Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

* Error message: filters in [convolutional] layer (689520) does not match classes or mask in [yolo] layer (64896) #2630

Open
redemptusabi opened this issue Mar 9, 2024 · 0 comments

Comments

@redemptusabi
Copy link

For the custom dataset i use its 3 classes and here's the config :
[net]

Testing

#batch=1
#subdivisions=1

Training

batch=64
subdivisions=16
width=416
height=416
channels=3
momentum=0.9
decay=0.0005
angle=0
saturation = 1.5
exposure = 1.5
hue=.1

learning_rate=0.00261
burn_in=1000

max_batches = 6000
policy=steps
steps=4800,5400
scales=.1,.1

0

[convolutional]
batch_normalize=1
filters=32
size=3
stride=1
pad=1
activation=swish

1

[convolutional]
batch_normalize=1
filters=64
size=3
stride=2
pad=1
activation=swish

[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=swish

3

[convolutional]
batch_normalize=1
filters=128
size=3
stride=2
pad=1
activation=swish

[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=swish

[route]
layers=-2

[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=swish

[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=swish

[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=swish

[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=swish

[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=swish

[route]
layers = -1,-3,-5,-7

12

[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=swish

[maxpool]
size=2
stride=2

[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=swish

[route]
layers=-3

[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=swish

[convolutional]
batch_normalize=1
filters=128
size=3
stride=2
pad=1
activation=swish

18

[route]
layers = -1,-4

[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=swish

[route]
layers=-2

[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=swish

[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=swish

[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=swish

[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=swish

[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=swish

[route]
layers = -1,-3,-5,-7

27

[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=swish

[maxpool]
size=2
stride=2

[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=swish

[route]
layers=-3

[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=swish

[convolutional]
batch_normalize=1
filters=256
size=3
stride=2
pad=1
activation=swish

33

[route]
layers = -1,-4

[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=swish

[route]
layers=-2

[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=swish

[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=swish

[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=swish

[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=swish

[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=swish

[route]
layers = -1,-3,-5,-7

42

[convolutional]
batch_normalize=1
filters=1024
size=1
stride=1
pad=1
activation=swish

[maxpool]
size=2
stride=2

[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=swish

[route]
layers=-3

[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=swish

[convolutional]
batch_normalize=1
filters=512
size=3
stride=2
pad=1
activation=swish

48

[route]
layers = -1,-4

[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=swish

[route]
layers=-2

[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=swish

[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=swish

[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=swish

[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=swish

[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=swish

[route]
layers = -1,-3,-5,-7

57

[convolutional]
batch_normalize=1
filters=1024
size=1
stride=1
pad=1
activation=swish

##################################

SPPCSP

[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=swish

[route]
layers = -2

[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=swish

[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=512
activation=swish

[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=swish

SPP

[maxpool]
stride=1
size=5

[route]
layers=-2

[maxpool]
stride=1
size=9

[route]
layers=-4

[maxpool]
stride=1
size=13

[route]
layers=-6,-5,-3,-1

End SPP

[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=swish

[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=512
activation=swish

[route]
layers = -1, -13

72

[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=swish

End SPPCSP

[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=swish

[upsample]
stride=2

[route]
layers = 42

[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=swish

[route]
layers = -1,-3

[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=swish

[route]
layers=-2

[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=swish

[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=swish

[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=swish

[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=swish

[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=swish

[route]
layers = -1,-2,-3,-4,-5,-7

86

[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=swish

[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=swish

[upsample]
stride=2

[route]
layers = 27

[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=swish

[route]
layers = -1,-3

[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=swish

[route]
layers=-2

[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=swish

[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=swish

[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=swish

[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=swish

[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=swish

[route]
layers = -1,-2,-3,-4,-5,-7

100

[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=swish

[maxpool]
size=2
stride=2

[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=swish

[route]
layers=-3

[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=swish

[convolutional]
batch_normalize=1
filters=128
size=3
stride=2
pad=1
activation=swish

[route]
layers = -1,-4,86

[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=swish

[route]
layers=-2

[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=swish

[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=swish

[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=swish

[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=swish

[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=swish

[route]
layers = -1,-2,-3,-4,-5,-7

115

[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=swish

[maxpool]
size=2
stride=2

[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=swish

[route]
layers=-3

[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=swish

[convolutional]
batch_normalize=1
filters=256
size=3
stride=2
pad=1
activation=swish

[route]
layers = -1,-4,72

[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=swish

[route]
layers=-2

[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=swish

[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=swish

[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=swish

[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=swish

[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=swish

[route]
layers = -1,-2,-3,-4,-5,-7

130

[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=swish

#############################

============ End of Neck ============

============ Head ============

P3

[route]
layers = 100

[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=24
activation=swish

[convolutional]
size=1
stride=1
pad=1
filters=255
activation=logistic

[yolo]
mask = 0,1,2
anchors = 12,16, 19,36, 40,28,
classes=3
num=3
jitter=.1
scale_x_y = 2.0
objectness_smooth=1
ignore_thresh = .7
truth_thresh = 1
resize=1.5
iou_thresh=0.2
iou_normalizer=0.05
cls_normalizer=0.5
obj_normalizer=1.0
iou_loss=ciou
nms_kind=diounms
beta_nms=0.6
new_coords=1
max_delta=2

P4

[route]
layers = 115

[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=24
activation=swish

[convolutional]
size=1
stride=1
pad=1
filters=255
activation=logistic

[yolo]
mask = 0,1,2
anchors = 12,16, 19,36, 40,28,
classes=3
num=3
jitter=.1
scale_x_y = 2.0
objectness_smooth=1
ignore_thresh = .7
truth_thresh = 1
resize=1.5
iou_thresh=0.2
iou_normalizer=0.05
cls_normalizer=0.5
obj_normalizer=1.0
iou_loss=ciou
nms_kind=diounms
beta_nms=0.6
new_coords=1
max_delta=2

P5

[route]
layers = 130

[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=24
activation=swish

[convolutional]
size=1
stride=1
pad=1
filters=255
activation=logistic

[yolo]
mask = 0,1,2
anchors = 12,16, 19,36, 40,28,
classes=3
num=3
jitter=.1
scale_x_y = 2.0
objectness_smooth=1
ignore_thresh = .7
truth_thresh = 1
resize=1.5
iou_thresh=0.2
iou_normalizer=0.05
cls_normalizer=0.5
obj_normalizer=1.0
iou_loss=ciou
nms_kind=diounms
beta_nms=0.6
new_coords=1
max_delta=2

Im having an error that says : filters in [convolutional] layer (689520) does not match classes or mask in [yolo] layer (64896)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant