forked from jina-ai/clip-as-service
-
Notifications
You must be signed in to change notification settings - Fork 0
/
example7.py
130 lines (112 loc) · 4.52 KB
/
example7.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Han Xiao <[email protected]> <https://hanxiao.github.io>
# NOTE: First install bert-as-service via
# $
# $ pip install bert-serving-server
# $ pip install bert-serving-client
# $
# visualizing a 12-layer BERT
import time
from collections import namedtuple
import numpy as np
import pandas as pd
# from MulticoreTSNE import MulticoreTSNE as TSNE
from bert_serving.client import BertClient
from bert_serving.server import BertServer
from bert_serving.server.helper import get_args_parser
from matplotlib import pyplot as plt
from matplotlib.colors import ListedColormap
from sklearn.decomposition import PCA
#=========================== dump bert vectors ===========================
data = pd.read_csv('/corpus/uci-news-aggregator.csv', usecols=['TITLE', 'CATEGORY'])
# just copy paste from some Kaggle kernel ->
num_of_categories = 5000
shuffled = data.reindex(np.random.permutation(data.index))
e = shuffled[shuffled['CATEGORY'] == 'e'][:num_of_categories]
b = shuffled[shuffled['CATEGORY'] == 'b'][:num_of_categories]
t = shuffled[shuffled['CATEGORY'] == 't'][:num_of_categories]
m = shuffled[shuffled['CATEGORY'] == 'm'][:num_of_categories]
concated = pd.concat([e, b, t, m], ignore_index=True)
# Shuffle the dataset
concated = concated.reindex(np.random.permutation(concated.index))
concated['LABEL'] = 0
# One-hot encode the lab
concated.loc[concated['CATEGORY'] == 'e', 'LABEL'] = 0
concated.loc[concated['CATEGORY'] == 'b', 'LABEL'] = 1
concated.loc[concated['CATEGORY'] == 't', 'LABEL'] = 2
concated.loc[concated['CATEGORY'] == 'm', 'LABEL'] = 3
subset_text = list(concated['TITLE'].values)
subset_label = list(concated['LABEL'].values)
num_label = len(set(subset_label))
# <- just copy paste from some Kaggle kernel
print('min_seq_len: %d' % min(len(v.split()) for v in subset_text))
print('max_seq_len: %d' % max(len(v.split()) for v in subset_text))
print('unique label: %d' % num_label)
pool_layer = 1
subset_vec_all_layers = []
port = 6006
port_out = 6007
common = [
'-model_dir', '/bert_model/chinese_L-12_H-768_A-12/',
'-num_worker', '2',
'-port', str(port),
'-port_out', str(port_out),
'-max_seq_len', '20',
# '-client_batch_size', '2048',
'-max_batch_size', '256',
# '-num_client', '1',
'-pooling_strategy', 'REDUCE_MEAN',
'-pooling_layer', '-2',
'-gpu_memory_fraction', '0.2',
'-device','3',
]
args = get_args_parser().parse_args(common)
for pool_layer in range(1, 13):
setattr(args, 'pooling_layer', [-pool_layer])
server = BertServer(args)
server.start()
print('wait until server is ready...')
time.sleep(20)
print('encoding...')
bc = BertClient(port=port, port_out=port_out, show_server_config=True)
subset_vec_all_layers.append(bc.encode(subset_text))
bc.close()
server.close()
print('done at layer -%d' % pool_layer)
#save bert vectors and labels
stacked_subset_vec_all_layers = np.stack(subset_vec_all_layers)
np.save('example7_5k_2',stacked_subset_vec_all_layers)
np_subset_label = np.array(subset_label)
np.save('example7_5k_2_subset_label',np_subset_label)
#load bert vectors and labels
subset_vec_all_layers = np.load('example7_5k_mxnet.npy')
np_subset_label = np.load('example7_5k_mxnet_subset_label.npy')
subset_label = np_subset_label.tolist()
#=========================== visulize ===========================
def vis(embed, vis_alg='PCA', pool_alg='REDUCE_MEAN'):
plt.close()
fig = plt.figure()
plt.rcParams['figure.figsize'] = [21, 7]
for idx, ebd in enumerate(embed):
ax = plt.subplot(2, 6, idx + 1)
vis_x = ebd[:, 0]
vis_y = ebd[:, 1]
plt.scatter(vis_x, vis_y, c=subset_label, cmap=ListedColormap(["blue", "green", "yellow", "red"]), marker='.',
alpha=0.7, s=2)
ax.set_title('pool_layer=-%d' % (idx + 1))
plt.tight_layout()
plt.subplots_adjust(bottom=0.1, right=0.95, top=0.9)
cax = plt.axes([0.96, 0.1, 0.01, 0.3])
cbar = plt.colorbar(cax=cax, ticks=range(num_label))
cbar.ax.get_yaxis().set_ticks([])
for j, lab in enumerate(['ent.', 'bus.', 'sci.', 'heal.']):
cbar.ax.text(.5, (2 * j + 1) / 8.0, lab, ha='center', va='center', rotation=270)
fig.suptitle('%s visualization of BERT layers using "bert-as-service" (-pool_strategy=%s)' % (vis_alg, pool_alg),
fontsize=14)
plt.show()
pca_embed = [PCA(n_components=2).fit_transform(v) for v in subset_vec_all_layers]
vis(pca_embed)
# if False:
# tsne_embed = [TSNE(n_jobs=8).fit_transform(v) for v in subset_vec_all_layers]
# vis(tsne_embed, 't-SNE')