forked from dwofk/fast-depth
-
Notifications
You must be signed in to change notification settings - Fork 0
/
metrics.py
95 lines (79 loc) · 3.54 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import torch
import math
import numpy as np
def log10(x):
"""Convert a new tensor with the base-10 logarithm of the elements of x. """
return torch.log(x) / math.log(10)
class Result(object):
def __init__(self):
self.irmse, self.imae = 0, 0
self.mse, self.rmse, self.mae = 0, 0, 0
self.absrel, self.lg10 = 0, 0
self.delta1, self.delta2, self.delta3 = 0, 0, 0
self.data_time, self.gpu_time = 0, 0
def set_to_worst(self):
self.irmse, self.imae = np.inf, np.inf
self.mse, self.rmse, self.mae = np.inf, np.inf, np.inf
self.absrel, self.lg10 = np.inf, np.inf
self.delta1, self.delta2, self.delta3 = 0, 0, 0
self.data_time, self.gpu_time = 0, 0
def update(self, irmse, imae, mse, rmse, mae, absrel, lg10, delta1, delta2, delta3, gpu_time, data_time):
self.irmse, self.imae = irmse, imae
self.mse, self.rmse, self.mae = mse, rmse, mae
self.absrel, self.lg10 = absrel, lg10
self.delta1, self.delta2, self.delta3 = delta1, delta2, delta3
self.data_time, self.gpu_time = data_time, gpu_time
def evaluate(self, output, target):
valid_mask = ((target>0) + (output>0)) > 0
output = 1e3 * output[valid_mask]
target = 1e3 * target[valid_mask]
abs_diff = (output - target).abs()
self.mse = float((torch.pow(abs_diff, 2)).mean())
self.rmse = math.sqrt(self.mse)
self.mae = float(abs_diff.mean())
self.lg10 = float((log10(output) - log10(target)).abs().mean())
self.absrel = float((abs_diff / target).mean())
maxRatio = torch.max(output / target, target / output)
self.delta1 = float((maxRatio < 1.25).float().mean())
self.delta2 = float((maxRatio < 1.25 ** 2).float().mean())
self.delta3 = float((maxRatio < 1.25 ** 3).float().mean())
self.data_time = 0
self.gpu_time = 0
inv_output = 1 / output
inv_target = 1 / target
abs_inv_diff = (inv_output - inv_target).abs()
self.irmse = math.sqrt((torch.pow(abs_inv_diff, 2)).mean())
self.imae = float(abs_inv_diff.mean())
class AverageMeter(object):
def __init__(self):
self.reset()
def reset(self):
self.count = 0.0
self.sum_irmse, self.sum_imae = 0, 0
self.sum_mse, self.sum_rmse, self.sum_mae = 0, 0, 0
self.sum_absrel, self.sum_lg10 = 0, 0
self.sum_delta1, self.sum_delta2, self.sum_delta3 = 0, 0, 0
self.sum_data_time, self.sum_gpu_time = 0, 0
def update(self, result, gpu_time, data_time, n=1):
self.count += n
self.sum_irmse += n*result.irmse
self.sum_imae += n*result.imae
self.sum_mse += n*result.mse
self.sum_rmse += n*result.rmse
self.sum_mae += n*result.mae
self.sum_absrel += n*result.absrel
self.sum_lg10 += n*result.lg10
self.sum_delta1 += n*result.delta1
self.sum_delta2 += n*result.delta2
self.sum_delta3 += n*result.delta3
self.sum_data_time += n*data_time
self.sum_gpu_time += n*gpu_time
def average(self):
avg = Result()
avg.update(
self.sum_irmse / self.count, self.sum_imae / self.count,
self.sum_mse / self.count, self.sum_rmse / self.count, self.sum_mae / self.count,
self.sum_absrel / self.count, self.sum_lg10 / self.count,
self.sum_delta1 / self.count, self.sum_delta2 / self.count, self.sum_delta3 / self.count,
self.sum_gpu_time / self.count, self.sum_data_time / self.count)
return avg