forked from math-comp/math-comp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
seq.v
4583 lines (3514 loc) · 165 KB
/
seq.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
(* Distributed under the terms of CeCILL-B. *)
From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat.
(******************************************************************************)
(* The seq type is the ssreflect type for sequences; it is an alias for the *)
(* standard Coq list type. The ssreflect library equips it with many *)
(* operations, as well as eqType and predType (and, later, choiceType) *)
(* structures. The operations are geared towards reflection: they generally *)
(* expect and provide boolean predicates, e.g., the membership predicate *)
(* expects an eqType. To avoid any confusion we do not Import the Coq List *)
(* module. *)
(* As there is no true subtyping in Coq, we don't use a type for non-empty *)
(* sequences; rather, we pass explicitly the head and tail of the sequence. *)
(* The empty sequence is especially bothersome for subscripting, since it *)
(* forces us to pass a default value. This default value can often be hidden *)
(* by a notation. *)
(* Here is the list of seq operations: *)
(* ** Constructors: *)
(* seq T == the type of sequences of items of type T. *)
(* bitseq == seq bool. *)
(* [::], nil, Nil T == the empty sequence (of type T). *)
(* x :: s, cons x s, Cons T x s == the sequence x followed by s (of type T). *)
(* [:: x] == the singleton sequence. *)
(* [:: x_0; ...; x_n] == the explicit sequence of the x_i. *)
(* [:: x_0, ..., x_n & s] == the sequence of the x_i, followed by s. *)
(* rcons s x == the sequence s, followed by x. *)
(* All of the above, except rcons, can be used in patterns. We define a view *)
(* lastP and an induction principle last_ind that can be used to decompose *)
(* or traverse a sequence in a right to left order. The view lemma lastP has *)
(* a dependent family type, so the ssreflect tactic case/lastP: p => [|p' x] *)
(* will generate two subgoals in which p has been replaced by [::] and by *)
(* rcons p' x, respectively. *)
(* ** Factories: *)
(* nseq n x == a sequence of n x's. *)
(* ncons n x s == a sequence of n x's, followed by s. *)
(* seqn n x_0 ... x_n-1 == the sequence of the x_i; can be partially applied. *)
(* iota m n == the sequence m, m + 1, ..., m + n - 1. *)
(* mkseq f n == the sequence f 0, f 1, ..., f (n - 1). *)
(* ** Sequential access: *)
(* head x0 s == the head (zero'th item) of s if s is non-empty, else x0. *)
(* ohead s == None if s is empty, else Some x when the head of s is x. *)
(* behead s == s minus its head, i.e., s' if s = x :: s', else [::]. *)
(* last x s == the last element of x :: s (which is non-empty). *)
(* belast x s == x :: s minus its last item. *)
(* ** Dimensions: *)
(* size s == the number of items (length) in s. *)
(* shape ss == the sequence of sizes of the items of the sequence of *)
(* sequences ss. *)
(* ** Random access: *)
(* nth x0 s i == the item i of s (numbered from 0), or x0 if s does *)
(* not have at least i+1 items (i.e., size x <= i) *)
(* s`_i == standard notation for nth x0 s i for a default x0, *)
(* e.g., 0 for rings. *)
(* set_nth x0 s i y == s where item i has been changed to y; if s does not *)
(* have an item i, it is first padded with copies of x0 *)
(* to size i+1. *)
(* incr_nth s i == the nat sequence s with item i incremented (s is *)
(* first padded with 0's to size i+1, if needed). *)
(* ** Predicates: *)
(* nilp s <=> s is [::]. *)
(* := (size s == 0). *)
(* x \in s == x appears in s (this requires an eqType for T). *)
(* index x s == the first index at which x appears in s, or size s if *)
(* x \notin s. *)
(* has a s <=> a holds for some item in s, where a is an applicative *)
(* bool predicate. *)
(* all a s <=> a holds for all items in s. *)
(* 'has_aP <-> the view reflect (exists2 x, x \in s & A x) (has a s), *)
(* where aP x : reflect (A x) (a x). *)
(* 'all_aP <=> the view for reflect {in s, forall x, A x} (all a s). *)
(* all2 r s t <=> the (bool) relation r holds for all _respective_ items *)
(* in s and t, which must also have the same size, i.e., *)
(* for s := [:: x1; ...; x_m] and t := [:: y1; ...; y_n], *)
(* the condition [&& r x_1 y_1, ..., r x_n y_n & m == n]. *)
(* find p s == the index of the first item in s for which p holds, *)
(* or size s if no such item is found. *)
(* count p s == the number of items of s for which p holds. *)
(* count_mem x s == the multiplicity of x in s, i.e., count (pred1 x) s. *)
(* tally s == a tally of s, i.e., a sequence of (item, multiplicity) *)
(* pairs for all items in sequence s (without duplicates). *)
(* incr_tally bs x == increment the multiplicity of x in the tally bs, or add *)
(* x with multiplicity 1 at then end if x is not in bs. *)
(* bs \is a wf_tally <=> bs is well-formed tally, with no duplicate items or *)
(* null multiplicities. *)
(* tally_seq bs == the expansion of a tally bs into a sequence where each *)
(* (x, n) pair expands into a sequence of n x's. *)
(* constant s <=> all items in s are identical (trivial if s = [::]). *)
(* uniq s <=> all the items in s are pairwise different. *)
(* subseq s1 s2 <=> s1 is a subsequence of s2, i.e., s1 = mask m s2 for *)
(* some m : bitseq (see below). *)
(* infix s1 s2 <=> s1 is a contiguous subsequence of s2, i.e., *)
(* s ++ s1 ++ s' = s2 for some sequences s, s'. *)
(* prefix s1 s2 <=> s1 is a subchain of s2 appearing at the beginning *)
(* of s2. *)
(* suffix s1 s2 <=> s1 is a subchain of s2 appearing at the end of s2. *)
(* infix_index s1 s2 <=> the first index at which s1 appears in s2, *)
(* or (size s2).+1 if infix s1 s2 is false. *)
(* perm_eq s1 s2 <=> s2 is a permutation of s1, i.e., s1 and s2 have the *)
(* items (with the same repetitions), but possibly in a *)
(* different order. *)
(* perm_eql s1 s2 <-> s1 and s2 behave identically on the left of perm_eq. *)
(* perm_eqr s1 s2 <-> s1 and s2 behave identically on the right of perm_eq. *)
(* --> These left/right transitive versions of perm_eq make it easier to *)
(* chain a sequence of equivalences. *)
(* permutations s == a duplicate-free list of all permutations of s. *)
(* ** Filtering: *)
(* filter p s == the subsequence of s consisting of all the items *)
(* for which the (boolean) predicate p holds. *)
(* rem x s == the subsequence of s, where the first occurrence *)
(* of x has been removed (compare filter (predC1 x) s *)
(* where ALL occurrences of x are removed). *)
(* undup s == the subsequence of s containing only the first *)
(* occurrence of each item in s, i.e., s with all *)
(* duplicates removed. *)
(* mask m s == the subsequence of s selected by m : bitseq, with *)
(* item i of s selected by bit i in m (extra items or *)
(* bits are ignored. *)
(* ** Surgery: *)
(* s1 ++ s2, cat s1 s2 == the concatenation of s1 and s2. *)
(* take n s == the sequence containing only the first n items of s *)
(* (or all of s if size s <= n). *)
(* drop n s == s minus its first n items ([::] if size s <= n) *)
(* rot n s == s rotated left n times (or s if size s <= n). *)
(* := drop n s ++ take n s *)
(* rotr n s == s rotated right n times (or s if size s <= n). *)
(* rev s == the (linear time) reversal of s. *)
(* catrev s1 s2 == the reversal of s1 followed by s2 (this is the *)
(* recursive form of rev). *)
(* ** Dependent iterator: for s : seq S and t : S -> seq T *)
(* [seq E | x <- s, y <- t] := flatten [seq [seq E | x <- t] | y <- s] *)
(* == the sequence of all the f x y, with x and y drawn from *)
(* s and t, respectively, in row-major order, *)
(* and where t is possibly dependent in elements of s *)
(* allpairs_dep f s t := self expanding definition for *)
(* [seq f x y | x <- s, y <- t y] *)
(* ** Iterators: for s == [:: x_1, ..., x_n], t == [:: y_1, ..., y_m], *)
(* allpairs f s t := same as allpairs_dep but where t is non dependent, *)
(* i.e. self expanding definition for *)
(* [seq f x y | x <- s, y <- t] *)
(* := [:: f x_1 y_1; ...; f x_1 y_m; f x_2 y_1; ...; f x_n y_m] *)
(* allrel r xs ys := all [pred x | all (r x) ys] xs *)
(* <=> r x y holds whenever x is in xs and y is in ys *)
(* all2rel r xs := allrel r xs xs *)
(* <=> the proposition r x y holds for all possible x, y in xs.*)
(* pairwise r xs <=> the relation r holds for any i-th and j-th element of *)
(* xs such that i < j. *)
(* map f s == the sequence [:: f x_1, ..., f x_n]. *)
(* pmap pf s == the sequence [:: y_i1, ..., y_ik] where i1 < ... < ik, *)
(* pf x_i = Some y_i, and pf x_j = None iff j is not in *)
(* {i1, ..., ik}. *)
(* foldr f a s == the right fold of s by f (i.e., the natural iterator). *)
(* := f x_1 (f x_2 ... (f x_n a)) *)
(* sumn s == x_1 + (x_2 + ... + (x_n + 0)) (when s : seq nat). *)
(* foldl f a s == the left fold of s by f. *)
(* := f (f ... (f a x_1) ... x_n-1) x_n *)
(* scanl f a s == the sequence of partial accumulators of foldl f a s. *)
(* := [:: f a x_1; ...; foldl f a s] *)
(* pairmap f a s == the sequence of f applied to consecutive items in a :: s. *)
(* := [:: f a x_1; f x_1 x_2; ...; f x_n-1 x_n] *)
(* zip s t == itemwise pairing of s and t (dropping any extra items). *)
(* := [:: (x_1, y_1); ...; (x_mn, y_mn)] with mn = minn n m. *)
(* unzip1 s == [:: (x_1).1; ...; (x_n).1] when s : seq (S * T). *)
(* unzip2 s == [:: (x_1).2; ...; (x_n).2] when s : seq (S * T). *)
(* flatten s == x_1 ++ ... ++ x_n ++ [::] when s : seq (seq T). *)
(* reshape r s == s reshaped into a sequence of sequences whose sizes are *)
(* given by r (truncating if s is too long or too short). *)
(* := [:: [:: x_1; ...; x_r1]; *)
(* [:: x_(r1 + 1); ...; x_(r0 + r1)]; *)
(* ...; *)
(* [:: x_(r1 + ... + r(k-1) + 1); ...; x_(r0 + ... rk)]] *)
(* flatten_index sh r c == the index, in flatten ss, of the item of indexes *)
(* (r, c) in any sequence of sequences ss of shape sh *)
(* := sh_1 + sh_2 + ... + sh_r + c *)
(* reshape_index sh i == the index, in reshape sh s, of the sequence *)
(* containing the i-th item of s. *)
(* reshape_offset sh i == the offset, in the (reshape_index sh i)-th *)
(* sequence of reshape sh s of the i-th item of s *)
(* ** Notation for manifest comprehensions: *)
(* [seq x <- s | C] := filter (fun x => C) s. *)
(* [seq E | x <- s] := map (fun x => E) s. *)
(* [seq x <- s | C1 & C2] := [seq x <- s | C1 && C2]. *)
(* [seq E | x <- s & C] := [seq E | x <- [seq x | C]]. *)
(* --> The above allow optional type casts on the eigenvariables, as in *)
(* [seq x : T <- s | C] or [seq E | x : T <- s, y : U <- t]. The cast may be *)
(* needed as type inference considers E or C before s. *)
(* We are quite systematic in providing lemmas to rewrite any composition *)
(* of two operations. "rev", whose simplifications are not natural, is *)
(* protected with nosimpl. *)
(* ** The following are equivalent: *)
(* [<-> P0; P1; ..; Pn] <-> P0, P1, ..., Pn are all equivalent. *)
(* := P0 -> P1 -> ... -> Pn -> P0 *)
(* if T : [<-> P0; P1; ..; Pn] is such an equivalence, and i, j are in nat *)
(* then T i j is a proof of the equivalence Pi <-> Pj between Pi and Pj; *)
(* when i (resp. j) is out of bounds, Pi (resp. Pj) defaults to P0. *)
(* The tactic tfae splits the goal into n+1 implications to prove. *)
(* An example of use can be found in fingraph theorem orbitPcycle. *)
(******************************************************************************)
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Declare Scope seq_scope.
Reserved Notation "[ '<->' P0 ; P1 ; .. ; Pn ]"
(at level 0, format "[ '<->' '[' P0 ; '/' P1 ; '/' .. ; '/' Pn ']' ]").
Delimit Scope seq_scope with SEQ.
Open Scope seq_scope.
(* Inductive seq (T : Type) : Type := Nil | Cons of T & seq T. *)
Notation seq := list.
Bind Scope seq_scope with list.
Arguments cons {T%type} x s%SEQ : rename.
Arguments nil {T%type} : rename.
Notation Cons T := (@cons T) (only parsing).
Notation Nil T := (@nil T) (only parsing).
(* As :: and ++ are (improperly) declared in Init.datatypes, we only rebind *)
(* them here. *)
Infix "::" := cons : seq_scope.
Notation "[ :: ]" := nil (at level 0, format "[ :: ]") : seq_scope.
Notation "[ :: x1 ]" := (x1 :: [::])
(at level 0, format "[ :: x1 ]") : seq_scope.
Notation "[ :: x & s ]" := (x :: s) (at level 0, only parsing) : seq_scope.
Notation "[ :: x1 , x2 , .. , xn & s ]" := (x1 :: x2 :: .. (xn :: s) ..)
(at level 0, format
"'[hv' [ :: '[' x1 , '/' x2 , '/' .. , '/' xn ']' '/ ' & s ] ']'"
) : seq_scope.
Notation "[ :: x1 ; x2 ; .. ; xn ]" := (x1 :: x2 :: .. [:: xn] ..)
(at level 0, format "[ :: '[' x1 ; '/' x2 ; '/' .. ; '/' xn ']' ]"
) : seq_scope.
Section Sequences.
Variable n0 : nat. (* numerical parameter for take, drop et al *)
Variable T : Type. (* must come before the implicit Type *)
Variable x0 : T. (* default for head/nth *)
Implicit Types x y z : T.
Implicit Types m n : nat.
Implicit Type s : seq T.
Fixpoint size s := if s is _ :: s' then (size s').+1 else 0.
Lemma size0nil s : size s = 0 -> s = [::]. Proof. by case: s. Qed.
Definition nilp s := size s == 0.
Lemma nilP s : reflect (s = [::]) (nilp s).
Proof. by case: s => [|x s]; constructor. Qed.
Definition ohead s := if s is x :: _ then Some x else None.
Definition head s := if s is x :: _ then x else x0.
Definition behead s := if s is _ :: s' then s' else [::].
Lemma size_behead s : size (behead s) = (size s).-1.
Proof. by case: s. Qed.
(* Factories *)
Definition ncons n x := iter n (cons x).
Definition nseq n x := ncons n x [::].
Lemma size_ncons n x s : size (ncons n x s) = n + size s.
Proof. by elim: n => //= n ->. Qed.
Lemma size_nseq n x : size (nseq n x) = n.
Proof. by rewrite size_ncons addn0. Qed.
(* n-ary, dependently typed constructor. *)
Fixpoint seqn_type n := if n is n'.+1 then T -> seqn_type n' else seq T.
Fixpoint seqn_rec f n : seqn_type n :=
if n is n'.+1 return seqn_type n then
fun x => seqn_rec (fun s => f (x :: s)) n'
else f [::].
Definition seqn := seqn_rec id.
(* Sequence catenation "cat". *)
Fixpoint cat s1 s2 := if s1 is x :: s1' then x :: s1' ++ s2 else s2
where "s1 ++ s2" := (cat s1 s2) : seq_scope.
Lemma cat0s s : [::] ++ s = s. Proof. by []. Qed.
Lemma cat1s x s : [:: x] ++ s = x :: s. Proof. by []. Qed.
Lemma cat_cons x s1 s2 : (x :: s1) ++ s2 = x :: s1 ++ s2. Proof. by []. Qed.
Lemma cat_nseq n x s : nseq n x ++ s = ncons n x s.
Proof. by elim: n => //= n ->. Qed.
Lemma nseqD n1 n2 x : nseq (n1 + n2) x = nseq n1 x ++ nseq n2 x.
Proof. by rewrite cat_nseq /nseq /ncons iterD. Qed.
Lemma cats0 s : s ++ [::] = s.
Proof. by elim: s => //= x s ->. Qed.
Lemma catA s1 s2 s3 : s1 ++ s2 ++ s3 = (s1 ++ s2) ++ s3.
Proof. by elim: s1 => //= x s1 ->. Qed.
Lemma size_cat s1 s2 : size (s1 ++ s2) = size s1 + size s2.
Proof. by elim: s1 => //= x s1 ->. Qed.
Lemma cat_nilp s1 s2 : nilp (s1 ++ s2) = nilp s1 && nilp s2.
Proof. by case: s1. Qed.
(* last, belast, rcons, and last induction. *)
Fixpoint rcons s z := if s is x :: s' then x :: rcons s' z else [:: z].
Lemma rcons_cons x s z : rcons (x :: s) z = x :: rcons s z.
Proof. by []. Qed.
Lemma cats1 s z : s ++ [:: z] = rcons s z.
Proof. by elim: s => //= x s ->. Qed.
Fixpoint last x s := if s is x' :: s' then last x' s' else x.
Fixpoint belast x s := if s is x' :: s' then x :: (belast x' s') else [::].
Lemma lastI x s : x :: s = rcons (belast x s) (last x s).
Proof. by elim: s x => [|y s IHs] x //=; rewrite IHs. Qed.
Lemma last_cons x y s : last x (y :: s) = last y s.
Proof. by []. Qed.
Lemma size_rcons s x : size (rcons s x) = (size s).+1.
Proof. by rewrite -cats1 size_cat addnC. Qed.
Lemma size_belast x s : size (belast x s) = size s.
Proof. by elim: s x => [|y s IHs] x //=; rewrite IHs. Qed.
Lemma last_cat x s1 s2 : last x (s1 ++ s2) = last (last x s1) s2.
Proof. by elim: s1 x => [|y s1 IHs] x //=; rewrite IHs. Qed.
Lemma last_rcons x s z : last x (rcons s z) = z.
Proof. by rewrite -cats1 last_cat. Qed.
Lemma belast_cat x s1 s2 :
belast x (s1 ++ s2) = belast x s1 ++ belast (last x s1) s2.
Proof. by elim: s1 x => [|y s1 IHs] x //=; rewrite IHs. Qed.
Lemma belast_rcons x s z : belast x (rcons s z) = x :: s.
Proof. by rewrite lastI -!cats1 belast_cat. Qed.
Lemma cat_rcons x s1 s2 : rcons s1 x ++ s2 = s1 ++ x :: s2.
Proof. by rewrite -cats1 -catA. Qed.
Lemma rcons_cat x s1 s2 : rcons (s1 ++ s2) x = s1 ++ rcons s2 x.
Proof. by rewrite -!cats1 catA. Qed.
Variant last_spec : seq T -> Type :=
| LastNil : last_spec [::]
| LastRcons s x : last_spec (rcons s x).
Lemma lastP s : last_spec s.
Proof. case: s => [|x s]; [left | rewrite lastI; right]. Qed.
Lemma last_ind P :
P [::] -> (forall s x, P s -> P (rcons s x)) -> forall s, P s.
Proof.
move=> Hnil Hlast s; rewrite -(cat0s s).
elim: s [::] Hnil => [|x s2 IHs] s1 Hs1; first by rewrite cats0.
by rewrite -cat_rcons; apply/IHs/Hlast.
Qed.
(* Sequence indexing. *)
Fixpoint nth s n {struct n} :=
if s is x :: s' then if n is n'.+1 then @nth s' n' else x else x0.
Fixpoint set_nth s n y {struct n} :=
if s is x :: s' then if n is n'.+1 then x :: @set_nth s' n' y else y :: s'
else ncons n x0 [:: y].
Lemma nth0 s : nth s 0 = head s. Proof. by []. Qed.
Lemma nth_default s n : size s <= n -> nth s n = x0.
Proof. by elim: s n => [|x s IHs] []. Qed.
Lemma if_nth s b n : b || (size s <= n) ->
(if b then nth s n else x0) = nth s n.
Proof. by case: leqP; case: ifP => //= *; rewrite nth_default. Qed.
Lemma nth_nil n : nth [::] n = x0.
Proof. by case: n. Qed.
Lemma nth_seq1 n x : nth [:: x] n = if n == 0 then x else x0.
Proof. by case: n => [|[]]. Qed.
Lemma last_nth x s : last x s = nth (x :: s) (size s).
Proof. by elim: s x => [|y s IHs] x /=. Qed.
Lemma nth_last s : nth s (size s).-1 = last x0 s.
Proof. by case: s => //= x s; rewrite last_nth. Qed.
Lemma nth_behead s n : nth (behead s) n = nth s n.+1.
Proof. by case: s n => [|x s] [|n]. Qed.
Lemma nth_cat s1 s2 n :
nth (s1 ++ s2) n = if n < size s1 then nth s1 n else nth s2 (n - size s1).
Proof. by elim: s1 n => [|x s1 IHs] []. Qed.
Lemma nth_rcons s x n :
nth (rcons s x) n =
if n < size s then nth s n else if n == size s then x else x0.
Proof. by elim: s n => [|y s IHs] [] //=; apply: nth_nil. Qed.
Lemma nth_rcons_default s i : nth (rcons s x0) i = nth s i.
Proof.
by rewrite nth_rcons; case: ltngtP => //[/ltnW ?|->]; rewrite nth_default.
Qed.
Lemma nth_ncons m x s n :
nth (ncons m x s) n = if n < m then x else nth s (n - m).
Proof. by elim: m n => [|m IHm] []. Qed.
Lemma nth_nseq m x n : nth (nseq m x) n = (if n < m then x else x0).
Proof. by elim: m n => [|m IHm] []. Qed.
Lemma eq_from_nth s1 s2 :
size s1 = size s2 -> (forall i, i < size s1 -> nth s1 i = nth s2 i) ->
s1 = s2.
Proof.
elim: s1 s2 => [|x1 s1 IHs1] [|x2 s2] //= [eq_sz] eq_s12.
by rewrite [x1](eq_s12 0) // (IHs1 s2) // => i; apply: (eq_s12 i.+1).
Qed.
Lemma size_set_nth s n y : size (set_nth s n y) = maxn n.+1 (size s).
Proof.
rewrite maxnC; elim: s n => [|x s IHs] [|n] //=.
- by rewrite size_ncons addn1.
- by rewrite IHs maxnSS.
Qed.
Lemma set_nth_nil n y : set_nth [::] n y = ncons n x0 [:: y].
Proof. by case: n. Qed.
Lemma nth_set_nth s n y : nth (set_nth s n y) =1 [eta nth s with n |-> y].
Proof.
elim: s n => [|x s IHs] [|n] [|m] //=; rewrite ?nth_nil ?IHs // nth_ncons eqSS.
case: ltngtP => // [lt_nm | ->]; last by rewrite subnn.
by rewrite nth_default // subn_gt0.
Qed.
Lemma set_set_nth s n1 y1 n2 y2 (s2 := set_nth s n2 y2) :
set_nth (set_nth s n1 y1) n2 y2 = if n1 == n2 then s2 else set_nth s2 n1 y1.
Proof.
have [-> | ne_n12] := eqVneq.
apply: eq_from_nth => [|i _]; first by rewrite !size_set_nth maxnA maxnn.
by do 2!rewrite !nth_set_nth /=; case: eqP.
apply: eq_from_nth => [|i _]; first by rewrite !size_set_nth maxnCA.
by do 2!rewrite !nth_set_nth /=; case: eqP => // ->; case: eqVneq ne_n12.
Qed.
(* find, count, has, all. *)
Section SeqFind.
Variable a : pred T.
Fixpoint find s := if s is x :: s' then if a x then 0 else (find s').+1 else 0.
Fixpoint filter s :=
if s is x :: s' then if a x then x :: filter s' else filter s' else [::].
Fixpoint count s := if s is x :: s' then a x + count s' else 0.
Fixpoint has s := if s is x :: s' then a x || has s' else false.
Fixpoint all s := if s is x :: s' then a x && all s' else true.
Lemma size_filter s : size (filter s) = count s.
Proof. by elim: s => //= x s <-; case (a x). Qed.
Lemma has_count s : has s = (0 < count s).
Proof. by elim: s => //= x s ->; case (a x). Qed.
Lemma count_size s : count s <= size s.
Proof. by elim: s => //= x s; case: (a x); last apply: leqW. Qed.
Lemma all_count s : all s = (count s == size s).
Proof.
elim: s => //= x s; case: (a x) => _ //=.
by rewrite add0n eqn_leq andbC ltnNge count_size.
Qed.
Lemma filter_all s : all (filter s).
Proof. by elim: s => //= x s IHs; case: ifP => //= ->. Qed.
Lemma all_filterP s : reflect (filter s = s) (all s).
Proof.
apply: (iffP idP) => [| <-]; last exact: filter_all.
by elim: s => //= x s IHs /andP[-> Hs]; rewrite IHs.
Qed.
Lemma filter_id s : filter (filter s) = filter s.
Proof. by apply/all_filterP; apply: filter_all. Qed.
Lemma has_find s : has s = (find s < size s).
Proof. by elim: s => //= x s IHs; case (a x); rewrite ?leqnn. Qed.
Lemma find_size s : find s <= size s.
Proof. by elim: s => //= x s IHs; case (a x). Qed.
Lemma find_cat s1 s2 :
find (s1 ++ s2) = if has s1 then find s1 else size s1 + find s2.
Proof.
by elim: s1 => //= x s1 IHs; case: (a x) => //; rewrite IHs (fun_if succn).
Qed.
Lemma has_nil : has [::] = false. Proof. by []. Qed.
Lemma has_seq1 x : has [:: x] = a x.
Proof. exact: orbF. Qed.
Lemma has_nseq n x : has (nseq n x) = (0 < n) && a x.
Proof. by elim: n => //= n ->; apply: andKb. Qed.
Lemma has_seqb (b : bool) x : has (nseq b x) = b && a x.
Proof. by rewrite has_nseq lt0b. Qed.
Lemma all_nil : all [::] = true. Proof. by []. Qed.
Lemma all_seq1 x : all [:: x] = a x.
Proof. exact: andbT. Qed.
Lemma all_nseq n x : all (nseq n x) = (n == 0) || a x.
Proof. by elim: n => //= n ->; apply: orKb. Qed.
Lemma all_nseqb (b : bool) x : all (nseq b x) = b ==> a x.
Proof. by rewrite all_nseq eqb0 implybE. Qed.
Lemma filter_nseq n x : filter (nseq n x) = nseq (a x * n) x.
Proof. by elim: n => /= [|n ->]; case: (a x). Qed.
Lemma count_nseq n x : count (nseq n x) = a x * n.
Proof. by rewrite -size_filter filter_nseq size_nseq. Qed.
Lemma find_nseq n x : find (nseq n x) = ~~ a x * n.
Proof. by elim: n => /= [|n ->]; case: (a x). Qed.
Lemma nth_find s : has s -> a (nth s (find s)).
Proof. by elim: s => //= x s IHs; case a_x: (a x). Qed.
Lemma before_find s i : i < find s -> a (nth s i) = false.
Proof. by elim: s i => //= x s IHs; case: ifP => // a'x [|i] // /(IHs i). Qed.
Lemma hasNfind s : ~~ has s -> find s = size s.
Proof. by rewrite has_find; case: ltngtP (find_size s). Qed.
Lemma filter_cat s1 s2 : filter (s1 ++ s2) = filter s1 ++ filter s2.
Proof. by elim: s1 => //= x s1 ->; case (a x). Qed.
Lemma filter_rcons s x :
filter (rcons s x) = if a x then rcons (filter s) x else filter s.
Proof. by rewrite -!cats1 filter_cat /=; case (a x); rewrite /= ?cats0. Qed.
Lemma count_cat s1 s2 : count (s1 ++ s2) = count s1 + count s2.
Proof. by rewrite -!size_filter filter_cat size_cat. Qed.
Lemma has_cat s1 s2 : has (s1 ++ s2) = has s1 || has s2.
Proof. by elim: s1 => [|x s1 IHs] //=; rewrite IHs orbA. Qed.
Lemma has_rcons s x : has (rcons s x) = a x || has s.
Proof. by rewrite -cats1 has_cat has_seq1 orbC. Qed.
Lemma all_cat s1 s2 : all (s1 ++ s2) = all s1 && all s2.
Proof. by elim: s1 => [|x s1 IHs] //=; rewrite IHs andbA. Qed.
Lemma all_rcons s x : all (rcons s x) = a x && all s.
Proof. by rewrite -cats1 all_cat all_seq1 andbC. Qed.
End SeqFind.
Lemma eq_find a1 a2 : a1 =1 a2 -> find a1 =1 find a2.
Proof. by move=> Ea; elim=> //= x s IHs; rewrite Ea IHs. Qed.
Lemma eq_filter a1 a2 : a1 =1 a2 -> filter a1 =1 filter a2.
Proof. by move=> Ea; elim=> //= x s IHs; rewrite Ea IHs. Qed.
Lemma eq_count a1 a2 : a1 =1 a2 -> count a1 =1 count a2.
Proof. by move=> Ea s; rewrite -!size_filter (eq_filter Ea). Qed.
Lemma eq_has a1 a2 : a1 =1 a2 -> has a1 =1 has a2.
Proof. by move=> Ea s; rewrite !has_count (eq_count Ea). Qed.
Lemma eq_all a1 a2 : a1 =1 a2 -> all a1 =1 all a2.
Proof. by move=> Ea s; rewrite !all_count (eq_count Ea). Qed.
Lemma all_filter (p q : pred T) xs :
all p (filter q xs) = all [pred i | q i ==> p i] xs.
Proof. by elim: xs => //= x xs <-; case: (q x). Qed.
Section SubPred.
Variable (a1 a2 : pred T).
Hypothesis s12 : subpred a1 a2.
Lemma sub_find s : find a2 s <= find a1 s.
Proof. by elim: s => //= x s IHs; case: ifP => // /(contraFF (@s12 x))->. Qed.
Lemma sub_has s : has a1 s -> has a2 s.
Proof. by rewrite !has_find; apply: leq_ltn_trans (sub_find s). Qed.
Lemma sub_count s : count a1 s <= count a2 s.
Proof.
by elim: s => //= x s; apply: leq_add; case a1x: (a1 x); rewrite // s12.
Qed.
Lemma sub_all s : all a1 s -> all a2 s.
Proof.
by rewrite !all_count !eqn_leq !count_size => /leq_trans-> //; apply: sub_count.
Qed.
End SubPred.
Lemma filter_pred0 s : filter pred0 s = [::]. Proof. by elim: s. Qed.
Lemma filter_predT s : filter predT s = s.
Proof. by elim: s => //= x s ->. Qed.
Lemma filter_predI a1 a2 s : filter (predI a1 a2) s = filter a1 (filter a2 s).
Proof. by elim: s => //= x s ->; rewrite andbC; case: (a2 x). Qed.
Lemma count_pred0 s : count pred0 s = 0.
Proof. by rewrite -size_filter filter_pred0. Qed.
Lemma count_predT s : count predT s = size s.
Proof. by rewrite -size_filter filter_predT. Qed.
Lemma count_predUI a1 a2 s :
count (predU a1 a2) s + count (predI a1 a2) s = count a1 s + count a2 s.
Proof.
elim: s => //= x s IHs; rewrite /= addnACA [RHS]addnACA IHs.
by case: (a1 x) => //; rewrite addn0.
Qed.
Lemma count_predC a s : count a s + count (predC a) s = size s.
Proof. by elim: s => //= x s IHs; rewrite addnACA IHs; case: (a _). Qed.
Lemma count_filter a1 a2 s : count a1 (filter a2 s) = count (predI a1 a2) s.
Proof. by rewrite -!size_filter filter_predI. Qed.
Lemma has_pred0 s : has pred0 s = false.
Proof. by rewrite has_count count_pred0. Qed.
Lemma has_predT s : has predT s = (0 < size s).
Proof. by rewrite has_count count_predT. Qed.
Lemma has_predC a s : has (predC a) s = ~~ all a s.
Proof. by elim: s => //= x s ->; case (a x). Qed.
Lemma has_predU a1 a2 s : has (predU a1 a2) s = has a1 s || has a2 s.
Proof. by elim: s => //= x s ->; rewrite -!orbA; do !bool_congr. Qed.
Lemma all_pred0 s : all pred0 s = (size s == 0).
Proof. by rewrite all_count count_pred0 eq_sym. Qed.
Lemma all_predT s : all predT s.
Proof. by rewrite all_count count_predT. Qed.
Lemma all_predC a s : all (predC a) s = ~~ has a s.
Proof. by elim: s => //= x s ->; case (a x). Qed.
Lemma all_predI a1 a2 s : all (predI a1 a2) s = all a1 s && all a2 s.
Proof.
apply: (can_inj negbK); rewrite negb_and -!has_predC -has_predU.
by apply: eq_has => x; rewrite /= negb_and.
Qed.
(* Surgery: drop, take, rot, rotr. *)
Fixpoint drop n s {struct s} :=
match s, n with
| _ :: s', n'.+1 => drop n' s'
| _, _ => s
end.
Lemma drop_behead : drop n0 =1 iter n0 behead.
Proof. by elim: n0 => [|n IHn] [|x s] //; rewrite iterSr -IHn. Qed.
Lemma drop0 s : drop 0 s = s. Proof. by case: s. Qed.
Lemma drop1 : drop 1 =1 behead. Proof. by case=> [|x [|y s]]. Qed.
Lemma drop_oversize n s : size s <= n -> drop n s = [::].
Proof. by elim: s n => [|x s IHs] []. Qed.
Lemma drop_size s : drop (size s) s = [::].
Proof. by rewrite drop_oversize // leqnn. Qed.
Lemma drop_cons x s :
drop n0 (x :: s) = if n0 is n.+1 then drop n s else x :: s.
Proof. by []. Qed.
Lemma size_drop s : size (drop n0 s) = size s - n0.
Proof. by elim: s n0 => [|x s IHs] []. Qed.
Lemma drop_cat s1 s2 :
drop n0 (s1 ++ s2) =
if n0 < size s1 then drop n0 s1 ++ s2 else drop (n0 - size s1) s2.
Proof. by elim: s1 n0 => [|x s1 IHs] []. Qed.
Lemma drop_size_cat n s1 s2 : size s1 = n -> drop n (s1 ++ s2) = s2.
Proof. by move <-; elim: s1 => //=; rewrite drop0. Qed.
Lemma nconsK n x : cancel (ncons n x) (drop n).
Proof. by elim: n => // -[]. Qed.
Lemma drop_drop s n1 n2 : drop n1 (drop n2 s) = drop (n1 + n2) s.
Proof. by elim: s n2 => // x s ihs [|n2]; rewrite ?drop0 ?addn0 ?addnS /=. Qed.
Fixpoint take n s {struct s} :=
match s, n with
| x :: s', n'.+1 => x :: take n' s'
| _, _ => [::]
end.
Lemma take0 s : take 0 s = [::]. Proof. by case: s. Qed.
Lemma take_oversize n s : size s <= n -> take n s = s.
Proof. by elim: s n => [|x s IHs] [|n] //= /IHs->. Qed.
Lemma take_size s : take (size s) s = s.
Proof. exact: take_oversize. Qed.
Lemma take_cons x s :
take n0 (x :: s) = if n0 is n.+1 then x :: (take n s) else [::].
Proof. by []. Qed.
Lemma drop_rcons s : n0 <= size s ->
forall x, drop n0 (rcons s x) = rcons (drop n0 s) x.
Proof. by elim: s n0 => [|y s IHs] []. Qed.
Lemma cat_take_drop s : take n0 s ++ drop n0 s = s.
Proof. by elim: s n0 => [|x s IHs] [|n] //=; rewrite IHs. Qed.
Lemma size_takel s : n0 <= size s -> size (take n0 s) = n0.
Proof.
by move/subKn; rewrite -size_drop -[in size s](cat_take_drop s) size_cat addnK.
Qed.
Lemma size_take s : size (take n0 s) = if n0 < size s then n0 else size s.
Proof.
have [le_sn | lt_ns] := leqP (size s) n0; first by rewrite take_oversize.
by rewrite size_takel // ltnW.
Qed.
Lemma size_take_min s : size (take n0 s) = minn n0 (size s).
Proof. exact: size_take. Qed.
Lemma take_cat s1 s2 :
take n0 (s1 ++ s2) =
if n0 < size s1 then take n0 s1 else s1 ++ take (n0 - size s1) s2.
Proof.
elim: s1 n0 => [|x s1 IHs] [|n] //=.
by rewrite ltnS subSS -(fun_if (cons x)) -IHs.
Qed.
Lemma take_size_cat n s1 s2 : size s1 = n -> take n (s1 ++ s2) = s1.
Proof. by move <-; elim: s1 => [|x s1 IHs]; rewrite ?take0 //= IHs. Qed.
Lemma takel_cat s1 s2 : n0 <= size s1 -> take n0 (s1 ++ s2) = take n0 s1.
Proof.
by rewrite take_cat; case: ltngtP => // ->; rewrite subnn take0 take_size cats0.
Qed.
Lemma nth_drop s i : nth (drop n0 s) i = nth s (n0 + i).
Proof.
rewrite -[s in RHS]cat_take_drop nth_cat size_take ltnNge.
case: ltnP => [?|le_s_n0]; rewrite ?(leq_trans le_s_n0) ?leq_addr ?addKn //=.
by rewrite drop_oversize // !nth_default.
Qed.
Lemma find_ltn p s i : has p (take i s) -> find p s < i.
Proof. by elim: s i => [|y s ihs] [|i]//=; case: (p _) => //= /ihs. Qed.
Lemma has_take p s i : has p s -> has p (take i s) = (find p s < i).
Proof. by elim: s i => [|y s ihs] [|i]//=; case: (p _) => //= /ihs ->. Qed.
Lemma has_take_leq (p : pred T) (s : seq T) i : i <= size s ->
has p (take i s) = (find p s < i).
Proof. by elim: s i => [|y s ihs] [|i]//=; case: (p _) => //= /ihs ->. Qed.
Lemma nth_take i : i < n0 -> forall s, nth (take n0 s) i = nth s i.
Proof.
move=> lt_i_n0 s; case lt_n0_s: (n0 < size s).
by rewrite -[s in RHS]cat_take_drop nth_cat size_take lt_n0_s /= lt_i_n0.
by rewrite -[s in LHS]cats0 take_cat lt_n0_s /= cats0.
Qed.
Lemma take_min i j s : take (minn i j) s = take i (take j s).
Proof. by elim: s i j => //= a l IH [|i] [|j] //=; rewrite minnSS IH. Qed.
Lemma take_takel i j s : i <= j -> take i (take j s) = take i s.
Proof. by move=> ?; rewrite -take_min (minn_idPl _). Qed.
Lemma take_taker i j s : j <= i -> take i (take j s) = take j s.
Proof. by move=> ?; rewrite -take_min (minn_idPr _). Qed.
Lemma take_drop i j s : take i (drop j s) = drop j (take (i + j) s).
Proof. by rewrite addnC; elim: s i j => // x s IHs [|i] [|j] /=. Qed.
Lemma takeD i j s : take (i + j) s = take i s ++ take j (drop i s).
Proof.
elim: i j s => [|i IHi] [|j] [|a s] //; first by rewrite take0 addn0 cats0.
by rewrite addSn /= IHi.
Qed.
Lemma takeC i j s : take i (take j s) = take j (take i s).
Proof. by rewrite -!take_min minnC. Qed.
Lemma take_nseq i j x : i <= j -> take i (nseq j x) = nseq i x.
Proof. by move=>/subnKC <-; rewrite nseqD take_size_cat // size_nseq. Qed.
Lemma drop_nseq i j x : drop i (nseq j x) = nseq (j - i) x.
Proof.
case: (leqP i j) => [/subnKC {1}<-|/ltnW j_le_i].
by rewrite nseqD drop_size_cat // size_nseq.
by rewrite drop_oversize ?size_nseq // (eqP j_le_i).
Qed.
(* drop_nth and take_nth below do NOT use the default n0, because the "n" *)
(* can be inferred from the condition, whereas the nth default value x0 *)
(* will have to be given explicitly (and this will provide "d" as well). *)
Lemma drop_nth n s : n < size s -> drop n s = nth s n :: drop n.+1 s.
Proof. by elim: s n => [|x s IHs] [|n] Hn //=; rewrite ?drop0 1?IHs. Qed.
Lemma take_nth n s : n < size s -> take n.+1 s = rcons (take n s) (nth s n).
Proof. by elim: s n => [|x s IHs] //= [|n] Hn /=; rewrite ?take0 -?IHs. Qed.
(* Rotation *)
Definition rot n s := drop n s ++ take n s.
Lemma rot0 s : rot 0 s = s.
Proof. by rewrite /rot drop0 take0 cats0. Qed.
Lemma size_rot s : size (rot n0 s) = size s.
Proof. by rewrite -[s in RHS]cat_take_drop /rot !size_cat addnC. Qed.
Lemma rot_oversize n s : size s <= n -> rot n s = s.
Proof. by move=> le_s_n; rewrite /rot take_oversize ?drop_oversize. Qed.
Lemma rot_size s : rot (size s) s = s.
Proof. exact: rot_oversize. Qed.
Lemma has_rot s a : has a (rot n0 s) = has a s.
Proof. by rewrite has_cat orbC -has_cat cat_take_drop. Qed.
Lemma rot_size_cat s1 s2 : rot (size s1) (s1 ++ s2) = s2 ++ s1.
Proof. by rewrite /rot take_size_cat ?drop_size_cat. Qed.
Definition rotr n s := rot (size s - n) s.
Lemma rotK : cancel (rot n0) (rotr n0).
Proof.
move=> s; rewrite /rotr size_rot -size_drop {2}/rot.
by rewrite rot_size_cat cat_take_drop.
Qed.
Lemma rot_inj : injective (rot n0). Proof. exact (can_inj rotK). Qed.
(* (efficient) reversal *)
Fixpoint catrev s1 s2 := if s1 is x :: s1' then catrev s1' (x :: s2) else s2.
Definition rev s := catrev s [::].
Lemma catrev_catl s t u : catrev (s ++ t) u = catrev t (catrev s u).
Proof. by elim: s u => /=. Qed.
Lemma catrev_catr s t u : catrev s (t ++ u) = catrev s t ++ u.
Proof. by elim: s t => //= x s IHs t; rewrite -IHs. Qed.
Lemma catrevE s t : catrev s t = rev s ++ t.
Proof. by rewrite -catrev_catr. Qed.
Lemma rev_cons x s : rev (x :: s) = rcons (rev s) x.
Proof. by rewrite -cats1 -catrevE. Qed.
Lemma size_rev s : size (rev s) = size s.
Proof. by elim: s => // x s IHs; rewrite rev_cons size_rcons IHs. Qed.
Lemma rev_nilp s : nilp (rev s) = nilp s.
Proof. by move: s (rev s) (size_rev s) => [|? ?] []. Qed.
Lemma rev_cat s t : rev (s ++ t) = rev t ++ rev s.
Proof. by rewrite -catrev_catr -catrev_catl. Qed.
Lemma rev_rcons s x : rev (rcons s x) = x :: rev s.
Proof. by rewrite -cats1 rev_cat. Qed.
Lemma revK : involutive rev.
Proof. by elim=> //= x s IHs; rewrite rev_cons rev_rcons IHs. Qed.
Lemma nth_rev n s : n < size s -> nth (rev s) n = nth s (size s - n.+1).
Proof.
elim/last_ind: s => // s x IHs in n *.
rewrite rev_rcons size_rcons ltnS subSS -cats1 nth_cat /=.
case: n => [|n] lt_n_s; first by rewrite subn0 ltnn subnn.
by rewrite subnSK //= leq_subr IHs.
Qed.
Lemma filter_rev a s : filter a (rev s) = rev (filter a s).
Proof. by elim: s => //= x s IH; rewrite fun_if !rev_cons filter_rcons IH. Qed.
Lemma count_rev a s : count a (rev s) = count a s.
Proof. by rewrite -!size_filter filter_rev size_rev. Qed.
Lemma has_rev a s : has a (rev s) = has a s.
Proof. by rewrite !has_count count_rev. Qed.
Lemma all_rev a s : all a (rev s) = all a s.
Proof. by rewrite !all_count count_rev size_rev. Qed.
Lemma rev_nseq n x : rev (nseq n x) = nseq n x.
Proof. by elim: n => // n IHn; rewrite -[in LHS]addn1 nseqD rev_cat IHn. Qed.
End Sequences.
Prenex Implicits size ncons nseq head ohead behead last rcons belast.
Arguments seqn {T} n.
Prenex Implicits cat take drop rot rotr catrev.
Prenex Implicits find count nth all has filter.
Arguments rev {T} s : simpl never.
Arguments nth : simpl nomatch.
Arguments set_nth : simpl nomatch.
Arguments take : simpl nomatch.
Arguments drop : simpl nomatch.
Arguments nilP {T s}.
Arguments all_filterP {T a s}.
Arguments rotK n0 {T} s : rename.
Arguments rot_inj {n0 T} [s1 s2] eq_rot_s12 : rename.
Arguments revK {T} s : rename.
Notation count_mem x := (count (pred_of_simpl (pred1 x))).
Infix "++" := cat : seq_scope.
Notation "[ 'seq' x <- s | C ]" := (filter (fun x => C%B) s)
(at level 0, x at level 99,
format "[ '[hv' 'seq' x <- s '/ ' | C ] ']'") : seq_scope.
Notation "[ 'seq' x <- s | C1 & C2 ]" := [seq x <- s | C1 && C2]
(at level 0, x at level 99,
format "[ '[hv' 'seq' x <- s '/ ' | C1 '/ ' & C2 ] ']'") : seq_scope.
Notation "[ 'seq' x : T <- s | C ]" := (filter (fun x : T => C%B) s)
(at level 0, x at level 99, only parsing).
Notation "[ 'seq' x : T <- s | C1 & C2 ]" := [seq x : T <- s | C1 && C2]
(at level 0, x at level 99, only parsing).
#[deprecated(since="mathcomp 1.16",
note="Use take_takel or take_min instead")]
Notation take_take := take_takel.
(* Double induction/recursion. *)
Lemma seq_ind2 {S T} (P : seq S -> seq T -> Type) :
P [::] [::] ->
(forall x y s t, size s = size t -> P s t -> P (x :: s) (y :: t)) ->
forall s t, size s = size t -> P s t.
Proof.
by move=> Pnil Pcons; elim=> [|x s IHs] [|y t] //= [eq_sz]; apply/Pcons/IHs.
Qed.
Section FindSpec.
Variable (T : Type) (a : {pred T}) (s : seq T).
Variant find_spec : bool -> nat -> Type :=
| NotFound of ~~ has a s : find_spec false (size s)
| Found (i : nat) of i < size s & (forall x0, a (nth x0 s i)) &
(forall x0 j, j < i -> a (nth x0 s j) = false) : find_spec true i.
Lemma findP : find_spec (has a s) (find a s).
Proof.
have [a_s|aNs] := boolP (has a s); last by rewrite hasNfind//; constructor.
by constructor=> [|x0|x0]; rewrite -?has_find ?nth_find//; apply: before_find.
Qed.
End FindSpec.
Arguments findP {T}.
Section RotRcons.
Variable T : Type.
Implicit Types (x : T) (s : seq T).
Lemma rot1_cons x s : rot 1 (x :: s) = rcons s x.
Proof. by rewrite /rot /= take0 drop0 -cats1. Qed.
Lemma rcons_inj s1 s2 x1 x2 :