-
Notifications
You must be signed in to change notification settings - Fork 1
/
akromeson.html
695 lines (547 loc) · 61.8 KB
/
akromeson.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
<!DOCTYPE html>
<!-- saved from url=(0014)about:internet -->
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
<title>akromeson.R</title>
<style type="text/css">
body, td {
font-family: sans-serif;
background-color: white;
font-size: 12px;
margin: 8px;
}
tt, code, pre {
font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace;
}
h1 {
font-size:2.2em;
}
h2 {
font-size:1.8em;
}
h3 {
font-size:1.4em;
}
h4 {
font-size:1.0em;
}
h5 {
font-size:0.9em;
}
h6 {
font-size:0.8em;
}
a:visited {
color: rgb(50%, 0%, 50%);
}
pre {
margin-top: 0;
max-width: 95%;
border: 1px solid #ccc;
white-space: pre-wrap;
}
pre code {
display: block; padding: 0.5em;
}
code.r, code.cpp {
background-color: #F8F8F8;
}
table, td, th {
border: none;
}
blockquote {
color:#666666;
margin:0;
padding-left: 1em;
border-left: 0.5em #EEE solid;
}
hr {
height: 0px;
border-bottom: none;
border-top-width: thin;
border-top-style: dotted;
border-top-color: #999999;
}
@media print {
* {
background: transparent !important;
color: black !important;
filter:none !important;
-ms-filter: none !important;
}
body {
font-size:12pt;
max-width:100%;
}
a, a:visited {
text-decoration: underline;
}
hr {
visibility: hidden;
page-break-before: always;
}
pre, blockquote {
padding-right: 1em;
page-break-inside: avoid;
}
tr, img {
page-break-inside: avoid;
}
img {
max-width: 100% !important;
}
@page :left {
margin: 15mm 20mm 15mm 10mm;
}
@page :right {
margin: 15mm 10mm 15mm 20mm;
}
p, h2, h3 {
orphans: 3; widows: 3;
}
h2, h3 {
page-break-after: avoid;
}
}
</style>
<!-- Styles for R syntax highlighter -->
<style type="text/css">
pre .operator,
pre .paren {
color: rgb(104, 118, 135)
}
pre .literal {
color: rgb(88, 72, 246)
}
pre .number {
color: rgb(0, 0, 205);
}
pre .comment {
color: rgb(76, 136, 107);
}
pre .keyword {
color: rgb(0, 0, 255);
}
pre .identifier {
color: rgb(0, 0, 0);
}
pre .string {
color: rgb(3, 106, 7);
}
</style>
<!-- R syntax highlighter -->
<script type="text/javascript">
var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/</gm,"<")}function f(r,q,p){return RegExp(q,"m"+(r.cI?"i":"")+(p?"g":""))}function b(r){for(var p=0;p<r.childNodes.length;p++){var q=r.childNodes[p];if(q.nodeName=="CODE"){return q}if(!(q.nodeType==3&&q.nodeValue.match(/\s+/))){break}}}function h(t,s){var p="";for(var r=0;r<t.childNodes.length;r++){if(t.childNodes[r].nodeType==3){var q=t.childNodes[r].nodeValue;if(s){q=q.replace(/\n/g,"")}p+=q}else{if(t.childNodes[r].nodeName=="BR"){p+="\n"}else{p+=h(t.childNodes[r])}}}if(/MSIE [678]/.test(navigator.userAgent)){p=p.replace(/\r/g,"\n")}return p}function a(s){var r=s.className.split(/\s+/);r=r.concat(s.parentNode.className.split(/\s+/));for(var q=0;q<r.length;q++){var p=r[q].replace(/^language-/,"");if(e[p]){return p}}}function c(q){var p=[];(function(s,t){for(var r=0;r<s.childNodes.length;r++){if(s.childNodes[r].nodeType==3){t+=s.childNodes[r].nodeValue.length}else{if(s.childNodes[r].nodeName=="BR"){t+=1}else{if(s.childNodes[r].nodeType==1){p.push({event:"start",offset:t,node:s.childNodes[r]});t=arguments.callee(s.childNodes[r],t);p.push({event:"stop",offset:t,node:s.childNodes[r]})}}}}return t})(q,0);return p}function k(y,w,x){var q=0;var z="";var s=[];function u(){if(y.length&&w.length){if(y[0].offset!=w[0].offset){return(y[0].offset<w[0].offset)?y:w}else{return w[0].event=="start"?y:w}}else{return y.length?y:w}}function t(D){var A="<"+D.nodeName.toLowerCase();for(var B=0;B<D.attributes.length;B++){var C=D.attributes[B];A+=" "+C.nodeName.toLowerCase();if(C.value!==undefined&&C.value!==false&&C.value!==null){A+='="'+m(C.value)+'"'}}return A+">"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("</"+p.nodeName.toLowerCase()+">")}while(p!=v.node);s.splice(r,1);while(r<s.length){z+=t(s[r]);r++}}}}return z+m(x.substr(q))}function j(){function q(x,y,v){if(x.compiled){return}var u;var s=[];if(x.k){x.lR=f(y,x.l||hljs.IR,true);for(var w in x.k){if(!x.k.hasOwnProperty(w)){continue}if(x.k[w] instanceof Object){u=x.k[w]}else{u=x.k;w="keyword"}for(var r in u){if(!u.hasOwnProperty(r)){continue}x.k[r]=[w,u[r]];s.push(r)}}}if(!v){if(x.bWK){x.b="\\b("+s.join("|")+")\\s"}x.bR=f(y,x.b?x.b:"\\B|\\b");if(!x.e&&!x.eW){x.e="\\B|\\b"}if(x.e){x.eR=f(y,x.e)}}if(x.i){x.iR=f(y,x.i)}if(x.r===undefined){x.r=1}if(!x.c){x.c=[]}x.compiled=true;for(var t=0;t<x.c.length;t++){if(x.c[t]=="self"){x.c[t]=x}q(x.c[t],y,false)}if(x.starts){q(x.starts,y,false)}}for(var p in e){if(!e.hasOwnProperty(p)){continue}q(e[p].dM,e[p],true)}}function d(B,C){if(!j.called){j();j.called=true}function q(r,M){for(var L=0;L<M.c.length;L++){if((M.c[L].bR.exec(r)||[null])[0]==r){return M.c[L]}}}function v(L,r){if(D[L].e&&D[L].eR.test(r)){return 1}if(D[L].eW){var M=v(L-1,r);return M?M+1:0}return 0}function w(r,L){return L.i&&L.iR.test(r)}function K(N,O){var M=[];for(var L=0;L<N.c.length;L++){M.push(N.c[L].b)}var r=D.length-1;do{if(D[r].e){M.push(D[r].e)}r--}while(D[r+1].eW);if(N.i){M.push(N.i)}return f(O,M.join("|"),true)}function p(M,L){var N=D[D.length-1];if(!N.t){N.t=K(N,E)}N.t.lastIndex=L;var r=N.t.exec(M);return r?[M.substr(L,r.index-L),r[0],false]:[M.substr(L),"",true]}function z(N,r){var L=E.cI?r[0].toLowerCase():r[0];var M=N.k[L];if(M&&M instanceof Array){return M}return false}function F(L,P){L=m(L);if(!P.k){return L}var r="";var O=0;P.lR.lastIndex=0;var M=P.lR.exec(L);while(M){r+=L.substr(O,M.index-O);var N=z(P,M);if(N){x+=N[1];r+='<span class="'+N[0]+'">'+M[0]+"</span>"}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'<span class="'+M.cN+'">':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"</span>":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L>1){O=D[D.length-2].cN?"</span>":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length>1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.r>r.keyword_count+r.r){r=s}if(s.keyword_count+s.r>p.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((<[^>]+>|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"<br>")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML="<pre><code>"+y.value+"</code></pre>";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p<r.length;p++){var q=b(r[p]);if(q){n(q,hljs.tabReplace)}}}function l(){if(window.addEventListener){window.addEventListener("DOMContentLoaded",o,false);window.addEventListener("load",o,false)}else{if(window.attachEvent){window.attachEvent("onload",o)}else{window.onload=o}}}var e={};this.LANGUAGES=e;this.highlight=d;this.highlightAuto=g;this.fixMarkup=i;this.highlightBlock=n;this.initHighlighting=o;this.initHighlightingOnLoad=l;this.IR="[a-zA-Z][a-zA-Z0-9_]*";this.UIR="[a-zA-Z_][a-zA-Z0-9_]*";this.NR="\\b\\d+(\\.\\d+)?";this.CNR="\\b(0[xX][a-fA-F0-9]+|(\\d+(\\.\\d*)?|\\.\\d+)([eE][-+]?\\d+)?)";this.BNR="\\b(0b[01]+)";this.RSR="!|!=|!==|%|%=|&|&&|&=|\\*|\\*=|\\+|\\+=|,|\\.|-|-=|/|/=|:|;|<|<<|<<=|<=|=|==|===|>|>=|>>|>>=|>>>|>>>=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"</",c:[hljs.CLCM,hljs.CBLCLM,hljs.QSM,{cN:"string",b:"'\\\\?.",e:"'",i:"."},{cN:"number",b:"\\b(\\d+(\\.\\d*)?|\\.\\d+)(u|U|l|L|ul|UL|f|F)"},hljs.CNM,{cN:"preprocessor",b:"#",e:"$"},{cN:"stl_container",b:"\\b(deque|list|queue|stack|vector|map|set|bitset|multiset|multimap|unordered_map|unordered_set|unordered_multiset|unordered_multimap|array)\\s*<",e:">",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"<\\-(?!\\s*\\d)",e:hljs.IMMEDIATE_RE,r:2},{cN:"operator",b:"\\->|<\\-",e:hljs.IMMEDIATE_RE,r:1},{cN:"operator",b:"%%|~",e:hljs.IMMEDIATE_RE},{cN:"operator",b:">=|<=|==|!=|\\|\\||&&|=|\\+|\\-|\\*|/|\\^|>|<|!|&|\\||\\$|:",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"%",e:"%",i:"\\n",r:1},{cN:"identifier",b:"`",e:"`",r:0},{cN:"string",b:'"',e:'"',c:[hljs.BE],r:0},{cN:"string",b:"'",e:"'",c:[hljs.BE],r:0},{cN:"paren",b:"[[({\\])}]",e:hljs.IMMEDIATE_RE,r:0}]}};
hljs.initHighlightingOnLoad();
</script>
</head>
<body>
<!-- Automatically generated by RStudio [12861c30b10411e1afa60800200c9a66] -->
<h3>akromeson.R</h3>
<p>phug7649 — <em>Apr 10, 2013, 4:35 PM</em></p>
<pre><code class="r">#setwd("C:/Users/phug7649/Desktop/kmeans/Paper_2/0-5")
#classes<-read.csv("f1.25 11_class.txt",sep="") ##this is the output from the fuzzy k analysis. Using 0-5 currently
##as a testbed
Clusters<-11
setwd("C:/Users/phug7649/Desktop/txtbin")
##for the function to work optimally, the specific "subset" file needs to be changed to a generic "input" file.
##I have created several input files based on the same data set.
#subset0_5<-read.csv("USII_0_5.csv")
input<-read.csv("USII_0_5.csv")
# input<-read.csv("USII_5_10.csv")
# input<-read.csv("USII_10_20.csv")
# input<-read.csv("USII_20_40.csv")
# input<-read.csv("USII_40_60.csv")
# input<-read.csv("USII_60_100.csv")
# input<-read.csv("USII_100plus.csv")
##this data needs the silt fraction removed. This may cause problems down the line
one<-input[,1:9]
two<-input[,11:12]
input<-cbind(one,two)
##reading in the results from FKM in its appropriate directory
setwd("C:/Users/phug7649/Desktop/kmeans/Paper_2/0-5")
clusfind<-read.csv("summary.txt",sep="", header=TRUE)
head(clusfind)
</code></pre>
<pre><code> Class Phi X..u.u... OFV X.dJ.dphi FPI MPE S Wilks_L
1 2 1.1 9.296e-05 94715 54507 0.2823 0.3230 2.3770 NA
2 3 1.1 8.923e-05 87009 80205 0.2255 0.2390 1.6501 NA
3 4 1.1 8.452e-05 80234 88848 0.1849 0.1792 1.4356 NA
4 5 1.1 9.445e-05 75557 106387 0.1914 0.1737 1.1782 NA
5 6 1.1 9.324e-05 71859 118066 0.1744 0.1529 1.1619 NA
6 7 1.1 9.240e-05 68711 126758 0.1670 0.1406 0.9873 NA
</code></pre>
<pre><code class="r">
# Spinning 3d Scatterplot
##how do you rename a header? heres how!
#names(classes)[1]<-"natural_key"
#class_input<-merge(input,classes, by= "natural_key",all=TRUE)
y<-ncol(input)
##should have used "row.names=FALSE" when making this csv. I will fix the problem later.
input<-input[,2:y]# remove this when the issue is fixed.
y<-ncol(input)
a<-princomp(input[,2:y], cor=TRUE)
prin<-a$scores
#csprin<-cbind(class_input,prin)
####################################################################################################################
#################################### Time to use the script found in EMII.r ########################################
####################################################################################################################
#I need to make a function out of this...
############################################# THE CONVEX BICYCLE ###################################################
##A script made to identify a small number of points around the periphery of a data cloud. This should coincide with
##the location of end members. It works by creating an n-dimensional convex hull (thanks seb),finding a point with a
##maximum distance from zero then finding the maximum distance of this point from all other points in the hull.
####################################################################################################################
##constructing the dataset. Required: 1 column (column.30 with the components arranged after that.)
Column.30<-1:nrow(prin)
z<-cbind(Column.30,prin)
z<-z[,2:ncol(z)]
##scripts required for this algorithm to work...
source("C:/Users/phug7649/Desktop/TXTBIN/R-scripts/functions/point_euclid.R")
source("C:/Users/phug7649/Desktop/TXTBIN/R-scripts/functions/qhull_algorithm.R")
################################################# control panel ####################################################
## there are two control methods atm; the first is to define the length of the yardstick. Provides an undefined number
## of end-members. the second is to use an equation which most likely is data specific.
ys<-10 ##starting parameter for yardstick
factor<-.55 ##creating the factor by which the yardstick length is modified (previous run was 0.8)
YScrit<-3.2 ##Stopping criteria; when the overall size of the hull is less than this, the algorithm stops.
####################################################################################################################
rm(bin)
</code></pre>
<pre><code>Warning: object 'bin' not found
</code></pre>
<pre><code class="r">file.create("bin.csv")##creating a file to dump values
</code></pre>
<pre><code>[1] TRUE
</code></pre>
<pre><code class="r">bin<-c()
cz<-quick_hull(z)##Using sebs script to create hulls
while (ys>YScrit)##I want the loop to start here
{
czr<-z[cz,]##sum of rows
czr<-czr^2
czrsum<-rowSums(czr)
fin<-sqrt(czrsum)
finm<-as.matrix(fin)
refmax<-which.max(finm)##rows with max and min euclidean distance from zero
BLARG<-as.data.frame(z)[cz[refmax],]##getting maximum value and anchoring it to the row number in the master data set (z)
rowx<-BLARG##retrieving all the principal component data from rows that contain maximum and minimum euclidean distances
object<-z[cz,] ## retrieving all pc data from cz
pcdist<-as.matrix(point_euclid(object,rowx))##getting distances
b<-as.numeric(pcdist[which.max(pcdist),])##max distance
ys<-b*factor##yardstick
new <- ys < as.vector(pcdist)##compare yardstick to the convex hull
or <- cz[which(pcdist == 0)]##Placing maximum (maxi) and minimum (origin) points in the final file
bin <- rbind(or,bin)
cz <- cz[which(new)]##Exclude any values inferior to yardstick (this file should be renamed cz when its time to reiterate)
print(ys) #print the yardstick value to see if the script is running
}
</code></pre>
<pre><code>[1] 11.43
[1] 11.67
[1] 8.963
[1] 7.801
[1] 8.109
[1] 7.718
[1] 6.708
[1] 7.636
[1] 6.22
[1] 5.423
[1] 5.424
[1] 4.87
[1] 4.02
[1] 3.742
[1] 3.236
[1] 3.47
[1] 3.307
[1] 3.113
</code></pre>
<pre><code class="r">paste0("your algorithm has returned ",nrow(bin), " end points")
</code></pre>
<pre><code>[1] "your algorithm has returned 18 end points"
</code></pre>
<pre><code class="r">paste0("Yardstick factor is ",factor,","," stopping criterion is ",YScrit)
</code></pre>
<pre><code>[1] "Yardstick factor is 0.55, stopping criterion is 3.2"
</code></pre>
<pre><code class="r">ys<-10
####################################################################################################################
##creating an identity matrix
matrix<-diag(nrow(bin))
##creating end point matrices
points<-input[bin,]
#verify<-cbind(bin,points)
# #creating control file
# crow1<-c("weights","phi","nend","nclass")
# crow2<-c(w,p,ncol(bin),total)
# #writing files
setwd("C:\\Users\\phug7649\\Documents\\MATLAB")
write.table(matrix,"matrix.csv",row.names=FALSE,col.names=FALSE,sep=",")
write.csv(points,"EP.csv",row.names=FALSE)
write.csv(input,"DATA.csv",row.names=FALSE)
checkdata<-read.csv("edg_2072_ep_k_2072_II.csv")
head(checkdata)
</code></pre>
<pre><code> Soil_ID Silt Clay pH_Water Conductivity_.CS.M. Chloride Ca_Carbonate
1 ed001 10.9 52.8 6.85 24.0 72 0.05
2 ed001 11.2 58.2 8.08 10.0 12 0.05
3 ed001 11.6 51.9 9.20 23.9 30 0.30
4 ed001 10.9 49.7 9.29 41.6 160 0.40
5 ed001 10.8 55.6 9.24 73.6 336 0.70
6 ed001 12.6 51.8 9.46 62.5 289 3.80
Carbon Phosphate Calcium Magnesium Potassium Sodium
1 2.29 60.3 183.1 145.8 24.6 19.0
2 0.90 8.2 234.2 171.6 12.5 34.1
3 0.74 7.3 230.8 166.4 10.6 70.2
4 0.35 26.0 167.8 151.6 5.6 81.7
5 0.25 20.0 203.3 166.7 7.9 100.0
6 0.03 13.0 146.4 143.7 2.5 94.9
</code></pre>
<pre><code class="r">data<-read.csv("DATA.csv")
head(data)
</code></pre>
<pre><code> natural_key ph_h2o caco3 cec_nh4 L A B clay_tot_psa
1 00P00090 6.222 0 20.4 30.92 1.552 5.917 8.2
2 00P00265 6.100 0 10.0 20.37 1.910 5.438 3.1
3 00P00398 8.900 0 33.6 30.90 3.704 12.138 47.7
4 00P00422 9.408 12 25.5 30.90 3.704 12.138 45.9
5 00P00432 6.800 15 25.2 41.30 1.459 13.280 45.4
6 00P00440 7.036 0 10.2 30.90 3.704 12.138 13.1
sand_tot_psa oc
1 42.2 6.30
2 84.9 1.69
3 14.3 0.96
4 8.6 1.20
5 7.1 2.07
6 54.3 0.88
</code></pre>
<pre><code class="r">checkep<-read.csv("edg_2072_ep_k_5_II.csv")
head(checkep)
</code></pre>
<pre><code> Soil.ID Silt Clay pH.Water Conductivity..CS.M. Chloride Ca.Carbonate
1 E1 16.0 45.0 8.66 116.5 1059 8.50
2 E2 6.5 19.9 6.67 26.3 29 0.05
3 E3 7.8 17.1 9.18 14.3 12 77.60
4 E4 18.1 27.5 4.34 64.3 603 0.05
5 E5 18.3 58.0 8.10 171.2 764 0.50
Carbon Phosphate Calcium Magnesium Potassium Sodium
1 0.90 6.10 76.70 471.4 2.00 151.8
2 8.27 91.50 101.40 66.9 13.80 0.2
3 0.04 0.05 32.20 102.8 0.05 20.6
4 0.05 0.60 0.05 145.0 1.90 27.6
5 0.55 26.60 196.00 111.9 133.90 31.2
</code></pre>
<pre><code class="r">ep<-read.csv("EP.csv")
head(ep)
</code></pre>
<pre><code> natural_key ph_h2o caco3 cec_nh4 L A B clay_tot_psa
1 97P01625 8.4 0 10.1 20.36 4.0872 11.6491 5.8
2 82P04392 7.4 2 0.6 41.32 -4.4656 6.0573 5.6
3 02N01222 4.5 0 17.7 20.39 -0.2811 -0.7465 0.9
4 PSU07151 4.7 0 22.6 20.39 -0.2811 -0.7465 0.0
5 03N05180 5.1 0 74.4 41.30 3.3216 12.5259 14.3
6 40A32030 3.9 0 11.7 71.58 1.8513 5.5929 11.5
sand_tot_psa oc
1 86.4 2.29
2 33.7 0.23
3 92.6 6.72
4 0.0 10.58
5 65.8 0.96
6 29.1 0.88
</code></pre>
<pre><code class="r">checkmatrix<-read.csv("edg_2073_ep_k_id.csv")
head(checkmatrix)
</code></pre>
<pre><code> X1 X0 X0.1 X0.2 X0.3
1 0 1 0 0 0
2 0 0 1 0 0
3 0 0 0 1 0
4 0 0 0 0 1
</code></pre>
<pre><code class="r">matII<-read.csv("matrix.csv")
head(matII)
</code></pre>
<pre><code> X1 X0 X0.1 X0.2 X0.3 X0.4 X0.5 X0.6 X0.7 X0.8 X0.9 X0.10 X0.11 X0.12
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 1 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 1 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 1 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 1 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 1 0 0 0 0 0 0 0
X0.13 X0.14 X0.15 X0.16
1 0 0 0 0
2 0 0 0 0
3 0 0 0 0
4 0 0 0 0
5 0 0 0 0
6 0 0 0 0
</code></pre>
<pre><code class="r">
message(paste0("nclass needs to be ", Clusters+nrow(bin)))
</code></pre>
<pre><code>nclass needs to be 29
</code></pre>
<pre><code class="r">
shell("matlab -nodesktop -nosplash -wait -r rep")
##this will turn matlab output into a pretty graph without having to think about it.
# install.packages(c("Cairo"), repos="http://cran.r-project.org" )
library(Cairo)
library(plyr)
library(ggplot2)
library(grid)
source("C:/Users/phug7649/Desktop/TXTBIN/R-scripts/functions/make_letter_ids.R")
##input files for matlab:
setwd("C:\\Users\\phug7649\\Documents\\MATLAB")
matrix<-read.table("matrix.csv",sep=",")
end_points<-read.csv("EP.csv",sep=",")
data<-read.csv("DATA.csv",sep=",")
##matlab output files:
centroid_table<-read.csv("mcent.csv",header=FALSE,sep=",")
a<-nrow(centroid_table)
y<-make_letter_ids(nrow(centroid_table))
centroid_table<-cbind(y,centroid_table)
##joining original data to the centroid table, to be used later.
names(centroid_table) <- names(data)
data_cent<-rbind(data,centroid_table)
##creating principal components from the original data.
princomp_main<-princomp(data_cent[,2:ncol(data)],cor=TRUE)
princomp_comp<-princomp_main$scores
##attaching principal components to main data, plotting to ensure we know what it looks like.
#plot(princomp_comp[,1],princomp_comp[,2])
##creating max distance column
data_distances<-read.csv("mdist.csv",sep=",",header=F)
id.matrix<-diag(nrow(centroid_table))
max<-y
id.matrix<-cbind(id.matrix,max)
natural_key<-max
data_cent.prin<-cbind(data_cent,princomp_comp)
names(data_distances)<-make_letter_ids(nrow(centroid_table))
weighting_factor<-read.csv("weighting.csv",sep=",")
number_of_rows<-read.csv("rows.csv",header=FALSE,sep=",")
number_of_end_members<-read.csv("end.csv",header=FALSE,sep=",")
number_of_centroids<-read.csv("cent.csv",header=FALSE,sep=",")
w<-weighting_factor[1,1]
##create the id matrix from the matlab data
##creating max column for data distances
aa<-as.matrix(data_distances)
data_distances$max<-apply(aa,1,which.max)
data_ratio<-data_distances
data_ratio$max<-apply(aa,1,which.max)
max<-make_letter_ids(nrow(centroid_table))
data_distances$max<-max[data_distances$max]
max<-data_distances$max
max<-rbind(c(max,y))
max<-t(max)
data.complete<-cbind(data_cent.prin,max)
datarows<-nrow(data)
position1<-datarows+1
cdatarows<-nrow(data.complete)
centroids.complete<-data.complete[position1:cdatarows,]
emno<-number_of_end_members[1,1]
ceno<-nrow(centroid_table)-emno
soil.id<-rep(c("E", "C"), c(emno, ceno))
centroids.complete<-cbind(centroids.complete,soil.id)
totals<-as.data.frame(table(data_ratio$max))
end.tot<-totals[1:nrow(matrix),]
cent.tot<-totals[nrow(matrix):nrow(totals),]
sum.end<-sum(end.tot[,2])
sum.cent<-sum(cent.tot[,2])
ratio<-(sum.end/(sum.end+sum.cent))*100
ratio<-round(ratio,digits=2)
(paste0("Weighting ", weighting_factor[1,1],", creating ",ratio, "% end point memberships"))
</code></pre>
<pre><code>[1] "Weighting 2000, creating 5.02% end point memberships"
</code></pre>
<pre><code class="r">
setwd("C:/Users/phug7649/Desktop/txtbin")
###SEB GOING NUTS (more often referred to as a panel plot)
NUTS<-ggplot(data.complete, aes(x=Comp.1, y=Comp.2), group=max)+
theme_bw() +
geom_point(colour="grey40")+
#stat_bin2d(binwidth=c(1, 1),colour=gray) +
facet_wrap(~ max, nrow=5)+
geom_point(data=centroids.complete, aes(shape=soil.id),size=4, colour="black")+
scale_shape_manual(values=c(16, 17))+
theme(plot.background = element_rect(fill = w))+
# xlim(-12,8)+
# ylim(-7.5,5)+
ggtitle(paste0("Weighting ", weighting_factor[1,1],", creating ",ratio, " percent end point memberships"))+
# theme(panel.margin = unit(5, "lines"))+
coord_equal()
NUTS
</code></pre>
<p><img src="" alt="plot of chunk unnamed-chunk-1"/> </p>
<pre><code class="r">
ggsave(paste0("nuts", w, number_of_end_members[1,1],".png"),type="cairo")
</code></pre>
<pre><code>Saving 7 x 7 in image
</code></pre>
<pre><code class="r">
#Assign colours in one giant plot for Alex.
#hclust(centroids.complete[,2:19])
#qplot(Comp.1,Comp.2,data=data.complete,colour=centroids.complete$soil.id)
combined<-ggplot(data.complete,aes(x=Comp.1,y=Comp.2))+
geom_point(aes(colour=max))+
geom_point(data=centroids.complete,aes(shape=soil.id),size=4)+
scale_shape_manual(values=c(16,17))+
# xlim(-12,8)+
# ylim(-7.5,5)+
ggtitle(paste0("Weighting ", weighting_factor[1,1],", creating ",ratio, " percent end point memberships"))+
coord_equal()
combined
</code></pre>
<p><img src="" alt="plot of chunk unnamed-chunk-1"/> </p>
<pre><code class="r">ggsave(paste0("combined", w, number_of_end_members[1,1],".png"),type="cairo")
</code></pre>
<pre><code>Saving 7 x 7 in image
</code></pre>
<pre><code class="r">
##creating a plot of end point ratios-hard to put into function
# w<-c(5,10,20,40,100,200,400,1000,2000,4000)
# ratio<-c(55.87,48.89,35.17,35.25,19.89,11.3,6.81,5.36,5.02,4.85)
# percent<-cbind(w,ratio)
# plot(percent)
# E.C<-ggplot(data.complete,aes(x=Comp.1,y=Comp.2))+
# geom_point(aes(colour=soil.id))+
# geom_point(data=centroids.complete,aes(shape=soil.id),size=4)+
# scale_shape_manual(values=c(16,17))+
# # xlim(-12,8)+
# # ylim(-7.5,5)+
# ggtitle(paste0("Weighting ", weighting_factor[1,1],", creating ",ratio, " percent end point memberships"))+
# coord_equal()
# E.C
# ggsave(paste0("combined", w, number_of_end_members[1,1],".png"),type="cairo")
##################################################################################################################
############################################### THE ALEX BIT #####################################################
##################################################################################################################
# attach(centroids.muns)
# newdata <- centroids.muns[order(caco3),]
# newdata <- centroids.muns[order(cec_nh4),]
# newdata <- centroids.muns[order(clay_tot_psa),]
# newdata <- centroids.muns[order(oc),]
# newdata <- centroids.muns[order(ph_h2o),]
# newdata <- centroids.muns[order(soil.id),]
# detach(centroids.muns)
# EP<-newdata[1:11,]
# C<-newdata[12:nrow(newdata),]
#
# EP<-EP[order(EP$ph_h2o),]
# EP<-EP[order(EP$sand_tot_psa),]
# EP<-EP[order(EP$clay_tot_psa),]
#
# C<-C[order(C$ph_h2o),]
# C<-C[order(C$sand_tot_psa),]
# C<-C[order(C$clay_tot_psa),]
#
# # prepare hierarchical cluster
# hc = hclust(dist(EP[,2:10]))
# # very simple dendrogram
# plot(hc)
# # labels at the same level
# plot(hc,hang=-1)
# hc <- hclust(dist(EP[,c("ph_h2o","caco3","cec_nh4","L","A","B","clay_tot_psa","sand_tot_psa","oc")]), "ward")
# plot(hc, hang=-1,labels=EP$natural_key)
</code></pre>
</body>
</html>