-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
answer_96.py
350 lines (269 loc) · 9.15 KB
/
answer_96.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
import cv2
import numpy as np
np.random.seed(0)
# get HOG
def HOG(img):
# Grayscale
def BGR2GRAY(img):
gray = 0.2126 * img[..., 2] + 0.7152 * img[..., 1] + 0.0722 * img[..., 0]
return gray
# Magnitude and gradient
def get_gradXY(gray):
H, W = gray.shape
# padding before grad
gray = np.pad(gray, (1, 1), 'edge')
# get grad x
gx = gray[1:H+1, 2:] - gray[1:H+1, :W]
# get grad y
gy = gray[2:, 1:W+1] - gray[:H, 1:W+1]
# replace 0 with
gx[gx == 0] = 1e-6
return gx, gy
# get magnitude and gradient
def get_MagGrad(gx, gy):
# get gradient maginitude
magnitude = np.sqrt(gx ** 2 + gy ** 2)
# get gradient angle
gradient = np.arctan(gy / gx)
gradient[gradient < 0] = np.pi / 2 + gradient[gradient < 0] + np.pi / 2
return magnitude, gradient
# Gradient histogram
def quantization(gradient):
# prepare quantization table
gradient_quantized = np.zeros_like(gradient, dtype=np.int)
# quantization base
d = np.pi / 9
# quantization
for i in range(9):
gradient_quantized[np.where((gradient >= d * i) & (gradient <= d * (i + 1)))] = i
return gradient_quantized
# get gradient histogram
def gradient_histogram(gradient_quantized, magnitude, N=8):
# get shape
H, W = magnitude.shape
# get cell num
cell_N_H = H // N
cell_N_W = W // N
histogram = np.zeros((cell_N_H, cell_N_W, 9), dtype=np.float32)
# each pixel
for y in range(cell_N_H):
for x in range(cell_N_W):
for j in range(N):
for i in range(N):
histogram[y, x, gradient_quantized[y * 4 + j, x * 4 + i]] += magnitude[y * 4 + j, x * 4 + i]
return histogram
# histogram normalization
def normalization(histogram, C=3, epsilon=1):
cell_N_H, cell_N_W, _ = histogram.shape
## each histogram
for y in range(cell_N_H):
for x in range(cell_N_W):
#for i in range(9):
histogram[y, x] /= np.sqrt(np.sum(histogram[max(y - 1, 0) : min(y + 2, cell_N_H),
max(x - 1, 0) : min(x + 2, cell_N_W)] ** 2) + epsilon)
return histogram
# 1. BGR -> Gray
gray = BGR2GRAY(img)
# 1. Gray -> Gradient x and y
gx, gy = get_gradXY(gray)
# 2. get gradient magnitude and angle
magnitude, gradient = get_MagGrad(gx, gy)
# 3. Quantization
gradient_quantized = quantization(gradient)
# 4. Gradient histogram
histogram = gradient_histogram(gradient_quantized, magnitude)
# 5. Histogram normalization
histogram = normalization(histogram)
return histogram
# get IoU overlap ratio
def iou(a, b):
# get area of a
area_a = (a[2] - a[0]) * (a[3] - a[1])
# get area of b
area_b = (b[2] - b[0]) * (b[3] - b[1])
# get left top x of IoU
iou_x1 = np.maximum(a[0], b[0])
# get left top y of IoU
iou_y1 = np.maximum(a[1], b[1])
# get right bottom of IoU
iou_x2 = np.minimum(a[2], b[2])
# get right bottom of IoU
iou_y2 = np.minimum(a[3], b[3])
# get width of IoU
iou_w = iou_x2 - iou_x1
# get height of IoU
iou_h = iou_y2 - iou_y1
# get area of IoU
area_iou = iou_w * iou_h
# get overlap ratio between IoU and all area
iou = area_iou / (area_a + area_b - area_iou)
return iou
# resize using bi-linear
def resize(img, h, w):
# get shape
_h, _w, _c = img.shape
# get resize ratio
ah = 1. * h / _h
aw = 1. * w / _w
# get index of each y
y = np.arange(h).repeat(w).reshape(w, -1)
# get index of each x
x = np.tile(np.arange(w), (h, 1))
# get coordinate toward x and y of resized image
y = (y / ah)
x = (x / aw)
# transfer to int
ix = np.floor(x).astype(np.int32)
iy = np.floor(y).astype(np.int32)
# clip index
ix = np.minimum(ix, _w-2)
iy = np.minimum(iy, _h-2)
# get distance between original image index and resized image index
dx = x - ix
dy = y - iy
dx = np.tile(dx, [_c, 1, 1]).transpose(1, 2, 0)
dy = np.tile(dy, [_c, 1, 1]).transpose(1, 2, 0)
# resize
out = (1 - dx) * (1 - dy) * img[iy, ix] + dx * (1 - dy) * img[iy, ix + 1] + (1 - dx) * dy * img[iy + 1, ix] + dx * dy * img[iy + 1, ix + 1]
out[out > 255] = 255
return out
# neural network
class NN:
def __init__(self, ind=2, w=64, w2=64, outd=1, lr=0.1):
# layer 1 weight
self.w1 = np.random.normal(0, 1, [ind, w])
# layer 1 bias
self.b1 = np.random.normal(0, 1, [w])
# layer 2 weight
self.w2 = np.random.normal(0, 1, [w, w2])
# layer 2 bias
self.b2 = np.random.normal(0, 1, [w2])
# output layer weight
self.wout = np.random.normal(0, 1, [w2, outd])
# output layer bias
self.bout = np.random.normal(0, 1, [outd])
# learning rate
self.lr = lr
def forward(self, x):
# input tensor
self.z1 = x
# layer 1 output tensor
self.z2 = sigmoid(np.dot(self.z1, self.w1) + self.b1)
# layer 2 output tensor
self.z3 = sigmoid(np.dot(self.z2, self.w2) + self.b2)
# output layer tensor
self.out = sigmoid(np.dot(self.z3, self.wout) + self.bout)
return self.out
def train(self, x, t):
# backpropagation output layer
#En = t * np.log(self.out) + (1-t) * np.log(1-self.out)
En = (self.out - t) * self.out * (1 - self.out)
# get gradients for weight and bias
grad_wout = np.dot(self.z3.T, En)
grad_bout = np.dot(np.ones([En.shape[0]]), En)
# update weight and bias
self.wout -= self.lr * grad_wout
self.bout -= self.lr * grad_bout
# backpropagation inter layer
# get gradients for weight and bias
grad_u2 = np.dot(En, self.wout.T) * self.z3 * (1 - self.z3)
grad_w2 = np.dot(self.z2.T, grad_u2)
grad_b2 = np.dot(np.ones([grad_u2.shape[0]]), grad_u2)
# update weight and bias
self.w2 -= self.lr * grad_w2
self.b2 -= self.lr * grad_b2
# get gradients for weight and bias
grad_u1 = np.dot(grad_u2, self.w2.T) * self.z2 * (1 - self.z2)
grad_w1 = np.dot(self.z1.T, grad_u1)
grad_b1 = np.dot(np.ones([grad_u1.shape[0]]), grad_u1)
# update weight and bias
self.w1 -= self.lr * grad_w1
self.b1 -= self.lr * grad_b1
# sigmoid
def sigmoid(x):
return 1. / (1. + np.exp(-x))
# train
def train_nn(nn, train_x, train_t, iteration_N=10000):
# each iteration
for i in range(iteration_N):
# feed-forward data
nn.forward(train_x)
# update parameter
nn.train(train_x, train_t)
return nn
# test
def test_nn(nn, test_x, test_t, pred_th=0.5):
accuracy_N = 0.
# each data
for data, t in zip(test_x, test_t):
# get prediction
prob = nn.forward(data)
# count accuracy
pred = 1 if prob >= pred_th else 0
if t == pred:
accuracy_N += 1
# get accuracy
accuracy = accuracy_N / len(db)
print("Accuracy >> {} ({} / {})".format(accuracy, accuracy_N, len(db)))
# crop bounding box and make dataset
def make_dataset(img, gt, Crop_N=200, L=60, th=0.5, H_size=32):
# get shape
H, W, _ = img.shape
# get HOG feature dimension
HOG_feature_N = ((H_size // 8) ** 2) * 9
# prepare database
db = np.zeros([Crop_N, HOG_feature_N + 1])
# each crop
for i in range(Crop_N):
# get left top x of crop bounding box
x1 = np.random.randint(W - L)
# get left top y of crop bounding box
y1 = np.random.randint(H - L)
# get right bottom x of crop bounding box
x2 = x1 + L
# get right bottom y of crop bounding box
y2 = y1 + L
# get bounding box
crop = np.array((x1, y1, x2, y2))
_iou = np.zeros((3,))
_iou[0] = iou(gt, crop)
#_iou[1] = iou(gt2, crop)
#_iou[2] = iou(gt3, crop)
# get label
if _iou.max() >= th:
cv2.rectangle(img, (x1, y1), (x2, y2), (0,0,255), 1)
label = 1
else:
cv2.rectangle(img, (x1, y1), (x2, y2), (255,0,0), 1)
label = 0
# crop area
crop_area = img[y1:y2, x1:x2]
# resize crop area
crop_area = resize(crop_area, H_size, H_size)
# get HOG feature
_hog = HOG(crop_area)
# store HOG feature and label
db[i, :HOG_feature_N] = _hog.ravel()
db[i, -1] = label
return db
# Read image
img = cv2.imread("imori.jpg").astype(np.float32)
# get HOG
histogram = HOG(img)
# prepare gt bounding box
gt = np.array((47, 41, 129, 103), dtype=np.float32)
# get database
db = make_dataset(img, gt)
# train neural network
# get input feature dimension
input_dim = db.shape[1] - 1
# prepare train data X
train_x = db[:, :input_dim]
# prepare train data t
train_t = db[:, -1][..., None]
# prepare neural network
nn = NN(ind=input_dim, lr=0.01)
# training
nn = train_nn(nn, train_x, train_t, iteration_N=10000)
# test
test_nn(nn, train_x, train_t)