forked from njohner/ost_pymodules
-
Notifications
You must be signed in to change notification settings - Fork 0
/
surface_alg.py
614 lines (585 loc) · 24.4 KB
/
surface_alg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
#------------------------------------------------------------------------------------------------
#This file is part of the ost_pymodules project (https://github.com/njohner/ost_pymodules).
#
#Copyright 2015 Niklaus Johner
#
#ost_pymodules is free software: you can redistribute it and/or modify
#it under the terms of the GNU Lesser General Public License as published by
#the Free Software Foundation, either version 3 of the License, or
#(at your option) any later version.
#
#ost_pymodules is distributed in the hope that it will be useful,
#but WITHOUT ANY WARRANTY; without even the implied warranty of
#MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
#GNU Lesser General Public License for more details.
#
#You should have received a copy of the GNU Lesser General Public License
#along with ost_pymodules. If not, see <http://www.gnu.org/licenses/>.
#------------------------------------------------------------------------------------------------
"""
.. codeauthor:: Niklaus Johner <[email protected]>
This module is used to mainly to calculate curvatures of a point set surface
Such surfaces can be obtained from densities using functions form the density_alg module
"""
from ost import *
import math
import numpy as npy
import scipy
from scipy import optimize
import time
import sys
sys.path.append('/Work/python_modules/')
import pbc_utilities
__all__=('CalculateSurface','CalculateSurface2','CalculateNormals','CalculateNormalsFast2',\
'CalculateNormalsFast','OrientNormalsAlongDensity','OrientNormalsFast','OrientNormals'\
,'CleanMaxDensitySurface','CleanMaxDensitySurface2','CalculateCurvature')
def CalculateSurface(eh,sampling):
"""
This function estimates the surface of a point set surface
by simply summing up the number of points times the infinitesimal surface
given by sampling**2.0
"""
ds=sampling*sampling
return ds*eh.GetAtomCount()
def CalculateSurface2(eh,within_size=5,PBC=False,cell_center=None,cell_size=None,float_prop_key=None):
"""
This function estimates the surface of a point set surface
by simply summing up the number of points times the infinitesimal surface
given by sampling**2.0
"""
if PBC:
if not cell_center:
print 'Entity bounds center used as cell_center'
cell_center=eh.bounds.center
if not cell_size:
print 'Entity bounds size used as cell_size'
cell_size=eh.bounds.size
ds=math.pi*within_size*within_size
s=0.
for a in eh.atoms:
if PBC:within=pbc_utilities.FindWithinWithPBC(eh,a.pos,within_size,cell_center,cell_size)
else:within=mol.CreateViewFromAtoms([a2 for a2 in eh.FindWithin(a.pos,within_size)])
s+=ds/float(within.GetAtomCount())
if float_prop_key:a.SetFloatProp(float_prop_key,ds/float(within.GetAtomCount()))
return s
def CalculateNormals(eh,within_size=5,PBC=False,cell_center=False,cell_size=False):
"""
This function assigns normals to each atom in eh
No specific orientation of the normals will come out
"""
if PBC:
if not cell_center:
print 'Entity bounds center used as cell_center'
cell_center=eh.bounds.center
if not cell_size:
print 'Entity bounds size used as cell_size'
cell_size=eh.bounds.size
count=0
count_tot=0
n_tot=eh.GetAtomCount()
t1=time.time()
for a in eh.atoms:
count+=1
count_tot+=1
if PBC:within=pbc_utilities.FindWithinWithPBC(eh,a.pos,within_size,cell_center,cell_size)
else:within=mol.CreateViewFromAtoms([a2 for a2 in eh.FindWithin(a.pos,within_size)]).Select('')
vl=geom.Vec3List()
for a2 in within.atoms:
vl.append(a2.pos)
if PBC:vl=geom.WrapVec3List(vl,a.pos,cell_size)
n=vl.principal_axes.GetRow(0)
a.SetVec3Prop('n',n)
if count==5000:
count=0
print count_tot,'normals out of',n_tot,'in',time.time()-t1,'seconds'
return
def CalculateNormalsFast2(eh,within_size=5,PBC=False,cell_center=False,cell_size=False):
"""
This function assigns normals to each atom in eh
No specific orientation of the normals will come out
"""
if PBC:
if not cell_center:
print 'Entity bounds center used as cell_center'
cell_center=eh.bounds.center
if not cell_size:
print 'Entity bounds size used as cell_size'
cell_size=eh.bounds.size
count=0
count_tot=0
n_tot=eh.GetAtomCount()
t1=time.time()
for a in eh.atoms:
a.SetBoolProp('done',False)
print 'set done to False',time.time()-t1
for ref_a in eh.atoms:
if ref_a.GetBoolProp('done'):continue
if PBC:within_zone=pbc_utilities.FindWithinWithPBC(eh,ref_a.pos,2.*within_size,cell_center,cell_size)
else:within_zone=mol.CreateViewFromAtoms([a2 for a2 in eh.FindWithin(ref_a.pos,2.*within_size)]).Select('')
if PBC:within2=pbc_utilities.FindWithinWithPBC(within_zone,ref_a.pos,within_size,cell_center,cell_size)
else:within2=mol.CreateViewFromAtoms([a2 for a2 in within_zone.FindWithin(ref_a.pos,within_size)]).Select('')
for a in within2.atoms:
if a.GetBoolProp('done'):continue
count+=1
count_tot+=1
if PBC:within=pbc_utilities.FindWithinWithPBC(within_zone,a.pos,within_size,cell_center,cell_size)
else:within=mol.CreateViewFromAtoms([a2 for a2 in within_zone.FindWithin(a.pos,within_size)]).Select('')
vl=geom.Vec3List()
for a2 in within.atoms:
vl.append(a2.pos)
if PBC:vl=geom.WrapVec3List(vl,a.pos,cell_size)
n=vl.principal_axes.GetRow(0)
a.SetVec3Prop('n',n)
a.SetBoolProp('done',True)
if count==5000:
count=0
print count_tot,'normals out of',n_tot,'in',time.time()-t1,'seconds'
return
def CalculateNormalsFast(eh,within_size=15,within_size2=7,PBC=False,cell_center=False,cell_size=False):
"""
This function assigns normals to each atom in eh
No specific orientation of the normals will come out
"""
if PBC:
if not cell_center:
print 'Entity bounds center used as cell_center'
cell_center=eh.bounds.center
if not cell_size:
print 'Entity bounds size used as cell_size'
cell_size=eh.bounds.size
count=0
count_tot=0
n_tot=eh.GetAtomCount()
t1=time.time()
for a in eh.atoms:
a.SetBoolProp('done',False)
print 'set done to False',time.time()-t1
for a in eh.atoms:
if a.GetBoolProp('done'):continue
if PBC:within=pbc_utilities.FindWithinWithPBC(eh,a.pos,within_size,cell_center,cell_size)
else:within=mol.CreateViewFromAtoms([a2 for a2 in eh.FindWithin(a.pos,within_size)]).Select('')
vl=geom.Vec3List()
for a2 in within.atoms:
vl.append(a2.pos)
if PBC:vl=geom.WrapVec3List(vl,a.pos,cell_size)
n=vl.principal_axes.GetRow(0)
if PBC:within=pbc_utilities.FindWithinWithPBC(eh,a.pos,within_size2,cell_center,cell_size)
else:within=mol.CreateViewFromAtoms([a2 for a2 in eh.FindWithin(a.pos,within_size2)]).Select('')
a.SetVec3Prop('n',n)
a.SetBoolProp('done',True)
for a2 in within.atoms:
if a2.GetBoolProp('done'):continue
count+=1
count_tot+=1
a2.SetVec3Prop('n',n)
a2.SetBoolProp('done',True)
if count>=5000:
count=0
print count_tot,'normals out of',n_tot,'in',time.time()-t1,'seconds'
return
def OrientNormalsAlongDensity(eh,density):
for a in eh.atoms:
n=a.GetVec3Prop('n')
d1=density.GetReal(img.Point(density.CoordToIndex(a.pos)))
d2=density.GetReal(img.Point(density.CoordToIndex(a.pos+4*n)))
if d2>d1:
a.SetVec3Prop('n',-n)
return
def OrientNormalsFast(eh,within_size=15,PBC=False,cell_center=None,cell_size=None):
if PBC:
if not cell_center:
print 'Entity bounds center used as cell_center'
cell_center=eh.bounds.center
if not cell_size:
print 'Entity bounds size used as cell_size'
cell_size=eh.bounds.size
t1=time.time()
n_atoms=eh.GetAtomCount()
print 'create ref view'
for a in eh.atoms:
a.SetIntProp('done',0)
print 'prop set',time.time()-t1
ref_view=eh.CreateEmptyView()
grid_size=within_size/(2.0)
for i in range(-int(cell_size[0]/(2*grid_size)),int(cell_size[0]/(2*grid_size))+1):
xmin=cell_center[0]+grid_size*(i-0.5)
xmax=cell_center[0]+grid_size*(i+0.5)
v1=eh.Select('x>'+str(xmin)+' and x<='+str(xmax))
for j in range(-int(cell_size[1]/(2*grid_size)),int(cell_size[1]/(2*grid_size))+1):
xmin=cell_center[1]+grid_size*(j-0.5)
xmax=cell_center[1]+grid_size*(j+0.5)
v2=v1.Select('y>'+str(xmin)+' and y<='+str(xmax))
for k in range(-int(cell_size[2]/(2*grid_size)),int(cell_size[2]/(2*grid_size))+1):
xmin=cell_center[2]+grid_size*(k-0.5)
xmax=cell_center[2]+grid_size*(k+0.5)
within=v2.Select('z>'+str(xmin)+' and z<='+str(xmax))
if len(within.atoms)>0:
ref_view.AddAtom(within.atoms[0],mol.ViewAddFlag.CHECK_DUPLICATES)
within.atoms[0].SetIntProp('done',1)
print grid_size,'number of atoms in ref view',ref_view.GetAtomCount()
print 'start orientation correction for ref view',time.time()-t1
starting_point=ref_view.bounds.min+cell_size/4.
within=pbc_utilities.FindWithinWithPBC(ref_view,starting_point,within_size,cell_center,cell_size)
if not within.IsValid():within=ref_view.CreateEmptyView()
if within.GetAtomCount()==0:
print 'start from random point'
starting_point=ref_view.atoms[0].pos
OrientNormals(ref_view,starting_point,within_size,PBC,cell_center,cell_size)
total_atoms=ref_view.GetAtomCount()
print 'start orientation correction for the other atoms',time.time()-t1
for ref_a in ref_view.atoms:
ref_n=ref_a.GetVec3Prop('n')
if PBC:within=pbc_utilities.FindWithinWithPBC(eh.Select('gadone!=1'),ref_a.pos,within_size,cell_center,cell_size)
else:within=mol.CreateViewFromAtoms([a for a in eh.Select('gadone!=1').FindWithin(ref_a.pos,within_size)]).Select('')
if not within.IsValid():within=eh.CreateEmptyView()
for a in within.atoms:
n=a.GetVec3Prop('n')
if geom.Dot(ref_n,n)<0.0:
a.SetVec3Prop('n',-n)
a.SetIntProp('done',1)
total_atoms+=1
if total_atoms%5000==0:print total_atoms,'out of',n_atoms,'in',time.time()-t1,'seconds'
print 'total number of atoms treated',total_atoms,'out of',n_atoms,'in',time.time()-t1,'seconds'
return
def OrientNormals(eh,starting_point,within_size=10,PBC=False,cell_center=None,cell_size=None):
if PBC:
if not cell_center:
print 'Entity bounds center used as cell_center'
cell_center=eh.bounds.center
if not cell_size:
print 'Entity bounds size used as cell_size'
cell_size=eh.bounds.size
t1=time.time()
count=0
count2=0
count3=0
n_atoms=eh.GetAtomCount()
total_atoms=0
print 'start orientation correction'
if PBC:within=pbc_utilities.FindWithinWithPBC(eh,starting_point,within_size,cell_center,cell_size)
else:within=mol.CreateViewFromAtoms([a for a in eh.FindWithin(starting_point,within_size)])
if not within.IsValid():within=eh.CreateEmptyView()
if within.GetAtomCount()==0:
print 'no atoms close to the starting point'
return
total_atoms+=within.GetAtomCount()
ref_a=within.atoms[0]
ref_n=ref_a.GetVec3Prop('n')
for a in within.atoms:
count+=1
if count%5000==0:print count,'out of',n_atoms
n=a.GetVec3Prop('n')
if geom.Dot(ref_n,n)<0.0:
a.SetVec3Prop('n',-n)
l=max(eh.bounds.size.data)
ref_within=within.Copy()
i=1
flag=False
while flag==False:
i+=1
radius=within_size*i
ref_radius=within_size*(i-1)
if PBC:
within=pbc_utilities.FindWithinWithPBC(eh,starting_point,radius,cell_center,cell_size)
ref_within=pbc_utilities.FindWithinWithPBC(eh,starting_point,ref_radius,cell_center,cell_size)
else:
within=mol.CreateViewFromAtoms([a for a in eh.FindWithin(starting_point,radius)]).Select('')
ref_within=mol.CreateViewFromAtoms([a for a in eh.FindWithin(starting_point,ref_radius)]).Select('')
if within.GetAtomCount()==eh.GetAtomCount():flag=True
complement=mol.Difference(within,ref_within).Select('')
total_atoms+=complement.GetAtomCount()
print within.GetAtomCount(),complement.GetAtomCount(),total_atoms,'out of',n_atoms
for a in complement.atoms:
count+=1
if count%5000==0:print count,'out of',n_atoms
if PBC:within2=pbc_utilities.FindWithinWithPBC(ref_within,a.pos,within_size,cell_center,cell_size)
else:within2=mol.CreateViewFromAtoms([a2 for a2 in ref_within.FindWithin(a.pos,within_size)])
if not within2.IsValid():within2=ref_within.CreateEmptyView()
if within2.GetAtomCount()==0:
count2+=1
if PBC:within2=pbc_utilities.FindWithinWithPBC(ref_within,a.pos,radius,cell_center,cell_size)
else:within2=mol.CreateViewFromAtoms([a2 for a2 in ref_within.FindWithin(a.pos,radius)]).Select('')
if not within2.IsValid():within2=ref_within.CreateEmptyView()
try:a2=within2.atoms[0]
except:
count3+=1
continue
n=a.GetVec3Prop('n')
ref_n=a2.GetVec3Prop('n')
if geom.Dot(ref_n,n)<0.0:
a.SetVec3Prop('n',-n)
print count2,'times no atoms in within out of',n_atoms,'and ',count3,'atoms were not oriented'
print 'total number of atoms treated',total_atoms
return
def CleanMaxDensitySurface(eh,den_map,n_steps=2,step_size=1,PBC=False,cell_center=None,cell_size=None):
"""
We keep only points that are at a maximum of the density in the direction of the normal
"""
#The step size has to be at least of the same size as the spatial sampling of the density map
if max(den_map.spatial_sampling.data)>step_size:
step_size=max(den_map.spatial_sampling.data)
print 'step_size is reset to the max(den_map.spatial_sampling)=',step_size
if PBC:
if not cell_center:
print 'Entity bounds center used as cell_center'
cell_center=eh.bounds.center
if not cell_size:
print 'Entity bounds size used as cell_size'
cell_size=eh.bounds.size
n_steps=int(n_steps)
step_size=max(int(step_size),1)
edi=eh.handle.EditXCS(mol.BUFFERED_EDIT)
counter=0
for j,a in enumerate(eh.atoms):
if j%10000==0:print j,'atoms done and deleted',counter
n=a.GetVec3Prop('n')
d1=den_map.GetReal(img.Point(den_map.CoordToIndex(a.pos)))
for i in range(step_size,n_steps*step_size+1):
if PBC:
x1=geom.WrapVec3(a.pos+i*n,cell_center,cell_size)
x2=geom.WrapVec3(a.pos-i*n,cell_center,cell_size)
else:
x1=a.pos+i*n
x2=a.pos-i*n
d2=den_map.GetReal(img.Point(den_map.CoordToIndex(x1)))
d3=den_map.GetReal(img.Point(den_map.CoordToIndex(x2)))
if d1<d2:
counter+=1
edi.DeleteAtom(a.handle)
break
if d1<d3:
counter+=1
edi.DeleteAtom(a.handle)
break
print 'deleted',counter,'atoms'
return
def CleanMaxDensitySurface2(eh,den_map,clean_length=10,step_size=1,r=0.7,PBC=False,cell_center=None,cell_size=None):
"""
We keep only points that have a larger density than the other points along the normal
"""
t1=time.time()
n_steps=int(clean_length/step_size)+1
if PBC:
if not cell_center:
print 'Entity bounds center used as cell_center'
cell_center=eh.bounds.center
if not cell_size:
print 'Entity bounds size used as cell_size'
cell_size=eh.bounds.size
edi=eh.handle.EditXCS(mol.BUFFERED_EDIT)
counter=0
for a in eh.atoms:
a.SetBoolProp('done',False)
a.SetFloatProp('delete',0)
print 'set done to False',time.time()-t1
for ref_a in eh.atoms:
if ref_a.GetBoolProp('done') or ref_a.GetFloatProp('delete'):continue
if PBC:within_zone=pbc_utilities.FindWithinWithPBC(eh,ref_a.pos,2.*(clean_length+r),cell_center,cell_size)
else:within_zone=mol.CreateViewFromAtoms([a2 for a2 in eh.FindWithin(ref_a.pos,2.*(clean_length+r))]).Select('')
if PBC:within2=pbc_utilities.FindWithinWithPBC(within_zone,ref_a.pos,(clean_length+r),cell_center,cell_size)
else:within2=mol.CreateViewFromAtoms([a2 for a2 in within_zone.FindWithin(ref_a.pos,(clean_length+r))]).Select('')
#print ref_a, ref_a.pos,within_zone.GetAtomCount()
for a in within2.atoms:
if a.GetBoolProp('done') or a.GetFloatProp('delete'):continue
#print a, within_zone.GetAtomCount()
n=a.GetVec3Prop('n')
d1=den_map.GetReal(img.Point(den_map.CoordToIndex(a.pos)))
p=a.pos
for i in range(1,n_steps):
if PBC:
x1=geom.WrapVec3(p+i*step_size*n,cell_center,cell_size)
x2=geom.WrapVec3(p-i*step_size*n,cell_center,cell_size)
else:
x1=p+i*step_size*n
x2=p-i*step_size*n
if PBC:w2=pbc_utilities.FindWithinWithPBC(within_zone,x1,r,cell_center,cell_size).Select('gadelete=0')
else:w2=mol.CreateViewFromAtoms([a2 for a2 in within_zone.FindWithin(x1,r)]).Select('gadelete=0')
#return (i,within_zone,x1,r,cell_center,cell_size)
for a2 in w2.atoms:
d2=den_map.GetReal(img.Point(den_map.CoordToIndex(a2.pos)))
if d2>d1:a.SetFloatProp('delete',1)
elif d2<d1:a2.SetFloatProp('delete',1)
if PBC:w2=pbc_utilities.FindWithinWithPBC(within_zone,x2,r,cell_center,cell_size).Select('gadelete=0')
else:w2=mol.CreateViewFromAtoms([a2 for a2 in within_zone.FindWithin(x2,r)]).Select('gadelete=0')
for a2 in w2.atoms:
d2=den_map.GetReal(img.Point(den_map.CoordToIndex(a2.pos)))
if d2>d1:a.SetFloatProp('delete',1)
elif d2<d1:a2.SetFloatProp('delete',1)
for a in within_zone.Select('gadelete=1').atoms:
edi.DeleteAtom(a.handle)
counter+=1
edi.ForceUpdate()
print 'deleted',counter,'atoms'
return
def CalculateCurvature(eh,within_size=5,normal_corr=False,PBC=False,cell_center=None,cell_size=None):
"""
This function calculates the principal curvatures k1 and k2 and their
direction (principal directions e1 and e2), as well as the gaussian
and mean curvature for each atom in the entity and assigns them as FloatProp.
Each atom should have a normal vector assigned to it beforehand,
as done by the CalculateNormals function.
"""
if PBC:
if not cell_center:
print 'Entity bounds center used as cell_center'
cell_center=eh.bounds.center
if not cell_size:
print 'Entity bounds size used as cell_size'
cell_size=eh.bounds.size
t1=time.time()
count=0
count_tot=0
n_tot=eh.GetAtomCount()
for a in eh.atoms:
try:
ai=a.GetIndex()
if PBC:within=pbc_utilities.FindWithinWithPBC(eh,a.pos,within_size,cell_center,cell_size)
else:within=mol.CreateViewFromAtoms([a2 for a2 in eh.FindWithin(a.pos,within_size)]).Select('')
count+=1
count_tot+=1
if count==250:
count=0
print 'curvature for',count_tot,'out of',n_tot,'in',time.time()-t1,'sec. Number of atoms in vicinity used for calculation',within.GetAtomCount()
p=a.pos
n=a.GetVec3Prop('n')
#We define the local coordinate system
try:
psi=math.acos(n.z)
if n.x!=0.0:phi=math.atan(n.y/n.x)
elif n.y>0.0:phi=math.pi/2.
elif n.y<=0.0:phi=-math.pi/2.
x=geom.Vec3(-math.sin(phi),math.cos(phi),0)
y=geom.Cross(n,x)
#y=geom.Vec3(math.cos(psi)*math.cos(phi),math.cos(psi)*math.sin(phi),-math.sin(psi))
except:
print 'could not determine basis vec',ai,n.x,n.y,n.z
v=geom.Vec3(1.,0,0)
x=geom.Cross(n,v)
y=geom.Cross(n,x)
#Now we define the posistions and normals in the local coordinate system
pl=geom.Vec3List()
nl=geom.Vec3List()
for a2 in within.atoms:
if a2.handle==a.handle:continue
if PBC:pi=geom.WrapVec3(a2.pos,p,cell_size)-p
else:pi=a2.pos-p
ni=a2.GetVec3Prop('n')
pl.append(geom.Vec3(geom.Dot(pi,x),geom.Dot(pi,y),geom.Dot(pi,n)))
niz=geom.Dot(ni,n)
if normal_corr:
if niz>=0.0:nl.append(geom.Vec3(geom.Dot(ni,x),geom.Dot(ni,y),niz))
else:nl.append(geom.Vec3(-geom.Dot(ni,x),-geom.Dot(ni,y),-niz))
else:nl.append(geom.Vec3(geom.Dot(ni,x),geom.Dot(ni,y),niz))
#We calculate the normal curvature for each point
kl=FloatList()
for pi,ni in zip(pl,nl):
kl.append(_CalculateNormalCurvature(pi,ni))
#We calculate the angle to x at each point
theta_l=FloatList()
for pi in pl:
ti=geom.SignedAngle(geom.Vec2(1.0,0.0),geom.Vec2(pi.x,pi.y))
if npy.isnan(ti):ti=0.0
theta_l.append(ti)
#Initial guess for k1,k2 and theta
im=int(npy.argmax(kl))
k1=kl[im]
k2=min(kl)
e1=pl[im]
theta=geom.SignedAngle(geom.Vec2(1.0,0.0),geom.Vec2(e1.x,e1.y))
#Now we optimize k1,k2 and theta
xmin=optimize.fmin_powell(_CurvatureScore,[theta,k1,k2],args=(kl,theta_l),maxiter=20,full_output=True,maxfun=2000,disp=False)#,callback=_PrintX)
[theta,k1,k2]=xmin[0]
if npy.isnan(xmin[1]):
[theta,k1,k2]=[npy.nan,npy.nan,npy.nan]
print 'atom',ai,'did not converge','x',x,'y',y,'n',n,'k1',kl[im],'k2',min(kl),'theta',geom.SignedAngle(geom.Vec2(x.x,x.y),geom.Vec2(e1.x,e1.y))
e1=geom.AxisRotation(n,theta)*x
e2=geom.AxisRotation(n,theta+math.pi/2.)*x
except:
e1=e2=geom.Vec3(npy.nan,npy.nan,npy.nan)
k1=k2=npy.nan
#We assign them to the atom
a.SetFloatProp('k1',k1)
a.SetFloatProp('k2',k2)
a.SetFloatProp('e1x',e1.x)
a.SetFloatProp('e1y',e1.y)
a.SetFloatProp('e1z',e1.z)
a.SetFloatProp('e2x',e2.x)
a.SetFloatProp('e2y',e2.y)
a.SetFloatProp('e2z',e2.z)
a.SetFloatProp('Gauss',k1*k2)
a.SetFloatProp('Mean',0.5*(k1+k2))
print 'total time for',eh.GetAtomCount(),'atoms:',time.time()-t1
return
def _PrintX(x):
print 'current solution:',x
def _CalculateNormalCurvature(pi,ni):
r=math.sqrt(pi.x*pi.x+pi.y*pi.y)
nxy=(pi.x*ni.x+pi.y*ni.y)/r
kni=-nxy/(math.sqrt(nxy*nxy+ni.z*ni.z)*r)
if abs(kni)>10:print kni,pi,ni
return kni
def _CurvatureScore(x,kl,theta_l):
[theta,k1,k2]=x
s=0.0
for ki,ti in zip(kl,theta_l):
s+=(k1*(math.cos(ti-theta)**2.0)+k2*(math.sin(ti-theta)**2.0)-ki)**2.0
return s
#Test case: cylinder
"""
eh_cyl=mol.CreateEntity()
edi=eh_cyl.EditXCS()
c=edi.InsertChain('A')
r=edi.AppendResidue(c,'b')
for i in range(30):
for j in range(20):
#edi.InsertAtom(r,'CA',geom.Vec3(i,4.*math.sin(j*math.pi/10.)+0.05*random.random(),4.*math.cos(j*math.pi/10.)+0.05*random.random()),'C')
edi.InsertAtom(r,'CA',geom.Vec3(i,4.*math.sin(j*math.pi/10.),4.*math.cos(j*math.pi/10.)),'C')
i=29
for j in range(20):
for k in range(1,5):
edi.InsertAtom(r,'CA',geom.Vec3(i+4*math.sin(k*math.pi/10.),math.cos(k*math.pi/10.)*4.*math.sin(j*math.pi/10.),math.cos(k*math.pi/10.)*4.*math.cos(j*math.pi/10.)),'C')
k=5
edi.InsertAtom(r,'CA',geom.Vec3(i+4*math.sin(k*math.pi/10.),math.cos(k*math.pi/10.)*4.*math.sin(j*math.pi/10.),math.cos(k*math.pi/10.)*4.*math.cos(j*math.pi/10.)),'C')
go_cyl=gfx.Entity('cylinder',eh_cyl)
scene.Add(go_cyl)
for a in eh_cyl.atoms:
n=geom.Normalize(geom.Vec3(0.0,a.pos.y,a.pos.z))
a.SetVec3Prop('n',n)
for a in eh_cyl.Select('x>29').atoms:
n=geom.Normalize(a.pos-geom.Vec3(29,0,0))
a.SetVec3Prop('n',n)
go_n=gfx.PrimList('cyl_normals')
for a in eh_cyl.atoms:
n=a.GetVec3Prop('n')
go_n.AddLine(a.pos,a.pos+n)
scene.Add(go_n)
CalculateCurvature(eh_cyl)
go_e1=gfx.PrimList('e1_cyl')
go_e2=gfx.PrimList('e2_cyl')
for a in eh_cyl.atoms:
c=a.pos
e1=geom.Vec3(a.GetFloatProp('e1x'),a.GetFloatProp('e1y'),a.GetFloatProp('e1z'))
e2=geom.Vec3(a.GetFloatProp('e2x'),a.GetFloatProp('e2y'),a.GetFloatProp('e2z'))
k1=a.GetFloatProp('k1')
k2=a.GetFloatProp('k2')
#if k1<0.1:
go_e1.AddLine(c,c+2*k1*e1,gfx.RED)
#if k2<0.1:
go_e2.AddLine(c,c+2*k2*e2,gfx.BLUE)
scene.Add(go_e1)
scene.Add(go_e2)
testdir='/Work/cubic_phase/test_curvature'
scene.Export(os.path.join(testdir,'cylinder_principal_curvature.png'))
m1=sum([a.GetFloatProp('k1') for a in eh_cyl.Select('x<20').atoms])/float(eh_cyl.Select('x<20').GetAtomCount())
s1=sum([a.GetFloatProp('k1')**2.0-m1**2. for a in eh_cyl.Select('x<20').atoms])/float(eh_cyl.Select('x<20').GetAtomCount())**0.5
m2=sum([a.GetFloatProp('k2') for a in eh_cyl.Select('x<20').atoms])/float(eh_cyl.Select('x<20').GetAtomCount())
s2=sum([a.GetFloatProp('k2')**2.0-m2**2. for a in eh_cyl.Select('x<20').atoms])/float(eh_cyl.Select('x<20').GetAtomCount())**0.5
print 'mean k1 on cylinder',m1,s1
print 'mean k2 on cylinder',m2,s2
m1=sum([a.GetFloatProp('k1') for a in eh_cyl.Select('x>29').atoms])/float(eh_cyl.Select('x>29').GetAtomCount())
s1=sum([a.GetFloatProp('k1')**2.0-m1**2. for a in eh_cyl.Select('x>29').atoms])/float(eh_cyl.Select('x>29').GetAtomCount())**0.5
m2=sum([a.GetFloatProp('k2') for a in eh_cyl.Select('x>29').atoms])/float(eh_cyl.Select('x>29').GetAtomCount())
s2=sum([a.GetFloatProp('k2')**2.0-m2**2. for a in eh_cyl.Select('x>29').atoms])/float(eh_cyl.Select('x>29').GetAtomCount())**0.5
print 'mean k1 on sphere',m1,s1
print 'mean k2 on sphere',m2,s2
"""