
Outline
Motivations for KVM autotest

KVM autotest APIs and features
Developing a new test

Developing tests for the KVM autotest framework

Lucas Meneghel Rodrigues
lmr@redhat.com

KVM Forum 2010
August 9, 2010

Lucas Meneghel Rodrigues lmr@redhat.com Developing tests for the KVM autotest framework



Outline
Motivations for KVM autotest

KVM autotest APIs and features
Developing a new test

1 Motivations for KVM autotest
Automated testing
Autotest
The wonders of virtualization testing

2 KVM autotest APIs and features
How KVM autotest solves the original problem?
Features
Test structure

3 Developing a new test
Anatomy of a KVM autotest subtest
Getting started with the framework
Developing a new test

Lucas Meneghel Rodrigues lmr@redhat.com Developing tests for the KVM autotest framework



Outline
Motivations for KVM autotest

KVM autotest APIs and features
Developing a new test

Goals

• Describe how KVM autotest was created, what problems it
tries to solve.

• Present the features provided by the test framework and API.

• Present how the tests are structured and how to run your first
test sets.

• Develop a simple test, showing some of the high level utilities
that KVM autotest provides to test writers.

Lucas Meneghel Rodrigues lmr@redhat.com Developing tests for the KVM autotest framework



Outline
Motivations for KVM autotest

KVM autotest APIs and features
Developing a new test

Automated testing
Autotest
The wonders of virtualization testing

Test automation

Test automation consists in using software to control the execution
of tests in another software, that otherwise would have to be
executed manually. With automation we have:

• Reduced execution time

• Reproducible, reliable tests

• Consistent test schedule

Lucas Meneghel Rodrigues lmr@redhat.com Developing tests for the KVM autotest framework



Outline
Motivations for KVM autotest

KVM autotest APIs and features
Developing a new test

Automated testing
Autotest
The wonders of virtualization testing

Autotest in a nutshell

Autotest (http://autotest.kernel.org/) is a set of libraries
and programs used to automate regression and performance tests
on the linux platform. Composed by:

• Client: Engine that executes tests in test machines

• Server: Copies client code to the test machines, triggers test
execution, monitors machine/test status and brings back test
results to the server machine

• Scheduler: Schedules test jobs according to user input,
creating server processes for each job, and stores results on
autotest’s test database

• Frontends: Allows users to run jobs and visualize test results
conveniently

Lucas Meneghel Rodrigues lmr@redhat.com Developing tests for the KVM autotest framework



Outline
Motivations for KVM autotest

KVM autotest APIs and features
Developing a new test

Automated testing
Autotest
The wonders of virtualization testing

Autotest in a nutshell

Web
Interface

Command
Line

Interface

Analysis Backend

Results
MySQL DB

Results
Repository

Server

Frontend
MySQL DB

Scheduler

Autoserv

Autoserv

Autoserv

Autoserv

Autoserv

Client

Client

Client

Client

Client

ClientClient

Client

Cluster

Lucas Meneghel Rodrigues lmr@redhat.com Developing tests for the KVM autotest framework



Outline
Motivations for KVM autotest

KVM autotest APIs and features
Developing a new test

Automated testing
Autotest
The wonders of virtualization testing

The wonders of virtualization testing

Virtualization presents a range of technical challenges to be
resolved when it comes to effective automated testing:

• Large test matrices - Hypervisors usually take a lot of
parameters

• Image format type and disk controllers
• Number of CPUs
• Network cards

• Virtual machines can run a wide range of Operating systems,
which need to be installed and controlled

• We need fine grained control for the userspace parts of the
stack

• Test of different branches of the code base is required

Lucas Meneghel Rodrigues lmr@redhat.com Developing tests for the KVM autotest framework



Outline
Motivations for KVM autotest

KVM autotest APIs and features
Developing a new test

Automated testing
Autotest
The wonders of virtualization testing

KVM, meet autotest!

A bit of history

• Developers started to work on a set of automated tests for
KVM, a project known as KVM autotest

• For over a year, it was maintained as an autotest ’fork’.
During this period, different test architectures were tried until
some agreement was reached on kvm runtest 2

• Maintenance of forks is clearly not desirable, due to smaller
mindshare. An upstream merge was necessary

• Merge happened and now the tests are maintained upstream,
and several improvements and cleanups were made since them

Lucas Meneghel Rodrigues lmr@redhat.com Developing tests for the KVM autotest framework



Outline
Motivations for KVM autotest

KVM autotest APIs and features
Developing a new test

Automated testing
Autotest
The wonders of virtualization testing

KVM autotest today

• KVM autotest is the infrastructure used to develop functional
and performance tests of KVM

• It is implemented as a client side test of autotest, (kvm)

• It is by far the most substantial and complex autotest test. A
large number of libraries and infrastructure code was
developed to solve the problems aforementioned

• Currently being used by:
• KVM developers at IBM and Red Hat
• Internal Red Hat test servers
• KVM QA team at Red Hat, IBM QA teams

Lucas Meneghel Rodrigues lmr@redhat.com Developing tests for the KVM autotest framework



Outline
Motivations for KVM autotest

KVM autotest APIs and features
Developing a new test

How KVM autotest solves the original problem?
Features
Test structure

KVM autotest: APIs and features

How does KVM autotest solve some of the virtualization testing
problems presented?

• Define large test matrices: A new config file format was
developed, in order to easily define a large matrix by
generating parameters based on a cartesian product of variants

• How to reuse processes between tests: An environment
file is kept, with pickled instances of python objects, that
allows processes to persist between tests

• How to get fine grained control over userspace
processes: An expect-like library to control qemu processes,
that also makes it possible for VM processes to persist
between tests and even test jobs

Lucas Meneghel Rodrigues lmr@redhat.com Developing tests for the KVM autotest framework



Outline
Motivations for KVM autotest

KVM autotest APIs and features
Developing a new test

How KVM autotest solves the original problem?
Features
Test structure

KVM autotest: APIs and features

• Ability to build and install KVM from several methods
(release tarballs, git, brew/koji rpms)

• Fully automated install of several breeds of Linux, and all
supported versions of Windows (WinXP–Win7)

• Serial output collection and login, so it’s easier to capture
guest kernel panics and other abnormalities

• Infrastructure to capture and do some level of core dump
analysis on qemu segmentation faults

• Mechanism to run the latest qemu-kvm unittests

• Ways to install virtio drivers and run WHQL Microsoft
certification suite

Lucas Meneghel Rodrigues lmr@redhat.com Developing tests for the KVM autotest framework



Outline
Motivations for KVM autotest

KVM autotest APIs and features
Developing a new test

How KVM autotest solves the original problem?
Features
Test structure

Main files inside the KVM test folder

• kvm.py: KVM test main entry point. It is a simple loader of
the subtests

• kvm config.py: Parser of the configuration file format

• kvm preprocessing.py: Functions to modify the
environment

• kvm subprocess.py: Expect like library

• kvm utils.py and kvm test utils.py: Utility functions

• kvm vm.py: The modeling of a KVM virtual machine.
Implements its methods by spawning kvm subprocess
instances of qemu

Lucas Meneghel Rodrigues lmr@redhat.com Developing tests for the KVM autotest framework



Outline
Motivations for KVM autotest

KVM autotest APIs and features
Developing a new test

Anatomy of a KVM autotest subtest
Getting started with the framework
Developing a new test

Anatomy of a KVM autotest subtest

A KVM autotest test implementation boils down to implementing
a python function using the test API to accomplish what you need
to do, which is usually something along the lines:

• Get a living VM from the test environment

• Stablish remote sessions to the VMs

• Send commands to the remote sessions on the VMs, verify
their return codes, capture their outputs

• Send commands to the qemu monitor, verify their return
codes, capture their outputs

• Determine whether the test has passed or failed based on this
info

Lucas Meneghel Rodrigues lmr@redhat.com Developing tests for the KVM autotest framework



Outline
Motivations for KVM autotest

KVM autotest APIs and features
Developing a new test

Anatomy of a KVM autotest subtest
Getting started with the framework
Developing a new test

Developing a new test

Getting started with the framework:

• git clone git://github.com/ehabkost/autotest.git

• /path/to/autotest/client/tests/kvm/get started.py
– this script will give you some hints on getting a basic KVM
autotest setup going. Follow the instructions

Lucas Meneghel Rodrigues lmr@redhat.com Developing tests for the KVM autotest framework



Outline
Motivations for KVM autotest

KVM autotest APIs and features
Developing a new test

Anatomy of a KVM autotest subtest
Getting started with the framework
Developing a new test

Developing a new test

Steps to create a new test:

• Create a python file with your test name inside the subfolder
tests. Ex: guest info.py

• Implement a function run test name. Ex: run guest info

• Add test parameters to tests base.cfg.sample, on the test
parameters section, creating a variant with an arbitrary name
and your test name as the test type

• Modify one of the test sets under tests.cfg in order to include
your test there

• Run your test, and keep developing until you’re satisfied

• Hands on time, boys and girls!

Lucas Meneghel Rodrigues lmr@redhat.com Developing tests for the KVM autotest framework



Outline
Motivations for KVM autotest

KVM autotest APIs and features
Developing a new test

Anatomy of a KVM autotest subtest
Getting started with the framework
Developing a new test

Developing a new test

Steps to create a new test:

• Create a python file with your test name inside the subfolder
tests. Ex: guest info.py

• Implement a function run test name. Ex: run guest info

• Add test parameters to tests base.cfg.sample, on the test
parameters section, creating a variant with an arbitrary name
and your test name as the test type

• Modify one of the test sets under tests.cfg in order to include
your test there

• Run your test, and keep developing until you’re satisfied

• Hands on time, boys and girls!

Lucas Meneghel Rodrigues lmr@redhat.com Developing tests for the KVM autotest framework



Outline
Motivations for KVM autotest

KVM autotest APIs and features
Developing a new test

Anatomy of a KVM autotest subtest
Getting started with the framework
Developing a new test

How to contribute

• git clone git://github.com/ehabkost/autotest.git

• /path/to/autotest/client/tests/kvm/get started.py

• Hack :)

• Send patches to autotest@test.kernel.org (post allowed
only to subscribers)

Lucas Meneghel Rodrigues lmr@redhat.com Developing tests for the KVM autotest framework



Outline
Motivations for KVM autotest

KVM autotest APIs and features
Developing a new test

Anatomy of a KVM autotest subtest
Getting started with the framework
Developing a new test

Contact

• lmr@redhat.com and mgoldish@redhat.com

• http://www.linux-kvm.org/page/KVM-Autotest

• KVM mailing list (kvm@vger.kernel.org), autotest mailing
list (autotest@test.kernel.org)

Lucas Meneghel Rodrigues lmr@redhat.com Developing tests for the KVM autotest framework


	Outline
	Motivations for KVM autotest
	Automated testing
	Autotest
	The wonders of virtualization testing

	KVM autotest APIs and features
	How KVM autotest solves the original problem?
	Features
	Test structure

	Developing a new test
	Anatomy of a KVM autotest subtest
	Getting started with the framework
	Developing a new test


