forked from MoonInTheRiver/DiffSinger
-
Notifications
You must be signed in to change notification settings - Fork 287
/
infer.py
367 lines (330 loc) · 10.4 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
import json
import os
import pathlib
import sys
from collections import OrderedDict
from pathlib import Path
import click
from typing import Tuple
root_dir = Path(__file__).resolve().parent.parent
os.environ['PYTHONPATH'] = str(root_dir)
sys.path.insert(0, str(root_dir))
def find_exp(exp):
if not (root_dir / 'checkpoints' / exp).exists():
for subdir in (root_dir / 'checkpoints').iterdir():
if not subdir.is_dir():
continue
if subdir.name.startswith(exp):
print(f'| match ckpt by prefix: {subdir.name}')
exp = subdir.name
break
else:
raise click.BadParameter(
f'There are no matching exp starting with \'{exp}\' in \'checkpoints\' folder. '
'Please specify \'--exp\' as the folder name or prefix.'
)
else:
print(f'| found ckpt by name: {exp}')
return exp
@click.group()
def main():
pass
@main.command(help='Run DiffSinger acoustic model inference')
@click.argument(
'proj', type=click.Path(
exists=True, file_okay=True, dir_okay=False, readable=True,
path_type=pathlib.Path, resolve_path=True
),
metavar='DS_FILE'
)
@click.option(
'--exp', type=str,
required=True, metavar='EXP',
callback=lambda ctx, param, value: find_exp(value),
help='Selection of model'
)
@click.option(
'--ckpt', type=click.IntRange(min=0),
required=False, metavar='STEPS',
help='Selection of checkpoint training steps'
)
@click.option(
'--spk', type=click.STRING,
required=False,
help='Speaker name or mixture of speakers'
)
@click.option(
'--out', type=click.Path(
file_okay=False, dir_okay=True, path_type=pathlib.Path
),
required=False,
help='Path of the output folder'
)
@click.option(
'--title', type=click.STRING,
required=False,
help='Title of output file'
)
@click.option(
'--num', type=click.IntRange(min=1),
required=False, default=1,
help='Number of runs'
)
@click.option(
'--key', type=click.INT,
required=False, default=0,
help='Key transition of pitch'
)
@click.option(
'--gender', type=click.FloatRange(min=-1, max=1),
required=False,
help='Formant shifting (gender control)'
)
@click.option(
'--seed', type=click.INT,
required=False, default=-1,
help='Random seed of the inference'
)
@click.option(
'--depth', type=click.FloatRange(min=0, max=1),
required=False,
help='Shallow diffusion depth'
)
@click.option(
'--steps', type=click.IntRange(min=1),
required=False,
help='Diffusion sampling steps'
)
@click.option(
'--mel', is_flag=True,
help='Save intermediate mel format instead of waveform'
)
def acoustic(
proj: pathlib.Path,
exp: str,
ckpt: int,
spk: str,
out: pathlib.Path,
title: str,
num: int,
key: int,
gender: float,
seed: int,
depth: float,
steps: int,
mel: bool
):
name = proj.stem if not title else title
if out is None:
out = proj.parent
with open(proj, 'r', encoding='utf-8') as f:
params = json.load(f)
if not isinstance(params, list):
params = [params]
if len(params) == 0:
print('The input file is empty.')
exit()
from utils.infer_utils import trans_key, parse_commandline_spk_mix
if key != 0:
params = trans_key(params, key)
key_suffix = '%+dkey' % key
if not title:
name += key_suffix
print(f'| key transition: {key:+d}')
sys.argv = [
sys.argv[0],
'--exp_name',
exp,
'--infer'
]
from utils.hparams import set_hparams, hparams
set_hparams()
# Check for vocoder path
assert mel or (root_dir / hparams['vocoder_ckpt']).exists(), \
f'Vocoder ckpt \'{hparams["vocoder_ckpt"]}\' not found. ' \
f'Please put it to the checkpoints directory to run inference.'
# For compatibility:
# migrate timesteps, K_step, K_step_infer, diff_speedup to time_scale_factor, T_start, T_start_infer, sampling_steps
if 'diff_speedup' not in hparams and 'pndm_speedup' in hparams:
hparams['diff_speedup'] = hparams['pndm_speedup']
if 'T_start' not in hparams:
hparams['T_start'] = 1 - hparams['K_step'] / hparams['timesteps']
if 'T_start_infer' not in hparams:
hparams['T_start_infer'] = 1 - hparams['K_step_infer'] / hparams['timesteps']
if 'sampling_steps' not in hparams:
if hparams['use_shallow_diffusion']:
hparams['sampling_steps'] = hparams['K_step_infer'] // hparams['diff_speedup']
else:
hparams['sampling_steps'] = hparams['timesteps'] // hparams['diff_speedup']
if 'time_scale_factor' not in hparams:
hparams['time_scale_factor'] = hparams['timesteps']
if depth is not None:
assert depth <= 1 - hparams['T_start'], (
f"Depth should not be larger than 1 - T_start ({1 - hparams['T_start']})"
)
hparams['K_step_infer'] = round(hparams['timesteps'] * depth)
hparams['T_start_infer'] = 1 - depth
if steps is not None:
if hparams['use_shallow_diffusion']:
step_size = (1 - hparams['T_start_infer']) / steps
if 'K_step_infer' in hparams:
hparams['diff_speedup'] = round(step_size * hparams['K_step_infer'])
else:
if 'timesteps' in hparams:
hparams['diff_speedup'] = round(hparams['timesteps'] / steps)
hparams['sampling_steps'] = steps
spk_mix = parse_commandline_spk_mix(spk) if hparams['use_spk_id'] and spk is not None else None
for param in params:
if gender is not None and hparams['use_key_shift_embed']:
param['gender'] = gender
if spk_mix is not None:
param['spk_mix'] = spk_mix
from inference.ds_acoustic import DiffSingerAcousticInfer
infer_ins = DiffSingerAcousticInfer(load_vocoder=not mel, ckpt_steps=ckpt)
print(f'| Model: {type(infer_ins.model)}')
try:
infer_ins.run_inference(
params, out_dir=out, title=name, num_runs=num,
spk_mix=spk_mix, seed=seed, save_mel=mel
)
except KeyboardInterrupt:
exit(-1)
@main.command(help='Run DiffSinger variance model inference')
@click.argument(
'proj', type=click.Path(
exists=True, file_okay=True, dir_okay=False, readable=True,
path_type=pathlib.Path, resolve_path=True
),
metavar='DS_FILE'
)
@click.option(
'--exp', type=str,
required=True, metavar='EXP',
callback=lambda ctx, param, value: find_exp(value),
help='Selection of model'
)
@click.option(
'--ckpt', type=click.IntRange(min=0),
required=False, metavar='STEPS',
help='Selection of checkpoint training steps'
)
@click.option(
'--predict', type=click.STRING,
multiple=True, metavar='TAGS',
help='Parameters to predict'
)
@click.option(
'--spk', type=click.STRING,
required=False,
help='Speaker name or mixture of speakers'
)
@click.option(
'--out', type=click.Path(
file_okay=False, dir_okay=True, path_type=pathlib.Path
),
required=False,
help='Path of the output folder'
)
@click.option(
'--title', type=click.STRING,
required=False,
help='Title of output file'
)
@click.option(
'--num', type=click.IntRange(min=1),
required=False, default=1,
help='Number of runs'
)
@click.option(
'--key', type=click.INT,
required=False, default=0,
help='Key transition of pitch'
)
@click.option(
'--expr', type=click.FloatRange(min=0, max=1),
required=False, help='Static expressiveness control'
)
@click.option(
'--seed', type=click.INT,
required=False, default=-1,
help='Random seed of the inference'
)
@click.option(
'--steps', type=click.IntRange(min=1),
required=False,
help='Diffusion sampling steps'
)
def variance(
proj: pathlib.Path,
exp: str,
ckpt: int,
spk: str,
predict: Tuple[str],
out: pathlib.Path,
title: str,
num: int,
key: int,
expr: float,
seed: int,
steps: int
):
name = proj.stem if not title else title
if out is None:
out = proj.parent
if (not out or out.resolve() == proj.parent.resolve()) and not title:
name += '_variance'
with open(proj, 'r', encoding='utf-8') as f:
params = json.load(f)
if not isinstance(params, list):
params = [params]
params = [OrderedDict(p) for p in params]
if len(params) == 0:
print('The input file is empty.')
exit()
from utils.infer_utils import trans_key, parse_commandline_spk_mix
if key != 0:
params = trans_key(params, key)
key_suffix = '%+dkey' % key
if not title:
name += key_suffix
print(f'| key transition: {key:+d}')
sys.argv = [
sys.argv[0],
'--exp_name',
exp,
'--infer'
]
from utils.hparams import set_hparams, hparams
set_hparams()
# For compatibility:
# migrate timesteps, K_step, K_step_infer, diff_speedup to time_scale_factor, T_start, T_start_infer, sampling_steps
if 'diff_speedup' not in hparams and 'pndm_speedup' in hparams:
hparams['diff_speedup'] = hparams['pndm_speedup']
if 'sampling_steps' not in hparams:
hparams['sampling_steps'] = hparams['timesteps'] // hparams['diff_speedup']
if 'time_scale_factor' not in hparams:
hparams['time_scale_factor'] = hparams['timesteps']
if steps is not None:
if 'timesteps' in hparams:
hparams['diff_speedup'] = round(hparams['timesteps'] / steps)
hparams['sampling_steps'] = steps
spk_mix = parse_commandline_spk_mix(spk) if hparams['use_spk_id'] and spk is not None else None
for param in params:
if expr is not None:
param['expr'] = expr
if spk_mix is not None:
param['ph_spk_mix_backup'] = param.get('ph_spk_mix')
param['spk_mix_backup'] = param.get('spk_mix')
param['ph_spk_mix'] = param['spk_mix'] = spk_mix
from inference.ds_variance import DiffSingerVarianceInfer
infer_ins = DiffSingerVarianceInfer(ckpt_steps=ckpt, predictions=set(predict))
print(f'| Model: {type(infer_ins.model)}')
try:
infer_ins.run_inference(
params, out_dir=out, title=name,
num_runs=num, seed=seed
)
except KeyboardInterrupt:
exit(-1)
if __name__ == '__main__':
main()