZGrRJS0vTI4884j2urKzUypUrQ7k9AAAAAAAAAFFsm+Ub/ZOGpURoJ4fNyjW3K1rPnIOoQHDQz5166qlKSEjwHm/bti2CuwEAAAAAAAAQSdaKgwlDIxscHJdnble0Pp/gIBoQHPRzDodDaWlp3uOampoI7gYAAAAAAABAJFlnCEwclhyhnRxmHZBcXNWgkuqGTs5GuBAc9HMNDQ0qLS31Hg8ePDiCuwEAAAAAAAAQKY0tbuVX1JvWIl1xMG5wslLjzaN4qTqIPIKDfu6tt96Sx3NkSvqcOXMiuBsAAAAAAAAAkbKnrE5uj2FaGx/h4MBut+m4XGu7osoI7QZtCA76MY/HowcffNB7fPTRR+uYY46J4I4AAAAAAAAARIp1vkH2oAQlx8V0cnb4zMxjQHK0ifw/FQiZBx98UBs3bvQe33PPPX7fq6ioqFfnl5SU+P0sAAAAAAAAAMG3zTLfYNKwyFYbtJlpqTj4qqRGrqbWqAg1Bip+5/up5cuX67bbbvMeX3DBBfrGN77h9/1ycnKCsS0AAAAAAAAAEWKtOIj0fIM203LS5XTY1OI+3EbJY0if7Tukk8czrzVSaFXUD23btk0XXHCBWltbJUmjRo3SM888E+FdAQAAAAAAAIik7ZaKg4lRUnEQ73Roysg00xoDkiOLioN+prCwUKeffroqKw8PEMnMzNR7772nQYMGdXNl9/ftjZKSEs2ePTugZwIAAAAAAAAIjtrGFhVXNZjWoqXiQDrcruizfVXe4/UFDEiOJIKDfuTgwYP62te+5v2QPyUlRe+9954mT54c8L2zs7MDvgcAAAAAAACAyNhZ6jIdO+w2jRmcFKHd+JqZl6FnVu31Hn+2r0qtbo9iHDTNiQR+1/uJyspKnXbaadqxY4ckKSEhQe+8845mzZoV4Z0BAAAAAAAAiLQdljZFo7OSFBfjiNBufB1nGZBc3+z2GeaM8CE46Adqamp0xhlnaOvWrZIkp9OpJUuWaP78+RHeGQAAAAAAAIBoYP0QPlrmG7TJSo7T6CxzBcS6fNoVRQrBQR9XV1enRYsWaf369ZIkh8OhV199VYsWLYrwzgAAAAAAAABEix0HLcFBFM03aDPTUnWwvoAByZFCcNCHNTY26txzz9Xq1aslSTabTc8++6wuvPDCCO8MAAAAAAAAQDSxBgfRNBi5zcw8S3CQXynDMCK0m4GN4KCPamlp0YUXXqiPPvrIu/bkk09q8eLFEdwVAAAAAAAAgGhT7mpSuavZtBZtrYok6bjcDNPxwZomFR1qiNBuBjaCgz7I7Xbr0ksv1dKlS71rv/nNb3TddddFcFcAAAAAAAAAopG12iAuxq5RGYkR2k3nxg5O0qBEp2ltA+2KIoLgIEosX75cNpvN++uFF17o8DzDMHTttddqyZIl3rW77rpLN998c5h2CgAAAAAAAKAv2WEZjDx+aLIcdluEdtM5m83mU3XAgOTIiIn0Bvqq008/XStXrjStWfttnX766bLbzdnMvHnz9OGHH/r93Ndff10vvvii9zg+Pl6ffPKJzjzzzB5df9ppp+knP/mJ388HAAAAAAAA0Lds9xmMnBqhnXRvZt4g/eurg95jKg4ig+DAT83NzWpqaurynJaWlg6vC0R9fb3puLGxUR988EGPrx82bFhAzwcAAAAAAADQt2y3VBxMHJYcoZ10b5ZlQPL2g7WqbmhRWoKzkysQCrQqAgAAAAAAAIB+yjAM7TjoMq1NGBp9g5HbTBmZptiYIx9bG4a0cR9VB+FGxYGfli9fHtT7LViwwKfVUUeuuuoqXXXVVUF9NgAAAAAAAID+aX91o1xNraa1icOiNziIi3FoWnaa1uUfCQs25B/SKROHRHBXAw8VBwAAAAAAAADQheZWj97aVKz3tpbI7en+y7/RxDoYOSU+RsNS4yO0m56xDkheX8CA5HCj4gAAAAAAAAAAuvDd/1uv5dvLJEkXzczWby6cFuEd9ZzvYOQU2Wy2CO2mZ2bmmuccbCqsUovbI6eD78GHC7/TAAAAAAAAANCJkuoGb2ggSa9vKFJ1Q0sEd9Q7voORo7dNUZvjLMFBY4tHX+yvidBuBiaCAwAAAAAAAADoxP6qBtOxYUhbi6ojtJve64vBwaCkWI0bkmxaW59Pu6JwIjgAAAAAAAAAgE6U1Tb5rG0uqgr/RvzQ6vZoV5nLtDZhaPQHB5Jvu6L17YYlI/QIDgAAAAAAAACgE2WuZp+1zYVV4d+IHwoq69Xc6jGt9ZngIM86IPmQDKNvDabuywgOAAAAAAAAAKAT5X244mCHpU3R4JQ4ZSTFRmg3vWOtOCh3Namgoj5Cuxl4CA4AAAAAAAAAoBNlLt/g4GBNkw5UN0ZgN72z/aBlvkEfqTaQpNzMRGUlx5nW1hfQrihcCA4AAAAAAAAAoBMdVRxI0qY+0K6oLw5GbmOz2XyqDjYUMCA5XAgOAAAAAAAAAKATHVUcSH2jXVFfrjiQpJl55uBgHQOSw4bgAAAAAAAAAAA6Ud5ZcBDlFQeNLW7ll9eZ1ib0oYoDyXdA8q5Sl6rqfYdVI/gIDgAAAAAAAACgA4ZhqKyTVkVbi6rl8Rhh3lHP7S5zybq98UOSI7MZPx09IlXxTvNH2BuYcxAWBAcAAAAAAAAA0IG6ZrcaWzwdvlfb1Ko9lm/0R5MdljZFORkJSoqLidBu/ON02DUtO920Rrui8CA4AAAAAAAAAIAOdFZt0Caa2xVtP+AyHfe1+QZtZlnaFTEgOTwIDgAAAAAAAACgA53NN2gTzQOStx+oMR1P7GPzDdocZxmQvLmoWk2t7gjtZuAgOAAAAAAAAACADpT34YqDHQfNFQcT+mjFwYxRg2SzHTlubvXo8+LqyG1ogCA4AAAAAAAAAIAOlFkqDpwOm+n4y5KaqPz2e21ji4qrGkxrfbXiIC3B6dNmaT1zDkKO4AAAAAAAAAAAOmCtOJg92txvv8Vt6KsS8xDiaGCtNoix2zQmKzlCuwnccbnmdkUMSA49ggMAAAAAAAAA6IC14mB0VpLGDk4yrW2JwjkHOw6aw4zRWUmKjem7HwVbByRv3HdIhmFEaDcDQ9/9pwUAAAAAAAAAQqisttl0nJUcp2k56aa1TVE452D7AXNwMKGPtilqY604qKxr1p7yugjtZmAgOAAAAAAAAACADlgrDganxGm6JTiIxgHJ1uBgUh8djNwme1CChqbGmdbW51dGaDcDA8EBAAAAAAAAAHTAOuMgKzlO07LTTWu7y+pU09gSxl11z9qqqK9XHNhsNs20tCtiQHJoERwAAAAAAAAAgIVhGCrvoOJg0vAUxTrMH6tuLaoO59a6VO5qUkWducXSxD5ecSBJMy3tijYUEByEEsEBAAAAAAAAAFjUNrWqqdVjWhucHKe4GIeOGpFqWo+mOQc7LG2K4p125WQkRmg3wTMz11xxsKe8zifYQfAQHAAAAAAAAACAhbVNkXS4VZEkTctOM61H05yD7ZY2ReOHpMhht0VoN8Fz1PAUJcY6TGtUHYQOwQEAAAAAAAAAWJRZgoPkuBgl/PeDa+ucgy1R1KrIZ75BP2hTJEkxDruOHZVuWmNAcugQHAAAAAAAAACARbnLPCcgKznW+3paTrrpvQM1jTpQ3RiObXVrm6VV0aQ+Phi5PWu7ovVUHIQMwQEAAAAAAAAAWJTVmoOAwSlx3tdjspKUEhdjen9zUVU4ttUlwzB8ZhxM6E/BQZ55QPLnxdVqbHFHaDf9G8EBAAAAAAAAAFj4VhwcCQ7sdpum5kTfnIPiqgbVNZs/SJ/YT1oVSdKxowap/biGFrcRFb/v/RHBAQAAAAAAAABYlLvMMw7aVxxIvnMOoqHiwDrfIDU+RkNT4zo5u+9JjovRUcNTTWu0KwoNggMAAAAAAAAAsLAOR25fcSD5zjnYUlgtj8cI9ba6tP2Ay3Q8cViKbDZbJ2f3TTNzze2KNhAchATBAQAAAAAAAABY9LbioLapVXvK60K9rS5ZKw4m9KM2RW2Oy7MMSM6vjHhg0x8RHAAAAAAAAACARXcVB8PS4n3aAG2JcLuibZbByJP60WDkNrMsA5JrGlu1q8zVydnwF8EBAAAAAAAAALRjGIbPcGRrxYHUwZyDCA7qbXV7tLvU/AF6f6w4GJ6WoJHpCaa1dfmVEdpN/0VwAAAAAAAAAADt1DS0qtntMa1lJcf6nGedc7CpqDqU2+pSfkW9z577Y3AgSTMtVQcb8plzEGwEBwAAAAAAAADQTpllvoHk26pIkqZbgoOv9teoqdUdqm11yTrfYEhKnAYl+YYd/YF1QPJ6BiQHHcEBAAAAAAAAALRjnW+QEh+jeKfD57xjstNMx81uj7aV1PqcFw7bLfMNJvbD+QZtjss1D0jeV1mv0prGCO2mfyI4AAAAAAAAAIB2yi0VB4M7qDaQpNR4p8YOTjKtbY7QgGRrxUF/bVMkHQ5FUuJiTGtUHQQXwQEAAAAAAAAAtGMNDrI6GIzcxjogeVOEBiT7VBz04+DAYbfpWGu7IuYcBBXBAQAAAAAAAAC0Y21V1FnFgeQ7IHlLBAYkN7a4lV9RZ1rrz62KpI7mHFRGaCf9E8EBAAAAAAAAALTj06qoq4oDS3Cwu8ylmsaWUGyrU7tKXfIY5rXxQ5PDuodwm5lnDg6+2F+j+ubWCO2m/yE4AAAAAAAAAIB2rBUHWcmxnZ571PAUOR0277FhSJ+HuerAOt9gVEaiEmNjOjm7f5ieky6H/cjvu9tjRKxNVH9EcAAAAAAAAAAA7ZS7mk3HWV20KoqLcWjy8FTT2qYwD0jePoAGI7dJjI3RlBHm33fmHAQPwQEAAAAAAAAAtOMz46CLVkWSb7uizWH+5vsO62DkYf27TVGb43IzTMfrCwgOgoXgAAAAAAAAAAD+yzAMVdRZWxV1Exxkp5uONxeGt1XR9gMDr+JA8p1zsLHgkNzWYQ/wC8EBAAAAAAAAAPxXdUOLWtzmD5+7rzhIMx0fqGnUwZrGoO+tIzWNLdpfbX7WpGGpnZzdv8zMNQcHrqZWnxAF/iE4AAAAAAAAAID/srYpkqTMLoYjS9KYrGQlx5mHEYerXdFOy3yDGLtNo7OSwvLsSBuSGq9RGYmmtQ0FlRHaTf9CcAAAAAAAAAAA/1XmMgcHaQlOxcU4urzGbrdpara56mBzmAYkbz/gMh2PGZyk2JiB87GvtepgHQOSg2Lg/BMEAAAAAAAAAN2wVhxkdVNt0MZ3QHJ45hzsODgw5xu0mZlnHpC8gQHJQUFwAAAAAAAAAAD/Ve5qNh13N9+gjc+A5KIqecIwqNfa03/igAsOzBUHxVUN2l/VEKHd9B8EBwAAAAAAAADwX74VBz0LDqZbKg5qG1u1t6IuWNvqkGEY2m6tOBg2sIKDcYOTlRpvni+xnqqDgBEcAAAAAAAAAMB/lbv8Cw6GpcVriKU6IdQDkstdzaqsM1dITBpgwYHdbvNtV5TPgORAERwAAAAAAAAAwH9ZKw562qpI8p1zsKUotHMOrPMN4p125QxKDOkzo9Fx7QYkx9htqm1sjeBu+oeY7k8BAAAAAAAAgIHBWnEwuIcVB9LhdkX//PKg93hTiCsOrPMNJgxNkd1uC+kzo9GpRw2RYRg6LjdD03PSlRDriPSW+jyCAwAAAAAAAAD4L5/goDcVB5YByV/ur1Fzq0exMaFp/GKtOJgwwAYjt5k0LFWThqVGehv9Cq2KAAAAAAAAAECSx2Oo3GWeGdDTGQeSdEx2mum42e3RtgM1QdlbR6yDkScO0OAAwUdwAAAAAAAAAACSqhpa5PYYprXeVBykJTg1ZnCSaS1UA5I9HkM7rK2KBthgZIQOwQEAAAAAAAAAyHcwsiRlJsf26h7TLe2KNhWGZkBycVWD6prdprVJBAcIEoIDAAAAAAAAAJDvfIP0RKecjt59hDrV0q5oc1FVoNvqkHW+QVqCU0N6UR0BdIXgAAAAAAAAAADkW3EwuBfzDdpMy0k3He8uc6m2sSWQbXWoo/kGNpst6M/BwERwAAAAAAAAAADyrTjozWDkNkcNT5XTceQDfMOQthYHv12R73yD5KA/AwMXwQEAAAAAAAAASCqzBAe9GYzcJt7p0FHDU01rm0Mw52D7QZfpeOJQ5hsgeAgOAAAAAAAAAEC+rYr8qTiQpGmWAcmbC6v83FHHWtwe7S41BwcTCA4QRAQHAAAAAAAAACCp3NVsOvan4kDynXMQ7AHJBRV1anZ7TGsThxEcIHgIDgAAAAAAAABAHVUcxPp1n+k5aabjkupGHaxp9HtfVtsPmKsNhqbGKT3Rv70CHSE4AAAAAAAAAAD5Dkf2t+JgTFaykuNiTGvBbFe0/aBlMDJtihBkBAcAAAAAAAAABjy3x1CFKzgzDux2m44Zaa462FIUvAHJOw6YgwMGIyPYCA4AAAAAAAAADHiH6pvlMcxr/lYcSKGdc7DDWnHAfAMEGcEBAAAAAAAAgAHPOt/AZpMykvyfG2Cdc7C5sEoeazLhh8YWt/Ir6kxrVBwg2AgOAAAAAAAAAAx41vkGgxJj5XT4//GpteKgprHV5wN/f+wqdZkqI2w2afzQ5IDvC7RHcAAAAAAAAABgwPMZjOznfIM2w1LjNcTS6igY7Yq2W+YbjMpIVGJsTCdnA/4hOAAAAAAAAAAw4FlbFWWl+N+mSJJsNpvvnIPCwAck+8w3oE0RQoDgAAAAAAAAAMCAV+5qNh0HWnEgSdOyzXMONhVWBXzP7ZbggPkGCAWCAwAAAAAAAAADnk/FQTCCA0vFwZclNWpu9QR0zx2WVkUThhEcIPgIDgAAAAAAAAAMeNYZB1kpgQcHU0emm46bWz0+Mwp6o7qhRfurG01rVBwgFAgOAAAAAAAAAAx41oqDYLQqSkt0akxWkmltUwADknda2hQ5HTaNttwfCAaCAwAAAAAAAAADXigqDiTfdkWbA5hzYJ1vMCYrWbExfMSL4OOfKgAAAAAAAAADmttjqLIu+MORJd8ByYEEB8w3QLgQHAAAAAAAAAAY0CrqmuQxzGtZKbFBube14mBXmUu1jS1+3ctacTBxaLK/2wK6RHAAAAAAAAAAYEArrzVXG9htUmZScCoOjhqeqhi7zXtsGNLW4upe38cwDJ/ByhMYjIwQITgAAAAAAAAAMKCVWeYbZCTFytHuw/5AxDsdOmp4qmltS1Hvg4MyV5MO1ZsrFSbSqgghQnAAAAAAAAAAYEArr7UMRg7SfIM203ICn3Ow44DLdJzgdChnUGIg2wI6RXAAAAAAAAAAYECzVhwMTglycJCdbjr2JziwzjeYMDRZ9iBVRQBWBAcAAAAAAAAABrRQVxxMtwxI3l/dqNKaxl7dYwfzDRBGBAcAAAAAAAAABrRQVxyMGZys5LgY09rmXs45sFYcMN8AoURwAAAAAAAAAGBAK3dZKw5ig3p/h92mY0b6P+fA4zG006dVEcEBQofgAAAAAAAAAMCAVl7bbDoOdsWBJE21DkguqurxtcVVDaprdpvWqDhAKBEcAAAAAAAAABjQrK2Kgj3jQJKmdzAg2TCMHl273TLfID3RqSEhCDeANgQHAAAAAAAAAAasFrdHh+pDX3EwzTIguaaxVfkV9T261jrfYMLQFNlstmBtDfBBcAAAAAAAAABgwKqsa5b1i/+hqDgYnhbvE0j0dM7BDutgZOYbIMQIDgAAAAAAAAAMWGW15jZFdps0KDG4w5ElyWazaZqlXdGmHgYH1lZFE5hvgBAjOAAAAAAAAAAwYFnnG2Qmx8lhD00boOl+DEhucXu0p6zOtEbFAUKN4AAAAAAAAADAgFVeG/rByG2scw6+2F+j5lZPl9fkl9ep2W0+h+AAoUZwAAAAAAAAAGDAKneFfjBym6kj003Hza0en/kFVtbByMNS45WW6Az21gATggMAAAAAAAAAA5Z1xkFWcvDnG7RJS3RqdFaSaa27OQc7mG+ACCA4AAAAAAAAADBglVtmHISy4kCSpmVb5hx0ExxYKw4mDk0O9pYAHwQHAAAAAAAAAAYsa8XB4BDOOJB85xx0NyB5x0GX6XgC8w0QBgQHAAAAAAAAAAYsa8VBKIcjS77Bwc5Sl1xNrR2e29jiVn5FnWltIq2KEAYEBwAAAAAAAAAGrLIwtyqaPDxVMXab99gwpK1F1R2eu/OgS4Zx5Nhmk8YNoVURQo/gAAAAAAAAAMCA1OL2qKq+xbQW6oqDeKdDk4abqwY6a1dknW8wKiNRibExodoa4EVwAAAAAAAAAGBAqnA1+6yFuuJAkqZlp5uOt3QSHOzwGYxMmyKEB8EBAAAAAAAAgKDaVFilny7Zoif+vVMNze5Ib6dT1sHIDrtN6QnOkD/XZ0ByYcetirYfsAQHzDdAmFDXAgAAAAAAACBothZV66I/fKJmt0eS5Gpq1c8XHRXhXXXMdzByrOzt5g+EynRLcFBc1aDS2kYNSYk3rVsrDiZQcYAwoeIAAAAAAAAAQFA0tbr1k9c3eUMDSVq6tSSCO+qateIg1PMN2owdnKykWIdpbYul6qC6oUUl1Y2mNSoOEC4EBwAAAAAAAACC4vF/79SOgy7T2v6qBjW1Rme7ojJLxUE45htIh1siHZOdZlqzDki2Vhs4HTblZSaFemuAJIIDAAAAAAAAAEGwubBKf1ixx2fdY0hFhxoisKPuRariQPKdc7CpsMp0bJ1vMCYrWbExfJyL8OCfNAAAAAAAAAABaWxx66bXN8vtMTp8P7+8Lsw76hnfGQdhDA6y003HW4qqZRhHfv+sFQe0KUI4ERwAAAAAAAAACMhj/96pnaWuTt/Pr6gP4256zlpxEK5WRZJvxUF1Q4sK2v0+WSsOCA4QTgQHAAAAAAAAAPz22b5DenrF7i7PKajoKxUHsWF79oi0eJ8Kh7Y5B4Zh+FQcTBhKcIDwITgAAAAAAAAA4Je2FkXtOxQ5HTaddcxw03nRWnFQ7mo2HYez4sBms2l6jnlActucgzJXkw7Vt5jem0hwgDAiOAAAAAAAAADgl0f+tUO7y8zVBD86dbxOP3qoaS0aZxw0tbpV3WD+cH5wGGccSL5zDjb/NziwtilKcDqUPSghTLsCCA4AAAAAAAAA+GHjvkN6ZuUe09oxI9P0v/PHKi8zybRedKheza2ecG6vWxWWagMpvBUHku+cg8/316jF7fEJDiYMTZbdbgvjzjDQERwAAAAAAAAA6JWOWhTFOuz67TenKcZh9wkOPIZUXNUQ5l12zToY2emwKS3BGdY9TM02typqbj0cGljnGzAYGeFGcAAAAAAAAACgVx7+5w7tsbYo+tp47wfcaYlODUo0fwifH2UDkq2DkTOT4mSzhfdb/emJscrLTDStbSqs0vaDLtMag5ERbgQHAAAAAAAAAHpsQ0GlnlllblE0LTtN35s3xrSWa6k6iLY5B9aKg3C3KWpjbVe0qbBKO6k4QIQRHAAAAAAAAADokYZmt256fYuMTloUtWf9Jn1BRX04tthj1oqDrOTYiOzDOiD5n18eVH2z27Q2kYoDhBnBAQAAAAAAAIAe+e2H27XXUjnw/06boPEdfLDtU3EQda2KzMORo6XioLqhxXScnuiM2N4wcBEcAAAAAAAAAOjWuvxKPbd6r2ltWk66vnPy6A7PH51lDg6ireLA2qooKzkyH84fPSJVMfbOZytMGJoS9tkLAMEBAAAAAAAAgC41NLt18+ubzS2KYux66JtTfVoUtcm1tCoqrKxXq9sTym32SpkrOmYcxDsdmjS881ZEk5hvgAggOAAAAAAAAADQpd98sE35loqBn5w2QeOGdP6hdp6lVVGrx1BxVUNI9ueP8iipOJB85xy0N4H5BogAggMAAAAAAAAAnfrP3kq9sCbftHbsqHR9++QxXV6XnuhUanyMac0aPkRStFQcSF0HBxOpOEAEEBwAAAAAAAAA6FB9c6tuXmJuURQXY9dvvzlNji768kuSzWbrYM5BdAxIbmxxq7ax1bQW0YoDy4Dk9iZ0UdUBhArBAQAAAAAAAIAO/eb97T5DjW86faLGDk7u0fW5lnZFe8ujIzgot1QbSNLgCAYH44YkKzHW4bM+LDVeaYnOCOwIAx3BAQAAAAAAAAAfa/dU+LQoOi53kK45aXSP75FnGZBsDSEipcwy3yDWYVdqQkwnZ4eew27TMSPTfNYn0KYIEUJwAAAAAAAAAMCkrulwi6L24mLsevDCqd22KGrPWnGQHyWtispdzabjrORY2Ww9/7lCYXoH7YomERwgQggOAAAAAAAAAJj8+v1tKqxsMK3dfMZEjelhi6I2eZYZB4WV9XJ7jE7ODh9rq6JIDkZu09GcgwlDCQ4QGQQHAAAAAAAAALzW7C7XS58UmNZm5Q3S1Sf2vEVRG2uroha3of1VDZ2cHT7WVkWRHIzcpqPgYCLBASKE4AAAAAAAAACApMMtim5ZssW0Fu+068ELp/WqRVGbjKRYpcSZZwdEQ7uiaKw4GJEWr2nZR+YcjExP0KThBAeIDIIDAAAAAAAAAJKk+9/7SkWHzBUBt5wxyaflUE/ZbDblZpmrDvKjYEByNFYc2Gw2PXHJDP3PsSN11tTheu6qWXI6+PgWkRG5UeEAAAAAAAAAosbqXeV6ee0+09rsvAxddUJeQPfNy0zS58U13uOC8uirOMhKjo3QTsxGZSbq4YunR3obABUHAAAAAAAAwEDn6qBFUYLToQe/OVV2P1oUtZeXaa5WiIZWRdaKg8Ep8RHaCRCdCA4AAAAAAACAAe5X//hKxZahxT89c6JyM/1rUdRebmb0tSoqdzWbjqOl4gCIFgQHAAAAAAAAwAC2ameZXv3U3KJozugMXTk3Lyj3t85H2FdRL7fHCMq9/dHQ7JarqdW0Fg3DkYFoQnAAAAAAAAAADFC1jS36qaVFUWKsQw9eOC3gFkVtrK2Kmt0eHahpDMq9/WGdbyBJWQQHgEnEhyPv2bNHmzdvVn5+vgoLC1VdXa26usN9zpKSkpSWlqZRo0YpLy9PU6dO1ZgxYyK8YwAAAAAAAKB/+NU/vtL+avOH+D//+iSNsrQXCkRWcqySYh2qa3Z71/LL6zQyPSFoz+iNMktwEBdjV0pcxD8mBaJK2P9EFBYWaunSpXr//fe1atUqVVVV9er69PR0nXzyyTrjjDO0aNEi5ebmhmajAAAAAAAAQD+2YkeZ/vyfQtPa3DGZumxOcD9vs9lsys1M0pclNd61/Io6nTguK6jP6SnrYOSs5DjZbMGprgD6i7AEB3V1dXrllVf08ssva82aNTKMwz3M2v5vm87+gLY/79ChQ3rnnXf0zjvvSJLmzp2rK664QpdddpmSk5ND9BMAAAAAAAAA/UdNY4t+9jffFkW/uXBq0FoUtZeXlWgKDgoiOCDZ2qqI+QaAr5DOONi3b59uvPFGZWdn6/vf/75Wr14tj8fjDQKsQYFhGB3+aq/tmrb3PvnkE1133XXKzs7WjTfeqIKCglD+SAAAAAAAAECfd9+7X6nE0qLoF4uOUk5G8FoUtWedc5BfXheS5/RERxUHAMxCUnFQXFys++67T88995xaWlpkGEaHIUFOTo6OOeYYTZo0SSNGjNDw4cOVnJysxMREGYahhoYGuVwu7d+/X/v379e2bdu0detWFRUV+TyzpqZGjz32mJ566ildc801uvXWWzVy5MhQ/HgAAAAAAABAn7Vse6n+st7coujEcZm6bM6okD3TJzioiFxw4FtxEBuhnQDRK6jBQWNjox544AE9+OCDamxsNAUGhmEoOztb5557rk455RTNmzdPgwcP9us5paWlWrlypZYvX663337bFCQ0Nzfr6aef1osvvqibb75ZP/vZzxQfHx+Unw8AAAAAAADoy6obWvTzv201rSXFOvTrC6aGtM9/rmXYckFFvTweIyRtkbpjrTgYTMUB4COowcGECRNUXFxsai+Unp6uyy67TFdeeaVmzpwZlOcMGTJEF154oS688EI9+eSTWr9+vV566SW9+uqrqqys9FYr3HPPPXrhhReUn58flOcCAAAAAAAAfU2Fq0k7S13aVerSe5+X6ECNuUXRrWdNVvag0LQoapOXZa44aGr16GBto4anJYT0uR0pdzWbjrOYcQD4CGpwUFRU5E0mp0yZoptuukkXX3yx4uJC+4dv5syZmjlzpn7729/qtdde00MPPaStW7fKMAwVFhZ2fwMAAAAAAACgDzMMQyXVjdpV6vKGBLtLXdpZWqtD9S2dXnfy+CxdMjsn5PsbkhKnBKdDDS1u71p+eX2EggMqDoDuBH3GwbRp03TPPfforLPOCvatuxUbG6srr7xSV155pZYuXarbb79dmzdvDtnziouLtW7dOq1fv977fysrK73vL1u2TAsWLAjZ89t89tlneu6557Rs2TIVFRXJ7XZr5MiROuGEE7R48WLNnz8/5HsAAAAAAABA6Lk9hvZV1mvXf8OBnaW12l3q0u6yOrmaWnt1r+S4GD0Q4hZFbWw2m3IzE7XtQK13Lb+iTnPHZob82VY+w5GpOAB8BDU4+POf/6yLL744mLf021lnnaWzzjpLf/nLX4J+788++0yLFi3SgQMHgn7v3mhpadHPf/5zPfzww6b2UJK0fft2bd++Xc8//7wuv/xyPfXUU0pJSYnQTgEAAAAAANAbTa1u5ZfXa2dprTck2FXq0p7yOjW3eoLyjHvOP1oj08P3jf+8zCSf4CDc6ppaVd/sNq1RcQD4CmpwEC2hQXuh2FN1dXXEQwNJuvbaa/V///d/3uPExERNnjxZMTEx+vLLL1VTUyNJevnll7V//3598MEHiokJepEJAAAAAAAAArSnzKW/bSzSjoOHWwwVVNbL7TG6v7CHYmPsGpOVpHFDkjVuSLIWTByi6TnpQbt/T+RmWQYkl9eH9fmSb5siiYoDoCN8ihygESNGaNasWZo5c6ZGjhypa665JizP/f3vf28KDb773e/qgQce0KBBgyRJdXV1euCBB3TvvfdKkj766CPdeuut+vWvfx2W/QEAAAAAAKBndh6s1aLHV6nFHXhQkBTr+G84kOINCcYPSVZORqIc9tC3JOrK6EzzgORIVBxYg4N4p11JsY6w7wOIdiEJDvbt2+d9PWzYMMXGxobiMREzfvx4vf3225o1a5aGDRvmXc/Pzw/L8+vq6nTXXXd5j6+44go9/fTTpnOSkpJ0zz33SJI3PHj88cd1ww03aOTIkWHZJwAAAAAAALr33Or8XocGgxKdGj8kRWP/Gwy0hQTD0+LDMrPAH7mW4KCgol6GYYR1v9b5BoNT4qL29wuIpJAEB3l5ed4/cP/85z+1cOHCUDwmYkaOHBnRD9+ff/55lZaWSjrcnujRRx/t9Nzbb79dL774ogoLC9XY2KhHH31UDz74YJh2CgAAAAAAgK4YhqEV20s7fX9YarzGD03W2MFHqgfGDUlWZh/sy59naVXU0OJWaW2ThqbGh20PZa5m03FWH/x9BMIhZK2Kwp0WDiRvvPGG9/VFF12kjIyMTs+NjY3V1VdfrbvvvluS9OabbxIcAAAAAAAARIldpS7tr240rd1+9mTNGJWusUOSlRrvjNDOgm9oSrziYuxqajfcOb+8LqzBQbm14oDgAOiQPVQ3JjQIjdraWq1atcp7fOaZZ3Z7zde//nXv6927d2v79u0h2RsAAAAAAAB6Z8WOMtPx8LR4XXNino4dNahfhQaSZLfblNdBu6JwKrPMOGAwMtCxkAUHCI0vv/xSra2t3uO5c+d2e82MGTNMcyY2b94ckr0BAAAAAACgd6zBwfwJg/v1F3JzM83tivaGeUAyFQdAzxAc9DFfffWV93VsbKxycnK6vcZ63rZt20KyNwAAAAAAAPRcfXOrPt1TaVqbP2FwhHYTHnlZ1oqD8AYHVBwAPROyGQcIjYKCAu/r7OzsHifQo0aN0u7duyVJ+fn5vX5uUVFRr84vKSnp9TMAAAAAAAAGkk/3VKrZfaTfv8Nu0wnjsiK4o9CzVhzkl4e3VVG5y1pxENvJmcDARnDQx9TW1npfp6Wl9fi61NTUDu/RUz2pbAAAAAAAAEDPWdsUzRiVrrSE/jXXwGq0ZcZBfkWdDMMIS3smwzBUZm1VRMUB0CFaFfUxdXVHyrfi43s+cT4hIaHDewAAAAAAACAyOppv0N/lWloV1Te7fdoHhUpds1uNLR7TWhYzDoAOUXHQx7S0tHhfx8T0/H++9uc2Nzf3+rmFhYW9Or+kpESzZ8/u9XMAAAAAAAAGgoKKOu0tN3+5c/6EIRHaTfgMT41XbIxdza1HPsAvqKjXkJSef0HWX9ZqA4ngAOgMwUEfk5h4pA9cY2Njj69rf25SUlIXZ3YsOzu719cAAAAAAACgYyst1QZZybE6ekRqJ2f3H3a7TaMyErWr1OVdyy+v06y8jJA/2zrfIDHWoaQ4Ph4FOhLyPxkffvhhrwfrBuLKK68M27MiITk52fu6oaGhx9fV1x8ZNNP+HgAAAAAAAAg/a5uieeMHy24PfZ//aJCXmWQODirC01a7nPkGQI+FNDgwDEMPPvhgKB/ho78HB5mZmd7XJSUlPb7uwIEDHd4DAAAAAAAA4dXU6taa3RWmtfkT+/98gzZ5mYmm4/yK+k7ODC7rLAXaFAGdC3nFgWEYoX6EVzimr0faxIkTva8rKipUX19val/UmfYzCtrfAwAAAAAAAOG1Pv+Q6pvd3mObTTppXFYEdxRe1gHJBZGqOCA4ADplj/QG0DtHHXWU6XjTpk3dXlNcXKyysiPlb9Z7AAAAAAAAIHysbYqmjkxT5gD6ENtacVBQXh+WLx/7VBykxIb8mUBfFdKKA5vNpmOOOUaDBg0K5WMGlDFjxmjkyJEqLi6WJH388cc64YQTurxm1apV3tdxcXGaPXt2SPcIAAAAAACAzq3Ybg4O5k8YOG2KpMMzDtqrbWpVRV1zyFsHldU2m45pVQR0LuStih5++GEtXLgw1I8ZMGw2m84++2w9/fTTkqRXXnlFt9xyS5fXvPLKK97XCxcuZDgyAAAAAABAhJRUN2j7wVrT2kCabyBJI9IT5HTY1OI+UmVQUFEX+uDAxXBkoKdoVdQHLV682Pt6y5Yteueddzo9d+PGjXrvvfc6vBYAAAAAAADhtdLSpig1PkbTstMjs5kIcdhtysmwDEguD/2AZOuMAyoOgM4RHESJ5cuXy2azeX+98MILnZ47d+5cLVq0yHv8ve99T9u2bfM5b//+/brsssvkdh8etnPMMcfooosuCvreAQAAAAAA0DPW+QYnjx+sGMfA+4jO2q4o1AOSDcNQORUHQI+FvFVRf3X66adr5cqVpjXrEJfTTz9ddrv5L/558+bpww8/DPj5jz/+uNauXavKykqVlJRozpw5uu6663TyySfL4XBo3bp1evLJJ3Xw4EFJUnx8vJ555hnZbLaAnw0AAAAAAIDea3V7tGpnuWltoM03aGMNDvZWhLbioLapVU2tHtPaYCoOgE4RHPipublZTU1NXZ7T0tLS4XXBMHbsWL355ps699xzVV1drZqaGj3wwAN64IEHfM6Ni4vTiy++qDlz5gTl2QAAAAAAAOi9TYVVqm1sNa3NG6jBQZa5VVGoKw6sbYokWhUBXRl4dVD9yLx587Rlyxade+65cjgcPu/bbDbNnz9f69ato0URAAAAAABAhFnbFE0alqJhafER2k1k5VorDsrrfLp5BFOZJThIjotRQqzv52kADqPiwE/Lly8P6v0WLFjg11+Oo0aN0ltvvaUDBw5o1apVKioqktvt1siRI3X88cdr9OjRQd0nAAAAAAAA/GMNDuZPHJjVBpKUl2muOKhtbFVVfYsGJcWG5HnlLnMXkKzk0DwH6C8IDvqJYcOG6Zvf/GaktwEAAAAAAIAOlLuatKWo2rQ2UOcbSNLI9ATF2G1q9Rz5Iu3eirqQBQdltY2mYwYjA12jVREAAAAAAAAQYqt2mqsNEmMdmpmbEaHdRF6Mw66cjPDNOfCtOCA4ALoSsuAglD3JAAAAAAAAgL5kxXZzcHDC2CzFxgzs7/TmWtoV5ZfXh+xZ1hkHVBwAXQtJq6I777zT+3rMmDGheAQAAAAAAADQJ3g8hlbuLDetDeT5Bm3yMpMkHQlUQltxYA4OqDgAuhby4AAAAAAAAAAYyD7fX63KOnOrnPnjCQ6sA5L3VoSu4sAaHFBxAHRtYNdDAQAAAAAAACFmbVM0JitJoywfmg9EuVlJpuNQVhxYWxVRcQB0jeAAAAAAAAAACKEVO8zBwbwJVBtIba2Kjqiqb1FVfXMnZ/vPMAyf4chUHABdC0mrorvvvjsUt+2RO+64I2LPBgAAAAAAANqrrm/Rxn2HTGvMNzgse1CCHHab3B7Du1ZQUa/0xNigPqemoVXNbo9pLSs5uM8A+puQBAd33XWXbDZbKG7dLYIDAAAAAAAARIvVu8vV7nNxxcbYdfzozMhtKIo4HXZlD0pQQbvZBvkVdZqWkx7U55RZ5htItCoCuhPSVkWGYZh+hfpZAAAAAAAAQDSxzjeYMzpDCbGOCO0m+uRa2hXllwd/QLJ1vkFKfIzinfxvAHQlJBUHbdqqDto+1OfDfQAAAAAAAAwUhmH4zDdYMHFIhHYTnfIyE7Wy3XEoBiSXWyoOBlNtAHQrpMGBYRhyOBxauHChzjjjDDkcJHkAAAAAAAAYGHYcdOlATaNpbT6DkU18Kg7CEBxkMRgZ6FbIKw48Ho/+9a9/aevWrbr00ku1ePFiHXPMMaF8LAAAAAAAABBxK3aUmo5Hpido7OCkTs4emEZnJZqO8ytC36qIigOgeyGZcTBv3jxJ5tZEBw8e1COPPKLp06fr2GOP1WOPPaaysrLObgEAAAAAAAD0acst8w3mTxzsbe2Nw6wVB5V1zapuaAnqM3xaFVFxAHQrJMHB8uXLtWfPHt11110aM2aMaTiyYRjasmWLbrzxRo0cOVLnnHOOlixZoubm5lBsBQAAAAAAAAi7uqZWrcuvNK3RpshX9qAE2S1Zyr4gVx1YKw6ykmODen+gPwpJcCBJubm5uuOOO7Rz506tWrVK1157rVJSUiQdqURobW3VP/7xD1188cUaPny4rrvuOq1duzZUWwIAAAAAAADC4pPdFWpxH+nGEWO36YSxmRHcUXSKi3FoRHqCaS3Ycw7KXeYvLGfRqgjoVsiCg/ZOPPFEPfPMMzpw4IBeeeUVnXHGGbLbDz+6rRrh0KFDevrpp3XiiSdq4sSJ+tWvfqV9+/aFY3sAAAAAAABAUK3YYW5TdFzuIKXEOyO0m+g2OssyILk8uMGBz4wDWhUB3QpLcNAmPj5el1xyid577z3t27dPDzzwgCZPnmw6xzAM7dy5U7fffrvGjBmjhQsX6qWXXlJdXfAnqgMAAAAAAADBZhiGllsGI8+fSJuizuRmhm5AsmEYqqiztioiOAC6E9bgoL3hw4frlltu0eeff65169bpBz/4gTIyMkzneDwerVixQldffbWGDRumxYsX61//+leEdgwAAAAAAAB0L7+iXoWVDaY15ht0Ls8yILkgiK2KqhtaTC2jJCoOgJ6IWHDQ3nHHHacnnnhC+/fv1xtvvKHzzjtPMTExko60Mqqrq9PLL7+sM844Q7m5uQxTBgAAAAAAQFRasd1cbTA4JU6Th6dGaDfRL9cSHASz4sDapkiSMhmODHQrKoKDNk6nU+eff77efPNN7d+/X48++qhmzJghSbLZbN4QoaioSK2trRHeLQAAAAAAAODLOt9g3vjBstlsEdpN9BudZW5VVO5qUm1jS1DuXeYyBwdpCU7FxTiCcm+gP4uq4KC9zMxM3XDDDVq2bJl+/OMfyzAM/oIFAAAAAABAVGtsceuTPRWmtQXMN+hS9qBEWT/2KwhS1YG14iCLagOgR6IyODAMQx988IEuu+wyDR8+XI899hihAQAAAAAAAKLeuvxKNbZ4vMd2m3TSuKwI7ij6xTsdGpGWYFoLVnBQ7jK3O2e+AdAzMZHeQHtffPGFXnzxRb366qsqKSmRJG+lgWEcHmISHx+v8847T3Fx/CEHAAAAAABAdFmx3dymaFpOugYl8S337uRmJqq46shA6fwgDUj2rTjgM0WgJyIeHJSVlenVV1/Viy++qM2bN0uSNyRoYxiGTjzxRC1evFgXXXSRUlMZJgMAAAAAAIDoY51vMH8CbYp6Ii8rSWt2H2nxlF8enOCg3EVwAPgjIsFBc3Oz3nrrLb300kv68MMPvYOOrXMMRo8erSuuuEJXXnmlxowZE4mtAgAAAAAAAD1SXNWgnaUu0xrBQc/kZZoHJIdqxgGtioCeCWtwsGbNGr300kt6/fXXVVVVJcm3FVFKSoouvPBCLV68WCeffHI4twcAAAAAAAD4zdqmKD3RqanZ6ZHZTB+Tm5lkOg5WqyJrxcFgKg6AHgl5cFBQUKCXXnpJL730kvbs2SPJtxWRzWbTaaedpsWLF+sb3/iG4uPjQ70tAAAAAAAAIKhW7Cg1HZ88frAcdlsnZ6O9PEtwUFrbpPrmViXGBvbxpU9wQMUB0CMhCQ5qa2v117/+VS+99JJWr14twzC8YUH7VkRHH320rrzySl1++eUaPnx4KLYCAAAAAAAAhFyL26PVuypMa7Qp6rlcS6siScovr9fkEf7POvV4DJW7mk1rzDgAeiYkwcHQoUPV1HQ4zbNWF2RmZuqSSy7R4sWLNWPGjFA8HgAAAAAAAAirjQWH5GpqNa3NG58Vod30PfFOh4anxaukutG7VlBRF1BwUNXQIrfH/NkkFQdAz4QkOGhsbDTNLYiNjdXZZ5+txYsX6+tf/7piYiIykxkAAAAAAAAIiRU7zPMNJg9P1ZBU2nH3Rm5moik4yA9wQLJ1MLIkZSbHBnRPYKAI+Sf4DodDxx9/vDwej55//nk9//zzIXuWzWbT3/72t5DdHwAAAAAAAOiINTiYP5E2Rb2Vl5mktXsqvccFAQ5Its43SE90yumwB3RPYKAIeXDg8Xi0atWqUD9GhmGY5icAAAAAAAAA4VBa26gv9teY1hYw36DX8rLMA5L3lgcWHFgrDgYz3wDosZBGbHyQDwAAAAAAgP5u1Y5y03FyXIxm5A6K0G76rjzLgOSCAFsVWSsOGIwM9FzIKg6sQ5EBAAAAAACA/sjapujEcZm0xPFDbqa54uBATaMamt1KiHX4db8yS3DAYGSg50ISHCxbtiwUtwUAAAAAAACiittjaNVOy3yDCUMitJu+LddScSBJ+yrrNXFYil/3s7YqouIA6LmQBAfz588PxW0BAAAAAACAqLKlqEqH6ltMa/MmZEVoN31bYmyMhqbG6WDNkQ/895bX+R0clLuaTcdUHAA9R80UAAAAAAAA4Cdrm6JxQ5KVPcj3m/PoGWu7ooIK/wck+1YcxPp9L2CgITgAAAAAAAAA/GQNDuZPGByhnfQP1gHJ+QEMSLYOR6biAOg5ggMAAAAAAADAD4fqmrW5sMq0RnAQmGBVHLg9hipczDgA/EVwAAAAAAAAAPjh413l8hhHjuOdds0enRG5DfUDo7PMwUF+uX/BwaH6ZtP/NhIVB0BvEBwAAAAAAAAAfrC2KTp+TKbinY4I7aZ/yLW0Ktpf3ajGFnev72Odb2CzSRlJzDgAeiqowUFZWVn3J4VZNO4JAAAAAAAAfZthGMw3CAFrqyJJKqzs/ZwD63yDQYmxcjr4DjXQU0H90zJ27Fj98pe/lMvlCuZt/eJyuXTnnXdq7Nixkd4KAAAAAAAA+pmvSmp9vtW+YOKQCO2m/0iOi/GZReDPgGSfwcjMNwB6JajBgcvl0t13363c3FzdfvvtEfm2f2lpqW677Tbl5ubq3nvvVV2df33QAAAAAAAAgM5Yqw1GZSQqz9JmB/4ZnWX+ffRnzoE11MlKoU0R0Bshqc85dOiQfvWrXyk3N1eXX365li9fHorHmCxbtkyXXXaZ8vLydP/996uqqkqGYXR/IQAAAAAAANBLK3aUmo7nTxgsm80Wod30L9Z2RfkVvQ8Oyl3NpmMqDoDeCWpwsHLlSk2dOlXS4T5vjY2N+vOf/6xTTz1Vo0aN0o9+9CN99NFHampq6uZO3WtqatJHH32kG264QaNGjdLXvvY1vfbaa2psbJRhGDIMQ9OnT9fKlSsDfhYAAAAAAADQxtXUqvX5h0xrzDcIHmvlRoEfrYp8Kg4IDoBeiQnmzU466SRt3LhRf/rTn3TvvfeqsLBQ0uEQoaioSE8++aSefPJJxcbGatasWZo5c6amTJmiiRMnKjs7W8OHD1dsrLlsqKmpSSUlJSoqKtL27du1detWbdiwQevXr1dzc7P3/u1lZ2frjjvu0LXXXkvSCwAAAAAAgKBas6tcrZ4jn0c5HTbNHZsZwR31L8GpOLC2KiI4AHojqMGBJNlsNn3nO9/R4sWL9fTTT+vhhx9WQUGB933DMNTU1KTVq1dr9erVPtc7HA4lJCR4KxbcbneHz2kLC9oHA7m5ubrpppv0ne98xyeAAAAAAAAAAIJhuWW+way8DCXFBf1jtgFrdJY5ONhf1aCmVrfiYhw9voe14oBWRUDvhGTGgSTFxsbq+uuv1+7du/X6669r4cKFHX77v62tUNuv1tZW1dbWyuVyqbW11ef9jixcuFCvv/66du/erR/84AeEBgAAAAAAAAgJwzC0Yrs5OKBNUXCNsrQq8hhSYWVDr+5BxQEQmJBHoXa7XRdccIEuuOAC7d+/X6+99preffddrVmzxttqqE1nbYXaBwaGYcjpdOrEE0/UWWedpW9961saOXJkSH8GAAAAAAAAQJJ2l9WpuMr8Ifb8iQQHwZQa71RmUqwq6o58dlhQUadxQ5J7dL3bY6iyjuHIQCDCWkM1YsQI3XjjjbrxxhtVV1enTz/9VBs2bNCWLVu0d+9eFRYWqrq6WvX1hweeJCYmKj09XTk5OcrLy9PUqVN13HHHac6cOUpKSurmaQAAAAAAAEBwrbC0KRqaGqeJQ1MitJv+Kzcz0RQc5PdiQHJFXZM8lsYlWSl0KAF6I2LN15KSkrRw4UItXLgwUlsAAAAAAAAAesUaHMyfMLjTLhrwX15Wkjbuq/Ie55f3fEByea252sBukzKTqDgAeiNkMw4AAAAAAACA/qSxxa1P91SY1uZPGBKh3fRveZnmbiP5FT0PDsos8w0ykmLlsBPuAL1BcAAAAAAAAAD0wNo9FWpq9XiP7TbppHFZEdxR/5VrGZBc0ItWReW1lsHIzDcAeo3gAAAAAAAAAOgBa5uiGaMGKS3RGaHd9G/WioOiQ/VqbhfadMVacTA4heAA6C2CAwAAAAAAAKAHOppvgNCwBgce43B40BNUHACBIzgAAAAAAAAAulFYWa89ZeY++/MnEhyESlqiU4Ms1Rw9bVdExQEQOIIDAAAAAAAAoBvWaoOMpFhNGZEWod0MDLl+Dkgud1krDmKDtidgoCA4AAAAAAAAALqxfLs5OJg3Pkt2uy1CuxkY8vwckFxe22w6puIA6D2CAwAAAAAAAKALza0erdldblqjTVHo5WWZKw72lves4sDaqogZB0DvERwAAAAAAAAAXVhfUKn6Zrdp7eTxBAehZh2QXNCDVkUtbo8O1VNxAASK4AAAAAAAAADognW+wTEj0/gWexjkWloVFR1qUIvb0+U1lXXNMgzzGv9bAb1HcAAAAAAAAAB0YYVlvsH8CVQbhIO14qDVY2h/VUOX15TVmtsU2W3SoESGIwO9RXAAAAAAAAAAdOJgTaO2Hag1rTHfIDwGJcUqLcFpWutuzoF1vkFmcpwcDLEGeo3gAAAAAAAAAOiEtU1RSnyMjs1Jj8xmBqA8S7uigor6Ls8vr2UwMhAMBAcAAAAAAABAJ6zBwcnjsxTj4CO1cMm1tCvK72ZAcrmLwchAMPC3HAAAAAAAANCBVrdHH+8sN60x3yC8eltxYJ1xkJXMfAPAHwQHAAAAAAAAQAc2F1WruqHFtDaP4CCs8rIsFQfdzDgot8w4oOIA8A/BAQAAAAAAANABa5uiiUNTNDwtIUK7GZisrYoKD9Wr1e3p9HxrxcFgZhwAfiE4AAAAAAAAADqwZpe5TdG8CVkR2snAZW1V1OI2VFLd2On51ooDhiMD/iE4AAAAAAAAACzqm1u1uajKtHbiOIKDcMtIilVKXIxprasByWW0KgKCIqb7U0LP7XZrw4YN2rhxowoLC1VdXa2GhgYZhtGr+9hsNj377LMh2iUAAAAAAAAGio0FVWpxH/lsymG3aWZeRgR3NDDZbDblZSVpa3G1dy2/vE4nj/edNdHc6lFVvXkmBRUHgH8iGhy4XC7dd999euGFF1RaWhrQvQzDIDgAAAAAAABAUHyyx9ym6JiRaUqOi4rv4A44uZmJ5uCgor7D8yrqmnzWqDgA/BOxv+02b96sc889V0VFRabKApvNFqktAQAAAAAAAJKktXsqTcdzx2ZGaCfIswxILuikVVF5bbPp2GG3KT3BGbJ9Af1ZRIKDffv26bTTTlN5+eHk1mazecOD3rYnAgAAAAAAAIKpvrlVmwurTGvHjyE4iJRcy4DkzioOfAcjx8pu50vKgD8iEhz89Kc/VXl5ube6wDAMzZkzRxdffLGmT5+uIUOGKCkpqZu7AAAAAAAAAMG3Pv+QWj2W+Qa5gyK4o4FtdJb5c8J9FfVyeww5LKFAWa01OKBNEeCvsAcHVVVVWrJkibfKIDY2Vs8995wuvfTScG8FAAAAAAAA8LF2T4XpeGp2mpKYbxAxuZZWRc1uj0qqG5Q9yFyJUGapOGC+AeA/e7gfuGLFCrndbkmHWxTdf//9hAYAAAAAAACIGtbgYC5tiiIqKzlWSbEO01pBB+2KqDgAgifswUFhYaGkw+2J4uLi9L//+7/h3gIAAAAAAADQobqmVm0pqjatMd8gsmw2m0/VQX4HA5J9ZxwQHAD+CntwUFNTI+nwH/jx48crISEh3FsAAAAAAAAAOrS+wDzfIMZu03HMN4g465yD/HLf4MBacUCrIsB/YQ8O0tPTva/j4+PD/XgAAAAAAACgU9Y2RdNy0plvEAVyM83zDPI7aFXkW3EQG9I9Af1Z2IODKVOmeF+XlJSE+/EAAAAAAABAp6zBwfFjMiK0E7SXZ2lVVNBhq6Jm0zEVB4D/wh4cnHDCCcrIyJBhGCouLtbevXvDvQUAAAAAAADAh4v5BlHLWnFQUFEvT7uWUk2tblU3tJjOGcyMA8BvYQ8OYmJi9KMf/ch7/Nhjj4V7CwAAAAAAAICP9fmVcrf7MNrpYL5BtLDOOGhq9ehATaP3uMJSbSBRcQAEIuzBgST99Kc/1bRp02QYhn7/+9/rgw8+iMQ2AAAAAAAAAK+1eypNx9Oy05UYy3yDaDA4JU4JTodpLb9duyLrYGSnw6a0BGdY9gb0RxEJDmJjY7V06VJNnDhRLS0t+sY3vqEnnnhCbrc7EtsBAAAAAAAA9InPfAPaFEULm83WYbuiNtbByJlJcbLZbGHZG9AfRSQyXblypSTpgQce0E9+8hPt2bNHP/7xj/Xggw/qf/7nfzRz5kwNGTJE8fHxvb73vHnzgr1dAAAAAAAA9HO1jS36vNg832DuWIKDaJKXmaRtB2q9x11VHNCmCAhMRIKDBQsWmBI/m80mwzBUVFSkJ554wu/72mw2tba2BmOLAAAAAAAAGEDWFxzymW8wYxTzDaJJnmXOQX75keDAWnGQlRwblj0B/VVEm7QZhuENENoHCYZhdHYJAAAAAAAAEHRrd5vbFE3PSVdCrKOTsxEJeV22KjIPR6biAAhMxIKDtnCAkAAAAAAAAACRttYy32Au8w2iTm6mpeKgos77xWRrq6KsZIIDIBARCQ7uvPPOSDwWAAAAAAAA8FHb2KKtlvkGDEaOPnlZ5oqDxhaPSmubNDQ1XmUuZhwAwURwAAAAAAAAgAFtXX6l2o03UKzDrmOZbxB1hqbEK95pV2OLx7u2t7xOQ1PjVU7FARBU9khvAAAAAAAAAIiktXsqTcfMN4hOdrtNuRnmdkUFFYcHJFNxAAQXwQEAAAAAAAAGNOt8g+PH0qYoWuVaBiTnV9SrscWt2sZW0zoVB0BgCA4AAAAAAAAwYNU0tuhzn/kGGRHaDbqTl+VbcVBuqTaQpMEEB0BACA4AAAAAAAAwYK3b6zvfYAbzDaJWXqY5ONhbXq8yy3yDWIddqQkRGe0K9BtR9yeosbFR69at0759+3To0CHV1tYqJSVFgwYNUm5urmbOnKn4+PhIbxMAAAAAAAD9gLVN0bGj0hXvZL5BtMqztCoqqKjzCQ6ykmNls9nCuS2g34mK4KCpqUmvvvqq/vjHP2rDhg1yu92dnhsTE6OZM2fqu9/9ri655BLFxsaGcacAAAAAAADoT6yDkY8fw3yDaJZraVVU3+zWtgO1pjUGIwOBi3irog8++EBjx47Vt7/9bf3nP/9Ra2urDMPo9FdLS4vWrl2ra665RmPHjtU///nPSP8IAAAAAAAA6IOqG1r0xX7rfAOCg2g2PDVesTHmjzTX5ZvDHwYjA4GLaHBwzz33aNGiRdq/f78M43Azue7KiNreNwxDxcXFOvPMM3XfffeFfK8AAAAAAADoX3zmG8TYdeyo9IjtB92z223KzTC3K/psX5XpmIoDIHARa1X01FNP6c4775RkDgMSEhI0c+ZMTZs2TVlZWUpKSlJdXZ3Ky8u1efNmrV+/Xg0NDaZr7rjjDmVmZup///d/I/XjAAAAAAAAoI+xzjeYwXyDPiE3M0k7S13eY1dTq+l9Kg6AwEUkONi3b59+8pOfmD78HzZsmO666y5dcsklSklJ6fRal8ulV199Vb/85S9VUlIim80mwzB04403atGiRRo1alS4fgwAAAAAAAD0YZ9YggPaFPUN1gHJVlnJzEQFAhWRVkV33HGHmpqOTDtfuHChtm3bpu9+97tdhgaSlJycrO9+97vatm2bTjvtNBmGIZvNpqamJt11110h3jkAAAAAAAD6g+r6Fn1ZUmNam0tw0CdYByRbDU6JD9NOgP4r7MFBa2ur3nzzTW+lwNFHH6333ntPqampvbpPSkqK3n33XU2ZMkXS4aqFN954Q263OxTbBgAAAAAAQD/yn/xKGe3mG8TF2DUtJz1i+0HPjc7sOjig4gAIXNiDgzVr1qi2ttZbKfDQQw/J6XT6dS+n06mHHnrIO1i5trZWa9asCeZ2AQAAAAAA0A99sts632AQ8w36iNxuWhUxHBkIXNiDg71793pfp6en62tf+1pA9/va176mQYMGeY/37NkT0P0AAAAAAADQ/1kHI88dS5uivmJEeoKcDlun72cRHAABC3twUFpaKkmy2WzKy8vzDkj2l81mU25urve4rKwsoPsBAAAAAACgf6uqb9ZXB8zzDRiM3Hc47DblZHRcdRAXY1dKXEyYdwT0P2EPDhyOIyVfLS0tQbln+7kGdntE5j0DAAAAAACgj/h0b0fzDdIityH0WmdzDrKS4wL+ojKACAQHQ4YMkXR4mHFBQUHA4UFLS4vy8/N97g8AAAAAAAB0xNqmaGbeIMXFMN+gL8ntJDhgvgEQHGEPDsaPH+997XK59M477wR0v3feeUe1tbUd3h8AAAAAAACwWrun0nR8/GjaFPU1eVkdtyrKSiY4AIIh7MHB7NmzlZmZKZvNJsMw9JOf/EQ1NTXdX9iBmpoa3XTTTd7yo4yMDM2ePTuY2wUAAAAAAEA/UlXfrG3W+QYMRu5zOq84iA3zToD+KezBgc1m08UXXyzDMGSz2VRQUKBTTjlFxcXFvbrP/v37deqppyo/P997r0suuYQeZgAAAAAAAOjU2j3m+QbxTrumZjPfoK/pbMbBYCoOgKCIyCThO++8UykpKZIOBwmfffaZJk2apDvvvFN79+7t8tr8/HzdddddmjRpkjZu3OgNClJSUnTHHXeEfO8AAAAAAADou3zmG+RmMN+gDxqRHq8Yu+8XiLOYcQAERUwkHjp48GA988wzuvTSS73VAnV1dbr33nt17733Kjc3V1OnTlVWVpaSkpJUV1eniooKbd68WQUFBZLkvc4wDDkcDv3pT39SVlZWJH4cAAAAAAAA9BHW4OD4MRkR2gkCEeOwKycjUXvL60zrVBwAwRGR4ECSLrroIlVXV+uHP/yhWltbvSGAdLiqoC0gaM9oV0fWdr7T6dTvfvc7XXjhhWHbOwAAAAAAAPqeyrpmbTtQa1o7fgzzDfqq3Ezf4ICKAyA4ItKqqM13vvMdffLJJzr66KO9oYDNZut0TkH79wzD0NSpU7V27Vp9+9vfDtueAQAAAAAA0Df9Z6+52iDB6dDU7PTIbAYBy+tgzgEVB0BwRDQ4kKQZM2Zoy5Ytev/99/XNb35TQ4YMkWEYnf4aMmSILrroIn344YfatGmTjj322Ej/CAAAAAAAAOgD1u6pNB3PzBuk2JiIfzwGP+VlJvqsUXEABEfEWhVZnX766Tr99NMlSQUFBSooKNChQ4fkcrmUnJysQYMGKTc3V7m5uRHeKQAAAAAAAPqiT3Zb5xvQpqgvy80yVxwkOB1KimXQNRAMURMctEdAAAAAAAAAgGCqcDVp+0HmG/Qns/MylJbgVHVDiyRp/oTBnbZAB9A7URkcAAAAAAAAAMH0n73mNkWH5xukRWg3CIakuBj937Wz9fTKPcpIjNWNp02I9JaAfoPgAAAAAAAAAP3eJ3vMbYpm5g2S08F8g75uana6fnfpjEhvA+h3+NsRAAAAAAAA/d5aS3AwdyxtigCgMwQHAAAAAAAA6NfKXU3acdBlWmO+AQB0Lqitiu6++26ftTvuuKNH5wVLR88DAAAAAADAwPXpHvN8g8RYh44ZyXwDAOiMzTAMI1g3s9vtPpPL3W53j84Llo6eh/ArKipSTk6OJKmwsFDZ2dkR3hEAAAAAABiobv/75/q/tQXe4/kTBuvFa2ZHcEcAEN1C1qooiHlEVD4PAAAAAAAAfYN1vgFtigCga0FtVST1/AN8PugHAAAAAABAqJW7mrSz1DrfICNCuwGAviGowcGyZcuCeh4AAAAAAAAQCGu1QRLzDQCgW0ENDubPnx/U8wAAAAAAAIBAWIODWaMzFOMIWfduAOgX+FsSAAAAAAAA/dbaPZWmY+YbAED3CA4AAAAAAADQL5XWNmqXz3wDggMA6A7BAQAAAAAAAPqlTy3VBslxMZoyIjVCuwGAviMiwcGYMWM0ZswYjR07Vp988klA91qzZo3pfgAAAAAAAIDUwXyDvEHMNwCAHgjqcOSeys/PlyTZbDY1NDQEdK+GhgbT/QAAAAAAAABJ+sQSHNCmCAB6JmIRKx/yAwAAAAAAIFRKaxq1p6zOtDZ3LMEBAPQEtVkAAAAAAADod9buNc83SImL0eThzDcAgJ7o88FBS0uL97XT6YzgTgAAAAAAABAtPtltmW8wOoP5BgDQQ33+b8uSkhLv65SUlAjuBAAAAAAAANHiU8t8g7nMNwCAHuvzwcG7774r6fDMhFGjRkV4NwAAAAAAAIi0gzWN2lNunm/AYGQA6LmYUN143759PTrv4MGDPT5XkgzDUH19vfbu3aslS5bozTff9L43Y8aMXu8TAAAAAAAA/ctaS7VBSnyMJo9gvgEA9FTIgoO8vDzZbLZO3zcMQ5J0+eWXB+2ZF110UdDuBQAAAAAAgL7JGhzMGZ0hh73zz6kAAGYhb1VkGIbPr+7e7+kvSd5w4rTTTtNpp50W6h/Hx8qVK3XNNddo0qRJSklJUXp6uqZMmaLrr79en332WUifXVpaqgcffFBnnnmmsrOzlZiYqPj4eA0fPlynnHKK7rjjDu3duzekewAAAAAAAIg2a/dUmo5pUwQAvWMzrJ/kB4ndbpfNZvMJCoLN6XTqiiuu0KOPPqrk5OSQPqu92tpaXXfddXr55Zc7Pcdms+nGG2/U/fffL6fTGdTnP/roo/rFL36hhoaGLs9zOBy68cYbdd999wV9D10pKipSTk6OJKmwsFDZ2dlhezYAAAAAABi4DlQ36vj7/21ae/f6kzRlZFqEdgQAfU/IWhUtXry40/defPFFU6XA8OHDe3xfu92upKQkZWRk6Oijj9aCBQs0ePDggPfbG62trTrvvPO0bNky71pqaqqOPvpoNTc368svv1RDQ4MMw9BDDz2ksrIyvfjii0F7/s9+9jP9+te/Nq2NGDFC48aNk81m0969e71zI9xutx588EHt3btXf/3rX7tsHwUAAAAAANDXWdsUpcbH6KjhzDcAgN4IWcVBV9qqESTpn//8pxYuXBjuLQTkpz/9qX7zm994j2+//Xb97Gc/U2JioiSpoqJCP/vZz/SnP/3Je85TTz2l73//+wE/++OPP9bJJ5/sPZ4wYYL++Mc/av78+abz1q9fr+9973vauHGjd+3555/XVVddFfAeeoKKAwAAAAAAEAk/+9sWvbau0Hv8taOG6k+LZ0ZwRwDQ94R8xkFnIpBXBEVhYaEee+wx7/Htt9+uu+++2xsaSFJmZqaeeeYZ0+DnX/7yl6qvrw/4+U8++aT3dVpampYtW+YTGkjSzJkz9dFHHyk3N9e79rvf/S7g5wMAAAAAAEQza8XB8WMyIrQTAOi7IhIcPP/883r++ef13HPP6eijj47EFvz22GOPqampSZI0atQo3XbbbV2e2xYoHDx4UM8//3zAz1+1apX39RVXXKERI0Z0em5aWpp++MMfeo83bNig5ubmgPcAAAAAAAAQjUqqG5RfYf7i5tyxDEYGgN6KSHCwePFi76+hQ4dGYgt+e/PNN72vr7nmGsXGxnZ6bkZGhi688MIOr/VXWVmZ9/WUKVO6Pb/9OYZhqLy8POA9AAAAAAAARCNrtUFaglNHDWO+AQD0VsRaFfVF27Zt0549e7zHZ555ZrfXfP3rX/e+XrFihVwuV0B7SE5O9r7uSfVAW3WEJNlsNqWlpQX0fAAAAAAAgGi1dnel6Xj26AzZ7bYI7QYA+i6Cg17YvHmz93VcXJxmzJjR7TVz5871vm5tbdWXX34Z0B5mz57tfb1y5cpuz1+xYoX39bHHHqukpKSAng8AAAAAABCtPvGZb0CbIgDwR0SCgy1btmjMmDHeX+0/3O6N5cuXe+8xduxY7dixI8g7Nfvqq6+8r3NycuR0Oru9Jicnx9TOaNu2bQHt4brrrvO+fuONN/TRRx91eu6mTZv09NNPe49vuummgJ4NAAAAAAAQrYqrGrSv0jLfgOAAAPwSE4mH/v73v1d+fr4kafLkyZo/f75f91mwYIHi4uK0fft22Ww2Pf3003rooYeCuFOzgoIC7+tRo0b16Bq73a6RI0dq7969kuT9uf117rnn6vrrr9cTTzwhj8ejRYsW6cYbb9Qll1yi8ePHy2azae/evfrb3/6mBx54QPX1h/+Fecstt+iSSy7x+7lFRUW9Or+kpMTvZwEAAAAAAPTWpx3MN5g0LCVCuwGAvi0iwcFbb70l6XDP/csvvzyge1155ZW69dZbZRiG3nzzzZAGB7W1td7XvZkVkJp6ZAhP+3v46/HHH9e4ceN07733qqysTPfff7/uv//+Ds+dNGmSfvGLX+iKK64I6Jk5OTkBXQ8AAAAAADrW3OqRJMXG0FE6EJ/sNgcHc5hvAAB+C/u/kb766isdOHDAe3zeeecFdL/21xcUFHi/2R8KdXV13tfx8fE9vi4hIaHDewTihhtu0JIlSzRx4sROzxk6dKiuv/56XXDBBUF5JgAAAAAACK6lW0o0+1f/0ox7/qnX/rMv0tvp09buNQcHc8fSpggA/BX2ioP2w4GTk5N11FFHBXS/o446SsnJyXK5XJKkzz//XKNHjw7onp1paWnxvo6J6flvXftzm5ubA97Hvn37dO211+pf//qXdy07O1tjxoyRYRjas2ePiouLdfDgQf3gBz/Qfffdpz//+c+aN2+e388sLCzs1fklJSWmQc4AAAAAAMCsodmtn72xRbWNrZKkO976QgsnDdGQ1J5/WRGHFR2qV2Flg2mNwcgA4L+wBwfFxcWSDrcpCkb7G5vNplGjRnkDiX37QpfOJyYmel83Njb2+Lr25yYlJQW0h/z8fJ100kne38cTTzxRjz32mI477jjTeevWrdMNN9ygtWvXav/+/TrzzDO1bNkyzZkzx6/nZmdnB7RvAAAAAABgtnpXuTc0kKRmt0fvbinRNSeF5guR/dnaPZWm40GJTk0cynwDAPBX2FsVtVUGSObe/4FISTnyL4JgzBDoTHJysvd1Q0NDF2eatQ0ott7DH1deeaU3NDjppJO0bNkyn9BAkmbNmqUVK1bohBNO8O736quvlsfjCej5AAAAAAAgOP697aDP2tub90dgJ33f2j3W+QaZzDcAgACEPTho/yH/oUOHgnLPqqoq7+vY2Nig3LMjmZlHStxKSkp6fF37mQ7t79Fba9as0apVq7zHTzzxhJxOZ6fnx8bG6oknnvAef/XVV6b2RgAAAAAAIDI8HkP//qrUZ31TYZUKKoIzH3EgsQYHx4/JiNBOAKB/CHtwkJWVJUkyDEOFhYWmuQH+aG5uNvXfHzx4cED360r7QcQ9bYlUV1enysoj5XJdDTPuTvsP/XNycjR9+vRur5kxY4apzdDHH3/s9/MBAAAAAEBwfL6/WqW1TR2+9/Ymqg56o7CyXkWHLPMNGIwMAAEJe3AwduxY7+uGhgatWLEioPutWLHC1AooNzc3oPt1pf0g57Kysh5VHWzatKnTe/RWW4siSb2aD9H+3PbVDwAAAAAAIDL+1UG1QZu3Nu+XYRhh3E3fZq02yEiK1YQhzDcAgECEPTiYOXOm0tLSZLMd7jN3//33B3S/Bx54wPs6KSlJc+fODeh+XZk9e7apFVL7tkGdaX9Odna2xowZ4/fz2z/b3xkL7Qc8AwAAAACAyPj3V77zDdrsKnXpq5LQzXDsb6yDkeeMzmC+AQAEKOzBgd1u16JFi2QYhgzD0PLly/XII4/4da+HH35Yy5Ytk81mk81m0xlnnNFlz/9ApaSk6JRTTvEev/LKK91e8+qrr3pfn3POOQE9f8SIEd7XX375pSkQ6Ex9fb22bdvW4T0AAAAAAED4lVQ36Iv9Naa1WIf5I5q3NhcLPeM734A2RQAQqLAHB5J06623ym63y2azyTAM3Xzzzbrjjjvkdrt7dL3b7dbtt9+uW265xXsPm82m22+/PcQ7l6666irv66VLl+qzzz7r9Ny3335bW7du9R4vXrw4oGeffPLJ3tdNTU16+umnu73mqaeeUlPTkZ6J8+fPD2gPAAAAAAAgMNahyKnxMVp8grn18jub9svjoV1Rdwor61VcZe7KMJf5BgAQsIgEB5MnT9Z3v/td7wf+Ho9H9913nyZNmqRHHnnE9A359rZt26aHH35YkyZN0q9+9St5PB5Jks1m07XXXqupU6eGfO8XXXSRpkyZIulwgHHZZZd1OOvgq6++0ve+9z3v8VlnnaU5c+Z0eM8XXnjBWzVhs9m0fPnyDs+bO3euabjyz3/+cy1durTTvb711lu69dZbvcdTpkzRrFmzuvz5AAAAAABAaFnbFC2YOET/MyPbtLa/ulHrCw6Fc1t90icdzDcYPyQ5QrsBgP4jJlIPfvzxx/XFF19o1apV3qqB3bt366abbtJNN92kpKQkZWVlKTk5WS6XS+Xl5aqrq5Mk74CgtusWLFig3/3ud2HZt91u1zPPPKMFCxaoqalJX331lY499lhdf/31mjVrllpaWrRy5Ur94Q9/UE3N4bLDzMxMPfbYYwE/2+Fw6JFHHtHZZ58tj8ejpqYmnXPOOTr77LN1/vnna8yYMTIMQ3v27NEbb7yhf/zjH95rY2Ji9Nhjj8luj0hWBAAAAAAAJNU3t2r1bvOH3aceNUSThqVowtBk7Tjo8q6/vblYs0dnhHuLfYpvm6IM71xNAID/IhYcxMTE6J133tFVV12lv//9796/1NtCAZfLJZfL1eG17c+98MIL9eyzzyomJnw/yvHHH6+XXnpJV155pZqamnTw4EHddtttHZ6blpamN954Q2PHjg3Ks7/+9a/rj3/8o6677jo1NzfLMAy98847eueddzq9JiEhQc8884wWLlwYlD0AAAAAAAD/rN5VoeZWj/fYYbdpwYQhstlsOm/6SD34wXbve0u3lOjOc46W08GXADtiGIbWWkKYucw3AICgiOi/eVJTU/XGG2/o97//vXJyckyVBJ39kg7/iyE3N1d/+tOf9Ne//lUpKSlh3/tFF12kdevWacGCBR0m2Q6HQ+ecc442b96sefPmBfXZ1157rdavX68LL7ywy8DE6XTqW9/6ljZs2KDLLrssqHsAAAAAAAC9Z21TNCtvkNISnZKkc6eNML13qL5FH+8sD9ve+prCygbtr240rTEYGQCCw2a0fVofYW63W2+88YY+/PBDrVq1Snv27FFra6v3/Zj/z959x1dV338cf5/snZAFhCRA2FtAloCynIh7T9xVq21tnbXW8WutWmuttVqtxYFat2Dd7KHI3oQdSCAJWYQMsm7O7w+aS85NAhn33pPxej4eeTzu+dxzvucTbCE5n/v9fPz81Lt3b02cOFHnnHOOLrzwwlbTdmfv3r1asWKFDhw4IF9fXyUmJmrixInq0qWLx+995MgRrVq1Sjt37tThw4clSZ06dVKfPn00evRohYXZ09cvIyNDSUlJkqT09HQlJiae5AoAAAAAANq36mpTY56er5yicmfst+cN0G2npziPL/7Hcq3bf9h5fNEpCfrrVcO9mWab8eGqdD3wyUbncUxogFY/Oo1WRQDgBra1KnLl6+uryy+/XJdffrkzVlRUpKKiIoWHh9uyq6CxevbsqZ49e9py74iICE2dOlVTp0615f4AAAAAAKBxNh0otBQNpGPzDWq7cFiCpXDw3dZsHa1wKDjA1xsptimug5HHpsRQNAAAN2kdH9lvQHh4uBISElp10QAAAAAAAKAxXNsUpcSGKiXO2ilg+tAE+dR69l1a4dA8l+vwv/kGroWDXrQpAgB3adWFAwAAAAAAgPZi3rZDlmPX3QaSFBceqPG9Yy2xOesPejSvtmh/fqkyXeYbjEuJtikbAGh/KBwAAAAAAAB42MHDR7U184glNnVA53rPdR2SvHjHIR0urfBYbm3Rj7utuw1iwwLVK86eOY8A0B5ROAAAAAAAAPCw+anW3QaRwf46tXunes89e3AXBfgdf2RT6TD1zeYsj+bXlizbmatnvkm1xMamRDPfAADciMIBAAAAAACAh7nON5jUL05+vvU/lokI8tfU/tY2RrQrOjbX4B+LdumGf/+kgtJKy3sT+8Q2cBUAoDn87LhpSkqKR9Y1DEO7d+/2yNoAAAAAAADNUVpRpR9cWus01KaoxoWnJOjrWrsMVuzNU1ZhmbpEBnkkx9auqKxSv/5wg77bWndQ9OBuEbpkRKINWQFA+2VL4SAtLU2GYcg0Tbeuy5Y0AAAAAADQ2izdmauKqmrnsZ+PoTP6xp3wmkn94hUe6Kei8ipJkmlK/914ULdO9MyHMVuzHdlF+tk7a7Qnt6TOe2cO7Kznrxgm/wZ2bwAAmsfWv1UNw2jxV806AAAAAAAArZFrm6JRPaIVGex/wmuC/H119uAultjcDR2vXdEXGw7qopeX1ykaGIZ0/9n99M/rRioi6MR/lgCAprNlx0FycnKTH/aXlpaqoKBAVVXHKu0113fq1EkRERFuzxEAAAAAAKClqqtNLUjNscSmDohv4GyrC09J0MdrMpzHGzMKtSenWClxYW7NsTWqdFTrT1+n6o1le+u81ynEXy9eNVynn2TXBgCg+WxrVdQcDodD69ev13/+8x+99tprKioqko+Pj1555RWdc8457k0SAAAAAACghTYeKFRucbkldrL5BjXGpcQoNizQcv3cDQf1y2l93Zpja5NTVK6fv7dWP+3Nr/PekG6ReuW6EUrsFGJDZgDQcbSpBnC+vr4aOXKknnvuOW3cuFHDhw9XXl6eLrjgAn366ad2pwcAAAAAAGDh2qYoJS5UPWNDG3Wtn6+Pzh/a1RKbu+Gg22dGtiZr9hXo/JeW1ls0uPLUJH30s3EUDQDAC9pU4aC27t2765tvvlFiYqKqqqp0/fXXa8eOHXanBQAAAAAA4DRv2yHL8bRG7jaoccEpCZbjPTkl2nLwSIvzam1M09Q7P6bpqtd+VPYR6w6NAF8fPX3JED1z2VAF+fvalCEAdCxttnAgSXFxcXriiSckSWVlZXrggQdszggAAAAAAOCYA4ePalum9SH/1P6Nm29QY3hSlJKigy2xOesPtDi31uRohUO//nCDfjdniyod1t0UCZFB+uhn43T16GSbsgOAjqlNFw4k6fLLL5e/v79M09R///tfZWdnn/wiAAAAAAAAD1vg0qYoMthfI7t3atIahmHowmHdLLEvNmSqurp9tCvan1eqS175QZ+uq1sMGd87Rl/cM0HDkqK8nxgAdHBtvnAQFhamlJQUSce2tS1dutTmjAAAAAAAAOq2KZrcL05+vk1/FOParijrSJlWptWdAdDWLEw9pPNfWlpnV4Yk3Tmpl966abRiwgJtyAwA0OYLB5IUGRnpfL1v3z4bMwEAAAAAAJBKyqv04+48S2xqE+cb1OjbOVz9u4RbYnPWH2x2bnarrjb113k7dPNbq3SkrMryXlign169bqQePKd/s4osAAD3aBd/A+fk5DhfV1VVneBMAAAAAAAAz1u6M1cVjmrnsZ+PoTP6xTV7vQtPsbYr+mpTpiqqqhs4u/UqLK3ULW+t0l/n7ZTp0m2pT3yY5vx8vM4Z3MWe5AAATm2+cLB7927t3btXhmFIkmJjY23OCAAAAAAAdHTzXeYbjO4ZrYgg/2avN2NYV8tx4dFKLdmR08DZrdPWg0c04+/LtHB73bynD+mqz+8er15xYTZkBgBw1aYLB6Zp6le/+pXztSQNGjTIzpQAAAAAAEAHV11tauF263yD5rYpqpHYKUSnugxWnruh7bQr+mxdhi55Zbn255da4r4+hh6dPkB/v2a4QgP9bMoOAOCqzRYOdu7cqfPPP1///e9/LbsNxowZY3NmAAAAAACgI9uQcVi5xRWW2LQB8S1e90KXIcnfb81WSXnrbtlcUVWtx+Zs1q8+2KCySmtrpdiwAM2+ZYxunZjifLYDAGgdbCnlPvnkk8267ujRo8rOzta6deu0ceNGZ9w0TRmGoYcffph/aAAAAAAAgK3mb7PuNugVF6ruMaEtXve8IV31+Bdb5ag+1nXhaKVD87Zl15l/0FpkFZbprnfXaO3+w3XeG54cpX9cO0JdI4O9nxgA4KRsKRw8/vjjLXrAX9OWyDAMGYYh0zQ1ffp03Xvvve5KEQAAAAAAoFnmucw3mNbCNkU1YsICNbFPrBbVmhEwZ/3BVlk4WLEnTz9/b51yi8vrvHfDuO56dPpABfi12UYYANDutcm/oWsXDAzD0M9//nN99NFH8vFpk98OAAAAAABoJzIKSpWaVWSJtXS+QW0XDLO2K1qyI0cFJRUNnO19pmnqX0v36Np//VSnaBDo56PnLx+mJy8cTNEAAFo526bO1OwaaA7DMNS3b1+dd955uuWWWzRw4EA3ZgYAAAAAANA8C1KtbYqiQvw1IjnKbeufNaiLAv02qbzq2LyAqmpTX23O1LVjurvtHi3x13k79eL8nXXiSdHBevW6kRqUEGlDVgCAprKlcLBw4cImX2MYhoKCghQREaGkpCSFhra8NyAAAAAAAIA7zXOZbzC5X7z8fN336fqwQD9NG9hZX27MdMbmrD/YKgoHP+zK1d8W1C0aTO4Xp79eOVyRIf42ZAUAaA5bCgdnnHGGHbcFAAAAAADwmOLyKq3YnWeJTR0Q7/b7XDgswVI4WLk3XwcPH1VClH2DhvOKy/XLD9bLtcHEL6b20S+m9pGPT/NnXQIAvI+GcgAAAAAAAG6wbGeOKhzVzmM/H0On941z+33O6BeniCDrZ0H/u/Gg2+/TWKZp6v6PN+pQkXWmwcPn9tevzuxL0QAA2iAKBwAAAAAAAG7g2qZoTEq0IoLc354n0M9X5w7uaonNWW9f4eDfy9PqzHY4vW+cbpuYYlNGAICWonAAAAAAAADQQo5qUwtdHp5P7d/ZY/e78JQEy/GWg0e061CRx+7XkM0HCvWnr7dZYrFhgXr+8mHsNACANozCAQAAAAAAQAutTz+svJIKS2zaAM8VDsakxCg+PNASm+vlXQcl5VW65/11qnRYBxv85YphinPJDQDQtlA4AAAAAAAAaKEFqdmW4z7xYUqOCfHY/Xx9DJ0/1LrrYO6GgzJdpxN70GNztmhvbokldscZKR6Z6wAA8C6/k5/SeE8++aQ7l2uWxx57zO4UAAAAAABABzPfZb7BlAHxHr/nhack6N/L9zqP0/JKtTGjUMOSojx+78/XHdAnazMssWFJUfrNWf08fm8AgOe5tXDw+OOPyzDs7V9H4QAAAAAAAHhTRkGpUrOs8wU82aaoxtDESPWICVFaXqkzNmf9QY8XDvbllejRzzdbYmGBfnrpquHy96W5BQC0B7b/bW6aZr1fTT3Xm1vxAAAAAAAAarjuNugU4q8RyZ08fl/DMHTBMGu7oi82HpSj2nPPSCqqqnXP++tUXF5lif/h4sEebc0EAPAutxcOGnq4f6KH/oZhWL4aWudE5wIAAAAAANhh3jbrfIPJ/eLl6+OdjgwXnGItHOQUleunPXkeu9/z323XxoxCS+zykYm68JRuHrsnAMD73NqqaOHChU06Pzs7Ww899JD27dvnfPh/yimnaNKkSRoyZIhiYmIUGhqqkpIS5eXlaePGjVq8eLHWr18v6VgRoWfPnvrTn/6k+HjP9w4EAAAAAACorbi8Sj/tybfEpnqhTVGN3vHhGpQQoS0Hjzhjc9Yf1Gm9Y91+r8U7cvTPJXsssZS4UD1+wSC33wsAYC+3Fg7OOOOMRp+7efNmXXfddTp48KBM09SZZ56p5557TkOHDj3ptRs2bND999+vefPmKS0tTb/5zW/0zTffaMCAAS1JHwAAAAAAoEmW7shRhaPaeezva+j0vu5/aH8iF56SYCkcfLU5U09eNEiBfr5uu8ehojL9+sP1lliAr49eunq4QgPd+ngJANAK2DLjIC8vT+ecc44OHDggSXr00Uf17bffNqpoIEnDhg3Td999p9/+9rcyTVPp6ek6++yzlZ+ff/KLAQAAAAAA3GSey3yDMT1jFB7k79Uczh9qbVdUVFalxdtz3LZ+dbWpX3+4QbnFFZb4w+f116CESLfdBwDQethSOHjkkUd08OBBGYahSy65RE8++WSz1nnqqad0ySWXSJIOHDig3/72t+5MEwAAAAAAoEGOalMLt1sLB1MHeL+VckJUsEb3jLbE5mw46Lb1X1+6R0t35lpiU/vHa+ZpPdx2DwBA6+L1wkFxcbHefvtt53Fziwau15umqbfeekslJSUtWg8AAAAAAKAx1qcXKL/E+in8aV6cb1DbhS5DkudtzVZxeVWL112ffljPfbvdEuscEajnLh8mw/DOAGgAgPd5vXCwdOlSlZeXyzAMJSQktHguwcCBA5WYmChJKi8v15IlS9yRJgAAAAAAwAm5tinq2zlMSdEhtuRy3uCu8vM5/iC/vKpa323JatGaRWWVuvf9daqqNp0xw5BeuPIURYcGtGhtAEDr5vXCwc6dO52vExISTnBm43Xt2rXe9QEAAAAAADxl/rZsy/FUm3YbSFKn0ACd3jfOEpvbgnZFpmnq0c83a39+qSV+96TeOq2Xd4c/AwC8z+uFg9qthA4fPuyWNWuvQ6siAAAAAADgaen5pdqRXWyJTe3v/fkGtbm2K1q6M1d5xeXNWuvjNRmas95aeBjZvZN+Oa1Ps/MDALQdXi8cxMYeq0qbpqm9e/cqNzf3JFecWG5urvbu3evsq1ezPgAAAAAAgKe47jaIDg3Q8ORONmVzzLQBnRXs7+s8dlSb+mpTZpPX2Z1TrN/P3WKJhQf56cWrTpGfr9cfJQEAbOD1v+1TUlIkSYZhyOFw6NVXX23Rev/4xz9UVVUl0zQt6wMAAAAAAHjK/FTrfINJ/eLk62PvsODQQD+dOdDaLsl118DJlFc5dO/761Ra4bDEn7l0qBI72TO/AQDgfV4vHJxxxhmKjo6WdGzXwR/+8ActXry4WWstWrRIf/zjH527DTp16qQzzjjDbbkCAAAAAAC4Kiqr1Io9eZbYNBvnG9R2wTBru6LV+wqUUVDawNl1/enrVG05eMQSu3p0ss4b0rWBKwAA7ZHXCwd+fn667bbbZJqmDMNQeXm5zj33XP31r3+Vw+E4+QKSHA6HXnjhBZ133nmqrKx0rnX77bfLz8/Pw98BAAAAAADoyJbuzFWlw3Qe+/samtindbROPr1vnCKD/S2xLzY0rl3R/G3ZmrU8zRLrEx+mx84f6K70AABthC2N6X7/+9+rd+/eko61LCorK9Ovf/1r9ezZUw888IC++uor7d+/XyUlJTJNUyUlJdq3b5++/PJLPfDAA+rZs6d+85vfqKyszLlmr1699Nhjj9nx7QAAAAAAgA5knst8g7EpMQoP8m/gbO8K8POpsztgzvoDJ70u+0iZfvPRBkss0M9HL10zXMEBvg1cBQBor2z5eH5QUJC+/fZbTZkyRfv27ZNhGDJNUxkZGXr++ef1/PPPn/D6mnkGNdd1795d33zzjYKCgryRPgAAAAAA6KAc1aYWbc+xxKb2j7cpm/pdeEqC3l+533mcmlWkHdlF6ts5vN7zHdWmfvmf9SoorbTEHz1/oPp3ifBorgCA1smWHQeS1LNnT/3www86++yzna2GamYVmKbZ4Jcky3nTpk3TsmXLGIoMAAAAAAA8bt3+AuWXVFhiU1vJfIMao3tEq0uE9cOVc08wJPmVRbv0o8vMhrMHddZ1Y5I9kh8AoPWzrXAgSV27dtXXX3+t//znPxozZoylOCDJWUyoKRRIx4sKY8aM0fvvv6/vvvtO3bp1syN9AAAAAADQwczbdshy3K9zuJKiQ2zKpn4+PoZmDHNpV7ThgOWZS401+/L1wrydllhCZJCeuXSo5XkMAKBjaRWThK+44gpdccUVSk1N1aJFi7Ry5Urt3btXhw8fVnFxsUJDQxUVFaWUlBSNGjVKkyZN0oABA+xOGwAAAAAAdDDzXeYbTB3QutoU1bjwlG56fele53F6/lGtSz+sEcmdnLHCo5W69/31clQfLyj4GNJfrxquqJAAr+YLAGhdWkXhoEb//v3Vv39//exnP7M7FQAAAAAAAIv9eaXaeajYEmuthYNBCRFKiQvVnpwSZ2zu+oPOwoFpmnr40406cPio5bpfTO2r0T2jvZorAKD1sbVVEQAAAAAAQFsxP9W62yA6NECnJHVq4Gx7GYahC4YlWGL/3ZipKke1JOk/q9L11aYsy/uje0br51N6ey1HAEDrReEAAAAAAACgEea7zDeY3C9evj6tdw6Aa+Egt7hcP+7J087sIj3xxRbLe1Eh/nrxqlNa9fcDAPCeVtWqCAAAAAAAoDUqKqvUT3vzLLFprbRNUY2UuDANTYzUxoxCZ+yDVenadahYZZXVlnOfvXSoukYGeztFAEAr1eoKBzt37tSKFSu0f/9+FRQUqKioSOHh4erUqZO6d++usWPHqndvts0BAAAAAADvWbIjV5WO40OEA3x9NLFvnI0ZNc4FwxIshYP/bsysc84N47rrrEFdvJkWAKCVaxWFg6ysLL3yyit6/fXXlZ2dfdLzu3btqttuu0133HGHunThHzYAAAAAAOBZ87dZn1eMSYlWWGCreKxyQjOGJegPX22Tadb/fv8u4XrkvAHeTQoA0OrZPuPgtddeU58+ffR///d/ysrKkmmazq/aascPHjyoJ598Un379tXrr79uU+YAAAAAAKAjcFSbWrjdOt9g2oDONmXTNJ0jgjS2Z0y97wX5++jv1wxXkL+vl7MCALR2thYObrvtNt15550qKSmRaZoyDEOGcXwIT31FhJpzTNNUcXGxfvazn+n222+3I30AAAAAANABrN1foILSSktsaiufb1Dbhack1Bt/fMYg9Y4P93I2AIC2wLY9dY8++qjeeOMNSXIWAkzTVGJioiZPnqxhw4YpNjZWoaGhKikpUW5urjZs2KBFixYpPT3dWWAwTVNvvPGGOnfurKeeesqubwcAAAAAALRT81zaFPXvEq7ETiE2ZdN05w7uqt/N2WyZ0TB9aFddOSrJxqwAAK2ZLYWDLVu26JlnnrE8/B8yZIiee+45nXnmmZZdB/X57rvv9MADD2jjxo3OosMzzzyjq666SoMGDfLGtwAAAAAAADqI+dusbYra0m4DSYoM8dcN43rojWV7JUm94kL1x4uHnPT5CwCg47KlVdHvfvc7ORwO5/ENN9ygtWvX6qyzzmrUP1pnnXWW1q5dqxtvvNHZ4sjhcOj3v/+9J9MGAAAAAAAdzL68Eu06VGyJTW0j8w1qe/jc/vrHtSP0x4uH6LO7xysy2N/ulAAArZjXdxyUlZXpm2++cRYIJkyYoDfffLPJ6/j4+GjWrFnas2ePli5dKkn6+uuvVVZWpqCgIHemDAAAAAAAOqh5LrsNYkIDNCwxyp5kWsDP10fnDelqdxoAgDbC6zsOli1bprKyMufA42effbZF6z3zzDPO12VlZVq2bFmL1gMAAAAAAKixINU632By/3j5+tDiBwDQvnm9cJCenu58HRcXpzFjxrRovbFjxyo+/nhvwdrrAwAAAAAANNeRskr9tCffEpvWxuYbAADQHF4vHBw6dGyLn2EYSkpKcsuatdfJyclxy5oAAAAAAKBjW7IjR1XVpvM4wNdHE/vE2ZgRAADe4fXCQe35A6WlpW5Z8+jRo87XgYGBblkTAAAAAAB0bPNd5huM7RWj0ECvj4sEAMDrvF44qGkrZJqm0tLSWlw8KC0t1d69e+usDwAAAAAA0FxVjmot3G4tHNCmCADQUXi9cDBw4EBJx1oVlZWV6YMPPmjReh988IFlx8GgQYNatB4AAAAAAMDa/Yd1uLTSEpvSn8IBAKBj8HrhYNiwYUpISJB0bNfBgw8+qIyMjGatdeDAAT344IMyDEOSlJCQoKFDh7otVwAAAAAA0DHN35ZtOe7fJVyJnUJsygYAAO/yeuFAkmbOnCnTNGUYhnJzczVhwgStWbOmSWusW7dOEydOVG5urnOtmTNneiZhAAAAAADQocxzKRxMG9DZpkwAAPA+WwoHDz30kOLi4iQda1m0f/9+jR07VjfeeKMWLVqkqqqqeq+rqqrSokWLNHPmTI0ePVppaWnO3Qbx8fF66KGHvPY9AAAAAACA9iktt0S7c0ossanMNwAAdCB+dtw0LCxMH374oc4991yVl5fLMAw5HA7Nnj1bs2fPlr+/v/r376/Y2FiFhoaqpKREeXl5Sk1NVUVFhSQ5dxmYpqmgoCB9+OGHCg0NtePbAQAAAAAA7YjrboPYsAANS4yyJxkAAGxgS+FAks444wx99NFHuv7663X48GHnzgHTNFVRUaGNGzc6YzXxGoZhOIsGUVFRmj17tiZOnOj17wEAAAAAALQ/87cdshxP6R8vHx+jgbMBAGh/bGlVVGP69OnauHGjpk+fLul4caCmMFBb7VjNeTNmzNCmTZt03nnneTFrAAAAAADQXhUerdSqtHxLbCrzDQAAHYxtOw5qJCYm6osvvtCOHTv0xhtvaPHixVq/fr2zJVFtAQEBGj58uM444wzdcsst6tOnjw0ZAwAAAACA9mrxjhxVVR/vehDg66MJvWNtzAgAAO+zvXBQo2/fvnrmmWckSRUVFcrKylJBQYGKi4sVFhamTp06qWvXrvL397c5UwAAAAAA0F7Nd5lvMK5XjEIDW83jEwAAvMLr//JlZWVp5cqVzuOhQ4eqR48elnMCAgKUnJys5ORkL2cHAAAAAAA6qipHtRZtz7HEpg2ItykbAADs4/XCwaeffqp77rnHebxp0yZvpwAAAAAAAFDH6n0FKjxaaYlNYb4BAKAD8vpw5MOHD8s0TZmmqS5dumjgwIHeTgEAAAAAAKAO1zZFA7pGqFtUsE3ZAABgH68XDmJiYiRJhmGoW7du3r49AAAAAABAveZvO2Q5pk0RAKCj8nrhICEhwfm6pKTE27cHAAAAAACoY09OsfbkWp9TTKVNEQCgg/J64WDkyJHy8fGRaZrat2+fKioqvJ0CAAAAAACAhetug7jwQA3tFmlTNgAA2MuWHQeTJk2SJB09elRffvmlt1MAAAAAAACwmOcy32BKv3j5+Bg2ZQMAgL28XjiQpF/96lfO1w8//LBKS0vtSAMAAAAAAECFpZVava/AEpvKfAMAQAdmS+Fg+vTpuvvuu2Wapnbu3Knp06fr0KFDJ78QAAAAAADAzRbtOCRHtek8DvDz0YQ+sTZmBACAvWwpHEjSSy+9pIceekiGYWjJkiUaOHCgHn/8caWmptqVEgAAAAAAXrMnp1izV+xTatYRu1Pp8Oa5zDcY3ytGIQF+NmUDAID9bPlXcMqUKc7XMTExysnJUX5+vp566ik99dRTCg8PV/fu3RURESF/f/9Gr2sYhubPn++JlAEAAAAAcJsd2UU6/2/LVOGolp+PoeevGKYLT+lmd1odUqWjWou2WwsHUwd0tikbAABaB1sKB4sWLZJhHB8wVPPaNI9tCzxy5Ig2bdpkOedkTNNs0vkAAAAAANjl/ZX7VeGoliRVVZv6zUcbFBceqNN60R7H21al5auorMoSY74BAKCjs61VUX0Mw7B8AQAAAADQHm05YG1PVOkwdcfba2hbZIP5Lm2KBiVEqGtksE3ZAADQOthWODBN061fAAAAAAC0BaZpaltm3QJBUXmVbpq1SpmFR23IqmMyTVPzt2VbYrQpAgDApsJBdXW1R74cDocd3w4AAAAAAI2WUXBUReVV9b6XWVimm2at0pGySi9n1THtzilRWl6pJTaNNkUAALSuVkUAAAAAALR3Ww6euB1RalaR7nh7jSqqqr2UUcflutsgPjxQgxMibcoGAIDWg8IBAAAAAABetNWlTdHQxEilxIVaYj/uydMDH29QdTWteT3Jdb7B1AHx8vFh5iIAABQOAAAAAADwoq0uOw7G9IzWWzeNVmxYgCX++fqDevbb7d5MrUMpKKnQ6n35ltjU/sw3AABAonAAAAAAAIBXuQ5GHpgQoaToEM2aOVohAb6W915dvFtv/5jmxew6jkU7Dqn2ho5APx+N7x1rX0IAALQiFA4AAAAAAPCSwtJKHTh81BIb0DVCkjQkMVIvXztCvi6tcn4/d4u+3ZLltRw7inkubYom9I5VsEvhBgCAjqrVFA5M09R3332nRx55RNOmTVOvXr0UExOjwMBAxcTEqFevXpo2bZoeeeQRffvttzJN+jwCAAAAANoW1/kGAb4+6hUX5jye3C9ef7x4sOUc05TufX+d1uwr8EqOHUFFVbWWbM+xxKYOoE0RAAA1/OxOwOFw6K9//ateeuklpaenO+O1CwMFBQUqKChQWlqaFi5cqGeeeUaJiYm655579Ktf/Uq+vnwiAAAAAADQ+rkWDvp2CZO/r/UzfVeOStbBw2V6cf5OZ6y8qlq3vrVKn9x5mlJqFRrQPKvS8lVUXmWJTR0Qb1M2AAC0PrbuONi6datGjhypBx54QPv375dpms6CgWEYdb4kOc9JT0/Xgw8+qJEjR2rLli12fhsAAAAAADSK62Dkgf9rU+Tql9P66IpTEy2xgtJK3ThrpXKKyj2WX0cxb1u25XhIt0h1jgiyKRsAAFof2woHa9eu1aRJk7Rp0yaZpllvccAwDIWEhMgwjHqLCqZpauPGjTrjjDO0du1au74VAAAAAAAaxXXHQUOFA8Mw9IeLh+iMvnGWeHr+Ud385iqVuHxaHo1nmqbmu8w3YLcBAABWthQOCgsLNWPGDOXm5kqSswjQu3dvPfHEE1q8eLHy8vJUVVWloqIiVVVVKS8vT4sWLdITTzyh3r17W4oN+fn5mjFjhg4fPmzHtwMAAAAAwElVVFVr16EiS2xAA4UDSfL39dE/rh2hwd2s52w6UKifv7dWVY5qj+TZ3u06VKz9+aWW2DTmGwAAYGFL4eDhhx9WZmams2AQHBysV199Vampqfrd736niRMnqlOnTpZrOnXqpNNPP12/+93vlJqaqldeeUXBwcHO97OysvTII494+1sBAAAAAKBRdh0qVqXDtMQGJDRcOJCk0EA//XvmKCV2CrbEF27P0aOfb7bMB0TjzHPZbdAlIkiDTvLfAQCAjsbrhYOjR49q9uzZlqLBvHnzdPvttztbFZ2MYRi64447NG/ePAUGBjrXmj17tsrKyjz8HQAAAAAA0HSubYqSooMVEeR/0uviw4P01s2jFRViPfc/q9L10oJdbs2xI5jvMt9gyoD4Rj+PAACgo/B64WDRokUqLi6WdKwA8Pjjj2vs2LHNWmvs2LF6/PHHnZ+wKCkp0cKFC92WKwAAAAAA7tLYwcj16RUXpjduPFWBftZf4//y/Q59tDrdLfl1BPklFVq7v8ASm8Z8AwAA6vB64WDfvn2Sjg0j8vf312233dai9W6//Xb5+/s7Px1Qsz4AAAAAAK3J1sxCy/HArpFNun5k92i9eNUpcv1w/MOfbtLiHTktTa9DWJh6SNW1ujsF+fvotF6x9iUEAEAr5fXCQX5+vqRjuw169uypqKioFq0XFRWllJQU566DgoKCk1wBAAAAAIB3maapbZmug5HDm7zOOYO76vfnD7TEqqpN3TV7jTYfKGzgKtSYn2ptUzShd5yC/H1tygYAgNbL64WDyMjjn6gID2/6D0n1qb1ORAQDjQAAAAAArcvBwjIVHq20xAY2cyDvzPE9dcfpKZZYSYVDN725Sun5pc3Osb2rqKrWkh25lhhtigAAqJ/XCwcDBgyQdOzTFhkZGW5Zs/Y6NesDAAAAANBauM43iAjyU7eo4Gav9+A5/TVjWIIlllNUrhtnrdTh0opmr9ue/bQ3T8XlVZbYlP4UDgAAqI/XCwfjx4937hDIzs7W+vXrW7TeunXrlJWVJUkKCwvThAkTWpoiAAAAAABuVWcwckKEc1Zfc/j4GPrz5UM1NiXaEt+TU6Jb31qtskpHs9dur+ZvO2Q5HpYYqfiIIJuyAQCgdfN64SAwMFA/+9nPnMcPPfRQi9arud4wDN15550KCAho0XoAAAAAALhbSwcj1yfQz1f/vP5U9e0cZomv3legX32wXo7aU4A7ONM0NW+bdb7B1AGdbcoGAIDWz+uFA0n6/e9/r379+sk0TX3//fe68847ncONG8s0Td155536/vvvJR1rUfT73//eE+kCAAAAANAiWzOtOw6aMxi5PpHB/nrzptHqHBFoiX+9OUtP/Xdrk3/Xbq92ZBcro+CoJTaV+QYAADTIlsJBSEiIvv/+ew0ePFimaeq1117Tqaeeqm+//fakP9SYpqlvvvlGI0eO1GuvvSZJGjp0qL777jsFBze/PyQAAAAAAJ5wpKxS6fnWh9bNHYxcn4SoYL1502iFB/pZ4m/+kKY3lu11233aMtfdBgmRQRrY1X3/DQAAaG/8Tn6K+7399tuSpDvvvFPPPvus9u3bp3Xr1um8885T586dNWHCBA0ePFgxMTEKCQlRaWmpcnNztXnzZi1btkyHDh1yFhh69Oihn/3sZ5o3b16j73/DDTd45PsCAAAAAMBVamaR5djf11CfePfsOKgxoGuE/nn9SN04a6UqHcc/kPd/X25T54igOoOUO5r5LoWDKQPiWzRjAgCA9s4wbdi36OPjU+cf6NppnOgf78aedyIOB0OiPC0jI0NJSUmSpPT0dCUmJtqcEQAAAADY483le/X4F1udxwO6RujrX0z0yL0+X3dAv/xgvSUW4Oujt28ZrbEpMR65Z2uXW1yuUX+Yp9pPP2bdNEqT+9GqCACAhtjSqqiGaxGg5qv2+zVfjT2voS/X+wEAAAAA4A2u8w082SLnouHd9MA5/SyxCke1bn97tXZkFzVwVfu2MPWQpWgQEuCrcR20iAIAQGPZVjio/TD/RA/7a5/fmPNOdj8AAAAAALzJU4ORG3LnGb10/djultiRsirN/PdKHSoq8+i9W6P52w5Zjif0jlWQv69N2QAA0DbYMuNg1qxZdtwWAAAAAACvqnRUa0d2sSXmzsHI9TEMQ49fMEhZR8r0/dbjvf0PFpbp+W936JnLhnr0/q1JeZVDS3fmWGLTBnS2KRsAANoOWwoHN954ox23BQAAAADAq/bklKiiqtoS82Srohq+Pob+dtVwXfOvFVq3/7Az/sXGg3psxkCFBtryOMDrVuzJV0nF8TmHhiFN7s9sAwAATsbWGQcAAAAAALRnWzMLLcfdooIVFRLglXsHB/jqlWtHytfn+IzA0gqHvt6c5ZX7twbzt2VbjoclRikuPNCmbAAAaDsoHAAAAAAA4CFbD7rON/D8boPaukQG6Yy+cZbYx2vSvZqDXUzTrDPfYNoAdhsAANAYFA4AAAAAAPAQ18HIAz08GLk+l45ItByv2JOv9PxSr+fhbalZRTpw+KglNpX5BgAANAqFAwAAAAAAPMA0TW3LLLLEPD0YuT5TB8QrMtjfEvtkbYbX8/A21zZF3aKC1b+L9ws3AAC0RRQOAAAAAADwgOwj5covqbDEBnaN9HoeQf6+umBYgiX2ydoMVVebXs/Fm+a5tCmaOiBehmE0cDYAAKiNwgEAAAAAAB7gOhg5PNBPiZ2Cbcnl0pHWdkXp+Ue1Ki3flly8IaeoXBsyDltitCkCAKDxKBwAAAAAAOAB9Q1G9vGx5xPvwxIj1Ts+zBL7eE37bVe0MPWQzFobKkIDfDU2Jdq+hAAAaGMoHAAAAAAA4AGug5EH2DAYuYZhGLrMZdfBV5syVVpRZVNGnjXPZb7BxD5xCvTztSkbAADaHgoHAAAAAAB4QGsYjFzbxcO7qfaGh5IKh77ZnGVfQh5SVunQ0p25ltjUAfE2ZQMAQNtE4QAAAAAAADcrLq9SWl6JJWbHYOTaOkcEaWKfOEusPbYr+nFPno5WOpzHhiFN7k/hAACApqBwAAAAAACAm23POmLpse/rY6hP57CGL/AS13ZFP+7JU0ZBqU3ZeMZ8lzZFw5OiFBsWaFM2AAC0TRQOAAAAAABwM9fByL3jwhTkb3+P/TMHdlZ4kJ/z2DSlz9YesDEj9zJNUwu2HbLEpg7obFM2AAC0XRQOAAAAAABws9Y0GLm2IH9fzRiWYIl9sjZDZu3tEW3Y1swjOlhYZolNo3AAAECTUTgAAAAAAMDNtraywci1ubYrSssr1Zp9BTZl417zXXYbJHYKVt9W0CIKAIC2hsIBAAAAAABuVOWoVqrLjgO7ByPXNjwpSimxoZZYexmS7DrfYNqAzjIMw6ZsAABouygcAAAAAADgRml5JSqvqrbEWkurIkkyDEOXuuw6+O/GTB2tcNiUkXscOlKmDRmFltjUAfE2ZQMAQNtG4QAAAAAAADfa4jIYuUtEkGLCAm3Kpn6XjOim2h/ELy6v0ndbs+xLyA0Wbre2KQoL9NOYnjE2ZQMAQNtG4QAAAAAAADdqrYORa+saGawJvWMtsbbermiey3yD0/vGKsCPxx4AADQH/4ICAAAAAOBG21rxYOTaXIckL9uVq4OHj9qUTcuUVTq0bGeuJTa1f2ebsgEAoO3zc+diU6ZMcedyTWYYhubPn29rDgAAAACAjm3rwdY7GLm2swZ2UXign4rKqyRJpil9tu6A7p7c2+bMmu7H3Xk6Wnl8RoOPIU3uz3wDAACay62Fg0WLFsmo3STRi0zTtO3eS5Ys0ZtvvqkffvhBBw4ckK+vrxITEzV58mTdfPPNGj58uMdzyM7O1scff6zPP/9ce/bsUWZmpkzTVHx8vAYOHKhJkyZp8uTJOvXUU+Xjw0YTAAAAAPCEQ0Vlyi0ut8Ra646D4ABfnT+sq95fme6MfbImQ3dN6mXb79fNNW9btuV4RHInRYcG2JQNAABtn1sLBx1NUVGR7rrrLs2ePbvOe4WFhdqyZYtefvll3XfffXr66afl7+/v9hwcDodefPFFPfbYYyopKanz/v79+7V//3598803kqSdO3eqd++29+kRAAAAAGgLXHcbhAT4qnt0iE3ZnNylIxIthYM9uSVau/+wRnbvZGNWTWOaphakWucbTB1AmyIAAFrC7YUD0zTdvWSrVFVVpQsvvFALFy50xiIiIjRo0CBVVFRo69atOnr0qEzT1PPPP6+cnBy99dZbbs2hsrJSl112mebOnWuJ9+7dWwkJCTJNUwcPHtSePXs6zH8XAAAAALBT3cHIEfLxab2f3h/ZvZN6xIQoLa/UGftkbUabKhxsOXhEmYVllti0AbQpAgCgJdzas6a6utrWL4fDcfIk3eS3v/2tpWjwu9/9TpmZmfrhhx+0evVqpaen69Zbb3W+//bbb+uVV15xaw7XXXeds2jg7++vBx98UPv379fOnTu1ePFiLVmyRLt27VJ+fr7ef/99nXnmmbQpAgAAAAAPch2MPKBruE2ZNI5hGHWGJH+x4aDKKr33+3VLzd9m3W2QHB2i3vFhNmUDAED7wFPkZkhPT9eLL77oPP7d736nJ598UiEhx7efxsTE6PXXX9d1113njD3xxBMqLS2VO7zzzjv68MMPJUkhISH67rvv9Kc//UlJSUl1zo2KitJVV12l7777TikpKW65PwAAAACgrq0HCy3HrXUwcm0Xj0hU7ZEGRWVV+m5rdsMXtDLzU625Th0Q3+ZmNAAA0NpQOGiGF198UeXlx4ZdJScn69FHHz3huTUFhezsbM2aNavF9y8qKtJ9993nPP7rX/+qSZMmtXhdAAAAAEDzlVZUaU+udfZcax2MXFu3qGCd1ivGEvtkTYZN2TRN9pEybcywFmumMd8AAIAWo3DQDJ999pnz9c0336yAgIAGz42OjtZll11W77XN9d577yk3N1eS1L9/f0tLJAAAAACAPbZnFan2eDkfQ+rXuXW3Kqrh2q5o6c4cZbnMDWiNXIcihwf6aVSPaJuyAQCg/aBw0ESpqanas2eP8/icc8456TXnnnuu8/XixYtVXFzcohzeeOMN5+vrrruOLZgAAAAA0Aq4DkZOiQtTcICvTdk0zdmDuii0Vq7VpvTZugM2ZtQ487dZ2xSd3i9OAX486gAAoKX417SJNmzY4HwdGBioESNGnPSacePGOV9XVVVp69atzb7/4cOHtXr1aufx5MmTm70WAAAAAMB9trkUDgZ0bf1timqEBPhp+tCultgnazNk1t5C0cqUVTq0bFeuJTZtQLxN2QAA0L5QOGiibdu2OV8nJSXJ39//pNckJSVZ2hmlpqY2+/6rV6+2/OA2ZMgQSdKSJUt0/fXXKyUlRUFBQYqJidGIESN0//33a/v27c2+HwAAAACgcbYetBYOBrahwoEkXTYyyXK861CxNrjMD2hNlu/KVVlltfPYx5Am9aVwAACAO/jZnUBt5eXl2rx5s3Jzc3X48GHnAOKmuOGGGzyQ2XH79u1zvk5OTm7UNT4+PurWrZv27t0rSUpLS2v2/Tdu3Oh8HRYWpoCAAN12223617/+ZTmvvLxc+fn5WrdunV544QXdd999+tOf/iQfn+bVijIymjYYKzMzs1n3AQAAAIC2yFFtKjWryBJrC4ORaxvVo5OSo0O0P7/UGft4TbpOSYqyL6kTmLfNOt/g1O7R6hTa8AxCAADQeLYXDkpLS/XOO+9o1qxZWrdunaqqqlq0nqcLB0VFx38QjIyMbPR1ERHHf2CsvUZT5eXlOV+HhYXp5ptv1nvvvSdJ8vX11ZAhQ9SpUydlZGRo586dkiSHw6HnnntOmZmZeuedd5p136SkpJOfBAAAAAAd1L68EpVWOCyxtrbjwDAMXToiUS/M2+GMzV1/UI9OH6gg/9Y1q8E0TS1Itc43mEqbIgAA3MbWVkWLFy9Wv379dNddd2nVqlWqrKyUaZpN/pLktb6LJSUlztdBQUGNvi44OLjeNZqqsPD4NtGsrCxn0eDqq69WRkaG1q1bpwULFmjHjh1av369Tj31VOf5s2fPrrMzAQAAAADQcq6DkePCAxUXHmhTNs13yYhuluMjZVWa7/LJ/tZg84Ejyj5i7VIwdUBnm7IBAKD9sW3HwTfffKMZM2aourpapmnKMAzne7VfuxYEar9X8743hzVVVlY6X/v5Nf6Pr/a5FRUVzb5/WVlZndg111yjd999t0582LBhWrBggcaOHescyPzEE0/oxhtvbNRshtrS09ObdH5mZqZGjx7dpGsAAAAAoK1qy4ORa0uKDtHYlGit2JPvjH28Jr3O4GS7zdtm3W3QIyZEveJCbcoGAID2x5bCQWZmpq6++mo5HA5nISAlJUWXX365evbsqTvuuMMZv//++9WrVy/l5+dry5YtWrx4sTIyMpzvDxw4UPfdd598fb2zbTIkJMT5ur6H+A2pfW5oaPN/mHG9Njg4WH/7298aPD88PFwvvPCCzj77bEnHZhXMmzdP5557bpPum5iY2PRkAQAAAKCDaOuDkWu7bGSSpXCweEeODh0pU3xE43fde9r8Om2KOtf5oCEAAGg+WwoHzz//vAoLC53/qN966616+eWXnZ+Cv+OOO5znnn322ZoyZYrz2DRNzZkzR7/5zW+0Z88ebdu2TbNnz9bnn39umSPgKWFhYc7XR48ebfR1paXHh0vVXqMl95ekc889VzExMSe85swzz1R8fLwOHTq2vXTJkiVNLhwAAAAAABrm2qqorQ1Gru3cwV302JzNzpkN1ab0+foDuv30XjZndkxWYZk2H7D+eTPfAAAA9/L6jAPTNDVr1ixn0WD06NF67bXXGt06xzAMXXTRRdqwYYOmTZsm0zS1ePFiXXrppZ5M26n2Q/rMzMxGX5eVlVXvGk0VGxtrOR4xYsRJrzEMQ8OHD3ce7927t9n3BwAAAABY5RaX1+m335Z3HIQG+uncwdbWRB+vyfBqm+ATcd1tEB7kp1E9om3KBgCA9snrhYPNmzeroKDA+QPHI4880qx1QkNDNWfOHPXu3VumaWrBggV69dVX3Zlqvfr16+d8vX///kZdU1JSovz849s8a6/RVP3797ccN7YIUfu82rkAAAAAAFrGdb5BkL+Pesa27X77l420tqvdkV2sTQcKbcrGynVY86R+8fL39frjDQAA2jWv/8u6adMm52s/Pz9n7/2GOByOBt8LDg7WH//4R0nHdjI899xz7knyBAYMGOB8nZOT06hdB+vXr29wjaYaNGiQ5bi8vLyBM61qz1gIDg5u9v0BAAAAAFauhYN+XSLk69O2++2P6RmtxE7W3x0/WZNhUzbH5RSVa/muXEtsGm2KAABwO68XDvLy8iQda5/Ts2dPBQQE1Dmn9kCjk80RmDFjhnNgcVpamqUw4QmjR4+25Lx06dKTXlP7nMTERKWkpDT7/snJyerRo4fzuLFth9LS0pyvO3fu3Oz7AwAAAACs2tNg5Bo+PoYuGWHddTBnw0GVVzX84T5PKy6v0k1vrlR5VbUz5utjaFJfCgcAALib1wsHRUVFztedOnWq95zQ0FBnK6MjR47Ue06NwMBAy4N010/3u1t4eLgmT57sPH733XdPes17773nfD1jxowW53DxxRc7X3///fcnPT87O1sbN250Ho8dO7bFOQAAAAAAjmlPg5Fru3REN8vx4dJKLXBpE+QtlY5q3fXu2jpDkc8a2FmRIY2bmQgAABrP64WD0NDjfR4rKyvrPSc8PNz5Oj09/aRrhoWFOV/XHkLsKTNnznS+/vLLL7Vu3boGz507d65lF8SNN97Y4vvfdNNN8vE59p9u69atmjt37gnP//Of/6yqqipJUkBAgM4555wW5wAAAAAAkMoqHdqdU2KJtYcdB5LUPSZUo3tahw5/stb77YpM09TDn27Skh05lnhSdLCevHCw1/MBAKAj8HrhIC4uzvm6od0EycnJztcbNmw46Zq15wycaCaCu1xxxRUaPHiw837XXnttvbMOtm3bpjvuuMN5PH36dI0ZM6beNd98800ZhuH8WrRoUYP3HzJkiK655hrn8a233mrZUVDbf/7zH73wwgvO4xtvvFEJCQkn/P4AAAAAAI2zI7tIjmrTeWwYUv8u4Se4om25zKVd0cLtOcopatysPXf5y/c79LHLfIXo0AC9ffMYxYUHejUXAAA6Cq8XDmoGA5umqfT0dFVXV9c5Z9iwYc5zFi1a5Py0fH22bdum9PR051yEmJgYD2Rt5ePjo9dff12BgYHOHIYPH64//OEP+u677/Tll1/qwQcf1NixY507IGJiYvTiiy+6LYfnnnvOWWDJycnR6NGj9fOf/1xz587V0qVL9d577+niiy/W1Vdf7Sym9OrVS88++6zbcgAAAACAjs51MHKPmFCFBvrZlI37nTe0q4L9fZ3HjmpTc9Yf8Nr9Z6/Yp5cW7LLEgvx99MaNp6pnbGgDVwEAgJbyeuFg4MCBzgfuFRUV2r59e51zas8QyMnJ0SuvvFLvWqZp6v7773e+lqShQ4e6O+V6jR07Vm+//bbze8nOztajjz6qs88+W+eff76effZZ546KyMhIffrpp+rVq5fb7t+lSxd9+eWX6tbtWM/J8vJyvfzyy7rwwgt1+umn69prr9Xnn3/uPL9fv3765ptvFBUV5bYcAAAAAKCja4+DkWsLC/TTuYO7WGIfr8lw/g7uSd9tydJjczZbYj6G9PerR2h4cv0zEwEAgHt4vXAQGBiocePGOY/rG+57wQUXKDw8XIZhOIsDzz77rAoLC53npKam6sILL9RXX33l3G3QpUsXjRo1yvPfxP9cccUVWrVqlSZNmuTMoTZfX1/NmDFDGzZs0Omnn+72+w8ePFibNm3SrbfeqpCQkHrPCQsL04MPPqiffvpJvXv3dnsOAAAAANCRtdfByLVdNtLarig1q0hbDtbfethd1uwr0D3vr1O1S33i/y4aomkDO3v03gAAQDJMb3xMwMXzzz+v+++/X4ZhaNKkSZo/f36dc5555hk9/PDDzuKBYRjy8fFRXFycKioqVFBQIOn4TgPDMPTCCy/o3nvv9er3UmPv3r1asWKFDhw4IF9fXyUmJmrixInq0qXLyS92g+LiYi1atEj79+/X4cOHFR0drX79+mn8+PEKCAjwSg61ZWRkKCkpSdKxAdeJiYknuQIAAAAA2pbqalNDn/hOxeXH2+vOmjlKk/vH25iV+1VXm5r47EIdOHzUGZt5Wg89fsEgj9xvd06xLn3lBx0urbTE753aR/ed2dcj9wQAAFa2FA4OHDig5ORkZ0Fg8+bNztkHNaqqqnT22Wdr4cKFzuKBq5pP+ZumqRkzZmjOnDleyR8nR+EAAAAAQHu3L69EZzy3yBL76ZGp6hwRZE9CHvT8d9stswaiQwO04uGpCvBzbyODQ0VluuQfPyij4KglfsWpiXrm0qH17vYHAADu5/VWRZLUrVs3rV+/XqtWrdLKlSsVGxtb5xw/Pz99+eWXuvHGGy1xwzAsBQPDMHTXXXfp448/9kruAAAAAABIdQcjR4cGKD480KZsPOvSEdYPg+WXVGjh9kNuvUdxeZVumrWqTtFgcr84/eHiIRQNAADwIj+7bjxkyJCTnhMUFKRZs2bpl7/8pT788EOtWLFC2dnZMk1TXbp00WmnnabrrrtO/fr180LGAAAAAAAcV99g5Pb6cLtHbKhO7d5Jq/cVOGMfr8nQ2YPc0563oqpad85eU2d2wtDESP39mhHy97Xlc48AAHRYthUOmmLYsGEaNmyY3WkAAAAAAODUEQYj13bZyERL4WBh6iHlFZcrJqxluyxM09RDn2zU0p25lnj3mBD9e+YohQa2iUcXAAC0K5TsAQAAAABohvp2HLRn5w3tqiD/448RqqpNzVl/sMXrPvftdn267oAlFhMaoLduGq3YFhYlAABA81A4AAAAAACgiQpKKnSwsMwSa+87DiKC/Ou0Jvp4TUaL1nznxzT9Y9FuSyzY31dvzBylHrGhLVobAAA0H4UDAAAAAACayHUwcoCfj1I6wIPuy0ZahyRvzTxSZ+dFY32zOUuPzd1iifn6GHr52uE6JSmquSkCAAA3aHWNAvPz87Vt2zbl5+ersLBQ1dXVOvvss9W5c2e7UwMAAAAA2Gh/Xqm2ZxdpdI9oRYb425qL63yDfp3D5dcBBvie1itWXSODlFlrt8UnazM0MGFgk9ZZnZavX/xnnUzTGv/jxYM1pT+//wMAYLdWUTg4dOiQ/v73v+uTTz5Rampqnfe///77egsHs2bNUnp6uiQpISFBt956q8dzBQAAAAB43+IdOZo5a6VMU+oZG6qPfzauxUN5W6LOYOR2Pt+ghq+PoYuHd7O0F/p83QE9dG5/+TeycLLrUJFueWu1yquqLfFfTuujK0cluzVfAADQPLYXDp577jk99thjqqiokOn6UQNJhmE0eG1xcbEef/xxGYYhX19fzZgxg50JAAAAANAO/eW77c5Pp+/NLdHLC3frsRlN+5S7O9UZjNzO5xvUdunIREvhIK+kQou25+jMgSf/fTz7SJlu/PcqFR6ttMSvGpWkX0zt4/ZcAQBA89i2j9LhcOiSSy7RQw89pPLy8jrvn6hgUOOWW25RRESETNOUw+HQe++954lUAQAAAAA2yikq14aMQkvs3Z/26VBRWQNXeFZ5lUO7DhVbYh2pcNArLkwjkqMssU8aMSS5qKxSM2et0oHDRy3xKf3j9X8XDW7UcwAAAOAdthUO7r77bn3++ecyTVOGYcg0TQ0fPlwPPvigXn755Xp3H7gKCQnRjBkznMdfffWVJ1MGAAAAANhg0fZDdWLlVdV6bfEeG7KRdmYXq6ra+jtr/y7htuRil0tdhiTPT81WfklFg+dXVFXrztlr6wyVHpYUpb9fM7xDzIcAAKAtseVf5mXLlum1116TYRgyDEOxsbH68ssvtWbNGj399NO68847JTVu18FFF10kSTJNU8uXL1dFRcM/qAAAAAAA2p6F9RQOJGn2T/uUW1x3B7unuT78To4OUXiQvcOave38oQkK8Dv+SKHSYWru+gP1nltdbeqBjzdo2a5cS7xHTIj+feOpCgmwvYsyAABwYUvh4LHHHpN07GF/eHi4Fi9erHPPPbdZa40ZM8b5ury8XNu3b3dLjgAAAAAA+1U6qrV0R26975VVVuv1Jd7fddBRByPXFhnsr7MHdbHEPllbf+Hg2W+36/P1By2x2LAAvXXzaFsHXAMAgIZ5vXBQUFCgpUuXOncbPProo+rfv3+z10tMTFSnTp2cx6mpqe5IEwAAAADQCqxOK1BReVWD77/94z7leXnXQUcejFzbpSO6WY43HShUapb1z+bN5Xv16uLdllhIgK/+PXOUuseEejxHAADQPF4vHCxbtkwOh0OmacrHx0e33npri9eMj493vj50qP4trAAAAACAtse1TVG3qGD5+hxva3u00qHXl+71Wj6mabLj4H8m9olT5wjrjoHaQ5K/3pSpJ/671fK+r4+hl68doaGJUd5IEQAANJPXCwcHDx7bnmgYhlJSUhQVFdXiNSMjI52vi4qKWrweAAAAAKB1WJBqLRxcMqKbLjrF+kn3t39MO+FgXnfKKDiqojLrDoiOuuPA18fQxcOtQ5I/W3dQVY5qrdybr198sF6mdYa0nr5kiCb3ixcAAGjdvF44yM/Pd76Ojo52y5rl5ce3pfr7d6yBVAAAAADQXqXnl2rXoWJLbHL/eP18Sm/V2nSg0gqH3ljmnVkHroORI4P91TUyyCv3bo0uG2kt4uQWl+uNZXt129urVVFVbXnv12f21RWnJnkzPQAA0ExeLxx4YndA7fZEsbGxblkTAAAAAGAv1zZF0aEBGpYYpZ6xobrQZdfBWz/s0+FSz+86qK9NkWEYDZzd/vWOD9ewpChL7OmvU1V4tNISu2ZMsn4+pbcXMwMAAC3h9cJBXFycpGN9Ifft26fq6uqTXHFi6enpyszMdB4nJCS0aD0AAAAAQOvg2qZoUt8453wD110HxeVVemOZ52cdMBi5rstGJp7w/WkDOuvJCwZ16AILAABtjdcLB8OGDXO+Li0t1fLly1u03kcffeR87evrq7Fjx7ZoPQAAAACA/Y5WOPTj7jxLbHL/473xe8WFacYw6wfH3lyepsJS6yfd3Y3ByHXNGNpVAb71P14Ynhyll64eLr8G3gcAAK2T1//l7tu3r3r27On8pMFf/vKXZq915MgRvfDCCzIMQ4ZhaNSoUQoPD3dXqgAAAAAAm/ywO1fltXrk+/oYOr1PnOWce6b0Vu0PsReVV+mN5Z7bdVB4tFIZBUctMXYcSFEhATpzYOc68Z6xoXrjxlEKDvC1ISsAANAStpT8b7jhBpmmKdM0NXfuXL311ltNXsPhcOiGG27QgQMHZJqmJOmuu+5yd6oAAAAAABu4zjcYmdxJkSH+lljv+HCdP9S662DW8r11+uu7S6rLbgN/X0O94sI8cq+25spR1qHHsWGBeuum0YoODbApIwAA0BK2FA5+85vfKD4+XoZhyDRN3XrrrXruuefkcDgadX1qaqqmTJmiL774wrnboG/fvrrmmms8nDkAAAAAwNNM09TC1BxLrHabotrq7Dooq9Kby9M8kpdrm6I+8eEK8KMFjySd3jdOd07qpWB/X/XvEq53bhmt5JgQu9MCAADN5GfHTUNDQ/Wvf/1LF198saqrq+VwOPTQQw/pH//4h66++mqNHDlS0rEfFg3D0Jo1a5Sfn69du3ZpwYIFWrBggXPHgiQFBwfrvffeY9ASAAAAALQDO7KLdeCwtSXQlAYKB307h+u8wV315aZMZ+yNZXt004Qeigjyr/ea5mIw8ok9eE5/PXhOf7vTAAAAbmBL4UCSzj//fL388svO9kKmaWrfvn165plnLOeZpqmHHnqoTqymSODv769Zs2Zp+PDh3kkcAAAAAOBRC1KtbYoSIoPUt3PDLYHumdrbUjg4Ulalt5an6Z6pfdyaF4ORAQBAR2Hrnsrbb79d3377rTp3PjZEqaYYUFMYqPmq2V1Qs8OgJta5c2fNnz9fV1xxhW3fAwAAAADAvVznG0zuH3/CHeb9u0To3MFdLLF/LdurojL3zTqodFRrZ3axJcaOAwAA0F7Z3oxx6tSp2rZtm/74xz+qa9euzuKAa7GghmmaioqK0hNPPKHt27drwoQJdqQNAAAAAPCAwtJKrdlXYIk11KaotnumWHcXFB6t1Ns/7nNbXrtzilXhqLbEBnShcAAAANon21oV1RYZGamHHnpIDzzwgDZs2KClS5dq27ZtysvL0+HDhxUSEqLY2Fj17NlTkydP1ujRo+Xn1ypSBwAAAAC40ZKdOXJUH/8AWaCfj07rFXvS6wYmROisgZ313dZsZ+xfS/do5mk9FBrY8t8fXecbdIsKVmSIe2coAAAAtBat6um7j4+Phg8fzrwCAAAAAOigFrrMNxjXK0bBAb6NuvbeqX0shYOC0mO7Du6c1KvFeTEYGQAAdCReb1X05ZdfasSIEc6vBQsWeDsFAAAAAEAr5Kg2tWhHjiU2ud/J2xTVGNwtUtMGdLbEXl+6RyXlVS3OjcHIAACgI/F64WDLli1av3691q9fr+3bt2v8+PHeTgEAAAAA0AptzDis/JIKS6wx8w1q+8VU66yD/JIKzV7RslkHpmnWLRyw4wAAALRjXi8c+Poe22JqGIaSk5MVGBjo7RQAAAAAAK2Qa5ui3vFhSooOadIaQxIj6xQbXluyR0crHM3OK+tImQ6XVlpi7DgAAADtmdcLB127dnW+Dg8P9/btAQAAAACt1ILt1sJBU3cb1HDddZBXUqF3f2r+rgPX+QbhgX5K7BTc7PUAAABaO68XDnr06OF8nZWV5e3bAwAAAABaoUNHyrT5gPUB/aR+cc1aa1hSVJ1rX13c/F0HroWDAQkRMgyjWWsBAAC0BV4vHIwdO1ZdunSRaZo6cOCA9uzZ4+0UAAAAAACtzKLt1qHI4YF+GtUjutnrue46yC0u13sr9zdrLQYjAwCAjsbrhQMfHx9de+21zuMXXnjB2ykAAAAAAFqZBS7zDSb2jZW/b/N/ZR2e3Emn93XddbBbZZVN33XAYGQAANDReL1wIEmPPPKIunbtKtM09c9//lOfffaZHWkAAAAAAFqBiqpqLduVa4lN7te8+Qa1/WJqb8txTlG5/tPEXQfF5VXal1dqibHjAAAAtHe2FA46deqkL7/8UvHx8aqqqtJVV12lRx99VMXFxXakAwAAAACw0aq0fBWXV1lik9xQOBjZPVoTesdaYq80cddBqstuAz8fQ73jw1qcGwAAQGvmZ8dNlyxZIkn685//rPvvv1/Z2dl6+umn9eKLL2r69OkaPXq0evbsqYiICPn7+zdp7dNPP90TKQMAAAAAPGShS5uioYmRigsPdMvav5jWx7KbIftIuT5cna4bxvVo1PWubYp6x4cpyN/XLbkBAAC0VrYUDiZNmiTDMJzHhmHINE2VlJToo48+0kcffdSsdQ3DUFVV1clPBAAAAAC0Ggu2WwsH7mhTVGNUj2id1itGP+zOc8ZeWbRbV45KUqDfyQsAWw8yGBkAAHQ8trQqqmGapvO1YRjOYoJpms3+AgAAAAC0HfvySrQnp8QSm9LffYUDSfrF1D6W48zCMn24OqNR1zIYGQAAdES2FQ5qHvLz8B8AAAAAOq4FLm2KYsMCNKRbpFvvMSYlRmN6RltiryzcpYqq6hNeV+Wo1vasIktsADsOAABAB2BLq6Lf//73dtwWAAAAANDKuBYOzugbLx8fo4Gzm+8X0/romtd/ch4fLCzTx2sydM2Y5Aav2ZtbonKX4gKFAwAA0BFQOAAAAAAA2KK0oko/7cm3xNzdpqjGuJQYje4RrZVpx+/38sJdumxkogL86t+M79qmqGtkkKJDAzySHwAAQGti64wDAAAAAEDHtXxXniocxz/R7+djaGLfWI/cyzAM/WKaddbBgcNH9enahmcdMBgZAAB0VBQOAAAAAAC2cG1TdGqPTooI8vfY/U7rFaOR3TtZYn9fuEuVjvpnHTAYGQAAdFQUDgAAAAAAXmeaphZttxYOPNWmqIZhGPrFVOuug4yCo/ps3YF683PdccB8AwAA0FFQOAAAAAAAeF1qVpEyC8ssscn9PFs4kKSJfWI1PDnKEnt54S5Vuew6yCkqV15JhSVGqyIAANBR2DIcuSGmaWrdunXatm2b8vPzVVhYqOrqat1www3q0aOH3ekBAAAAANzEtU1RYqdg9Y4P8/h9a3YdzJy1yhnbl1eqz9cf1GUjE52xLS5tikIDfJUcHeLx/AAAAFqDVlE42LBhg55//nnNmTNHxcXFdd6fMGFCvYWDZ599VqmpqZKk5ORkPf744x7OFAAAAADgDgtT67YpMgzDK/c+o2+chiVFaUP6YWfs7wt26qJTEuTne2xjfn1tinx8vJMfAACA3WwtHFRUVOhXv/qVXn31VUnHdhy4OtEPjl26dNFDDz0kwzBkGIZmzpzJzgQAAAAAaOUKSiq0dn+BJTbZw/MNaju266C3bn5ztTOWllequRsO6pIRx3YdMBgZAAB0ZLbNOCgtLdUZZ5yhV199tckFgxrXXHON4uLiZJqmTNPUu+++64lUAQAAAAButGRnjqpr/RoY5O+jcSkxXs1hcr94DU2MtMT+vmCXHP9LbFsmg5EBAEDHZVvh4Oqrr9ZPP/3kPDYMQxdffLFeeeUV/fe//623mODKz89PF198sfP466+/9kiuAAAAAAD3cW1TdFqvWAX5+3o1B8MwdO+UPpbYntwS/XfjQZVWVGlvbonlPQYjAwCAjsSWVkVffPGFvvjiC+eugj59+uiTTz7R4MGDLec1ZtfBjBkz9Nprr8k0Ta1cuVJHjx5VcHCwR/IGAAAAALSMo9rU4h05lpg32xTVNnVAvAZ3i9DmA8d3F/xt/k51iwpW7c+y+RhSvy7hNmQIAABgD1t2HDz11FOSjs006Ny5sxYtWlSnaNBYo0aNcr52OBzatm2bW3IEAAAAALjf+vQCFZRWWmJTbCoc1LfrYHdOiZ7/bocl1isuzOs7IgAAAOzk9cJBdna21qxZ4xxo/NRTT6lr167NXi8+Pl5xcXHO4+3bt7sjTQAAAACAByxwaVPUr3O4ukXZt2v8zIGd68wv+HFPnuWYwcgAAKCj8XrhYPny5c5hxn5+frrqqqtavGZsbKzzdW5ubovXAwAAAAB4xsJUa5uiSf3jGjjTOwzD0C+m9j7hOQxGBgAAHY3XCwdZWVmSjv1w1rt3b4WGhrZ4zYiI4z/EFRcXt3g9AAAAAID7ZRWWaWvmEUtsSj972hTVdtbALup/ghkGDEYGAAAdjdcLB4WFhc7XtR/4t0RJSYnzNYORAQAAAKB1Wrjd2qYoIshPI7t3simb43x8DN07tU+D77PjAAAAdDReLxx06nT8h8LaRYSWqNnFIEkxMTFuWRMAAAAA4F6u8w1O7xsnP1+v/1par3MGdVHfzmF14vHhgYoLD7QhIwAAAPt4/Se0zp07S5JM09TevXtVUVHRovV27txpmWuQlJTUovUAAAAAAO5XXuXQ8l3WmXSTW0Gboho+PobumVJ31wGDkQEAQEfk9cLBqaee6nxdUVGhBQsWtGi9d9991/k6ICBAY8eObdF6AAAAAAD3W7k3X6UVDuexYUiT+tk7GNnVeUO6qne8ddfBIAoHAACgA/J64SApKUkDBw6UYRiSpGeeeabZa2VmZuqll16SYRgyDEMTJkxQUFCQu1IFAAAAALiJa5uiYYlRiglrXS2AfH0MPXHBIAX8r31SkL+PrhnT3easAAAAvM+WZpK33XabTNOUJC1ZskR/+MMfmrxGUVGRLrvsMhUUFDjX+uUvf+nONAEAAAAAbrLQpXAwpX/raVNU2/jesZp7z3g9c+kQLb5/srpFBdudEgAAgNfZUji466671KNHD0nHZh089thjuvvuuxs9LPnbb7/V6NGjtWLFCudug1GjRmn69OkezBoAAAAA0Bx7c0uUlldqibXWwoEk9e8SoStHJatzBDvaAQBAx+Rnx039/f31/vvva8qUKSorK5Npmnr11Vf19ttva8aMGRo5cqSkY0UFwzD05Zdfau3atdq1a5cWLFig3bt3O98zTVPR0dF6//337fhWAAAAAAAn4dqmKC48UAO7MjsAAACgtTLMmj4/Nvjiiy901VVXqaysTNLxQkHN6xo1sdrxmqJBZGSkPvvsM02aNMl7ieOkMjIylJSUJElKT09XYmKizRkBAAAAsMt1//pJy3blOo+vODVRz142zMaMAAAAcCK2tCqqMWPGDK1cuVIDBw60FA0kOVsQ1RQIahcMamKDBg3STz/9RNEAAAAAAFqp4vIq/bQ3zxJrzW2KAAAAYHPhQJIGDRqk9evX67333tPo0aMlyVkoqF0wqB0fNGiQ3nrrLW3YsEF9+/a1K3UAAAAAwEks25mrSsfx3+v8fQ2N7x1rY0YAAAA4GVtmHLjy9fXVVVddpauuukr5+flatmyZtm3bpry8PB0+fFghISGKjY1Vz549NXnyZCUkJNidMgAAANDhVVRVa8vBQnXrFKz4cIbIon6LtlvnG4zqEa3wIH+bsgEAAEBjtIrCQW3R0dG64IILdMEFF9idCgAAAIAGFJZW6vp//6SNGYXy9zX0+g2nalI/2s/AyjRNLXQpHNCmCAAAoPWzvVURAAAAgLalylGtn7+/VhszCiVJlQ5Tv5+7RdXV5kmuREez5eARZR8pt8QmUzgAAABo9SgcAAAAAGiSP32dqqU7cy2xfXmlWrTjUANXoKNamGr930T3mBClxIbalA0AAAAai8IBAAAAgEb7ZE2G/rVsb73vzVqe5t1k0Oq5tima3C9ehmHYlA0AAAAay2OFg/Lyco0ZM0YpKSnOr88//9wta3/99dfq1auXc90JEybI4XC4ZW0AAAAA9Vu3v0APf7apwfeX7szVrkNFXswIrVl+SYXWpR+2xGhTBAAA0DZ4rHDwwgsvaNWqVUpLS9O+ffs0depUXXTRRW5Z+9xzz9XFF1+stLQ0paWl6ccff9Q//vEPt6wNAAAAoK7sI2W64501qqiqtsQD/Ky/Urz1wz5vpoVWbPGOQzJrjb0I9vfVmJ7R9iUEAACARvNI4aC0tFR/+tOfnFtQ+/Xrp1deecWt9/jTn/6kIUOGyDAMmaapp556SpWVlW69BwAAAACprNKh299Zo0NF1iG3M0/roVsn9LTEPlmbocKj/FwOaUFqjuV4fO9YBfn72pQNAAAAmsIjhYNPPvlER44ckWmaMgxDTz/9tPz8/Nx6Dz8/P/3tb3+T+b+PsOTl5WnOnDluvQcAAADQ0ZmmqUc+26QNLi1nTusVo99OH6DrxnaXr8/xnvWlFQ59tDrdy1mitalyVGvJDmvhYAptigAAANoMjxQOZs+eLUkyDEMjR47UhRde6Inb6IwzztC4ceOcx2+++aZH7gMAAAB0VG8s26tP1x6wxJKjQ/TyNSPk7+ujhKhgnTOoi+X9t3/cJ0e1KXRc69IP19l5MqlfnE3ZAAAAoKncXjiorq7W8uXLnW2KrrjiCnffwuKyyy6TdOyTUEuWLHHuQAAAAADQMkt25OiPX22zxEIDfPX6DaeqU2iAMzZzfA/LOfvzS7Uw9ZA3UkQrtcDlv3//LuFKiAq2KRsAAAA0ldsLB5s3b1ZpaanzAb6ndhvUmDFjhvN1SUmJtmzZ4tH7AQAAAB3B3twS/fy9tXLdOPCXK09Rvy7hltip3TtpUEKEJfbmD2kezhCtmWvhiDZFAAAAbYvbCwfbth3/RFJISIj69Onj7ltY9O7dWyEhIc7jrVu3evR+AAAAQHtXVFap295erSNlVZb4r6b11dkubYmkYy1KZ57WwxJbtitXO7OLPJkmWqkDh48qNcv6357CAQAAQNvi9sJBQUGBpGO/PHTu3Nndy9era9euztf5+fleuScAAADQHlVXm/rlf9Zr16FiS/zcwV10z5TeDV43Y1iComu1L5LYddBRLdpu3W0QGeyvU5Ki7EkGAAAAzeKxwoEkxcbGunv5esXExDhfHz582Cv3BAAAANqj57/frvn19Kf/8+XD5ONjNHhdkL+vrhmdbIl9uvaACksrG7gC7ZVrm6Iz+sbJz9ftv3oCAADAg9z+05uPz/ElCwsL3b18vWrfp2YoMwAAAICm+WLDQb28cLcl1inEX6/fcKpCA/1Oev11Y7vLt1Zx4WilQx+uTnd7nmi9yiodWr4rzxKjTREAAEDb4/bCQUTEsaFopmkqJyfH3cvXq/Z9wsPDT3AmAAAAgPpsPlCo+z/eYIn5+Rj6x7UjlRQd0sBVVl0ig3TuYOsMhLd+TJPDdcIy2q0Ve/J0tNLhPPYxju04AAAAQNvi9sJBUlKS83VBQYHS0z37CaP09HTl5+c7dxrUvj8AAACAk8stLtftb69WWWW1Jf77GQM1rldMA1fV76bxPSzHGQVHNX9bdktTRDNtOVioH3bl6miF4+Qnu8Gi7dYPjw1P7qROLrMvAAAA0Pq5vXAwePBgScdbBn311VfuvoXF119/LenYDofa9wcAAABwchVV1bpz9hodLCyzxK8enazrxnZv8nojkjtpSLdIS4whyfZ4ZdFuTf/bMl3zr5906v99r/s+WK8lO3JU5ag++cXNYJqmFrjMN5jcj90GAAAAbZHbCwc9evRQt27dnMdvvPGGu29hUXv9Ll26qGfPnh69HwAAANBemKap38/dolVpBZb4qB6d9MQFg5o1P8wwDM08rYcl9sPuPG3PKmpJqmiinKJyvTBvh/O4pMKhT9cd0A3/XqmxTy/QE19s0caMw84PYLnD7pwS7c8vtcQmM98AAACgTXJ74UCSLrroIpmmKdM0tWbNGr3//vueuI3+85//aNWqVTIMQ4Zh6JJLLvHIfQAAAID2aPaKfXp/5X5LLCEySK9cN1IBfs3/VeH8YV0VG2ZtT8OuA+96Z8U+VVTVv7Mgt7hcs5an6YK/L9fU5xfrb/N3al9eSYvvudBlt0GXiCAN7BrR4nUBAADgfR4pHNxxxx2Sjn3ayDRN3X333dq0aZNb77F582bdfffdzntI0m233ebWewAAAADt1Y+78/TEF1stsSB/H712w6mKDQts0dqBfr66ZnSyJfbZugwdLq1o0bponLJKh2av2Neoc/fklugv3+/QGc8t0sX/WK63f0xTXnF5s+67cLtLm6L+cc3atQIAAAD7eaRwMHjwYF188cUyTVOGYejw4cM666yztHLlSresv2rVKp199tkqKChw3uPCCy/U0KFD3bI+AAAA0J6l55fq7vfWqqra2qbmucuGabDLfILmunZsd/n5HH9oXFZZrQ9WpbtlbZzYJ2szlF9iLdLcM6W3hiae+L/tuv2H9dicLRr9x/m6adZKzVl/QKUVVY26Z1FZpVbuzbfEJvWjTREAAEBb5ZHCgST99a9/VWTksR9MDcNQdna2xo8frwceeED5+fknubp+BQUFeuihhzR+/HhlZmY6P70SERGhv/71r+5KHQAAAGi3SsqrdNvbq+s8WL5rUi/NGJbgtvt0jgjSeUO6WmJv/7jPY4N5cUx1tak3lu61xE7vG6dfn9VPc38+QfN/fYbundJbydEhDa7hqDa1cHuOfvGf9Tr1/+bpVx+s1+KTDFVetjPXUogK8PXRhN6xLf+GAAAAYAuPFQ6SkpL0zjvvyMfn2C0Mw5DD4dDzzz+vbt266ZprrtEHH3yg3bt3n3CdPXv26MMPP9R1112nbt266bnnnlNVVZWzRZGvr6/eeustJScnn3AdAAAAoKMzTVO/+WiDUl0GFU/tH6/fnNXP7febOb6H5fjA4aOat+1Q/SfDLRakHtKeXOu8gtsm9nS+7hUXpvvO6qfF90/SJ3eephvGdVd0aIDrMk6lFQ59tu6Abqw1VHlDet2hygtc5huMSYlWaKCfG74jAAAA2MEwXX/ic7N3331Xt9xyiyorKyXJ+QNm7V6XYWFhiouLU1RUlEJDQ1VSUqLCwkLl5OSoqOj4LzW1rzVNU/7+/nr99dd1ww03ePJbQDNkZGQoKSlJkpSenq7ExESbMwIAAMDf5u/UX77fYYn1jg/TZ3edpvAgf7ffzzRNXfTycm3IKHTGxqZE6z+3j3P7vXDMlf/8UT/VahnUv0u4vv7FxBPOGqh0VGvpzhx9vu6gvtuapbLKk+8KSYkN1YWndNNFwxOU1ClEo/84X7m1ZiM8dv5A3Tyh5wlWAAAAQGvm8cKBJK1evVpXXnml9u7d6/yBtaHb1h52XN97Ndf26NFDH3zwgUaNGuWZpNEiFA4AAABal2+3ZOmOd9ZYYhFBfprz8wnqGRvqsft+ti5Dv/pggyX29S8makDXCI/ds6PalFGoGX9fZon9+fJhumxk438WLy6v0ndbsvT5+oNatjNH1Y34bbF/l/A6u1gW/WaSenjwf1cAAADwLI+1Kqrt1FNP1fr16/XLX/5SoaGhlp0Drl8nipumqdDQUP3iF7/QunXrKBoAAAAAjbA9q0j3fbDeEvMxpL9fM8KjRQNJOm9IV8WGBVpib/2Q5tF7dlSvL91jOY4PD9QFTZxbERbop0tGJOrtm0drxSNT9dj5AzXsJEOVXYsGPWNDKRoAAAC0cV4pHEhSeHi4/vKXvyg9PV1PP/20Ro8eLV9fX5mmedIvX19fjR49Wk8//bT279+vF154wTl4GQAAAEDDCkoqdOvbq1RS4bDEHzlvgE7vG+fx+wf6+eraMdZ5ZJ+tO6ACl+HMaJkDh4/qy02ZltiNp/VQgF/zf+WLDw/SzRN6as7PJ2jBr8/QvVP7qHtMw0OVa0zuF9/sewIAAKB18EqrooaUlpZqxYoVSk1NVX5+vvLz81VUVKTw8HBFR0crOjpa/fv319ixYxUScvIfUNF60KoIAADAflWOat04a6WW78qzxC8Z0U3PXz7shH3v3enQkTKd9qcFqqrV9+bBc/rrzkm9vHL/juAPX27V60v3Oo+D/X3148NTFBXS8ODj5jBNU+vSD2vOugP678ZM5dVTAPrP7WM1NiXGrfcFAACAd/nZefOQkBBNmTJFU6ZMsTMNAAAAoF36vy+31SkaDEuK0h8vHuK1ooEkxUcEafrQrpqz/qAzNnvFPt02saf8fL22CbrdKiqr1H9WpltiV5ya6PaigXSsreyI5E4akdxJj54/UMt25urz9Qf03ZZslVU5dO2YZIoGAAAA7YCthQMAAAAAnvHhqnS96TJLID48UK9dP1JB/r5ez2fmaT0shYMDh49q3rZsnTO4q9dzaW8+WJWuovIq57FhSDdP6Onx+/r7+mhy/3hN7h+vKke1jlY6FB7k7/H7AgAAwPP4eA8AAADQzqzZl6/ffr7JEgvw89E/rx+pzhFBtuQ0PLmThiVFWWKzlqfZkkt7UuWorvPnePbALuoe493hxH6+PhQNAAAA2hEKBwAAAEA7sj2rSHe8s1aVDusos6cvHqLhyZ1syuqYm07rYTn+aW++th48Yk8y7cRXm7N04PBRS+y20z2/2wAAAADtG4UDAAAAoJ34aU+eLn/1B+UWl1vit07oqUtHJtqU1XHnDemquPBAS+wtl3ZKaDzTNPWvpXssseHJURrZPdqmjAAAANBeUDgAAAAA2oGvN2Xq+n+v1JGyKkt8Yp9YPXRuf5uysgrw89G1Y5Itsc/XH1B+SYVNGbVtK/fma2NGoSV228QUm7IBAABAe0LhAAAAAGjj3vohTXe9t1YVVdWW+MjunfT3a0bIz7f1/Nh/zZhk+fsazuPyqmr9Z9V+GzNqu15futdynBQdrLMHdbEpGwAAALQnrec3CAAAAABNYpqmnvs2Vb+fu0WmdaSBzhzYWe/eOkaRwa1rYG18eJDOH5pgib3z4z5VOaobuAL12ZNTrPmp2ZbYzeN7ytfHaOAKAAAAoPEoHAAAAABtUKWjWvd/vFEvL9xd571rxiTrlWtHKMjf14bMTm6my5DkzMIyfbc1u/6TUa83lu21FIsigvx0xalJ9iUEAACAdoXCAQAAANDGlJRX6ba3V+vjNRl13rvvzL76w0WDW1V7IlfDkqI0PDnKEntzeZotubRF+SUVdf7bXzOmu0ID/WzKCAAAAO1N6/1tAgAAAEAducXluvr1FVq0PccS9/Ux9KdLhujeqX1kGK2/XY3rroOVafnafKCw/pO9qKzSoepq8+Qn2mj2in0qrzXPws/HqPPnCQAAALQEhQMAAACgjdiXV6LLXvlBGzOsD9iD/H302vUjddXoZJsya7pzB3dVfHigJfbWD2n2JCOpylGtZ75J1SlPfqdhT3ynbzZn2pbLiZRVOvT2j2mW2AXDEtQlMsiehAAAANAuUTgAAAAA2oBNGYW69JUflJZXaol3CvHXe7eN1dQBnW3KrHkC/Hx03djulticDQeVV1zu9Vxyisp17b9+0iuLdqusslpF5VW69/31rWIHhKvP1x1QbnGFJXbrxBSbsgEAAEB7ReEAAAAAaOUW78jRla/9WOeBcbeoYH1852kakdzJpsxa5urRyQqoNYuhoqpa/1mV7tUc1u4v0IyXlumnvfmWeIWjWne/t1ZFZZVezedEqqtN/WvZXktsfO8YDUyIsCkjAAAAtFcUDgAAAIBW7NO1GbrlzVUqrXBY4gO6Ruizu05Tr7gwmzJrubjwQJ0/rKsl9s6P+1TpqG7gCvcxTVPv/rRPV/7zR2UdKav3nH15pXro000yzdYx82DxjhztOlRsibHbAAAAAJ5A4QAAAABohUzT1CuLduu+DzeoymVY7/jeMfrwjrGKj2j7fe1vOq2n5TjrSJm+3ZLl0XuWVTr04Ccb9dvPNqvSceKiwJcbMzX7p/0ezaexXl+6x3LcJz5Mk/rG2ZQNAAAA2jMKBwAAAEAr46g29cQXW/XMN6l13rtgWIJmzRyt8CB/GzJzvyGJkRrZ3dpq6c3laR67X0ZBqS5/9Ud9uDqjznvjUmI09+fjFRls/bN96outts872HKwUD/szrPEbp3YU4Zh2JQRAAAA2jMKBwAAoMP6YsNBTXx2gab9ZbFe+H6HDh4+andKsElZpUN7copVXuU4+cleyOXe99fpzR/S6rx328Se+uuVpyjAr339GD/ztB6W49X7CrQpw/0P6pftzNWMl5ZpUz1FgDtOT9E7t4zW0MQo/fnyYZb3KhzV+rnN8w7+tdQ62yA2LEAXntLNpmwAAADQ3vnZnQAAAIAdMgpK9esPN6jif73UX5y/Uy8t2KnJ/eJ1zZhkTeoXL1+ftvdJ3uLyKlVUVSs6NMDuVNqMtNwSXfHPH3WoqFxhgX6a3D9eZw/qrEn94hUW6N0flwuPVur2t1fXGdQrSY9OH9Bu+9mfM7iLOkcEKvtIuTP25g9pev6KYSe4qvFM09Sri/fouW9T5dL1SSEBvnrusmGaPvT4rIUzB3bWrRN6WgYRp+WV6uFPN+mlq4d7/VP+mYVH9cWGg5bYDeN6KMjf16t5AAAAoOOgcAAAADqkWcvTnEWDGtWmND/1kOanHlJCZJCuHJWsK0clqUtk6+4jf6ioTN9sztKXGzO1Mu3YA+e7J/XWb87uZ3NmbcMfvtqmQ0XHHlgXl1fpiw0H9cWGgwrw89HE3rE6e1AXTRvY2ePFmKzCMs2ctVKpWUWWuL+voT9fPqxdf7rc39dH14/trj9/t8MZ+2LDQT18Xn/FhgW2aO3i8ird/9EGfb257tyElNhQvXr9SPXtHF7nvQfO6a/V+wq0Pv2wM/bfjZkamxKj68Z2b1FOTfXmD2mWORdB/j5ezwEAAAAdi2Ga5omngQHNkJGRoaSkJElSenq6EhMTbc4IAIDjCo9W6rSn56uk4uRtaXx9DE3pf2wXwul94lrNLgTXYoHrT3SGIc2/7wylxIXZk2AbkZ5fqjOeW1jnU+iufAxpdM9onT2oi84e1EUJUcFuzWPXoSLd8MZKHSwss8TDAv30z+tHanzvWLferzXKKy7XuD8tUEXV8YLer8/sq3um9mn2mrsOFeuOd1Zrd05JnffOHNhZz18xTBEnmBWRUVCq815cqiNlVc5YgJ+PPrvrNA1KiGx2Xk1RXF6lcU/PV1GtHK4dk6w/XDzEK/cHAABAx8SOAwAA0OG8v3K/pWjgY0jB/r71FhIc1aa+35qt77dmq1tUsK4alaQrRiWpc4T3dyEcOlKmrzdn6ctNmVpVT7GgNtOUFu/IoXBwEu/+tP+kRQPp2G6UFXvytWJPvp74YquGJkY6iwi941v2Z7w6LV+3vLVahUet/fPjwgP15k2jvPaA2m4xYYG6YFiCPl5zfGjxOyv26WeTesnft+kzHb7ZnKXffLRBxeVVlrhhHCtI3DWpt3xOUghM7BSiP18+TLe/s8YZq6iq1s/fW6e5Px/vlQHVH65KtxQNDEO6ZUJPj98XAAAAHRs7DuAR7DgAALRWFVXVOv3Zhco6cvyT3dOHdtWzlw7V3A0H9d5P++sdnFqbr4+haQPidc2Y7prYO/akDx9bIvtImb7elKmvNmVp1b4TFwtcTekfr3/PHOWx3Nq6skqHxj09XwWlxx/Yj+8dI18fH/2wK9fSGuZEesWF6pzBx4oIQ7pFNqn//bdbsnTv++tUXmVtm5USG6q3bh6tpOiQRq/VHmw+UKjzX1pmif3t6uG6YFhCo9dwVJv683fb9cqi3XXeiwz219+uHq4z+sY1Ka+n/rtVbyyzDic+f2hXj887qHJUa9KfFymj4Pjg9mkDOutfN57qsXsCAAAAEjsOAABAB/PfjQctRQNJun1iikID/XT16GRdPTpZmzIK9d7K/Zqz/oBKG9iF8O2WbH27JVuJnYJ19ehkXX5qouLD3bMLoTnFgtAAX/XrEq61+w87Yyv25KmiqloBfk3/tHZH8N+NmZaigSQ9ccFg9Y4PU+HRSi1MPaRvt2Rp0fYcHa1suK3V7pwSvbxwt15euFsJkUE66387EUb16CS/E3xSfvaKfXpszuY6Ox5OSYrSv2eO6pADrgd3i9SoHp20Kq3AGXtz+d5GFw7ySyp07/vrtGxXbp33BnaN0D+vH9msYsyD/5t3sMFl3sG4XjG6doznZg18uyXbUjSQpNsmstsAAAAAnseOA3gEOw4AAK2RaZo698WlluGzo3tE68Ofjav3/OLyKs1Zf0Dv/bRfWw4eOeHafj6GzhzYWdeMSdb4Xk3fhZBVWKavN2fqq02ZWr2voFHFgrBAP00bEK/zhnTV6X3jVFxepVP/b57lnA9uH6sxKTFNyqWjuPDvy7Qh4/jukvG9Y/TurWPrnFdW6dCSHTn6dku25m3LrtNSqCHRoQGaNiBeZw/qovG9YxXk7yvp2P8O//L9Dr20YFeda6b2j9dL1wxXSEDH/XzPlxszdfd7ay2xOXeP17CkqBNetymjUD+bvUYHDh+t894lw7vpDxcPUXCAb7PzSs8v1fS/eW/egWmauvgfP1iGMw9LjNTnd4/36C4HAAAAQGLHAQAA6ECW78qzFA0k6bbTUxo8PyzQT9eO6a5rRidrY0ah3l+5X3PWH6z30+dV1aa+3pylrzdnKTk6RFePTtZlIxMVFx7Y4PpZhWX6atPxYkFj1BQLpg9N0MQ+xx9GS1KQv68Gdo3Q1szjRY5lu3IpHNRjffphS9FAkm4Y16Pec4P8fXXWoC46a1AXVTqqtXJvvr7ZnKXvtmYp+0h5g/fIL6nQh6sz9OHqDIUG+GpS/2NFhOU7c/XB6vQ65195apL+cPHgE+5S6AjOGtRZXSODlFlrUPRbP6TpL1ee0uA1H65O16Ofb7YMVpaOFfQemzFQ14/t3uKH7UnRDc87+OKeCQoLdO+vVmv2FViKBpJ068QUigYAAADwCnYcwCPYcQAAaI1u+PdKLdmR4zxOiQ3VvPvOaNLugKKySn2+/tgshG2ZJ96F4O9r6KyBXXTNmGSNS4mRj4+hzMKj+npTVpOKBeGBfpo2sLPOG9K1TrHA1dNfbdM/l+xxHg9LitKcu8c37pvrQO77cL0+XXvAeZwQGaQlD0xu0kP76mpTGzIO65stWfp2c5bS8kqbnc+9U/voV9P68FD4f15euEvPfbvdeezva2j5Q1PqtAMrr3LoyS+26t2f9tdZIz48UP+4doRO7RHt1tye/GKr/r3cOu/ggmEJevGqU9z63++Od1br2y3ZzuNuUcFafP+kDl9YAgAAgHew4wAAAHQIqVlHLEUDSbplYs8mtxQKD/LX9WO767oxyVqffljvr9yvuRsOqqyyus65lQ5TX27K1JebMtUjJkQxYYFa08RiwfQhXTWxb6wC/RrXYmVCn1hL4WBTxmEVllYqMsS/cd9gB5BXXK7/bsy0xK4d273JD2R9fAwNT+6k4cmd9NA5/bUju1jfbsnSN5uzLLs+TriGIT110WCP9slvi64enawX5+907iCodJh6/6d0/WJaH+c5WYVluvPdNVpXa65HjVE9Ounla0e4be5IbQ+d219r9uVbdqzM3XBQY1NidM2YZLfcIy23RN9tzbbEbhrfg6IBAAAAvIbCAQAA6BD+tdT6CeHo0ABdOqL5O+IM4/hD40fPH6jP1x2bheDaCqlGWl7pST+RHh7opzNrdhY0oVhQ26ge0Qrw83E+cK02pR925+rcIV2bvFZ79cHqdEtLmwBfH101KqlFaxqGoX5dwtWvS7jundpH6fml+nZLlr7dktXgzIpAPx+9dPVwnTWoS4vu3R5FhwboolMS9OHqDGds9k/7dOekXgrw89GKPXn6+XtrlVtcUefamaf10G+nD5C/hx6yB/j56O/XjKgz7+DxL7bolKQoDUyIaPE9/r18r+V/M+GBfrqyhf8bBQAAAJqCwgEAAGj3so+Uac76A5bYDeO6n7DlT1NEBPnrhnE9dP3Y7lq7/9guhP9urH8XgqvwoGPFgulDumpCn+YVC2oL8vfVmJ7RWroz1xlbuovCQQ1Htal3V1jb2kwf2lUxYQ3PomiOpOgQ3ToxRbdOTFFOUbm+35qtb7dk6Yfduap0mOoccayNzsju7m2j057ceFoPS+Egp6hcX23KVG5xuZ7+OlWOams1JsjfR3+6ZKguGt7N47klRYfoucuH6Q6XeQd3v7e2xfMODpdW6KNa37ckXT0mWeFB7BoCAACA91A4AAAA7d6bP6Sp0nH8IWOgn4+uH+v+1jCGYWhk904a2b2Tfjd9oD5bl6H3Vu7Xjuxiy3k1xYLzh3bV+N4tLxa4mtA71lI4WFbrdUc3f1u2Dhw+aondMM6zbYLiwgN1zZhkXTMmWUfKKpWeX6pecWFuK1y1V4MSIjW6Z7RW7s13xh76dGO9Bbnk6BC9et1It3zav7HOHtRFN43voVnL05yxvbkleuTTTS2ad/DuT/stA9j9fAzNPK1HC7MFAAAAmobCAQAAaNdKyqv07op9ltilIxPd/glzV5Eh/po5vqduPK2H1u4v0Nz1B+UwTU3pH++RYkFtE/rESl8fP96fX6p9eSXqHhPqsXu2Fe+4/G9hSLdInZIU5bX7RwT5a1BCpNfu19bddFoPS+GgvqLBpH5xevHK4bbM8Xj43AFau6+gzryDcb1idPXops87KK9y6M0f0iyx6UO7KiEquKWpAgAAAE1C4QAAALRrH65Ot/QhNwzplgk9vXb/Y7sQor3akmZAlwjFhAYor+R4//elO3M7fOFgd06xZSeGdGy3QXM/GQ7PO3NgZyVEBulgYVm97987tY9+ObVPk4ecu0vNvIPz/rZURbX+nvn93C0altj0eQdz1x9UTlG5JXbbxBS35AoAAAA0hWcmhgEAALQCVY5qvbHMOhR52oDO6hUXZlNG3uHjYxzbdVAL7Yqkd3607jaICvHXjGEJNmWDxvDz9dH143rUiYcH+elfN5yq+87sa1vRoEZSdIieu2yYJVZRVa2fv7dWxeVVDVxVl2madf6+GpsSrcHd2KECAAAA76NwAAAA2q1vtmQpo8Daz76jfHp3Qm9r4eCH3bmqcpx8WHN7VVJepU/WWAfOXjkqiTkDbcDVo5PUrVarnn6dwzX35xM0bWBnG7OyOmfwsXkHte3JLdFvP9sk0zTrv8jF0p25Ss0qssQ6yt9XAAAAaH1oVQQAANol0zT1+pI9ltiwpCiN6tHJpoy8a2KfOMvxkbIqbTxQqBHJHeP7d/XZugMqKre2rLpujGeHIsM9okIC9N5tY/TJ2gOKDw/UJSO6KSSg9f0a8/C5A7RmX4E21pp3MGf9QY1LidFVjZh38PpS699XKXGhmtwv3u15AgAAAI3BjgMAANAurUqzDiyVpNsnpnSYfvZdIoPUO97akqmjtisyTbNOm6Kp/eOVFB1iU0Zoqu4xobrvzL66bmz3Vlk0kP437+DqEQoPsub3+7lbtC3zyAmvTc06Umf+xq0TUmxvwwQAAICOi8IBAABol15z2W2Q2ClYZw9qPa1NvGEicw4kST/tzdf2bGsLmPr65gMtlRwToucuG2qJlVdV6+53Tzzv4F9LrbMNYkIDdMmIbh7JEQAAAGgMCgcAAKDd2Z1TrPmp2ZbYLRN6ys+3Y/3o41o4WLu/oEnDWtsL190GPWJCNNFlBgTgLucM7qqZp/WwxE407+DQkTLNWX/AErtubHfmbwAAAMBWHeu3ZwAA0CG8sWyvaj+fiwjy0xWnJtmXkE3G9IyRv+/xVidV1aZW7M6zMSPvyyos07dbsiyx68f1oAUMPOrh8/prSLdIS2zO+oP6YFV6nXPf+jFNlY7jf2EF+Pno+nHM3wAAAIC9KBwAAIB2Ja+4XJ+sybDErh3bXaGBrbMvuieFBvppuMsw5GW7Ola7ovdW7ldV9fGHssH+vrpsZKKNGaEjCPTz1cvXjFB4YN15B6lZx+cdlFZUafaK/ZZzLh3RTbFhgV7JEwAAAGgIhQMAANCuvLNin8qrqp3H/r5GnbYhHcnpLu2Klu7MsSkT76uoqtb7K60PZS8a3k2Rwf42ZYSOJDkmRM/WM+/grnfXquR/LcM+XpOhwqOVlnNumZDitRwBAACAhlA4aKElS5bo5ptvVv/+/RUeHq6oqCgNHjxY99xzj9atW+f1fNLS0hQWFibDMJxfjz/+uNfzAADADmWVDr3t0s/+wlO6qXNEkE0Z2W9CnzjL8e6cEh08fNSmbLzrmy1Zyikqt8RuoAUMvOjcIfXMO8gp0aOfb5aj2tQby6xDkaf0j1fv+DAvZggAAADUr+Pt2XeToqIi3XXXXZo9e3ad9woLC7Vlyxa9/PLLuu+++/T000/L3987n2y78847VVJS4pV7AQDQ2nyyNkP5JRWW2K0Te9qUTeswpFukIoP9LZ9qXrYzV1eMav8zH975Mc1yPLpHtAZ0jbAnGXRYD5/XX2v2FWjTgUJn7LN1B1RRVa19eaWWczv631cAAABoPdhx0AxVVVW68MILLUWDiIgIjRs3TiNHjlRwcLAkyTRNPf/887r11lu9ktd7772nb775xiv3AgCgtamuNvXGUuund0/vG6f+XTr2g2JfH0Pje8dYYks7wJyDrQePaFVagSXGwFnYoaF5B19uyrQcD0qI0LgU6/9XAQAAALtQOGiG3/72t1q4cKHz+He/+50yMzP1ww8/aPXq1UpPT7cUC95++2298sorHs0pPz9fv/zlLyVJ/fv3V0JCgkfvBwBAazM/9ZD25Fp33d0+kV7hkjSht7Vd0fJduaquNTC4PXpnRZrlOC48UGcP6mJPMujwkmNC9IzLvANXt01MkWEYXsoIAAAAODEKB02Unp6uF1980Xn8u9/9Tk8++aRCQkKcsZiYGL3++uu67rrrnLEnnnhCpaXWrcju9Otf/1o5OceGHb766qtea40EAEBr8fqSPZbj/l3C63zSvqOa6DIgOb+kQlszj9iUjecVllbq83UHLbFrRicrwI8ffWGf84Z01Y0N7HrpGhmk6UO7ejkjAAAAoGH89tREL774osrLjw3ZS05O1qOPPnrCc2sKCtnZ2Zo1a5ZHclqwYIHefPNNSdKNN96oM844wyP3AQCgtVqfflgr0/ItsdtP59O7NZKiQ9Q9JsQSW7qz/bYr+mhNuo5WOpzHfj6GrhmTbGNGwDGPTB+gwd3qtk+beVoP+fvyqxkAAABaD346baLPPvvM+frmm29WQEBAg+dGR0frsssuq/dadykrK9Mdd9zhvN+f//xnt98DAIDW7vWl1t0GXSKCdP5Q2vbV5rrrYNmuHJsy8azqalOzV+yzxM4e3EWdI4Jsygg4rr55B5HB/rpqNIUtAAAAtC4UDpogNTVVe/YcfzBxzjnnnPSac8891/l68eLFKi4udmtOTz75pHbt2iVJevbZZxUbG3uSKwAAaF/S80v1tcuQ0Znje9CWxoXrnINVaQUqq/Wp/PZiyc4cpeVZ20PeMJahyGg9useE6q1bRmt4cpSGJUbq1etGKjKYNqMAAABoXfxOfgpqbNiwwfk6MDBQI0aMOOk148aNc76uqqrS1q1bNXr0aLfks2nTJucOgwkTJujmm292y7oAALQlbyzbq9pzfkMDfHU1n96tY1yvGPkYcv5ZVVRVa+XefJ3eN+7EF7Yx7/xo3W3Qv0u4RveMtikboH4jkjvps7vG250GAAAA0CA+itcE27Ztc75OSkpq1ADipKQkSzuj1NRUt+RSXV2t2267TZWVlfLz89Mrr7xCH2cAQIdTWFqpD1enW2JXjU7m07v1iAz217CkKEts2a72NecgPb9UC7YfssSuH9edn5EAAAAAoInYcdAE+/Yd/wRbcnLjPsno4+Ojbt26ae/evZKktLQ0t+Ty8ssv66effpIk/frXv9bgwYPdsm5DMjIymnR+ZmbmyU8CAKCF3l25T6UVx9vt+PoYuml8D/sSauUm9onTuv2HncdLduTokfMG2JeQm81esU9mrd0n4UF+uuiUbvYlBAAAAABtFIWDJigqKnK+joyMbPR1ERER9a7RXBkZGfrtb38rSerRo4cee+yxFq95MklJSR6/BwAATVFRVa03l6dZYucN6arETiH2JNQGTOwTq7/N3+k8Ts0qUk5RueLCA23Myj3KKh36wGX3yWUjExUayI+7AAAAANBUtCpqgpKSEufroKCgRl8XHBxc7xrNdffddzsLEC+99JJCQnhAAgDoeOZuOKhDReWW2G0Te9qUTdtwSlKUwlwepC9vJ+2K5m44qMOllZbY9QxFBgAAAIBm4SNYTVBZefyXUT+/xv/R1T63oqKiRTl8/PHHmjt3riTpkksu0fnnn9+i9RorPT395CfVkpmZ6bYh0AAAuDJNU68v2WOJjU2J1tDEKHsSaiP8fX00NiVa87YdnwOwdGeuLhrettv5mKapt39Ms8Qm9olVSlyYPQkBAAAAQBtH4aAJan+yv6ysrNHX1T43NDS02fcvLCzUvffeK0kKCwvTiy++2Oy1mioxMdFr9wIA4GSW7MzV9mxr+7/bJqbYlE3bMrFPnEvhIEemabbpAcLr0g9r84EjltgN43rYkwwAAAAAtAO0KmqCsLDjn1o7evRoo68rLS2td42meuCBB5xDh5988kke5gMAOqx/LbXuNugVF6rJ/eJtyqZtmdAn1nJ8qKhcOw8V25SNe7zz4z7LcbeoYE3pz/8eAAAAAKC5KBw0QUxMjPN1zQP8xsjKyqp3jabYunWrXn/9dUnSKaec4tx5AABAR7P14BEt3Wnty3/bxBT5+LTdT8x7U0psqBIirbOaXP8825Lc4nJ9udH6c9l1Y7vLl/89AAAAAECzUThoP6HiIgAAblFJREFUgn79+jlf79+/v1HXlJSUKD8/v941muLQoUMyTVOStH79evn5+ckwjAa/9u07/sm7J554wvJeWlpas3IAAKA1cN1tEBsW0OZ79HuTYRh1dh0s25ljUzYt98GqdFU4qp3HAX4+unJUko0ZAQAAAEDbR+GgCQYMGOB8nZOT06hdB+vXr29wDQAA0DSZhUc1d8NBS+yGcT0U5O9rU0Zt08Q+cZbjFXvyVV7lsCmb5qtyVOvdFdY2RTOGJig6NMCmjAAAAACgfWA4chOMHj1aAQEBqqiokCQtXbpUV1xxxQmvWbp0qfN1YmKiUlKaN7jR39+/SW2OCgoKVF197NN3wcHBlsHOvr48XAEAtE1v/pCmqmrTeRzk76Prxna3MaO2aXzvWBmG9L/NjDpa6dDafYc1rlfzWiraZd62QzpYWGaJ3Xga/3sAAAAAgJZix0EThIeHa/Lkyc7jd99996TXvPfee87XM2bMaPa9x48fr9zc3EZ/JSUd36L/wAMPNPgeAABtRXF5ld77ydoq8LKRiXy6vBmiQwM0KCHCElu2q+21K3pnRZrleFhSlIYmRtmSCwAAAAC0JxQOmmjmzJnO119++aXWrVvX4Llz587Vpk2bnMc33nijJ1MDAKBd+2BVuorKqpzHhiHdMqF5O/kgTehtbVe0rI0NSN51qEjLd+VZYjew+wQAAAAA3ILCQRNdccUVGjx4sCTJ4XDo2muvrXfWwbZt23THHXc4j6dPn64xY8bUu+abb75pGV68aNEij+QOAEBbVeWo1r+X7bXEzhrYWT1jQ23KqO073WVA8sYDhSooqbApm6Z750frbIPo0ABNH9rVpmwAAAAAoH1hxkET+fj46PXXX9ekSZNUXl6ubdu2afjw4brnnns0atQoVVZWasmSJXr11Vd15MgRSVJMTIxefPFFmzMHAKDt+mpzlg4cPmqJ3TaR3QYtMbJHJwX5+6is8thMJNOUftid1yYevheXV+mTtQcssStHJTEkGwAAAADchMJBM4wdO1Zvv/22brjhBpWXlys7O1uPPvpovedGRkbq008/Va9evbycJQAA7YNpmnp9yR5LbHhylEZ272RTRu1DoJ+vRveM0ZIdx2cbLNuV0yYKB5+tzVBx+fG2VT6GdO2YZBszAgAAAID2hVZFzXTFFVdo1apVmjRpkgzDqPO+r6+vZsyYoQ0bNuj000+3IUMAANqHn/bma9OBQkvs9okp9f77i6aZ2NvarmjJjlyZpmlTNo1jmqbecmlTNHVAZyV2CrEpIwAAAABof9hx0AJDhgzRwoULtXfvXq1YsUIHDhyQr6+vEhMTNXHiRHXp0qVR68ycOdMydNkd0tLS3LoeAAB2cd1tkBwdorMGNe7fWJzYxL6x0lfHjw8cPqq0vNL/b+++46Oq8v+PvyeVdAghCSGhhBI60kFAiYIoCCp2pQu4uzZkd92va2ddXWVd64quAgooNgQVBUGl9947AZLQQkkgvd3fH/y45qZOymRSXs/HYx7ec+bccz+J4czM/cw5p0rvHbHu6HkdPptsqRvdu6lzggEAAACAGorEQQVo1qyZmjVr5uwwAACocQ6fvaxf95+11D3Ut5lcXZhtUBGiQvzUwM9TCZczzLrVhxKqdOIg/6bIkQ181KdFfSdFAwAAAAA1E0sVAQCAKmv66hhLOcDLXXd3C3dSNDWPzWZT33zLFa06dM5J0ZTsVFKaluw9Y6kb2asJy1YBAAAAQAUjcQAAAKqkhMsZmrc13lI3oldjeXswYbIi5U8crDtyXtk5uU6KpnifbzihnNzf92Dw9nDVnV1JJAEAAABARSNxAAAAqqTZ644pM/v3G9geri6sZe8A/VpaEweXM7K1Iy7ROcEUIyM7R3M3nrDU3dG5kfzruDspIgAAAACouUgcAACAKictM0ez11vXsr+9c5iC/es4KaKaK9i/jqJC/Cx1VXG5osW7T+tccqalbhSJJAAAAABwCBIHAACgyvlma5wupmZZ6sb3i3RSNDVf33yzDlZXwcTBp2uPWco9mwUqKtSv8MYAAAAAgHIhcQAAAKqMpLQszVgdo7d/OWip7x/VQK1CuEnsKPkTB9tiE3U5PauI1pVvd3yStp5ItNSNvrapU2IBAAAAgNqA3QUBAIDT7TmZpDnrj2vBtpNKy8op8PxEZhs4VM9mgfJwdVHm/98UOSfX0PqjFzSwbYiTI7ti9jrrslUh/p5VJjYAAAAAqIlIHAAAAKfIyM7Rol2nNXv9cW05frHIdh0aBah38/qVGFnt4+3hpq5N6mnd0fNm3apDCVXi5nxiaqYWbI+31D3Ys4ncXZk4CwAAAACOQuIAAABUqvjENH22/ri+3BSr8ymZxbZtHeqnN+/tJJvNVknR1V59WwZZEgdVZZ+DrzfHKSM71yy7u9p0X48IJ0YEAAAAADUfiQMAAOBwubmGVh0+p9nrjuu3/WeUaxTd1s3FpkHtQjWiVxP1igwkaVBJ+rUM0tSfD5jlo+dSFJ+YpkZ1vZwWU26uodnrrcsU3dy+oYL96jgpIgAAAACoHUgcAAAAh0lKzdLXW2I1Z/1xHTufWmzbYD9PPdCzse7v0Vgh/twYrmztwgJUz9tdF1N/3xR59aEE3du9sdNiWnEwQScuWP9uRvdu4qRoAAAAAKD2IHEAAAAq3O74JM1ad0zf7zip9KzcYtv2jqyvkb2baGDbENatdyJXF5uubRGkH3eeMutWHjrntMRBelaO/rVov6WuTUN/dW1SzynxAAAAAEBtQuIAAABUiPSsHP2065RmrTuu7bGJxbb19XTT8C6NNLJXE7UM8aucAFGifvkSB2sPn1NuriEXl8pfLuqlH/bqwJnLlrrRvZuwdBUAAAAAVAISBwAAoFxiL6Tqsw0n9NXmWF0oYbPjqBA/jezdRLd3biRfT96GVDV9WwZZyhdTs7Tn5CV1CA+o1Dh+2HFSczeesNS1DvXT8C7hlRoHAAAAANRWfGIHAACllptraMWhBM1Zd1y/HTgro4TNjm9uH6pRvZuqe9N6fGO8Cguv563IIB8dPZdi1q06nFCpiYPj51P09Le7LHXeHq7674Nd5OHGUlYAAAAAUBlIHAAAALtdTs/S3I0nNGf9iQKb1uYX6l9HD/RsrPt6RCjYj82Oq4u+LYOsiYOD5/Sn/i0q5dqZ2bl6bO42JWdkW+r/cVt7NW/gWykxAAAAAABIHAAAADvFXUzV/R+tV+yFtGLb9WlRXyN7NdGANiFyY7PjaqdviyDNWnfcLG85flFpmTny8nB1+LVfW7xfO+OSLHXDuzTSnV1ZoggAAAAAKhOJAwAAUKKzl9M14uMNRSYN/DzddGfXcI3o1UQtgvlmeHXWq3l9ubrYlJN7Zf2pzJxcbYg5r/5RwQ697q/7zmj66hhLXWQDH/3jtvYOvS4AAAAAoCASBwAAoFiJqZkaNX2jjp0vuDRR61A/jerdVLddEyYfNjuuEfzruKtzRF1tPn7RrFt96JxDEwenktL05693WOo83Fz03v1d+LsCAAAAACfgkxgAAChSSka2xszcpP2nL1vqW4X46pU7OqhrEzY7ron6tgyyJA5WHTrnsGtl5+TqibnblZiaZal/bkgbtQ3zd9h1AQAAAABFY+FhAABQqPSsHE2cvVnbYxMt9Y0DvTXnoZ7q1jSQpEEN1a9lkKV84Mxlnb2U7pBrvfPrIW08dsFSd0v7UI3o1cQh1wMAAAAAlIzEAQAAKCA7J1ePzd2mNYfPW+pD/D312fieCvav46TIUBk6hdeVX74lglYfrvhZB2sPn9O7yw5b6hrV9dK/7uxIUgoAAAAAnIjEAQAAsMjNNfTUNzu1dO8ZS309b3fNeainIgK9nRQZKoubq4t6N69vqVtdwcsVnUvO0BNfbpdh5Lmui03vPtBZAV7uFXotAAAAAEDpkDgAAAAmwzD00g979O22eEu9r6ebZo3rqZYhfk6KDJUt/3JFqw6fk5H3Ln855OYamvzVDiVczrDU/2VQlLo0rlch1wAAAAAAlB2JAwAAYHpjyUF9uu64pc7TzUXTR3dTh/AAJ0UFZ+jbsoGlnHA5QwfOXC6idel8uPKoVh5MsNRd16qBJvaLrJD+AQAAAADlQ+IAAABIkj5ccUTv5Vtv3s3Fpg9GdFXPyPpFnIWaqml9bzWq62Wpq4jlirYcv6h/LzlgqQv289R/7ukkFxf2NQAAAACAqoDEAQAA0NyNJ/Tqov2WOptNevPeaxTdOthJUcGZbDabrmuVb7miciYOklKz9PjcbcrJ/X3JI5tNeuveaxTk61muvgEAAAAAFYfEAQAAtdwPO07q7/N3Fah/5Y4OGtopzAkRoaro28K6XNGGmPPKyM4pU1+GYeipeTsUn5hmqX8suoWubRFUxFkAAAAAAGcgcQAAQC22bP9ZPfnlduXf8/bvg1vr/h6NnRMUqoxrm9eXLc/qQelZudpy7GKZ+pq9/rh+3nPGUtejWaAev7FleUIEAAAAADgAiQMAAGqpDUfP6w9ztig715o1eOyGFpp4XXMnRYWqpJ6Phzo0sm6Kvepw6Zcr2nMySS8v3Gft29td79zXWW6uvB0FAAAAgKqGT2oAANRCO+MS9dCnm5WRnWupH927iSYPbOWkqFAV9WtpXUaotBskp2Rk67HPtykzx/q39sY9nRQaUKfc8QEAAAAAKh6JAwAAaplDZy5r9IyNSs7IttQP79xILwxtJ1vetWlQ6+Xf52D3ySRdSMm0+/znFuzW0XMplrrxfZvphtYhFRIfAAAAAKDikTgAAKAWib2QqhHTN+hiapal/qa2IXr9ro5ycSFpAKsuTerKy93VLBuGtMbO5Yq+2RKnb7fFW+o6hQfoqZtbV2iMAAAAAICKReIAAFBr5eZb27+mO3spXQ9+vEFnLmVY6vu0qK937meteRTO081VPSMDLXX2LFd0+Gyynluw21Ln5+mmd+/vIg83/tYAAAAAoCrjUxsAoNZZeTBBt723Wq2fW6zH525TelaOs0NyuIspmRoxfYNOXEi11HduXFf/G9lNdfJ8oxzIr19L63JFqw+fk2EUnXhLz8rRo59vVVq+f1uv3tlBjet7OyRGAAAAAEDFcXN2AAAAVJaYcyn654979cu+s2bd9ztOKsTfU88MaevEyBwrOSNbYz7ZpINnki31rUP99MmYHvLx5O0Aipd/g+T4xDTFnEtRZAPfQtv/Y+Fe7T992VJ3f4/GurVjmMNiBAAAAABUHGYcAABqvMvpWXr1p3266c0VlqTBVR+vjtGW4xecEJnjpWflaMKnm7UjNtFS37S+t2Y91EMB3u7OCQzVSstgX4X4e1rqVhWxXNGPO0/psw0nLHVRIX56YWjNTc4BAAAAQE1D4gAAUGPl5hr6alOsov+9XB+uPKqsnMKXVjEM6a9f76xxSxZl5eTq0c+3at3R85b6hgF1NGd8TwX71XFSZKhubDab+rSwzjooLHEQeyFV/zdvp6WujruL3nugM8thAQAAAEA1QuIAAFAjbTp2QcP+u1pPzdupc8mZBZ73zLc569FzKfr3zwcqKzyHy8019JevdxSYYRHo46HZD/VUeD3WmUfpXJdvn4P1R88rKyfXLGdm5+rRudt0OSPb0m7KsPZqGeJXKTECAAAAACoGiQMAQInOJ2foz1/t0IiPN2ja8iM6cynd2SEVKT4xTY/N3aa7P1in3fGXCjzv7mrTxOsiteHvN6pTRF3Lc9PX1IwliwzD0PPf79Z3209a6v083TRrXA+1CC58XXqgOPlnHCRnZFuWwPr3kgMFlsS67Zow3d0tvBKiAwAAAABUJHZDBACUaNKX281lSVYfPqepP+/Xda0a6O6uERrQNliebs5fgiQtM0cfrjyiD1YcUXpWbqFtBrQJ1jND2qpZkI8k6Y27O2rwO6uVmX2l/dUli356ol+1XlZl6s8HNGe9dY35Ou4umjG2u9o3CnBSVKjuGvh5qnWon2XT45WHzqlb00AtO3BW/1t51NK+aX1v/fOODrLZbJUdKgAAAACgnJhxAAAo1trD5wqsZZ5rSMsPJOiRz7eqxz9/1fPf7dbOuEQZRuF7CDiSYRj6YcdJ3fjGcr31y6FCkwYtgn316bge+nh0dzNpcKXeT5MHtrK0re5LFk1bfkTvLz9iqXN3temDEV3VvWmgk6JCTdGvpXXWwepDCTqdlK4/f7XDUu/h6qL3HugiX0++owIAAAAA1ZHNcMZdHtR4cXFxioiIkCTFxsYqPJxlCoDqyDAM3f3BOm0+ftGu9lEhfrqra7hu79xIDfw8HRydtCsuSVMW7tGmY4XH51/HTU8ObKURvZrI3bXwXHl2Tq7u/GCdZYkVm036+uHe6lbNbrTPWX9czy7YbalzsUnv3t9FQzo2dFJUqElWHkzQqBkbzbKri03XRNTVlnxjxAtD22psn2aVHR4AAAAAoIKQOIBDkDgAaoYVBxM0Os9NQklyc7EpO7f4lw5XF5uioxrorq4RuqF1sDzcKnaCW8LlDP375wP6akusCnsVc7FJD/RsrMkDoxTo41Fif4fPXrYsWSRJzYJ8tKgaLVn03fZ4Tfpye4Hfx+t3dtQ93SOcExRqnPSsHHV8aYnl30p+A9uG6H8ju7JEEQAAAABUY8wfBwAUyjAM/WfpQUtdo7pe+unxfvpl3xl9vSVW648WvpFwTq6hX/ad1S/7zirQx0O3XROmu7qGq11Y+dbXz8zO1SdrY/TOr4eVnJFdaJvekfX1/NC2atPQ3+5+ry5Z9K9F+826mP+/ZNGzt7YtV8yVYcXBBP35qx0FkgbPDmlD0gAVqo67q7o3rac1h88X+nxYQB1NvasjSQMAAAAAqOZIHAAACvXb/rOW5Xsk6fEbWyjA2113dg3XnV3DFXshVd9sidO8rXGKu5hWaD8XUjI1c80xzVxzTG0b+ptLGdkzE+AqwzD02/6zevnHfYo5l1Jom4hALz0zuK0GtQsp003LCf0itXj3aW3P8zNPXxOjm9uHVukli3bHJ+lPc7YUmAXy+I0tNb5fpJOiQk3Wr2WDQhMHri42vXN/Z9X1tv/fNgAAAACgamKpIjgESxUB1ZthGLr13dXac/KSWdekvrd+mXx9oXsF5OYaWh9zXt9sidOiXaeVlpVTbP/urjbd0DpYd3eN0PVRDYrcf0C6sozQlIX7tPJgQqHPe3u46pHoFnqob7NyLytU1JJFPz3eT14eVW/JoriLqbrj/bVKuJxhqR9zbVO9MLQt3/qGQ+yOT9Kt764uUP/XQVF6JLqFEyICAAAAAFQ0ZhwAAAr4ec8ZS9JAkp64sWWRN/hdXGy6tnmQrm0epCm3Zeunnaf09ZbYIjctzsox9POeM/p5zxkF+Xrqjs5huqtrhKJC/cw2SalZevOXg5q9/rhyithTYXiXRvrbza0V4l+njD+pVVFLFr2xpOotWZSUmqUxMzcVSBoM7RSm528laQDHadvQX/V9PHQ+JdOs69cySH+8vrkTowIAAAAAVCRmHMAhmHEAVF+5uYZueXuVDpy5bNZFNvDR0ievl6tL6W5GHzuXYi5ldCopvcT2HcMDdFfXK+PFm0sP6mJqVqHtromoqxeHtdM1EXVLFY89cnIN3TltrWXJIptN+vrh3lVmyaKM7ByNnL5RG2Ose0z0bBaoWQ/1kKdb1ZsdgZpl2vIjem3xlQRbeD0vzf9THzXw83RyVAAAAACAikLiAA5B4gCovhbuPKlHP99mqXvn/s4a1imszH3m5Bpae+ScvtkSp8W7Tysjz1JApRHi76n/u6W1buvUSC6lTGKURlVesig319DjX2zTwp2nLPUtg331zR+uVYC3u5MiQ21iGIZWHEzQ6aR03dw+lH0NAAAAAKCGYakiAIApJ9fQW78cstS1CvHVrR0alqtfVxeb+rVsoH4tGygpLUs/7jylb7bEauuJRLvO93Bz0cR+kfpj/+by8XT8S1dRSxb9e8kBPefkJYv+tXh/gaRBsJ+nPhnXg6QBKo3NZlP/qGBnhwEAAAAAcBASBwAA0w87Turw2WRL3ZMDWlXot/sDvNz1QM/GeqBnYx0+m6x5W+P07dY4nbmUUWj7W9qH6u+D2ygi0LvCYrDHhH6RWrz7tGXJohlrYnRz+1B1d9KSRZ+sidH/Vh611Pl4uGrm2O5qVNfLKTEBAAAAAICap/BdLgEAtU52Tq7e/tU626BNQ38NahfqsGu2CPbV325urTV/u0Ezx3bXkI4N5fH/N2Bu09Bfcyf00rQRXSs9aSBdmSXx77s7ycPt95dKw5Ce+man0jJzKj2exbtP66WFey11bi42TRvRVe3CAio9HgAAAAAAUHMx4wAAIEmavy1eMedSLHWTB1bsbIOiuLm6KDoqWNFRwUrJyNb55ExFBHrJZnP8tYvTIthXfx7YSq86ecmiLccv6okvtin/rkSvDu+g61o1qLQ4AAAAAABA7cCMAwCAsnJy9c5v1tkGHcMDNKBN5a9h7uPppsb1vZ2eNLhqfL9IdW5c11I3Y02MNh27UCnXP5qQrPGfbiqwofSTA1rp7m4RlRIDAAAAAACoXUgcAAD09eY4xV5Is9Q9ObBVlbl570yuLjZNvavgkkV//XqHw5csOpecoTEzN+liapal/t5uEXr8xhYOvTYAAAAAAKi9SBwAqBIys3O15fgFrTiYoJ1xiYq9kKrL6Vky8q/NggqXkZ2j9/LNNujSuK76swSO6eqSRXkdO5+qfy854LBrpmZm66FPNunEhVRL/fWtGujlO9qT1AEAAAAAAA7DHgcAnC49K0djZm7U+qMFl35xd7UpwMtD9bzdVc/bQ3Wv/tfnyn/reburrreH5biut7vcXcmL2uvLTbE6mZRuqZs8MIob0/mM7xepxXtOa9uJRLNuxpoY3dw+VN2bBlbotbJzcvXY59u0Iy7JUt++kb/ef7ALf98AAAAAAMChSBwAcLr3lx0uNGkgSVk5hs4lZ+hcckap+vTzdDOTC3W9CyYe2jcKUJfGdWv9zfH0rBz9d9lhS12PZoHq06K+kyKquq4uWTT4nVXK/P/7DVxdsmjRE9fJy8O1Qq5jGIZe+H6Pft1/1lIfXs9LM8Z0l48nL90AAAAAAMCxuPsAwKkOnbmsaSuOVHi/lzOydTkju8C6/Xk9fkMLTb4pqsKvXZ18tuGEzlyyJmUms7dBka4uWfTqov1m3bHzqZr68wE9P7RthVxj2ooj+mzDCUtdgJe7PhnbQ8F+dSrkGgAAAAAAAMVhrQMATpOba+jpb3cpK+f3fQxsNsnNpXJuWr+//IhOJhadWKjpUjOzNW25dbZBnxb11SuS2QbFGd8vUp0b17XUzVwbo03HCp81UxoLtsXr9cXWfRM83Fz08ehuahHsW+7+AQAAAAAA7MGMAwBO88WmWG0+ftFS94frm+upQVFKzshWYmqWLqZm6mJqlhJTM81y/vqLqZlKTMnS5YzsUl0/O9fQJ2uP6e+D21Tkj1VtzF53XOeSMy11k/NtAIyCHLVk0drD5/TXb3ZY6mw26c17rqnwPRQAAAAAAACKQ+IAgFOcvZSuVxfts9Q1DvTWEze2lM1mk18dd/nVcVdEoLfdfWbl5CrRTCZcTTLkOU7J0q74JO09dck8Z+6GE3rshhbyq+NeYT9bdZCcka0P8i0RdX2rBurahBvU9mgR7Ku/3NRKr/xUMUsW7T99SQ/P3mKZfSNJzwxuoyEdG5Y7XgAAAAAAgNIgcQDAKV5auFeX060zBP55R3vVcS/7BrPuri5q4OepBn6eRbY5di5F0W8sl/H/789ezsjWl5tiNb5fZJmvWx19uvaYLqZmWeqYbVA6D/WN1KLdp7XtRKJZN3NtjG5uH6oezexPwJxKStOYGZsKzJgZ26dprfu7BAAAAAAAVQN7HACodL/uO6Mfd56y1A3v3Ej9WjZw+LWbBvloYJsQS93MNceUnZPr8GtXFZfSs/S/lUctdQPaBKtTRF3nBFRNXV2yyMPt95dSw5Ce+maH0jJz7OrjUnqWxs7cpNOX0i31t7QP1bNDKmazZQAAAAAAgNIicQCgUqVkZOv57/ZY6up5u+uZIZW3z8CE66zf4o5PTNOi3acr7frONmN1jJLSrLMNJg1gtkFZXF2yKK+rSxaVJDM7V3+cs0X7T1+21HdrUk9v3nuNXCtpk3AAAAAAAID8SBwAqFT/WXpQ8YlplrpnhrRVfd+ilxeqaN2a1NM1+b5d/9GqozIMo/ATapDE1ExNXxVjqbu5XajaNwpwUkTV30N9I9W5cV1L3cy1MdoYc6HIcwzD0N/m7dSaw+ct9ZENfPTRqG7lWrILAAAAAACgvEgcAKg0u+KSNHON9ab1tc3r684ujSo1DpvNpgn51o7fGZdU7I3emuLjVTGWtfRtNulJ9jYol7IsWfTvJQc0f1u8pS7I10Ofju2hej4eDo0XAAAAAACgJCQOAFSK7Jxc/d+3O5Wb50v9Hm4u+ucdHWSzVf6SLIPahSi8npel7qN838SvaS6kZBZI3NzaMUxRoX5OiqjmKGrJotd/3l+g7Wcbjuu/y45Y6rzcXTVjTHdFBHo7NE4AAAAAAAB7kDgAUClmrjmmPScvWeoev6GFmgX5OCUeN1cXjevTzFL36/4zOpqQ7JR4KsOHK48oJc834F1s0hM3tnRiRDXLQ30j1SXfkkWfrD1mmcny674zem7BbksbVxeb3n+wizqGW88FAAAAAABwFhIHABwu9kKq/rP0oKWuVYivJl7X3EkRXXFP9wj51XEzy4YhTV9dM2cdJFzO0Ky1xy11t1/TSC2CfZ0UUc3j6mLT1LuLXrJoR2yiHv18m2XWjSS9fHt7RbcOruRoAQAAAAAAikbiAIBDGYah577brbSs37/pbrNJrw7vaLnB6gy+nm56sGcTS903W+J0PjnDSRE5zgcrjlj+H7i62PQ4sw0qXPMGhS9Z9Ld5O/XQp5ss/w8k6bEbWuj+Ho0rM0QAAAAAAIASkTgA4FALd57S8gMJlroHezZW1yb1nBSR1Zhrm8rN5fc9FjKyczVn/QknRlTxzlxK15z11tkGd3ZppKZOWiaqpitsyaLvd5zUueRMS93wLo00mY2pAQAAAABAFUTiAIDDJKVm6aUf9ljqgv089dTNrZ0UUUGhAXU0rFOYpW72+mNKz/fN8Orsv8sOKyM71yy7udj02A3MNnCUq0sWeRYzo6ZviyD9a3hHp2wMDgAAAAAAUBISBwAc5tVF+wp8y/qlYe3kX8fdSREVbny/SEv5XHKmFmyLd1I0FSs+MU1fbIy11N3TPUIRgd5Oiqh2uLJkUVShz7UO9dO0EV2cvlQXAAAAAABAUbhrAcAhNhw9ry82WW9YD2gTopvbhzopoqK1DfNXnxb1LXUfr45Rbv5dbKuh9347rMyc32cbeLi66NHoFk6MqPYY17dZgSWLGgbU0Sdje8iviiXPAAAAAAAA8iJxAKDCZWTn6On5uyx1Ph6umnJbuyq7NMuEfLMODp9N1oqDCUW0rh5iL6Tq683W5M39PSIUVtfLSRHVLq4uNr11b2c1+/97STSp761PxvZQaEAdJ0cGAAAAAABQPDdnBwCg5pm2/IiOJqRY6v4yKKpK37C+vlUDtQrx1cEzyWbd/1YeVXTrYCdGVT7v/HpI2XlmTXi6uehPzDaoVI3re+unx/sp7mKqIgK9Vcfd1dkhAQAAAAAAlIgZBwAq1OGzyXp/2RFLXafwAI3q3dQ5AdnJZrNpfF/rrIN1R89rd3ySkyIqn5hzKfo23z4NI3o1UYg/33avbF4ermoZ4kfSAAAAAAAAVBskDgBUmNxcQ3//dpdlTX1XF5teHd5Rri5Vc4mivG7rHKYgX09L3cerjjopmvJ559dDyskz28DL3VV/uL65EyMCAAAAAABAdUHiAECF+WpzrDYeu2CpG9+vmdqG+TspotLxdHPV6N5NLHULd57SqaQ0J0VUNofPXtZ3262zDUZd20QN/DyLOAMAAAAAAAD4HYkDABUi4XKGXvlpn6UuItBLk25s5aSIymZEryaq4/770Jida+iTNcecF1AZvPXLIeWZbCAfD1c9fB2zDQAAAAAAAGAfEgcAKsSUhXt1KT3bUvfy7R3k5VG91nWv5+Ohu7tGWOo+33BCl9OznBRR6ew/fUkLd56y1I3r20yBPh5OiggAAAAAAADVDYkDAOW27MBZ/bDjpKXutmvCdH2rBk6KqHwe6ttMtjxbMlzOyNaXm2KdF1ApvLX0kKXsV8etwKbPAAAAAAAAQHFIHAAol9TMbD07f7elLsDLXc/d2tZJEZVf0yAfDWwTYqmbueaYsvNs+lwV7Y5P0uI9py114/tGKsDb3UkRAQAAAAAAoDoicQCgXN5celDxidbNg58Z0kZBvtV7I94J11m/pR+fmKZFu08X0bpqeOuXg5ZygJe7xvZt6pxgAAAAAAAAUG2ROABQZrvjkzR9dYylrldkoO7uGu6kiCpOtyb11CmirqXu41VHZRhG4Sc42fbYRP2y76ylbuJ1kfKvw2wDAAAAAAAAlA6JAwBlkp2Tq6e/3aXcPPfRPdxc9ModHWTLu0FANWWz2TSxn3XWwY64JG2MueCkiIr35lLrbINAHw+Nubapc4IBAAAAAABAtUbiAECZfLruuHbFJ1nqHo1uocgGvk6KqOINahei8HpelrqPVsUU0dp5thy/oBUHEyx1f7g+Uj6ebk6KCAAAAAAAANUZiQMApRafmKY3lhyw1LUM9tUfrm/upIgcw83VReP6NLPU/br/jI4mJDsposL9J99sgyBfT43s1dQ5wQAAAAAAAKDaI3EAoFQMw9BzC3YrNTPHUv/q8A7ycKt5Q8o93SPkV+f3b+4bhgrs6+BM64+e15rD5y11f+rfXF4erk6KCAAAAAAAANVdzbvLB8Chftp1Wr/tt27C+0DPxurWNNBJETmWr6ebHujZ2FL3zZY4XUjJdFJEv7uQkqnnv9ttqQvx9ywQLwAAAAAAAFAaJA4A2C0pLUsv/rDHUtfAz1N/u7m1kyKqHGOubSo3l983fM7IztWc9cedGJF0MSVTD368QQfPWJdNejS6heq4M9sAAAAAAAAAZUfiAIDdXlu8XwmXMyx1Lw5tpwAvdydFVDkaBnhpWKcwS92sdceUnpVTxBmOdTVpsO/UJUt9ZAMf3dM9wikxAQAAAAAAoOYgcQDALpuOXdDnG05Y6m5sHazBHUKdFFHlGt8v0lI+l5ypBdviKz2OxNRMjZi+QXvzJQ0a1fXSp2N7yNON2QYAAAAAAAAoHxIHAEqUkZ2jp7/dZanz9nDVlNvby2azFXFWzdI2zF99WtS31H28Oka5uUalxZCYemWmwZ6T1qRBWEAdzZ3QSxGB3pUWCwAAAAAAAGouEgcASvThiqM6fNa6lv6fb4pSo7peTorIOfLPOjh8NlkrDiZUyrWTUrM0YnrBpEHDgDqaO7GXGtcnaQAAAAAAAICKQeIAQLGOJCTrvd8OW+o6hgdozLVNnROQE/Vv1UAtg30tdR+tOurw6yalXUka7I63Jg1C/evoi4m91KS+j8NjAAAAAAAAQO3h5uwAAJRecka2XvhujxbvPqXMnNxi29pkx1JCxTTJyTWUk2c5HlcXm165o4NcXWrHEkV52Ww2TegXqafm7TTr1h45r93xSWrfKMAh10xKy9LI6Ru0Kz7JUk/SAAAAAAAAAI7CjAOgmjl+PkXD31+jeVvjlJKZo6wco9hHZk5uyY/soh85+dbwf6hvM4fdJK8ObuscpiBfT0vdxw6adXApPUujpm/Qzjhr0iDE31NzJ/ZS0yCSBgAAAAAAAKh4JA6AamTVoQQNe2+NDp5JLrmxAzSq66VJA1o65dpVhaebq0b3bmKpW7jzlE4lpVXodS6lZ2nk9I3akS9pEOznqbkTeqkZSQMAAAAAAAA4CIkDoBowDEMfrzqq0TM2Kiktyykx+NVx07sPdJa3ByucjejVRHXcfx8+s3MNfbLmWIX1fzk9S6Omb9SO2ERLfbCfp76Y2EuRDXwLPxEAAAAAAACoANwBBKq49KwcPTN/t+ZtjSvwXFSIn/5xe3t5e7iW6xqGUfzzNpvUIthXddzLd52aop6Ph+7qGq4560+YdZ9vPKHHbmwpX8/yDauX07M0asZGbc+XNGjgd2V5IpIGAAAAAAAAcDQSB0AVduZSuibO3lLgm+eSdHO7UL1xTyf5lPNGNcrmob6R+mzDCTPpcjk9W19uitVDfZuVuc/kjGyNnrFR204kWuob/P/liZqTNAAAAAAAAEAlYKkioIraeuKihr67utCkwZMDWun9B7uQNHCiZkE+GtgmxFI3Y3WMsnNyy9Tf1aTB1nxJgyBfT82d0FMtgkkaAAAAAAAAoHKQOACqoG+2xOm+D9fr7OUMS72Ph6s+HNlVTwxoKRcXm5Oiw1UTrou0lOMT07Ro9+lS95Ocka0xMzZqy/GLlvogX4//nzTwK1ecAAAAAAAAQGmQOACqkOycXE35Ya/+8vUOZeb75nrjQG99+6c+GtQu1EnRIb9uTeqpU0RdS93Hq47KKGnTiDxSMrI1duZGbc6XNKjv46G5E3qpZQhJAwAAAAAAAFQuEgdAFXExJVOjZ27UjDUxBZ7r06K+vnukj6JCuYlcldhsNk3oZ93TYEdckjYdu1jEGVZXkgabCrSv7+OhuRNJGgAAAAAAAMA5SBwAVcCB05d123/XaM3h8wWeG9enmT4d20P1fDycEBlKcnO7UDWq62Wp+2jV0RLPS83M1thPNmnjsQuW+kAfD30+oZdakTQAAAAAAACAk5A4AJzs5z2nNfz9NTpxIdVS7+Hqoql3ddTzQ9vKzZV/qlWVm6uLHuprnXXwy74zOpqQXOQ5qZnZGvfJJm2MKSxp0JOZJQAAAAAAAHAq7kYCTpKba+jtXw7p4dlblJKZY3mugZ+nvni4l+7uFuGk6FAa93SPkF8dN7NsGNL01QWXnJKktMwcPfTJZq0/ak0a1PN212fje6p1qL9DYwUAAAAAAABKQuIAcIKUjGz96bOtevOXgwWe6xRRVz882lddGtdzQmQoC19PNz3Qs7Gl7pstcbqQkmmpS8vM0UOfbtK6o9Ylqa4kDXqpTUOSBgAAAAAAAHA+EgdAJYu9kKo7p63V4j2nCzw3vEsjfTmxl0ID6jghMpTHmGubys3FZpYzsnM1Z/1xs5yWmaPxszZp7RFr0qCut7vmjO+ptmEkDQAAAAAAAFA1kDgAKtHaw+c07L3V2n/6sqXexSY9d2tbvXF3J9Vxd3VSdCiPhgFeGtopzFI3a90xpWflKD0rRxNmbS6w+XWAl7vmPNRT7cICKjNUAAAAAAAAoFhuJTcBUF6GYejTtcf0jx/3KSfXsDwX4OWu9x7orH4tGzgpOlSU8f2aaf62eLN8LjlTX26K1S/7zmj14XOWtgFeV/Y0aN+IpAEAAAAAAACqFhIHgINlZOfouQW79dXmuALPtQz21UejuqlpkI8TIkNFaxcWoD4t6ltmFrzw/Z4C7fzruJE0AAAAAAAAQJXFUkWAA529nK77/7e+0KTBwLYhmv9IH5IGNcz4fpHFPn8ladCLpAEAAAAAAACqLGYcAA6yIzZRD8/eotOX0gs89/gNLTRpQCu55NlMFzVD/1YN1DLYV4fOJhd4zq+Om+aM76kO4SQNAAAAAAAAUHUx4wBwgPnb4nT3h+sKJA283F31/oNdNPmmKJIGNZTNZtP4fs0K1Pt5umnOQz3VMbxu5QcFAAAAAAAAlAKJA6AC5eQaeuWnfXryyx3KzM61PBdez0vz/nitBndo6KToUFluu6aRGgd6m2U/TzfNHt9TnSLqOi8oAAAAAAAAwE4sVQRUkKTULD32xTatPJhQ4LlekYF6/8GuCvTxcEJkqGx13F01a1wPvfPbIeXmGnr0hhZqEezn7LAAAAAAAAAAu5A4ACpIYlqmtp+4WKB+dO8mevbWtnJ3ZYJPbdI0yEf/uecaZ4cBAAAAAAAAlBp3MoEK0qS+j957oIuubl3g7mrTv4Z30Eu3tSdpAAAAAAAAAKDa4G4mUIGua9VAfx/cRkG+Hpo7oZfu69HY2SEBAAAAAAAAQKmwVBFQwR7q20zDu4SznwEAAAAAAACAaokZB0AFs9lsJA0AAAAAAAAAVFskDgAAAAAAAAAAgInEAQAAAAAAAAAAMJE4AAAAAAAAAAAAJhIHAAAAAAAAAADAROIAAAAAAAAAAACYSBwAAAAAAAAAAAATiQMAAAAAAAAAAGAicQAAAAAAAAAAAEwkDgAAAAAAAAAAgInEAQAAAAAAAAAAMJE4AAAAAAAAAAAAJhIHAAAAAAAAAADAROIAAAAAAAAAAACYSBwAAAAAAAAAAAATiQMAAAAAAAAAAGAicVBOK1eu1Lhx49S6dWv5+fmpbt26at++vR577DFt27bNIddMTEzUvHnz9Oijj6pv374KCQmRh4eH/Pz81LRpU91xxx2aNm2akpOTHXJ9AAAAAAAAAEDNZTMMw3B2ENXR5cuX9ac//Ulz5swpso3NZtPkyZP16quvyt3dvdzX3L9/v/7yl79oyZIlysrKKrF9QECA3nrrLY0ZM6bc1y6tuLg4RURESJJiY2MVHh5e6TEAAAAAAAAAAErPzdkBVEfZ2dm67bbbtGzZMrPO399f7dq1U2Zmpvbu3au0tDQZhqE33nhDCQkJ+vTTT8t93d27d+vHH3+01Lm6uqpFixYKCQlRTk6O9u3bpwsXLkiSkpKSNHbsWB05ckT/+Mc/yn19AAAAAAAAAEDNx1JFZfDMM89YkgbPPfecTp06pbVr12rz5s2KjY3V+PHjzednzZqladOmVdj13dzcdPvtt2vBggW6cOGC9u/frxUrVmj16tU6d+6cFixYoEaNGpntX375Zf3www8Vdn0AAAAAAAAAQM3FUkWlFBsbq5YtWyojI0PSlaTBlClTCm07cuRIcymjkJAQHT16VN7e3mW+9nfffaeFCxfqueeeU+PGjUuMs0ePHjp9+rQkqX379tq1a1eZr11aLFUEAAAAAAAAANUTMw5K6e233zaTBo0bN9azzz5bbNuriYIzZ85o5syZ5br2bbfdpo8++qjEpIEkRURE6KWXXjLLu3fv1pEjR8p1fQAAAAAAAABAzUfioJTmz59vHo8bN04eHh5Ftg0MDNRdd91V6LmVYejQoZby/v37K/X6AAAAAAAAAIDqh8RBKezfv19Hjx41yzfffHOJ59xyyy3m8YoVK5ScnOyQ2AoTGBhoKV+6dKnSrg0AAAAAAAAAqJ5IHJTCjh07zGNPT0916dKlxHN69+5tHmdnZ2vv3r0Oia0wx48ft5QbNGhQadcGAAAAAAAAAFRPJA5KYd++feZxRESE3N3dSzwnIiLCspxRZS4X9O2335rHbm5u6tq1a6VdGwAAAAAAAABQPbk5O4DqJO83+O3ZoFiSXFxc1KhRI8XExEiSjh075ojQCkhJSdF7771nlgcNGqR69eqVub+4uLhStT916lSZrwUAAAAAAAAAcB4SB6Vw+fJl8zggIMDu8/z9/Qvtw5H+8pe/KD4+XpJks9k0ZcqUcvUXERFREWEBAAAAAAAAAKo4lioqhZSUFPO4Tp06dp/n5eVVaB+O8tlnn+mDDz4wy5MnT7ZrPwYAAAAAAAAAAJhxUApZWVnmsZub/b+6vG0zMzMrNKb8Vq1apYceesgsd+3aVa+88kq5+42NjS1V+1OnTqlHjx7lvi4AAAAAAAAAoHKROCgFb29v8zg9Pd3u8/K29fHxqdCY8tqxY4eGDh2qjIwMSVJkZKR++OEHy+bMZRUeHl7uPgAAAAAAAAAAVR9LFZWCr6+veZyWlmb3eampqYX2UZEOHDigm266SUlJSZKksLAwLV26VA0bNnTI9QAAAAAAAAAANROJg1KoX7++eXzq1Cm7zzt9+nShfVSUmJgYDRgwQGfPnpUkBQUFaenSpYqMjKzwawEAAAAAAAAAajYSB6UQFRVlHp84ccKuc1JSUnThwoVC+6gIcXFxuvHGGxUXFydJ8vf31+LFi9W2bdsKvQ4AAAAAAAAAoHYgcVAKbdq0MY8TEhLsmnWwffv2IvsorzNnzmjAgAGKiYmRdGUPhh9//FFdu3atsGsAAAAAAAAAAGoXEgel0KNHD8tGw6tWrSrxnLxtwsPDK2z5oAsXLmjgwIE6cOCAJMnT01MLFixQ3759K6R/AAAAAAAAAEDtROKgFPz8/BQdHW2WP/vssxLP+fzzz83joUOHVkgcly5d0qBBg7Rr1y5Jkpubm7766isNHDiwQvoHAAAAAAAAANRebs4OoLoZM2aMfv75Z0nSjz/+qG3btqlz586Ftv3+++/Nm/uSNHr06HJfPzU1VUOGDNHmzZslSS4uLpo9e7aGDRtW7r4rUnZ2tnlcmo2kAQAAAAAAAAClFxoaKje3Crrlb6BUcnJyjPbt2xuSDElGmzZtjJMnTxZot3fvXiM0NNRsN2TIkCL7nDlzptlOkrFs2bJC26WnpxsDBgww29lsNmPGjBkV9aNVqI0bN1p+Jh48ePDgwYMHDx48ePDgwYMHDx48ePDg4bhHbGxshd3fZcZBKbm4uOijjz5S//79lZGRoX379qlz58567LHH1L17d2VlZWnlypX64IMPdOnSJUlS/fr19fbbb5f72m+//bZ++eUXs1y3bl19+eWX+vLLL+06f8SIERoxYkS54wAAAAAAAAAA1FwkDsqgV69emjVrlkaNGqWMjAydOXNGzz77bKFtAwIC9O2336p58+blvm5qaqqlfPHiRXPZJHv06tWr3DHYq0OHDtq4caMkqUGDBkVOkTl16pR69OghSdq4caMaNmxYaTECqHoYEwDkxZgAIC/GBAB5MSYAyIsx4YrQ0NAK64vEQRndc889atOmjR5//HGtWLFChmFYnnd1ddXgwYP17rvvqkmTJk6K0nnq1Kmj7t27l+qchg0bKjw83EERAahuGBMA5MWYACAvxgQAeTEmAMiLMaFikDgohw4dOmjZsmWKiYnR+vXrFR8fL1dXV4WHh6tfv352Z3jGjBmjMWPGlNjuxRdf1Isvvli+oAEAAAAAAAAAKAaJgwrQrFkzNWvWzNlhAAAAAAAAAABQbi7ODgAAAAAAAAAAAFQdJA4AAAAAAAAAAICJxAEAAAAAAAAAADCROAAAAAAAAAAAACYSBwAAAAAAAAAAwETiAAAAAAAAAAAAmEgcAAAAAAAAAAAAE4kDAAAAAAAAAABgInEAAAAAAAAAAABMNsMwDGcHAQAAAAAAAAAAqgZmHAAAAAAAAAAAABOJAwAAAAAAAAAAYCJxAAAAAAAAAAAATCQOAAAAAAAAAACAicQBAAAAAAAAAAAwkTgAAAAAAAAAAAAmEgcAAAAAAAAAAMBE4gAAAAAAAAAAAJhIHAAAAAAAAAAAABOJAwAAAAAAAAAAYCJxUMvEx8drwYIFevbZZzVo0CDVr19fNpvNfCxfvrxM/cbExOiZZ55Rr169FBISIk9PTzVq1Eh9+vTR1KlTdfr0abv6Wb58uSWesjzstXLlSo0bN06tW7eWn5+f6tatq/bt2+uxxx7Ttm3byvR7AKqbqj4m5Hf8+HG9+OKLio6OVsOGDVWnTh15e3srPDxcgwYN0muvvaYzZ86Uul/DMPTjjz/q3nvvVcuWLeXt7a2goCB17txZTz/9tA4ePFimeIHqprqNCTt37tTkyZPVuXNnBQUFydPTU40bN9YNN9ygadOmKTExsUz9ZmVl6YsvvtDQoUMVGRkpLy8vhYSEqEePHvrnP/+p+Pj4MvULVCeJiYmaN2+eHn30UfXt21chISHy8PCQn5+fmjZtqjvuuEPTpk1TcnJymfp3xHtxR72eMyYA1W9MOHr0qL766iv99a9/VXR0tPz9/S3vaY4dO1amOCU+OwBS9RoTzpw5o88++0wTJ05Ujx491KBBA3l4eCggIEAtW7bU/fffr9mzZysjI6NMsdboMcFArbB161YjNDTUkFTsY9myZaXqNzs723jqqacMd3f3YvsNCAgwZs2aVWJ/y5YtKzHG4h6BgYElXuPSpUvGiBEjiu3HZrMZf/7zn43MzMxS/T6A6qK6jAlXZWVlGU8//bTh6upaYsx16tQxpk6danffp0+fNgYNGlRsn+7u7sbrr79u5Obmlur3AVQX1W1MSE1NNcaMGWPYbLZi+23YsKGxePHiUsV88OBBo1u3bsX26+fnZ3z66ael6heoLvbt22cMGTKkxH+3ef/9zpw50+7+HfVe3FGv54wJqO2q25iwcOFCIzAwsMQ4Y2JiyvT74LMDarvqNCasXbvW6N+/v+Hi4mJXrGFhYcbChQtL9fuo6WMCiYNawt4b8qW5IZCTk2PcfvvtBf7xtm/f3oiOjjY6dOhQ4AP9tGnTiu1zx44dxqBBg+x+9O3b19L/I488Umz/WVlZRnR0tOUcf39/o3fv3kbXrl0NLy8vy3OjRo2y+/cBVCfVZUy46r777isQW9OmTY3+/fsb/fr1K/SG5+TJk0vsNykpyWjbtq3lvKCgIKNv375Gp06dCrwZeu655+z+fQDVSXUaE1JTU42ePXtaznN1dTU6d+5sREdHG1FRUQWes/cDQGxsbIHxJCwszLjuuuuMdu3aFYh3+vTpdv8+gOri66+/LvBv39XV1YiKijKuu+46o0+fPoXelHv22WdL7NtR78Ud9XrOmABUvzFh5syZdr2nKUvigM8OQPUaE6ZOnVogDg8PD6Ndu3ZG//79jd69ext+fn4F2nz00Ud2/S5qw5hA4qCWyHtDICwszLjtttuMf/zjH8aMGTPKfENgypQplnNvv/124/jx45Y2sbGxxp133mm2cXNzM9auXVthP9eHH35oiWHjxo3Ftn/qqacK/KNNSUkxnz937pwxfvx4S5v333+/wuIFqorqNCbMmTPH0m+PHj2Mbdu2FWj3yy+/GJGRkZa2v/32W7F933PPPWZbd3d347333rN8ayE2NtYYOnSopc8ff/zR7t8JUF1UpzFh3Lhxln4nTJhgJCQkWNrs27fPuP766802vr6+xpEjR4rtNzc315KQ8PX1Nb788kvLN4P2799v9OrVy/LBY/v27Xb/ToDq4OoNATc3N+P22283FixYYCQlJVna5ObmGgsWLDAaNWpk+ff4/fffF9u3o96LO+L1nDEBuKK6jQl5EwfNmjUz7r77buO1114zXnvttXInDvjsAFSvMeFq4sDLy8sYOXKksWTJEiM1NdXSJisry5g5c6ZRt25ds09XV9dC7znkVxvGBBIHtURcXJzx/fffG6dOnbLUx8TElOmGQEJCguHj42O5GZCTk1No29zcXMtNgT59+pT3xzFde+21Zr9t27Yttu2JEycMT09PuzJ9eadFhYSEWAYqoCaoTmNC3g/tkZGRxqVLl4pse+LECcs3Bu66664i227cuNHysxb1LcHs7GzLDcgOHTpUyymGQHGqy5iwe/duyzd8H3/88SLbZmRkGL179zbbPvDAA8XG/NVXX5ltbTab8csvvxTaLiUlxWjVqpXZdsiQIcX2C1Q3CxYsMMaPH18g0VeYEydOWL6R3759+2LbOuK9uKNezxkTgCuq25iwf/9+Y/Hixcb58+ct9flnV5Y2ccBnB+CK6jQmvP/++8Zf/vKXAl8yKsz27dstn19uvfXWYtvXljGBxEEtV9YbAu+++655jpubmxEXF1ds+1OnThkeHh6lvk5xDh48aIn9tddeK7b9n//8Z7Nt48aNjYyMjCLbnj9/3vD29jbbv/fee+WOF6gOqtqYkJGRYblJ+O9//7vEWB555BGzfVhYWJHt8t6o7NWrV7F97t271/J7Ke26h0B1VdXGhLyv5YGBgQW+MZTfli1bLDf+ipt10LVrV7PtfffdV2y/ixYtsvxedu/eXWx7oCbLPwP48OHDhbZz1HtxR72eMyYAZePsMaEo5U0c8NkBKJuqOiYU5umnnzb79PT0LDZJWVvGBBcBZbBs2TLzuG/fvmrUqFGx7UNDQxUdHW2Wv/nmm3LHMGvWLPPY1dVVI0aMKLb9/PnzzeNx48bJw8OjyLaBgYG66667Cj0XQEGOGhPOnTsnwzDMcvv27UuMJW+bhISEQtukp6dr0aJFZvkPf/hDsX22adNG1113nVlmTACK56gxIW+/w4YNk5eXV7H9dunSRVFRUZIkwzD07bffFtruxIkT2rJli1kuaUwYNGiQmjZtapYZE1CbDR061FLev39/oe0c8V7cUa/njAlA2TlzTHAUPjsAZVedxoS8sWZkZCgmJqbQdrVpTCBxgDI5fvy4edyxY0e7zsnb7vvvvy/X9Q3D0OzZs83ywIEDFRYWVmT7/fv36+jRo2b55ptvLvEat9xyi3m8YsUKJScnlzFaoOZz1Jjg6+trKWdmZpbYb0ZGhnlcr169QtssX75cqampZrm0Y8KPP/5YYnugNnPUmOCofn/66Sfz2NfXV3379i22T5vNpkGDBpllxgTUZoGBgZbypUuXCrRx1HtxR72eMyYAZefMMcFR+OwAlF11GhPsiVWqXWMCiQOUSVJSknns5+dn1zn+/v7mcWxsrC5cuFDm6y9fvtxy82D06NHFtt+xY4d57OnpqS5dupR4jd69e5vH2dnZ2rt3bxkiBWoHR40J/v7+5reFJWnlypUl9rtixQrzuKgP+nnHhGbNmikkJKTEfvOOCadPn9bZs2dLPAeorRw1JpS337z/9vPKW9+9e3e5urqW2G/eMWHXrl2W2VFAbZL3PbkkNWjQoEAbR70Xd9TrOWMCUHbOHBMchc8OQNlVpzHBnlil2jUmkDhAmeT9sH758mW7zsmfqSvPP+pPP/3UPA4ICNDtt99ebPt9+/aZxxEREXJ3dy/xGhEREZapUUVNpwLg2DHhT3/6k3n8wQcfaPfu3UX2+fPPP2vBggWSrnz7b/LkyYW2yzsmNG/e3K5487djTACK5qgxobz9Xrp0SXFxcQXalHdMSElJUWxsrF3nATVN3iXA3Nzc1LVr1wJtHPVe3FGv54wJQNk5c0xwFD47AGVXncaEvLE2aNBAkZGRhbarTWMCiQOUSXh4uHm8a9cuu87J366otcJKkpKSonnz5pnle++9V3Xq1Cn2nLxZw8aNG9t1HRcXF8uazMeOHStdoEAt4sgx4ZFHHtEdd9whSUpOTlafPn302muv6eDBg8rMzFRaWpp27Nihp556SkOHDpVhGHJxcdE777yjPn36FNpnWcaEsLAwubm5mWXGBKBojhoTHNVvWcaE/O0YE1AbpaSk6L333jPLgwYNKnSZQEe9F3fU6zljAlA2zh4THIXPDkDZVKcxIT4+XnPmzDHL99xzj1xcCr9tXpvGBBIHKJO8y3+sXr1aJ0+eLLb92bNnLRsaSvZ/UzC/efPmWdYuK2mZovzXCggIsPtaeZc3KGu8QG3gyDHB1dVV33zzjZ555hn5+fnp0qVL+r//+z9FRUXJ09NT3t7euuaaazR16lRlZWWpW7duWrhwoR599NEir1+WMcHFxUU+Pj4lxgvAcWNC3n6///57paenF9vv9u3bC3ybp7B+yzIm5H2PUFS/QE33l7/8RfHx8ZKuzPSbMmVKoe0c9V7cUa/njAlA2Th7THAUPjsAZVNdxgTDMDRx4kSlpKRIkry8vPT3v/+9yPa1aUwgcYAyueeee8y1PrOysvT4448XuY6nYRh6/PHHLRuWSirzxiV5lylq1aqVrr322hLPufqPX1KJsxPy8vLyKrQPAFaOHhNcXFz08ssva/bs2WrYsGGR7Vq0aKHHH39cAwcOLDZexgTAsRw1JjzwwAPm8fnz54t9Q5+ZmVloArGwfssyJuQdD/L3AdQGn332mT744AOzPHny5CLXJHbU625V6pcxAbVdVRgTHKW6xQtUBdVpTHjllVf0008/meXXX39dYWFhRbZ3dryVicQByqRp06YaN26cWZ43b57uuuuuAmt5xsfH695779WXX35ZoI+srKxSX/fEiROWbySOGjXKrvPyXivv1KCS5G2bmZlp93lAbePoMWH37t3q2rWrbr/9dp06dUrSlTUC+/fvrz59+pibFh0+fFijRo1Shw4dit0LgTEBcCxHjQl9+/a1JAbffPNN/fGPf9T58+ct7Q4cOKCbb75Za9assavfsowJ+dsxJqA2WbVqlR566CGz3LVrV73yyitFtnfU625V6pcxAbVZVRkTHKW6xQs4W3UaE7766is999xzZnnYsGHFrl4g1a4xgcQByuytt97SNddcY5a//fZbNWnSRB07dtSNN96oTp06qXHjxvr6668lSU888YTl/NJMP7pq9uzZ5jcWXVxcNHLkSLvO8/b2No9LWtYgr7xt804pAlCQo8aELVu2qE+fPtq6daukKy/kBw4c0OHDh7Vs2TKtXr1aZ8+e1S+//KKoqChJVzYaio6O1tGjRwvtkzEBcDxHjQmzZ89WRESEWf7ggw8UGhqqrl276sYbb1SbNm3UunVr84sG9vRbljEhfzvGBNQWO3bs0NChQ81ZQpGRkfrhhx8sGxTm56jX3arUL2MCaquqNCY4SnWLF3Cm6jQmLF26VCNHjjTvM3bv3l2fffZZiefVpjGBxAHKzNvbWytWrNDtt99u1hmGoV27dum3337Tzp07lZubKxcXF/3tb3/TM888Yzm/bt26pb7mrFmzzOPo6Gi7NyHx9fU1j9PS0uy+XmpqaqF9ACjIEWNCZmam7r33Xl26dEnSlc3Qv/vuO7Vq1apA2xtvvFHr1q1TixYtJEnnzp3TH//4x0JjZUwAHM9R7xNCQkK0fv16y34H2dnZ2rp1q3777TdzTwNPT0+99dZbGjFiRIn9lmVMyDse5O8DqKkOHDigm266SUlJSZKubPS3dOnSYpcRlBz3uluV+mVMQG1U1cYER6lu8QLOUp3GhNWrV+v22283v/nfrl07LVq0yK5+atOYQOIA5eLv76/58+dr9erVmjhxolq3bi1/f3/VqVNHzZs31/jx47Vx40b961//KrCMgL03/a9at26dDh48aJbt2RT5qvr165vHV5c5scfp06cL7QNA4Sp6TPjmm2905MgRSZKHh4fefvvtYq9fr149vfbaa2Z5yZIllnHjqrKMCZcvX7a80DMmACVz1PuEsLAwrVq1SgsXLtTIkSPVvHlz+fj4yMfHR61bt9akSZO0Y8cOPfHEEzp37lyJ/ZZlTMj7HiF/H0BNFBMTowEDBujs2bOSpKCgIC1dulSRkZElnuuo9+KOej1nTABKVhXHBEfhswNQsuo0JmzZskVDhgwx/402b95cS5cutbuP2jQm2L8QE1CMPn36qE+fPsW22bt3r3ns4uJS5KYoRcm7KbKvr6+GDx9u97lXly+RruyTYI+UlBRduHCh0D4AFK+ixoRffvnFPO7Zs6dCQkJKvPbgwYPl7u5urju4evXqAjMUoqKitHDhQkn2jwn512ZnTADs56j3CUOGDNGQIUPs7jc4OLjQxEFUVJS5L0pZxgSbzVboTCigpoiLi9ONN96ouLg4SVeSgosXL1bbtm3tOt9R78Ud9XrOmAAUr6qOCY7CZwegeNVpTNi1a5duuukmc1WDRo0a6ZdffilxVkT+eGvLmMCMA1SaTZs2mcft2rUr1bScjIwMy8aJd999d6nWA2vTpo15nJCQYFdGcPv27UX2AaD87BkT4uPjzeO8a5oXp06dOgoKCjLL+b8BKFn/Pe/Zs0fZ2dkl9rtt2zbz2NXVVS1btrQrHgD2Kc/7BHv77dmzZ6Ft8o4J+V//i5J3TAgPD682042B0jpz5owGDBigmJgYSVeWIfvxxx/VtWtXu/tw1HtxR72eMyYARavKY4Kj8NkBKFp1GhMOHDigAQMGmAmH4OBg/frrr2ratKndsea/Vk0fE0gcoNJ888035vF9991XqnO/++47JSYmmuXSLFMkST169LBsxLJq1aoSz8nbJjw83K7pVQDsZ8+YkPffbVnXDsy7cdFV/fr1s7S9uvFycfKOCb169Sp2cycApVee9wlFSU9PN78NVFy/eceEQ4cO6cyZMyX2nXdMuO6668oRJVB1XbhwQQMHDtSBAwckXdk7ZMGCBZY9RuzhqPfijno9Z0wAClfVxwRH4bMDULjqNCbExMToxhtvNJdSqlevnpYsWVKmb/7XpjGBxAEqxfz583X48GFJkpubm8aOHVuq8/MuU9SsWbNSvxn38/NTdHS0WbZnl/TPP//cPB46dGiprgegePaOCWFhYebxli1b7Or7yJEj5mZM+fu4qlWrVpY3CCWNCZmZmZabmsOGDbMrFgD2Ke/7hKJMmzZNycnJkqTAwMAilzns37+//P39zXLe9wCFOXPmjH799VezzJiAmujSpUsaNGiQdu3aJenKv82vvvpKAwcOLHVfjnov7qjXc8YEoKDqMCY4Cp8dgIKq05gQHx+vG2+80VzRwM/PT4sWLVKnTp1KHatUy8YEA7VaTEyMIcl8LFu2rMKvcfr0aaNJkybmNSZNmlSq80+dOmW4urqa57/wwgtlimPu3LlmH66ursbWrVuLbPvdd99Zfi/r168v0zWB6qaqjQmzZ8+2xPPtt9+W2P8jjzxiOefUqVOFtnv11VfNNn5+fkZcXFyRfb799ttmWw8PD+PEiRMl/6BADVDVxoTS2L9/vxEQEGD2+9ZbbxXb/uGHHzbbNm7c2Lh8+XKRbZ988kmzbVBQkJGcnFwhMQNVRUpKitG3b1/z79zFxcWYO3duufp01HtxR72eMyYAv6tOY0JRli1bZukjJiamVOfz2QH4XXUaE86cOWNERUWZbb28vIzly5eXK1bDqD1jAomDWq48NwQOHDhgrFixotg2u3fvNtq3b295013aN9L//ve/zfNtNptx5MiRUp1/VU5OjiWWNm3aGCdPnizQbu/evUZoaKjZbsiQIWW6HlAdVbUxISkpyQgMDDTbBwYGGhs2bCiy/fvvv2/YbDaz/eDBg4tsm5ycbAQHB5ttr7vuOuPSpUsF2q1atcrw8fEx2z3yyCPF/oxATVLVxgTDMIxNmzYZ27ZtK7bN6tWrjfDwcLPf7t27Gzk5OcWec+LECcPT09M85+677zYyMzMLtPv6668NFxcXs93UqVOL7ReobtLT040BAwZY3n/PmDGj3P066r24o17PGROAK6rbmFCU8iYO+OwAXFGdxoQLFy4YnTp1Mtt6enoaP//8c7ljNYzaMybYDMMwhFrhpptu0sqVKy11hmEoMzPTLLu7u8vFxbqC1XXXXaclS5YU6G/x4sW65ZZb1LJlSw0dOlTdunVTw4YNlZ2drdjYWC1atEgLFixQVlaWJCkoKEjLly9Xu3btShV3x44dzalP/fr1K/AzlMb69evVv39/ZWRkSJJCQkL02GOPqXv37srKytLKlSv1wQcfmLur169fXxs2bFDz5s3LfE2gqqouY8L//vc/Pfzww2bZzc1N99xzjwYPHqyIiAhlZWXpwIEDmjt3rlavXm228/X11YYNG9S2bdsi+54/f77uvPNOXX0pjIyM1GOPPaYOHTooOTlZP//8s2bMmGGOGc2bN9eGDRtUv379YmMGqqPqMiZ88MEH+uMf/6hOnTppyJAh6ty5s4KDg5WWlqZjx47p+++/16JFi8x/182bN9fKlSsLXbYsv7feektPPvmkWe7UqZP++Mc/qlWrVjp//rzmz5+vL774Qrm5uZKurE+6fPlyeXp6ltg3UF28/vrr+tvf/maW69Wrpx49eth9/ogRIzRixIhCn3PUe3FHvZ4zJgDVc0yIiorS8ePHLXW5ubnmew7pyl5qNpvN0mbkyJH66KOPiuyXzw5A9RoT/vSnP2natGlmOSwsTB06dLA71j//+c/FLr1UK8YEZ2UsUPmuv/56S4bd3sf1119faH+LFi2yu49WrVoZO3bsKHXMW7dutfQzffr0cv4WDOPLL7+0fHuoqEdAQECJ35QEqrPqNCa89NJLlm/zlfSoV6+esXTpUrv6/s9//mNX32FhYcbevXvtjhmobqrLmDBt2jS7++3evXuppwJPmjTJrr7btGlT5FJoQHX2wgsvlGksuPooaVlRR70Xd9TrOWMCarvqOCbkXQKxNI/Ro0eX2DefHVDbVacxYfTo0eWKdebMmSX+Pmr6mMDmyCizxo0bq0ePHgWy9HlFRERoypQp2rlzpzp27Fjqa+TdFNnb21t33313mWLN65577tGmTZvUv3//QmN3dXXV0KFDtWPHjlJvwgzUZo4cE55//nktX75cgwYNKrZ/b29vTZw4Ubt27dKAAQPs6vvJJ5/UsmXL1KVLl0Kf9/T01KhRo7Rz5061adPG7piB2s5RY0KbNm1K/KZQVFSU3n33Xa1fv14RERGlivvNN9/UvHnz1KpVq0Kf9/Pz0xNPPKHNmzcrNDS0VH0DcNx7cUe9njMmAI5V3T6f89kBcCzGhKqFpYpQbomJidq2bZvi4+N15swZ5ebmqmHDhoqKilK3bt2KvWHgbDExMVq/fr3i4+Pl6uqq8PBw9evXjzf9QDk4ekw4f/68NmzYoJiYGCUlJcnNzU316tVT27Zt1bVrV9WpU6fMfe/du1dbt27VyZMn5eXlpfDwcEVHR6tu3brlihmozRw1JiQkJGjbtm06deqUzpw5Izc3NzVs2FAdOnRQ+/btKyT2zZs3a/fu3Tp9+rT8/f3VpEkTRUdHy9vbu0L6B2o7R70Xd9TrOWMC4FjV7fM5nx0Ax2JMcD4SBwAAAAAAAAAAwMRSRQAAAAAAAAAAwETiAAAAAAAAAAAAmEgcAAAAAAAAAAAAE4kDAAAAAAAAAABgInEAAAAAAAAAAABMJA4AAAAAAAAAAICJxAEAAAAAAAAAADCROAAAAAAAAAAAACYSBwAAAAAAAAAAwETiAAAAAAAAAAAAmEgcAAAAAAAAAAAAE4kDAAAAAAAAAABgInEAAAAAAAAAAABMJA4AAAAAAAAAAICJxAEAAAAAAAAAADCROAAAAAAAAAAAACYSBwAAAIAT2Gw289G/f39nh1PrTJgwwfz933333c4OB5XgX//6l/n/vHv37jIMw9khAQAAVFkkDgAAAADUKps3b9aMGTMkSW5ubvrnP//p5IhQGR5//HE1bNhQ0pW/gZkzZzo5IgAAgKqLxAEAAAAg6dixY5ZZAI56vPjii87+UWu9SZMmKTc3V5I0atQotWrVyskRoTJ4e3vr73//u1n++9//rpSUFCdGBAAAUHWROAAAAABQa/z0009as2aNpCvLRT311FNOjgiV6aGHHlJQUJAk6cyZM3r33XedHBEAAEDVROIAAAAAQK3x/PPPm8fDhg1TVFSUE6NBZfPy8tKjjz5qlqdOnarLly87MSIAAICqyWawIxQAAACg9PR0rV692q62S5Ys0dSpU81yx44d9cYbb9h1bmRkpCIjI8sUI8rnl19+0cCBA83y4sWLNWjQICdGBGc4efKkGjdurJycHEnSm2++qUmTJjk3KAAAgCqGxAEAAABQSp988onGjh1rlq+//notX77ceQHBLkOHDtXChQslSU2aNNHRo0fl4sIk7Noo799C8+bNdfDgQf4WAAAA8uCdEQAAAIAa7/jx4/rpp5/M8oMPPsiN4lps1KhR5vGRI0e0ZMkSJ0YDAABQ9fBOGQAAAECN9/nnnys3N9csDx8+3InRwNluueUWeXp6muU5c+Y4MRoAAICqx83ZAQAAAAAon+TkZK1evVqxsbFKSEhQQECAunTpol69eslmsxV7blxcnNauXasTJ04oJydHoaGh6tOnj1q0aFEhsZ04cUKbN2/WmTNndPHiRQUEBJjXCA0NrZBr2OPzzz83jxs1aqSuXbtW2rXLyjAM7dy5U/v27dPZs2eVkpKioKAghYeHq1+/fvL19S1X/8nJydqzZ4/279+v8+fPKy0tTQEBAQoKClKXLl3UqlWrCvpJrHbv3q19+/bp1KlTSk5OVkhIiEaNGiV3d/dC26elpWnHjh3au3evLl68qLS0NHl5ecnf319NmzZV69atFRERUaoYfH19deONN5qzUBYsWKDU1FR5e3uX++cDAACoEQwAAAAApTJz5kxDkvm4/vrrS91Hac4fPXq0pX1MTIxhGIYRFxdnjBs3zvD19bU8f/XRvHlz44cffii0z23bthk33XSTYbPZCj23X79+xq5du0r9cxmGYWRkZBhvvfWW0bZt20L7lmTYbDajW7duxnfffVema5TGsWPHLNceMWJEiefMnTvXcs6ECRPKdO0nn3zS0s/7779f4jlnz541nnzySaNhw4ZF/v48PDyMYcOGGTt27ChVPAcOHDBefPFFo1evXoabm1uR/UsyQkNDjZdeesm4cOGC3f0vW7bM0scLL7xgGIZhZGVlGe+8847Rrl27Qq918eLFAn0dOnTIGDlypOHj41NsnJKMsLAwY+zYsca6devsjnXq1KmWPn788Ue7zwUAAKjpWKoIAAAAqIbWrVunTp06acaMGUpOTi60zZEjRzRs2DC9++67lvrp06erR48eWrJkiQzDKPTcVatWqXfv3lqzZk2p4tqwYYNat26tSZMmae/evUW2MwxDmzdv1m233aZhw4YpJSWlVNcpjZ9//tlSvv7660s8Z/jw4WrQoIFZ/uKLL0odY0ZGhmbNmmWWvb299eCDDxZ7zvTp09W8eXO9+eabOnXqVJHtMjMz9f3336tz586aMmWKXfEsXLhQUVFRevHFF7V+/XplZ2cX2/706dN64YUX1KFDB23atMmuaxTm4sWLio6O1uOPP649e/bYdc7s2bPVvn17zZ49267f+8mTJzVz5ky99957dseV/+9g8eLFdp8LAABQ05E4AAAAAKqZQ4cOafDgwTp//rwkyc3NTVFRUerevbsaNWpkaWsYhiZNmqRVq1ZJkubOnasJEyYoKytLkuTj46N27dqpa9euqlevnuXc5ORk3XHHHbp48aJdcf3www+Kjo5WTEyMpd7Dw0NRUVHq0aOHWrduLTc3twLn3XDDDUpPT7f/l1AKV3/2q7p161biOR4eHho7dqxZvnz5sr744otSXXf+/Pnm/yNJuvfee+Xv719k++eee07jx4/X5cuXLfX+/v5q166devTooaZNm1qey83N1QsvvKAnnniixHgK+/16eXmpVatW6tq1q7p166ZmzZoV2DQ6Pj5e/fv31759+0q8Rn7Z2dkaNmyYVq9ebdbVq1dPHTt2VMeOHRUQEFDgnKVLl2r06NHKyMiw1Ht7e6tt27bq1auXOnfurKZNm5Zrg+tOnTpZ/hZXrlxZ5r4AAABqGhIHAAAAQDUzceJEJSYmqm7dunrrrbeUkJCg/fv3a+PGjYqLi9OGDRvUoUMHs31ubq4mT56sI0eOaPz48TIMQ61atdK3336rCxcuaPfu3dq8ebMSEhL05Zdfqm7duua5CQkJevnll0uMac+ePbr33nuVlpZm1vXr108LFy5UUlKS9u/frw0bNmjfvn26cOGC/ve//ykkJMRsu3HjRj355JMV8wvKZ8uWLeaxq6ur2rRpY9d5EydOtOwR8dFHH5XquvnbT5gwoci2M2fOtPyebTabRo0apU2bNunixYvavXu3NmzYoJiYGMXHx+vpp5+27Anwzjvv6KuvvioxJldXVw0ZMkQffvihDh06pOTkZB04cECbN2/Wpk2bdPToUSUmJmrOnDmWPQ5SU1P1wAMPFDlDpSgff/yxmTQYMGCA1qxZo3PnzmnHjh3asWOHLl68qKVLl8rLy8s8Z9KkSZbrREdHa/ny5bp06ZL27NmjdevWaevWrYqJiVFycrLWrl2rZ599VpGRkaWKzcPDw/Iz7tmzx2HJKwAAgGrHmeskAQAAANWRs/c4kGSEhIQYe/bsKfKchIQEIzg42HJOmzZtzP0LLl26VOS5v/32m+W8Bg0aGJmZmUW2z8rKMtq3b28556WXXjJyc3OL/bni4uKMli1bWs7bunVrseeUVnp6uuHi4mL2HxkZWarzBw4caIlv586ddp135MgRy/4R7dq1K7att7e32dbLy8v46aefSrzGihUrDC8vL/O84OBgIy0trcj2R48eNY4dO2ZX/IZhGGlpacbgwYMtP39JceXf4+DqY9KkSXZdc8+ePZbzoqOjjZycHLvOzcnJMQ4cOGBX26uGDx9uud7mzZtLdT4AAEBNxYwDAAAAoBr65JNP1LZt2yKfDwoK0uTJky11+/btU2BgoL766iv5+fkVeW50dLRuuukms5yQkKDNmzcX2f6bb77R7t27zfLDDz+s559/3vJt/cI0atRI8+bNsyw388YbbxR7TmmdOHFCubm5Zjk8PLxU5z/88MOWsr2zDj7++GPLt+aLm23w+uuvKzU11SzPmDFDt9xyS4nXuO666/Tvf//bLJ89e1Zz5swpsn2zZs3UpEmTEvu9qk6dOpo9e7ZlOaGZM2faff5V1157rf7zn//Y1fbgwYOW8sMPP2z3ckQuLi6WGQT2CAsLs5SPHTtWqvMBAABqKhIHAAAAQDVz7bXX6uabby6x3bBhwwrU/elPf1JoaGiJ5952222W8rZt24ps+9Zbb5nH3t7eevXVV0vs/6oOHTpYrvXdd98pJyfH7vNLEhsbayk3bNiwVOffdtttlnPmzJlT4nI22dnZ+uSTT8yyp6enRo4cWWjbCxcuWDZQ7t27t+677z6745swYYKCg4PN8rx58+w+1x6BgYGWJMbatWtL3ceUKVNKTCJdlXepK0mW5ZgcIf/fQ/6/FwAAgNqKxAEAAABQzdx99912tWvVqpU8PDwsdXfddZdd5+bdI0G68s39wpw/f14bN240y7feemuBTZZLknd2Q3JycrFJitJKSkqylH19fUt1vpubm8aNG2eWL168qG+++abYc3788UedOnXKLN95550KDAwstO3y5cstN8uLSjAUxd3dXdHR0WZ57dq1lhkWFaFZs2bmcXx8vBISEuw+NyQkRDfccIPd7fPPAPjss8/sPrcs8v895P97AQAAqK1IHAAAAADVTNeuXe1q5+rqallmxt3dXe3bt7fr3Pr161vKly5dKrTd6tWrLUvydOvWza7+82rcuLGlvG/fvlL3UZS8SwBJsmzCa6+JEydalsspabmi0myKvGrVKku5vL+/S5cuKT4+vsRzEhMTNX36dI0dO1ZdunRRw4YN5ePjI5vNVuCRfwbJuXPn7I6tW7duds82kKSePXvK39/fLH/77be65557tGvXLrv7KA1vb29LOSUlxSHXAQAAqG5IHAAAAADVTIMGDexum/fGaGBgoFxdXUt9nlRwCZmr8t/kf+qppwq9+VzcY8iQIZY+Lly4YFeMZZE3yWGvxo0bW5brWblyZYG1+K+Ki4vT4sWLzXLLli3Vv3//IvvO//vr0aNHqX9/U6dOtfRR3O8vJSVFTz31lEJDQzV+/Hh98skn2rZtm06fPl0gyVKUxMREu9pJ1tkK9qhTp47+9re/Weq+/vprdezYUW3bttWkSZM0f/58nT59ulT9FqUsfw8AAAC1AYkDAAAAoJqpU6dOpZ4nFX2D9fz582XusygVuVxM/gRISfsTFCX/Jskff/xxoe1mzpxp2aNh/PjxxfZbmb+/c+fOqXfv3po6daoyMjLK3H9pzs07e8BeTz/9tCZOnFigft++fXr77bc1fPhwNWzYUK1bt9YTTzyhDRs2lPoaV+VPiPn4+JS5LwAAgJrEzdkBAAAAAKi+SvPtc3tV5Br9devWtZQvX75cpn4GDx6siIgIc/PcTz/9VP/85z8tm/fm5uZq+vTpZtnd3V1jxowptt/K/P3dfffdBZb8iYiIUHR0tNq2bavw8HD5+vrKy8vLsjTTrFmzNHv27DLFUpbNjW02mz788EMNHz5cL7/8slavXl1ouwMHDujAgQN655131KdPH7311lulXuopOTnZUs67tBcAAEBtRuIAAAAAQJnl/0b/pEmTCiw9VFqRkZHlOj+viIgISznvpsWl4erqqvHjx+uFF16QJJ09e1bfffedZbPppUuX6vjx42Z52LBhCg4OLrbf/L+/mTNnKjw8vEwxXtWpU6cCdd9//72WL19ulv38/DRt2jTdf//9liRBYX799ddyxVNWgwYN0qBBgxQTE6MlS5Zo+fLlWrlypU6ePFmg7Zo1a9SnTx/NmTPH7s3DJRXoK/9+GwAAALUViQMAAAAAZRYUFGQpN2zYUAMGDHBSNAVFRETIxcXF/BZ+XFxcmfsaP368/vGPfyg7O1vSlU2Q8yYO8i9fVNymyFfl//21bdtWPXr0KHOMRfniiy8s5Q8//FD333+/Xec6cs8JezRr1kwPP/ywuVzU0aNH9euvv+rbb7/VkiVLzP+3mZmZGjVqlHr27Gl3AiB/4qBp06YVGjsAAEB1xR4HAAAAAMos/+a3hw8fdlIkhfP09FRUVJRZPnHiRJn3OQgLC9Ott95qlpcuXapjx45J+n0GwlVNmzbVTTfdVGKflfX7W79+vXlcv3593XPPPXafu2fPHkeEVGaRkZGaMGGCFi1apB07dlhmqKSnp+u///2v3X3t37/fPHZzc1Pbtm0rNFYAAIDqisQBAAAAgDKLjo62lH/77TcnRVK0rl27msc5OTnau3dvmfv6wx/+YB4bhmHuafDpp58qKyvLfO6hhx6SzWYrsb/K+v2dOXPGPG7RooVcXV3tOu/SpUvasmWLQ2KqCO3bt9f//vc/S11ReyLkl5GRoUOHDpnldu3alWsDcQAAgJqExAEAAACAMmvUqJHat29vlo8cOaJFixY5MaKC+vXrZymX50b4TTfdZJklMHPmTGVnZ1s2RXZ1ddXYsWPt6m/AgAFyc/t9BdkvvvhC58+fL3N8RTEMwzzOzMy0+7wZM2aUeYZGZenTp4+lfO7cObvO27Fjh7nslCRdd911FRoXAABAdUbiAAAAAEC5/PWvf7WUJ02apKSkJCdFU9CgQYMs5ZUrV5a5L5vNpokTJ5rl+Ph4/d///Z8OHDhg1g0ePFiNGjWyq7+QkBCNHDnSLKekpOiRRx4pc3xFCQ0NNY/37NmjxMTEEs+Jj4/XSy+9VOGxVLT8iYJ69erZdd6KFSss5fx/JwAAALUZiQMAAAAA5fLggw+qXbt2ZvngwYO65ZZbCmw8W5ysrCx9+umneu211yo8viZNmljiW7ZsWbn6GzdunNzd3c3yG2+8YXnenk2R83r22Wfl7e1tlr/88ks9/PDDpZoZcOHCBb388sv64YcfCn3+2muvNY8zMzP19NNPF9tfQkKCbr31VrsSDBXp7bff1n//+1+lpqbafc7UqVMt5bxLUxVn+fLl5rG3t3eBZaMAAABqMxIHAAAAAMrF1dVV8+bNU0BAgFm3bt06tW/fXi+88IIOHjxY6HlnzpzRwoUL9fDDD6tRo0YaM2aM9u3b55AYH3jgAfM4Pj5emzdvLnNfwcHBuuOOOwp9rlGjRho8eHCp+ouMjLQsdSRJ//vf/9ShQwd99NFHlv0JrjIMQ0eOHNHs2bM1fPhwhYeH67nnnitymaNRo0ZZyh988IFGjx6t48ePW+ovX76s6dOnq2PHjtq+fbskqU2bNqX6ecojJiZGjz76qMLCwjR69GjNnz9fp06dKrTt9u3bdd999+mdd94x61xcXDRu3LgSr5OcnGzZT+K2226zJG8AAABqO7eSmwAAAABA8aKiojR//nzdeeedunjxoiTp4sWLmjJliqZMmaKgoCCFhobKx8dHly5d0rlz55SQkFBp8T344IN69tlnzbX+v/32W3Xr1q3M/f3hD3/QV199VaB+7Nixdm88nNd9992nkydP6q9//atyc3MlXZm5MXHiRE2cOFEREREKCgqSm5ubEhMTdfr0aV2+fNnu/m+66SYNHjxYP/30k1k3a9YszZo1S5GRkWrQoIESExMVExNjmenwwAMPqGXLlpW+ZFFSUpIZnyQ1aNBAwcHB8vPzU3p6uo4dO1bobIinnnrKrhkHixYtsuzdMGLEiAqLHQAAoCZgxgEAAACAChEdHa1Nmzape/fuBZ47d+6cdu/erQ0bNmjfvn2FJg1sNpsiIiIcEluTJk0sMwE+//xz8wZ9WURHR6tVq1aWOpvNpoceeqjMfU6ePFk//fSTGjZsWOC52NhYbdu2TZs2bdKhQ4cKTRp4enoqODi4yP4/++wz9ejRo0D90aNHtWHDBh04cMCSNLjvvvs0c+bMMv40FSshIUF79uzR+vXrtX379gJJA1dXVz3//PN69dVX7epv9uzZ5nGzZs108803V2S4AAAA1R6JAwAAAAAVpnnz5tq4caO+//573XDDDfLw8Ci2vaurq3r37q0pU6bo8OHD+sc//uGw2CZNmmQeHz9+XEuXLi1Xf2PHjrWUBw4cqKZNm5arz0GDBuno0aN655131LFjR9lstmLb+/r6asiQIZo2bZpOnTpV7DJJdevW1cqVK/Xcc89ZlpXKr127dvr88881d+7cEv//VbQpU6boiy++0IgRI+xKIvn6+mrEiBHatm2b3bMiTp06ZZl58dhjj8nFhY/GAAAAedmMq3N1AQAAAKCCpaamav369YqNjdX58+eVlpYmX19fBQUFKSoqSm3atJGPj0+lxdOtWzdt2bJFkjRs2DB99913Ze5r1KhRlm+uf/3117rrrrvKHWNeCQkJ2rBhg06fPq3z588rNzdX/v7+Cg0NVZs2bdSyZUvLRs32Sk9P17p167Rv3z5dvHhRHh4eCgsLU/fu3QvMpHCm+Ph47d+/XzExMbp48aIyMjLk7e2t+vXrq127durQoYM8PT1L1eeUKVP0wgsvSJICAwMVExMjf39/R4QPAABQbZE4AAAAAFBr/PTTTxoyZIikK0sL7du3T1FRUaXuJzExUWFhYUpLS5N0ZcPkuLi4Mt3ER+VJS0tTkyZNzKWyXnnlFT399NNOjgoAAKDqYT4mAAAAgFpj8ODB6tOnjyTJMAy9/vrrZepn9uzZZtJAurJsEUmDqm/GjBlm0iA4OFiPPfaYkyMCAAComphxAAAAAKBW2bx5s3r27Knc3Fy5ublpz549pVqeJysrS1FRUYqJiZEkubi46MiRI+Xe3wCOlZaWphYtWujkyZOSpI8//rhcm1kDAADUZMw4AAAAAFCrdOvWTePGjZMkZWdn65lnninV+f/85z/NpIEkDR8+nKRBNfD222+bSYOuXbsW2NwaAAAAv2PGAQAAAAAU4ejRozp69KgMw9DJkyf13Xffaf78+ebzrq6u2r59u9q3b+/EKAEAAICK5ebsAAAAAACgqpo1a5ZeeumlIp9/8sknSRoAAACgxmGpIgAAAAAog2HDhumVV15xdhgAAABAhWPGAQAAAADYwcXFRXXr1lXnzp01ZswYPfjgg7LZbM4OCwAAAKhw7HEAAAAAAAAAAABMLFUEAAAAAAAAAABMJA4AAAAAAAAAAICJxAEAAAAAAAAAADCROAAAAAAAAAAAACYSBwAAAAAAAAAAwETiAAAAAAAAAAAAmEgcAAAAAAAAAAAAE4kDAAAAAAAAAABgInEAAAAAAAAAAABMJA4AAAAAAAAAAICJxAEAAAAAAAAAADCROAAAAAAAAAAAACYSBwAAAAAAAAAAwETiAAAAAAAAAAAAmEgcAAAAAAAAAAAAE4kDAAAAAAAAAABgInEAAAAAAAAAAABMJA4AAAAAAAAAAICJxAEAAAAAAAAAADD9P+xUdB/Ifob2AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "image/png": { + "height": 575, + "width": 775 + } + }, + "output_type": "display_data" + } + ], + "source": [ + "# example\n", + "plt.plot(np.arange(1972,2021,1),ds_cereal_land_brazil[1:].astype(float).values)\n", + "\n", + "# aesthetics\n", + "plt.title(f'{country}')\n", + "plt.xlabel(f'Time (years)')\n", + "plt.ylabel(f'Cereal production ({unit})')" + ] + }, + { + "cell_type": "markdown", + "id": "3543b122", + "metadata": { + "execution": {} + }, + "source": [ + "Now you are all set to address the questions you are interested in!" + ] + }, + { + "cell_type": "markdown", + "id": "45bf5b39-ff2e-4c58-bbf1-93358e8fe5ca", + "metadata": { + "execution": {} + }, + "source": [ + "# Q1\n", + "\n", + "Plot the annual mean of precipitation for three example years (e.g., 2001, 2005, 2016) using the CHIRPS data sets.\n", + "\n", + "*Hint: Check out the tutorials from [W1D1 (e.g. T4)](https://comptools.climatematch.io/tutorials/W1D1_ClimateSystemOverview/student/W1D1_Tutorial4.html#section-2-aggregation-methods), [W1D2 (e.g. T2)](https://comptools.climatematch.io/tutorials/W1D2_StateoftheClimateOceanandAtmosphereReanalysis/student/W1D2_Tutorial2.html#section-3-plotting-time-series-of-reanalysis-data) and [W1D3 (e.g. T5)](https://comptools.climatematch.io/tutorials/W1D3_RemoteSensingLandOceanandAtmosphere/student/W1D3_Tutorial5.html#section-2-2-global-mean) to recall averaging with `xarray`.*" + ] + }, + { + "cell_type": "markdown", + "id": "9dcfd1a8-3d47-4ca5-aebe-60785c679eca", + "metadata": { + "execution": {}, + "jp-MarkdownHeadingCollapsed": true + }, + "source": [ + "# Q2\n", + "Plot the global mean of land precipitation as a function of time for the last 40 years.\n", + "\n", + "*Hint: Check out the tutorials that contain time series calculations e.g. from [W1D2 (e.g. T1)](https://comptools.climatematch.io/tutorials/W1D2_StateoftheClimateOceanandAtmosphereReanalysis/student/W1D2_Tutorial1.html#section-2-3-compute-the-climatology-and-anomalies), [W1D3 (e.g. T5)](https://comptools.climatematch.io/tutorials/W1D3_RemoteSensingLandOceanandAtmosphere/student/W1D3_Tutorial5.html#section-2-2-global-mean) and [W1D5 (e.g. T8)](https://comptools.climatematch.io/tutorials/W1D5_ClimateModeling/student/W1D5_Tutorial8.html).*\n", + "\n", + "Compute seasonal means for June-August (JJA) and December-February (DJF).\n", + "\n", + "*Hint: Check out the code snippet in the **Indices for Extreme Events** section of this notebook. Furthermore, recall [Tutorial 5 of W1D1](https://comptools.climatematch.io/tutorials/W1D1_ClimateSystemOverview/student/W1D1_Tutorial5.html#section-1-groupby-split-apply-combine)*." + ] + }, + { + "cell_type": "markdown", + "id": "60e16fb0-e60a-4e67-ae55-ceb66bbdee47", + "metadata": { + "execution": {} + }, + "source": [ + "# Q3\n", + "Repeat the analysis in Q2 for a selected region of interest. How does this compare with the respective mean precipitation in the northern and southern hemispheres? How does this compare to the global mean?\n", + "\n", + "*Hint: Check out tutorials that showed how to select certain regions of interest, e.g. [T8 and T9 of W1D1](https://comptools.climatematch.io/tutorials/W1D1_ClimateSystemOverview/student/W1D1_Tutorial9.html#section-3-using-where-with-specific-coordinates), [T1 of W1D2](https://comptools.climatematch.io/tutorials/W1D2_StateoftheClimateOceanandAtmosphereReanalysis/student/W1D2_Tutorial1.html) and others.*" + ] + }, + { + "cell_type": "markdown", + "id": "86bd1989-70b0-4fa6-9c3c-dca2f61a96ea", + "metadata": { + "execution": {} + }, + "source": [ + "# Q4\n", + "Examine the time series in your region of interest and identify extreme values. \n", + "\n", + "*Hint: Select a method from a predefined list of indices (provided above in Section **Indices for Extreme Events**) based on relative or absolute thresholds.*\n", + "\n", + "Do extreme events occur more often in wet or dry seasons? \n", + "\n", + "*Hint: We briefly discussed wet and dry season differences in [Tutorial 4 of W1D3](https://comptools.climatematch.io/tutorials/W1D3_RemoteSensingLandOceanandAtmosphere/student/W1D3_Tutorial4.html#questions-2-2-climate-connection) already, however for another data set of monthly frequency namely the Global Precipitation Climatology Project (GPCP) Monthly Precipitation Climate Data Record (CDR) ([cf. Tutorial 4 of W1D3](https://comptools.climatematch.io/tutorials/W1D3_RemoteSensingLandOceanandAtmosphere/student/W1D3_Tutorial4.html#section-1-obtain-monthly-precipitation-data)). You also examined extreme events on W2D3.*" + ] + }, + { + "cell_type": "markdown", + "id": "c62a0f3e", + "metadata": { + "execution": {} + }, + "source": [ + "# Further Reading" + ] + }, + { + "cell_type": "markdown", + "id": "378b7ff3", + "metadata": { + "execution": {} + }, + "source": [ + "- Anyamba, A. and Tucker, C.J., 2012. Historical perspective of AVHRR NDVI and vegetation drought monitoring. Remote sensing of drought: innovative monitoring approaches, 23, pp.20. [https://digitalcommons.unl.edu/nasapub/217/](https://digitalcommons.unl.edu/nasapub/217/)\n", + "- Schultz, P. A., and M. S. Halpert, 1993. Global correlation of temperature, NDVI and precipitation. Advances in Space Research 13(5). pp.277-280. [doi.org/10.1016/0273-1177(93)90559-T](https://doi.org/10.1016/0273-1177(93)90559-T) (not open access)\n", + "- Seneviratne, S.I. et al., 2021: Weather and Climate Extreme Events in a Changing Climate. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V. et al. (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp.1513–1766, [https://www.ipcc.ch/report/ar6/wg1/chapter/chapter-11/](https://www.ipcc.ch/report/ar6/wg1/chapter/chapter-11/) \n", + "- IPCC, 2021: Annex VI: Climatic Impact-driver and Extreme Indices [Gutiérrez J.M. et al.(eds.)]. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V. et al. (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 2205–2214, [https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_AnnexVI.pdf](https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_AnnexVI.pdf)\n", + "- Zhang, X., Alexander, L., Hegerl, G.C., Jones, P., Tank, A.K., Peterson, T.C., Trewin, B. and Zwiers, F.W., 2011. Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdisciplinary Reviews: Climate Change, 2(6), pp.851-870. [doi.org/10.1002/wcc.147](https://doi.org/10.1002/wcc.147) (not open access)\n" + ] + } + ], + "metadata": { + "colab": { + "collapsed_sections": [], + "include_colab_link": true, + "name": "Precipitation_variability_extreme_events_2024", + "toc_visible": true + }, + "kernel": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.19" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/projects/project_materials.yml b/projects/project_materials.yml index e99726679..256c20fc4 100644 --- a/projects/project_materials.yml +++ b/projects/project_materials.yml @@ -1,26 +1,20 @@ - file: projects/README.md title: Introduction - file: projects/keynote.ipynb - title: Project Day keynote (W2D2) + title: Project Day keynote (W2D5) - file: projects/docs/project_guidance.md title: Daily guide for projects - file: projects/docs/datasets_overview.md title: Project materials sections: - - file: projects/project-notebooks/Sea_level_rise.ipynb - title: Sea Level Rise - - file: projects/project-notebooks/Ocean_acidification.ipynb + - file: projects/project-notebooks/Arctic_sea_ice_change_2024.ipynb + title: Arctic Sea Ice Change + - file: projects/project-notebooks/Heatwaves_2024.ipynb + title: Heatwaves + - file: projects/project-notebooks/Ocean_acidification_2024.ipynb title: Ocean Acidification - - file: projects/project-notebooks/ENSO_impact_on_precipitation_and_temperature.ipynb - title: The Impact of ENSO on Precipitation and Temperature - - file: projects/project-notebooks/Regional_precipitation_variability.ipynb - title: Regional Precipitation Variability and Extreme events - - file: projects/project-notebooks/Heatwaves.ipynb - title: "Heatwaves: Assessing the Dynamic Interactions of the Atmosphere and Land" - - file: projects/project-notebooks/Wildfires_and_burnt_areas.ipynb - title: Monitoring and Mapping Wildfires Using Satellite Data - - file: projects/project-notebooks/Surface_albedo_and_land_cover.ipynb - title: "Changes in Land Cover: Albedo and Carbon Sequestration" + - file: projects/project-notebooks/Precipitation_variability_extreme_events_2024.ipynb + title: Precipitation Variability and Extreme Events - file: projects/docs/continuing_your_project_after_the_course.md title: Continuing your project after the course - file: projects/docs/past_projects_overview.md diff --git a/projects/template-images/2024_Heatwaves.svg b/projects/template-images/2024_Heatwaves.svg new file mode 100644 index 000000000..bc53c11fe --- /dev/null +++ b/projects/template-images/2024_Heatwaves.svg @@ -0,0 +1 @@ + \ No newline at end of file diff --git a/projects/template-images/2024_OceanAcidification.svg b/projects/template-images/2024_OceanAcidification.svg new file mode 100644 index 000000000..5ce6591fe --- /dev/null +++ b/projects/template-images/2024_OceanAcidification.svg @@ -0,0 +1 @@ + \ No newline at end of file diff --git a/projects/template-images/2024_Precipitation.svg b/projects/template-images/2024_Precipitation.svg new file mode 100644 index 000000000..ff3eaaa13 --- /dev/null +++ b/projects/template-images/2024_Precipitation.svg @@ -0,0 +1 @@ + \ No newline at end of file diff --git a/projects/template-images/2024_SeaIce.svg b/projects/template-images/2024_SeaIce.svg new file mode 100644 index 000000000..6a93b29a0 --- /dev/null +++ b/projects/template-images/2024_SeaIce.svg @@ -0,0 +1 @@ + \ No newline at end of file diff --git a/projects/template-images/Sea_ice_template_questions.svg b/projects/template-images/Sea_ice_template_questions.svg new file mode 100644 index 000000000..8a08ccd50 --- /dev/null +++ b/projects/template-images/Sea_ice_template_questions.svg @@ -0,0 +1 @@ + \ No newline at end of file diff --git a/projects/template-images/Template_questions.svg b/projects/template-images/Template_questions.svg new file mode 100644 index 000000000..b054a1e7b --- /dev/null +++ b/projects/template-images/Template_questions.svg @@ -0,0 +1 @@ + \ No newline at end of file diff --git a/requirements.txt b/requirements.txt index 3ce6b286c..a3a920ed5 100644 --- a/requirements.txt +++ b/requirements.txt @@ -7,13 +7,12 @@ scikit-learn ipywidgets decorator==5.0.9 # xarray==0.20.2 -xarray +xarray[complete]==2024.2.0 shapely==1.8.5 cartopy pythia_datasets pooch # climlab==0.8.2 -# climlab # try to run this with no cache # climlab-rrtmg cftime geopandas @@ -47,3 +46,4 @@ mystatsfunctions @ https://github.com/njleach/mystatsfunctions/archive/main.zip dicelib @ https://github.com/mptouzel/PyDICE/archive/master.zip cdsapi texttable +# cfgrib diff --git a/tutorials/README.md b/tutorials/README.md index 7f9576ae0..ba001516d 100644 --- a/tutorials/README.md +++ b/tutorials/README.md @@ -2,7 +2,7 @@ -[W1D1](#w1d1---climate-system-overview) | [W1D2](#w1d2---stateofthe-climate-oceanand-atmosphere-reanalysis) | [W1D3](#w1d3---remote-sensing-land-oceanand-atmosphere) | [W1D4](#w1d4---paleoclimate) | [W1D5](#w1d5---climate-modeling) | [W2D1](#w2d1---future-climate--i-p-c-c-i-physical-basis) | [W2D2](#w2d2---projects-day) | [W2D3](#w2d3---future-climate--i-p-c-c-i-i&-i-i-i-socio--economic-basis) | [W2D4](#w2d4---climate-response--extremes&-variability) | [W2D5](#w2d5---climate-response--adaptation-impact) +[W1D1](#w1d1---climate-system-overview) | [W1D2](#w1d2---stateofthe-climate-oceanand-atmosphere-reanalysis) | [W1D3](#w1d3---remote-sensing-land-oceanand-atmosphere) | [W1D4](#w1d4---paleoclimate) | [W1D5](#w1d5---climate-modeling) | [W2D1](#w2d1---future-climate--i-p-c-c-i-physical-basis) | [W2D2](#w2d2---projects-day) | [W2D3](#w2d3---the-socioeconomicsof-climate-change) | [W2D4](#w2d4---climate-response--extremes&-variability) | [W2D5](#w2d5---climate-response--adaptation-impact) *Warning:* The 'render with NBViewer' buttons may show outdated content. @@ -144,24 +144,24 @@ -## W2D3 - Future Climate- I P C C I I& I I I Socio- Economic Basis +## W2D3 - The Socioeconomicsof Climate Change [YouTube Playlist](https://youtube.com/playlist?list=PLnpWOQFK76goJrAoOgA7CcrFiEf8gPsYa) | | Run | Run | View | | - | --- | --- | ---- | -| Intro | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/W2D3_Intro.ipynb) | [![Open In kaggle](https://kaggle.com/static/images/open-in-kaggle.svg)](https://kaggle.com/kernels/welcome?src=https://raw.githubusercontent.com/neuromatch/climate-course-content/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/W2D3_Intro.ipynb) | [![View the notebook](https://img.shields.io/badge/render-nbviewer-orange.svg)](https://nbviewer.jupyter.org/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/W2D3_Intro.ipynb?flush_cache=true) | -| Tutorial 1 | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/student/W2D3_Tutorial1.ipynb) | [![Open In kaggle](https://kaggle.com/static/images/open-in-kaggle.svg)](https://kaggle.com/kernels/welcome?src=https://raw.githubusercontent.com/neuromatch/climate-course-content/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/student/W2D3_Tutorial1.ipynb) | [![View the notebook](https://img.shields.io/badge/render-nbviewer-orange.svg)](https://nbviewer.jupyter.org/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/student/W2D3_Tutorial1.ipynb?flush_cache=true) | -| Tutorial 2 | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/student/W2D3_Tutorial2.ipynb) | [![Open In kaggle](https://kaggle.com/static/images/open-in-kaggle.svg)](https://kaggle.com/kernels/welcome?src=https://raw.githubusercontent.com/neuromatch/climate-course-content/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/student/W2D3_Tutorial2.ipynb) | [![View the notebook](https://img.shields.io/badge/render-nbviewer-orange.svg)](https://nbviewer.jupyter.org/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/student/W2D3_Tutorial2.ipynb?flush_cache=true) | -| Tutorial 3 | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/student/W2D3_Tutorial3.ipynb) | [![Open In kaggle](https://kaggle.com/static/images/open-in-kaggle.svg)](https://kaggle.com/kernels/welcome?src=https://raw.githubusercontent.com/neuromatch/climate-course-content/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/student/W2D3_Tutorial3.ipynb) | [![View the notebook](https://img.shields.io/badge/render-nbviewer-orange.svg)](https://nbviewer.jupyter.org/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/student/W2D3_Tutorial3.ipynb?flush_cache=true) | -| Tutorial 4 | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/student/W2D3_Tutorial4.ipynb) | [![Open In kaggle](https://kaggle.com/static/images/open-in-kaggle.svg)](https://kaggle.com/kernels/welcome?src=https://raw.githubusercontent.com/neuromatch/climate-course-content/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/student/W2D3_Tutorial4.ipynb) | [![View the notebook](https://img.shields.io/badge/render-nbviewer-orange.svg)](https://nbviewer.jupyter.org/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/student/W2D3_Tutorial4.ipynb?flush_cache=true) | -| Tutorial 5 | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/student/W2D3_Tutorial5.ipynb) | [![Open In kaggle](https://kaggle.com/static/images/open-in-kaggle.svg)](https://kaggle.com/kernels/welcome?src=https://raw.githubusercontent.com/neuromatch/climate-course-content/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/student/W2D3_Tutorial5.ipynb) | [![View the notebook](https://img.shields.io/badge/render-nbviewer-orange.svg)](https://nbviewer.jupyter.org/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/student/W2D3_Tutorial5.ipynb?flush_cache=true) | -| Tutorial 6 | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/student/W2D3_Tutorial6.ipynb) | [![Open In kaggle](https://kaggle.com/static/images/open-in-kaggle.svg)](https://kaggle.com/kernels/welcome?src=https://raw.githubusercontent.com/neuromatch/climate-course-content/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/student/W2D3_Tutorial6.ipynb) | [![View the notebook](https://img.shields.io/badge/render-nbviewer-orange.svg)](https://nbviewer.jupyter.org/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/student/W2D3_Tutorial6.ipynb?flush_cache=true) | -| Outro | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/W2D3_Outro.ipynb) | [![Open In kaggle](https://kaggle.com/static/images/open-in-kaggle.svg)](https://kaggle.com/kernels/welcome?src=https://raw.githubusercontent.com/neuromatch/climate-course-content/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/W2D3_Outro.ipynb) | [![View the notebook](https://img.shields.io/badge/render-nbviewer-orange.svg)](https://nbviewer.jupyter.org/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/W2D3_Outro.ipynb?flush_cache=true) | +| Intro | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/W2D3_Intro.ipynb) | [![Open In kaggle](https://kaggle.com/static/images/open-in-kaggle.svg)](https://kaggle.com/kernels/welcome?src=https://raw.githubusercontent.com/neuromatch/climate-course-content/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/W2D3_Intro.ipynb) | [![View the notebook](https://img.shields.io/badge/render-nbviewer-orange.svg)](https://nbviewer.jupyter.org/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/W2D3_Intro.ipynb?flush_cache=true) | +| Tutorial 1 | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/student/W2D3_Tutorial1.ipynb) | [![Open In kaggle](https://kaggle.com/static/images/open-in-kaggle.svg)](https://kaggle.com/kernels/welcome?src=https://raw.githubusercontent.com/neuromatch/climate-course-content/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/student/W2D3_Tutorial1.ipynb) | [![View the notebook](https://img.shields.io/badge/render-nbviewer-orange.svg)](https://nbviewer.jupyter.org/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/student/W2D3_Tutorial1.ipynb?flush_cache=true) | +| Tutorial 2 | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/student/W2D3_Tutorial2.ipynb) | [![Open In kaggle](https://kaggle.com/static/images/open-in-kaggle.svg)](https://kaggle.com/kernels/welcome?src=https://raw.githubusercontent.com/neuromatch/climate-course-content/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/student/W2D3_Tutorial2.ipynb) | [![View the notebook](https://img.shields.io/badge/render-nbviewer-orange.svg)](https://nbviewer.jupyter.org/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/student/W2D3_Tutorial2.ipynb?flush_cache=true) | +| Tutorial 3 | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/student/W2D3_Tutorial3.ipynb) | [![Open In kaggle](https://kaggle.com/static/images/open-in-kaggle.svg)](https://kaggle.com/kernels/welcome?src=https://raw.githubusercontent.com/neuromatch/climate-course-content/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/student/W2D3_Tutorial3.ipynb) | [![View the notebook](https://img.shields.io/badge/render-nbviewer-orange.svg)](https://nbviewer.jupyter.org/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/student/W2D3_Tutorial3.ipynb?flush_cache=true) | +| Tutorial 4 | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/student/W2D3_Tutorial4.ipynb) | [![Open In kaggle](https://kaggle.com/static/images/open-in-kaggle.svg)](https://kaggle.com/kernels/welcome?src=https://raw.githubusercontent.com/neuromatch/climate-course-content/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/student/W2D3_Tutorial4.ipynb) | [![View the notebook](https://img.shields.io/badge/render-nbviewer-orange.svg)](https://nbviewer.jupyter.org/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/student/W2D3_Tutorial4.ipynb?flush_cache=true) | +| Tutorial 5 | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/student/W2D3_Tutorial5.ipynb) | [![Open In kaggle](https://kaggle.com/static/images/open-in-kaggle.svg)](https://kaggle.com/kernels/welcome?src=https://raw.githubusercontent.com/neuromatch/climate-course-content/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/student/W2D3_Tutorial5.ipynb) | [![View the notebook](https://img.shields.io/badge/render-nbviewer-orange.svg)](https://nbviewer.jupyter.org/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/student/W2D3_Tutorial5.ipynb?flush_cache=true) | +| Tutorial 6 | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/student/W2D3_Tutorial6.ipynb) | [![Open In kaggle](https://kaggle.com/static/images/open-in-kaggle.svg)](https://kaggle.com/kernels/welcome?src=https://raw.githubusercontent.com/neuromatch/climate-course-content/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/student/W2D3_Tutorial6.ipynb) | [![View the notebook](https://img.shields.io/badge/render-nbviewer-orange.svg)](https://nbviewer.jupyter.org/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/student/W2D3_Tutorial6.ipynb?flush_cache=true) | +| Outro | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/W2D3_Outro.ipynb) | [![Open In kaggle](https://kaggle.com/static/images/open-in-kaggle.svg)](https://kaggle.com/kernels/welcome?src=https://raw.githubusercontent.com/neuromatch/climate-course-content/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/W2D3_Outro.ipynb) | [![View the notebook](https://img.shields.io/badge/render-nbviewer-orange.svg)](https://nbviewer.jupyter.org/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/W2D3_Outro.ipynb?flush_cache=true) | -[Further Reading](https://github.com/neuromatch/climate-course-content/blob/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/further_reading.md) +[Further Reading](https://github.com/neuromatch/climate-course-content/blob/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/further_reading.md) ## W2D4 - Climate Response- Extremes& Variability @@ -188,7 +188,7 @@ ## W2D5 - Climate Response- Adaptation Impact -[YouTube Playlist](https://youtube.com/playlist?list=PLkBQOLLbi18PTzOU6g-giQCy3OVYqZL8r) +[YouTube Playlist](https://www.youtube.com/playlist?list=PLnpWOQFK76gqeFuNocGeynrhuCZ4Rbf69) | | Run | Run | View | | - | --- | --- | ---- | | Intro | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/neuromatch/climate-course-content/blob/main/tutorials/W2D5_ClimateResponse-AdaptationImpact/W2D5_Intro.ipynb) | [![Open In kaggle](https://kaggle.com/static/images/open-in-kaggle.svg)](https://kaggle.com/kernels/welcome?src=https://raw.githubusercontent.com/neuromatch/climate-course-content/main/tutorials/W2D5_ClimateResponse-AdaptationImpact/W2D5_Intro.ipynb) | [![View the notebook](https://img.shields.io/badge/render-nbviewer-orange.svg)](https://nbviewer.jupyter.org/github/neuromatch/climate-course-content/blob/main/tutorials/W2D5_ClimateResponse-AdaptationImpact/W2D5_Intro.ipynb?flush_cache=true) | diff --git a/tutorials/W2D3_TheSocioeconomicsofClimateChange/README.md b/tutorials/W2D3_TheSocioeconomicsofClimateChange/README.md index 73c11a8e7..0f520efdc 100644 --- a/tutorials/W2D3_TheSocioeconomicsofClimateChange/README.md +++ b/tutorials/W2D3_TheSocioeconomicsofClimateChange/README.md @@ -1,29 +1,29 @@ -# W2D3 - Future Climate- I P C C I I& I I I Socio- Economic Basis +# W2D3 - The Socioeconomicsof Climate Change ## Instructor notebooks | | Run | Run | View | | - | --- | --- | ---- | -| Intro | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/W2D3_Intro.ipynb) | [![Open In kaggle](https://kaggle.com/static/images/open-in-kaggle.svg)](https://kaggle.com/kernels/welcome?src=https://raw.githubusercontent.com/neuromatch/climate-course-content/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/W2D3_Intro.ipynb) | [![View the notebook](https://img.shields.io/badge/render-nbviewer-orange.svg)](https://nbviewer.jupyter.org/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/W2D3_Intro.ipynb?flush_cache=true) | -| Tutorial 1 | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/instructor/W2D3_Tutorial1.ipynb) | [![Open In kaggle](https://kaggle.com/static/images/open-in-kaggle.svg)](https://kaggle.com/kernels/welcome?src=https://raw.githubusercontent.com/neuromatch/climate-course-content/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/instructor/W2D3_Tutorial1.ipynb) | [![View the notebook](https://img.shields.io/badge/render-nbviewer-orange.svg)](https://nbviewer.jupyter.org/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/instructor/W2D3_Tutorial1.ipynb?flush_cache=true) | -| Tutorial 2 | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/instructor/W2D3_Tutorial2.ipynb) | [![Open In kaggle](https://kaggle.com/static/images/open-in-kaggle.svg)](https://kaggle.com/kernels/welcome?src=https://raw.githubusercontent.com/neuromatch/climate-course-content/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/instructor/W2D3_Tutorial2.ipynb) | [![View the notebook](https://img.shields.io/badge/render-nbviewer-orange.svg)](https://nbviewer.jupyter.org/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/instructor/W2D3_Tutorial2.ipynb?flush_cache=true) | -| Tutorial 3 | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/instructor/W2D3_Tutorial3.ipynb) | [![Open In kaggle](https://kaggle.com/static/images/open-in-kaggle.svg)](https://kaggle.com/kernels/welcome?src=https://raw.githubusercontent.com/neuromatch/climate-course-content/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/instructor/W2D3_Tutorial3.ipynb) | [![View the notebook](https://img.shields.io/badge/render-nbviewer-orange.svg)](https://nbviewer.jupyter.org/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/instructor/W2D3_Tutorial3.ipynb?flush_cache=true) | -| Tutorial 4 | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/instructor/W2D3_Tutorial4.ipynb) | [![Open In kaggle](https://kaggle.com/static/images/open-in-kaggle.svg)](https://kaggle.com/kernels/welcome?src=https://raw.githubusercontent.com/neuromatch/climate-course-content/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/instructor/W2D3_Tutorial4.ipynb) | [![View the notebook](https://img.shields.io/badge/render-nbviewer-orange.svg)](https://nbviewer.jupyter.org/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/instructor/W2D3_Tutorial4.ipynb?flush_cache=true) | -| Tutorial 5 | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/instructor/W2D3_Tutorial5.ipynb) | [![Open In kaggle](https://kaggle.com/static/images/open-in-kaggle.svg)](https://kaggle.com/kernels/welcome?src=https://raw.githubusercontent.com/neuromatch/climate-course-content/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/instructor/W2D3_Tutorial5.ipynb) | [![View the notebook](https://img.shields.io/badge/render-nbviewer-orange.svg)](https://nbviewer.jupyter.org/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/instructor/W2D3_Tutorial5.ipynb?flush_cache=true) | -| Tutorial 6 | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/instructor/W2D3_Tutorial6.ipynb) | [![Open In kaggle](https://kaggle.com/static/images/open-in-kaggle.svg)](https://kaggle.com/kernels/welcome?src=https://raw.githubusercontent.com/neuromatch/climate-course-content/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/instructor/W2D3_Tutorial6.ipynb) | [![View the notebook](https://img.shields.io/badge/render-nbviewer-orange.svg)](https://nbviewer.jupyter.org/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/instructor/W2D3_Tutorial6.ipynb?flush_cache=true) | -| Outro | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/W2D3_Outro.ipynb) | [![Open In kaggle](https://kaggle.com/static/images/open-in-kaggle.svg)](https://kaggle.com/kernels/welcome?src=https://raw.githubusercontent.com/neuromatch/climate-course-content/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/W2D3_Outro.ipynb) | [![View the notebook](https://img.shields.io/badge/render-nbviewer-orange.svg)](https://nbviewer.jupyter.org/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/W2D3_Outro.ipynb?flush_cache=true) | +| Intro | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/W2D3_Intro.ipynb) | [![Open In kaggle](https://kaggle.com/static/images/open-in-kaggle.svg)](https://kaggle.com/kernels/welcome?src=https://raw.githubusercontent.com/neuromatch/climate-course-content/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/W2D3_Intro.ipynb) | [![View the notebook](https://img.shields.io/badge/render-nbviewer-orange.svg)](https://nbviewer.jupyter.org/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/W2D3_Intro.ipynb?flush_cache=true) | +| Tutorial 1 | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/instructor/W2D3_Tutorial1.ipynb) | [![Open In kaggle](https://kaggle.com/static/images/open-in-kaggle.svg)](https://kaggle.com/kernels/welcome?src=https://raw.githubusercontent.com/neuromatch/climate-course-content/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/instructor/W2D3_Tutorial1.ipynb) | [![View the notebook](https://img.shields.io/badge/render-nbviewer-orange.svg)](https://nbviewer.jupyter.org/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/instructor/W2D3_Tutorial1.ipynb?flush_cache=true) | +| Tutorial 2 | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/instructor/W2D3_Tutorial2.ipynb) | [![Open In kaggle](https://kaggle.com/static/images/open-in-kaggle.svg)](https://kaggle.com/kernels/welcome?src=https://raw.githubusercontent.com/neuromatch/climate-course-content/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/instructor/W2D3_Tutorial2.ipynb) | [![View the notebook](https://img.shields.io/badge/render-nbviewer-orange.svg)](https://nbviewer.jupyter.org/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/instructor/W2D3_Tutorial2.ipynb?flush_cache=true) | +| Tutorial 3 | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/instructor/W2D3_Tutorial3.ipynb) | [![Open In kaggle](https://kaggle.com/static/images/open-in-kaggle.svg)](https://kaggle.com/kernels/welcome?src=https://raw.githubusercontent.com/neuromatch/climate-course-content/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/instructor/W2D3_Tutorial3.ipynb) | [![View the notebook](https://img.shields.io/badge/render-nbviewer-orange.svg)](https://nbviewer.jupyter.org/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/instructor/W2D3_Tutorial3.ipynb?flush_cache=true) | +| Tutorial 4 | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/instructor/W2D3_Tutorial4.ipynb) | [![Open In kaggle](https://kaggle.com/static/images/open-in-kaggle.svg)](https://kaggle.com/kernels/welcome?src=https://raw.githubusercontent.com/neuromatch/climate-course-content/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/instructor/W2D3_Tutorial4.ipynb) | [![View the notebook](https://img.shields.io/badge/render-nbviewer-orange.svg)](https://nbviewer.jupyter.org/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/instructor/W2D3_Tutorial4.ipynb?flush_cache=true) | +| Tutorial 5 | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/instructor/W2D3_Tutorial5.ipynb) | [![Open In kaggle](https://kaggle.com/static/images/open-in-kaggle.svg)](https://kaggle.com/kernels/welcome?src=https://raw.githubusercontent.com/neuromatch/climate-course-content/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/instructor/W2D3_Tutorial5.ipynb) | [![View the notebook](https://img.shields.io/badge/render-nbviewer-orange.svg)](https://nbviewer.jupyter.org/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/instructor/W2D3_Tutorial5.ipynb?flush_cache=true) | +| Tutorial 6 | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/instructor/W2D3_Tutorial6.ipynb) | [![Open In kaggle](https://kaggle.com/static/images/open-in-kaggle.svg)](https://kaggle.com/kernels/welcome?src=https://raw.githubusercontent.com/neuromatch/climate-course-content/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/instructor/W2D3_Tutorial6.ipynb) | [![View the notebook](https://img.shields.io/badge/render-nbviewer-orange.svg)](https://nbviewer.jupyter.org/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/instructor/W2D3_Tutorial6.ipynb?flush_cache=true) | +| Outro | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/W2D3_Outro.ipynb) | [![Open In kaggle](https://kaggle.com/static/images/open-in-kaggle.svg)](https://kaggle.com/kernels/welcome?src=https://raw.githubusercontent.com/neuromatch/climate-course-content/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/W2D3_Outro.ipynb) | [![View the notebook](https://img.shields.io/badge/render-nbviewer-orange.svg)](https://nbviewer.jupyter.org/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/W2D3_Outro.ipynb?flush_cache=true) | ## Student notebooks | | Run | Run | View | | - | --- | --- | ---- | -| Intro | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/W2D3_Intro.ipynb) | [![Open In kaggle](https://kaggle.com/static/images/open-in-kaggle.svg)](https://kaggle.com/kernels/welcome?src=https://raw.githubusercontent.com/neuromatch/climate-course-content/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/W2D3_Intro.ipynb) | [![View the notebook](https://img.shields.io/badge/render-nbviewer-orange.svg)](https://nbviewer.jupyter.org/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/W2D3_Intro.ipynb?flush_cache=true) | -| Tutorial 1 | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/student/W2D3_Tutorial1.ipynb) | [![Open In kaggle](https://kaggle.com/static/images/open-in-kaggle.svg)](https://kaggle.com/kernels/welcome?src=https://raw.githubusercontent.com/neuromatch/climate-course-content/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/student/W2D3_Tutorial1.ipynb) | [![View the notebook](https://img.shields.io/badge/render-nbviewer-orange.svg)](https://nbviewer.jupyter.org/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/student/W2D3_Tutorial1.ipynb?flush_cache=true) | -| Tutorial 2 | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/student/W2D3_Tutorial2.ipynb) | [![Open In kaggle](https://kaggle.com/static/images/open-in-kaggle.svg)](https://kaggle.com/kernels/welcome?src=https://raw.githubusercontent.com/neuromatch/climate-course-content/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/student/W2D3_Tutorial2.ipynb) | [![View the notebook](https://img.shields.io/badge/render-nbviewer-orange.svg)](https://nbviewer.jupyter.org/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/student/W2D3_Tutorial2.ipynb?flush_cache=true) | -| Tutorial 3 | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/student/W2D3_Tutorial3.ipynb) | [![Open In kaggle](https://kaggle.com/static/images/open-in-kaggle.svg)](https://kaggle.com/kernels/welcome?src=https://raw.githubusercontent.com/neuromatch/climate-course-content/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/student/W2D3_Tutorial3.ipynb) | [![View the notebook](https://img.shields.io/badge/render-nbviewer-orange.svg)](https://nbviewer.jupyter.org/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/student/W2D3_Tutorial3.ipynb?flush_cache=true) | -| Tutorial 4 | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/student/W2D3_Tutorial4.ipynb) | [![Open In kaggle](https://kaggle.com/static/images/open-in-kaggle.svg)](https://kaggle.com/kernels/welcome?src=https://raw.githubusercontent.com/neuromatch/climate-course-content/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/student/W2D3_Tutorial4.ipynb) | [![View the notebook](https://img.shields.io/badge/render-nbviewer-orange.svg)](https://nbviewer.jupyter.org/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/student/W2D3_Tutorial4.ipynb?flush_cache=true) | -| Tutorial 5 | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/student/W2D3_Tutorial5.ipynb) | [![Open In kaggle](https://kaggle.com/static/images/open-in-kaggle.svg)](https://kaggle.com/kernels/welcome?src=https://raw.githubusercontent.com/neuromatch/climate-course-content/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/student/W2D3_Tutorial5.ipynb) | [![View the notebook](https://img.shields.io/badge/render-nbviewer-orange.svg)](https://nbviewer.jupyter.org/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/student/W2D3_Tutorial5.ipynb?flush_cache=true) | -| Tutorial 6 | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/student/W2D3_Tutorial6.ipynb) | [![Open In kaggle](https://kaggle.com/static/images/open-in-kaggle.svg)](https://kaggle.com/kernels/welcome?src=https://raw.githubusercontent.com/neuromatch/climate-course-content/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/student/W2D3_Tutorial6.ipynb) | [![View the notebook](https://img.shields.io/badge/render-nbviewer-orange.svg)](https://nbviewer.jupyter.org/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/student/W2D3_Tutorial6.ipynb?flush_cache=true) | -| Outro | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/W2D3_Outro.ipynb) | [![Open In kaggle](https://kaggle.com/static/images/open-in-kaggle.svg)](https://kaggle.com/kernels/welcome?src=https://raw.githubusercontent.com/neuromatch/climate-course-content/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/W2D3_Outro.ipynb) | [![View the notebook](https://img.shields.io/badge/render-nbviewer-orange.svg)](https://nbviewer.jupyter.org/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_FutureClimate-IPCCII&IIISocio-EconomicBasis/W2D3_Outro.ipynb?flush_cache=true) | +| Intro | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/W2D3_Intro.ipynb) | [![Open In kaggle](https://kaggle.com/static/images/open-in-kaggle.svg)](https://kaggle.com/kernels/welcome?src=https://raw.githubusercontent.com/neuromatch/climate-course-content/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/W2D3_Intro.ipynb) | [![View the notebook](https://img.shields.io/badge/render-nbviewer-orange.svg)](https://nbviewer.jupyter.org/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/W2D3_Intro.ipynb?flush_cache=true) | +| Tutorial 1 | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/student/W2D3_Tutorial1.ipynb) | [![Open In kaggle](https://kaggle.com/static/images/open-in-kaggle.svg)](https://kaggle.com/kernels/welcome?src=https://raw.githubusercontent.com/neuromatch/climate-course-content/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/student/W2D3_Tutorial1.ipynb) | [![View the notebook](https://img.shields.io/badge/render-nbviewer-orange.svg)](https://nbviewer.jupyter.org/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/student/W2D3_Tutorial1.ipynb?flush_cache=true) | +| Tutorial 2 | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/student/W2D3_Tutorial2.ipynb) | [![Open In kaggle](https://kaggle.com/static/images/open-in-kaggle.svg)](https://kaggle.com/kernels/welcome?src=https://raw.githubusercontent.com/neuromatch/climate-course-content/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/student/W2D3_Tutorial2.ipynb) | [![View the notebook](https://img.shields.io/badge/render-nbviewer-orange.svg)](https://nbviewer.jupyter.org/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/student/W2D3_Tutorial2.ipynb?flush_cache=true) | +| Tutorial 3 | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/student/W2D3_Tutorial3.ipynb) | [![Open In kaggle](https://kaggle.com/static/images/open-in-kaggle.svg)](https://kaggle.com/kernels/welcome?src=https://raw.githubusercontent.com/neuromatch/climate-course-content/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/student/W2D3_Tutorial3.ipynb) | [![View the notebook](https://img.shields.io/badge/render-nbviewer-orange.svg)](https://nbviewer.jupyter.org/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/student/W2D3_Tutorial3.ipynb?flush_cache=true) | +| Tutorial 4 | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/student/W2D3_Tutorial4.ipynb) | [![Open In kaggle](https://kaggle.com/static/images/open-in-kaggle.svg)](https://kaggle.com/kernels/welcome?src=https://raw.githubusercontent.com/neuromatch/climate-course-content/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/student/W2D3_Tutorial4.ipynb) | [![View the notebook](https://img.shields.io/badge/render-nbviewer-orange.svg)](https://nbviewer.jupyter.org/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/student/W2D3_Tutorial4.ipynb?flush_cache=true) | +| Tutorial 5 | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/student/W2D3_Tutorial5.ipynb) | [![Open In kaggle](https://kaggle.com/static/images/open-in-kaggle.svg)](https://kaggle.com/kernels/welcome?src=https://raw.githubusercontent.com/neuromatch/climate-course-content/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/student/W2D3_Tutorial5.ipynb) | [![View the notebook](https://img.shields.io/badge/render-nbviewer-orange.svg)](https://nbviewer.jupyter.org/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/student/W2D3_Tutorial5.ipynb?flush_cache=true) | +| Tutorial 6 | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/student/W2D3_Tutorial6.ipynb) | [![Open In kaggle](https://kaggle.com/static/images/open-in-kaggle.svg)](https://kaggle.com/kernels/welcome?src=https://raw.githubusercontent.com/neuromatch/climate-course-content/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/student/W2D3_Tutorial6.ipynb) | [![View the notebook](https://img.shields.io/badge/render-nbviewer-orange.svg)](https://nbviewer.jupyter.org/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/student/W2D3_Tutorial6.ipynb?flush_cache=true) | +| Outro | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/W2D3_Outro.ipynb) | [![Open In kaggle](https://kaggle.com/static/images/open-in-kaggle.svg)](https://kaggle.com/kernels/welcome?src=https://raw.githubusercontent.com/neuromatch/climate-course-content/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/W2D3_Outro.ipynb) | [![View the notebook](https://img.shields.io/badge/render-nbviewer-orange.svg)](https://nbviewer.jupyter.org/github/neuromatch/climate-course-content/blob/main/tutorials/W2D3_TheSocioeconomicsofClimateChange/W2D3_Outro.ipynb?flush_cache=true) | diff --git a/tutorials/W2D3_TheSocioeconomicsofClimateChange/solutions/W2D3_Tutorial1_Solution_b2906775.py b/tutorials/W2D3_TheSocioeconomicsofClimateChange/solutions/W2D3_Tutorial1_Solution_b2906775.py deleted file mode 100644 index 254d0948d..000000000 --- a/tutorials/W2D3_TheSocioeconomicsofClimateChange/solutions/W2D3_Tutorial1_Solution_b2906775.py +++ /dev/null @@ -1,16 +0,0 @@ - -''' -3. One scenario to try based on the goals of the energy transition is the combination of: -(1) full electrification of the energy supply, i.e. 'very highly taxed' fossil fuel emissions (Coal, Natural gas, and Oil), -(2) 'highly subsidized' renewables, and -(3) a 'very high' carbon price, -as well as the 'highly reduced' emissions of Methane and other Gases -which gets us to a maximum increase of 2°C by the end of the century -(cf. this example scenario https://en-roads.climateinteractive.org/scenario.html?v=24.3.0&p1=100&p7=85&p10=5&p16=-0.05&p23=-1&p39=250&p59=-64&p67=2&g0=2&g1=62). - -Nevertheless, other scenarios are possible, either by involving more parameters or by focusing on carbon removal. -There are (at least!) two important observations to make. First, actions vary in leverage, in other words, some actions are more helpful than others. -Second, to make a difference and reach an ambitious goal like the 2°C degree target, many actions in many sectors are required. -Sometimes one refers to this circumstance by calling it a 'Silver Buckshot' instead of a 'Silver Bullet' approach (cf. e.g. https://www.washingtonpost.com/archive/opinions/2006/05/27/welcome-to-the-climate-crisis-span-classbankheadhow-to-tell-whether-a-candidate-is-serious-about-combating-global-warmingspan/26b2ac5a-a4a3-46ff-b214-3fc07a3a5ab3/). -Furthermore, people might be surprised by the fact that some actions may be much lower leverage, while others like carbon pricing and energy efficiency might be higher leverage than people expect. -''' \ No newline at end of file diff --git a/tutorials/W2D3_TheSocioeconomicsofClimateChange/solutions/W2D3_Tutorial1_Solution_bbf54df1.py b/tutorials/W2D3_TheSocioeconomicsofClimateChange/solutions/W2D3_Tutorial1_Solution_bbf54df1.py deleted file mode 100644 index 6bef8614b..000000000 --- a/tutorials/W2D3_TheSocioeconomicsofClimateChange/solutions/W2D3_Tutorial1_Solution_bbf54df1.py +++ /dev/null @@ -1,13 +0,0 @@ - -''' -1. At first, En-ROADS is a world model, not an optimal planning model so it is unlike any IAM used e.g. for the IPCC reports. -Controls are somewhat limited (DAC/CCS, soil, BioChar, and mineralization are not covered). -It allows only for single parameter changes - in reality, there will be correlations, e.g. between carbon pricing and renewables due to market pressure. -Some feedbacks are also missing, besides the above-mentioned damage from climate change on GDP, land use, etc., -climate change harms the human population by shortening lives. -Although this happens already in the current 1°C increase reality, this harm is difficult to quantify and hence not implemented. -Furthermore, it is a fully aggregated model, no spatial/regional or income resolution, and corresponding interdependency exists. -An action/ policy is assumed to be executed globally, which is a utopia so far. -It hence remains important to consider the implications of heterogeneity across different countries and their interactions. -Last but not least, tipping points such as the thawing of the permafrost are represented in a very simplified manner only, although they probably have strong implications. -''' \ No newline at end of file diff --git a/tutorials/W2D3_TheSocioeconomicsofClimateChange/solutions/W2D3_Tutorial2_Solution_1425c24a.py b/tutorials/W2D3_TheSocioeconomicsofClimateChange/solutions/W2D3_Tutorial2_Solution_1425c24a.py deleted file mode 100644 index 6435f43d1..000000000 --- a/tutorials/W2D3_TheSocioeconomicsofClimateChange/solutions/W2D3_Tutorial2_Solution_1425c24a.py +++ /dev/null @@ -1,13 +0,0 @@ -''' -1. There are two options. We could change one boring parameter and a more exciting one. -The former has a strong impact. By turning off the 'Climate change slows economic growth' button, we make the strong assumption that there is less severe damage as asked because there is NO damage at all. -In other words, we decoupled GDP and temperature increase which results in even more GHG emissions than in the baseline scenario. -To get a more relevant and exciting result, it is better to change the 'Economic damage formulation' instead. - -2. The default formulation by 'Burke 2018' serves as the baseline. -In order to have a less severe damage formulation we could have a look at the 'Reduction in GDP vs. Temperature' plot. -However, all other formulations show a more or equal severe damage function than 'Burke 2018' with respect to temperature. -Another view, i.e. the 'Gross World Product' in contrast shows that the 'Howard & Sterner' formulation results in less economic damage, -which might have been covered in the 'Reduction in GDP vs. Temperature' graph as the scale was going up to 5°C, -which we do not reach until 2100 in our simple baseline-like scenario. -''' \ No newline at end of file diff --git a/tutorials/W2D3_TheSocioeconomicsofClimateChange/solutions/W2D3_Tutorial2_Solution_c67833bd.py b/tutorials/W2D3_TheSocioeconomicsofClimateChange/solutions/W2D3_Tutorial2_Solution_c67833bd.py deleted file mode 100644 index 46db77624..000000000 --- a/tutorials/W2D3_TheSocioeconomicsofClimateChange/solutions/W2D3_Tutorial2_Solution_c67833bd.py +++ /dev/null @@ -1,11 +0,0 @@ -''' -1. In En-ROADS the population growth has a small effect on the temperature increase by 2100. On the left, the global population graph emphasizes the development until 2100, resulting in an expected population of 8.8 billion in the lowest growth case and an expected population of 12.56 billion in the largest growth case, respectively. -The former leads to a 3.2°C increase and the latter to a 3.5°C which is only a $\pm$ 0.2°C change due to population growth. -In contrast, economic growth has a much larger impact: high growth (+30.000 $/person/year in 2100) leads to a temperature increase of 0.4°C by 2100 and low growth (-20.000 $/person/year in 2100) decreases it by 0.3°C, making discussions of overpopulation rather irrelevant as the decisions around family choice are personal decisions and efforts to shift these decisions have many ethical implications. -It is instead raising the question of the necessity to end economic growth or at least to discuss its current coupling to resource exploitation. -Note that lower population growth takes a long time to affect emissions because global population shifts do not occur quickly and instead play out over many decades. - -2. All possible combinations of pop.-econ. -- low-low: 2.9°C, low-no: 3.2°C, low-high: 3.6°C, no-no: 3.3°C, no-low: 3.0°C, no-high: 3.7°C, high-low: 3.1°C, high-no: 3.5°C, high-high: 4.0°C. -In terms of an anticipated minimal temperature increase, the best (worst) case is to have a low (high) growth in population and economy. It is better to have a decreasing economy and a growing population than vice versa (increasing economy + shrinking population). -Having high population growth and economic growth add up to a larger temperature increase (+0.7°C) than their individual contribution (high pop. growth +0.2°C, high econ. growth +0.4°C) which indicates that these variables are not fully independent in the En-ROADS model. -''' \ No newline at end of file diff --git a/tutorials/W2D3_TheSocioeconomicsofClimateChange/solutions/W2D3_Tutorial2_Solution_efff427c.py b/tutorials/W2D3_TheSocioeconomicsofClimateChange/solutions/W2D3_Tutorial2_Solution_efff427c.py deleted file mode 100644 index 9fcb077f6..000000000 --- a/tutorials/W2D3_TheSocioeconomicsofClimateChange/solutions/W2D3_Tutorial2_Solution_efff427c.py +++ /dev/null @@ -1,3 +0,0 @@ -''' -Other potential examples are human health, extreme weather events, sea-level rise, desertification, flooding, species migration. -''' \ No newline at end of file diff --git a/tutorials/W2D3_TheSocioeconomicsofClimateChange/solutions/W2D3_Tutorial3_Solution_2aba4d73.py b/tutorials/W2D3_TheSocioeconomicsofClimateChange/solutions/W2D3_Tutorial3_Solution_2aba4d73.py deleted file mode 100644 index 1cc5f7ad8..000000000 --- a/tutorials/W2D3_TheSocioeconomicsofClimateChange/solutions/W2D3_Tutorial3_Solution_2aba4d73.py +++ /dev/null @@ -1,10 +0,0 @@ - -''' -3. The earlier the carbon price starts to phase in the more effective it is regarding the temperature increase. -However, the earlier the larger the disturbance of the market price of electricity, emphasized by a strong increase in the price at first -and a strong drop in the price after the first few years. -This might lead to economic disruptions as energy supply becomes very expensive, therefore low-income households, -which usually spend large parts of their income on energy, would need compensation like a 'carbon dividend' to avoid precariat. -In summary, actions and their temporal implementation always need to be evaluated in various aspects to be a successful and -societal least disruptive action against climate change. -''' \ No newline at end of file diff --git a/tutorials/W2D3_TheSocioeconomicsofClimateChange/solutions/W2D3_Tutorial4_Solution_4240ed7b.py b/tutorials/W2D3_TheSocioeconomicsofClimateChange/solutions/W2D3_Tutorial4_Solution_4240ed7b.py deleted file mode 100644 index 278c4e8b0..000000000 --- a/tutorials/W2D3_TheSocioeconomicsofClimateChange/solutions/W2D3_Tutorial4_Solution_4240ed7b.py +++ /dev/null @@ -1,10 +0,0 @@ -''' -2. We choose 'Emissions' and 'Land Cover|Forest' as variables of interest to contrast ecosystem health between the two scenarios. -First, note that the land model components from the IMAGE and REMIND-MAGPIE estimate different initial land cover areas, if we assume however that their trend is reasonable, we can conclude the following: -For high emissions, forcing rises and hence temperature, we know that precipitation patterns change with higher temperatures such that forests, -here our indicator for ecosystem health, are dying. -In turn the land cover by forests is decreasing in the SSP5 scenario. -In contrast, the SSP1 reduces emissions and also exploits resources like wood only sustainably due to afforestation. -As afforestation is also used to capture carbon, while land use is reduced in general, -the scenario shows an increase in land cover by forests within the current century. -''' \ No newline at end of file diff --git a/tutorials/W2D3_TheSocioeconomicsofClimateChange/solutions/W2D3_Tutorial4_Solution_a4ef74b1.py b/tutorials/W2D3_TheSocioeconomicsofClimateChange/solutions/W2D3_Tutorial4_Solution_a4ef74b1.py deleted file mode 100644 index f6f1f4a52..000000000 --- a/tutorials/W2D3_TheSocioeconomicsofClimateChange/solutions/W2D3_Tutorial4_Solution_a4ef74b1.py +++ /dev/null @@ -1,34 +0,0 @@ - -# put two variables of interest in a list -vars = ['Emissions|Kyoto Gases', 'Land Cover|Forest'] -# create new names for structured data series and plot labels -val_name = ['Emissions\n(Mt CO$_2$/yr)','Land covered by\nforest (million ha)'] -# choose scenarios of interest and a color for plotting -scenarios = ['SSP1-26', 'SSP5-Baseline'] -colors = ['darkblue','darkorange'] - - -# init figure and axis -fig, axs = plt.subplots(2,1) -# loop over all variables and new names -for var, val, ax in zip(vars,val_name, axs.flatten()): - - # loop over scenarios and their color - for sc, col in zip(scenarios, colors): - # retrieve SSP for the respective variable from rich dataframe - ds_unstrct = get_SSPs_for_variable(df,sc,var) - # restructure dataframe for plotting - ds_strct = pd.melt(ds_unstrct, id_vars=["MODEL"], value_vars=['2010','2020','2030','2040','2050','2060','2070','2080','2090','2100'], var_name="YEAR", value_name =val) - #print(ds_strct) - # plot variable vs. time, add label incl. scenario and model - ax.plot(ds_strct['YEAR'],ds_strct[val],label=f'{sc},\n{ds_strct.MODEL[0]}', color=col) - # altern. plotting procedure w/o the color distinction - #sns.lineplot(ds_strct, x='YEAR', y=val, hue='MODEL', ax=ax, palette='flare') - - # aesthetics - ax.set_ylabel(fr'{val}') - ax.set_xlabel('Time (years)') - plt.setp(ax.get_xticklabels(), rotation=45) - plt.setp(ax.get_xticklabels()[::2], visible=False) - ax.grid(True) - axs[0].legend() \ No newline at end of file diff --git a/tutorials/W2D3_TheSocioeconomicsofClimateChange/static/W2D3_Tutorial4_Solution_a4ef74b1_0.png b/tutorials/W2D3_TheSocioeconomicsofClimateChange/static/W2D3_Tutorial4_Solution_a4ef74b1_0.png deleted file mode 100644 index 83b04acb1..000000000 Binary files a/tutorials/W2D3_TheSocioeconomicsofClimateChange/static/W2D3_Tutorial4_Solution_a4ef74b1_0.png and /dev/null differ