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Goals

• Describe how KVM autotest was created, what problems it
tries to solve.

• Present the features provided by the test framework and API.

• Present how the tests are structured and how to run your first
test sets.

• Develop a simple test, showing some of the high level utilities
that KVM autotest provides to test writers.
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Test automation

Test automation consists in using software to control the execution
of tests in another software, that otherwise would have to be
executed manually. With automation we have:

• Reduced execution time

• Reproducible, reliable tests

• Consistent test schedule
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Autotest in a nutshell

Autotest (http://autotest.kernel.org/) is a set of libraries
and programs used to automate regression and performance tests
on the linux platform. Composed by:

• Client: Engine that executes tests in test machines

• Server: Copies client code to the test machines, triggers test
execution, monitors machine/test status and brings back test
results to the server machine

• Scheduler: Schedules test jobs according to user input,
creating server processes for each job, and stores results on
autotest’s test database

• Frontends: Allows users to run jobs and visualize test results
conveniently
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Autotest in a nutshell
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The wonders of virtualization testing

Virtualization presents a range of technical challenges to be
resolved when it comes to effective automated testing:

• Large test matrices - Hypervisors usually take a lot of
parameters

• Image format type and disk controllers
• Number of CPUs
• Network cards

• Virtual machines can run a wide range of Operating systems,
which need to be installed and controlled

• We need fine grained control for the userspace parts of the
stack

• Test of different branches of the code base is required
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KVM, meet autotest!

A bit of history

• Developers started to work on a set of automated tests for
KVM, a project known as KVM autotest

• For over a year, it was maintained as an autotest ’fork’.
During this period, different test architectures were tried until
some agreement was reached on kvm runtest 2

• Maintenance of forks is clearly not desirable, due to smaller
mindshare. An upstream merge was necessary

• Merge happened and now the tests are maintained upstream,
and several improvements and cleanups were made since them
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KVM autotest today

• KVM autotest is the infrastructure used to develop functional
and performance tests of KVM

• It is implemented as a client side test of autotest, (kvm)

• It is by far the most substantial and complex autotest test. A
large number of libraries and infrastructure code was
developed to solve the problems aforementioned

• Currently being used by:
• KVM developers at IBM and Red Hat
• Internal Red Hat test servers
• KVM QA team at Red Hat, IBM QA teams
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KVM autotest: APIs and features

How does KVM autotest solve some of the virtualization testing
problems presented?

• Define large test matrices: A new config file format was
developed, in order to easily define a large matrix by
generating parameters based on a cartesian product of variants

• How to reuse processes between tests: An environment
file is kept, with pickled instances of python objects, that
allows processes to persist between tests

• How to get fine grained control over userspace
processes: An expect-like library to control qemu processes,
that also makes it possible for VM processes to persist
between tests and even test jobs
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KVM autotest: APIs and features

• Ability to build and install KVM from several methods
(release tarballs, git, brew/koji rpms)

• Fully automated install of several breeds of Linux, and all
supported versions of Windows (WinXP–Win7)

• Serial output collection and login, so it’s easier to capture
guest kernel panics and other abnormalities

• Infrastructure to capture and do some level of core dump
analysis on qemu segmentation faults

• Mechanism to run the latest qemu-kvm unittests

• Ways to install virtio drivers and run WHQL Microsoft
certification suite
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Main files inside the KVM test folder

• kvm.py: KVM test main entry point. It is a simple loader of
the subtests

• kvm config.py: Parser of the configuration file format

• kvm preprocessing.py: Functions to modify the
environment

• kvm subprocess.py: Expect like library

• kvm utils.py and kvm test utils.py: Utility functions

• kvm vm.py: The modeling of a KVM virtual machine.
Implements its methods by spawning kvm subprocess
instances of qemu
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Anatomy of a KVM autotest subtest

A KVM autotest test implementation boils down to implementing
a python function using the test API to accomplish what you need
to do, which is usually something along the lines:

• Get a living VM from the test environment

• Stablish remote sessions to the VMs

• Send commands to the remote sessions on the VMs, verify
their return codes, capture their outputs

• Send commands to the qemu monitor, verify their return
codes, capture their outputs

• Determine whether the test has passed or failed based on this
info
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Developing a new test

Getting started with the framework:

• git clone git://github.com/ehabkost/autotest.git

• /path/to/autotest/client/tests/kvm/get started.py
– this script will give you some hints on getting a basic KVM
autotest setup going. Follow the instructions
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Developing a new test

Steps to create a new test:

• Create a python file with your test name inside the subfolder
tests. Ex: guest info.py

• Implement a function run test name. Ex: run guest info

• Add test parameters to tests base.cfg.sample, on the test
parameters section, creating a variant with an arbitrary name
and your test name as the test type

• Modify one of the test sets under tests.cfg in order to include
your test there

• Run your test, and keep developing until you’re satisfied

• Hands on time, boys and girls!
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How to contribute

• git clone git://github.com/ehabkost/autotest.git

• /path/to/autotest/client/tests/kvm/get started.py

• Hack :)

• Send patches to autotest@test.kernel.org (post allowed
only to subscribers)

Lucas Meneghel Rodrigues lmr@redhat.com Developing tests for the KVM autotest framework



Outline
Motivations for KVM autotest

KVM autotest APIs and features
Developing a new test

Anatomy of a KVM autotest subtest
Getting started with the framework
Developing a new test

Contact

• lmr@redhat.com and mgoldish@redhat.com

• http://www.linux-kvm.org/page/KVM-Autotest

• KVM mailing list (kvm@vger.kernel.org), autotest mailing
list (autotest@test.kernel.org)
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