forked from dwofk/fast-depth
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
130 lines (109 loc) · 4.49 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import os
import time
import csv
import numpy as np
import torch
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
cudnn.benchmark = True
import models
from metrics import AverageMeter, Result
import utils
args = utils.parse_command()
print(args)
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu # Set the GPU.
fieldnames = ['rmse', 'mae', 'delta1', 'absrel',
'lg10', 'mse', 'delta2', 'delta3', 'data_time', 'gpu_time']
best_fieldnames = ['best_epoch'] + fieldnames
best_result = Result()
best_result.set_to_worst()
def main():
global args, best_result, output_directory, train_csv, test_csv
# Data loading code
print("=> creating data loaders...")
valdir = os.path.join('..', 'data', args.data, 'val')
if args.data == 'nyudepthv2':
from dataloaders.nyu import NYUDataset
val_dataset = NYUDataset(valdir, split='val', modality=args.modality)
else:
raise RuntimeError('Dataset not found.')
# set batch size to be 1 for validation
val_loader = torch.utils.data.DataLoader(val_dataset,
batch_size=1, shuffle=False, num_workers=args.workers, pin_memory=True)
print("=> data loaders created.")
# evaluation mode
if args.evaluate:
assert os.path.isfile(args.evaluate), \
"=> no model found at '{}'".format(args.evaluate)
print("=> loading model '{}'".format(args.evaluate))
checkpoint = torch.load(args.evaluate)
if type(checkpoint) is dict:
args.start_epoch = checkpoint['epoch']
best_result = checkpoint['best_result']
model = checkpoint['model']
print("=> loaded best model (epoch {})".format(checkpoint['epoch']))
else:
model = checkpoint
args.start_epoch = 0
output_directory = os.path.dirname(args.evaluate)
validate(val_loader, model, args.start_epoch, write_to_file=False)
return
def validate(val_loader, model, epoch, write_to_file=True):
average_meter = AverageMeter()
model.eval() # switch to evaluate mode
end = time.time()
for i, (input, target) in enumerate(val_loader):
input, target = input.cuda(), target.cuda()
# torch.cuda.synchronize()
data_time = time.time() - end
# compute output
end = time.time()
with torch.no_grad():
pred = model(input)
# torch.cuda.synchronize()
gpu_time = time.time() - end
# measure accuracy and record loss
result = Result()
result.evaluate(pred.data, target.data)
average_meter.update(result, gpu_time, data_time, input.size(0))
end = time.time()
# save 8 images for visualization
skip = 50
if args.modality == 'rgb':
rgb = input
if i == 0:
img_merge = utils.merge_into_row(rgb, target, pred)
elif (i < 8*skip) and (i % skip == 0):
row = utils.merge_into_row(rgb, target, pred)
img_merge = utils.add_row(img_merge, row)
elif i == 8*skip:
filename = output_directory + '/comparison_' + str(epoch) + '.png'
utils.save_image(img_merge, filename)
if (i+1) % args.print_freq == 0:
print('Test: [{0}/{1}]\t'
't_GPU={gpu_time:.3f}({average.gpu_time:.3f})\n\t'
'RMSE={result.rmse:.2f}({average.rmse:.2f}) '
'MAE={result.mae:.2f}({average.mae:.2f}) '
'Delta1={result.delta1:.3f}({average.delta1:.3f}) '
'REL={result.absrel:.3f}({average.absrel:.3f}) '
'Lg10={result.lg10:.3f}({average.lg10:.3f}) '.format(
i+1, len(val_loader), gpu_time=gpu_time, result=result, average=average_meter.average()))
avg = average_meter.average()
print('\n*\n'
'RMSE={average.rmse:.3f}\n'
'MAE={average.mae:.3f}\n'
'Delta1={average.delta1:.3f}\n'
'REL={average.absrel:.3f}\n'
'Lg10={average.lg10:.3f}\n'
't_GPU={time:.3f}\n'.format(
average=avg, time=avg.gpu_time))
if write_to_file:
with open(test_csv, 'a') as csvfile:
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
writer.writerow({'mse': avg.mse, 'rmse': avg.rmse, 'absrel': avg.absrel, 'lg10': avg.lg10,
'mae': avg.mae, 'delta1': avg.delta1, 'delta2': avg.delta2, 'delta3': avg.delta3,
'data_time': avg.data_time, 'gpu_time': avg.gpu_time})
return avg, img_merge
if __name__ == '__main__':
main()