We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
For the custom dataset i use its 3 classes and here's the config : [net]
#batch=1 #subdivisions=1
batch=64 subdivisions=16 width=416 height=416 channels=3 momentum=0.9 decay=0.0005 angle=0 saturation = 1.5 exposure = 1.5 hue=.1
learning_rate=0.00261 burn_in=1000
max_batches = 6000 policy=steps steps=4800,5400 scales=.1,.1
[convolutional] batch_normalize=1 filters=32 size=3 stride=1 pad=1 activation=swish
[convolutional] batch_normalize=1 filters=64 size=3 stride=2 pad=1 activation=swish
[convolutional] batch_normalize=1 filters=64 size=3 stride=1 pad=1 activation=swish
[convolutional] batch_normalize=1 filters=128 size=3 stride=2 pad=1 activation=swish
[convolutional] batch_normalize=1 filters=64 size=1 stride=1 pad=1 activation=swish
[route] layers=-2
[route] layers = -1,-3,-5,-7
[convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=swish
[maxpool] size=2 stride=2
[convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=swish
[route] layers=-3
[route] layers = -1,-4
[convolutional] batch_normalize=1 filters=128 size=3 stride=1 pad=1 activation=swish
[convolutional] batch_normalize=1 filters=512 size=1 stride=1 pad=1 activation=swish
[convolutional] batch_normalize=1 filters=256 size=3 stride=2 pad=1 activation=swish
[convolutional] batch_normalize=1 filters=256 size=3 stride=1 pad=1 activation=swish
[convolutional] batch_normalize=1 filters=1024 size=1 stride=1 pad=1 activation=swish
[convolutional] batch_normalize=1 filters=512 size=3 stride=2 pad=1 activation=swish
##################################
[route] layers = -2
[convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=512 activation=swish
[maxpool] stride=1 size=5
[maxpool] stride=1 size=9
[route] layers=-4
[maxpool] stride=1 size=13
[route] layers=-6,-5,-3,-1
[route] layers = -1, -13
[upsample] stride=2
[route] layers = 42
[route] layers = -1,-3
[route] layers = -1,-2,-3,-4,-5,-7
[route] layers = 27
[route] layers = -1,-4,86
[route] layers = -1,-4,72
#############################
[route] layers = 100
[convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=24 activation=swish
[convolutional] size=1 stride=1 pad=1 filters=255 activation=logistic
[yolo] mask = 0,1,2 anchors = 12,16, 19,36, 40,28, classes=3 num=3 jitter=.1 scale_x_y = 2.0 objectness_smooth=1 ignore_thresh = .7 truth_thresh = 1 resize=1.5 iou_thresh=0.2 iou_normalizer=0.05 cls_normalizer=0.5 obj_normalizer=1.0 iou_loss=ciou nms_kind=diounms beta_nms=0.6 new_coords=1 max_delta=2
[route] layers = 115
[route] layers = 130
Im having an error that says : filters in [convolutional] layer (689520) does not match classes or mask in [yolo] layer (64896)
The text was updated successfully, but these errors were encountered:
No branches or pull requests
For the custom dataset i use its 3 classes and here's the config :
[net]
Testing
#batch=1
#subdivisions=1
Training
batch=64
subdivisions=16
width=416
height=416
channels=3
momentum=0.9
decay=0.0005
angle=0
saturation = 1.5
exposure = 1.5
hue=.1
learning_rate=0.00261
burn_in=1000
max_batches = 6000
policy=steps
steps=4800,5400
scales=.1,.1
0
[convolutional]
batch_normalize=1
filters=32
size=3
stride=1
pad=1
activation=swish
1
[convolutional]
batch_normalize=1
filters=64
size=3
stride=2
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=swish
3
[convolutional]
batch_normalize=1
filters=128
size=3
stride=2
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=swish
[route]
layers=-2
[convolutional]
batch_normalize=1
filters=64
size=1
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=swish
[route]
layers = -1,-3,-5,-7
12
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=swish
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=swish
[route]
layers=-3
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=128
size=3
stride=2
pad=1
activation=swish
18
[route]
layers = -1,-4
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=swish
[route]
layers=-2
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=swish
[route]
layers = -1,-3,-5,-7
27
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=swish
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=swish
[route]
layers=-3
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=256
size=3
stride=2
pad=1
activation=swish
33
[route]
layers = -1,-4
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=swish
[route]
layers=-2
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=swish
[route]
layers = -1,-3,-5,-7
42
[convolutional]
batch_normalize=1
filters=1024
size=1
stride=1
pad=1
activation=swish
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=swish
[route]
layers=-3
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=512
size=3
stride=2
pad=1
activation=swish
48
[route]
layers = -1,-4
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=swish
[route]
layers=-2
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=swish
[route]
layers = -1,-3,-5,-7
57
[convolutional]
batch_normalize=1
filters=1024
size=1
stride=1
pad=1
activation=swish
##################################
SPPCSP
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=swish
[route]
layers = -2
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=512
activation=swish
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=swish
SPP
[maxpool]
stride=1
size=5
[route]
layers=-2
[maxpool]
stride=1
size=9
[route]
layers=-4
[maxpool]
stride=1
size=13
[route]
layers=-6,-5,-3,-1
End SPP
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=512
activation=swish
[route]
layers = -1, -13
72
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=swish
End SPPCSP
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=swish
[upsample]
stride=2
[route]
layers = 42
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=swish
[route]
layers = -1,-3
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=swish
[route]
layers=-2
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=swish
[route]
layers = -1,-2,-3,-4,-5,-7
86
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=swish
[upsample]
stride=2
[route]
layers = 27
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=swish
[route]
layers = -1,-3
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=swish
[route]
layers=-2
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=64
size=3
stride=1
pad=1
activation=swish
[route]
layers = -1,-2,-3,-4,-5,-7
100
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=swish
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=swish
[route]
layers=-3
[convolutional]
batch_normalize=1
filters=128
size=1
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=128
size=3
stride=2
pad=1
activation=swish
[route]
layers = -1,-4,86
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=swish
[route]
layers=-2
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=128
size=3
stride=1
pad=1
activation=swish
[route]
layers = -1,-2,-3,-4,-5,-7
115
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=swish
[maxpool]
size=2
stride=2
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=swish
[route]
layers=-3
[convolutional]
batch_normalize=1
filters=256
size=1
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=256
size=3
stride=2
pad=1
activation=swish
[route]
layers = -1,-4,72
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=swish
[route]
layers=-2
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=swish
[convolutional]
batch_normalize=1
filters=256
size=3
stride=1
pad=1
activation=swish
[route]
layers = -1,-2,-3,-4,-5,-7
130
[convolutional]
batch_normalize=1
filters=512
size=1
stride=1
pad=1
activation=swish
#############################
============ End of Neck ============
============ Head ============
P3
[route]
layers = 100
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=24
activation=swish
[convolutional]
size=1
stride=1
pad=1
filters=255
activation=logistic
[yolo]
mask = 0,1,2
anchors = 12,16, 19,36, 40,28,
classes=3
num=3
jitter=.1
scale_x_y = 2.0
objectness_smooth=1
ignore_thresh = .7
truth_thresh = 1
resize=1.5
iou_thresh=0.2
iou_normalizer=0.05
cls_normalizer=0.5
obj_normalizer=1.0
iou_loss=ciou
nms_kind=diounms
beta_nms=0.6
new_coords=1
max_delta=2
P4
[route]
layers = 115
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=24
activation=swish
[convolutional]
size=1
stride=1
pad=1
filters=255
activation=logistic
[yolo]
mask = 0,1,2
anchors = 12,16, 19,36, 40,28,
classes=3
num=3
jitter=.1
scale_x_y = 2.0
objectness_smooth=1
ignore_thresh = .7
truth_thresh = 1
resize=1.5
iou_thresh=0.2
iou_normalizer=0.05
cls_normalizer=0.5
obj_normalizer=1.0
iou_loss=ciou
nms_kind=diounms
beta_nms=0.6
new_coords=1
max_delta=2
P5
[route]
layers = 130
[convolutional]
batch_normalize=1
size=3
stride=1
pad=1
filters=24
activation=swish
[convolutional]
size=1
stride=1
pad=1
filters=255
activation=logistic
[yolo]
mask = 0,1,2
anchors = 12,16, 19,36, 40,28,
classes=3
num=3
jitter=.1
scale_x_y = 2.0
objectness_smooth=1
ignore_thresh = .7
truth_thresh = 1
resize=1.5
iou_thresh=0.2
iou_normalizer=0.05
cls_normalizer=0.5
obj_normalizer=1.0
iou_loss=ciou
nms_kind=diounms
beta_nms=0.6
new_coords=1
max_delta=2
Im having an error that says : filters in [convolutional] layer (689520) does not match classes or mask in [yolo] layer (64896)
The text was updated successfully, but these errors were encountered: