forked from minghanz/carla_navigation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
CameraProcess.py
270 lines (220 loc) · 9.2 KB
/
CameraProcess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import numpy as np
import math
import carla
import sys
sys.path.append('/home/carla/Carla/binary_latest/PythonAPI/carla/agents/navigation/yolov3')
sys.path.append('/home/carla/Carla/binary_latest/PythonAPI/carla/agents/navigation')
from yolov3.YoloDetect import YoloDetect
from agents.navigation.SurroundingObjects import Surrounding_pedestrian, Surrounding_vehicle
import cv2
class PercpVeh():
def __init__(self, id=None, x=None, y=None, vx=None, vy=None, simple_veh=None):
self.matched = True
self.lost_count = 0
self.mot_noise = np.diag([1, 1, 3, 3])
self.obs_noise = np.diag([0.5, 0.5])
self.sigma = np.diag([1,1,50,50])
assert id is not None, "id should be given"
self.id = id
if simple_veh is not None:
self.state = np.array([simple_veh.location.x, simple_veh.location.y, 5, 5])[:,np.newaxis]
self.u = simple_veh.u
self.v = simple_veh.v
elif x is None:
self.state = None
else:
assert x is not None and y is not None, "Info not complete"
if vx is None and vy is None:
self.state = np.array([x, y, 0, 0])[:,np.newaxis]
else:
assert vx is not None and vy is not None, "velocity is not complete"
self.state = np.array([x, y, vx, vy])[:,np.newaxis]
def update(self, simple_veh=None):
if simple_veh is not None:
x = simple_veh.location.x
y = simple_veh.location.y
self.u = simple_veh.u
self.v = simple_veh.v
self.filter(x, y)
self.matched = True
self.lost_count = 0
else:
self.matched = False
self.lost_count += 1
def filter(self, x, y):
self.last_location = self.location
# dt = time - self.time
dt = 0.05
# print(dt)
# self.time = time
A = np.array([
[1, 0, dt, 0],
[0, 1, 0, dt],
[0, 0, 1, 0],
[0, 0, 0, 1]
])
C = np.array([
[1, 0, 0, 0],
[0, 1, 0, 0]
])
self.state = A.dot(self.state)
self.sigma = A.dot(self.sigma).dot(A.T) + self.mot_noise
z = np.array([[x], [y]]) - C.dot(self.state)
S = self.obs_noise + C.dot(self.sigma).dot(C.T)
K = self.sigma.dot(C.T).dot(np.linalg.inv(S))
self.state += K.dot(z)
self.sigma = (np.diag([1]*4) - K.dot(C)).dot(self.sigma)
@property
def location(self):
return carla.Location(x=float(self.state[0,0]), y=float(self.state[1,0]), z=1)
@property
def speed(self):
return 3.6 * math.sqrt(self.state[2,0]**2 + self.state[3,0]**2)
@property
def speed_direction(self):
p_vec = np.array([self.state[2,0], self.state[3,0], 0.0])
p_vec = p_vec/np.linalg.norm(p_vec)
return p_vec
def evalDist(veh1, veh2):
if veh2.matched == False:
xd = veh2.location.x - veh1.location.x
yd = veh2.location.y - veh1.location.y
dist = np.sqrt(xd**2 + yd**2)
else:
dist = None
return dist
class ObjectList(list):
def __init__(self, lost_thresh = 3):
self.last_id = 0
self.lost_max = lost_thresh
def matchto(self, veh_cur):
min_dist = None
i_best = None
for i, veh in enumerate(self):
dist = evalDist(veh_cur, veh)
if dist is not None:
if min_dist is None:
min_dist = dist
i_best = i
elif dist < min_dist:
min_dist = dist
i_best = i
if min_dist is not None:
if min_dist < 10:
self[i_best].update(veh_cur)
return True
return False
def appendto(self, veh_cur):
veh = PercpVeh(id=self.last_id, simple_veh=veh_cur)
self.last_id += 1
self.append(veh)
def renewleft(self):
if len(self) > 0:
to_del_idx = []
for i, veh in enumerate(self):
if veh.matched == False:
veh.update()
if veh.lost_count >= self.lost_max:
to_del_idx.append(i)
to_del_idx_sorted = sorted(to_del_idx, reverse = True)
for i in to_del_idx_sorted:
del self[i]
def updatelist(self, veh_list_cur):
if len(self)>0:
for veh in self:
veh.matched = False
if len(veh_list_cur) > 0:
if len(self) > 0:
for veh_cur in veh_list_cur:
found = self.matchto(veh_cur)
if not found:
self.appendto(veh_cur)
else:
for veh_cur in veh_list_cur:
self.appendto(veh_cur)
self.renewleft()
class CameraProcess(object):
def __init__(self):
self.yolo = YoloDetect()
self.vehicle_list_cur = []
self.pedestrian_list_cur = []
self.vehicle_list = ObjectList()
self.pedestrian_list = ObjectList()
def process_input_data(self, input_data):
array = input_data['Left'][1]
array = np.ascontiguousarray(array[:, :, :3])
array = np.ascontiguousarray(array[:, :, ::-1])
detections, self.im0 = self.yolo.run(array, frame_id=input_data['Left'][0])
return detections
def gen_current_frame_list(self, detections, pos_self, yaw_self):
self.vehicle_list_cur = []
self.pedestrian_list_cur = []
if len(detections) < 1:
return
xy_self = np.array([pos_self.x, pos_self.y]).reshape((2, 1))
for detect in detections:
xy_local = np.array([detect[0], detect[1]]).reshape((2, 1))
yaw = math.radians(yaw_self)
R_mat = np.array([[np.cos(yaw), -np.sin(yaw)], [np.sin(yaw), np.cos(yaw)]])
xy_global = R_mat.dot(xy_local) + xy_self
if detect[2] == 'car' or detect[2] == 'truck' or detect[2] == 'bus':
obj = Surrounding_vehicle()
obj.location = carla.Location(x=xy_global[0,0], y=xy_global[1,0],z=0)
obj.speed = 0
obj.speed_direction = np.array([xy_local[0], xy_local[1], 0])
obj.u = detect[3]
obj.v = detect[4]
self.vehicle_list_cur.append(obj)
elif detect[2] == 'person' or detect[2] == 'bicycle' or detect[2] == 'motorcycle':
obj = Surrounding_pedestrian()
obj.location = carla.Location(x=xy_global[0,0], y=xy_global[1,0],z=0)
obj.speed = 0
obj.speed_direction = np.array([xy_local[0,0], xy_local[1,0], 0])
obj.u = detect[3]
obj.v = detect[4]
self.pedestrian_list_cur.append(obj)
def run_step(self, input_data, pos_self, yaw_self):
detections = self.process_input_data(input_data)
# print the perception poses from targets
print("\nPerception")
for target_vehicle in detections:
print(target_vehicle)
self.gen_current_frame_list(detections, pos_self, yaw_self)
print("\nNeeded perception")
print("vehicle")
for target_vehicle in self.vehicle_list_cur:
# print(type(target_vehicle))
# t_loc = target_vehicle.location
# t_loc_array = np.array([t_loc.x, t_loc.y])
t_loc_array = np.array([target_vehicle.location.x, target_vehicle.location.y])
print(t_loc_array)
print("pedestrian")
for target_ped in self.pedestrian_list_cur:
t_loc_array = np.array([target_ped.location.x, target_ped.location.y])
print(t_loc_array)
self.vehicle_list.updatelist(self.vehicle_list_cur)
self.pedestrian_list.updatelist(self.pedestrian_list_cur)
print("\nTracked")
print("vehicle")
for target_vehicle in self.vehicle_list:
# print(type(target_vehicle))
# t_loc = target_vehicle.location
# t_loc_array = np.array([t_loc.x, t_loc.y])
t_loc_array = np.array([target_vehicle.location.x, target_vehicle.location.y])
print(t_loc_array)
print("pedestrian")
for target_ped in self.pedestrian_list:
t_loc_array = np.array([target_ped.location.x, target_ped.location.y])
print(t_loc_array)
self.drawWorldCoord()
def drawWorldCoord(self):
tl = round(0.002 * max(self.im0.shape[0:2])) + 1 # line thickness
tf = max(tl - 1, 1) # font thickness
for veh in self.pedestrian_list:
cv2.putText(self.im0, '%.1f %.1f'%(veh.location.x, veh.location.y), (veh.u, veh.v+20), 0, tl/3 - 0.2, [255, 0, 0], thickness=tf, lineType=cv2.LINE_AA)
for veh in self.vehicle_list:
cv2.putText(self.im0, '%.1f %.1f'%(veh.location.x, veh.location.y), (veh.u, veh.v+20), 0, tl/3 - 0.2, [255, 0, 0], thickness=tf, lineType=cv2.LINE_AA)
# imgplot = plt.imshow(im0)
# # imgplot = plt.imshow(im0[:,:,::-1])
# plt.pause(0.01)
# def drawTruth(self, true_veh_list, true_ped_list):